1 /* 2 * QEMU Firmware configuration device emulation 3 * 4 * Copyright (c) 2008 Gleb Natapov 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "qemu-common.h" 27 #include "hw/hw.h" 28 #include "sysemu/sysemu.h" 29 #include "sysemu/dma.h" 30 #include "hw/boards.h" 31 #include "hw/nvram/fw_cfg.h" 32 #include "hw/sysbus.h" 33 #include "trace.h" 34 #include "qemu/error-report.h" 35 #include "qemu/option.h" 36 #include "qemu/config-file.h" 37 #include "qemu/cutils.h" 38 #include "qapi/error.h" 39 40 #define FW_CFG_FILE_SLOTS_DFLT 0x20 41 42 /* FW_CFG_VERSION bits */ 43 #define FW_CFG_VERSION 0x01 44 #define FW_CFG_VERSION_DMA 0x02 45 46 /* FW_CFG_DMA_CONTROL bits */ 47 #define FW_CFG_DMA_CTL_ERROR 0x01 48 #define FW_CFG_DMA_CTL_READ 0x02 49 #define FW_CFG_DMA_CTL_SKIP 0x04 50 #define FW_CFG_DMA_CTL_SELECT 0x08 51 #define FW_CFG_DMA_CTL_WRITE 0x10 52 53 #define FW_CFG_DMA_SIGNATURE 0x51454d5520434647ULL /* "QEMU CFG" */ 54 55 struct FWCfgEntry { 56 uint32_t len; 57 bool allow_write; 58 uint8_t *data; 59 void *callback_opaque; 60 FWCfgCallback select_cb; 61 FWCfgWriteCallback write_cb; 62 }; 63 64 /** 65 * key_name: 66 * 67 * @key: The uint16 selector key. 68 * 69 * Returns: The stringified name if the selector refers to a well-known 70 * numerically defined item, or NULL on key lookup failure. 71 */ 72 static const char *key_name(uint16_t key) 73 { 74 static const char *fw_cfg_wellknown_keys[FW_CFG_FILE_FIRST] = { 75 [FW_CFG_SIGNATURE] = "signature", 76 [FW_CFG_ID] = "id", 77 [FW_CFG_UUID] = "uuid", 78 [FW_CFG_RAM_SIZE] = "ram_size", 79 [FW_CFG_NOGRAPHIC] = "nographic", 80 [FW_CFG_NB_CPUS] = "nb_cpus", 81 [FW_CFG_MACHINE_ID] = "machine_id", 82 [FW_CFG_KERNEL_ADDR] = "kernel_addr", 83 [FW_CFG_KERNEL_SIZE] = "kernel_size", 84 [FW_CFG_KERNEL_CMDLINE] = "kernel_cmdline", 85 [FW_CFG_INITRD_ADDR] = "initrd_addr", 86 [FW_CFG_INITRD_SIZE] = "initdr_size", 87 [FW_CFG_BOOT_DEVICE] = "boot_device", 88 [FW_CFG_NUMA] = "numa", 89 [FW_CFG_BOOT_MENU] = "boot_menu", 90 [FW_CFG_MAX_CPUS] = "max_cpus", 91 [FW_CFG_KERNEL_ENTRY] = "kernel_entry", 92 [FW_CFG_KERNEL_DATA] = "kernel_data", 93 [FW_CFG_INITRD_DATA] = "initrd_data", 94 [FW_CFG_CMDLINE_ADDR] = "cmdline_addr", 95 [FW_CFG_CMDLINE_SIZE] = "cmdline_size", 96 [FW_CFG_CMDLINE_DATA] = "cmdline_data", 97 [FW_CFG_SETUP_ADDR] = "setup_addr", 98 [FW_CFG_SETUP_SIZE] = "setup_size", 99 [FW_CFG_SETUP_DATA] = "setup_data", 100 [FW_CFG_FILE_DIR] = "file_dir", 101 }; 102 103 if (key & FW_CFG_ARCH_LOCAL) { 104 return fw_cfg_arch_key_name(key); 105 } 106 if (key < FW_CFG_FILE_FIRST) { 107 return fw_cfg_wellknown_keys[key]; 108 } 109 110 return NULL; 111 } 112 113 static inline const char *trace_key_name(uint16_t key) 114 { 115 const char *name = key_name(key); 116 117 return name ? name : "unknown"; 118 } 119 120 #define JPG_FILE 0 121 #define BMP_FILE 1 122 123 static char *read_splashfile(char *filename, gsize *file_sizep, 124 int *file_typep) 125 { 126 GError *err = NULL; 127 gchar *content; 128 int file_type; 129 unsigned int filehead; 130 int bmp_bpp; 131 132 if (!g_file_get_contents(filename, &content, file_sizep, &err)) { 133 error_report("failed to read splash file '%s': %s", 134 filename, err->message); 135 g_error_free(err); 136 return NULL; 137 } 138 139 /* check file size */ 140 if (*file_sizep < 30) { 141 goto error; 142 } 143 144 /* check magic ID */ 145 filehead = lduw_le_p(content); 146 if (filehead == 0xd8ff) { 147 file_type = JPG_FILE; 148 } else if (filehead == 0x4d42) { 149 file_type = BMP_FILE; 150 } else { 151 goto error; 152 } 153 154 /* check BMP bpp */ 155 if (file_type == BMP_FILE) { 156 bmp_bpp = lduw_le_p(&content[28]); 157 if (bmp_bpp != 24) { 158 goto error; 159 } 160 } 161 162 /* return values */ 163 *file_typep = file_type; 164 165 return content; 166 167 error: 168 error_report("splash file '%s' format not recognized; must be JPEG " 169 "or 24 bit BMP", filename); 170 g_free(content); 171 return NULL; 172 } 173 174 static void fw_cfg_bootsplash(FWCfgState *s) 175 { 176 const char *boot_splash_filename = NULL; 177 const char *boot_splash_time = NULL; 178 char *filename, *file_data; 179 gsize file_size; 180 int file_type; 181 182 /* get user configuration */ 183 QemuOptsList *plist = qemu_find_opts("boot-opts"); 184 QemuOpts *opts = QTAILQ_FIRST(&plist->head); 185 boot_splash_filename = qemu_opt_get(opts, "splash"); 186 boot_splash_time = qemu_opt_get(opts, "splash-time"); 187 188 /* insert splash time if user configurated */ 189 if (boot_splash_time) { 190 int64_t bst_val = qemu_opt_get_number(opts, "splash-time", -1); 191 uint16_t bst_le16; 192 193 /* validate the input */ 194 if (bst_val < 0 || bst_val > 0xffff) { 195 error_report("splash-time is invalid," 196 "it should be a value between 0 and 65535"); 197 exit(1); 198 } 199 /* use little endian format */ 200 bst_le16 = cpu_to_le16(bst_val); 201 fw_cfg_add_file(s, "etc/boot-menu-wait", 202 g_memdup(&bst_le16, sizeof bst_le16), sizeof bst_le16); 203 } 204 205 /* insert splash file if user configurated */ 206 if (boot_splash_filename) { 207 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, boot_splash_filename); 208 if (filename == NULL) { 209 error_report("failed to find file '%s'", boot_splash_filename); 210 return; 211 } 212 213 /* loading file data */ 214 file_data = read_splashfile(filename, &file_size, &file_type); 215 if (file_data == NULL) { 216 g_free(filename); 217 return; 218 } 219 g_free(boot_splash_filedata); 220 boot_splash_filedata = (uint8_t *)file_data; 221 222 /* insert data */ 223 if (file_type == JPG_FILE) { 224 fw_cfg_add_file(s, "bootsplash.jpg", 225 boot_splash_filedata, file_size); 226 } else { 227 fw_cfg_add_file(s, "bootsplash.bmp", 228 boot_splash_filedata, file_size); 229 } 230 g_free(filename); 231 } 232 } 233 234 static void fw_cfg_reboot(FWCfgState *s) 235 { 236 const char *reboot_timeout = NULL; 237 int64_t rt_val = -1; 238 uint32_t rt_le32; 239 240 /* get user configuration */ 241 QemuOptsList *plist = qemu_find_opts("boot-opts"); 242 QemuOpts *opts = QTAILQ_FIRST(&plist->head); 243 reboot_timeout = qemu_opt_get(opts, "reboot-timeout"); 244 245 if (reboot_timeout) { 246 rt_val = qemu_opt_get_number(opts, "reboot-timeout", -1); 247 /* validate the input */ 248 if (rt_val < 0 || rt_val > 0xffff) { 249 error_report("reboot timeout is invalid," 250 "it should be a value between 0 and 65535"); 251 exit(1); 252 } 253 } 254 255 rt_le32 = cpu_to_le32(rt_val); 256 fw_cfg_add_file(s, "etc/boot-fail-wait", g_memdup(&rt_le32, 4), 4); 257 } 258 259 static void fw_cfg_write(FWCfgState *s, uint8_t value) 260 { 261 /* nothing, write support removed in QEMU v2.4+ */ 262 } 263 264 static inline uint16_t fw_cfg_file_slots(const FWCfgState *s) 265 { 266 return s->file_slots; 267 } 268 269 /* Note: this function returns an exclusive limit. */ 270 static inline uint32_t fw_cfg_max_entry(const FWCfgState *s) 271 { 272 return FW_CFG_FILE_FIRST + fw_cfg_file_slots(s); 273 } 274 275 static int fw_cfg_select(FWCfgState *s, uint16_t key) 276 { 277 int arch, ret; 278 FWCfgEntry *e; 279 280 s->cur_offset = 0; 281 if ((key & FW_CFG_ENTRY_MASK) >= fw_cfg_max_entry(s)) { 282 s->cur_entry = FW_CFG_INVALID; 283 ret = 0; 284 } else { 285 s->cur_entry = key; 286 ret = 1; 287 /* entry successfully selected, now run callback if present */ 288 arch = !!