1 /* 2 * QEMU Firmware configuration device emulation 3 * 4 * Copyright (c) 2008 Gleb Natapov 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "qemu-common.h" 27 #include "sysemu/sysemu.h" 28 #include "sysemu/dma.h" 29 #include "sysemu/reset.h" 30 #include "hw/boards.h" 31 #include "hw/nvram/fw_cfg.h" 32 #include "hw/qdev-properties.h" 33 #include "hw/sysbus.h" 34 #include "migration/qemu-file-types.h" 35 #include "migration/vmstate.h" 36 #include "trace.h" 37 #include "qemu/error-report.h" 38 #include "qemu/option.h" 39 #include "qemu/config-file.h" 40 #include "qemu/cutils.h" 41 #include "qapi/error.h" 42 #include "hw/acpi/aml-build.h" 43 44 #define FW_CFG_FILE_SLOTS_DFLT 0x20 45 46 /* FW_CFG_VERSION bits */ 47 #define FW_CFG_VERSION 0x01 48 #define FW_CFG_VERSION_DMA 0x02 49 50 /* FW_CFG_DMA_CONTROL bits */ 51 #define FW_CFG_DMA_CTL_ERROR 0x01 52 #define FW_CFG_DMA_CTL_READ 0x02 53 #define FW_CFG_DMA_CTL_SKIP 0x04 54 #define FW_CFG_DMA_CTL_SELECT 0x08 55 #define FW_CFG_DMA_CTL_WRITE 0x10 56 57 #define FW_CFG_DMA_SIGNATURE 0x51454d5520434647ULL /* "QEMU CFG" */ 58 59 struct FWCfgEntry { 60 uint32_t len; 61 bool allow_write; 62 uint8_t *data; 63 void *callback_opaque; 64 FWCfgCallback select_cb; 65 FWCfgWriteCallback write_cb; 66 }; 67 68 /** 69 * key_name: 70 * 71 * @key: The uint16 selector key. 72 * 73 * Returns: The stringified name if the selector refers to a well-known 74 * numerically defined item, or NULL on key lookup failure. 75 */ 76 static const char *key_name(uint16_t key) 77 { 78 static const char *fw_cfg_wellknown_keys[FW_CFG_FILE_FIRST] = { 79 [FW_CFG_SIGNATURE] = "signature", 80 [FW_CFG_ID] = "id", 81 [FW_CFG_UUID] = "uuid", 82 [FW_CFG_RAM_SIZE] = "ram_size", 83 [FW_CFG_NOGRAPHIC] = "nographic", 84 [FW_CFG_NB_CPUS] = "nb_cpus", 85 [FW_CFG_MACHINE_ID] = "machine_id", 86 [FW_CFG_KERNEL_ADDR] = "kernel_addr", 87 [FW_CFG_KERNEL_SIZE] = "kernel_size", 88 [FW_CFG_KERNEL_CMDLINE] = "kernel_cmdline", 89 [FW_CFG_INITRD_ADDR] = "initrd_addr", 90 [FW_CFG_INITRD_SIZE] = "initdr_size", 91 [FW_CFG_BOOT_DEVICE] = "boot_device", 92 [FW_CFG_NUMA] = "numa", 93 [FW_CFG_BOOT_MENU] = "boot_menu", 94 [FW_CFG_MAX_CPUS] = "max_cpus", 95 [FW_CFG_KERNEL_ENTRY] = "kernel_entry", 96 [FW_CFG_KERNEL_DATA] = "kernel_data", 97 [FW_CFG_INITRD_DATA] = "initrd_data", 98 [FW_CFG_CMDLINE_ADDR] = "cmdline_addr", 99 [FW_CFG_CMDLINE_SIZE] = "cmdline_size", 100 [FW_CFG_CMDLINE_DATA] = "cmdline_data", 101 [FW_CFG_SETUP_ADDR] = "setup_addr", 102 [FW_CFG_SETUP_SIZE] = "setup_size", 103 [FW_CFG_SETUP_DATA] = "setup_data", 104 [FW_CFG_FILE_DIR] = "file_dir", 105 }; 106 107 if (key & FW_CFG_ARCH_LOCAL) { 108 return fw_cfg_arch_key_name(key); 109 } 110 if (key < FW_CFG_FILE_FIRST) { 111 return fw_cfg_wellknown_keys[key]; 112 } 113 114 return NULL; 115 } 116 117 static inline const char *trace_key_name(uint16_t key) 118 { 119 const char *name = key_name(key); 120 121 return name ? name : "unknown"; 122 } 123 124 #define JPG_FILE 0 125 #define BMP_FILE 1 126 127 static char *read_splashfile(char *filename, gsize *file_sizep, 128 int *file_typep) 129 { 130 GError *err = NULL; 131 gchar *content; 132 int file_type; 133 unsigned int filehead; 134 int bmp_bpp; 135 136 if (!g_file_get_contents(filename, &content, file_sizep, &err)) { 137 error_report("failed to read splash file '%s': %s", 138 filename, err->message); 139 g_error_free(err); 140 return NULL; 141 } 142 143 /* check file size */ 144 if (*file_sizep < 30) { 145 goto error; 146 } 147 148 /* check magic ID */ 149 filehead = lduw_le_p(content); 150 if (filehead == 0xd8ff) { 151 file_type = JPG_FILE; 152 } else if (filehead == 0x4d42) { 153 file_type = BMP_FILE; 154 } else { 155 goto error; 156 } 157 158 /* check BMP bpp */ 159 if (file_type == BMP_FILE) { 160 bmp_bpp = lduw_le_p(&content[28]); 161 if (bmp_bpp != 24) { 162 goto error; 163 } 164 } 165 166 /* return values */ 167 *file_typep = file_type; 168 169 return content; 170 171 error: 172 error_report("splash file '%s' format not recognized; must be JPEG " 173 "or 24 bit BMP", filename); 174 g_free(content); 175 return NULL; 176 } 177 178 static void fw_cfg_bootsplash(FWCfgState *s) 179 { 180 const char *boot_splash_filename = NULL; 181 const char *boot_splash_time = NULL; 182 char *filename, *file_data; 183 gsize file_size; 184 int file_type; 185 186 /* get user configuration */ 187 QemuOptsList *plist = qemu_find_opts("boot-opts"); 188 QemuOpts *opts = QTAILQ_FIRST(&plist->head); 189 boot_splash_filename = qemu_opt_get(opts, "splash"); 190 boot_splash_time = qemu_opt_get(opts, "splash-time"); 191 192 /* insert splash time if user configurated */ 193 if (boot_splash_time) { 194 int64_t bst_val = qemu_opt_get_number(opts, "splash-time", -1); 195 uint16_t bst_le16; 196 197 /* validate the input */ 198 if (bst_val < 0 || bst_val > 0xffff) { 199 error_report("splash-time is invalid," 200 "it should be a value between 0 and 65535"); 201 exit(1); 202 } 203 /* use little