1 /* 2 * QEMU Firmware configuration device emulation 3 * 4 * Copyright (c) 2008 Gleb Natapov 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "qemu-common.h" 27 #include "qemu/datadir.h" 28 #include "sysemu/sysemu.h" 29 #include "sysemu/dma.h" 30 #include "sysemu/reset.h" 31 #include "hw/boards.h" 32 #include "hw/nvram/fw_cfg.h" 33 #include "hw/qdev-properties.h" 34 #include "hw/sysbus.h" 35 #include "migration/qemu-file-types.h" 36 #include "migration/vmstate.h" 37 #include "trace.h" 38 #include "qemu/error-report.h" 39 #include "qemu/option.h" 40 #include "qemu/config-file.h" 41 #include "qemu/cutils.h" 42 #include "qapi/error.h" 43 #include "hw/acpi/aml-build.h" 44 #include "hw/pci/pci_bus.h" 45 46 #define FW_CFG_FILE_SLOTS_DFLT 0x20 47 48 /* FW_CFG_VERSION bits */ 49 #define FW_CFG_VERSION 0x01 50 #define FW_CFG_VERSION_DMA 0x02 51 52 /* FW_CFG_DMA_CONTROL bits */ 53 #define FW_CFG_DMA_CTL_ERROR 0x01 54 #define FW_CFG_DMA_CTL_READ 0x02 55 #define FW_CFG_DMA_CTL_SKIP 0x04 56 #define FW_CFG_DMA_CTL_SELECT 0x08 57 #define FW_CFG_DMA_CTL_WRITE 0x10 58 59 #define FW_CFG_DMA_SIGNATURE 0x51454d5520434647ULL /* "QEMU CFG" */ 60 61 struct FWCfgEntry { 62 uint32_t len; 63 bool allow_write; 64 uint8_t *data; 65 void *callback_opaque; 66 FWCfgCallback select_cb; 67 FWCfgWriteCallback write_cb; 68 }; 69 70 /** 71 * key_name: 72 * 73 * @key: The uint16 selector key. 74 * 75 * Returns: The stringified name if the selector refers to a well-known 76 * numerically defined item, or NULL on key lookup failure. 77 */ 78 static const char *key_name(uint16_t key) 79 { 80 static const char *fw_cfg_wellknown_keys[FW_CFG_FILE_FIRST] = { 81 [FW_CFG_SIGNATURE] = "signature", 82 [FW_CFG_ID] = "id", 83 [FW_CFG_UUID] = "uuid", 84 [FW_CFG_RAM_SIZE] = "ram_size", 85 [FW_CFG_NOGRAPHIC] = "nographic", 86 [FW_CFG_NB_CPUS] = "nb_cpus", 87 [FW_CFG_MACHINE_ID] = "machine_id", 88 [FW_CFG_KERNEL_ADDR] = "kernel_addr", 89 [FW_CFG_KERNEL_SIZE] = "kernel_size", 90 [FW_CFG_KERNEL_CMDLINE] = "kernel_cmdline", 91 [FW_CFG_INITRD_ADDR] = "initrd_addr", 92 [FW_CFG_INITRD_SIZE] = "initdr_size", 93 [FW_CFG_BOOT_DEVICE] = "boot_device", 94 [FW_CFG_NUMA] = "numa", 95 [FW_CFG_BOOT_MENU] = "boot_menu", 96 [FW_CFG_MAX_CPUS] = "max_cpus", 97 [FW_CFG_KERNEL_ENTRY] = "kernel_entry", 98 [FW_CFG_KERNEL_DATA] = "kernel_data", 99 [FW_CFG_INITRD_DATA] = "initrd_data", 100 [FW_CFG_CMDLINE_ADDR] = "cmdline_addr", 101 [FW_CFG_CMDLINE_SIZE] = "cmdline_size", 102 [FW_CFG_CMDLINE_DATA] = "cmdline_data", 103 [FW_CFG_SETUP_ADDR] = "setup_addr", 104 [FW_CFG_SETUP_SIZE] = "setup_size", 105 [FW_CFG_SETUP_DATA] = "setup_data", 106 [FW_CFG_FILE_DIR] = "file_dir", 107 }; 108 109 if (key & FW_CFG_ARCH_LOCAL) { 110 return fw_cfg_arch_key_name(key); 111 } 112 if (key < FW_CFG_FILE_FIRST) { 113 return fw_cfg_wellknown_keys[key]; 114 } 115 116 return NULL; 117 } 118 119 static inline const char *trace_key_name(uint16_t key) 120 { 121 const char *name = key_name(key); 122 123 return name ? name : "unknown"; 124 } 125 126 #define JPG_FILE 0 127 #define BMP_FILE 1 128 129 static char *read_splashfile(char *filename, gsize *file_sizep, 130 int *file_typep) 131 { 132 GError *err = NULL; 133 gchar *content; 134 int file_type; 135 unsigned int filehead; 136 int bmp_bpp; 137 138 if (!g_file_get_contents(filename, &content, file_sizep, &err)) { 139 error_report("failed to read splash file '%s': %s", 140 filename, err->message); 141 g_error_free(err); 142 return NULL; 143 } 144 145 /* check file size */ 146 if (*file_sizep < 30) { 147 goto error; 148 } 149 150 /* check magic ID */ 151 filehead = lduw_le_p(content); 152 if (filehead == 0xd8ff) { 153 file_type = JPG_FILE; 154 } else if (filehead == 0x4d42) { 155 file_type = BMP_FILE; 156 } else { 157 goto error; 158 } 159 160 /* check BMP bpp */ 161 if (file_type == BMP_FILE) { 162 bmp_bpp = lduw_le_p(&content[28]); 163 if (bmp_bpp != 24) { 164 goto error; 165 } 166 } 167 168 /* return values */ 169 *file_typep = file_type; 170 171 return content; 172 173 error: 174 error_report("splash file '%s' format not recognized; must be JPEG " 175 "or 24 bit BMP", filename); 176 g_free(content); 177 return NULL; 178 } 179 180 static void fw_cfg_bootsplash(FWCfgState *s) 181 { 182 const char *boot_splash_filename = NULL; 183 const char *boot_splash_time = NULL; 184 char *filename, *file_data; 185 gsize file_size; 186 int file_type; 187 188 /* get user configuration */ 189 QemuOptsList *plist = qemu_find_opts("boot-opts"); 190 QemuOpts *opts = QTAILQ_FIRST(&plist->head); 191 boot_splash_filename = qemu_opt_get(opts, "splash"); 192 boot_splash_time = qemu_opt_get(opts, "splash-time"); 193 194 /* insert splash time if user configurated */ 195 if (boot_splash_time) { 196 int64_t bst_val = qemu_opt_get_number(opts, "splash-time", -1); 197 uint16_t bst_le16; 198 199 /* validate the input */ 200 if (bst_val < 0 || bst_val > 0xffff) { 201 error_report("splash-time is invalid," 202 "it should be a value between 0 and 65535"); 203 exit(1); 204 } 205 /* use little