(key & FW_CFG_ARCH_LOCAL); 289 e = &s->entries[arch][key & FW_CFG_ENTRY_MASK]; 290 if (e->select_cb) { 291 e->select_cb(e->callback_opaque); 292 } 293 } 294 295 trace_fw_cfg_select(s, key, trace_key_name(key), ret); 296 return ret; 297 } 298 299 static uint64_t fw_cfg_data_read(void *opaque, hwaddr addr, unsigned size) 300 { 301 FWCfgState *s = opaque; 302 int arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL); 303 FWCfgEntry *e = (s->cur_entry == FW_CFG_INVALID) ? NULL : 304 &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK]; 305 uint64_t value = 0; 306 307 assert(size > 0 && size <= sizeof(value)); 308 if (s->cur_entry != FW_CFG_INVALID && e->data && s->cur_offset < e->len) { 309 /* The least significant 'size' bytes of the return value are 310 * expected to contain a string preserving portion of the item 311 * data, padded with zeros on the right in case we run out early. 312 * In technical terms, we're composing the host-endian representation 313 * of the big endian interpretation of the fw_cfg string. 314 */ 315 do { 316 value = (value << 8) | e->data[s->cur_offset++]; 317 } while (--size && s->cur_offset < e->len); 318 /* If size is still not zero, we *did* run out early, so continue 319 * left-shifting, to add the appropriate number of padding zeros 320 * on the right. 321 */ 322 value <<= 8 * size; 323 } 324 325 trace_fw_cfg_read(s, value); 326 return value; 327 } 328 329 static void fw_cfg_data_mem_write(void *opaque, hwaddr addr, 330 uint64_t value, unsigned size) 331 { 332 FWCfgState *s = opaque; 333 unsigned i = size; 334 335 do { 336 fw_cfg_write(s, value >> (8 * --i)); 337 } while (i); 338 } 339 340 static void fw_cfg_dma_transfer(FWCfgState *s) 341 { 342 dma_addr_t len; 343 FWCfgDmaAccess dma; 344 int arch; 345 FWCfgEntry *e; 346 int read = 0, write = 0; 347 dma_addr_t dma_addr; 348 349 /* Reset the address before the next access */ 350 dma_addr = s->dma_addr; 351 s->dma_addr = 0; 352 353 if (dma_memory_read(s->dma_as, dma_addr, &dma, sizeof(dma))) { 354 stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control), 355 FW_CFG_DMA_CTL_ERROR); 356 return; 357 } 358 359 dma.address = be64_to_cpu(dma.address); 360 dma.length = be32_to_cpu(dma.length); 361 dma.control = be32_to_cpu(dma.control); 362 363 if (dma.control & FW_CFG_DMA_CTL_SELECT) { 364 fw_cfg_select(s, dma.control >> 16); 365 } 366 367 arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL); 368 e = (s->cur_entry == FW_CFG_INVALID) ? NULL : 369 &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK]; 370 371 if (dma.control & FW_CFG_DMA_CTL_READ) { 372 read = 1; 373 write = 0; 374 } else if (dma.control & FW_CFG_DMA_CTL_WRITE) { 375 read = 0; 376 write = 1; 377 } else if (dma.control & FW_CFG_DMA_CTL_SKIP) { 378 read = 0; 379 write = 0; 380 } else { 381 dma.length = 0; 382 } 383 384 dma.control = 0; 385 386 while (dma.length > 0 && !