1 /* 2 * QEMU Firmware configuration device emulation 3 * 4 * Copyright (c) 2008 Gleb Natapov 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "qemu-common.h" 27 #include "sysemu/sysemu.h" 28 #include "sysemu/dma.h" 29 #include "sysemu/reset.h" 30 #include "hw/boards.h" 31 #include "hw/nvram/fw_cfg.h" 32 #include "hw/qdev-properties.h" 33 #include "hw/sysbus.h" 34 #include "migration/qemu-file-types.h" 35 #include "migration/vmstate.h" 36 #include "trace.h" 37 #include "qemu/error-report.h" 38 #include "qemu/option.h" 39 #include "qemu/config-file.h" 40 #include "qemu/cutils.h" 41 #include "qapi/error.h" 42 #include "hw/acpi/aml-build.h" 43 #include "hw/pci/pci_bus.h" 44 45 #define FW_CFG_FILE_SLOTS_DFLT 0x20 46 47 /* FW_CFG_VERSION bits */ 48 #define FW_CFG_VERSION 0x01 49 #define FW_CFG_VERSION_DMA 0x02 50 51 /* FW_CFG_DMA_CONTROL bits */ 52 #define FW_CFG_DMA_CTL_ERROR 0x01 53 #define FW_CFG_DMA_CTL_READ 0x02 54 #define FW_CFG_DMA_CTL_SKIP 0x04 55 #define FW_CFG_DMA_CTL_SELECT 0x08 56 #define FW_CFG_DMA_CTL_WRITE 0x10 57 58 #define FW_CFG_DMA_SIGNATURE 0x51454d5520434647ULL /* "QEMU CFG" */ 59 60 struct FWCfgEntry { 61 uint32_t len; 62 bool allow_write; 63 uint8_t *data; 64 void *callback_opaque; 65 FWCfgCallback select_cb; 66 FWCfgWriteCallback write_cb; 67 }; 68 69 /** 70 * key_name: 71 * 72 * @key: The uint16 selector key. 73 * 74 * Returns: The stringified name if the selector refers to a well-known 75 * numerically defined item, or NULL on key lookup failure. 76 */ 77 static const char *key_name(uint16_t key) 78 { 79 static const char *fw_cfg_wellknown_keys[FW_CFG_FILE_FIRST] = { 80 [FW_CFG_SIGNATURE] = "signature", 81 [FW_CFG_ID] = "id", 82 [FW_CFG_UUID] = "uuid", 83 [FW_CFG_RAM_SIZE] = "ram_size", 84 [FW_CFG_NOGRAPHIC] = "nographic", 85 [FW_CFG_NB_CPUS] = "nb_cpus", 86 [FW_CFG_MACHINE_ID] = "machine_id", 87 [FW_CFG_KERNEL_ADDR] = "kernel_addr", 88 [FW_CFG_KERNEL_SIZE] = "kernel_size", 89 [FW_CFG_KERNEL_CMDLINE] = "kernel_cmdline", 90 [FW_CFG_INITRD_ADDR] = "initrd_addr", 91 [FW_CFG_INITRD_SIZE] = "initdr_size", 92 [FW_CFG_BOOT_DEVICE] = "boot_device", 93 [FW_CFG_NUMA] = "numa", 94 [FW_CFG_BOOT_MENU] = "boot_menu", 95 [FW_CFG_MAX_CPUS] = "max_cpus", 96 [FW_CFG_KERNEL_ENTRY] = "kernel_entry", 97 [FW_CFG_KERNEL_DATA] = "kernel_data", 98 [FW_CFG_INITRD_DATA] = "initrd_data", 99 [FW_CFG_CMDLINE_ADDR] = "cmdline_addr", 100 [FW_CFG_CMDLINE_SIZE] = "cmdline_size", 101 [FW_CFG_CMDLINE_DATA] = "cmdline_data", 102 [FW_CFG_SETUP_ADDR] = "setup_addr", 103 [FW_CFG_SETUP_SIZE] = "setup_size", 104 [FW_CFG_SETUP_DATA] = "setup_data", 105 [FW_CFG_FILE_DIR] = "file_dir", 106 }; 107 108 if (key & FW_CFG_ARCH_LOCAL) { 109 return fw_cfg_arch_key_name(key); 110 } 111 if (key < FW_CFG_FILE_FIRST) { 112 return fw_cfg_wellknown_keys[key]; 113 } 114 115 return NULL; 116 } 117 118 static inline const char *trace_key_name(uint16_t key) 119 { 120 const char *name = key_name(key); 121 122 return name ? name : "unknown"; 123 } 124 125 #define JPG_FILE 0 126 #define BMP_FILE 1 127 128 static char *read_splashfile(char *filename, gsize *file_sizep, 129 int *file_typep) 130 { 131 GError *err = NULL; 132 gchar *content; 133 int file_type; 134 unsigned int filehead; 135 int bmp_bpp; 136 137 if (!g_file_get_contents(filename, &content, file_sizep, &err)) { 138 error_report("failed to read splash file '%s': %s", 139 filename, err->message); 140 g_error_free(err); 141 return NULL; 142 } 143 144 /* check file size */ 145 if (*file_sizep < 30) { 146 goto error; 147 } 148 149 /* check magic ID */ 150 filehead = lduw_le_p(content); 151 if (filehead == 0xd8ff) { 152 file_type = JPG_FILE; 153 } else if (filehead == 0x4d42) { 154 file_type = BMP_FILE; 155 } else { 156 goto error; 157 } 158 159 /* check BMP bpp */ 160 if (file_type == BMP_FILE) { 161 bmp_bpp = lduw_le_p(&content[28]); 162 if (bmp_bpp != 24) { 163 goto error; 164 } 165 } 166 167 /* return values */ 168 *file_typep = file_type; 169 170 return content; 171 172 error: 173 error_report("splash file '%s' format not recognized; must be JPEG " 174 "or 24 bit BMP", filename); 175 g_free(content); 176 return NULL; 177 } 178 179 static void fw_cfg_bootsplash(FWCfgState *s) 180 { 181 const char *boot_splash_filename = NULL; 182 const char *boot_splash_time = NULL; 183 char *filename, *file_data; 184 gsize file_size; 185 int file_type; 186 187 /* get user configuration */ 188 QemuOptsList *plist = qemu_find_opts("boot-opts"); 189 QemuOpts *opts = QTAILQ_FIRST(&plist->head); 190 boot_splash_filename = qemu_opt_get(opts, "splash"); 191 boot_splash_time = qemu_opt_get(opts, "splash-time"); 192 193 /* insert splash time if user configurated */ 194 if (boot_splash_time) { 195 int64_t bst_val = qemu_opt_get_number(opts, "splash-time", -1); 196 uint16_t bst_le16; 197 198 /* validate the input */ 199 if (bst_val < 0 || bst_val > 0xffff) { 200 error_report("splash-time is invalid," 201 "it should be a value between 0 and 65535"); 202 exit(1); 203 } 204 /* use little