endian format */ 206 bst_le16 = cpu_to_le16(bst_val); 207 fw_cfg_add_file(s, "etc/boot-menu-wait", 208 g_memdup(&bst_le16, sizeof bst_le16), sizeof bst_le16); 209 } 210 211 /* insert splash file if user configurated */ 212 if (boot_splash_filename) { 213 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, boot_splash_filename); 214 if (filename == NULL) { 215 error_report("failed to find file '%s'", boot_splash_filename); 216 return; 217 } 218 219 /* loading file data */ 220 file_data = read_splashfile(filename, &file_size, &file_type); 221 if (file_data == NULL) { 222 g_free(filename); 223 return; 224 } 225 g_free(boot_splash_filedata); 226 boot_splash_filedata = (uint8_t *)file_data; 227 228 /* insert data */ 229 if (file_type == JPG_FILE) { 230 fw_cfg_add_file(s, "bootsplash.jpg", 231 boot_splash_filedata, file_size); 232 } else { 233 fw_cfg_add_file(s, "bootsplash.bmp", 234 boot_splash_filedata, file_size); 235 } 236 g_free(filename); 237 } 238 } 239 240 static void fw_cfg_reboot(FWCfgState *s) 241 { 242 const char *reboot_timeout = NULL; 243 uint64_t rt_val = -1; 244 uint32_t rt_le32; 245 246 /* get user configuration */ 247 QemuOptsList *plist = qemu_find_opts("boot-opts"); 248 QemuOpts *opts = QTAILQ_FIRST(&plist->head); 249 reboot_timeout = qemu_opt_get(opts, "reboot-timeout"); 250 251 if (reboot_timeout) { 252 rt_val = qemu_opt_get_number(opts, "reboot-timeout", -1); 253 254 /* validate the input */ 255 if (rt_val > 0xffff && rt_val != (uint64_t)-1) { 256 error_report("reboot timeout is invalid," 257 "it should be a value between -1 and 65535"); 258 exit(1); 259 } 260 } 261 262 rt_le32 = cpu_to_le32(rt_val); 263 fw_cfg_add_file(s, "etc/boot-fail-wait", g_memdup(&rt_le32, 4), 4); 264 } 265 266 static void fw_cfg_write(FWCfgState *s, uint8_t value) 267 { 268 /* nothing, write support removed in QEMU v2.4+ */ 269 } 270 271 static inline uint16_t fw_cfg_file_slots(const FWCfgState *s) 272 { 273 return s->file_slots; 274 } 275 276 /* Note: this function returns an exclusive limit. */ 277 static inline uint32_t fw_cfg_max_entry(const FWCfgState *s) 278 { 279 return FW_CFG_FILE_FIRST + fw_cfg_file_slots(s); 280 } 281 282 static int fw_cfg_select(FWCfgState *s, uint16_t key) 283 { 284 int arch, ret; 285 FWCfgEntry *e; 286 287 s->cur_offset = 0; 288 if ((key & FW_CFG_ENTRY_MASK) >= fw_cfg_max_entry(s)) { 289 s->cur_entry = FW_CFG_INVALID; 290 ret = 0; 291 } else { 292 s->cur_entry = key; 293 ret = 1; 294 /* entry successfully selected, now run callback if present */ 295 arch = !!(key & FW_CFG_ARCH_LOCAL); 296 e = &s->entries[arch][key & FW_CFG_ENTRY_MASK]; 297 if (e->select_cb) { 298 e->select_cb(e->callback_opaque); 299 } 300 } 301 302 trace_fw_cfg_select(s, key, trace_key_name(key), ret); 303 return ret; 304 } 305 306 static uint64_t fw_cfg_data_read(void *opaque, hwaddr addr, unsigned size) 307 { 308 FWCfgState *s = opaque; 309 int arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL); 310 FWCfgEntry *e = (s->cur_entry == FW_CFG_INVALID) ? NULL : 311 &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK]; 312 uint64_t value = 0; 313 314 assert(size > 0 && size <= sizeof(value)); 315 if (s->cur_entry != FW_CFG_INVALID && e->data && s->cur_offset < e->len) { 316 /* The least significant 'size' bytes of the return value are 317 * expected to contain a string preserving portion of the item 318 * data, padded with zeros on the right in case we run out early. 319 * In technical terms, we're composing the host-endian representation 320 * of the big endian interpretation of the fw_cfg string. 321 */ 322 do { 323 value = (value << 8) | e->data[s->cur_offset++]; 324 } while (--size && s->cur_offset < e->len); 325 /* If size is still not zero, we *did* run out early, so continue 326 * left-shifting, to add the appropriate number of padding zeros 327 * on the right. 328 */ 329 value <<= 8 * size; 330 } 331 332 trace_fw_cfg_read(s, value); 333 return value; 334 } 335 336 static void fw_cfg_data_mem_write(void *opaque, hwaddr addr, 337 uint64_t value, unsigned size) 338 { 339 FWCfgState *s = opaque; 340 unsigned i = size; 341 342 do { 343 fw_cfg_write(s, value >> (8 * --i)); 344 } while (i); 345 } 346 347 static void fw_cfg_dma_transfer(FWCfgState *s) 348 { 349 dma_addr_t len; 350 FWCfgDmaAccess dma; 351 int arch; 352 FWCfgEntry *e; 353 int read = 0, write = 0; 354 dma_addr_t dma_addr; 355 356 /* Reset the address before the next access */ 357 dma_addr = s->dma_addr; 358 s->dma_addr = 0; 359 360 if (dma_memory_read(s->dma_as, dma_addr, 361 &dma, sizeof(dma), MEMTXATTRS_UNSPECIFIED)) { 362 stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control), 363 FW_CFG_DMA_CTL_ERROR, MEMTXATTRS_UNSPECIFIED); 364 return; 365 } 366 367 dma.address = be64_to_cpu(dma.address); 368 dma.length = be32_to_cpu(dma.length); 369 dma.control = be32_to_cpu(dma.control); 370 371 if (dma.control & FW_CFG_DMA_CTL_SELECT) { 372 fw_cfg_select(s, dma.control >> 16); 373 } 374 375 arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL); 376 e = (s->cur_entry == FW_CFG_INVALID) ? NULL : 377 &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK]; 378 379 if (dma.control & FW_CFG_DMA_CTL_READ) { 380 read = 1; 381 write = 0; 382 } else if (dma.control & FW_CFG_DMA_CTL_WRITE) { 383 read = 0; 384 write = 1; 385 } else if (dma.control & FW_CFG_DMA_CTL_SKIP) { 386 read = 0; 387 write = 0; 388 } else { 389 dma.length = 0; 390 } 391 392 dma.control = 0; 393 394 while (dma.length > 0 && !