xref: /openbmc/qemu/hw/nvram/fw_cfg.c (revision 69242e7e)
1 /*
2  * QEMU Firmware configuration device emulation
3  *
4  * Copyright (c) 2008 Gleb Natapov
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "qemu-common.h"
27 #include "qemu/datadir.h"
28 #include "sysemu/sysemu.h"
29 #include "sysemu/dma.h"
30 #include "sysemu/reset.h"
31 #include "hw/boards.h"
32 #include "hw/nvram/fw_cfg.h"
33 #include "hw/qdev-properties.h"
34 #include "hw/sysbus.h"
35 #include "migration/qemu-file-types.h"
36 #include "migration/vmstate.h"
37 #include "trace.h"
38 #include "qemu/error-report.h"
39 #include "qemu/option.h"
40 #include "qemu/config-file.h"
41 #include "qemu/cutils.h"
42 #include "qapi/error.h"
43 #include "hw/acpi/aml-build.h"
44 #include "hw/pci/pci_bus.h"
45 
46 #define FW_CFG_FILE_SLOTS_DFLT 0x20
47 
48 /* FW_CFG_VERSION bits */
49 #define FW_CFG_VERSION      0x01
50 #define FW_CFG_VERSION_DMA  0x02
51 
52 /* FW_CFG_DMA_CONTROL bits */
53 #define FW_CFG_DMA_CTL_ERROR   0x01
54 #define FW_CFG_DMA_CTL_READ    0x02
55 #define FW_CFG_DMA_CTL_SKIP    0x04
56 #define FW_CFG_DMA_CTL_SELECT  0x08
57 #define FW_CFG_DMA_CTL_WRITE   0x10
58 
59 #define FW_CFG_DMA_SIGNATURE 0x51454d5520434647ULL /* "QEMU CFG" */
60 
61 struct FWCfgEntry {
62     uint32_t len;
63     bool allow_write;
64     uint8_t *data;
65     void *callback_opaque;
66     FWCfgCallback select_cb;
67     FWCfgWriteCallback write_cb;
68 };
69 
70 /**
71  * key_name:
72  *
73  * @key: The uint16 selector key.
74  *
75  * Returns: The stringified name if the selector refers to a well-known
76  *          numerically defined item, or NULL on key lookup failure.
77  */
78 static const char *key_name(uint16_t key)
79 {
80     static const char *fw_cfg_wellknown_keys[FW_CFG_FILE_FIRST] = {
81         [FW_CFG_SIGNATURE] = "signature",
82         [FW_CFG_ID] = "id",
83         [FW_CFG_UUID] = "uuid",
84         [FW_CFG_RAM_SIZE] = "ram_size",
85         [FW_CFG_NOGRAPHIC] = "nographic",
86         [FW_CFG_NB_CPUS] = "nb_cpus",
87         [FW_CFG_MACHINE_ID] = "machine_id",
88         [FW_CFG_KERNEL_ADDR] = "kernel_addr",
89         [FW_CFG_KERNEL_SIZE] = "kernel_size",
90         [FW_CFG_KERNEL_CMDLINE] = "kernel_cmdline",
91         [FW_CFG_INITRD_ADDR] = "initrd_addr",
92         [FW_CFG_INITRD_SIZE] = "initdr_size",
93         [FW_CFG_BOOT_DEVICE] = "boot_device",
94         [FW_CFG_NUMA] = "numa",
95         [FW_CFG_BOOT_MENU] = "boot_menu",
96         [FW_CFG_MAX_CPUS] = "max_cpus",
97         [FW_CFG_KERNEL_ENTRY] = "kernel_entry",
98         [FW_CFG_KERNEL_DATA] = "kernel_data",
99         [FW_CFG_INITRD_DATA] = "initrd_data",
100         [FW_CFG_CMDLINE_ADDR] = "cmdline_addr",
101         [FW_CFG_CMDLINE_SIZE] = "cmdline_size",
102         [FW_CFG_CMDLINE_DATA] = "cmdline_data",
103         [FW_CFG_SETUP_ADDR] = "setup_addr",
104         [FW_CFG_SETUP_SIZE] = "setup_size",
105         [FW_CFG_SETUP_DATA] = "setup_data",
106         [FW_CFG_FILE_DIR] = "file_dir",
107     };
108 
109     if (key & FW_CFG_ARCH_LOCAL) {
110         return fw_cfg_arch_key_name(key);
111     }
112     if (key < FW_CFG_FILE_FIRST) {
113         return fw_cfg_wellknown_keys[key];
114     }
115 
116     return NULL;
117 }
118 
119 static inline const char *trace_key_name(uint16_t key)
120 {
121     const char *name = key_name(key);
122 
123     return name ? name : "unknown";
124 }
125 
126 #define JPG_FILE 0
127 #define BMP_FILE 1
128 
129 static char *read_splashfile(char *filename, gsize *file_sizep,
130                              int *file_typep)
131 {
132     GError *err = NULL;
133     gchar *content;
134     int file_type;
135     unsigned int filehead;
136     int bmp_bpp;
137 
138     if (!g_file_get_contents(filename, &content, file_sizep, &err)) {
139         error_report("failed to read splash file '%s': %s",
140                      filename, err->message);
141         g_error_free(err);
142         return NULL;
143     }
144 
145     /* check file size */
146     if (*file_sizep < 30) {
147         goto error;
148     }
149 
150     /* check magic ID */
151     filehead = lduw_le_p(content);
152     if (filehead == 0xd8ff) {
153         file_type = JPG_FILE;
154     } else if (filehead == 0x4d42) {
155         file_type = BMP_FILE;
156     } else {
157         goto error;
158     }
159 
160     /* check BMP bpp */
161     if (file_type == BMP_FILE) {
162         bmp_bpp = lduw_le_p(&content[28]);
163         if (bmp_bpp != 24) {
164             goto error;
165         }
166     }
167 
168     /* return values */
169     *file_typep = file_type;
170 
171     return content;
172 
173 error:
174     error_report("splash file '%s' format not recognized; must be JPEG "
175                  "or 24 bit BMP", filename);
176     g_free(content);
177     return NULL;
178 }
179 
180 static void fw_cfg_bootsplash(FWCfgState *s)
181 {
182     const char *boot_splash_filename = NULL;
183     const char *boot_splash_time = NULL;
184     char *filename, *file_data;
185     gsize file_size;
186     int file_type;
187 
188     /* get user configuration */
189     QemuOptsList *plist = qemu_find_opts("boot-opts");
190     QemuOpts *opts = QTAILQ_FIRST(&plist->head);
191     boot_splash_filename = qemu_opt_get(opts, "splash");
192     boot_splash_time = qemu_opt_get(opts, "splash-time");
193 
194     /* insert splash time if user configurated */
195     if (boot_splash_time) {
196         int64_t bst_val = qemu_opt_get_number(opts, "splash-time", -1);
197         uint16_t bst_le16;
198 
199         /* validate the input */
200         if (bst_val < 0 || bst_val > 0xffff) {
201             error_report("splash-time is invalid,"
202                          "it should be a value between 0 and 65535");
203             exit(1);
204         }
205         /* use little endian format */
206         bst_le16 = cpu_to_le16(bst_val);
207         fw_cfg_add_file(s, "etc/boot-menu-wait",
208                         g_memdup(&bst_le16, sizeof bst_le16), sizeof bst_le16);
209     }
210 
211     /* insert splash file if user configurated */
212     if (boot_splash_filename) {
213         filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, boot_splash_filename);
214         if (filename == NULL) {
215             error_report("failed to find file '%s'", boot_splash_filename);
