1 /* 2 * QEMU Firmware configuration device emulation 3 * 4 * Copyright (c) 2008 Gleb Natapov 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 #include "qemu/osdep.h" 25 #include "hw/hw.h" 26 #include "sysemu/sysemu.h" 27 #include "sysemu/dma.h" 28 #include "hw/boards.h" 29 #include "hw/isa/isa.h" 30 #include "hw/nvram/fw_cfg.h" 31 #include "hw/sysbus.h" 32 #include "trace.h" 33 #include "qemu/error-report.h" 34 #include "qemu/config-file.h" 35 #include "qemu/cutils.h" 36 #include "qapi/error.h" 37 38 #define FW_CFG_FILE_SLOTS_DFLT 0x20 39 40 #define FW_CFG_NAME "fw_cfg" 41 #define FW_CFG_PATH "/machine/" FW_CFG_NAME 42 43 #define TYPE_FW_CFG "fw_cfg" 44 #define TYPE_FW_CFG_IO "fw_cfg_io" 45 #define TYPE_FW_CFG_MEM "fw_cfg_mem" 46 47 #define FW_CFG(obj) OBJECT_CHECK(FWCfgState, (obj), TYPE_FW_CFG) 48 #define FW_CFG_IO(obj) OBJECT_CHECK(FWCfgIoState, (obj), TYPE_FW_CFG_IO) 49 #define FW_CFG_MEM(obj) OBJECT_CHECK(FWCfgMemState, (obj), TYPE_FW_CFG_MEM) 50 51 /* FW_CFG_VERSION bits */ 52 #define FW_CFG_VERSION 0x01 53 #define FW_CFG_VERSION_DMA 0x02 54 55 /* FW_CFG_DMA_CONTROL bits */ 56 #define FW_CFG_DMA_CTL_ERROR 0x01 57 #define FW_CFG_DMA_CTL_READ 0x02 58 #define FW_CFG_DMA_CTL_SKIP 0x04 59 #define FW_CFG_DMA_CTL_SELECT 0x08 60 #define FW_CFG_DMA_CTL_WRITE 0x10 61 62 #define FW_CFG_DMA_SIGNATURE 0x51454d5520434647ULL /* "QEMU CFG" */ 63 64 typedef struct FWCfgEntry { 65 uint32_t len; 66 bool allow_write; 67 uint8_t *data; 68 void *callback_opaque; 69 FWCfgReadCallback read_callback; 70 } FWCfgEntry; 71 72 struct FWCfgState { 73 /*< private >*/ 74 SysBusDevice parent_obj; 75 /*< public >*/ 76 77 uint16_t file_slots; 78 FWCfgEntry *entries[2]; 79 int *entry_order; 80 FWCfgFiles *files; 81 uint16_t cur_entry; 82 uint32_t cur_offset; 83 Notifier machine_ready; 84 85 int fw_cfg_order_override; 86 87 bool dma_enabled; 88 dma_addr_t dma_addr; 89 AddressSpace *dma_as; 90 MemoryRegion dma_iomem; 91 }; 92 93 struct FWCfgIoState { 94 /*< private >*/ 95 FWCfgState parent_obj; 96 /*< public >*/ 97 98 MemoryRegion comb_iomem; 99 }; 100 101 struct FWCfgMemState { 102 /*< private >*/ 103 FWCfgState parent_obj; 104 /*< public >*/ 105 106 MemoryRegion ctl_iomem, data_iomem; 107 uint32_t data_width; 108 MemoryRegionOps wide_data_ops; 109 }; 110 111 #define JPG_FILE 0 112 #define BMP_FILE 1 113 114 static char *read_splashfile(char *filename, gsize *file_sizep, 115 int *file_typep) 116 { 117 GError *err = NULL; 118 gboolean res; 119 gchar *content; 120 int file_type; 121 unsigned int filehead; 122 int bmp_bpp; 123 124 res = g_file_get_contents(filename, &content, file_sizep, &err); 125 if (res == FALSE) { 126 error_report("failed to read splash file '%s'", filename); 127 g_error_free(err); 128 return NULL; 129 } 130 131 /* check file size */ 132 if (*file_sizep < 30) { 133 goto error; 134 } 135 136 /* check magic ID */ 137 filehead = ((content[0] & 0xff) + (content[1] << 8)) & 0xffff; 138 if (filehead == 0xd8ff) { 139 file_type = JPG_FILE; 140 } else if (filehead == 0x4d42) { 141 file_type = BMP_FILE; 142 } else { 143 goto error; 144 } 145 146 /* check BMP bpp */ 147 if (file_type == BMP_FILE) { 148 bmp_bpp = (content[28] + (content[29] << 8)) & 0xffff; 149 if (bmp_bpp != 24) { 150 goto error; 151 } 152 } 153 154 /* return values */ 155 *file_typep = file_type; 156 157 return content; 158 159 error: 160 error_report("splash file '%s' format not recognized; must be JPEG " 161 "or 24 bit BMP", filename); 162 g_free(content); 163 return NULL; 164 } 165 166 static void fw_cfg_bootsplash(FWCfgState *s) 167 { 168 int boot_splash_time = -1; 169 const char *boot_splash_filename = NULL; 170 char *p; 171 char *filename, *file_data; 172 gsize file_size; 173 int file_type; 174 const char *temp; 175 176 /* get user configuration */ 177 QemuOptsList *plist = qemu_find_opts("boot-opts"); 178 QemuOpts *opts = QTAILQ_FIRST(&plist->head); 179 if (opts != NULL) { 180 temp = qemu_opt_get(opts, "splash"); 181 if (temp != NULL) { 182 boot_splash_filename = temp; 183 } 184 temp = qemu_opt_get(opts, "splash-time"); 185 if (temp != NULL) { 186 p = (char *)temp; 187 boot_splash_time = strtol(p, &p, 