endian format */ 204 bst_le16 = cpu_to_le16(bst_val); 205 fw_cfg_add_file(s, "etc/boot-menu-wait", 206 g_memdup(&bst_le16, sizeof bst_le16), sizeof bst_le16); 207 } 208 209 /* insert splash file if user configurated */ 210 if (boot_splash_filename) { 211 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, boot_splash_filename); 212 if (filename == NULL) { 213 error_report("failed to find file '%s'", boot_splash_filename); 214 return; 215 } 216 217 /* loading file data */ 218 file_data = read_splashfile(filename, &file_size, &file_type); 219 if (file_data == NULL) { 220 g_free(filename); 221 return; 222 } 223 g_free(boot_splash_filedata); 224 boot_splash_filedata = (uint8_t *)file_data; 225 226 /* insert data */ 227 if (file_type == JPG_FILE) { 228 fw_cfg_add_file(s, "bootsplash.jpg", 229 boot_splash_filedata, file_size); 230 } else { 231 fw_cfg_add_file(s, "bootsplash.bmp", 232 boot_splash_filedata, file_size); 233 } 234 g_free(filename); 235 } 236 } 237 238 static void fw_cfg_reboot(FWCfgState *s) 239 { 240 const char *reboot_timeout = NULL; 241 uint64_t rt_val = -1; 242 uint32_t rt_le32; 243 244 /* get user configuration */ 245 QemuOptsList *plist = qemu_find_opts("boot-opts"); 246 QemuOpts *opts = QTAILQ_FIRST(&plist->head); 247 reboot_timeout = qemu_opt_get(opts, "reboot-timeout"); 248 249 if (reboot_timeout) { 250 rt_val = qemu_opt_get_number(opts, "reboot-timeout", -1); 251 252 /* validate the input */ 253 if (rt_val > 0xffff && rt_val != (uint64_t)-1) { 254 error_report("reboot timeout is invalid," 255 "it should be a value between -1 and 65535"); 256 exit(1); 257 } 258 } 259 260 rt_le32 = cpu_to_le32(rt_val); 261 fw_cfg_add_file(s, "etc/boot-fail-wait", g_memdup(&rt_le32, 4), 4); 262 } 263 264 static void fw_cfg_write(FWCfgState *s, uint8_t value) 265 { 266 /* nothing, write support removed in QEMU v2.4+ */ 267 } 268 269 static inline uint16_t fw_cfg_file_slots(const FWCfgState *s) 270 { 271 return s->file_slots; 272 } 273 274 /* Note: this function returns an exclusive limit. */ 275 static inline uint32_t fw_cfg_max_entry(const FWCfgState *s) 276 { 277 return FW_CFG_FILE_FIRST + fw_cfg_file_slots(s); 278 } 279 280 static int fw_cfg_select(FWCfgState *s, uint16_t key) 281 { 282 int arch, ret; 283 FWCfgEntry *e; 284 285 s->cur_offset = 0; 286 if ((key & FW_CFG_ENTRY_MASK) >= fw_cfg_max_entry(s)) { 287 s->cur_entry = FW_CFG_INVALID; 288 ret = 0; 289 } else { 290 s->cur_entry = key; 291 ret = 1; 292 /* entry successfully selected, now run callback if present */ 293 arch = !!(key & FW_CFG_ARCH_LOCAL); 294 e = &s->entries[arch][key & FW_CFG_ENTRY_MASK]; 295 if (e->select_cb) { 296 e->select_cb(e->callback_opaque); 297 } 298 } 299 300 trace_fw_cfg_select(s, key, trace_key_name(key), ret); 301 return ret; 302 } 303 304 static uint64_t fw_cfg_data_read(void *opaque, hwaddr addr, unsigned size) 305 { 306 FWCfgState *s = opaque; 307 int arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL); 308 FWCfgEntry *e = (s->cur_entry == FW_CFG_INVALID) ? NULL : 309 &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK]; 310 uint64_t value = 0; 311 312 assert(size > 0 && size <= sizeof(value)); 313 if (s->cur_entry != FW_CFG_INVALID && e->data && s->cur_offset < e->len) { 314 /* The least significant 'size' bytes of the return value are 315 * expected to contain a string preserving portion of the item 316 * data, padded with zeros on the right in case we run out early. 317 * In technical terms, we're composing the host-endian representation 318 * of the big endian interpretation of the fw_cfg string. 319 */ 320 do { 321 value = (value << 8) | e->data[s->cur_offset++]; 322 } while (--size && s->cur_offset < e->len); 323 /* If size is still not zero, we *did* run out early, so continue 324 * left-shifting, to add the appropriate number of padding zeros 325 * on the right. 326 */ 327 value <<= 8 * size; 328 } 329 330 trace_fw_cfg_read(s, value); 331 return value; 332 } 333 334 static void fw_cfg_data_mem_write(void *opaque, hwaddr addr, 335 uint64_t value, unsigned size) 336 { 337 FWCfgState *s = opaque; 338 unsigned i = size; 339 340 do { 341 fw_cfg_write(s, value >> (8 * --i)); 342 } while (i); 343 } 344 345 static void fw_cfg_dma_transfer(FWCfgState *s) 346 { 347 dma_addr_t len; 348 FWCfgDmaAccess dma; 349 int arch; 350 FWCfgEntry *e; 351 int read = 0, write = 0; 352 dma_addr_t dma_addr; 353 354 /* Reset the address before the next access */ 355 dma_addr = s->dma_addr; 356 s->dma_addr = 0; 357 358 if (dma_memory_read(s->dma_as, dma_addr, &dma, sizeof(dma))) { 359 stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control), 360 FW_CFG_DMA_CTL_ERROR); 361 return; 362 } 363 364 dma.address = be64_to_cpu(dma.address); 365 dma.length = be32_to_cpu(dma.length); 366 dma.control = be32_to_cpu(dma.control); 367 368 if (dma.control & FW_CFG_DMA_CTL_SELECT) { 369 fw_cfg_select(s, dma.control >> 16); 370 } 371 372 arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL); 373 e = (s->cur_entry == FW_CFG_INVALID) ? NULL : 374 &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK]; 375 376 if (dma.control & FW_CFG_DMA_CTL_READ) { 377 read = 1; 378 write = 0; 379 } else if (dma.control & FW_CFG_DMA_CTL_WRITE) { 380 read = 0; 381 write = 1; 382 } else if (dma.control & FW_CFG_DMA_CTL_SKIP) { 383 read = 0; 384 write = 0; 385 } else { 386 dma.length = 0; 387 } 388 389 dma.control = 0; 390 391 while (dma.length > 0 && !