216             return;
217         }
218 
219         /* loading file data */
220         file_data = read_splashfile(filename, &file_size, &file_type);
221         if (file_data == NULL) {
222             g_free(filename);
223             return;
224         }
225         g_free(boot_splash_filedata);
226         boot_splash_filedata = (uint8_t *)file_data;
227 
228         /* insert data */
229         if (file_type == JPG_FILE) {
230             fw_cfg_add_file(s, "bootsplash.jpg",
231                             boot_splash_filedata, file_size);
232         } else {
233             fw_cfg_add_file(s, "bootsplash.bmp",
234                             boot_splash_filedata, file_size);
235         }
236         g_free(filename);
237     }
238 }
239 
240 static void fw_cfg_reboot(FWCfgState *s)
241 {
242     const char *reboot_timeout = NULL;
243     uint64_t rt_val = -1;
244     uint32_t rt_le32;
245 
246     /* get user configuration */
247     QemuOptsList *plist = qemu_find_opts("boot-opts");
248     QemuOpts *opts = QTAILQ_FIRST(&plist->head);
249     reboot_timeout = qemu_opt_get(opts, "reboot-timeout");
250 
251     if (reboot_timeout) {
252         rt_val = qemu_opt_get_number(opts, "reboot-timeout", -1);
253 
254         /* validate the input */
255         if (rt_val > 0xffff && rt_val != (uint64_t)-1) {
256             error_report("reboot timeout is invalid,"
257                          "it should be a value between -1 and 65535");
258             exit(1);
259         }
260     }
261 
262     rt_le32 = cpu_to_le32(rt_val);
263     fw_cfg_add_file(s, "etc/boot-fail-wait", g_memdup(&rt_le32, 4), 4);
264 }
265 
266 static void fw_cfg_write(FWCfgState *s, uint8_t value)
267 {
268     /* nothing, write support removed in QEMU v2.4+ */
269 }
270 
271 static inline uint16_t fw_cfg_file_slots(const FWCfgState *s)
272 {
273     return s->file_slots;
274 }
275 
276 /* Note: this function returns an exclusive limit. */
277 static inline uint32_t fw_cfg_max_entry(const FWCfgState *s)
278 {
279     return FW_CFG_FILE_FIRST + fw_cfg_file_slots(s);
280 }
281 
282 static int fw_cfg_select(FWCfgState *s, uint16_t key)
283 {
284     int arch, ret;
285     FWCfgEntry *e;
286 
287     s->cur_offset = 0;
288     if ((key & FW_CFG_ENTRY_MASK) >= fw_cfg_max_entry(s)) {
289         s->cur_entry = FW_CFG_INVALID;
290         ret = 0;
291     } else {
292         s->cur_entry = key;
293         ret = 1;
294         /* entry successfully selected, now run callback if present */
295         arch = !!(key & FW_CFG_ARCH_LOCAL);
296         e = &s->entries[arch][key & FW_CFG_ENTRY_MASK];
297         if (e->select_cb) {
298             e->select_cb(e->callback_opaque);
299         }
300     }
301 
302     trace_fw_cfg_select(s, key, trace_key_name(key), ret);
303     return ret;
304 }
305 
306 static uint64_t fw_cfg_data_read(void *opaque, hwaddr addr, unsigned size)
307 {
308     FWCfgState *s = opaque;
309     int arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL);
310     FWCfgEntry *e = (s->cur_entry == FW_CFG_INVALID) ? NULL :
311                     &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK];
312     uint64_t value = 0;
313 
314     assert(size > 0 && size <= sizeof(value));
315     if (s->cur_entry != FW_CFG_INVALID && e->data && s->cur_offset < e->len) {
316         /* The least significant 'size' bytes of the return value are
317          * expected to contain a string preserving portion of the item
318          * data, padded with zeros on the right in case we run out early.
319          * In technical terms, we're composing the host-endian representation
320          * of the big endian interpretation of the fw_cfg string.
321          */
322         do {
323             value = (value << 8) | e->data[s->cur_offset++];
324         } while (--size && s->cur_offset < e->len);
325         /* If size is still not zero, we *did* run out early, so continue
326          * left-shifting, to add the appropriate number of padding zeros
327          * on the right.
328          */
329         value <<= 8 * size;
330     }
331 
332     trace_fw_cfg_read(s, value);
333     return value;
334 }
335 
336 static void fw_cfg_data_mem_write(void *opaque, hwaddr addr,
337                                   uint64_t value, unsigned size)
338 {
339     FWCfgState *s = opaque;
340     unsigned i = size;
341 
342     do {
343         fw_cfg_write(s, value >> (8 * --i));
344     } while (i);
345 }
346 
347 static void fw_cfg_dma_transfer(FWCfgState *s)
348 {
349     dma_addr_t len;
350     FWCfgDmaAccess dma;
351     int arch;
352     FWCfgEntry *e;
353     int read = 0, write = 0;
354     dma_addr_t dma_addr;
355 
356     /* Reset the address before the next access */
357     dma_addr = s->dma_addr;
358     s->dma_addr = 0;
359 
360     if (dma_memory_read(s->dma_as, dma_addr,
361                         &dma, sizeof(dma), MEMTXATTRS_UNSPECIFIED)) {
362         stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control),
363                    FW_CFG_DMA_CTL_ERROR, MEMTXATTRS_UNSPECIFIED);
364         return;
365     }
366 
367     dma.address = be64_to_cpu(dma.address);
368     dma.length = be32_to_cpu(dma.length);
369     dma.control = be32_to_cpu(dma.control);
370 
371     if (dma.control & FW_CFG_DMA_CTL_SELECT) {
372         fw_cfg_select(s, dma.control >> 16);
373     }
374 
375     arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL);
376     e = (s->cur_entry == FW_CFG_INVALID) ? NULL :
377         &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK];
378 
379     if (dma.control & FW_CFG_DMA_CTL_READ) {
380         read = 1;
381         write = 0;
382     } else if (dma.control & FW_CFG_DMA_CTL_WRITE) {
383         read = 0;
384         write = 1;
385     } else if (dma.control & FW_CFG_DMA_CTL_SKIP) {
386         read = 0;
387         write = 0;
388     } else {
389         dma.length = 0;
390     }
391 
392     dma.control = 0;
393 
394     while (dma.length > 0 && !(dma.control & FW_CFG_DMA_CTL_ERROR)) {
395         if (s->cur_entry == FW_CFG_INVALID || !e->data ||
396                                 s->cur_offset >= e->len) {
397             len = dma.length;
398 
399             /* If the access is not a read access, it will be a skip access,
400              * tested before.