10); 188 } 189 } 190 191 /* insert splash time if user configurated */ 192 if (boot_splash_time >= 0) { 193 /* validate the input */ 194 if (boot_splash_time > 0xffff) { 195 error_report("splash time is big than 65535, force it to 65535."); 196 boot_splash_time = 0xffff; 197 } 198 /* use little endian format */ 199 qemu_extra_params_fw[0] = (uint8_t)(boot_splash_time & 0xff); 200 qemu_extra_params_fw[1] = (uint8_t)((boot_splash_time >> 8) & 0xff); 201 fw_cfg_add_file(s, "etc/boot-menu-wait", qemu_extra_params_fw, 2); 202 } 203 204 /* insert splash file if user configurated */ 205 if (boot_splash_filename != NULL) { 206 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, boot_splash_filename); 207 if (filename == NULL) { 208 error_report("failed to find file '%s'.", boot_splash_filename); 209 return; 210 } 211 212 /* loading file data */ 213 file_data = read_splashfile(filename, &file_size, &file_type); 214 if (file_data == NULL) { 215 g_free(filename); 216 return; 217 } 218 g_free(boot_splash_filedata); 219 boot_splash_filedata = (uint8_t *)file_data; 220 boot_splash_filedata_size = file_size; 221 222 /* insert data */ 223 if (file_type == JPG_FILE) { 224 fw_cfg_add_file(s, "bootsplash.jpg", 225 boot_splash_filedata, boot_splash_filedata_size); 226 } else { 227 fw_cfg_add_file(s, "bootsplash.bmp", 228 boot_splash_filedata, boot_splash_filedata_size); 229 } 230 g_free(filename); 231 } 232 } 233 234 static void fw_cfg_reboot(FWCfgState *s) 235 { 236 int reboot_timeout = -1; 237 char *p; 238 const char *temp; 239 240 /* get user configuration */ 241 QemuOptsList *plist = qemu_find_opts("boot-opts"); 242 QemuOpts *opts = QTAILQ_FIRST(&plist->head); 243 if (opts != NULL) { 244 temp = qemu_opt_get(opts, "reboot-timeout"); 245 if (temp != NULL) { 246 p = (char *)temp; 247 reboot_timeout = strtol(p, &p, 10); 248 } 249 } 250 /* validate the input */ 251 if (reboot_timeout > 0xffff) { 252 error_report("reboot timeout is larger than 65535, force it to 65535."); 253 reboot_timeout = 0xffff; 254 } 255 fw_cfg_add_file(s, "etc/boot-fail-wait", g_memdup(&reboot_timeout, 4), 4); 256 } 257 258 static void fw_cfg_write(FWCfgState *s, uint8_t value) 259 { 260 /* nothing, write support removed in QEMU v2.4+ */ 261 } 262 263 static inline uint16_t fw_cfg_file_slots(const FWCfgState *s) 264 { 265 return s->file_slots; 266 } 267 268 /* Note: this function returns an exclusive limit. */ 269 static inline uint32_t fw_cfg_max_entry(const FWCfgState *s) 270 { 271 return FW_CFG_FILE_FIRST + fw_cfg_file_slots(s); 272 } 273 274 static int fw_cfg_select(FWCfgState *s, uint16_t key) 275 { 276 int arch, ret; 277 FWCfgEntry *e; 278 279 s->cur_offset = 0; 280 if ((key & FW_CFG_ENTRY_MASK) >= fw_cfg_max_entry(s)) { 281 s->cur_entry = FW_CFG_INVALID; 282 ret = 0; 283 } else { 284 s->cur_entry = key; 285 ret = 1; 286 /* entry successfully selected, now run callback if present */ 287 arch = !!(key & FW_CFG_ARCH_LOCAL); 288 e = &s->entries[arch][key & FW_CFG_ENTRY_MASK]; 289 if (e->read_callback) { 290 e->read_callback(e->callback_opaque); 291 } 292 } 293 294 trace_fw_cfg_select(s, key, ret); 295 return ret; 296 } 297 298 static uint64_t fw_cfg_data_read(void *opaque, hwaddr addr, unsigned size) 299 { 300 FWCfgState *s = opaque; 301 int arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL); 302 FWCfgEntry *e = (s->cur_entry == FW_CFG_INVALID) ? NULL : 303 &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK]; 304 uint64_t value = 0; 305 306 assert(size > 0 && size <= sizeof(value)); 307 if (s->cur_entry != FW_CFG_INVALID && e->data && s->cur_offset < e->len) { 308 /* The least significant 'size' bytes of the return value are 309 * expected to contain a string preserving portion of the item 310 * data, padded with zeros on the right in case we run out early. 311 * In technical terms, we're composing the host-endian representation 312 * of the big endian interpretation of the fw_cfg string. 313 */ 314 do { 315 value = (value << 8) | e->data[s->cur_offset++]; 316 } while (--size && s->cur_offset < e->len); 317 /* If size is still not zero, we *did* run out early, so continue 318 * left-shifting, to add the appropriate number of padding zeros 319 * on the right. 