endian format */ 205 bst_le16 = cpu_to_le16(bst_val); 206 fw_cfg_add_file(s, "etc/boot-menu-wait", 207 g_memdup(&bst_le16, sizeof bst_le16), sizeof bst_le16); 208 } 209 210 /* insert splash file if user configurated */ 211 if (boot_splash_filename) { 212 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, boot_splash_filename); 213 if (filename == NULL) { 214 error_report("failed to find file '%s'", boot_splash_filename); 215 return; 216 } 217 218 /* loading file data */ 219 file_data = read_splashfile(filename, &file_size, &file_type); 220 if (file_data == NULL) { 221 g_free(filename); 222 return; 223 } 224 g_free(boot_splash_filedata); 225 boot_splash_filedata = (uint8_t *)file_data; 226 227 /* insert data */ 228 if (file_type == JPG_FILE) { 229 fw_cfg_add_file(s, "bootsplash.jpg", 230 boot_splash_filedata, file_size); 231 } else { 232 fw_cfg_add_file(s, "bootsplash.bmp", 233 boot_splash_filedata, file_size); 234 } 235 g_free(filename); 236 } 237 } 238 239 static void fw_cfg_reboot(FWCfgState *s) 240 { 241 const char *reboot_timeout = NULL; 242 uint64_t rt_val = -1; 243 uint32_t rt_le32; 244 245 /* get user configuration */ 246 QemuOptsList *plist = qemu_find_opts("boot-opts"); 247 QemuOpts *opts = QTAILQ_FIRST(&plist->head); 248 reboot_timeout = qemu_opt_get(opts, "reboot-timeout"); 249 250 if (reboot_timeout) { 251 rt_val = qemu_opt_get_number(opts, "reboot-timeout", -1); 252 253 /* validate the input */ 254 if (rt_val > 0xffff && rt_val != (uint64_t)-1) { 255 error_report("reboot timeout is invalid," 256 "it should be a value between -1 and 65535"); 257 exit(1); 258 } 259 } 260 261 rt_le32 = cpu_to_le32(rt_val); 262 fw_cfg_add_file(s, "etc/boot-fail-wait", g_memdup(&rt_le32, 4), 4); 263 } 264 265 static void fw_cfg_write(FWCfgState *s, uint8_t value) 266 { 267 /* nothing, write support removed in QEMU v2.4+ */ 268 } 269 270 static inline uint16_t fw_cfg_file_slots(const FWCfgState *s) 271 { 272 return s->file_slots; 273 } 274 275 /* Note: this function returns an exclusive limit. */ 276 static inline uint32_t fw_cfg_max_entry(const FWCfgState *s) 277 { 278 return FW_CFG_FILE_FIRST + fw_cfg_file_slots(s); 279 } 280 281 static int fw_cfg_select(FWCfgState *s, uint16_t key) 282 { 283 int arch, ret; 284 FWCfgEntry *e; 285 286 s->cur_offset = 0; 287 if ((key & FW_CFG_ENTRY_MASK) >= fw_cfg_max_entry(s)) { 288 s->cur_entry = FW_CFG_INVALID; 289 ret = 0; 290 } else { 291 s->cur_entry = key; 292 ret = 1; 293 /* entry successfully selected, now run callback if present */ 294 arch = !!(key & FW_CFG_ARCH_LOCAL); 295 e = &s->entries[arch][key & FW_CFG_ENTRY_MASK]; 296 if (e->select_cb) { 297 e->select_cb(e->callback_opaque); 298 } 299 } 300 301 trace_fw_cfg_select(s, key, trace_key_name(key), ret); 302 return ret; 303 } 304 305 static uint64_t fw_cfg_data_read(void *opaque, hwaddr addr, unsigned size) 306 { 307 FWCfgState *s = opaque; 308 int arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL); 309 FWCfgEntry *e = (s->cur_entry == FW_CFG_INVALID) ? NULL : 310 &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK]; 311 uint64_t value = 0; 312 313 assert(size > 0 && size <= sizeof(value)); 314 if (s->cur_entry != FW_CFG_INVALID && e->data && s->cur_offset < e->len) { 315 /* The least significant 'size' bytes of the return value are 316 * expected to contain a string preserving portion of the item 317 * data, padded with zeros on the right in case we run out early. 318 * In technical terms, we're composing the host-endian representation 319 * of the big endian interpretation of the fw_cfg string. 320 */ 321 do { 322 value = (value << 8) | e->data[s->cur_offset++]; 323 } while (--size && s->cur_offset < e->len); 324 /* If size is still not zero, we *did* run out early, so continue 325 * left-shifting, to add the appropriate number of padding zeros 326 * on the right. 327 */ 328 value <<= 8 * size; 329 } 330 331 trace_fw_cfg_read(s, value); 332 return value; 333 } 334 335 static void fw_cfg_data_mem_write(void *opaque, hwaddr addr, 336 uint64_t value, unsigned size) 337 { 338 FWCfgState *s = opaque; 339 unsigned i = size; 340 341 do { 342 fw_cfg_write(s, value >> (8 * --i)); 343 } while (i); 344 } 345 346 static void fw_cfg_dma_transfer(FWCfgState *s) 347 { 348 dma_addr_t len; 349 FWCfgDmaAccess dma; 350 int arch; 351 FWCfgEntry *e; 352 int read = 0, write = 0; 353 dma_addr_t dma_addr; 354 355 /* Reset the address before the next access */ 356 dma_addr = s->dma_addr; 357 s->dma_addr = 0; 358 359 if (dma_memory_read(s->dma_as, dma_addr, &dma, sizeof(dma))) { 360 stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control), 361 FW_CFG_DMA_CTL_ERROR); 362 return; 363 } 364 365 dma.address = be64_to_cpu(dma.address); 366 dma.length = be32_to_cpu(dma.length); 367 dma.control = be32_to_cpu(dma.control); 368 369 if (dma.control & FW_CFG_DMA_CTL_SELECT) { 370 fw_cfg_select(s, dma.control >> 16); 371 } 372 373 arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL); 374 e = (s->cur_entry == FW_CFG_INVALID) ? NULL : 375 &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK]; 376 377 if (dma.control & FW_CFG_DMA_CTL_READ) { 378 read = 1; 379 write = 0; 380 } else if (dma.control & FW_CFG_DMA_CTL_WRITE) { 381 read = 0; 382 write = 1; 383 } else if (dma.control & FW_CFG_DMA_CTL_SKIP) { 384 read = 0; 385 write = 0; 386 } else { 387 dma.length = 0; 388 } 389 390 dma.control = 0; 391 392 while (dma.length > 0 && !