401              */
402             if (read) {
403                 if (dma_memory_set(s->dma_as, dma.address, 0, len,
404                                    MEMTXATTRS_UNSPECIFIED)) {
405                     dma.control |= FW_CFG_DMA_CTL_ERROR;
406                 }
407             }
408             if (write) {
409                 dma.control |= FW_CFG_DMA_CTL_ERROR;
410             }
411         } else {
412             if (dma.length <= (e->len - s->cur_offset)) {
413                 len = dma.length;
414             } else {
415                 len = (e->len - s->cur_offset);
416             }
417 
418             /* If the access is not a read access, it will be a skip access,
419              * tested before.
420              */
421             if (read) {
422                 if (dma_memory_write(s->dma_as, dma.address,
423                                      &e->data[s->cur_offset], len,
424                                      MEMTXATTRS_UNSPECIFIED)) {
425                     dma.control |= FW_CFG_DMA_CTL_ERROR;
426                 }
427             }
428             if (write) {
429                 if (!e->allow_write ||
430                     len != dma.length ||
431                     dma_memory_read(s->dma_as, dma.address,
432                                     &e->data[s->cur_offset], len,
433                                     MEMTXATTRS_UNSPECIFIED)) {
434                     dma.control |= FW_CFG_DMA_CTL_ERROR;
435                 } else if (e->write_cb) {
436                     e->write_cb(e->callback_opaque, s->cur_offset, len);
437                 }
438             }
439 
440             s->cur_offset += len;
441         }
442 
443         dma.address += len;
444         dma.length  -= len;
445 
446     }
447 
448     stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control),
449                 dma.control, MEMTXATTRS_UNSPECIFIED);
450 
451     trace_fw_cfg_read(s, 0);
452 }
453 
454 static uint64_t fw_cfg_dma_mem_read(void *opaque, hwaddr addr,
455                                     unsigned size)
456 {
457     /* Return a signature value (and handle various read sizes) */
458     return extract64(FW_CFG_DMA_SIGNATURE, (8 - addr - size) * 8, size * 8);
459 }
460 
461 static void fw_cfg_dma_mem_write(void *opaque, hwaddr addr,
462                                  uint64_t value, unsigned size)
463 {
464     FWCfgState *s = opaque;
465 
466     if (size == 4) {
467         if (addr == 0) {
468             /* FWCfgDmaAccess high address */
469             s->dma_addr = value << 32;
470         } else if (addr == 4) {
471             /* FWCfgDmaAccess low address */
472             s->dma_addr |= value;
473             fw_cfg_dma_transfer(s);
474         }
475     } else if (size == 8 && addr == 0) {
476         s->dma_addr = value;
477         fw_cfg_dma_transfer(s);
478     }
479 }
480 
481 static bool fw_cfg_dma_mem_valid(void *opaque, hwaddr addr,
482                                  unsigned size, bool is_write,
483                                  MemTxAttrs attrs)
484 {
485     return !is_write || ((size == 4 && (addr == 0 || addr == 4)) ||
486                          (size == 8 && addr == 0));
487 }
488 
489 static bool fw_cfg_data_mem_valid(void *opaque, hwaddr addr,
490                                   unsigned size, bool is_write,
491                                   MemTxAttrs attrs)
492 {
493     return addr == 0;
494 }
495 
496 static uint64_t fw_cfg_ctl_mem_read(void *opaque, hwaddr addr, unsigned size)
497 {
498     return 0;
499 }
500 
501 static void fw_cfg_ctl_mem_write(void *opaque, hwaddr addr,
502                                  uint64_t value, unsigned size)
503 {
504     fw_cfg_select(opaque, (uint16_t)value);
505 }
506 
507 static bool fw_cfg_ctl_mem_valid(void *opaque, hwaddr addr,
508                                  unsigned size, bool is_write,
509                                  MemTxAttrs attrs)
510 {
511     return is_write && size == 2;
512 }
513 
514 static void fw_cfg_comb_write(void *opaque, hwaddr addr,
515                               uint64_t value, unsigned size)
516 {
517     switch (size) {
518     case 1:
519         fw_cfg_write(opaque, (uint8_t)value);
520         break;
521     case 2:
522         fw_cfg_select(opaque, (uint16_t)value);
523         break;
524     }
525 }
526 
527 static bool fw_cfg_comb_valid(void *opaque, hwaddr addr,
528                               unsigned size, bool is_write,
529                               MemTxAttrs attrs)
530 {
531     return (size == 1) || (is_write && size == 2);
532 }
533 
534 static const MemoryRegionOps fw_cfg_ctl_mem_ops = {
535     .read = fw_cfg_ctl_mem_read,
536     .write = fw_cfg_ctl_mem_write,
537     .endianness = DEVICE_BIG_ENDIAN,
538     .valid.accepts = fw_cfg_ctl_mem_valid,
539 };
540 
541 static const MemoryRegionOps fw_cfg_data_mem_ops = {
542     .read = fw_cfg_data_read,
543     .write = fw_cfg_data_mem_write,
544     .endianness = DEVICE_BIG_ENDIAN,
545     .valid = {
546         .min_access_size = 1,
547         .max_access_size = 1,
548         .accepts = fw_cfg_data_mem_valid,
549     },
550 };
551 
552 static const MemoryRegionOps fw_cfg_comb_mem_ops = {
553     .read = fw_cfg_data_read,
554     .write = fw_cfg_comb_write,
555     .endianness = DEVICE_LITTLE_ENDIAN,
556     .valid.accepts = fw_cfg_comb_valid,
557 };
558 
559 static const MemoryRegionOps fw_cfg_dma_mem_ops = {
560     .read = fw_cfg_dma_mem_read,
561     .write = fw_cfg_dma_mem_write,
562     .endianness = DEVICE_BIG_ENDIAN,
563     .valid.accepts = fw_cfg_dma_mem_valid,
564     .valid.max_access_size = 8,
565     .impl.max_access_size = 8,
566 };
567 
568 static void fw_cfg_reset(DeviceState *d)
569 {
570     FWCfgState *s = FW_CFG(d);
571 
572     /* we never register a read callback for FW_CFG_SIGNATURE */
573     fw_cfg_select(s, FW_CFG_SIGNATURE);