(dma.control & FW_CFG_DMA_CTL_ERROR)) { 387 if (s->cur_entry == FW_CFG_INVALID || !e->data || 388 s->cur_offset >= e->len) { 389 len = dma.length; 390 391 /* If the access is not a read access, it will be a skip access, 392 * tested before. 393 */ 394 if (read) { 395 if (dma_memory_set(s->dma_as, dma.address, 0, len)) { 396 dma.control |= FW_CFG_DMA_CTL_ERROR; 397 } 398 } 399 if (write) { 400 dma.control |= FW_CFG_DMA_CTL_ERROR; 401 } 402 } else { 403 if (dma.length <= (e->len - s->cur_offset)) { 404 len = dma.length; 405 } else { 406 len = (e->len - s->cur_offset); 407 } 408 409 /* If the access is not a read access, it will be a skip access, 410 * tested before. 411 */ 412 if (read) { 413 if (dma_memory_write(s->dma_as, dma.address, 414 &e->data[s->cur_offset], len)) { 415 dma.control |= FW_CFG_DMA_CTL_ERROR; 416 } 417 } 418 if (write) { 419 if (!e->allow_write || 420 len != dma.length || 421 dma_memory_read(s->dma_as, dma.address, 422 &e->data[s->cur_offset], len)) { 423 dma.control |= FW_CFG_DMA_CTL_ERROR; 424 } else if (e->write_cb) { 425 e->write_cb(e->callback_opaque, s->cur_offset, len); 426 } 427 } 428 429 s->cur_offset += len; 430 } 431 432 dma.address += len; 433 dma.length -= len; 434 435 } 436 437 stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control), 438 dma.control); 439 440 trace_fw_cfg_read(s, 0); 441 } 442 443 static uint64_t fw_cfg_dma_mem_read(void *opaque, hwaddr addr, 444 unsigned size) 445 { 446 /* Return a signature value (and handle various read sizes) */ 447 return extract64(FW_CFG_DMA_SIGNATURE, (8 - addr - size) * 8, size * 8); 448 } 449 450 static void fw_cfg_dma_mem_write(void *opaque, hwaddr addr, 451 uint64_t value, unsigned size) 452 { 453 FWCfgState *s = opaque; 454 455 if (size == 4) { 456 if (addr == 0) { 457 /* FWCfgDmaAccess high address */ 458 s->dma_addr = value << 32; 459 } else if (addr == 4) { 460 /* FWCfgDmaAccess low address */ 461 s->dma_addr |= value; 462 fw_cfg_dma_transfer(s); 463 } 464 } else if (size == 8 && addr == 0) { 465 s->dma_addr = value; 466 fw_cfg_dma_transfer(s); 467 } 468 } 469 470 static bool fw_cfg_dma_mem_valid(void *opaque, hwaddr addr, 471 unsigned size, bool is_write, 472 MemTxAttrs attrs) 473 { 474 return !is_write || ((size == 4 && (addr == 0 || addr == 4)) || 475 (size == 8 && addr == 0)); 476 } 477 478 static bool fw_cfg_data_mem_valid(void *opaque, hwaddr addr, 479 unsigned size, bool is_write, 480 MemTxAttrs attrs) 481 { 482 return addr == 0; 483 } 484 485 static uint64_t fw_cfg_ctl_mem_read(void *opaque, hwaddr addr, unsigned size) 486 { 487 return 0; 488 } 489 490 static void fw_cfg_ctl_mem_write(void *opaque, hwaddr addr, 491 uint64_t value, unsigned size) 492 { 493 fw_cfg_select(opaque, (uint16_t)value); 494 } 495 496 static bool fw_cfg_ctl_mem_valid(void *opaque, hwaddr addr, 497 unsigned size, bool is_write, 498 MemTxAttrs attrs) 499 { 500 return is_write && size == 2; 501 } 502 503 static void fw_cfg_comb_write(void *opaque, hwaddr addr, 504 uint64_t value, unsigned size) 505 { 506 switch (size) { 507 case 1: 508 fw_cfg_write(opaque, (uint8_t)value); 509 break; 510 case 2: 511 fw_cfg_select(opaque, (uint16_t)value); 512 break; 513 } 514 } 515 516 static bool fw_cfg_comb_valid(void *opaque, hwaddr addr, 517 unsigned size, bool is_write, 518 MemTxAttrs attrs) 519 { 520 return (size == 1) || (is_write && size == 2); 521 } 522 523 static const MemoryRegionOps fw_cfg_ctl_mem_ops = { 524 .read = fw_cfg_ctl_mem_read, 525 .write = fw_cfg_ctl_mem_write, 526 .endianness = DEVICE_BIG_ENDIAN, 527 .valid.accepts = fw_cfg_ctl_mem_valid, 528 }; 529 530 static const MemoryRegionOps fw_cfg_data_mem_ops = { 531 .read = fw_cfg_data_read, 532 .write = fw_cfg_data_mem_write, 533 .endianness = DEVICE_BIG_ENDIAN, 534 .valid = { 535 .min_access_size = 1, 536 .max_access_size = 1, 537 .accepts = fw_cfg_data_mem_valid, 538 }, 539 }; 540 541 static const MemoryRegionOps fw_cfg_comb_mem_ops = { 542 .read = fw_cfg_data_read, 543 .write = fw_cfg_comb_write, 544 .endianness = DEVICE_LITTLE_ENDIAN, 545 .valid.accepts = fw_cfg_comb_valid, 546 }; 547 548 static const MemoryRegionOps fw_cfg_dma_mem_ops = { 549 .read = fw_cfg_dma_mem_read, 550 .write = fw_cfg_dma_mem_write, 551 .endianness = DEVICE_BIG_ENDIAN, 552 .valid.accepts = fw_cfg_dma_mem_valid, 553 .valid.max_access_size = 8, 554 .impl.max_access_size = 8, 555 }; 556 557 static void fw_cfg_reset(DeviceState *d) 558 { 559 FWCfgState *s = FW_CFG(d); 560 561 /* we never register a read callback for FW_CFG_SIGNATURE */ 562 fw_cfg_select(s, FW_CFG_SIGNATURE); 563 } 564 565 /* Save restore 32 bit int as uint16_t 566 This is a Big hack, but it is how the old state did it. 567 Or we broke compatibility in the state, or we can't use struct tm 568 */ 569 570 static int get_uint32_as_uint16(QEMUFile *f, void *pv, size_t size, 571 const VMStateField *field) 572 { 573 uint32_t *v = pv; 574 *v = qemu_get_be16(f); 575 return 0; 576 } 577 578 static int put_unused(QEMUFile *f, void *pv, size_t size, 579 const VMStateField *field, QJSON *vmdesc) 580 { 581 fprintf(stderr, "uint32_as_uint16 is only used for backward compatibility.\n"); 582 fprintf(stderr, "This functions shouldn't be called.\n"); 583 584 return 0; 585 } 586 587 static const VMStateInfo vmstate_hack_uint32_as_uint16 = { 588 .name = "int32_as_uint16", 589 .get = get_uint32_as_uint16, 590 .put = put_unused, 591 }; 592 593 #define VMSTATE_UINT16_HACK(_f, _s, _t) \ 594 VMSTATE_SINGLE_TEST(_f, _s, _t, 0, vmstate_hack_uint32_as_uint16, uint32_t) 595 596 597 static bool is_version_1(void *opaque, int version_id) 598 { 599 return version_id == 1; 600 } 601 602 bool fw_cfg_dma_enabled(void *opaque) 603 { 604 FWCfgState *s = opaque; 605 606 return s->dma_enabled; 607 } 608 609 static const VMStateDescription vmstate_fw_cfg_dma = { 610 .name = "fw_cfg/dma", 611 .needed = fw_cfg_dma_enabled, 612 .fields = (VMStateField[]) { 613 VMSTATE_UINT64(dma_addr, FWCfgState), 614 VMSTATE_END_OF_LIST() 615 }, 616 }; 617 618 static const VMStateDescription vmstate_fw_cfg = { 619 .name = "fw_cfg", 620 .version_id = 2, 621 .minimum_version_id = 1, 622 .fields = (VMStateField[]) { 623 VMSTATE_UINT16(cur_entry, FWCfgState), 624 VMSTATE_UINT16_HACK(cur_offset, FWCfgState, is_version_1), 625 VMSTATE_UINT32_V(cur_offset, FWCfgState, 2), 626 VMSTATE_END_OF_LIST() 627 }, 628 .subsections = (const VMStateDescription*[]) { 629 &vmstate_fw_cfg_dma, 630 NULL, 631 } 632 }; 633 634 static void fw_cfg_add_bytes_callback(FWCfgState *s, uint16_t key, 635 FWCfgCallback select_cb, 636 FWCfgWriteCallback write_cb, 637 void *callback_opaque, 638 void *data, size_t len, 639 bool read_only) 640 { 641 int arch = !!(key & FW_CFG_ARCH_LOCAL); 642 643 key &= FW_CFG_ENTRY_MASK; 644 645 assert(key < fw_cfg_max_entry(s) && len < UINT32_MAX); 646 assert(s->entries[arch][key].data == NULL); /* avoid key conflict */ 647 648 s->entries[arch][key].data = data; 649 s->entries[arch][key].len = (uint32_t)len; 650 s->entries[arch][key].select_cb = select_cb; 651 s->entries[arch][key].write_cb = write_cb; 652 s->entries[arch][key].callback_opaque = callback_opaque; 653 s->entries[arch][key].allow_write = !read_only; 654 } 655 656 static void *fw_cfg_modify_bytes_read(FWCfgState *s, uint16_t key, 657 void *data, size_t len) 658 { 659 void *ptr; 660 int arch = !!