(dma.control & FW_CFG_DMA_CTL_ERROR)) { 393 if (s->cur_entry == FW_CFG_INVALID || !e->data || 394 s->cur_offset >= e->len) { 395 len = dma.length; 396 397 /* If the access is not a read access, it will be a skip access, 398 * tested before. 399 */ 400 if (read) { 401 if (dma_memory_set(s->dma_as, dma.address, 0, len)) { 402 dma.control |= FW_CFG_DMA_CTL_ERROR; 403 } 404 } 405 if (write) { 406 dma.control |= FW_CFG_DMA_CTL_ERROR; 407 } 408 } else { 409 if (dma.length <= (e->len - s->cur_offset)) { 410 len = dma.length; 411 } else { 412 len = (e->len - s->cur_offset); 413 } 414 415 /* If the access is not a read access, it will be a skip access, 416 * tested before. 417 */ 418 if (read) { 419 if (dma_memory_write(s->dma_as, dma.address, 420 &e->data[s->cur_offset], len)) { 421 dma.control |= FW_CFG_DMA_CTL_ERROR; 422 } 423 } 424 if (write) { 425 if (!e->allow_write || 426 len != dma.length || 427 dma_memory_read(s->dma_as, dma.address, 428 &e->data[s->cur_offset], len)) { 429 dma.control |= FW_CFG_DMA_CTL_ERROR; 430 } else if (e->write_cb) { 431 e->write_cb(e->callback_opaque, s->cur_offset, len); 432 } 433 } 434 435 s->cur_offset += len; 436 } 437 438 dma.address += len; 439 dma.length -= len; 440 441 } 442 443 stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control), 444 dma.control); 445 446 trace_fw_cfg_read(s, 0); 447 } 448 449 static uint64_t fw_cfg_dma_mem_read(void *opaque, hwaddr addr, 450 unsigned size) 451 { 452 /* Return a signature value (and handle various read sizes) */ 453 return extract64(FW_CFG_DMA_SIGNATURE, (8 - addr - size) * 8, size * 8); 454 } 455 456 static void fw_cfg_dma_mem_write(void *opaque, hwaddr addr, 457 uint64_t value, unsigned size) 458 { 459 FWCfgState *s = opaque; 460 461 if (size == 4) { 462 if (addr == 0) { 463 /* FWCfgDmaAccess high address */ 464 s->dma_addr = value << 32; 465 } else if (addr == 4) { 466 /* FWCfgDmaAccess low address */ 467 s->dma_addr |= value; 468 fw_cfg_dma_transfer(s); 469 } 470 } else if (size == 8 && addr == 0) { 471 s->dma_addr = value; 472 fw_cfg_dma_transfer(s); 473 } 474 } 475 476 static bool fw_cfg_dma_mem_valid(void *opaque, hwaddr addr, 477 unsigned size, bool is_write, 478 MemTxAttrs attrs) 479 { 480 return !is_write || ((size == 4 && (addr == 0 || addr == 4)) || 481 (size == 8 && addr == 0)); 482 } 483 484 static bool fw_cfg_data_mem_valid(void *opaque, hwaddr addr, 485 unsigned size, bool is_write, 486 MemTxAttrs attrs) 487 { 488 return addr == 0; 489 } 490 491 static uint64_t fw_cfg_ctl_mem_read(void *opaque, hwaddr addr, unsigned size) 492 { 493 return 0; 494 } 495 496 static void fw_cfg_ctl_mem_write(void *opaque, hwaddr addr, 497 uint64_t value, unsigned size) 498 { 499 fw_cfg_select(opaque, (uint16_t)value); 500 } 501 502 static bool fw_cfg_ctl_mem_valid(void *opaque, hwaddr addr, 503 unsigned size, bool is_write, 504 MemTxAttrs attrs) 505 { 506 return is_write && size == 2; 507 } 508 509 static void fw_cfg_comb_write(void *opaque, hwaddr addr, 510 uint64_t value, unsigned size) 511 { 512 switch (size) { 513 case 1: 514 fw_cfg_write(opaque, (uint8_t)value); 515 break; 516 case 2: 517 fw_cfg_select(opaque, (uint16_t)value); 518 break; 519 } 520 } 521 522 static bool fw_cfg_comb_valid(void *opaque, hwaddr addr, 523 unsigned size, bool is_write, 524 MemTxAttrs attrs) 525 { 526 return (size == 1) || (is_write && size == 2); 527 } 528 529 static const MemoryRegionOps fw_cfg_ctl_mem_ops = { 530 .read = fw_cfg_ctl_mem_read, 531 .write = fw_cfg_ctl_mem_write, 532 .endianness = DEVICE_BIG_ENDIAN, 533 .valid.accepts = fw_cfg_ctl_mem_valid, 534 }; 535 536 static const MemoryRegionOps fw_cfg_data_mem_ops = { 537 .read = fw_cfg_data_read, 538 .write = fw_cfg_data_mem_write, 539 .endianness = DEVICE_BIG_ENDIAN, 540 .valid = { 541 .min_access_size = 1, 542 .max_access_size = 1, 543 .accepts = fw_cfg_data_mem_valid, 544 }, 545 }; 546 547 static const MemoryRegionOps fw_cfg_comb_mem_ops = { 548 .read = fw_cfg_data_read, 549 .write = fw_cfg_comb_write, 550 .endianness = DEVICE_LITTLE_ENDIAN, 551 .valid.accepts = fw_cfg_comb_valid, 552 }; 553 554 static const MemoryRegionOps fw_cfg_dma_mem_ops = { 555 .read = fw_cfg_dma_mem_read, 556 .write = fw_cfg_dma_mem_write, 557 .endianness = DEVICE_BIG_ENDIAN, 558 .valid.accepts = fw_cfg_dma_mem_valid, 559 .valid.max_access_size = 8, 560 .impl.max_access_size = 8, 561 }; 562 563 static void fw_cfg_reset(DeviceState *d) 564 { 565 FWCfgState *s = FW_CFG(d); 566 567 /* we never register a read callback for FW_CFG_SIGNATURE */ 568 fw_cfg_select(s, FW_CFG_SIGNATURE); 569 } 570 571 /* Save restore 32 bit int as uint16_t 572 This is a Big hack, but it is how the old state did it. 573 Or we broke compatibility in the state, or we can't use struct tm 574 */ 575 576 static int get_uint32_as_uint16(QEMUFile *f, void *pv, size_t size, 577 const VMStateField *field) 578 { 579 uint32_t *v = pv; 580 *v = qemu_get_be16(f); 581 return 0; 582 } 583 584 static int put_unused(QEMUFile *f, void *pv, size_t size, 585 const VMStateField *field, QJSON *vmdesc) 586 { 587 fprintf(stderr, "uint32_as_uint16 is only used for backward compatibility.