574 }
575 
576 /* Save restore 32 bit int as uint16_t
577    This is a Big hack, but it is how the old state did it.
578    Or we broke compatibility in the state, or we can't use struct tm
579  */
580 
581 static int get_uint32_as_uint16(QEMUFile *f, void *pv, size_t size,
582                                 const VMStateField *field)
583 {
584     uint32_t *v = pv;
585     *v = qemu_get_be16(f);
586     return 0;
587 }
588 
589 static int put_unused(QEMUFile *f, void *pv, size_t size,
590                       const VMStateField *field, JSONWriter *vmdesc)
591 {
592     fprintf(stderr, "uint32_as_uint16 is only used for backward compatibility.\n");
593     fprintf(stderr, "This functions shouldn't be called.\n");
594 
595     return 0;
596 }
597 
598 static const VMStateInfo vmstate_hack_uint32_as_uint16 = {
599     .name = "int32_as_uint16",
600     .get  = get_uint32_as_uint16,
601     .put  = put_unused,
602 };
603 
604 #define VMSTATE_UINT16_HACK(_f, _s, _t)                                    \
605     VMSTATE_SINGLE_TEST(_f, _s, _t, 0, vmstate_hack_uint32_as_uint16, uint32_t)
606 
607 
608 static bool is_version_1(void *opaque, int version_id)
609 {
610     return version_id == 1;
611 }
612 
613 bool fw_cfg_dma_enabled(void *opaque)
614 {
615     FWCfgState *s = opaque;
616 
617     return s->dma_enabled;
618 }
619 
620 static bool fw_cfg_acpi_mr_restore(void *opaque)
621 {
622     FWCfgState *s = opaque;
623     bool mr_aligned;
624 
625     mr_aligned = QEMU_IS_ALIGNED(s->table_mr_size, qemu_real_host_page_size()) &&
626                  QEMU_IS_ALIGNED(s->linker_mr_size, qemu_real_host_page_size()) &&
627                  QEMU_IS_ALIGNED(s->rsdp_mr_size, qemu_real_host_page_size());
628     return s->acpi_mr_restore && !mr_aligned;
629 }
630 
631 static void fw_cfg_update_mr(FWCfgState *s, uint16_t key, size_t size)
632 {
633     MemoryRegion *mr;
634     ram_addr_t offset;
635     int arch = !!(key & FW_CFG_ARCH_LOCAL);
636     void *ptr;
637 
638     key &= FW_CFG_ENTRY_MASK;
639     assert(key < fw_cfg_max_entry(s));
640 
641     ptr = s->entries[arch][key].data;
642     mr = memory_region_from_host(ptr, &offset);
643 
644     memory_region_ram_resize(mr, size, &error_abort);
645 }
646 
647 static int fw_cfg_acpi_mr_restore_post_load(void *opaque, int version_id)
648 {
649     FWCfgState *s = opaque;
650     int i, index;
651 
652     assert(s->files);
653 
654     index = be32_to_cpu(s->files->count);
655 
656     for (i = 0; i < index; i++) {
657         if (!strcmp(s->files->f[i].name, ACPI_BUILD_TABLE_FILE)) {
658             fw_cfg_update_mr(s, FW_CFG_FILE_FIRST + i, s->table_mr_size);
659         } else if (!strcmp(s->files->f[i].name, ACPI_BUILD_LOADER_FILE)) {
660             fw_cfg_update_mr(s, FW_CFG_FILE_FIRST + i, s->linker_mr_size);
661         } else if (!strcmp(s->files->f[i].name, ACPI_BUILD_RSDP_FILE)) {
662             fw_cfg_update_mr(s, FW_CFG_FILE_FIRST + i, s->rsdp_mr_size);
663         }
664     }
665 
666     return 0;
667 }
668 
669 static const VMStateDescription vmstate_fw_cfg_dma = {
670     .name = "fw_cfg/dma",
671     .needed = fw_cfg_dma_enabled,
672     .fields = (VMStateField[]) {
673         VMSTATE_UINT64(dma_addr, FWCfgState),
674         VMSTATE_END_OF_LIST()
675     },
676 };
677 
678 static const VMStateDescription vmstate_fw_cfg_acpi_mr = {
679     .name = "fw_cfg/acpi_mr",
680     .version_id = 1,
681     .minimum_version_id = 1,
682     .needed = fw_cfg_acpi_mr_restore,
683     .post_load = fw_cfg_acpi_mr_restore_post_load,
684     .fields = (VMStateField[]) {
685         VMSTATE_UINT64(table_mr_size, FWCfgState),
686         VMSTATE_UINT64(linker_mr_size, FWCfgState),
687         VMSTATE_UINT64(rsdp_mr_size, FWCfgState),
688         VMSTATE_END_OF_LIST()
689     },
690 };
691 
692 static const VMStateDescription vmstate_fw_cfg = {
693     .name = "fw_cfg",
694     .version_id = 2,
695     .minimum_version_id = 1,
696     .fields = (VMStateField[]) {
697         VMSTATE_UINT16(cur_entry, FWCfgState),
698         VMSTATE_UINT16_HACK(cur_offset, FWCfgState, is_version_1),
699         VMSTATE_UINT32_V(cur_offset, FWCfgState, 2),
700         VMSTATE_END_OF_LIST()
701     },
702     .subsections = (const VMStateDescription*[]) {
703         &vmstate_fw_cfg_dma,
704         &vmstate_fw_cfg_acpi_mr,
705         NULL,
706     }
707 };
708 
709 static void fw_cfg_add_bytes_callback(FWCfgState *s, uint16_t key,
710                                       FWCfgCallback select_cb,
711                                       FWCfgWriteCallback write_cb,
712                                       void *callback_opaque,
713                                       void *data, size_t len,
714                                       bool read_only)
715 {
716     int arch = !!(key & FW_CFG_ARCH_LOCAL);
717 
718     key &= FW_CFG_ENTRY_MASK;
719 
720     assert(key < fw_cfg_max_entry(s) && len < UINT32_MAX);
721     assert(s->entries[arch][key].data == NULL); /* avoid key conflict */
722 
723     s->entries[arch][key].data = data;
724     s->entries[arch][key].len = (uint32_t)len;
725     s->entries[arch][key].select_cb = select_cb;
726     s->entries[arch][key].write_cb = write_cb;
727     s->entries[arch][key].callback_opaque = callback_opaque;
728     s->entries[arch][key].allow_write = !read_only;
729 }
730 
731 static void *fw_cfg_modify_bytes_read(FWCfgState *s, uint16_t key,
732                                               void *data, size_t len)