(dma.control & FW_CFG_DMA_CTL_ERROR)) { 392 if (s->cur_entry == FW_CFG_INVALID || !e->data || 393 s->cur_offset >= e->len) { 394 len = dma.length; 395 396 /* If the access is not a read access, it will be a skip access, 397 * tested before. 398 */ 399 if (read) { 400 if (dma_memory_set(s->dma_as, dma.address, 0, len)) { 401 dma.control |= FW_CFG_DMA_CTL_ERROR; 402 } 403 } 404 if (write) { 405 dma.control |= FW_CFG_DMA_CTL_ERROR; 406 } 407 } else { 408 if (dma.length <= (e->len - s->cur_offset)) { 409 len = dma.length; 410 } else { 411 len = (e->len - s->cur_offset); 412 } 413 414 /* If the access is not a read access, it will be a skip access, 415 * tested before. 416 */ 417 if (read) { 418 if (dma_memory_write(s->dma_as, dma.address, 419 &e->data[s->cur_offset], len)) { 420 dma.control |= FW_CFG_DMA_CTL_ERROR; 421 } 422 } 423 if (write) { 424 if (!e->allow_write || 425 len != dma.length || 426 dma_memory_read(s->dma_as, dma.address, 427 &e->data[s->cur_offset], len)) { 428 dma.control |= FW_CFG_DMA_CTL_ERROR; 429 } else if (e->write_cb) { 430 e->write_cb(e->callback_opaque, s->cur_offset, len); 431 } 432 } 433 434 s->cur_offset += len; 435 } 436 437 dma.address += len; 438 dma.length -= len; 439 440 } 441 442 stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control), 443 dma.control); 444 445 trace_fw_cfg_read(s, 0); 446 } 447 448 static uint64_t fw_cfg_dma_mem_read(void *opaque, hwaddr addr, 449 unsigned size) 450 { 451 /* Return a signature value (and handle various read sizes) */ 452 return extract64(FW_CFG_DMA_SIGNATURE, (8 - addr - size) * 8, size * 8); 453 } 454 455 static void fw_cfg_dma_mem_write(void *opaque, hwaddr addr, 456 uint64_t value, unsigned size) 457 { 458 FWCfgState *s = opaque; 459 460 if (size == 4) { 461 if (addr == 0) { 462 /* FWCfgDmaAccess high address */ 463 s->dma_addr = value << 32; 464 } else if (addr == 4) { 465 /* FWCfgDmaAccess low address */ 466 s->dma_addr |= value; 467 fw_cfg_dma_transfer(s); 468 } 469 } else if (size == 8 && addr == 0) { 470 s->dma_addr = value; 471 fw_cfg_dma_transfer(s); 472 } 473 } 474 475 static bool fw_cfg_dma_mem_valid(void *opaque, hwaddr addr, 476 unsigned size, bool is_write, 477 MemTxAttrs attrs) 478 { 479 return !is_write || ((size == 4 && (addr == 0 || addr == 4)) || 480 (size == 8 && addr == 0)); 481 } 482 483 static bool fw_cfg_data_mem_valid(void *opaque, hwaddr addr, 484 unsigned size, bool is_write, 485 MemTxAttrs attrs) 486 { 487 return addr == 0; 488 } 489 490 static uint64_t fw_cfg_ctl_mem_read(void *opaque, hwaddr addr, unsigned size) 491 { 492 return 0; 493 } 494 495 static void fw_cfg_ctl_mem_write(void *opaque, hwaddr addr, 496 uint64_t value, unsigned size) 497 { 498 fw_cfg_select(opaque, (uint16_t)value); 499 } 500 501 static bool fw_cfg_ctl_mem_valid(void *opaque, hwaddr addr, 502 unsigned size, bool is_write, 503 MemTxAttrs attrs) 504 { 505 return is_write && size == 2; 506 } 507 508 static void fw_cfg_comb_write(void *opaque, hwaddr addr, 509 uint64_t value, unsigned size) 510 { 511 switch (size) { 512 case 1: 513 fw_cfg_write(opaque, (uint8_t)value); 514 break; 515 case 2: 516 fw_cfg_select(opaque, (uint16_t)value); 517 break; 518 } 519 } 520 521 static bool fw_cfg_comb_valid(void *opaque, hwaddr addr, 522 unsigned size, bool is_write, 523 MemTxAttrs attrs) 524 { 525 return (size == 1) || (is_write && size == 2); 526 } 527 528 static const MemoryRegionOps fw_cfg_ctl_mem_ops = { 529 .read = fw_cfg_ctl_mem_read, 530 .write = fw_cfg_ctl_mem_write, 531 .endianness = DEVICE_BIG_ENDIAN, 532 .valid.accepts = fw_cfg_ctl_mem_valid, 533 }; 534 535 static const MemoryRegionOps fw_cfg_data_mem_ops = { 536 .read = fw_cfg_data_read, 537 .write = fw_cfg_data_mem_write, 538 .endianness = DEVICE_BIG_ENDIAN, 539 .valid = { 540 .min_access_size = 1, 541 .max_access_size = 1, 542 .accepts = fw_cfg_data_mem_valid, 543 }, 544 }; 545 546 static const MemoryRegionOps fw_cfg_comb_mem_ops = { 547 .read = fw_cfg_data_read, 548 .write = fw_cfg_comb_write, 549 .endianness = DEVICE_LITTLE_ENDIAN, 550 .valid.accepts = fw_cfg_comb_valid, 551 }; 552 553 static const MemoryRegionOps fw_cfg_dma_mem_ops = { 554 .read = fw_cfg_dma_mem_read, 555 .write = fw_cfg_dma_mem_write, 556 .endianness = DEVICE_BIG_ENDIAN, 557 .valid.accepts = fw_cfg_dma_mem_valid, 558 .valid.max_access_size = 8, 559 .impl.max_access_size = 8, 560 }; 561 562 static void fw_cfg_reset(DeviceState *d) 563 { 564 FWCfgState *s = FW_CFG(d); 565 566 /* we never register a read callback for FW_CFG_SIGNATURE */ 567 fw_cfg_select(s, FW_CFG_SIGNATURE); 568 } 569 570 /* Save restore 32 bit int as uint16_t 571 This is a Big hack, but it is how the old state did it. 572 Or we broke compatibility in the state, or we can't use struct tm 573 */ 574 575 static int get_uint32_as_uint16(QEMUFile *f, void *pv, size_t size, 576 const VMStateField *field) 577 { 578 uint32_t *v = pv; 579 *v = qemu_get_be16(f); 580 return 0; 581 } 582 583 static int put_unused(QEMUFile *f, void *pv, size_t size, 584 const VMStateField *field, QJSON *vmdesc) 585 { 586 fprintf(stderr, "uint32_as_uint16 is only used for backward compatibility.