320 */ 321 value <<= 8 * size; 322 } 323 324 trace_fw_cfg_read(s, value); 325 return value; 326 } 327 328 static void fw_cfg_data_mem_write(void *opaque, hwaddr addr, 329 uint64_t value, unsigned size) 330 { 331 FWCfgState *s = opaque; 332 unsigned i = size; 333 334 do { 335 fw_cfg_write(s, value >> (8 * --i)); 336 } while (i); 337 } 338 339 static void fw_cfg_dma_transfer(FWCfgState *s) 340 { 341 dma_addr_t len; 342 FWCfgDmaAccess dma; 343 int arch; 344 FWCfgEntry *e; 345 int read = 0, write = 0; 346 dma_addr_t dma_addr; 347 348 /* Reset the address before the next access */ 349 dma_addr = s->dma_addr; 350 s->dma_addr = 0; 351 352 if (dma_memory_read(s->dma_as, dma_addr, &dma, sizeof(dma))) { 353 stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control), 354 FW_CFG_DMA_CTL_ERROR); 355 return; 356 } 357 358 dma.address = be64_to_cpu(dma.address); 359 dma.length = be32_to_cpu(dma.length); 360 dma.control = be32_to_cpu(dma.control); 361 362 if (dma.control & FW_CFG_DMA_CTL_SELECT) { 363 fw_cfg_select(s, dma.control >> 16); 364 } 365 366 arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL); 367 e = (s->cur_entry == FW_CFG_INVALID) ? NULL : 368 &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK]; 369 370 if (dma.control & FW_CFG_DMA_CTL_READ) { 371 read = 1; 372 write = 0; 373 } else if (dma.control & FW_CFG_DMA_CTL_WRITE) { 374 read = 0; 375 write = 1; 376 } else if (dma.control & FW_CFG_DMA_CTL_SKIP) { 377 read = 0; 378 write = 0; 379 } else { 380 dma.length = 0; 381 } 382 383 dma.control = 0; 384 385 while (dma.length > 0 && !(dma.control & FW_CFG_DMA_CTL_ERROR)) { 386 if (s->cur_entry == FW_CFG_INVALID || !e->data || 387 s->cur_offset >= e->len) { 388 len = dma.length; 389 390 /* If the access is not a read access, it will be a skip access, 391 * tested before. 392 */ 393 if (read) { 394 if (dma_memory_set(s->dma_as, dma.address, 0, len)) { 395 dma.control |= FW_CFG_DMA_CTL_ERROR; 396 } 397 } 398 if (write) { 399 dma.control |= FW_CFG_DMA_CTL_ERROR; 400 } 401 } else { 402 if (dma.length <= (e->len - s->cur_offset)) { 403 len = dma.length; 404 } else { 405 len = (e->len - s->cur_offset); 406 } 407 408 /* If the access is not a read access, it will be a skip access, 409 * tested before. 410 */ 411 if (read) { 412 if (dma_memory_write(s->dma_as, dma.address, 413 &e->data[s->cur_offset], len)) { 414 dma.control |= FW_CFG_DMA_CTL_ERROR; 415 } 416 } 417 if (write) { 418 if (!e->allow_write || 419 len != dma.length || 420 dma_memory_read(s->dma_as, dma.address, 421 &e->data[s->cur_offset], len)) { 422 dma.control |= FW_CFG_DMA_CTL_ERROR; 423 } 424 } 425 426 s->cur_offset += len; 427 } 428 429 dma.address += len; 430 dma.length -= len; 431 432 } 433 434 stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control), 435 dma.control); 436 437 trace_fw_cfg_read(s, 0); 438 } 439 440 static uint64_t fw_cfg_dma_mem_read(void *opaque, hwaddr addr, 441 unsigned size) 442 { 443 /* Return a signature value (and handle various read sizes) */ 444 return extract64(FW_CFG_DMA_SIGNATURE, (8 - addr - size) * 8, size * 8); 445 } 446 447 static void fw_cfg_dma_mem_write(void *opaque, hwaddr addr, 448 uint64_t value, unsigned size) 449 { 450 FWCfgState *s = opaque; 451 452 if (size == 4) { 453 if (addr == 0) { 454 /* FWCfgDmaAccess high address */ 455 s->dma_addr = value << 32; 456 } else if (addr == 4) { 457 /* FWCfgDmaAccess low address */ 458 s->dma_addr |= value; 459 fw_cfg_dma_transfer(s); 460 } 461 } else if (size == 8 && addr == 0) { 462 s->dma_addr = value; 463 fw_cfg_dma_transfer(s); 464 } 465 } 466 467 static bool fw_cfg_dma_mem_valid(void *opaque, hwaddr addr, 468 unsigned size, bool is_write) 469 { 470 return !is_write || ((size == 4 && (addr == 0 || addr == 4)) || 471 (size == 8 && addr == 0)); 472 } 473 474 static bool fw_cfg_data_mem_valid(void *opaque, hwaddr addr, 475 unsigned size, bool is_write) 476 { 477 return addr == 0; 478 } 479 480 static void fw_cfg_ctl_mem_write(void *opaque, hwaddr addr, 481 uint64_t value, unsigned size) 482 { 483 fw_cfg_select(opaque, (uint16_t)value); 484 } 485 486 static bool fw_cfg_ctl_mem_valid(void *opaque, hwaddr addr, 487 unsigned size, bool is_write) 488 { 489 return is_write && size == 2; 490 } 491 492 static void fw_cfg_comb_write(void *opaque, hwaddr addr, 493 uint64_t value, unsigned size) 494 { 495 switch (size) { 496 case 1: 497 fw_cfg_write(opaque, (uint8_t)value); 498 break; 499 case 2: 500 fw_cfg_select(opaque, (uint16_t)value); 501 break; 502 } 503 } 504 505 static bool fw_cfg_comb_valid(void *opaque, hwaddr addr, 506 unsigned size, bool is_write) 507 { 508 return (size == 1) || (is_write && size == 2); 509 } 510 511 static const MemoryRegionOps fw_cfg_ctl_mem_ops = { 512 .write = fw_cfg_ctl_mem_write, 513 .endianness = DEVICE_BIG_ENDIAN, 514 .valid.accepts = fw_cfg_ctl_mem_valid, 515 }; 516 517 static const MemoryRegionOps fw_cfg_data_mem_ops = { 518 .read = fw_cfg_data_read, 519 .write = fw_cfg_data_mem_write, 520 .endianness = DEVICE_BIG_ENDIAN, 521 .valid = { 522 .min_access_size = 1, 523 .max_access_size = 1, 524 .accepts = fw_cfg_data_mem_valid, 525 }, 526 }; 527 528 static const MemoryRegionOps fw_cfg_comb_mem_ops = { 529 .read = fw_cfg_data_read, 530 .write = fw_cfg_comb_write, 531 .endianness = DEVICE_LITTLE_ENDIAN, 532 .valid.accepts = fw_cfg_comb_valid, 533 }; 534 535 static const MemoryRegionOps fw_cfg_dma_mem_ops = { 536 .read = fw_cfg_dma_mem_read, 537 .write = fw_cfg_dma_mem_write, 538 .endianness = DEVICE_BIG_ENDIAN, 539 .valid.accepts = fw_cfg_dma_mem_valid, 540 .valid.max_access_size = 8, 541 .impl.max_access_size = 8, 542 }; 543 544 static void fw_cfg_reset(DeviceState *d) 545 { 546 FWCfgState *s = FW_CFG(d); 547 548 /* we never register a read callback for FW_CFG_SIGNATURE */ 549 fw_cfg_select(s, FW_CFG_SIGNATURE); 550 } 551 552 /* Save restore 32 bit int as uint16_t 553 This is a Big hack, but it is how the old state did it. 554 Or we broke compatibility in the state, or we can't use struct tm 555 */ 556 557 static int get_uint32_as_uint16(QEMUFile *f, void *pv, size_t size, 558 VMStateField *field) 559 { 560 uint32_t *v = pv; 561 *v = qemu_get_be16(f); 562 return 0; 563 } 564 565 static int put_unused(QEMUFile *f, void *pv, size_t size, VMStateField *field, 566 QJSON *vmdesc) 567 { 568 fprintf(stderr, "uint32_as_uint16 is only used for backward compatibility.\n"); 569 fprintf(stderr, "This functions shouldn't be called.\n"); 570 571 return 0; 572 } 573 574 static const VMStateInfo vmstate_hack_uint32_as_uint16 = { 575 .name = "int32_as_uint16", 576 .get = get_uint32_as_uint16, 577 .put = put_unused, 578 }; 579 580 #define VMSTATE_UINT16_HACK(_f, _s, _t) \ 581 VMSTATE_SINGLE_TEST(_f, _s, _t, 0, vmstate_hack_uint32_as_uint16, uint32_t) 582 583 584 static bool is_version_1(void *opaque, int version_id) 585 { 586 return version_id == 1; 587 } 588 589 bool fw_cfg_dma_enabled(void *opaque) 590 { 591 FWCfgState *s = opaque; 592 593 return s->dma_enabled; 594 } 595 596 static const VMStateDescription vmstate_fw_cfg_dma = { 597 .name = "fw_cfg/dma", 598 .needed = fw_cfg_dma_enabled, 599 .fields = (VMStateField[]) { 600 VMSTATE_UINT64(dma_addr, FWCfgState), 601 VMSTATE_END_OF_LIST() 602 }, 603 }; 604 605 static const VMStateDescription vmstate_fw_cfg = { 606 .name = "fw_cfg", 607 .version_id = 2, 608 .minimum_version_id = 1, 609 .fields = (VMStateField[]) { 610 VMSTATE_UINT16(cur_entry, FWCfgState), 611 VMSTATE_UINT16_HACK(cur_offset, FWCfgState, is_version_1), 612 VMSTATE_UINT32_V(cur_offset, FWCfgState, 2), 613 VMSTATE_END_OF_LIST() 614 }, 615 .subsections = (const VMStateDescription*[]) { 616 &vmstate_fw_cfg_dma, 617 NULL, 618 } 619 }; 620 621 static void fw_cfg_add_bytes_read_callback(FWCfgState *s, uint16_t key, 622 FWCfgReadCallback callback, 623 void *callback_opaque, 624 void *data, size_t len, 625 bool read_only) 626 { 627 int arch = !!(key & FW_CFG_ARCH_LOCAL); 628 629 key &= FW_CFG_ENTRY_MASK; 630 631 assert(key < fw_cfg_max_entry(s) && len < UINT32_MAX); 632 assert(s->entries[arch][key].data == NULL); /* avoid key conflict */ 633 634 s->entries[arch][key].data = data; 635 s->entries[arch][key].len = (uint32_t)len; 636 s->entries[arch][key].read_callback = callback; 637 s->entries[arch][key].callback_opaque = callback_opaque; 638 s->entries[arch][key].allow_write = !read_only; 639 } 640 641 static void *fw_cfg_modify_bytes_read(FWCfgState *s, uint16_t key, 642 void *data, size_t len) 643 { 644 void *ptr; 645 int arch = !!