\n"); 588 fprintf(stderr, "This functions shouldn't be called.\n"); 589 590 return 0; 591 } 592 593 static const VMStateInfo vmstate_hack_uint32_as_uint16 = { 594 .name = "int32_as_uint16", 595 .get = get_uint32_as_uint16, 596 .put = put_unused, 597 }; 598 599 #define VMSTATE_UINT16_HACK(_f, _s, _t) \ 600 VMSTATE_SINGLE_TEST(_f, _s, _t, 0, vmstate_hack_uint32_as_uint16, uint32_t) 601 602 603 static bool is_version_1(void *opaque, int version_id) 604 { 605 return version_id == 1; 606 } 607 608 bool fw_cfg_dma_enabled(void *opaque) 609 { 610 FWCfgState *s = opaque; 611 612 return s->dma_enabled; 613 } 614 615 static bool fw_cfg_acpi_mr_restore(void *opaque) 616 { 617 FWCfgState *s = opaque; 618 bool mr_aligned; 619 620 mr_aligned = QEMU_IS_ALIGNED(s->table_mr_size, qemu_real_host_page_size) && 621 QEMU_IS_ALIGNED(s->linker_mr_size, qemu_real_host_page_size) && 622 QEMU_IS_ALIGNED(s->rsdp_mr_size, qemu_real_host_page_size); 623 return s->acpi_mr_restore && !mr_aligned; 624 } 625 626 static void fw_cfg_update_mr(FWCfgState *s, uint16_t key, size_t size) 627 { 628 MemoryRegion *mr; 629 ram_addr_t offset; 630 int arch = !!(key & FW_CFG_ARCH_LOCAL); 631 void *ptr; 632 633 key &= FW_CFG_ENTRY_MASK; 634 assert(key < fw_cfg_max_entry(s)); 635 636 ptr = s->entries[arch][key].data; 637 mr = memory_region_from_host(ptr, &offset); 638 639 memory_region_ram_resize(mr, size, &error_abort); 640 } 641 642 static int fw_cfg_acpi_mr_restore_post_load(void *opaque, int version_id) 643 { 644 FWCfgState *s = opaque; 645 int i, index; 646 647 assert(s->files); 648 649 index = be32_to_cpu(s->files->count); 650 651 for (i = 0; i < index; i++) { 652 if (!strcmp(s->files->f[i].name, ACPI_BUILD_TABLE_FILE)) { 653 fw_cfg_update_mr(s, FW_CFG_FILE_FIRST + i, s->table_mr_size); 654 } else if (!strcmp(s->files->f[i].name, ACPI_BUILD_LOADER_FILE)) { 655 fw_cfg_update_mr(s, FW_CFG_FILE_FIRST + i, s->linker_mr_size); 656 } else if (!strcmp(s->files->f[i].name, ACPI_BUILD_RSDP_FILE)) { 657 fw_cfg_update_mr(s, FW_CFG_FILE_FIRST + i, s->rsdp_mr_size); 658 } 659 } 660 661 return 0; 662 } 663 664 static const VMStateDescription vmstate_fw_cfg_dma = { 665 .name = "fw_cfg/dma", 666 .needed = fw_cfg_dma_enabled, 667 .fields = (VMStateField[]) { 668 VMSTATE_UINT64(dma_addr, FWCfgState), 669 VMSTATE_END_OF_LIST() 670 }, 671 }; 672 673 static const VMStateDescription vmstate_fw_cfg_acpi_mr = { 674 .name = "fw_cfg/acpi_mr", 675 .version_id = 1, 676 .minimum_version_id = 1, 677 .needed = fw_cfg_acpi_mr_restore, 678 .post_load = fw_cfg_acpi_mr_restore_post_load, 679 .fields = (VMStateField[]) { 680 VMSTATE_UINT64(table_mr_size, FWCfgState), 681 VMSTATE_UINT64(linker_mr_size, FWCfgState), 682 VMSTATE_UINT64(rsdp_mr_size, FWCfgState), 683 VMSTATE_END_OF_LIST() 684 }, 685 }; 686 687 static const VMStateDescription vmstate_fw_cfg = { 688 .name = "fw_cfg", 689 .version_id = 2, 690 .minimum_version_id = 1, 691 .fields = (VMStateField[]) { 692 VMSTATE_UINT16(cur_entry, FWCfgState), 693 VMSTATE_UINT16_HACK(cur_offset, FWCfgState, is_version_1), 694 VMSTATE_UINT32_V(cur_offset, FWCfgState, 2), 695 VMSTATE_END_OF_LIST() 696 }, 697 .subsections = (const VMStateDescription*[]) { 698 &vmstate_fw_cfg_dma, 699 &vmstate_fw_cfg_acpi_mr, 700 NULL, 701 } 702 }; 703 704 static void fw_cfg_add_bytes_callback(FWCfgState *s, uint16_t key, 705 FWCfgCallback select_cb, 706 FWCfgWriteCallback write_cb, 707 void *callback_opaque, 708 void *data, size_t len, 709 bool read_only) 710 { 711 int arch = !!(key & FW_CFG_ARCH_LOCAL); 712 713 key &= FW_CFG_ENTRY_MASK; 714 715 assert(key < fw_cfg_max_entry(s) && len < UINT32_MAX); 716 assert(s->entries[arch][key].data == NULL); /* avoid key conflict */ 717 718 s->entries[arch][key].data = data; 719 s->entries[arch][key].len = (uint32_t)len; 720 s->entries[arch][key].select_cb = select_cb; 721 s->entries[arch][key].write_cb = write_cb; 722 s->entries[arch][key].callback_opaque = callback_opaque; 723 s->entries[arch][key].allow_write = !read_only; 724 } 725 726 static void *fw_cfg_modify_bytes_read(FWCfgState *s, uint16_t key, 727 void *data, size_t len) 728 { 729 void *ptr; 730 int arch = !!