(dma.control & FW_CFG_DMA_CTL_ERROR)) { 395 if (s->cur_entry == FW_CFG_INVALID || !e->data || 396 s->cur_offset >= e->len) { 397 len = dma.length; 398 399 /* If the access is not a read access, it will be a skip access, 400 * tested before. 401 */ 402 if (read) { 403 if (dma_memory_set(s->dma_as, dma.address, 0, len, 404 MEMTXATTRS_UNSPECIFIED)) { 405 dma.control |= FW_CFG_DMA_CTL_ERROR; 406 } 407 } 408 if (write) { 409 dma.control |= FW_CFG_DMA_CTL_ERROR; 410 } 411 } else { 412 if (dma.length <= (e->len - s->cur_offset)) { 413 len = dma.length; 414 } else { 415 len = (e->len - s->cur_offset); 416 } 417 418 /* If the access is not a read access, it will be a skip access, 419 * tested before. 420 */ 421 if (read) { 422 if (dma_memory_write(s->dma_as, dma.address, 423 &e->data[s->cur_offset], len, 424 MEMTXATTRS_UNSPECIFIED)) { 425 dma.control |= FW_CFG_DMA_CTL_ERROR; 426 } 427 } 428 if (write) { 429 if (!e->allow_write || 430 len != dma.length || 431 dma_memory_read(s->dma_as, dma.address, 432 &e->data[s->cur_offset], len, 433 MEMTXATTRS_UNSPECIFIED)) { 434 dma.control |= FW_CFG_DMA_CTL_ERROR; 435 } else if (e->write_cb) { 436 e->write_cb(e->callback_opaque, s->cur_offset, len); 437 } 438 } 439 440 s->cur_offset += len; 441 } 442 443 dma.address += len; 444 dma.length -= len; 445 446 } 447 448 stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control), 449 dma.control, MEMTXATTRS_UNSPECIFIED); 450 451 trace_fw_cfg_read(s, 0); 452 } 453 454 static uint64_t fw_cfg_dma_mem_read(void *opaque, hwaddr addr, 455 unsigned size) 456 { 457 /* Return a signature value (and handle various read sizes) */ 458 return extract64(FW_CFG_DMA_SIGNATURE, (8 - addr - size) * 8, size * 8); 459 } 460 461 static void fw_cfg_dma_mem_write(void *opaque, hwaddr addr, 462 uint64_t value, unsigned size) 463 { 464 FWCfgState *s = opaque; 465 466 if (size == 4) { 467 if (addr == 0) { 468 /* FWCfgDmaAccess high address */ 469 s->dma_addr = value << 32; 470 } else if (addr == 4) { 471 /* FWCfgDmaAccess low address */ 472 s->dma_addr |= value; 473 fw_cfg_dma_transfer(s); 474 } 475 } else if (size == 8 && addr == 0) { 476 s->dma_addr = value; 477 fw_cfg_dma_transfer(s); 478 } 479 } 480 481 static bool fw_cfg_dma_mem_valid(void *opaque, hwaddr addr, 482 unsigned size, bool is_write, 483 MemTxAttrs attrs) 484 { 485 return !is_write || ((size == 4 && (addr == 0 || addr == 4)) || 486 (size == 8 && addr == 0)); 487 } 488 489 static bool fw_cfg_data_mem_valid(void *opaque, hwaddr addr, 490 unsigned size, bool is_write, 491 MemTxAttrs attrs) 492 { 493 return addr == 0; 494 } 495 496 static uint64_t fw_cfg_ctl_mem_read(void *opaque, hwaddr addr, unsigned size) 497 { 498 return 0; 499 } 500 501 static void fw_cfg_ctl_mem_write(void *opaque, hwaddr addr, 502 uint64_t value, unsigned size) 503 { 504 fw_cfg_select(opaque, (uint16_t)value); 505 } 506 507 static bool fw_cfg_ctl_mem_valid(void *opaque, hwaddr addr, 508 unsigned size, bool is_write, 509 MemTxAttrs attrs) 510 { 511 return is_write && size == 2; 512 } 513 514 static void fw_cfg_comb_write(void *opaque, hwaddr addr, 515 uint64_t value, unsigned size) 516 { 517 switch (size) { 518 case 1: 519 fw_cfg_write(opaque, (uint8_t)value); 520 break; 521 case 2: 522 fw_cfg_select(opaque, (uint16_t)value); 523 break; 524 } 525 } 526 527 static bool fw_cfg_comb_valid(void *opaque, hwaddr addr, 528 unsigned size, bool is_write, 529 MemTxAttrs attrs) 530 { 531 return (size == 1) || (is_write && size == 2); 532 } 533 534 static const MemoryRegionOps fw_cfg_ctl_mem_ops = { 535 .read = fw_cfg_ctl_mem_read, 536 .write = fw_cfg_ctl_mem_write, 537 .endianness = DEVICE_BIG_ENDIAN, 538 .valid.accepts = fw_cfg_ctl_mem_valid, 539 }; 540 541 static const MemoryRegionOps fw_cfg_data_mem_ops = { 542 .read = fw_cfg_data_read, 543 .write = fw_cfg_data_mem_write, 544 .endianness = DEVICE_BIG_ENDIAN, 545 .valid = { 546 .min_access_size = 1, 547 .max_access_size = 1, 548 .accepts = fw_cfg_data_mem_valid, 549 }, 550 }; 551 552 static const MemoryRegionOps fw_cfg_comb_mem_ops = { 553 .read = fw_cfg_data_read, 554 .write = fw_cfg_comb_write, 555 .endianness = DEVICE_LITTLE_ENDIAN, 556 .valid.accepts = fw_cfg_comb_valid, 557 }; 558 559 static const MemoryRegionOps fw_cfg_dma_mem_ops = { 560 .read = fw_cfg_dma_mem_read, 561 .write = fw_cfg_dma_mem_write, 562 .endianness = DEVICE_BIG_ENDIAN, 563 .valid.accepts = fw_cfg_dma_mem_valid, 564 .valid.max_access_size = 8, 565 .impl.max_access_size = 8, 566 }; 567 568 static void fw_cfg_reset(DeviceState *d) 569 { 570 FWCfgState *s = FW_CFG(d); 571 572 /* we never register a read callback for FW_CFG_SIGNATURE */ 573 fw_cfg_select(s, FW_CFG_SIGNATURE); 574 } 575 576 /* Save restore 32 bit int as uint16_t 577 This is a Big hack, but it is how the old state did it. 578 Or we broke compatibility in the state, or we can't use struct tm 579 */ 580 581 static int get_uint32_as_uint16(QEMUFile *f, void *pv, size_t size, 582 const VMStateField *field) 583 { 584 uint32_t *v = pv; 585 *v = qemu_get_be16(f); 586 return 0; 587 } 588 589 static int put_unused(QEMUFile *f, void *pv, size_t size, 590 const VMStateField *field, JSONWriter *vmdesc) 591 { 592 fprintf(stderr, "uint32_as_uint16 is only used for backward compatibility.