\n"); 587 fprintf(stderr, "This functions shouldn't be called.\n"); 588 589 return 0; 590 } 591 592 static const VMStateInfo vmstate_hack_uint32_as_uint16 = { 593 .name = "int32_as_uint16", 594 .get = get_uint32_as_uint16, 595 .put = put_unused, 596 }; 597 598 #define VMSTATE_UINT16_HACK(_f, _s, _t) \ 599 VMSTATE_SINGLE_TEST(_f, _s, _t, 0, vmstate_hack_uint32_as_uint16, uint32_t) 600 601 602 static bool is_version_1(void *opaque, int version_id) 603 { 604 return version_id == 1; 605 } 606 607 bool fw_cfg_dma_enabled(void *opaque) 608 { 609 FWCfgState *s = opaque; 610 611 return s->dma_enabled; 612 } 613 614 static bool fw_cfg_acpi_mr_restore(void *opaque) 615 { 616 FWCfgState *s = opaque; 617 bool mr_aligned; 618 619 mr_aligned = QEMU_IS_ALIGNED(s->table_mr_size, qemu_real_host_page_size) && 620 QEMU_IS_ALIGNED(s->linker_mr_size, qemu_real_host_page_size) && 621 QEMU_IS_ALIGNED(s->rsdp_mr_size, qemu_real_host_page_size); 622 return s->acpi_mr_restore && !mr_aligned; 623 } 624 625 static void fw_cfg_update_mr(FWCfgState *s, uint16_t key, size_t size) 626 { 627 MemoryRegion *mr; 628 ram_addr_t offset; 629 int arch = !!(key & FW_CFG_ARCH_LOCAL); 630 void *ptr; 631 632 key &= FW_CFG_ENTRY_MASK; 633 assert(key < fw_cfg_max_entry(s)); 634 635 ptr = s->entries[arch][key].data; 636 mr = memory_region_from_host(ptr, &offset); 637 638 memory_region_ram_resize(mr, size, &error_abort); 639 } 640 641 static int fw_cfg_acpi_mr_restore_post_load(void *opaque, int version_id) 642 { 643 FWCfgState *s = opaque; 644 int i, index; 645 646 assert(s->files); 647 648 index = be32_to_cpu(s->files->count); 649 650 for (i = 0; i < index; i++) { 651 if (!strcmp(s->files->f[i].name, ACPI_BUILD_TABLE_FILE)) { 652 fw_cfg_update_mr(s, FW_CFG_FILE_FIRST + i, s->table_mr_size); 653 } else if (!strcmp(s->files->f[i].name, ACPI_BUILD_LOADER_FILE)) { 654 fw_cfg_update_mr(s, FW_CFG_FILE_FIRST + i, s->linker_mr_size); 655 } else if (!strcmp(s->files->f[i].name, ACPI_BUILD_RSDP_FILE)) { 656 fw_cfg_update_mr(s, FW_CFG_FILE_FIRST + i, s->rsdp_mr_size); 657 } 658 } 659 660 return 0; 661 } 662 663 static const VMStateDescription vmstate_fw_cfg_dma = { 664 .name = "fw_cfg/dma", 665 .needed = fw_cfg_dma_enabled, 666 .fields = (VMStateField[]) { 667 VMSTATE_UINT64(dma_addr, FWCfgState), 668 VMSTATE_END_OF_LIST() 669 }, 670 }; 671 672 static const VMStateDescription vmstate_fw_cfg_acpi_mr = { 673 .name = "fw_cfg/acpi_mr", 674 .version_id = 1, 675 .minimum_version_id = 1, 676 .needed = fw_cfg_acpi_mr_restore, 677 .post_load = fw_cfg_acpi_mr_restore_post_load, 678 .fields = (VMStateField[]) { 679 VMSTATE_UINT64(table_mr_size, FWCfgState), 680 VMSTATE_UINT64(linker_mr_size, FWCfgState), 681 VMSTATE_UINT64(rsdp_mr_size, FWCfgState), 682 VMSTATE_END_OF_LIST() 683 }, 684 }; 685 686 static const VMStateDescription vmstate_fw_cfg = { 687 .name = "fw_cfg", 688 .version_id = 2, 689 .minimum_version_id = 1, 690 .fields = (VMStateField[]) { 691 VMSTATE_UINT16(cur_entry, FWCfgState), 692 VMSTATE_UINT16_HACK(cur_offset, FWCfgState, is_version_1), 693 VMSTATE_UINT32_V(cur_offset, FWCfgState, 2), 694 VMSTATE_END_OF_LIST() 695 }, 696 .subsections = (const VMStateDescription*[]) { 697 &vmstate_fw_cfg_dma, 698 &vmstate_fw_cfg_acpi_mr, 699 NULL, 700 } 701 }; 702 703 static void fw_cfg_add_bytes_callback(FWCfgState *s, uint16_t key, 704 FWCfgCallback select_cb, 705 FWCfgWriteCallback write_cb, 706 void *callback_opaque, 707 void *data, size_t len, 708 bool read_only) 709 { 710 int arch = !!(key & FW_CFG_ARCH_LOCAL); 711 712 key &= FW_CFG_ENTRY_MASK; 713 714 assert(key < fw_cfg_max_entry(s) && len < UINT32_MAX); 715 assert(s->entries[arch][key].data == NULL); /* avoid key conflict */ 716 717 s->entries[arch][key].data = data; 718 s->entries[arch][key].len = (uint32_t)len; 719 s->entries[arch][key].select_cb = select_cb; 720 s->entries[arch][key].write_cb = write_cb; 721 s->entries[arch][key].callback_opaque = callback_opaque; 722 s->entries[arch][key].allow_write = !read_only; 723 } 724 725 static void *fw_cfg_modify_bytes_read(FWCfgState *s, uint16_t key, 726 void *data, size_t len) 727 { 728 void *ptr; 729 int arch = !!