733 {
734     void *ptr;
735     int arch = !!(key & FW_CFG_ARCH_LOCAL);
736 
737     key &= FW_CFG_ENTRY_MASK;
738 
739     assert(key < fw_cfg_max_entry(s) && len < UINT32_MAX);
740 
741     /* return the old data to the function caller, avoid memory leak */
742     ptr = s->entries[arch][key].data;
743     s->entries[arch][key].data = data;
744     s->entries[arch][key].len = len;
745     s->entries[arch][key].callback_opaque = NULL;
746     s->entries[arch][key].allow_write = false;
747 
748     return ptr;
749 }
750 
751 void fw_cfg_add_bytes(FWCfgState *s, uint16_t key, void *data, size_t len)
752 {
753     trace_fw_cfg_add_bytes(key, trace_key_name(key), len);
754     fw_cfg_add_bytes_callback(s, key, NULL, NULL, NULL, data, len, true);
755 }
756 
757 void fw_cfg_add_string(FWCfgState *s, uint16_t key, const char *value)
758 {
759     size_t sz = strlen(value) + 1;
760 
761     trace_fw_cfg_add_string(key, trace_key_name(key), value);
762     fw_cfg_add_bytes(s, key, g_memdup(value, sz), sz);
763 }
764 
765 void fw_cfg_modify_string(FWCfgState *s, uint16_t key, const char *value)
766 {
767     size_t sz = strlen(value) + 1;
768     char *old;
769 
770     old = fw_cfg_modify_bytes_read(s, key, g_memdup(value, sz), sz);
771     g_free(old);
772 }
773 
774 void fw_cfg_add_i16(FWCfgState *s, uint16_t key, uint16_t value)
775 {
776     uint16_t *copy;
777 
778     copy = g_malloc(sizeof(value));
779     *copy = cpu_to_le16(value);
780     trace_fw_cfg_add_i16(key, trace_key_name(key), value);
781     fw_cfg_add_bytes(s, key, copy, sizeof(value));
782 }
783 
784 void fw_cfg_modify_i16(FWCfgState *s, uint16_t key, uint16_t value)
785 {
786     uint16_t *copy, *old;
787 
788     copy = g_malloc(sizeof(value));
789     *copy = cpu_to_le16(value);
790     old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value));
791     g_free(old);
792 }
793 
794 void fw_cfg_add_i32(FWCfgState *s, uint16_t key, uint32_t value)
795 {
796     uint32_t *copy;
797 
798     copy = g_malloc(sizeof(value));
799     *copy = cpu_to_le32(value);
800     trace_fw_cfg_add_i32(key, trace_key_name(key), value);
801     fw_cfg_add_bytes(s, key, copy, sizeof(value));
802 }
803 
804 void fw_cfg_modify_i32(FWCfgState *s, uint16_t key, uint32_t value)
805 {
806     uint32_t *copy, *old;
807 
808     copy = g_malloc(sizeof(value));
809     *copy = cpu_to_le32(value);
810     old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value));
811     g_free(old);
812 }
813 
814 void fw_cfg_add_i64(FWCfgState *s, uint16_t key, uint64_t value)
815 {
816     uint64_t *copy;
817 
818     copy = g_malloc(sizeof(value));
819     *copy = cpu_to_le64(value);
820     trace_fw_cfg_add_i64(key, trace_key_name(key), value);
821     fw_cfg_add_bytes(s, key, copy, sizeof(value));
822 }
823 
824 void fw_cfg_modify_i64(FWCfgState *s, uint16_t key, uint64_t value)
825 {
826     uint64_t *copy, *old;
827 
828     copy = g_malloc(sizeof(value));
829     *copy = cpu_to_le64(value);
830     old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value));
831     g_free(old);
832 }
833 
834 void fw_cfg_set_order_override(FWCfgState *s, int order)
835 {
836     assert(s->fw_cfg_order_override == 0);
837     s->fw_cfg_order_override = order;
838 }
839 
840 void fw_cfg_reset_order_override(FWCfgState *s)
841 {
842     assert(s->fw_cfg_order_override != 0);
843     s->fw_cfg_order_override = 0;
844 }
845 
846 /*
847  * This is the legacy order list.  For legacy systems, files are in
848  * the fw_cfg in the order defined below, by the "order" value.  Note
849  * that some entries (VGA ROMs, NIC option ROMS, etc.) go into a
850  * specific area, but there may be more than one and they occur in the
851  * order that the user specifies them on the command line.  Those are
852  * handled in a special manner, using the order override above.
853  *
854  * For non-legacy, the files are sorted by filename to avoid this kind
855  * of complexity in the future.
856  *
857  * This is only for x86, other arches don't implement versioning so
858  * they won't set legacy mode.
859  */
860 static struct {
861     const char *name;
862     int order;
863 } fw_cfg_order[] = {
864     { "etc/boot-menu-wait", 10 },
865     { "bootsplash.jpg", 11 },
866     { "bootsplash.bmp", 12 },
867     { "etc/boot-fail-wait", 15 },
868     { "etc/smbios/smbios-tables", 20 },
869     { "etc/smbios/smbios-anchor", 30 },
870     { "etc/e820", 40 },
871     { "etc/reserved-memory-end", 50 },
872     { "genroms/kvmvapic.bin", 55 },
873     { "genroms/linuxboot.bin", 60 },
874     { }, /* VGA ROMs from pc_vga_init come here, 70. */
875     { }, /* NIC option ROMs from pc_nic_init come here, 80. */
876     { "etc/system-states", 90 },
877     { }, /* User ROMs come here, 100. */
878     { }, /* Device FW comes here, 110. */
879     { "etc/extra-pci-roots", 120 },
880     { "etc/acpi/tables", 130 },
881     { "etc/table-loader", 140 },
882     { "etc/tpm/log", 150 },
883     { "etc/acpi/rsdp", 160 },
884     { "bootorder", 170 },
885     { "etc/msr_feature_control", 180 },
886 
887 #define FW_CFG_ORDER_OVERRIDE_LAST 200
888 };
889 
890 /*
891  * Any sub-page size update to these table MRs will be lost during migration,
892  * as we use aligned size in ram_load_precopy() -> qemu_ram_resize() path.
893  * In order to avoid the inconsistency in sizes save them seperately and
894  * migrate over in vmstate post_load().