\n"); 593 fprintf(stderr, "This functions shouldn't be called.\n"); 594 595 return 0; 596 } 597 598 static const VMStateInfo vmstate_hack_uint32_as_uint16 = { 599 .name = "int32_as_uint16", 600 .get = get_uint32_as_uint16, 601 .put = put_unused, 602 }; 603 604 #define VMSTATE_UINT16_HACK(_f, _s, _t) \ 605 VMSTATE_SINGLE_TEST(_f, _s, _t, 0, vmstate_hack_uint32_as_uint16, uint32_t) 606 607 608 static bool is_version_1(void *opaque, int version_id) 609 { 610 return version_id == 1; 611 } 612 613 bool fw_cfg_dma_enabled(void *opaque) 614 { 615 FWCfgState *s = opaque; 616 617 return s->dma_enabled; 618 } 619 620 static bool fw_cfg_acpi_mr_restore(void *opaque) 621 { 622 FWCfgState *s = opaque; 623 bool mr_aligned; 624 625 mr_aligned = QEMU_IS_ALIGNED(s->table_mr_size, qemu_real_host_page_size()) && 626 QEMU_IS_ALIGNED(s->linker_mr_size, qemu_real_host_page_size()) && 627 QEMU_IS_ALIGNED(s->rsdp_mr_size, qemu_real_host_page_size()); 628 return s->acpi_mr_restore && !mr_aligned; 629 } 630 631 static void fw_cfg_update_mr(FWCfgState *s, uint16_t key, size_t size) 632 { 633 MemoryRegion *mr; 634 ram_addr_t offset; 635 int arch = !!(key & FW_CFG_ARCH_LOCAL); 636 void *ptr; 637 638 key &= FW_CFG_ENTRY_MASK; 639 assert(key < fw_cfg_max_entry(s)); 640 641 ptr = s->entries[arch][key].data; 642 mr = memory_region_from_host(ptr, &offset); 643 644 memory_region_ram_resize(mr, size, &error_abort); 645 } 646 647 static int fw_cfg_acpi_mr_restore_post_load(void *opaque, int version_id) 648 { 649 FWCfgState *s = opaque; 650 int i, index; 651 652 assert(s->files); 653 654 index = be32_to_cpu(s->files->count); 655 656 for (i = 0; i < index; i++) { 657 if (!strcmp(s->files->f[i].name, ACPI_BUILD_TABLE_FILE)) { 658 fw_cfg_update_mr(s, FW_CFG_FILE_FIRST + i, s->table_mr_size); 659 } else if (!strcmp(s->files->f[i].name, ACPI_BUILD_LOADER_FILE)) { 660 fw_cfg_update_mr(s, FW_CFG_FILE_FIRST + i, s->linker_mr_size); 661 } else if (!strcmp(s->files->f[i].name, ACPI_BUILD_RSDP_FILE)) { 662 fw_cfg_update_mr(s, FW_CFG_FILE_FIRST + i, s->rsdp_mr_size); 663 } 664 } 665 666 return 0; 667 } 668 669 static const VMStateDescription vmstate_fw_cfg_dma = { 670 .name = "fw_cfg/dma", 671 .needed = fw_cfg_dma_enabled, 672 .fields = (VMStateField[]) { 673 VMSTATE_UINT64(dma_addr, FWCfgState), 674 VMSTATE_END_OF_LIST() 675 }, 676 }; 677 678 static const VMStateDescription vmstate_fw_cfg_acpi_mr = { 679 .name = "fw_cfg/acpi_mr", 680 .version_id = 1, 681 .minimum_version_id = 1, 682 .needed = fw_cfg_acpi_mr_restore, 683 .post_load = fw_cfg_acpi_mr_restore_post_load, 684 .fields = (VMStateField[]) { 685 VMSTATE_UINT64(table_mr_size, FWCfgState), 686 VMSTATE_UINT64(linker_mr_size, FWCfgState), 687 VMSTATE_UINT64(rsdp_mr_size, FWCfgState), 688 VMSTATE_END_OF_LIST() 689 }, 690 }; 691 692 static const VMStateDescription vmstate_fw_cfg = { 693 .name = "fw_cfg", 694 .version_id = 2, 695 .minimum_version_id = 1, 696 .fields = (VMStateField[]) { 697 VMSTATE_UINT16(cur_entry, FWCfgState), 698 VMSTATE_UINT16_HACK(cur_offset, FWCfgState, is_version_1), 699 VMSTATE_UINT32_V(cur_offset, FWCfgState, 2), 700 VMSTATE_END_OF_LIST() 701 }, 702 .subsections = (const VMStateDescription*[]) { 703 &vmstate_fw_cfg_dma, 704 &vmstate_fw_cfg_acpi_mr, 705 NULL, 706 } 707 }; 708 709 static void fw_cfg_add_bytes_callback(FWCfgState *s, uint16_t key, 710 FWCfgCallback select_cb, 711 FWCfgWriteCallback write_cb, 712 void *callback_opaque, 713 void *data, size_t len, 714 bool read_only) 715 { 716 int arch = !!(key & FW_CFG_ARCH_LOCAL); 717 718 key &= FW_CFG_ENTRY_MASK; 719 720 assert(key < fw_cfg_max_entry(s) && len < UINT32_MAX); 721 assert(s->entries[arch][key].data == NULL); /* avoid key conflict */ 722 723 s->entries[arch][key].data = data; 724 s->entries[arch][key].len = (uint32_t)len; 725 s->entries[arch][key].select_cb = select_cb; 726 s->entries[arch][key].write_cb = write_cb; 727 s->entries[arch][key].callback_opaque = callback_opaque; 728 s->entries[arch][key].allow_write = !read_only; 729 } 730 731 static void *fw_cfg_modify_bytes_read(FWCfgState *s, uint16_t key, 732 void *data, size_t len) 733 { 734 void *ptr; 735 int arch = !!