(key & FW_CFG_ARCH_LOCAL); 730 731 key &= FW_CFG_ENTRY_MASK; 732 733 assert(key < fw_cfg_max_entry(s) && len < UINT32_MAX); 734 735 /* return the old data to the function caller, avoid memory leak */ 736 ptr = s->entries[arch][key].data; 737 s->entries[arch][key].data = data; 738 s->entries[arch][key].len = len; 739 s->entries[arch][key].callback_opaque = NULL; 740 s->entries[arch][key].allow_write = false; 741 742 return ptr; 743 } 744 745 void fw_cfg_add_bytes(FWCfgState *s, uint16_t key, void *data, size_t len) 746 { 747 trace_fw_cfg_add_bytes(key, trace_key_name(key), len); 748 fw_cfg_add_bytes_callback(s, key, NULL, NULL, NULL, data, len, true); 749 } 750 751 void fw_cfg_add_string(FWCfgState *s, uint16_t key, const char *value) 752 { 753 size_t sz = strlen(value) + 1; 754 755 trace_fw_cfg_add_string(key, trace_key_name(key), value); 756 fw_cfg_add_bytes(s, key, g_memdup(value, sz), sz); 757 } 758 759 void fw_cfg_modify_string(FWCfgState *s, uint16_t key, const char *value) 760 { 761 size_t sz = strlen(value) + 1; 762 char *old; 763 764 old = fw_cfg_modify_bytes_read(s, key, g_memdup(value, sz), sz); 765 g_free(old); 766 } 767 768 void fw_cfg_add_i16(FWCfgState *s, uint16_t key, uint16_t value) 769 { 770 uint16_t *copy; 771 772 copy = g_malloc(sizeof(value)); 773 *copy = cpu_to_le16(value); 774 trace_fw_cfg_add_i16(key, trace_key_name(key), value); 775 fw_cfg_add_bytes(s, key, copy, sizeof(value)); 776 } 777 778 void fw_cfg_modify_i16(FWCfgState *s, uint16_t key, uint16_t value) 779 { 780 uint16_t *copy, *old; 781 782 copy = g_malloc(sizeof(value)); 783 *copy = cpu_to_le16(value); 784 old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value)); 785 g_free(old); 786 } 787 788 void fw_cfg_add_i32(FWCfgState *s, uint16_t key, uint32_t value) 789 { 790 uint32_t *copy; 791 792 copy = g_malloc(sizeof(value)); 793 *copy = cpu_to_le32(value); 794 trace_fw_cfg_add_i32(key, trace_key_name(key), value); 795 fw_cfg_add_bytes(s, key, copy, sizeof(value)); 796 } 797 798 void fw_cfg_modify_i32(FWCfgState *s, uint16_t key, uint32_t value) 799 { 800 uint32_t *copy, *old; 801 802 copy = g_malloc(sizeof(value)); 803 *copy = cpu_to_le32(value); 804 old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value)); 805 g_free(old); 806 } 807 808 void fw_cfg_add_i64(FWCfgState *s, uint16_t key, uint64_t value) 809 { 810 uint64_t *copy; 811 812 copy = g_malloc(sizeof(value)); 813 *copy = cpu_to_le64(value); 814 trace_fw_cfg_add_i64(key, trace_key_name(key), value); 815 fw_cfg_add_bytes(s, key, copy, sizeof(value)); 816 } 817 818 void fw_cfg_modify_i64(FWCfgState *s, uint16_t key, uint64_t value) 819 { 820 uint64_t *copy, *old; 821 822 copy = g_malloc(sizeof(value)); 823 *copy = cpu_to_le64(value); 824 old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value)); 825 g_free(old); 826 } 827 828 void fw_cfg_set_order_override(FWCfgState *s, int order) 829 { 830 assert(s->fw_cfg_order_override == 0); 831 s->fw_cfg_order_override = order; 832 } 833 834 void fw_cfg_reset_order_override(FWCfgState *s) 835 { 836 assert(s->fw_cfg_order_override != 0); 837 s->fw_cfg_order_override = 0; 838 } 839 840 /* 841 * This is the legacy order list. For legacy systems, files are in 842 * the fw_cfg in the order defined below, by the "order" value. Note 843 * that some entries (VGA ROMs, NIC option ROMS, etc.) go into a 844 * specific area, but there may be more than one and they occur in the 845 * order that the user specifies them on the command line. Those are 846 * handled in a special manner, using the order override above. 847 * 848 * For non-legacy, the files are sorted by filename to avoid this kind 849 * of complexity in the future. 850 * 851 * This is only for x86, other arches don't implement versioning so 852 * they won't set legacy mode. 853 */ 854 static struct { 855 const char *name; 856 int order; 857 } fw_cfg_order[] = { 858 { "etc/boot-menu-wait", 10 }, 859 { "bootsplash.jpg", 11 }, 860 { "bootsplash.bmp", 12 }, 861 { "etc/boot-fail-wait", 15 }, 862 { "etc/smbios/smbios-tables", 20 }, 863 { "etc/smbios/smbios-anchor", 30 }, 864 { "etc/e820", 40 }, 865 { "etc/reserved-memory-end", 50 }, 866 { "genroms/kvmvapic.bin", 55 }, 867 { "genroms/linuxboot.bin", 60 }, 868 { }, /* VGA ROMs from pc_vga_init come here, 70. */ 869 { }, /* NIC option ROMs from pc_nic_init come here, 80. */ 870 { "etc/system-states", 90 }, 871 { }, /* User ROMs come here, 100. */ 872 { }, /* Device FW comes here, 110. */ 873 { "etc/extra-pci-roots", 120 }, 874 { "etc/acpi/tables", 130 }, 875 { "etc/table-loader", 140 }, 876 { "etc/tpm/log", 150 }, 877 { "etc/acpi/rsdp", 160 }, 878 { "bootorder", 170 }, 879 880 #define FW_CFG_ORDER_OVERRIDE_LAST 200 881 }; 882 883 /* 884 * Any sub-page size update to these table MRs will be lost during migration, 885 * as we use aligned size in ram_load_precopy() -> qemu_ram_resize() path. 886 * In order to avoid the inconsistency in sizes save them seperately and 887 * migrate over in vmstate post_load(). 