895  */
896 static void fw_cfg_acpi_mr_save(FWCfgState *s, const char *filename, size_t len)
897 {
898     if (!strcmp(filename, ACPI_BUILD_TABLE_FILE)) {
899         s->table_mr_size = len;
900     } else if (!strcmp(filename, ACPI_BUILD_LOADER_FILE)) {
901         s->linker_mr_size = len;
902     } else if (!strcmp(filename, ACPI_BUILD_RSDP_FILE)) {
903         s->rsdp_mr_size = len;
904     }
905 }
906 
907 static int get_fw_cfg_order(FWCfgState *s, const char *name)
908 {
909     int i;
910 
911     if (s->fw_cfg_order_override > 0) {
912         return s->fw_cfg_order_override;
913     }
914 
915     for (i = 0; i < ARRAY_SIZE(fw_cfg_order); i++) {
916         if (fw_cfg_order[i].name == NULL) {
917             continue;
918         }
919 
920         if (strcmp(name, fw_cfg_order[i].name) == 0) {
921             return fw_cfg_order[i].order;
922         }
923     }
924 
925     /* Stick unknown stuff at the end. */
926     warn_report("Unknown firmware file in legacy mode: %s", name);
927     return FW_CFG_ORDER_OVERRIDE_LAST;
928 }
929 
930 void fw_cfg_add_file_callback(FWCfgState *s,  const char *filename,
931                               FWCfgCallback select_cb,
932                               FWCfgWriteCallback write_cb,
933                               void *callback_opaque,
934                               void *data, size_t len, bool read_only)
935 {
936     int i, index, count;
937     size_t dsize;
938     MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
939     int order = 0;
940 
941     if (!s->files) {
942         dsize = sizeof(uint32_t) + sizeof(FWCfgFile) * fw_cfg_file_slots(s);
943         s->files = g_malloc0(dsize);
944         fw_cfg_add_bytes(s, FW_CFG_FILE_DIR, s->files, dsize);
945     }
946 
947     count = be32_to_cpu(s->files->count);
948     assert(count < fw_cfg_file_slots(s));
949 
950     /* Find the insertion point. */
951     if (mc->legacy_fw_cfg_order) {
952         /*
953          * Sort by order. For files with the same order, we keep them
954          * in the sequence in which they were added.
955          */
956         order = get_fw_cfg_order(s, filename);
957         for (index = count;
958              index > 0 && order < s->entry_order[index - 1];
959              index--);
960     } else {
961         /* Sort by file name. */
962         for (index = count;
963              index > 0 && strcmp(filename, s->files->f[index - 1].name) < 0;
964              index--);
965     }
966 
967     /*
968      * Move all the entries from the index point and after down one
969      * to create a slot for the new entry.  Because calculations are
970      * being done with the index, make it so that "i" is the current
971      * index and "i - 1" is the one being copied from, thus the
972      * unusual start and end in the for statement.
973      */
974     for (i = count; i > index; i--) {
975         s->files->f[i] = s->files->f[i - 1];
976         s->files->f[i].select = cpu_to_be16(FW_CFG_FILE_FIRST + i);
977         s->entries[0][FW_CFG_FILE_FIRST + i] =
978             s->entries[0][FW_CFG_FILE_FIRST + i - 1];
979         s->entry_order[i] = s->entry_order[i - 1];
980     }
981 
982     memset(&s->files->f[index], 0, sizeof(FWCfgFile));
983     memset(&s->entries[0][FW_CFG_FILE_FIRST + index], 0, sizeof(FWCfgEntry));
984 
985     pstrcpy(s->files->f[index].name, sizeof(s->files->f[index].name), filename);
986     for (i = 0; i <= count; i++) {
987         if (i != index &&
988             strcmp(s->files->f[index].name, s->files->f[i].name) == 0) {
989             error_report("duplicate fw_cfg file name: %s",
990                          s->files->f[index].name);
991             exit(1);
992         }
993     }
994 
995     fw_cfg_add_bytes_callback(s, FW_CFG_FILE_FIRST + index,
996                               select_cb, write_cb,
997                               callback_opaque, data, len,
998                               read_only);
999 
1000     s->files->f[index].size   = cpu_to_be32(len);
1001     s->files->f[index].select = cpu_to_be16(FW_CFG_FILE_FIRST + index);
1002     s->entry_order[index] = order;
1003     trace_fw_cfg_add_file(s, index, s->files->f[index].name, len);
1004 
1005     s->files->count = cpu_to_be32(count+1);
1006     fw_cfg_acpi_mr_save(s, filename, len);
1007 }
1008 
1009 void fw_cfg_add_file(FWCfgState *s,  const char *filename,
1010                      void *data, size_t len)
1011 {
1012     fw_cfg_add_file_callback(s, filename, NULL, NULL, NULL, data, len, true);
1013 }
1014 
1015 void *fw_cfg_modify_file(FWCfgState *s, const char *filename,
1016                         void *data, size_t len)
1017 {
1018     int i, index;
1019     void *ptr = NULL;
1020 
1021     assert(s->files);
1022 
1023     index = be32_to_cpu(s->files->count);
1024 
1025     for (i = 0; i < index; i++) {
1026         if (strcmp(filename, s->files->f[i].name) == 0) {
1027             ptr = fw_cfg_modify_bytes_read(s, FW_CFG_FILE_FIRST + i,
1028                                            data, len);
1029             s->files->f[i].size   = cpu_to_be32(len);
1030             fw_cfg_acpi_mr_save(s, filename, len);
1031             return ptr;
1032         }
1033     }
1034 
1035     assert(index < fw_cfg_file_slots(s));
1036 
1037     /* add new one */
1038     fw_cfg_add_file_callback(s, filename, NULL, NULL, NULL, data, len, true);
1039     return NULL;
1040 }
1041 
1042 bool fw_cfg_add_from_generator(FWCfgState *s, const char *filename,
1043                                const char *gen_id, Error **errp)
1044 {
1045     FWCfgDataGeneratorClass *klass;
1046     GByteArray *array;
1047     Object *obj;
1048     gsize size;
1049 
1050     obj = object_resolve_path_component(object_get_objects_root(), gen_id);
1051     if (!obj) {
1052         error_setg(errp, "Cannot find object ID '%s'", gen_id);
1053         return false;
1054     }
1055     if (!object_dynamic_cast(obj, TYPE_FW_CFG_DATA_GENERATOR_INTERFACE)) {