(key & FW_CFG_ARCH_LOCAL); 736 737 key &= FW_CFG_ENTRY_MASK; 738 739 assert(key < fw_cfg_max_entry(s) && len < UINT32_MAX); 740 741 /* return the old data to the function caller, avoid memory leak */ 742 ptr = s->entries[arch][key].data; 743 s->entries[arch][key].data = data; 744 s->entries[arch][key].len = len; 745 s->entries[arch][key].callback_opaque = NULL; 746 s->entries[arch][key].allow_write = false; 747 748 return ptr; 749 } 750 751 void fw_cfg_add_bytes(FWCfgState *s, uint16_t key, void *data, size_t len) 752 { 753 trace_fw_cfg_add_bytes(key, trace_key_name(key), len); 754 fw_cfg_add_bytes_callback(s, key, NULL, NULL, NULL, data, len, true); 755 } 756 757 void fw_cfg_add_string(FWCfgState *s, uint16_t key, const char *value) 758 { 759 size_t sz = strlen(value) + 1; 760 761 trace_fw_cfg_add_string(key, trace_key_name(key), value); 762 fw_cfg_add_bytes(s, key, g_memdup(value, sz), sz); 763 } 764 765 void fw_cfg_modify_string(FWCfgState *s, uint16_t key, const char *value) 766 { 767 size_t sz = strlen(value) + 1; 768 char *old; 769 770 old = fw_cfg_modify_bytes_read(s, key, g_memdup(value, sz), sz); 771 g_free(old); 772 } 773 774 void fw_cfg_add_i16(FWCfgState *s, uint16_t key, uint16_t value) 775 { 776 uint16_t *copy; 777 778 copy = g_malloc(sizeof(value)); 779 *copy = cpu_to_le16(value); 780 trace_fw_cfg_add_i16(key, trace_key_name(key), value); 781 fw_cfg_add_bytes(s, key, copy, sizeof(value)); 782 } 783 784 void fw_cfg_modify_i16(FWCfgState *s, uint16_t key, uint16_t value) 785 { 786 uint16_t *copy, *old; 787 788 copy = g_malloc(sizeof(value)); 789 *copy = cpu_to_le16(value); 790 old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value)); 791 g_free(old); 792 } 793 794 void fw_cfg_add_i32(FWCfgState *s, uint16_t key, uint32_t value) 795 { 796 uint32_t *copy; 797 798 copy = g_malloc(sizeof(value)); 799 *copy = cpu_to_le32(value); 800 trace_fw_cfg_add_i32(key, trace_key_name(key), value); 801 fw_cfg_add_bytes(s, key, copy, sizeof(value)); 802 } 803 804 void fw_cfg_modify_i32(FWCfgState *s, uint16_t key, uint32_t value) 805 { 806 uint32_t *copy, *old; 807 808 copy = g_malloc(sizeof(value)); 809 *copy = cpu_to_le32(value); 810 old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value)); 811 g_free(old); 812 } 813 814 void fw_cfg_add_i64(FWCfgState *s, uint16_t key, uint64_t value) 815 { 816 uint64_t *copy; 817 818 copy = g_malloc(sizeof(value)); 819 *copy = cpu_to_le64(value); 820 trace_fw_cfg_add_i64(key, trace_key_name(key), value); 821 fw_cfg_add_bytes(s, key, copy, sizeof(value)); 822 } 823 824 void fw_cfg_modify_i64(FWCfgState *s, uint16_t key, uint64_t value) 825 { 826 uint64_t *copy, *old; 827 828 copy = g_malloc(sizeof(value)); 829 *copy = cpu_to_le64(value); 830 old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value)); 831 g_free(old); 832 } 833 834 void fw_cfg_set_order_override(FWCfgState *s, int order) 835 { 836 assert(s->fw_cfg_order_override == 0); 837 s->fw_cfg_order_override = order; 838 } 839 840 void fw_cfg_reset_order_override(FWCfgState *s) 841 { 842 assert(s->fw_cfg_order_override != 0); 843 s->fw_cfg_order_override = 0; 844 } 845 846 /* 847 * This is the legacy order list. For legacy systems, files are in 848 * the fw_cfg in the order defined below, by the "order" value. Note 849 * that some entries (VGA ROMs, NIC option ROMS, etc.) go into a 850 * specific area, but there may be more than one and they occur in the 851 * order that the user specifies them on the command line. Those are 852 * handled in a special manner, using the order override above. 853 * 854 * For non-legacy, the files are sorted by filename to avoid this kind 855 * of complexity in the future. 856 * 857 * This is only for x86, other arches don't implement versioning so 858 * they won't set legacy mode. 859 */ 860 static struct { 861 const char *name; 862 int order; 863 } fw_cfg_order[] = { 864 { "etc/boot-menu-wait", 10 }, 865 { "bootsplash.jpg", 11 }, 866 { "bootsplash.bmp", 12 }, 867 { "etc/boot-fail-wait", 15 }, 868 { "etc/smbios/smbios-tables", 20 }, 869 { "etc/smbios/smbios-anchor", 30 }, 870 { "etc/e820", 40 }, 871 { "etc/reserved-memory-end", 50 }, 872 { "genroms/kvmvapic.bin", 55 }, 873 { "genroms/linuxboot.bin", 60 }, 874 { }, /* VGA ROMs from pc_vga_init come here, 70. */ 875 { }, /* NIC option ROMs from pc_nic_init come here, 80. */ 876 { "etc/system-states", 90 }, 877 { }, /* User ROMs come here, 100. */ 878 { }, /* Device FW comes here, 110. */ 879 { "etc/extra-pci-roots", 120 }, 880 { "etc/acpi/tables", 130 }, 881 { "etc/table-loader", 140 }, 882 { "etc/tpm/log", 150 }, 883 { "etc/acpi/rsdp", 160 }, 884 { "bootorder", 170 }, 885 { "etc/msr_feature_control", 180 }, 886 887 #define FW_CFG_ORDER_OVERRIDE_LAST 200 888 }; 889 890 /* 891 * Any sub-page size update to these table MRs will be lost during migration, 892 * as we use aligned size in ram_load_precopy() -> qemu_ram_resize() path. 893 * In order to avoid the inconsistency in sizes save them seperately and 894 * migrate over in vmstate post_load(). 