(key & FW_CFG_ARCH_LOCAL); 661 662 key &= FW_CFG_ENTRY_MASK; 663 664 assert(key < fw_cfg_max_entry(s) && len < UINT32_MAX); 665 666 /* return the old data to the function caller, avoid memory leak */ 667 ptr = s->entries[arch][key].data; 668 s->entries[arch][key].data = data; 669 s->entries[arch][key].len = len; 670 s->entries[arch][key].callback_opaque = NULL; 671 s->entries[arch][key].allow_write = false; 672 673 return ptr; 674 } 675 676 void fw_cfg_add_bytes(FWCfgState *s, uint16_t key, void *data, size_t len) 677 { 678 trace_fw_cfg_add_bytes(key, trace_key_name(key), len); 679 fw_cfg_add_bytes_callback(s, key, NULL, NULL, NULL, data, len, true); 680 } 681 682 void fw_cfg_add_string(FWCfgState *s, uint16_t key, const char *value) 683 { 684 size_t sz = strlen(value) + 1; 685 686 trace_fw_cfg_add_string(key, trace_key_name(key), value); 687 fw_cfg_add_bytes(s, key, g_memdup(value, sz), sz); 688 } 689 690 void fw_cfg_add_i16(FWCfgState *s, uint16_t key, uint16_t value) 691 { 692 uint16_t *copy; 693 694 copy = g_malloc(sizeof(value)); 695 *copy = cpu_to_le16(value); 696 trace_fw_cfg_add_i16(key, trace_key_name(key), value); 697 fw_cfg_add_bytes(s, key, copy, sizeof(value)); 698 } 699 700 void fw_cfg_modify_i16(FWCfgState *s, uint16_t key, uint16_t value) 701 { 702 uint16_t *copy, *old; 703 704 copy = g_malloc(sizeof(value)); 705 *copy = cpu_to_le16(value); 706 old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value)); 707 g_free(old); 708 } 709 710 void fw_cfg_add_i32(FWCfgState *s, uint16_t key, uint32_t value) 711 { 712 uint32_t *copy; 713 714 copy = g_malloc(sizeof(value)); 715 *copy = cpu_to_le32(value); 716 trace_fw_cfg_add_i32(key, trace_key_name(key), value); 717 fw_cfg_add_bytes(s, key, copy, sizeof(value)); 718 } 719 720 void fw_cfg_add_i64(FWCfgState *s, uint16_t key, uint64_t value) 721 { 722 uint64_t *copy; 723 724 copy = g_malloc(sizeof(value)); 725 *copy = cpu_to_le64(value); 726 trace_fw_cfg_add_i64(key, trace_key_name(key), value); 727 fw_cfg_add_bytes(s, key, copy, sizeof(value)); 728 } 729 730 void fw_cfg_set_order_override(FWCfgState *s, int order) 731 { 732 assert(s->fw_cfg_order_override == 0); 733 s->fw_cfg_order_override = order; 734 } 735 736 void fw_cfg_reset_order_override(FWCfgState *s) 737 { 738 assert(s->fw_cfg_order_override != 0); 739 s->fw_cfg_order_override = 0; 740 } 741 742 /* 743 * This is the legacy order list. For legacy systems, files are in 744 * the fw_cfg in the order defined below, by the "order" value. Note 745 * that some entries (VGA ROMs, NIC option ROMS, etc.) go into a 746 * specific area, but there may be more than one and they occur in the 747 * order that the user specifies them on the command line. Those are 748 * handled in a special manner, using the order override above. 749 * 750 * For non-legacy, the files are sorted by filename to avoid this kind 751 * of complexity in the future. 