888 */ 889 static void fw_cfg_acpi_mr_save(FWCfgState *s, const char *filename, size_t len) 890 { 891 if (!strcmp(filename, ACPI_BUILD_TABLE_FILE)) { 892 s->table_mr_size = len; 893 } else if (!strcmp(filename, ACPI_BUILD_LOADER_FILE)) { 894 s->linker_mr_size = len; 895 } else if (!strcmp(filename, ACPI_BUILD_RSDP_FILE)) { 896 s->rsdp_mr_size = len; 897 } 898 } 899 900 static int get_fw_cfg_order(FWCfgState *s, const char *name) 901 { 902 int i; 903 904 if (s->fw_cfg_order_override > 0) { 905 return s->fw_cfg_order_override; 906 } 907 908 for (i = 0; i < ARRAY_SIZE(fw_cfg_order); i++) { 909 if (fw_cfg_order[i].name == NULL) { 910 continue; 911 } 912 913 if (strcmp(name, fw_cfg_order[i].name) == 0) { 914 return fw_cfg_order[i].order; 915 } 916 } 917 918 /* Stick unknown stuff at the end. */ 919 warn_report("Unknown firmware file in legacy mode: %s", name); 920 return FW_CFG_ORDER_OVERRIDE_LAST; 921 } 922 923 void fw_cfg_add_file_callback(FWCfgState *s, const char *filename, 924 FWCfgCallback select_cb, 925 FWCfgWriteCallback write_cb, 926 void *callback_opaque, 927 void *data, size_t len, bool read_only) 928 { 929 int i, index, count; 930 size_t dsize; 931 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 932 int order = 0; 933 934 if (!s->files) { 935 dsize = sizeof(uint32_t) + sizeof(FWCfgFile) * fw_cfg_file_slots(s); 936 s->files = g_malloc0(dsize); 937 fw_cfg_add_bytes(s, FW_CFG_FILE_DIR, s->files, dsize); 938 } 939 940 count = be32_to_cpu(s->files->count); 941 assert(count < fw_cfg_file_slots(s)); 942 943 /* Find the insertion point. */ 944 if (mc->legacy_fw_cfg_order) { 945 /* 946 * Sort by order. For files with the same order, we keep them 947 * in the sequence in which they were added. 948 */ 949 order = get_fw_cfg_order(s, filename); 950 for (index = count; 951 index > 0 && order < s->entry_order[index - 1]; 952 index--); 953 } else { 954 /* Sort by file name. */ 955 for (index = count; 956 index > 0 && strcmp(filename, s->files->f[index - 1].name) < 0; 957 index--); 958 } 959 960 /* 961 * Move all the entries from the index point and after down one 962 * to create a slot for the new entry. Because calculations are 963 * being done with the index, make it so that "i" is the current 964 * index and "i - 1" is the one being copied from, thus the 965 * unusual start and end in the for statement. 966 */ 967 for (i = count; i > index; i--) { 968 s->files->f[i] = s->files->f[i - 1]; 969 s->files->f[i].select = cpu_to_be16(FW_CFG_FILE_FIRST + i); 970 s->entries[0][FW_CFG_FILE_FIRST + i] = 971 s->entries[0][FW_CFG_FILE_FIRST + i - 1]; 972 s->entry_order[i] = s->entry_order[i - 1]; 973 } 974 975 memset(&s->files->f[index], 0, sizeof(FWCfgFile)); 976 memset(&s->entries[0][FW_CFG_FILE_FIRST + index], 0, sizeof(FWCfgEntry)); 977 978 pstrcpy(s->files->f[index].name, sizeof(s->files->f[index].name), filename); 979 for (i = 0; i <= count; i++) { 980 if (i != index && 981 strcmp(s->files->f[index].name, s->files->f[i].name) == 0) { 982 error_report("duplicate fw_cfg file name: %s", 983 s->files->f[index].name); 984 exit(1); 985 } 986 } 987 988 fw_cfg_add_bytes_callback(s, FW_CFG_FILE_FIRST + index, 989 select_cb, write_cb, 990 callback_opaque, data, len, 991 read_only); 992 993 s->files->f[index].size = cpu_to_be32(len); 994 s->files->f[index].select = cpu_to_be16(FW_CFG_FILE_FIRST + index); 995 s->entry_order[index] = order; 996 trace_fw_cfg_add_file(s, index, s->files->f[index].name, len); 997 998 s->files->count = cpu_to_be32(count+1); 999 fw_cfg_acpi_mr_save(s, filename, len); 1000 } 1001 1002 void fw_cfg_add_file(FWCfgState *s, const char *filename, 1003 void *data, size_t len) 1004 { 1005 fw_cfg_add_file_callback(s, filename, NULL, NULL, NULL, data, len, true); 1006 } 1007 1008 void *fw_cfg_modify_file(FWCfgState *s, const char *filename, 1009 void *data, size_t len) 1010 { 1011 int i, index; 1012 void *ptr = NULL; 1013 1014 assert(s->files); 1015 1016 index = be32_to_cpu(s->files->count); 1017 1018 for (i = 0; i < index; i++) { 1019 if (strcmp(filename, s->files->f[i].name) == 0) { 1020 ptr = fw_cfg_modify_bytes_read(s, FW_CFG_FILE_FIRST + i, 1021 data, len); 1022 s->files->f[i].size = cpu_to_be32(len); 1023 fw_cfg_acpi_mr_save(s, filename, len); 1024 return ptr; 1025 } 1026 } 1027 1028 assert(index < fw_cfg_file_slots(s)); 1029 1030 /* add new one */ 1031 fw_cfg_add_file_callback(s, filename, NULL, NULL, NULL, data, len, true); 1032 return NULL; 1033 } 1034 1035 bool fw_cfg_add_from_generator(FWCfgState *s, const char *filename, 1036 const char *gen_id, Error **errp) 1037 { 1038 FWCfgDataGeneratorClass *klass; 1039 GByteArray *array; 1040 Object *obj; 1041 gsize size; 1042 1043 obj = object_resolve_path_component(object_get_objects_root(), gen_id); 1044 if (!obj) { 1045 error_setg(errp, "Cannot find object ID '%s'", gen_id); 1046 return false; 1047 } 1048 if (!object_dynamic_cast(obj, TYPE_FW_CFG_DATA_GENERATOR_INTERFACE)) { 1049 error_setg(errp, "Object ID '%s' is not a '%s' subclass", 1050 gen_id, TYPE_FW_CFG_DATA_GENERATOR_INTERFACE); 1051 return false; 