(key & FW_CFG_ARCH_LOCAL); 731 732 key &= FW_CFG_ENTRY_MASK; 733 734 assert(key < fw_cfg_max_entry(s) && len < UINT32_MAX); 735 736 /* return the old data to the function caller, avoid memory leak */ 737 ptr = s->entries[arch][key].data; 738 s->entries[arch][key].data = data; 739 s->entries[arch][key].len = len; 740 s->entries[arch][key].callback_opaque = NULL; 741 s->entries[arch][key].allow_write = false; 742 743 return ptr; 744 } 745 746 void fw_cfg_add_bytes(FWCfgState *s, uint16_t key, void *data, size_t len) 747 { 748 trace_fw_cfg_add_bytes(key, trace_key_name(key), len); 749 fw_cfg_add_bytes_callback(s, key, NULL, NULL, NULL, data, len, true); 750 } 751 752 void fw_cfg_add_string(FWCfgState *s, uint16_t key, const char *value) 753 { 754 size_t sz = strlen(value) + 1; 755 756 trace_fw_cfg_add_string(key, trace_key_name(key), value); 757 fw_cfg_add_bytes(s, key, g_memdup(value, sz), sz); 758 } 759 760 void fw_cfg_modify_string(FWCfgState *s, uint16_t key, const char *value) 761 { 762 size_t sz = strlen(value) + 1; 763 char *old; 764 765 old = fw_cfg_modify_bytes_read(s, key, g_memdup(value, sz), sz); 766 g_free(old); 767 } 768 769 void fw_cfg_add_i16(FWCfgState *s, uint16_t key, uint16_t value) 770 { 771 uint16_t *copy; 772 773 copy = g_malloc(sizeof(value)); 774 *copy = cpu_to_le16(value); 775 trace_fw_cfg_add_i16(key, trace_key_name(key), value); 776 fw_cfg_add_bytes(s, key, copy, sizeof(value)); 777 } 778 779 void fw_cfg_modify_i16(FWCfgState *s, uint16_t key, uint16_t value) 780 { 781 uint16_t *copy, *old; 782 783 copy = g_malloc(sizeof(value)); 784 *copy = cpu_to_le16(value); 785 old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value)); 786 g_free(old); 787 } 788 789 void fw_cfg_add_i32(FWCfgState *s, uint16_t key, uint32_t value) 790 { 791 uint32_t *copy; 792 793 copy = g_malloc(sizeof(value)); 794 *copy = cpu_to_le32(value); 795 trace_fw_cfg_add_i32(key, trace_key_name(key), value); 796 fw_cfg_add_bytes(s, key, copy, sizeof(value)); 797 } 798 799 void fw_cfg_modify_i32(FWCfgState *s, uint16_t key, uint32_t value) 800 { 801 uint32_t *copy, *old; 802 803 copy = g_malloc(sizeof(value)); 804 *copy = cpu_to_le32(value); 805 old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value)); 806 g_free(old); 807 } 808 809 void fw_cfg_add_i64(FWCfgState *s, uint16_t key, uint64_t value) 810 { 811 uint64_t *copy; 812 813 copy = g_malloc(sizeof(value)); 814 *copy = cpu_to_le64(value); 815 trace_fw_cfg_add_i64(key, trace_key_name(key), value); 816 fw_cfg_add_bytes(s, key, copy, sizeof(value)); 817 } 818 819 void fw_cfg_modify_i64(FWCfgState *s, uint16_t key, uint64_t value) 820 { 821 uint64_t *copy, *old; 822 823 copy = g_malloc(sizeof(value)); 824 *copy = cpu_to_le64(value); 825 old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value)); 826 g_free(old); 827 } 828 829 void fw_cfg_set_order_override(FWCfgState *s, int order) 830 { 831 assert(s->fw_cfg_order_override == 0); 832 s->fw_cfg_order_override = order; 833 } 834 835 void fw_cfg_reset_order_override(FWCfgState *s) 836 { 837 assert(s->fw_cfg_order_override != 0); 838 s->fw_cfg_order_override = 0; 839 } 840 841 /* 842 * This is the legacy order list. For legacy systems, files are in 843 * the fw_cfg in the order defined below, by the "order" value. Note 844 * that some entries (VGA ROMs, NIC option ROMS, etc.) go into a 845 * specific area, but there may be more than one and they occur in the 846 * order that the user specifies them on the command line. Those are 847 * handled in a special manner, using the order override above. 848 * 849 * For non-legacy, the files are sorted by filename to avoid this kind 850 * of complexity in the future. 851 * 852 * This is only for x86, other arches don't implement versioning so 853 * they won't set legacy mode. 854 */ 855 static struct { 856 const char *name; 857 int order; 858 } fw_cfg_order[] = { 859 { "etc/boot-menu-wait", 10 }, 860 { "bootsplash.jpg", 11 }, 861 { "bootsplash.bmp", 12 }, 862 { "etc/boot-fail-wait", 15 }, 863 { "etc/smbios/smbios-tables", 20 }, 864 { "etc/smbios/smbios-anchor", 30 }, 865 { "etc/e820", 40 }, 866 { "etc/reserved-memory-end", 50 }, 867 { "genroms/kvmvapic.bin", 55 }, 868 { "genroms/linuxboot.bin", 60 }, 869 { }, /* VGA ROMs from pc_vga_init come here, 70. */ 870 { }, /* NIC option ROMs from pc_nic_init come here, 80. */ 871 { "etc/system-states", 90 }, 872 { }, /* User ROMs come here, 100. */ 873 { }, /* Device FW comes here, 110. */ 874 { "etc/extra-pci-roots", 120 }, 875 { "etc/acpi/tables", 130 }, 876 { "etc/table-loader", 140 }, 877 { "etc/tpm/log", 150 }, 878 { "etc/acpi/rsdp", 160 }, 879 { "bootorder", 170 }, 880 881 #define FW_CFG_ORDER_OVERRIDE_LAST 200 882 }; 883 884 /* 885 * Any sub-page size update to these table MRs will be lost during migration, 886 * as we use aligned size in ram_load_precopy() -> qemu_ram_resize() path. 887 * In order to avoid the inconsistency in sizes save them seperately and 888 * migrate over in vmstate post_load(). 