752 * 753 * This is only for x86, other arches don't implement versioning so 754 * they won't set legacy mode. 755 */ 756 static struct { 757 const char *name; 758 int order; 759 } fw_cfg_order[] = { 760 { "etc/boot-menu-wait", 10 }, 761 { "bootsplash.jpg", 11 }, 762 { "bootsplash.bmp", 12 }, 763 { "etc/boot-fail-wait", 15 }, 764 { "etc/smbios/smbios-tables", 20 }, 765 { "etc/smbios/smbios-anchor", 30 }, 766 { "etc/e820", 40 }, 767 { "etc/reserved-memory-end", 50 }, 768 { "genroms/kvmvapic.bin", 55 }, 769 { "genroms/linuxboot.bin", 60 }, 770 { }, /* VGA ROMs from pc_vga_init come here, 70. */ 771 { }, /* NIC option ROMs from pc_nic_init come here, 80. */ 772 { "etc/system-states", 90 }, 773 { }, /* User ROMs come here, 100. */ 774 { }, /* Device FW comes here, 110. */ 775 { "etc/extra-pci-roots", 120 }, 776 { "etc/acpi/tables", 130 }, 777 { "etc/table-loader", 140 }, 778 { "etc/tpm/log", 150 }, 779 { "etc/acpi/rsdp", 160 }, 780 { "bootorder", 170 }, 781 782 #define FW_CFG_ORDER_OVERRIDE_LAST 200 783 }; 784 785 static int get_fw_cfg_order(FWCfgState *s, const char *name) 786 { 787 int i; 788 789 if (s->fw_cfg_order_override > 0) { 790 return s->fw_cfg_order_override; 791 } 792 793 for (i = 0; i < ARRAY_SIZE(fw_cfg_order); i++) { 794 if (fw_cfg_order[i].name == NULL) { 795 continue; 796 } 797 798 if (strcmp(name, fw_cfg_order[i].name) == 0) { 799 return fw_cfg_order[i].order; 800 } 801 } 802 803 /* Stick unknown stuff at the end. */ 804 warn_report("Unknown firmware file in legacy mode: %s", name); 805 return FW_CFG_ORDER_OVERRIDE_LAST; 806 } 807 808 void fw_cfg_add_file_callback(FWCfgState *s, const char *filename, 809 FWCfgCallback select_cb, 810 FWCfgWriteCallback write_cb, 811 void *callback_opaque, 812 void *data, size_t len, bool read_only) 813 { 814 int i, index, count; 815 size_t dsize; 816 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 817 int order = 0; 818 819 if (!s->files) { 820 dsize = sizeof(uint32_t) + sizeof(FWCfgFile) * fw_cfg_file_slots(s); 821 s->files = g_malloc0(dsize); 822 fw_cfg_add_bytes(s, FW_CFG_FILE_DIR, s->files, dsize); 823 } 824 825 count = be32_to_cpu(s->files->count); 826 assert(count < fw_cfg_file_slots(s)); 827 828 /* Find the insertion point. */ 829 if (mc->legacy_fw_cfg_order) { 830 /* 831 * Sort by order. For files with the same order, we keep them 832 * in the sequence in which they were added. 833 */ 834 order = get_fw_cfg_order(s, filename); 835 for (index = count; 836 index > 0 && order < s->entry_order[index - 1]; 837 index--); 838 } else { 839 /* Sort by file name. */ 840 for (index = count; 841 index > 0 && strcmp(filename, s->files->f[index - 1].name) < 0; 842 index--); 843 } 844 845 /* 846 * Move all the entries from the index point and after down one 847 * to create a slot for the new entry. Because calculations are 848 * being done with the index, make it so that "i" is the current 849 * index and "i - 1" is the one being copied from, thus the 850 * unusual start and end in the for statement. 851 */ 852 for (i = count; i > index; i--) { 853 s->files->f[i] = s->files->f[i - 1]; 854 s->files->f[i].select = cpu_to_be16(FW_CFG_FILE_FIRST + i); 855 s->entries[0][FW_CFG_FILE_FIRST + i] = 856 s->entries[0][FW_CFG_FILE_FIRST + i - 1]; 857 s->entry_order[i] = s->entry_order[i - 1]; 858 } 859 860 memset(&s->files->f[index], 0, sizeof(FWCfgFile)); 861 memset(&s->entries[0][FW_CFG_FILE_FIRST + index], 0, sizeof(FWCfgEntry)); 862 863 pstrcpy(s->files->f[index].name, sizeof(s->files->f[index].name), filename); 864 for (i = 0; i <= count; i++) { 865 if (i != index && 866 strcmp(s->files->f[index].name, s->files->f[i].name) == 0) { 867 