895 */ 896 static void fw_cfg_acpi_mr_save(FWCfgState *s, const char *filename, size_t len) 897 { 898 if (!strcmp(filename, ACPI_BUILD_TABLE_FILE)) { 899 s->table_mr_size = len; 900 } else if (!strcmp(filename, ACPI_BUILD_LOADER_FILE)) { 901 s->linker_mr_size = len; 902 } else if (!strcmp(filename, ACPI_BUILD_RSDP_FILE)) { 903 s->rsdp_mr_size = len; 904 } 905 } 906 907 static int get_fw_cfg_order(FWCfgState *s, const char *name) 908 { 909 int i; 910 911 if (s->fw_cfg_order_override > 0) { 912 return s->fw_cfg_order_override; 913 } 914 915 for (i = 0; i < ARRAY_SIZE(fw_cfg_order); i++) { 916 if (fw_cfg_order[i].name == NULL) { 917 continue; 918 } 919 920 if (strcmp(name, fw_cfg_order[i].name) == 0) { 921 return fw_cfg_order[i].order; 922 } 923 } 924 925 /* Stick unknown stuff at the end. */ 926 warn_report("Unknown firmware file in legacy mode: %s", name); 927 return FW_CFG_ORDER_OVERRIDE_LAST; 928 } 929 930 void fw_cfg_add_file_callback(FWCfgState *s, const char *filename, 931 FWCfgCallback select_cb, 932 FWCfgWriteCallback write_cb, 933 void *callback_opaque, 934 void *data, size_t len, bool read_only) 935 { 936 int i, index, count; 937 size_t dsize; 938 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 939 int order = 0; 940 941 if (!s->files) { 942 dsize = sizeof(uint32_t) + sizeof(FWCfgFile) * fw_cfg_file_slots(s); 943 s->files = g_malloc0(dsize); 944 fw_cfg_add_bytes(s, FW_CFG_FILE_DIR, s->files, dsize); 945 } 946 947 count = be32_to_cpu(s->files->count); 948 assert(count < fw_cfg_file_slots(s)); 949 950 /* Find the insertion point. */ 951 if (mc->legacy_fw_cfg_order) { 952 /* 953 * Sort by order. For files with the same order, we keep them 954 * in the sequence in which they were added. 955 */ 956 order = get_fw_cfg_order(s, filename); 957 for (index = count; 958 index > 0 && order < s->entry_order[index - 1]; 959 index--); 960 } else { 961 /* Sort by file name. */ 962 for (index = count; 963 index > 0 && strcmp(filename, s->files->f[index - 1].name) < 0; 964 index--); 965 } 966 967 /* 968 * Move all the entries from the index point and after down one 969 * to create a slot for the new entry. Because calculations are 970 * being done with the index, make it so that "i" is the current 971 * index and "i - 1" is the one being copied from, thus the 972 * unusual start and end in the for statement. 973 */ 974 for (i = count; i > index; i--) { 975 s->files->f[i] = s->files->f[i - 1]; 976 s->files->f[i].select = cpu_to_be16(FW_CFG_FILE_FIRST + i); 977 s->entries[0][FW_CFG_FILE_FIRST + i] = 978 s->entries[0][FW_CFG_FILE_FIRST + i - 1]; 979 s->entry_order[i] = s->entry_order[i - 1]; 980 } 981 982 memset(&s->files->f[index], 0, sizeof(FWCfgFile)); 983 memset(&s->entries[0][FW_CFG_FILE_FIRST + index], 0, sizeof(FWCfgEntry)); 984 985 pstrcpy(s->files->f[index].name, sizeof(s->files->f[index].name), filename); 986 for (i = 0; i <= count; i++) { 987 if (i != index && 988 strcmp(s->files->f[index].name, s->files->f[i].name) == 0) { 989 error_report("duplicate fw_cfg file name: %s", 990 s->files->f[index].name); 991 exit(1); 992 } 993 } 994 995 fw_cfg_add_bytes_callback(s, FW_CFG_FILE_FIRST + index, 996 select_cb, write_cb, 997 callback_opaque, data, len, 998 read_only); 999 1000 s->files->f[index].size = cpu_to_be32(len); 1001 s->files->f[index].select = cpu_to_be16(FW_CFG_FILE_FIRST + index); 1002 s->entry_order[index] = order; 1003 trace_fw_cfg_add_file(s, index, s->files->f[index].name, len); 1004 1005 s->files->count = cpu_to_be32(count+1); 1006 fw_cfg_acpi_mr_save(s, filename, len); 1007 } 1008 1009 void fw_cfg_add_file(FWCfgState *s, const char *filename, 1010 void *data, size_t len) 1011 { 1012 fw_cfg_add_file_callback(s, filename, NULL, NULL, NULL, data, len, true); 1013 } 1014 1015 void *fw_cfg_modify_file(FWCfgState *s, const char *filename, 1016 void *data, size_t len) 1017 { 1018 int i, index; 1019 void *ptr = NULL; 1020 1021 assert(s->files); 1022 1023 index = be32_to_cpu(s->files->count); 1024 1025 for (i = 0; i < index; i++) { 1026 if (strcmp(filename, s->files->f[i].name) == 0) { 1027 ptr = fw_cfg_modify_bytes_read(s, FW_CFG_FILE_FIRST + i, 1028 data, len); 1029 s->files->f[i].size = cpu_to_be32(len); 1030 fw_cfg_acpi_mr_save(s, filename, len); 1031 return ptr; 1032 } 1033 } 1034 1035 assert(index < fw_cfg_file_slots(s)); 1036 1037 /* add new one */ 1038 fw_cfg_add_file_callback(s, filename, NULL, NULL, NULL, data, len, true); 1039 return NULL; 1040 } 1041 1042 bool fw_cfg_add_from_generator(FWCfgState *s, const char *filename, 1043 const char *gen_id, Error **errp) 1044 { 1045 FWCfgDataGeneratorClass *klass; 1046 GByteArray *array; 1047 Object *obj; 1048 gsize size; 1049 1050 obj = object_resolve_path_component(object_get_objects_root(), gen_id); 1051 if (!obj) { 1052 error_setg(errp, "Cannot find object ID '%s'", gen_id); 1053 return false; 1054 } 1055 if (!object_dynamic_cast(obj, TYPE_FW_CFG_DATA_GENERATOR_INTERFACE)) { 1056 error_setg(errp, "Object ID '%s' is not a '%s' subclass", 1057 gen_id, TYPE_FW_CFG_DATA_GENERATOR_INTERFACE); 1058 return false; 1059 } 1060 klass = FW_CFG_DATA_GENERATOR_GET_CLASS(obj); 1061 array = klass->get_data(obj, errp); 