1056         error_setg(errp, "Object ID '%s' is not a '%s' subclass",
1057                    gen_id, TYPE_FW_CFG_DATA_GENERATOR_INTERFACE);
1058         return false;
1059     }
1060     klass = FW_CFG_DATA_GENERATOR_GET_CLASS(obj);
1061     array = klass->get_data(obj, errp);
1062     if (!array) {
1063         return false;
1064     }
1065     size = array->len;
1066     fw_cfg_add_file(s, filename, g_byte_array_free(array, FALSE), size);
1067 
1068     return true;
1069 }
1070 
1071 void fw_cfg_add_extra_pci_roots(PCIBus *bus, FWCfgState *s)
1072 {
1073     int extra_hosts = 0;
1074 
1075     if (!bus) {
1076         return;
1077     }
1078 
1079     QLIST_FOREACH(bus, &bus->child, sibling) {
1080         /* look for expander root buses */
1081         if (pci_bus_is_root(bus)) {
1082             extra_hosts++;
1083         }
1084     }
1085 
1086     if (extra_hosts && s) {
1087         uint64_t *val = g_malloc(sizeof(*val));
1088         *val = cpu_to_le64(extra_hosts);
1089         fw_cfg_add_file(s, "etc/extra-pci-roots", val, sizeof(*val));
1090     }
1091 }
1092 
1093 static void fw_cfg_machine_reset(void *opaque)
1094 {
1095     MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
1096     FWCfgState *s = opaque;
1097     void *ptr;
1098     size_t len;
1099     char *buf;
1100 
1101     buf = get_boot_devices_list(&len);
1102     ptr = fw_cfg_modify_file(s, "bootorder", (uint8_t *)buf, len);
1103     g_free(ptr);
1104 
1105     if (!mc->legacy_fw_cfg_order) {
1106         buf = get_boot_devices_lchs_list(&len);
1107         ptr = fw_cfg_modify_file(s, "bios-geometry", (uint8_t *)buf, len);
1108         g_free(ptr);
1109     }
1110 }
1111 
1112 static void fw_cfg_machine_ready(struct Notifier *n, void *data)
1113 {
1114     FWCfgState *s = container_of(n, FWCfgState, machine_ready);
1115     qemu_register_reset(fw_cfg_machine_reset, s);
1116 }
1117 
1118 static Property fw_cfg_properties[] = {
1119     DEFINE_PROP_BOOL("acpi-mr-restore", FWCfgState, acpi_mr_restore, true),
1120     DEFINE_PROP_END_OF_LIST(),
1121 };
1122 
1123 static void fw_cfg_common_realize(DeviceState *dev, Error **errp)
1124 {
1125     FWCfgState *s = FW_CFG(dev);
1126     MachineState *machine = MACHINE(qdev_get_machine());
1127     uint32_t version = FW_CFG_VERSION;
1128 
1129     if (!fw_cfg_find()) {
1130         error_setg(errp, "at most one %s device is permitted", TYPE_FW_CFG);
1131         return;
1132     }
1133 
1134     fw_cfg_add_bytes(s, FW_CFG_SIGNATURE, (char *)"QEMU", 4);
1135     fw_cfg_add_bytes(s, FW_CFG_UUID, &qemu_uuid, 16);
1136     fw_cfg_add_i16(s, FW_CFG_NOGRAPHIC, (uint16_t)!machine->enable_graphics);
1137     fw_cfg_add_i16(s, FW_CFG_BOOT_MENU, (uint16_t)boot_menu);
1138     fw_cfg_bootsplash(s);
1139     fw_cfg_reboot(s);
1140 
1141     if (s->dma_enabled) {
1142         version |= FW_CFG_VERSION_DMA;
1143     }
1144 
1145     fw_cfg_add_i32(s, FW_CFG_ID, version);
1146 
1147     s->machine_ready.notify = fw_cfg_machine_ready;
1148     qemu_add_machine_init_done_notifier(&s->machine_ready);
1149 }
1150 
1151 FWCfgState *fw_cfg_init_io_dma(uint32_t iobase, uint32_t dma_iobase,
1152                                 AddressSpace *dma_as)
1153 {
1154     DeviceState *dev;
1155     SysBusDevice *sbd;
1156     FWCfgIoState *ios;
1157     FWCfgState *s;
1158     bool dma_requested = dma_iobase && dma_as;
1159 
1160     dev = qdev_new(TYPE_FW_CFG_IO);
1161     if (!dma_requested) {
1162         qdev_prop_set_bit(dev, "dma_enabled", false);
1163     }
1164 
1165     object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG,
1166                               OBJECT(dev));
1167 
1168     sbd = SYS_BUS_DEVICE(dev);
1169     sysbus_realize_and_unref(sbd, &error_fatal);
1170     ios = FW_CFG_IO(dev);
1171     sysbus_add_io(sbd, iobase, &ios->comb_iomem);
1172 
1173     s = FW_CFG(dev);
1174 
1175     if (s->dma_enabled) {
1176         /* 64 bits for the address field */
1177         s->dma_as = dma_as;
1178         s->dma_addr = 0;
1179         sysbus_add_io(sbd, dma_iobase, &s->dma_iomem);
1180     }
1181 
1182     return s;
1183 }
1184 
1185 FWCfgState *fw_cfg_init_io(uint32_t iobase)
1186 {
1187     return fw_cfg_init_io_dma(iobase, 0, NULL);
1188 }
1189 
1190 FWCfgState *fw_cfg_init_mem_wide(hwaddr ctl_addr,
1191                                  hwaddr data_addr, uint32_t data_width,
1192                                  hwaddr dma_addr, AddressSpace *dma_as)
1193 {
1194     DeviceState *dev;
1195     SysBusDevice *sbd;
1196     FWCfgState *s;
1197     bool dma_requested = dma_addr && dma_as;
1198 
1199     dev = qdev_new(TYPE_FW_CFG_MEM);
1200     qdev_prop_set_uint32(dev, "data_width", data_width);
1201     if (!dma_requested) {
1202         qdev_prop_set_bit(dev, "dma_enabled", false);
1203     }
1204 
1205     object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG,
1206                               OBJECT(dev));
1207 
1208     sbd = SYS_BUS_DEVICE(dev);
1209     sysbus_realize_and_unref(sbd, &error_fatal);
1210     sysbus_mmio_map(sbd, 0, ctl_addr);
1211     sysbus_mmio_map(sbd, 1, data_addr);
1212 
1213     s = FW_CFG(dev);
1214 
1215     if (s->dma_enabled) {
1216         s->dma_as = dma_as;
1217         s->dma_addr = 0;
1218         sysbus_mmio_map(sbd, 2, dma_addr);
1219     }
1220 
1221     return s;
1222 }
1223 
1224 FWCfgState *fw_cfg_init_mem(hwaddr ctl_addr, hwaddr data_addr)
1225 {
1226     return fw_cfg_init_mem_wide(ctl_addr, data_addr,
1227                                 fw_cfg_data_mem_ops.valid.max_access_size,
1228                                 0, NULL);
1229 }
1230 
1231 
1232 FWCfgState *fw_cfg_find(void)
1233 {
1234     /* Returns NULL unless there is exactly one fw_cfg device */
1235     return FW_CFG(object_resolve_path_type("", TYPE_FW_CFG, NULL));
1236 }
1237 
1238 
1239 static void fw_cfg_class_init(ObjectClass *klass, void *data)
1240 {
1241     DeviceClass *dc = DEVICE_CLASS(klass);