889 */ 890 static void fw_cfg_acpi_mr_save(FWCfgState *s, const char *filename, size_t len) 891 { 892 if (!strcmp(filename, ACPI_BUILD_TABLE_FILE)) { 893 s->table_mr_size = len; 894 } else if (!strcmp(filename, ACPI_BUILD_LOADER_FILE)) { 895 s->linker_mr_size = len; 896 } else if (!strcmp(filename, ACPI_BUILD_RSDP_FILE)) { 897 s->rsdp_mr_size = len; 898 } 899 } 900 901 static int get_fw_cfg_order(FWCfgState *s, const char *name) 902 { 903 int i; 904 905 if (s->fw_cfg_order_override > 0) { 906 return s->fw_cfg_order_override; 907 } 908 909 for (i = 0; i < ARRAY_SIZE(fw_cfg_order); i++) { 910 if (fw_cfg_order[i].name == NULL) { 911 continue; 912 } 913 914 if (strcmp(name, fw_cfg_order[i].name) == 0) { 915 return fw_cfg_order[i].order; 916 } 917 } 918 919 /* Stick unknown stuff at the end. */ 920 warn_report("Unknown firmware file in legacy mode: %s", name); 921 return FW_CFG_ORDER_OVERRIDE_LAST; 922 } 923 924 void fw_cfg_add_file_callback(FWCfgState *s, const char *filename, 925 FWCfgCallback select_cb, 926 FWCfgWriteCallback write_cb, 927 void *callback_opaque, 928 void *data, size_t len, bool read_only) 929 { 930 int i, index, count; 931 size_t dsize; 932 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 933 int order = 0; 934 935 if (!s->files) { 936 dsize = sizeof(uint32_t) + sizeof(FWCfgFile) * fw_cfg_file_slots(s); 937 s->files = g_malloc0(dsize); 938 fw_cfg_add_bytes(s, FW_CFG_FILE_DIR, s->files, dsize); 939 } 940 941 count = be32_to_cpu(s->files->count); 942 assert(count < fw_cfg_file_slots(s)); 943 944 /* Find the insertion point. */ 945 if (mc->legacy_fw_cfg_order) { 946 /* 947 * Sort by order. For files with the same order, we keep them 948 * in the sequence in which they were added. 949 */ 950 order = get_fw_cfg_order(s, filename); 951 for (index = count; 952 index > 0 && order < s->entry_order[index - 1]; 953 index--); 954 } else { 955 /* Sort by file name. */ 956 for (index = count; 957 index > 0 && strcmp(filename, s->files->f[index - 1].name) < 0; 958 index--); 959 } 960 961 /* 962 * Move all the entries from the index point and after down one 963 * to create a slot for the new entry. Because calculations are 964 * being done with the index, make it so that "i" is the current 965 * index and "i - 1" is the one being copied from, thus the 966 * unusual start and end in the for statement. 967 */ 968 for (i = count; i > index; i--) { 969 s->files->f[i] = s->files->f[i - 1]; 970 s->files->f[i].select = cpu_to_be16(FW_CFG_FILE_FIRST + i); 971 s->entries[0][FW_CFG_FILE_FIRST + i] = 972 s->entries[0][FW_CFG_FILE_FIRST + i - 1]; 973 s->entry_order[i] = s->entry_order[i - 1]; 974 } 975 976 memset(&s->files->f[index], 0, sizeof(FWCfgFile)); 977 memset(&s->entries[0][FW_CFG_FILE_FIRST + index], 0, sizeof(FWCfgEntry)); 978 979 pstrcpy(s->files->f[index].name, sizeof(s->files->f[index].name), filename); 980 for (i = 0; i <= count; i++) { 981 if (i != index && 982 strcmp(s->files->f[index].name, s->files->f[i].name) == 0) { 983 error_report("duplicate fw_cfg file name: %s", 984 s->files->f[index].name); 985 exit(1); 986 } 987 } 988 989 fw_cfg_add_bytes_callback(s, FW_CFG_FILE_FIRST + index, 990 select_cb, write_cb, 991 callback_opaque, data, len, 992 read_only); 993 994 s->files->f[index].size = cpu_to_be32(len); 995 s->files->f[index].select = cpu_to_be16(FW_CFG_FILE_FIRST + index); 996 s->entry_order[index] = order; 997 trace_fw_cfg_add_file(s, index, s->files->f[index].name, len); 998 999 s->files->count = cpu_to_be32(count+1); 1000 fw_cfg_acpi_mr_save(s, filename, len); 1001 } 1002 1003 void fw_cfg_add_file(FWCfgState *s, const char *filename, 1004 void *data, size_t len) 1005 { 1006 fw_cfg_add_file_callback(s, filename, NULL, NULL, NULL, data, len, true); 1007 } 1008 1009 void *fw_cfg_modify_file(FWCfgState *s, const char *filename, 1010 void *data, size_t len) 1011 { 1012 int i, index; 1013 void *ptr = NULL; 1014 1015 assert(s->files); 1016 1017 index = be32_to_cpu(s->files->count); 1018 1019 for (i = 0; i < index; i++) { 1020 if (strcmp(filename, s->files->f[i].name) == 0) { 1021 ptr = fw_cfg_modify_bytes_read(s, FW_CFG_FILE_FIRST + i, 1022 data, len); 1023 s->files->f[i].size = cpu_to_be32(len); 1024 fw_cfg_acpi_mr_save(s, filename, len); 1025 return ptr; 1026 } 1027 } 1028 1029 assert(index < fw_cfg_file_slots(s)); 1030 1031 /* add new one */ 1032 fw_cfg_add_file_callback(s, filename, NULL, NULL, NULL, data, len, true); 1033 return NULL; 1034 } 1035 1036 bool fw_cfg_add_from_generator(FWCfgState *s, const char *filename, 1037 const char *gen_id, Error **errp) 1038 { 1039 FWCfgDataGeneratorClass *klass; 1040 GByteArray *array; 1041 Object *obj; 1042 gsize size; 1043 1044 obj = object_resolve_path_component(object_get_objects_root(), gen_id); 1045 if (!obj) { 1046 error_setg(errp, "Cannot find object ID '%s'", gen_id); 1047 return false; 1048 } 1049 if (!object_dynamic_cast(obj, TYPE_FW_CFG_DATA_GENERATOR_INTERFACE)) { 1050 error_setg(errp, "Object ID '%s' is not a '%s' subclass", 1051 gen_id, TYPE_FW_CFG_DATA_GENERATOR_INTERFACE); 1052 return false; 1053 } 1054 klass = FW_CFG_DATA_GENERATOR_GET_CLASS(obj); 1055 array = klass->get_data(obj, errp); 1056 if (!array) { 1057 return false; 1058 } 1059 size = array->len; 1060 fw_cfg_add_file(s, filename, g_byte_array_free(array, FALSE), size); 1061 1062 return true; 1063 } 1064 1065 void fw_cfg_add_extra_pci_roots(PCIBus *bus, FWCfgState *s) 1066 { 1067 int extra_hosts = 0; 1068 1069 if (!bus) { 1070 return; 1071 } 1072 1073 QLIST_FOREACH(bus, &bus->child, sibling) { 1074 /* look for expander root buses */ 1075 if (pci_bus_is_root(bus)) { 1076 extra_hosts++; 1077 } 1078 } 1079 1080 if (extra_hosts && s) { 1081 uint64_t *val = g_malloc(sizeof(*val)); 1082 *val = cpu_to_le64(extra_hosts); 1083 fw_cfg_add_file(s, "etc/extra-pci-roots", val, sizeof(*val)); 1084 } 1085 } 1086 1087 static void fw_cfg_machine_reset(void *opaque) 1088 { 1089 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 1090 FWCfgState *s = opaque; 1091 void *ptr; 1092 size_t len; 1093 char *buf; 1094 1095 buf = get_boot_devices_list(&len); 1096 ptr = fw_cfg_modify_file(s, "bootorder", (uint8_t *)buf, len); 1097 g_free(ptr); 1098 1099 if (!mc->legacy_fw_cfg_order) { 1100 buf = get_boot_devices_lchs_list(&len); 1101 ptr = fw_cfg_modify_file(s, "bios-geometry", (uint8_t *)buf, len); 1102 g_free(ptr); 1103 } 1104 } 1105 1106 static void fw_cfg_machine_ready(struct Notifier *n, void *data) 1107 { 1108 FWCfgState *s = container_of(n, FWCfgState, machine_ready); 1109 qemu_register_reset(fw_cfg_machine_reset, s); 1110 } 1111 1112 static Property fw_cfg_properties[] = { 1113 DEFINE_PROP_BOOL("acpi-mr-restore", FWCfgState, acpi_mr_restore, true), 1114 DEFINE_PROP_END_OF_LIST(), 1115 }; 1116 1117 static void fw_cfg_common_realize(DeviceState *dev, Error **errp) 1118 { 1119 FWCfgState *s = FW_CFG(dev); 1120 MachineState *machine = MACHINE(qdev_get_machine()); 1121 uint32_t version = FW_CFG_VERSION; 1122 1123 if (!fw_cfg_find()) { 1124 error_setg(errp, "at most one %s device is permitted", TYPE_FW_CFG); 1125 return; 1126 } 1127 1128 fw_cfg_add_bytes(s, FW_CFG_SIGNATURE, (char *)"QEMU", 4); 1129 fw_cfg_add_bytes(s, FW_CFG_UUID, &qemu_uuid, 16); 1130 fw_cfg_add_i16(s, FW_CFG_NOGRAPHIC, (uint16_t)!machine->enable_graphics); 1131 fw_cfg_add_i16(s, FW_CFG_BOOT_MENU, (uint16_t)boot_menu); 1132 fw_cfg_bootsplash(s); 1133 fw_cfg_reboot(s); 1134 1135 if (s->dma_enabled) { 1136 version |= FW_CFG_VERSION_DMA; 1137 } 1138 1139 fw_cfg_add_i32(s, FW_CFG_ID, version); 1140 1141 s->machine_ready.notify = fw_cfg_machine_ready; 1142 qemu_add_machine_init_done_notifier(&s->machine_ready); 1143 } 1144 1145 FWCfgState *fw_cfg_init_io_dma(uint32_t iobase, uint32_t dma_iobase, 1146 AddressSpace *dma_as) 1147 { 1148 DeviceState *dev; 1149 SysBusDevice *sbd; 1150 FWCfgIoState *ios; 1151 FWCfgState *s; 1152 bool dma_requested = dma_iobase && dma_as; 1153 1154 dev = qdev_new(TYPE_FW_CFG_IO); 1155 if (!dma_requested) { 1156 qdev_prop_set_bit(dev, "dma_enabled", false); 1157 } 1158 1159 object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG, 1160 OBJECT(dev)); 1161 1162 sbd = SYS_BUS_DEVICE(dev); 1163 sysbus_realize_and_unref(sbd, &error_fatal); 1164 ios = FW_CFG_IO(dev); 1165 sysbus_add_io(sbd, iobase, &ios->comb_iomem); 1166 1167 s = FW_CFG(dev); 1168 1169 if (s->dma_enabled) { 1170 /* 64 bits for the address field */ 1171 s->dma_as = dma_as; 1172 s->dma_addr = 0; 1173 sysbus_add_io(sbd, dma_iobase, &s->dma_iomem); 1174 } 1175 1176 return s; 1177 } 1178 1179 FWCfgState *fw_cfg_init_io(uint32_t iobase) 1180 { 1181 return fw_cfg_init_io_dma(iobase, 0, NULL); 1182 } 1183 1184 FWCfgState *fw_cfg_init_mem_wide(hwaddr ctl_addr, 1185 hwaddr data_addr, uint32_t data_width, 1186 hwaddr dma_addr, AddressSpace *dma_as) 1187 { 1188 DeviceState *dev; 1189 SysBusDevice *sbd; 1190 FWCfgState *s; 1191 bool dma_requested = dma_addr && dma_as; 1192 1193 dev = qdev_new(TYPE_FW_CFG_MEM); 1194 qdev_prop_set_uint32(dev, "data_width", data_width); 1195 if (!dma_requested) { 1196 qdev_prop_set_bit(dev, "dma_enabled", false); 1197 } 1198 1199 object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG, 1200 OBJECT(dev)); 1201 1202 sbd = SYS_BUS_DEVICE(dev); 1203 sysbus_realize_and_unref(sbd, &error_fatal); 1204 sysbus_mmio_map(sbd, 0, ctl_addr); 1205 sysbus_mmio_map(sbd, 1, data_addr); 1206 1207 s = FW_CFG(dev); 1208 1209 if (s->dma_enabled) { 1210 s->dma_as = dma_as; 1211 s->dma_addr = 0; 1212 sysbus_mmio_map(sbd, 2, dma_addr); 1213 } 1214 1215 return s; 1216 } 1217 1218 FWCfgState *fw_cfg_init_mem(hwaddr ctl_addr, hwaddr data_addr) 1219 { 1220 return fw_cfg_init_mem_wide(ctl_addr, data_addr, 1221 fw_cfg_data_mem_ops.valid.max_access_size, 1222 0, NULL); 1223 } 1224 1225 1226 FWCfgState *fw_cfg_find(void) 1227 { 1228 /* Returns NULL unless there is exactly one fw_cfg device */ 1229 return FW_CFG(object_resolve_path_type("", TYPE_FW_CFG, NULL)); 1230 } 1231 1232 1233 static void fw_cfg_class_init(ObjectClass *klass, void *data) 1234 { 1235 DeviceClass *dc = DEVICE_CLASS(klass); 1236 1237 dc->reset = fw_cfg_reset; 1238 dc->vmsd = &vmstate_fw_cfg; 1239 1240 device_class_set_props(dc, fw_cfg_properties); 1241 } 1242 1243 