1052 } 1053 klass = FW_CFG_DATA_GENERATOR_GET_CLASS(obj); 1054 array = klass->get_data(obj, errp); 1055 if (!array) { 1056 return false; 1057 } 1058 size = array->len; 1059 fw_cfg_add_file(s, filename, g_byte_array_free(array, FALSE), size); 1060 1061 return true; 1062 } 1063 1064 static void fw_cfg_machine_reset(void *opaque) 1065 { 1066 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 1067 FWCfgState *s = opaque; 1068 void *ptr; 1069 size_t len; 1070 char *buf; 1071 1072 buf = get_boot_devices_list(&len); 1073 ptr = fw_cfg_modify_file(s, "bootorder", (uint8_t *)buf, len); 1074 g_free(ptr); 1075 1076 if (!mc->legacy_fw_cfg_order) { 1077 buf = get_boot_devices_lchs_list(&len); 1078 ptr = fw_cfg_modify_file(s, "bios-geometry", (uint8_t *)buf, len); 1079 g_free(ptr); 1080 } 1081 } 1082 1083 static void fw_cfg_machine_ready(struct Notifier *n, void *data) 1084 { 1085 FWCfgState *s = container_of(n, FWCfgState, machine_ready); 1086 qemu_register_reset(fw_cfg_machine_reset, s); 1087 } 1088 1089 static Property fw_cfg_properties[] = { 1090 DEFINE_PROP_BOOL("acpi-mr-restore", FWCfgState, acpi_mr_restore, true), 1091 DEFINE_PROP_END_OF_LIST(), 1092 }; 1093 1094 static void fw_cfg_common_realize(DeviceState *dev, Error **errp) 1095 { 1096 FWCfgState *s = FW_CFG(dev); 1097 MachineState *machine = MACHINE(qdev_get_machine()); 1098 uint32_t version = FW_CFG_VERSION; 1099 1100 if (!fw_cfg_find()) { 1101 error_setg(errp, "at most one %s device is permitted", TYPE_FW_CFG); 1102 return; 1103 } 1104 1105 fw_cfg_add_bytes(s, FW_CFG_SIGNATURE, (char *)"QEMU", 4); 1106 fw_cfg_add_bytes(s, FW_CFG_UUID, &qemu_uuid, 16); 1107 fw_cfg_add_i16(s, FW_CFG_NOGRAPHIC, (uint16_t)!machine->enable_graphics); 1108 fw_cfg_add_i16(s, FW_CFG_BOOT_MENU, (uint16_t)boot_menu); 1109 fw_cfg_bootsplash(s); 1110 fw_cfg_reboot(s); 1111 1112 if (s->dma_enabled) { 1113 version |= FW_CFG_VERSION_DMA; 1114 } 1115 1116 fw_cfg_add_i32(s, FW_CFG_ID, version); 1117 1118 s->machine_ready.notify = fw_cfg_machine_ready; 1119 qemu_add_machine_init_done_notifier(&s->machine_ready); 1120 } 1121 1122 FWCfgState *fw_cfg_init_io_dma(uint32_t iobase, uint32_t dma_iobase, 1123 AddressSpace *dma_as) 1124 { 1125 DeviceState *dev; 1126 SysBusDevice *sbd; 1127 FWCfgIoState *ios; 1128 FWCfgState *s; 1129 bool dma_requested = dma_iobase && dma_as; 1130 1131 dev = qdev_new(TYPE_FW_CFG_IO); 1132 if (!dma_requested) { 1133 qdev_prop_set_bit(dev, "dma_enabled", false); 1134 } 1135 1136 object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG, 1137 OBJECT(dev)); 1138 1139 sbd = SYS_BUS_DEVICE(dev); 1140 sysbus_realize_and_unref(sbd, &error_fatal); 1141 ios = FW_CFG_IO(dev); 1142 sysbus_add_io(sbd, iobase, &ios->comb_iomem); 1143 1144 s = FW_CFG(dev); 1145 1146 if (s->dma_enabled) { 1147 /* 64 bits for the address field */ 1148 s->dma_as = dma_as; 1149 s->dma_addr = 0; 1150 sysbus_add_io(sbd, dma_iobase, &s->dma_iomem); 1151 } 1152 1153 return s; 1154 } 1155 1156 FWCfgState *fw_cfg_init_io(uint32_t iobase) 1157 { 1158 return fw_cfg_init_io_dma(iobase, 0, NULL); 1159 } 1160 1161 FWCfgState *fw_cfg_init_mem_wide(hwaddr ctl_addr, 1162 hwaddr data_addr, uint32_t data_width, 1163 hwaddr dma_addr, AddressSpace *dma_as) 1164 { 1165 DeviceState *dev; 1166 SysBusDevice *sbd; 1167 FWCfgState *s; 1168 bool dma_requested = dma_addr && dma_as; 1169 1170 dev = qdev_new(TYPE_FW_CFG_MEM); 1171 qdev_prop_set_uint32(dev, "data_width", data_width); 1172 if (!dma_requested) { 1173 qdev_prop_set_bit(dev, "dma_enabled", false); 1174 } 1175 1176 object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG, 1177 OBJECT(dev)); 1178 1179 sbd = SYS_BUS_DEVICE(dev); 1180 sysbus_realize_and_unref(sbd, &error_fatal); 1181 sysbus_mmio_map(sbd, 0, ctl_addr); 1182 sysbus_mmio_map(sbd, 1, data_addr); 1183 1184 s = FW_CFG(dev); 1185 1186 if (s->dma_enabled) { 1187 s->dma_as = dma_as; 1188 s->dma_addr = 0; 1189 sysbus_mmio_map(sbd, 2, dma_addr); 1190 } 1191 1192 return s; 1193 } 1194 1195 FWCfgState *fw_cfg_init_mem(hwaddr ctl_addr, hwaddr data_addr) 1196 { 1197 return fw_cfg_init_mem_wide(ctl_addr, data_addr, 1198 fw_cfg_data_mem_ops.valid.max_access_size, 1199 0, NULL); 1200 } 1201 1202 1203 FWCfgState *fw_cfg_find(void) 1204 { 1205 /* Returns NULL unless there is exactly one fw_cfg device */ 1206 return FW_CFG(object_resolve_path_type("", TYPE_FW_CFG, NULL)); 1207 } 1208 1209 1210 static void fw_cfg_class_init(ObjectClass *klass, void *data) 1211 { 1212 DeviceClass *dc = DEVICE_CLASS(klass); 1213 1214 dc->reset = fw_cfg_reset; 1215 dc->vmsd = &vmstate_fw_cfg; 1216 1217 device_class_set_props(dc, fw_cfg_properties); 1218 } 1219 1220 static const TypeInfo fw_cfg_info = { 1221 .name = TYPE_FW_CFG, 1222 .parent = TYPE_SYS_BUS_DEVICE, 1223 .abstract = true, 1224 .instance_size = sizeof(FWCfgState), 1225 .class_init = fw_cfg_class_init, 1226 }; 1227 1228 static void fw_cfg_file_slots_allocate(FWCfgState *s, Error **errp) 1229 { 1230 uint16_t