1242 
1243     dc->reset = fw_cfg_reset;
1244     dc->vmsd = &vmstate_fw_cfg;
1245 
1246     device_class_set_props(dc, fw_cfg_properties);
1247 }
1248 
1249 static const TypeInfo fw_cfg_info = {
1250     .name          = TYPE_FW_CFG,
1251     .parent        = TYPE_SYS_BUS_DEVICE,
1252     .abstract      = true,
1253     .instance_size = sizeof(FWCfgState),
1254     .class_init    = fw_cfg_class_init,
1255 };
1256 
1257 static void fw_cfg_file_slots_allocate(FWCfgState *s, Error **errp)
1258 {
1259     uint16_t file_slots_max;
1260 
1261     if (fw_cfg_file_slots(s) < FW_CFG_FILE_SLOTS_MIN) {
1262         error_setg(errp, "\"file_slots\" must be at least 0x%x",
1263                    FW_CFG_FILE_SLOTS_MIN);
1264         return;
1265     }
1266 
1267     /* (UINT16_MAX & FW_CFG_ENTRY_MASK) is the highest inclusive selector value
1268      * that we permit. The actual (exclusive) value coming from the
1269      * configuration is (FW_CFG_FILE_FIRST + fw_cfg_file_slots(s)). */
1270     file_slots_max = (UINT16_MAX & FW_CFG_ENTRY_MASK) - FW_CFG_FILE_FIRST + 1;
1271     if (fw_cfg_file_slots(s) > file_slots_max) {
1272         error_setg(errp, "\"file_slots\" must not exceed 0x%" PRIx16,
1273                    file_slots_max);
1274         return;
1275     }
1276 
1277     s->entries[0] = g_new0(FWCfgEntry, fw_cfg_max_entry(s));
1278     s->entries[1] = g_new0(FWCfgEntry, fw_cfg_max_entry(s));
1279     s->entry_order = g_new0(int, fw_cfg_max_entry(s));
1280 }
1281 
1282 static Property fw_cfg_io_properties[] = {
1283     DEFINE_PROP_BOOL("dma_enabled", FWCfgIoState, parent_obj.dma_enabled,
1284                      true),
1285     DEFINE_PROP_UINT16("x-file-slots", FWCfgIoState, parent_obj.file_slots,
1286                        FW_CFG_FILE_SLOTS_DFLT),
1287     DEFINE_PROP_END_OF_LIST(),
1288 };
1289 
1290 static void fw_cfg_io_realize(DeviceState *dev, Error **errp)
1291 {
1292     ERRP_GUARD();
1293     FWCfgIoState *s = FW_CFG_IO(dev);
1294 
1295     fw_cfg_file_slots_allocate(FW_CFG(s), errp);
1296     if (*errp) {
1297         return;
1298     }
1299 
1300     /* when using port i/o, the 8-bit data register ALWAYS overlaps
1301      * with half of the 16-bit control register. Hence, the total size
1302      * of the i/o region used is FW_CFG_CTL_SIZE */
1303     memory_region_init_io(&s->comb_iomem, OBJECT(s), &fw_cfg_comb_mem_ops,
1304                           FW_CFG(s), "fwcfg", FW_CFG_CTL_SIZE);
1305 
1306     if (FW_CFG(s)->dma_enabled) {
1307         memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s),
1308                               &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma",
1309                               sizeof(dma_addr_t));
1310     }
1311 
1312     fw_cfg_common_realize(dev, errp);
1313 }
1314 
1315 static void fw_cfg_io_class_init(ObjectClass *klass, void *data)
1316 {
1317     DeviceClass *dc = DEVICE_CLASS(klass);
1318 
1319     dc->realize = fw_cfg_io_realize;
1320     device_class_set_props(dc, fw_cfg_io_properties);
1321 }
1322 
1323 static const TypeInfo fw_cfg_io_info = {
1324     .name          = TYPE_FW_CFG_IO,
1325     .parent        = TYPE_FW_CFG,
1326     .instance_size = sizeof(FWCfgIoState),
1327     .class_init    = fw_cfg_io_class_init,
1328 };
1329 
1330 
1331 static Property fw_cfg_mem_properties[] = {
1332     DEFINE_PROP_UINT32("data_width", FWCfgMemState, data_width, -1),
1333     DEFINE_PROP_BOOL("dma_enabled", FWCfgMemState, parent_obj.dma_enabled,
1334                      true),
1335     DEFINE_PROP_UINT16("x-file-slots", FWCfgMemState, parent_obj.file_slots,
1336                        FW_CFG_FILE_SLOTS_DFLT),
1337     DEFINE_PROP_END_OF_LIST(),
1338 };
1339 
1340 static void fw_cfg_mem_realize(DeviceState *dev, Error **errp)
1341 {
1342     ERRP_GUARD();
1343     FWCfgMemState *s = FW_CFG_MEM(dev);
1344     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1345     const MemoryRegionOps *data_ops = &fw_cfg_data_mem_ops;
1346 
1347     fw_cfg_file_slots_allocate(FW_CFG(s), errp);
1348     if (*errp) {
1349         return;
1350     }
1351 
1352     memory_region_init_io(&s->ctl_iomem, OBJECT(s), &fw_cfg_ctl_mem_ops,
1353                           FW_CFG(s), "fwcfg.ctl", FW_CFG_CTL_SIZE);
1354     sysbus_init_mmio(sbd, &s->ctl_iomem);
1355 
1356     if (s->data_width > data_ops->valid.max_access_size) {
1357         s->wide_data_ops = *data_ops;
1358 
1359         s->wide_data_ops.valid.max_access_size = s->data_width;
1360         s->wide_data_ops.impl.max_access_size  = s->data_width;
1361         data_ops = &s->wide_data_ops;
1362     }
1363     memory_region_init_io(&s->data_iomem, OBJECT(s), data_ops, FW_CFG(s),
1364                           "fwcfg.data", data_ops->valid.max_access_size);
1365     sysbus_init_mmio(sbd, &s->data_iomem);
1366 
1367     if (FW_CFG(s)->dma_enabled) {
1368         memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s),
1369                               &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma",
1370                               sizeof(dma_addr_t));
1371         sysbus_init_mmio(sbd, &FW_CFG(s)->dma_iomem);
1372     }
1373 
1374     fw_cfg_common_realize(dev, errp);
1375 }
1376 
1377 static void fw_cfg_mem_class_init(ObjectClass *klass, void *data)
1378 {
1379     DeviceClass *dc = DEVICE_CLASS(klass);
1380 
1381     dc->realize = fw_cfg_mem_realize;
1382     device_class_set_props(dc, fw_cfg_mem_properties);
1383 }
1384 
1385 static const TypeInfo fw_cfg_mem_info = {
1386     .name          = TYPE_FW_CFG_MEM,
1387     .parent        = TYPE_FW_CFG,
1388     .instance_size = sizeof(FWCfgMemState),
1389     .class_init    = fw_cfg_mem_class_init,
1390 };
1391 
1392 static void fw_cfg_register_types(void)
1393 {
1394     type_register_static(&fw_cfg_info);
1395     type_register_static(&fw_cfg_io_info);
1396     type_register_static(&fw_cfg_mem_info);
1397 }
1398 
1399 type_init(fw_cfg_register_types)
1400