static const TypeInfo fw_cfg_info = { 1244 .name = TYPE_FW_CFG, 1245 .parent = TYPE_SYS_BUS_DEVICE, 1246 .abstract = true, 1247 .instance_size = sizeof(FWCfgState), 1248 .class_init = fw_cfg_class_init, 1249 }; 1250 1251 static void fw_cfg_file_slots_allocate(FWCfgState *s, Error **errp) 1252 { 1253 uint16_t file_slots_max; 1254 1255 if (fw_cfg_file_slots(s) < FW_CFG_FILE_SLOTS_MIN) { 1256 error_setg(errp, "\"file_slots\" must be at least 0x%x", 1257 FW_CFG_FILE_SLOTS_MIN); 1258 return; 1259 } 1260 1261 /* (UINT16_MAX & FW_CFG_ENTRY_MASK) is the highest inclusive selector value 1262 * that we permit. The actual (exclusive) value coming from the 1263 * configuration is (FW_CFG_FILE_FIRST + fw_cfg_file_slots(s)). */ 1264 file_slots_max = (UINT16_MAX & FW_CFG_ENTRY_MASK) - FW_CFG_FILE_FIRST + 1; 1265 if (fw_cfg_file_slots(s) > file_slots_max) { 1266 error_setg(errp, "\"file_slots\" must not exceed 0x%" PRIx16, 1267 file_slots_max); 1268 return; 1269 } 1270 1271 s->entries[0] = g_new0(FWCfgEntry, fw_cfg_max_entry(s)); 1272 s->entries[1] = g_new0(FWCfgEntry, fw_cfg_max_entry(s)); 1273 s->entry_order = g_new0(int, fw_cfg_max_entry(s)); 1274 } 1275 1276 static Property fw_cfg_io_properties[] = { 1277 DEFINE_PROP_BOOL("dma_enabled", FWCfgIoState, parent_obj.dma_enabled, 1278 true), 1279 DEFINE_PROP_UINT16("x-file-slots", FWCfgIoState, parent_obj.file_slots, 1280 FW_CFG_FILE_SLOTS_DFLT), 1281 DEFINE_PROP_END_OF_LIST(), 1282 }; 1283 1284 static void fw_cfg_io_realize(DeviceState *dev, Error **errp) 1285 { 1286 ERRP_GUARD(); 1287 FWCfgIoState *s = FW_CFG_IO(dev); 1288 1289 fw_cfg_file_slots_allocate(FW_CFG(s), errp); 1290 if (*errp) { 1291 return; 1292 } 1293 1294 /* when using port i/o, the 8-bit data register ALWAYS overlaps 1295 * with half of the 16-bit control register. Hence, the total size 1296 * of the i/o region used is FW_CFG_CTL_SIZE */ 1297 memory_region_init_io(&s->comb_iomem, OBJECT(s), &fw_cfg_comb_mem_ops, 1298 FW_CFG(s), "fwcfg", FW_CFG_CTL_SIZE); 1299 1300 if (FW_CFG(s)->dma_enabled) { 1301 memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s), 1302 &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma", 1303 sizeof(dma_addr_t)); 1304 } 1305 1306 fw_cfg_common_realize(dev, errp); 1307 } 1308 1309 static void fw_cfg_io_class_init(ObjectClass *klass, void *data) 1310 { 1311 DeviceClass *dc = DEVICE_CLASS(klass); 1312 1313 dc->realize = fw_cfg_io_realize; 1314 device_class_set_props(dc, fw_cfg_io_properties); 1315 } 1316 1317 static const TypeInfo fw_cfg_io_info = { 1318 .name = TYPE_FW_CFG_IO, 1319 .parent = TYPE_FW_CFG, 1320 .instance_size = sizeof(FWCfgIoState), 1321 .class_init = fw_cfg_io_class_init, 1322 }; 1323 1324 1325 static Property fw_cfg_mem_properties[] = { 1326 DEFINE_PROP_UINT32("data_width", FWCfgMemState, data_width, -1), 1327 DEFINE_PROP_BOOL("dma_enabled", FWCfgMemState, parent_obj.dma_enabled, 1328 true), 1329 DEFINE_PROP_UINT16("x-file-slots", FWCfgMemState, parent_obj.file_slots, 1330 FW_CFG_FILE_SLOTS_DFLT), 1331 DEFINE_PROP_END_OF_LIST(), 1332 }; 1333 1334 static void fw_cfg_mem_realize(DeviceState *dev, Error **errp) 1335 { 1336 ERRP_GUARD(); 1337 FWCfgMemState *s = FW_CFG_MEM(dev); 1338 SysBusDevice *sbd = SYS_BUS_DEVICE(dev); 1339 const MemoryRegionOps *data_ops = &fw_cfg_data_mem_ops; 1340 1341 fw_cfg_file_slots_allocate(FW_CFG(s), errp); 1342 if (*errp) { 1343 return; 1344 } 1345 1346 memory_region_init_io(&s->ctl_iomem, OBJECT(s), &fw_cfg_ctl_mem_ops, 1347 FW_CFG(s), "fwcfg.ctl", FW_CFG_CTL_SIZE); 1348 sysbus_init_mmio(sbd, &s->ctl_iomem); 1349 1350 if (s->data_width > data_ops->valid.max_access_size) { 1351 s->wide_data_ops = *data_ops; 1352 1353 s->wide_data_ops.valid.max_access_size = s->data_width; 1354 s->wide_data_ops.impl.max_access_size = s->data_width; 1355 data_ops = &s->wide_data_ops; 1356 } 1357 memory_region_init_io(&s->data_iomem, OBJECT(s), data_ops, FW_CFG(s), 1358 "fwcfg.data", data_ops->valid.max_access_size); 1359 sysbus_init_mmio(sbd, &s->data_iomem); 1360 1361 if (FW_CFG(s)->dma_enabled) { 1362 memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s), 1363 &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma", 1364 sizeof(dma_addr_t)); 1365 sysbus_init_mmio(sbd, &FW_CFG(s)->dma_iomem); 1366 } 1367 1368 fw_cfg_common_realize(dev, errp); 1369 } 1370 1371 static void fw_cfg_mem_class_init(ObjectClass *klass, void *data) 1372 { 1373 DeviceClass *dc = DEVICE_CLASS(klass); 1374 1375 dc->realize = fw_cfg_mem_realize; 1376 device_class_set_props(dc, fw_cfg_mem_properties); 1377 } 1378 1379 static const TypeInfo fw_cfg_mem_info = { 1380 .name = TYPE_FW_CFG_MEM, 1381 .parent = TYPE_FW_CFG, 1382 .instance_size = sizeof(FWCfgMemState), 1383 .class_init = fw_cfg_mem_class_init, 1384 }; 1385 1386 static void fw_cfg_register_types(void) 1387 { 1388 type_register_static(&fw_cfg_info); 1389 type_register_static(&fw_cfg_io_info); 1390 type_register_static(&fw_cfg_mem_info); 1391 } 1392 1393 type_init(fw_cfg_register_types) 1394