(key & FW_CFG_ARCH_LOCAL); 646 647 key &= FW_CFG_ENTRY_MASK; 648 649 assert(key < fw_cfg_max_entry(s) && len < UINT32_MAX); 650 651 /* return the old data to the function caller, avoid memory leak */ 652 ptr = s->entries[arch][key].data; 653 s->entries[arch][key].data = data; 654 s->entries[arch][key].len = len; 655 s->entries[arch][key].callback_opaque = NULL; 656 s->entries[arch][key].allow_write = false; 657 658 return ptr; 659 } 660 661 void fw_cfg_add_bytes(FWCfgState *s, uint16_t key, void *data, size_t len) 662 { 663 fw_cfg_add_bytes_read_callback(s, key, NULL, NULL, data, len, true); 664 } 665 666 void fw_cfg_add_string(FWCfgState *s, uint16_t key, const char *value) 667 { 668 size_t sz = strlen(value) + 1; 669 670 fw_cfg_add_bytes(s, key, g_memdup(value, sz), sz); 671 } 672 673 void fw_cfg_add_i16(FWCfgState *s, uint16_t key, uint16_t value) 674 { 675 uint16_t *copy; 676 677 copy = g_malloc(sizeof(value)); 678 *copy = cpu_to_le16(value); 679 fw_cfg_add_bytes(s, key, copy, sizeof(value)); 680 } 681 682 void fw_cfg_modify_i16(FWCfgState *s, uint16_t key, uint16_t value) 683 { 684 uint16_t *copy, *old; 685 686 copy = g_malloc(sizeof(value)); 687 *copy = cpu_to_le16(value); 688 old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value)); 689 g_free(old); 690 } 691 692 void fw_cfg_add_i32(FWCfgState *s, uint16_t key, uint32_t value) 693 { 694 uint32_t *copy; 695 696 copy = g_malloc(sizeof(value)); 697 *copy = cpu_to_le32(value); 698 fw_cfg_add_bytes(s, key, copy, sizeof(value)); 699 } 700 701 void fw_cfg_add_i64(FWCfgState *s, uint16_t key, uint64_t value) 702 { 703 uint64_t *copy; 704 705 copy = g_malloc(sizeof(value)); 706 *copy = cpu_to_le64(value); 707 fw_cfg_add_bytes(s, key, copy, sizeof(value)); 708 } 709 710 void fw_cfg_set_order_override(FWCfgState *s, int order) 711 { 712 assert(s->fw_cfg_order_override == 0); 713 s->fw_cfg_order_override = order; 714 } 715 716 void fw_cfg_reset_order_override(FWCfgState *s) 717 { 718 assert(s->fw_cfg_order_override != 0); 719 s->fw_cfg_order_override = 0; 720 } 721 722 /* 723 * This is the legacy order list. For legacy systems, files are in 724 * the fw_cfg in the order defined below, by the "order" value. Note 725 * that some entries (VGA ROMs, NIC option ROMS, etc.) go into a 726 * specific area, but there may be more than one and they occur in the 727 * order that the user specifies them on the command line. Those are 728 * handled in a special manner, using the order override above. 729 * 730 * For non-legacy, the files are sorted by filename to avoid this kind 731 * of complexity in the future. 732 * 733 * This is only for x86, other arches don't implement versioning so 734 * they won't set legacy mode. 735 */ 736 static struct { 737 const char *name; 738 int order; 739 } fw_cfg_order[] = { 740 { "etc/boot-menu-wait", 10 }, 741 { "bootsplash.jpg", 11 }, 742 { "bootsplash.bmp", 12 }, 743 { "etc/boot-fail-wait", 15 }, 744 { "etc/smbios/smbios-tables", 20 }, 745 { "etc/smbios/smbios-anchor", 30 }, 746 { "etc/e820", 40 }, 747 { "etc/reserved-memory-end", 50 }, 748 { "genroms/kvmvapic.bin", 55 }, 749 { "genroms/linuxboot.bin", 60 }, 750 { }, /* VGA ROMs from pc_vga_init come here, 70. */ 751 { }, /* NIC option ROMs from pc_nic_init come here, 80. */ 752 { "etc/system-states", 90 }, 753 { }, /* User ROMs come here, 100. */ 754 { }, /* Device FW comes here, 110. */ 755 { "etc/extra-pci-roots", 120 }, 756 { "etc/acpi/tables", 130 }, 757 { "etc/table-loader", 140 }, 758 { "etc/tpm/log", 150 }, 759 { "etc/acpi/rsdp", 160 }, 760 { "bootorder", 170 }, 761 762 #define FW_CFG_ORDER_OVERRIDE_LAST 200 763 }; 764 765 static int get_fw_cfg_order(FWCfgState *s, const char *name) 766 { 767 int i; 768 769 if (s->fw_cfg_order_override > 0) { 770 return s->fw_cfg_order_override; 771 } 772 773 for (i = 0; i < ARRAY_SIZE(fw_cfg_order); i++) { 774 if (fw_cfg_order[i].name == NULL) { 