1062 if (!array) { 1063 return false; 1064 } 1065 size = array->len; 1066 fw_cfg_add_file(s, filename, g_byte_array_free(array, FALSE), size); 1067 1068 return true; 1069 } 1070 1071 void fw_cfg_add_extra_pci_roots(PCIBus *bus, FWCfgState *s) 1072 { 1073 int extra_hosts = 0; 1074 1075 if (!bus) { 1076 return; 1077 } 1078 1079 QLIST_FOREACH(bus, &bus->child, sibling) { 1080 /* look for expander root buses */ 1081 if (pci_bus_is_root(bus)) { 1082 extra_hosts++; 1083 } 1084 } 1085 1086 if (extra_hosts && s) { 1087 uint64_t *val = g_malloc(sizeof(*val)); 1088 *val = cpu_to_le64(extra_hosts); 1089 fw_cfg_add_file(s, "etc/extra-pci-roots", val, sizeof(*val)); 1090 } 1091 } 1092 1093 static void fw_cfg_machine_reset(void *opaque) 1094 { 1095 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 1096 FWCfgState *s = opaque; 1097 void *ptr; 1098 size_t len; 1099 char *buf; 1100 1101 buf = get_boot_devices_list(&len); 1102 ptr = fw_cfg_modify_file(s, "bootorder", (uint8_t *)buf, len); 1103 g_free(ptr); 1104 1105 if (!mc->legacy_fw_cfg_order) { 1106 buf = get_boot_devices_lchs_list(&len); 1107 ptr = fw_cfg_modify_file(s, "bios-geometry", (uint8_t *)buf, len); 1108 g_free(ptr); 1109 } 1110 } 1111 1112 static void fw_cfg_machine_ready(struct Notifier *n, void *data) 1113 { 1114 FWCfgState *s = container_of(n, FWCfgState, machine_ready); 1115 qemu_register_reset(fw_cfg_machine_reset, s); 1116 } 1117 1118 static Property fw_cfg_properties[] = { 1119 DEFINE_PROP_BOOL("acpi-mr-restore", FWCfgState, acpi_mr_restore, true), 1120 DEFINE_PROP_END_OF_LIST(), 1121 }; 1122 1123 static void fw_cfg_common_realize(DeviceState *dev, Error **errp) 1124 { 1125 FWCfgState *s = FW_CFG(dev); 1126 MachineState *machine = MACHINE(qdev_get_machine()); 1127 uint32_t version = FW_CFG_VERSION; 1128 1129 if (!fw_cfg_find()) { 1130 error_setg(errp, "at most one %s device is permitted", TYPE_FW_CFG); 1131 return; 1132 } 1133 1134 fw_cfg_add_bytes(s, FW_CFG_SIGNATURE, (char *)"QEMU", 4); 1135 fw_cfg_add_bytes(s, FW_CFG_UUID, &qemu_uuid, 16); 1136 fw_cfg_add_i16(s, FW_CFG_NOGRAPHIC, (uint16_t)!machine->enable_graphics); 1137 fw_cfg_add_i16(s, FW_CFG_BOOT_MENU, (uint16_t)boot_menu); 1138 fw_cfg_bootsplash(s); 1139 fw_cfg_reboot(s); 1140 1141 if (s->dma_enabled) { 1142 version |= FW_CFG_VERSION_DMA; 1143 } 1144 1145 fw_cfg_add_i32(s, FW_CFG_ID, version); 1146 1147 s->machine_ready.notify = fw_cfg_machine_ready; 1148 qemu_add_machine_init_done_notifier(&s->machine_ready); 1149 } 1150 1151 FWCfgState *fw_cfg_init_io_dma(uint32_t iobase, uint32_t dma_iobase, 1152 AddressSpace *dma_as) 1153 { 1154 DeviceState *dev; 1155 SysBusDevice *sbd; 1156 FWCfgIoState *ios; 1157 FWCfgState *s; 1158 bool dma_requested = dma_iobase && dma_as; 1159 1160 dev = qdev_new(TYPE_FW_CFG_IO); 1161 if (!dma_requested) { 1162 qdev_prop_set_bit(dev, "dma_enabled", false); 1163 } 1164 1165 object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG, 1166 OBJECT(dev)); 1167 1168 sbd = SYS_BUS_DEVICE(dev); 1169 sysbus_realize_and_unref(sbd, &error_fatal); 1170 ios = FW_CFG_IO(dev); 1171 sysbus_add_io(sbd, iobase, &ios->comb_iomem); 1172 1173 s = FW_CFG(dev); 1174 1175 if (s->dma_enabled) { 1176 /* 64 bits for the address field */ 1177 s->dma_as = dma_as; 1178 s->dma_addr = 0; 1179 sysbus_add_io(sbd, dma_iobase, &s->dma_iomem); 1180 } 1181 1182 return s; 1183 } 1184 1185 FWCfgState *fw_cfg_init_io(uint32_t iobase) 1186 { 1187 return fw_cfg_init_io_dma(iobase, 0, NULL); 1188 } 1189 1190 FWCfgState *fw_cfg_init_mem_wide(hwaddr ctl_addr, 1191 hwaddr data_addr, uint32_t data_width, 1192 hwaddr dma_addr, AddressSpace *dma_as) 1193 { 1194 DeviceState *dev; 1195 SysBusDevice *sbd; 1196 FWCfgState *s; 1197 bool dma_requested = dma_addr && dma_as; 1198 1199 dev = qdev_new(TYPE_FW_CFG_MEM); 1200 qdev_prop_set_uint32(dev, "data_width", data_width); 1201 if (!dma_requested) { 1202 qdev_prop_set_bit(dev, "dma_enabled", false); 1203 } 1204 1205 object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG, 1206 OBJECT(dev)); 1207 1208 sbd = SYS_BUS_DEVICE(dev); 1209 sysbus_realize_and_unref(sbd, &error_fatal); 1210 sysbus_mmio_map(sbd, 0, ctl_addr); 1211 sysbus_mmio_map(sbd, 1, data_addr); 1212 1213 s = FW_CFG(dev); 1214 1215 if (s->dma_enabled) { 1216 s->dma_as = dma_as; 1217 s->dma_addr = 0; 1218 sysbus_mmio_map(sbd, 2, dma_addr); 1219 } 1220 1221 return s; 1222 } 1223 1224 FWCfgState *fw_cfg_init_mem(hwaddr ctl_addr, hwaddr data_addr) 1225 { 1226 return fw_cfg_init_mem_wide(ctl_addr, data_addr, 1227 fw_cfg_data_mem_ops.valid.max_access_size, 1228 0, NULL); 1229 } 1230 1231 1232 FWCfgState *fw_cfg_find(void) 1233 { 1234 /* Returns NULL unless there is exactly one fw_cfg device */ 1235 return FW_CFG(object_resolve_path_type("", TYPE_FW_CFG, NULL)); 1236 } 1237 1238 1239 static void fw_cfg_class_init(ObjectClass *klass, void *data) 1240 { 1241 DeviceClass *dc = DEVICE_CLASS(klass); 1242 1243 dc->reset = fw_cfg_reset; 1244 dc->vmsd = &vmstate_fw_cfg; 1245 1246 device_class_set_props(dc, fw_cfg_properties); 