file_slots_max; 1231 1232 if (fw_cfg_file_slots(s) < FW_CFG_FILE_SLOTS_MIN) { 1233 error_setg(errp, "\"file_slots\" must be at least 0x%x", 1234 FW_CFG_FILE_SLOTS_MIN); 1235 return; 1236 } 1237 1238 /* (UINT16_MAX & FW_CFG_ENTRY_MASK) is the highest inclusive selector value 1239 * that we permit. The actual (exclusive) value coming from the 1240 * configuration is (FW_CFG_FILE_FIRST + fw_cfg_file_slots(s)). */ 1241 file_slots_max = (UINT16_MAX & FW_CFG_ENTRY_MASK) - FW_CFG_FILE_FIRST + 1; 1242 if (fw_cfg_file_slots(s) > file_slots_max) { 1243 error_setg(errp, "\"file_slots\" must not exceed 0x%" PRIx16, 1244 file_slots_max); 1245 return; 1246 } 1247 1248 s->entries[0] = g_new0(FWCfgEntry, fw_cfg_max_entry(s)); 1249 s->entries[1] = g_new0(FWCfgEntry, fw_cfg_max_entry(s)); 1250 s->entry_order = g_new0(int, fw_cfg_max_entry(s)); 1251 } 1252 1253 static Property fw_cfg_io_properties[] = { 1254 DEFINE_PROP_BOOL("dma_enabled", FWCfgIoState, parent_obj.dma_enabled, 1255 true), 1256 DEFINE_PROP_UINT16("x-file-slots", FWCfgIoState, parent_obj.file_slots, 1257 FW_CFG_FILE_SLOTS_DFLT), 1258 DEFINE_PROP_END_OF_LIST(), 1259 }; 1260 1261 static void fw_cfg_io_realize(DeviceState *dev, Error **errp) 1262 { 1263 ERRP_GUARD(); 1264 FWCfgIoState *s = FW_CFG_IO(dev); 1265 1266 fw_cfg_file_slots_allocate(FW_CFG(s), errp); 1267 if (*errp) { 1268 return; 1269 } 1270 1271 /* when using port i/o, the 8-bit data register ALWAYS overlaps 1272 * with half of the 16-bit control register. Hence, the total size 1273 * of the i/o region used is FW_CFG_CTL_SIZE */ 1274 memory_region_init_io(&s->comb_iomem, OBJECT(s), &fw_cfg_comb_mem_ops, 1275 FW_CFG(s), "fwcfg", FW_CFG_CTL_SIZE); 1276 1277 if (FW_CFG(s)->dma_enabled) { 1278 memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s), 1279 &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma", 1280 sizeof(dma_addr_t)); 1281 } 1282 1283 fw_cfg_common_realize(dev, errp); 1284 } 1285 1286 static void fw_cfg_io_class_init(ObjectClass *klass, void *data) 1287 { 1288 DeviceClass *dc = DEVICE_CLASS(klass); 1289 1290 dc->realize = fw_cfg_io_realize; 1291 device_class_set_props(dc, fw_cfg_io_properties); 1292 } 1293 1294 static const TypeInfo fw_cfg_io_info = { 1295 .name = TYPE_FW_CFG_IO, 1296 .parent = TYPE_FW_CFG, 1297 .instance_size = sizeof(FWCfgIoState), 1298 .class_init = fw_cfg_io_class_init, 1299 }; 1300 1301 1302 static Property fw_cfg_mem_properties[] = { 1303 DEFINE_PROP_UINT32("data_width", FWCfgMemState, data_width, -1), 1304 DEFINE_PROP_BOOL("dma_enabled", FWCfgMemState, parent_obj.dma_enabled, 1305 true), 1306 DEFINE_PROP_UINT16("x-file-slots", FWCfgMemState, parent_obj.file_slots, 1307 FW_CFG_FILE_SLOTS_DFLT), 1308 DEFINE_PROP_END_OF_LIST(), 1309 }; 1310 1311 static void fw_cfg_mem_realize(DeviceState *dev, Error **errp) 1312 { 1313 ERRP_GUARD(); 1314 FWCfgMemState *s = FW_CFG_MEM(dev); 1315 SysBusDevice *sbd = SYS_BUS_DEVICE(dev); 1316 const MemoryRegionOps *data_ops = &fw_cfg_data_mem_ops; 1317 1318 fw_cfg_file_slots_allocate(FW_CFG(s), errp); 1319 if (*errp) { 1320 return; 1321 } 1322 1323 memory_region_init_io(&s->ctl_iomem, OBJECT(s), &fw_cfg_ctl_mem_ops, 1324 FW_CFG(s), "fwcfg.ctl", FW_CFG_CTL_SIZE); 1325 sysbus_init_mmio(sbd, &s->ctl_iomem); 1326 1327 if (s->data_width > data_ops->valid.max_access_size) { 1328 s->wide_data_ops = *data_ops; 1329 1330 s->wide_data_ops.valid.max_access_size = s->data_width; 1331 s->wide_data_ops.impl.max_access_size = s->data_width; 1332 data_ops = &s->wide_data_ops; 1333 } 1334 memory_region_init_io(&s->data_iomem, OBJECT(s), data_ops, FW_CFG(s), 1335 "fwcfg.data", data_ops->valid.max_access_size); 1336 sysbus_init_mmio(sbd, &s->data_iomem); 1337 1338 if (FW_CFG(s)->dma_enabled) { 1339 memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s), 1340 &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma", 1341 sizeof(dma_addr_t)); 1342 sysbus_init_mmio(sbd, &FW_CFG(s)->dma_iomem); 1343 } 1344 1345 fw_cfg_common_realize(dev, errp); 1346 } 1347 1348 static void fw_cfg_mem_class_init(ObjectClass *klass, void *data) 1349 { 1350 DeviceClass *dc = DEVICE_CLASS(klass); 1351 1352 dc->realize = fw_cfg_mem_realize; 1353 device_class_set_props(dc, fw_cfg_mem_properties); 1354 } 1355 1356 static const TypeInfo fw_cfg_mem_info = { 1357 .name = TYPE_FW_CFG_MEM, 1358 .parent = TYPE_FW_CFG, 1359 .instance_size = sizeof(FWCfgMemState), 1360 .class_init = fw_cfg_mem_class_init, 1361 }; 1362 1363 static const TypeInfo fw_cfg_data_generator_interface_info = { 1364 .parent = TYPE_INTERFACE, 1365 .name = TYPE_FW_CFG_DATA_GENERATOR_INTERFACE, 1366 .class_size = sizeof(FWCfgDataGeneratorClass), 1367 }; 1368 1369 static void fw_cfg_register_types(void) 1370 { 1371 type_register_static(&fw_cfg_info); 1372 type_register_static(&fw_cfg_io_info); 1373 type_register_static(&fw_cfg_mem_info); 1374 type_register_static(&fw_cfg_data_generator_interface_info); 1375 } 1376 1377 type_init(fw_cfg_register_types) 1378