775 continue; 776 } 777 778 if (strcmp(name, fw_cfg_order[i].name) == 0) { 779 return fw_cfg_order[i].order; 780 } 781 } 782 783 /* Stick unknown stuff at the end. */ 784 warn_report("Unknown firmware file in legacy mode: %s", name); 785 return FW_CFG_ORDER_OVERRIDE_LAST; 786 } 787 788 void fw_cfg_add_file_callback(FWCfgState *s, const char *filename, 789 FWCfgReadCallback callback, void *callback_opaque, 790 void *data, size_t len, bool read_only) 791 { 792 int i, index, count; 793 size_t dsize; 794 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 795 int order = 0; 796 797 if (!s->files) { 798 dsize = sizeof(uint32_t) + sizeof(FWCfgFile) * fw_cfg_file_slots(s); 799 s->files = g_malloc0(dsize); 800 fw_cfg_add_bytes(s, FW_CFG_FILE_DIR, s->files, dsize); 801 } 802 803 count = be32_to_cpu(s->files->count); 804 assert(count < fw_cfg_file_slots(s)); 805 806 /* Find the insertion point. */ 807 if (mc->legacy_fw_cfg_order) { 808 /* 809 * Sort by order. For files with the same order, we keep them 810 * in the sequence in which they were added. 811 */ 812 order = get_fw_cfg_order(s, filename); 813 for (index = count; 814 index > 0 && order < s->entry_order[index - 1]; 815 index--); 816 } else { 817 /* Sort by file name. */ 818 for (index = count; 819 index > 0 && strcmp(filename, s->files->f[index - 1].name) < 0; 820 index--); 821 } 822 823 /* 824 * Move all the entries from the index point and after down one 825 * to create a slot for the new entry. Because calculations are 826 * being done with the index, make it so that "i" is the current 827 * index and "i - 1" is the one being copied from, thus the 828 * unusual start and end in the for statement. 829 */ 830 for (i = count + 1; i > index; i--) { 831 s->files->f[i] = s->files->f[i - 1]; 832 s->files->f[i].select = cpu_to_be16(FW_CFG_FILE_FIRST + i); 833 s->entries[0][FW_CFG_FILE_FIRST + i] = 834 s->entries[0][FW_CFG_FILE_FIRST + i - 1]; 835 s->entry_order[i] = s->entry_order[i - 1]; 836 } 837 838 memset(&s->files->f[index], 0, sizeof(FWCfgFile)); 839 memset(&s->entries[0][FW_CFG_FILE_FIRST + index], 0, sizeof(FWCfgEntry)); 840 841 pstrcpy(s->files->f[index].name, sizeof(s->files->f[index].name), filename); 842 for (i = 0; i <= count; i++) { 843 if (i != index && 844 strcmp(s->files->f[index].name, s->files->f[i].name) == 0) { 845 error_report("duplicate fw_cfg file name: %s", 846 s->files->f[index].name); 847 exit(1); 848 } 849 } 850 851 fw_cfg_add_bytes_read_callback(s, FW_CFG_FILE_FIRST + index, 852 callback, callback_opaque, data, len, 853 read_only); 854 855 s->files->f[index].size = cpu_to_be32(len); 856 s->files->f[index].select = cpu_to_be16(FW_CFG_FILE_FIRST + index); 857 s->entry_order[index] = order; 858 trace_fw_cfg_add_file(s, index, s->files->f[index].name, len); 859 860 s->files->count = cpu_to_be32(count+1); 861 } 862 863 void fw_cfg_add_file(FWCfgState *s, const char *filename, 864 void *data, size_t len) 865 { 866 fw_cfg_add_file_callback(s, filename, NULL, NULL, data, len, true); 867 } 868 869 void *fw_cfg_modify_file(FWCfgState *s, const char *filename, 870 void *data, size_t len) 871 { 872 int i, index; 873 void *ptr = NULL; 874 875 assert(s->files); 876 877 index = be32_to_cpu(s->files->count); 878 assert(index < fw_cfg_file_slots(s)); 879 880 for (i = 0; i < index; i++) { 881 if (strcmp(filename, s->files->f[i].name) == 0) { 882 ptr = fw_cfg_modify_bytes_read(s, FW_CFG_FILE_FIRST + i, 883 data, len); 884 s->files->f[i].size = cpu_to_be32(len); 885 return ptr; 886 } 887 } 888 /* add new one */ 889 fw_cfg_add_file_callback(s, filename, NULL, NULL, data, len, true); 890 return NULL; 891 } 892 893 static void fw_cfg_machine_reset(void *opaque) 894 { 895 void *ptr; 896 size_t len; 897 FWCfgState *s = opaque; 898 char *bootindex = get_boot_devices_list(&len, false); 899 900 ptr = fw_cfg_modify_file(s, "bootorder", (uint8_t *)bootindex, len); 901 g_free(ptr); 902 } 903 904 static void fw_cfg_machine_ready(struct Notifier *n, void *data) 905 { 906 FWCfgState *s = container_of(n, FWCfgState, machine_ready); 907 qemu_register_reset(fw_cfg_machine_reset, s); 908 } 909 910 911 912 static void