1247 } 1248 1249 static const TypeInfo fw_cfg_info = { 1250 .name = TYPE_FW_CFG, 1251 .parent = TYPE_SYS_BUS_DEVICE, 1252 .abstract = true, 1253 .instance_size = sizeof(FWCfgState), 1254 .class_init = fw_cfg_class_init, 1255 }; 1256 1257 static void fw_cfg_file_slots_allocate(FWCfgState *s, Error **errp) 1258 { 1259 uint16_t file_slots_max; 1260 1261 if (fw_cfg_file_slots(s) < FW_CFG_FILE_SLOTS_MIN) { 1262 error_setg(errp, "\"file_slots\" must be at least 0x%x", 1263 FW_CFG_FILE_SLOTS_MIN); 1264 return; 1265 } 1266 1267 /* (UINT16_MAX & FW_CFG_ENTRY_MASK) is the highest inclusive selector value 1268 * that we permit. The actual (exclusive) value coming from the 1269 * configuration is (FW_CFG_FILE_FIRST + fw_cfg_file_slots(s)). */ 1270 file_slots_max = (UINT16_MAX & FW_CFG_ENTRY_MASK) - FW_CFG_FILE_FIRST + 1; 1271 if (fw_cfg_file_slots(s) > file_slots_max) { 1272 error_setg(errp, "\"file_slots\" must not exceed 0x%" PRIx16, 1273 file_slots_max); 1274 return; 1275 } 1276 1277 s->entries[0] = g_new0(FWCfgEntry, fw_cfg_max_entry(s)); 1278 s->entries[1] = g_new0(FWCfgEntry, fw_cfg_max_entry(s)); 1279 s->entry_order = g_new0(int, fw_cfg_max_entry(s)); 1280 } 1281 1282 static Property fw_cfg_io_properties[] = { 1283 DEFINE_PROP_BOOL("dma_enabled", FWCfgIoState, parent_obj.dma_enabled, 1284 true), 1285 DEFINE_PROP_UINT16("x-file-slots", FWCfgIoState, parent_obj.file_slots, 1286 FW_CFG_FILE_SLOTS_DFLT), 1287 DEFINE_PROP_END_OF_LIST(), 1288 }; 1289 1290 static void fw_cfg_io_realize(DeviceState *dev, Error **errp) 1291 { 1292 ERRP_GUARD(); 1293 FWCfgIoState *s = FW_CFG_IO(dev); 1294 1295 fw_cfg_file_slots_allocate(FW_CFG(s), errp); 1296 if (*errp) { 1297 return; 1298 } 1299 1300 /* when using port i/o, the 8-bit data register ALWAYS overlaps 1301 * with half of the 16-bit control register. Hence, the total size 1302 * of the i/o region used is FW_CFG_CTL_SIZE */ 1303 memory_region_init_io(&s->comb_iomem, OBJECT(s), &fw_cfg_comb_mem_ops, 1304 FW_CFG(s), "fwcfg", FW_CFG_CTL_SIZE); 1305 1306 if (FW_CFG(s)->dma_enabled) { 1307 memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s), 1308 &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma", 1309 sizeof(dma_addr_t)); 1310 } 1311 1312 fw_cfg_common_realize(dev, errp); 1313 } 1314 1315 static void fw_cfg_io_class_init(ObjectClass *klass, void *data) 1316 { 1317 DeviceClass *dc = DEVICE_CLASS(klass); 1318 1319 dc->realize = fw_cfg_io_realize; 1320 device_class_set_props(dc, fw_cfg_io_properties); 1321 } 1322 1323 static const TypeInfo fw_cfg_io_info = { 1324 .name = TYPE_FW_CFG_IO, 1325 .parent = TYPE_FW_CFG, 1326 .instance_size = sizeof(FWCfgIoState), 1327 .class_init = fw_cfg_io_class_init, 1328 }; 1329 1330 1331 static Property fw_cfg_mem_properties[] = { 1332 DEFINE_PROP_UINT32("data_width", FWCfgMemState, data_width, -1), 1333 DEFINE_PROP_BOOL("dma_enabled", FWCfgMemState, parent_obj.dma_enabled, 1334 true), 1335 DEFINE_PROP_UINT16("x-file-slots", FWCfgMemState, parent_obj.file_slots, 1336 FW_CFG_FILE_SLOTS_DFLT), 1337 DEFINE_PROP_END_OF_LIST(), 1338 }; 1339 1340 static void fw_cfg_mem_realize(DeviceState *dev, Error **errp) 1341 { 1342 ERRP_GUARD(); 1343 FWCfgMemState *s = FW_CFG_MEM(dev); 1344 SysBusDevice *sbd = SYS_BUS_DEVICE(dev); 1345 const MemoryRegionOps *data_ops = &fw_cfg_data_mem_ops; 1346 1347 fw_cfg_file_slots_allocate(FW_CFG(s), errp); 1348 if (*errp) { 1349 return; 1350 } 1351 1352 memory_region_init_io(&s->ctl_iomem, OBJECT(s), &fw_cfg_ctl_mem_ops, 1353 FW_CFG(s), "fwcfg.ctl", FW_CFG_CTL_SIZE); 1354 sysbus_init_mmio(sbd, &s->ctl_iomem); 1355 1356 if (s->data_width > data_ops->valid.max_access_size) { 1357 s->wide_data_ops = *data_ops; 1358 1359 s->wide_data_ops.valid.max_access_size = s->data_width; 1360 s->wide_data_ops.impl.max_access_size = s->data_width; 1361 data_ops = &s->wide_data_ops; 1362 } 1363 memory_region_init_io(&s->data_iomem, OBJECT(s), data_ops, FW_CFG(s), 1364 "fwcfg.data", data_ops->valid.max_access_size); 1365 sysbus_init_mmio(sbd, &s->data_iomem); 1366 1367 if (FW_CFG(s)->dma_enabled) { 1368 memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s), 1369 &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma", 1370 sizeof(dma_addr_t)); 1371 sysbus_init_mmio(sbd, &FW_CFG(s)->dma_iomem); 1372 } 1373 1374 fw_cfg_common_realize(dev, errp); 1375 } 1376 1377 static void fw_cfg_mem_class_init(ObjectClass *klass, void *data) 1378 { 1379 DeviceClass *dc = DEVICE_CLASS(klass); 1380 1381 dc->realize = fw_cfg_mem_realize; 1382 device_class_set_props(dc, fw_cfg_mem_properties); 1383 } 1384 1385 static const TypeInfo fw_cfg_mem_info = { 1386 .name = TYPE_FW_CFG_MEM, 1387 .parent = TYPE_FW_CFG, 1388 .instance_size = sizeof(FWCfgMemState), 1389 .class_init = fw_cfg_mem_class_init, 1390 }; 1391 1392 static void fw_cfg_register_types(void) 1393 { 1394 type_register_static(&fw_cfg_info); 1395 type_register_static(&fw_cfg_io_info); 1396 type_register_static(&fw_cfg_mem_info); 1397 } 1398 1399 type_init(fw_cfg_register_types) 1400