fw_cfg_init1(DeviceState *dev) 913 { 914 FWCfgState *s = FW_CFG(dev); 915 MachineState *machine = MACHINE(qdev_get_machine()); 916 uint32_t version = FW_CFG_VERSION; 917 918 assert(!object_resolve_path(FW_CFG_PATH, NULL)); 919 920 object_property_add_child(OBJECT(machine), FW_CFG_NAME, OBJECT(s), NULL); 921 922 qdev_init_nofail(dev); 923 924 fw_cfg_add_bytes(s, FW_CFG_SIGNATURE, (char *)"QEMU", 4); 925 fw_cfg_add_bytes(s, FW_CFG_UUID, &qemu_uuid, 16); 926 fw_cfg_add_i16(s, FW_CFG_NOGRAPHIC, (uint16_t)!machine->enable_graphics); 927 fw_cfg_add_i16(s, FW_CFG_BOOT_MENU, (uint16_t)boot_menu); 928 fw_cfg_bootsplash(s); 929 fw_cfg_reboot(s); 930 931 if (s->dma_enabled) { 932 version |= FW_CFG_VERSION_DMA; 933 } 934 935 fw_cfg_add_i32(s, FW_CFG_ID, version); 936 937 s->machine_ready.notify = fw_cfg_machine_ready; 938 qemu_add_machine_init_done_notifier(&s->machine_ready); 939 } 940 941 FWCfgState *fw_cfg_init_io_dma(uint32_t iobase, uint32_t dma_iobase, 942 AddressSpace *dma_as) 943 { 944 DeviceState *dev; 945 SysBusDevice *sbd; 946 FWCfgIoState *ios; 947 FWCfgState *s; 948 bool dma_requested = dma_iobase && dma_as; 949 950 dev = qdev_create(NULL, TYPE_FW_CFG_IO); 951 if (!dma_requested) { 952 qdev_prop_set_bit(dev, "dma_enabled", false); 953 } 954 955 fw_cfg_init1(dev); 956 957 sbd = SYS_BUS_DEVICE(dev); 958 ios = FW_CFG_IO(dev); 959 sysbus_add_io(sbd, iobase, &ios->comb_iomem); 960 961 s = FW_CFG(dev); 962 963 if (s->dma_enabled) { 964 /* 64 bits for the address field */ 965 s->dma_as = dma_as; 966 s->dma_addr = 0; 967 sysbus_add_io(sbd, dma_iobase, &s->dma_iomem); 968 } 969 970 return s; 971 } 972 973 FWCfgState *fw_cfg_init_io(uint32_t iobase) 974 { 975 return fw_cfg_init_io_dma(iobase, 0, NULL); 976 } 977 978 FWCfgState *fw_cfg_init_mem_wide(hwaddr ctl_addr, 979 hwaddr data_addr, uint32_t data_width, 980 hwaddr dma_addr, AddressSpace *dma_as) 981 { 982 DeviceState *dev; 983 SysBusDevice *sbd; 984 FWCfgState *s; 985 bool dma_requested = dma_addr && dma_as; 986 987 dev = qdev_create(NULL, TYPE_FW_CFG_MEM); 988 qdev_prop_set_uint32(dev, "data_width", data_width); 989 if (!dma_requested) { 990 qdev_prop_set_bit(dev, "dma_enabled", false); 991 } 992 993 fw_cfg_init1(dev); 994 995 sbd = SYS_BUS_DEVICE(dev); 996 sysbus_mmio_map(sbd, 0, ctl_addr); 997 sysbus_mmio_map(sbd, 1, data_addr); 998 999 s = FW_CFG(dev); 1000 1001 if (s->dma_enabled) { 1002 s->dma_as = dma_as; 1003 s->dma_addr = 0; 1004 sysbus_mmio_map(sbd, 2, dma_addr); 1005 } 1006 1007 return s; 1008 } 1009 1010 FWCfgState *fw_cfg_init_mem(hwaddr ctl_addr, hwaddr data_addr) 1011 { 1012 return fw_cfg_init_mem_wide(ctl_addr, data_addr, 1013 fw_cfg_data_mem_ops.valid.max_access_size, 1014 0, NULL); 1015 } 1016 1017 1018 FWCfgState *fw_cfg_find(void) 1019 { 1020 return FW_CFG(object_resolve_path(FW_CFG_PATH, NULL)); 1021 } 1022 1023 static void fw_cfg_class_init(ObjectClass *klass, void *data) 1024 { 1025 DeviceClass *dc = DEVICE_CLASS(klass); 1026 1027 dc->reset = fw_cfg_reset; 1028 dc->vmsd = &vmstate_fw_cfg; 1029 } 1030 1031 static const TypeInfo fw_cfg_info = { 1032 .name = TYPE_FW_CFG, 1033 .parent = TYPE_SYS_BUS_DEVICE, 1034 .abstract = true, 1035 .instance_size = sizeof(FWCfgState), 1036 .class_init = fw_cfg_class_init, 1037 }; 1038 1039 static void fw_cfg_file_slots_allocate(FWCfgState *s, Error **errp) 1040 { 1041 uint16_t file_slots_max; 1042 1043 if (fw_cfg_file_slots(s) < FW_CFG_FILE_SLOTS_MIN) { 1044 error_setg(errp, "\"file_slots\" must be at least 0x%x", 1045 FW_CFG_FILE_SLOTS_MIN); 1046 return; 1047 } 1048 1049 /* (UINT16_MAX & FW_CFG_ENTRY_MASK) is the highest inclusive selector value 1050 * that we permit. The actual (exclusive) value coming from the 1051 * configuration is (FW_CFG_FILE_FIRST + fw_cfg_file_slots(s)). */ 1052 file_slots_max = (UINT16_MAX & FW_CFG_ENTRY_MASK) - FW_CFG_FILE_FIRST + 1; 1053 if (fw_cfg_file_slots(s) > file_slots_max) { 1054 error_setg(errp, "\"file_slots\" must not exceed 0x%" PRIx16, 1055 file_slots_max); 1056 return; 1057 } 1058 1059 s->entries[0] = g_new0(FWCfgEntry, fw_cfg_max_entry(s)); 1060 s->entries[1] = g_new0(FWCfgEntry, fw_cfg_max_entry(s)); 1061 s->entry_order = g_new0(int, fw_cfg_max_entry(s)); 1062 } 1063 1064 static Property fw_cfg_io_properties[] = { 1065 DEFINE_PROP_BOOL("dma_enabled", FWCfgIoState, parent_obj.dma_enabled, 1066 true), 1067 DEFINE_PROP_UINT16("x-file-slots", FWCfgIoState, parent_obj.file_slots, 1068 FW_CFG_FILE_SLOTS_DFLT), 1069 DEFINE_PROP_END_OF_LIST(), 1070 }; 1071 1072 static void fw_cfg_io_realize(DeviceState *dev, Error **errp) 1073 { 1074 FWCfgIoState *s = FW_CFG_IO(dev); 1075 Error *local_err = NULL; 1076 1077 fw_cfg_file_slots_allocate(FW_CFG(s), &local_err); 1078 if (local_err) { 1079 error_propagate(errp, local_err); 1080 return; 1081 } 1082 1083 /* when using port i/o, the 8-bit data register ALWAYS overlaps 1084 * with half of the 16-bit control register. Hence, the total size 1085 * of the i/o region used is FW_CFG_CTL_SIZE */ 1086 memory_region_init_io(&s->comb_iomem, OBJECT(s), &fw_cfg_comb_mem_ops, 1087 FW_CFG(s), "fwcfg", FW_CFG_CTL_SIZE); 1088 1089 if (FW_CFG(s)->dma_enabled) { 1090 memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s), 1091 &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma", 1092 sizeof(dma_addr_t)); 1093 } 1094 } 1095 1096 static void fw_cfg_io_class_init(ObjectClass *klass, void *data) 1097 { 1098 DeviceClass *dc = DEVICE_CLASS(klass); 1099 1100 dc->realize = fw_cfg_io_realize; 1101 dc->props = fw_cfg_io_properties; 1102 } 1103 1104 static const TypeInfo fw_cfg_io_info = { 1105 .name = TYPE_FW_CFG_IO, 1106 .parent = TYPE_FW_CFG, 1107 .instance_size = sizeof(FWCfgIoState), 1108 .class_init = fw_cfg_io_class_init, 1109 }; 1110 1111 1112 static Property fw_cfg_mem_properties[] = { 1113 DEFINE_PROP_UINT32("data_width", FWCfgMemState, data_width, -1), 1114 DEFINE_PROP_BOOL("dma_enabled", FWCfgMemState, parent_obj.dma_enabled, 1115 true), 1116 DEFINE_PROP_UINT16("x-file-slots", FWCfgMemState, parent_obj.file_slots, 1117 FW_CFG_FILE_SLOTS_DFLT), 1118 DEFINE_PROP_END_OF_LIST(), 1119 }; 1120 1121 static void fw_cfg_mem_realize(DeviceState *dev, Error **errp) 1122 { 1123 FWCfgMemState *s = FW_CFG_MEM(dev); 1124 SysBusDevice *sbd = SYS_BUS_DEVICE(dev); 1125 const MemoryRegionOps *data_ops = &fw_cfg_data_mem_ops; 1126 Error *local_err = NULL; 1127 1128 fw_cfg_file_slots_allocate(FW_CFG(s), &local_err); 1129 if (local_err) { 1130 error_propagate(errp, local_err); 1131 return; 1132 } 1133 1134 memory_region_init_io(&s->ctl_iomem, OBJECT(s), &fw_cfg_ctl_mem_ops, 1135 FW_CFG(s), "fwcfg.ctl", FW_CFG_CTL_SIZE); 1136 sysbus_init_mmio(sbd, &s->ctl_iomem); 1137 1138 if (s->data_width > data_ops->valid.max_access_size) { 1139 /* memberwise copy because the "old_mmio" member is const */ 1140 s->wide_data_ops.read = data_ops->read; 1141 s->wide_data_ops.write = data_ops->write; 1142 s->wide_data_ops.endianness = data_ops->endianness; 1143 s->wide_data_ops.valid = data_ops->valid; 1144 s->wide_data_ops.impl = data_ops->impl; 1145 1146 s->wide_data_ops.valid.max_access_size = s->data_width; 1147 s->wide_data_ops.impl.max_access_size = s->data_width; 1148 data_ops = &s->wide_data_ops; 1149 } 1150 memory_region_init_io(&s->data_iomem, OBJECT(s), data_ops, FW_CFG(s), 1151 "fwcfg.data", data_ops->valid.max_access_size); 1152 sysbus_init_mmio(sbd, &s->data_iomem); 1153 1154 if (FW_CFG(s)->dma_enabled) { 1155 memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s), 1156 &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma", 1157 sizeof(dma_addr_t)); 1158 sysbus_init_mmio(sbd, &FW_CFG(s)->dma_iomem); 1159 } 1160 } 1161 1162 static void fw_cfg_mem_class_init(ObjectClass *klass, void *data) 1163 { 1164 DeviceClass *dc = DEVICE_CLASS(klass); 1165 1166 dc->realize = fw_cfg_mem_realize; 1167 dc->props = fw_cfg_mem_properties; 1168 } 1169 1170 static const TypeInfo fw_cfg_mem_info = { 1171 .name = TYPE_FW_CFG_MEM, 1172 .parent = TYPE_FW_CFG, 1173 .instance_size = sizeof(FWCfgMemState), 1174 .class_init = fw_cfg_mem_class_init, 1175 }; 1176 1177 1178 static void fw_cfg_register_types(void) 1179 { 1180 type_register_static(&fw_cfg_info); 1181 type_register_static(&fw_cfg_io_info); 1182 type_register_static(&fw_cfg_mem_info); 1183 } 1184 1185 type_init(fw_cfg_register_types) 1186