error_report("duplicate fw_cfg file name: %s", 868 s->files->f[index].name); 869 exit(1); 870 } 871 } 872 873 fw_cfg_add_bytes_callback(s, FW_CFG_FILE_FIRST + index, 874 select_cb, write_cb, 875 callback_opaque, data, len, 876 read_only); 877 878 s->files->f[index].size = cpu_to_be32(len); 879 s->files->f[index].select = cpu_to_be16(FW_CFG_FILE_FIRST + index); 880 s->entry_order[index] = order; 881 trace_fw_cfg_add_file(s, index, s->files->f[index].name, len); 882 883 s->files->count = cpu_to_be32(count+1); 884 } 885 886 void fw_cfg_add_file(FWCfgState *s, const char *filename, 887 void *data, size_t len) 888 { 889 fw_cfg_add_file_callback(s, filename, NULL, NULL, NULL, data, len, true); 890 } 891 892 void *fw_cfg_modify_file(FWCfgState *s, const char *filename, 893 void *data, size_t len) 894 { 895 int i, index; 896 void *ptr = NULL; 897 898 assert(s->files); 899 900 index = be32_to_cpu(s->files->count); 901 902 for (i = 0; i < index; i++) { 903 if (strcmp(filename, s->files->f[i].name) == 0) { 904 ptr = fw_cfg_modify_bytes_read(s, FW_CFG_FILE_FIRST + i, 905 data, len); 906 s->files->f[i].size = cpu_to_be32(len); 907 return ptr; 908 } 909 } 910 911 assert(index < fw_cfg_file_slots(s)); 912 913 /* add new one */ 914 fw_cfg_add_file_callback(s, filename, NULL, NULL, NULL, data, len, true); 915 return NULL; 916 } 917 918 static void fw_cfg_machine_reset(void *opaque) 919 { 920 void *ptr; 921 size_t len; 922 FWCfgState *s = opaque; 923 char *bootindex = get_boot_devices_list(&len); 924 925 ptr = fw_cfg_modify_file(s, "bootorder", (uint8_t *)bootindex, len); 926 g_free(ptr); 927 } 928 929 static void fw_cfg_machine_ready(struct Notifier *n, void *data) 930 { 931 FWCfgState *s = container_of(n, FWCfgState, machine_ready); 932 qemu_register_reset(fw_cfg_machine_reset, s); 933 } 934 935 936 937 static void fw_cfg_common_realize(DeviceState *dev, Error **errp) 938 { 939 FWCfgState *s = FW_CFG(dev); 940 MachineState *machine = MACHINE(qdev_get_machine()); 941 uint32_t version = FW_CFG_VERSION; 942 943 if (!fw_cfg_find()) { 944 error_setg(errp, "at most one %s device is permitted", TYPE_FW_CFG); 945 return; 946 } 947 948 fw_cfg_add_bytes(s, FW_CFG_SIGNATURE, (char *)"QEMU", 4); 949 fw_cfg_add_bytes(s, FW_CFG_UUID, &qemu_uuid, 16); 950 fw_cfg_add_i16(s, FW_CFG_NOGRAPHIC, (uint16_t)!machine->enable_graphics); 951 fw_cfg_add_i16(s, FW_CFG_BOOT_MENU, (uint16_t)boot_menu); 952 fw_cfg_bootsplash(s); 953 fw_cfg_reboot(s); 954 955 if (s->dma_enabled) { 956 version |= FW_CFG_VERSION_DMA; 957 } 958 959 fw_cfg_add_i32(s, FW_CFG_ID, version); 960 961 s->machine_ready.notify = fw_cfg_machine_ready; 962 qemu_add_machine_init_done_notifier(&s->machine_ready); 963 } 964 965 FWCfgState *fw_cfg_init_io_dma(uint32_t iobase, uint32_t dma_iobase, 966 AddressSpace *dma_as) 967 { 968 DeviceState *dev; 969 SysBusDevice *sbd; 970 FWCfgIoState *ios; 971 FWCfgState *s; 972 bool dma_requested = dma_iobase && dma_as; 973 974 dev = qdev_create(NULL, TYPE_FW_CFG_IO); 975 if (!dma_requested) { 976 qdev_prop_set_bit(dev, "dma_enabled", false); 977 } 978 979 object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG, 980 OBJECT(dev), NULL); 981 qdev_init_nofail(dev); 982 983 sbd = SYS_BUS_DEVICE(dev); 984 ios = FW_CFG_IO(dev); 985 sysbus_add_io(sbd, iobase, &ios->comb_iomem); 986 987 s = FW_CFG(dev); 988 989 if (s->dma_enabled) { 990 /* 64 bits for the address field */ 991 s->dma_as = dma_as; 992 s->dma_addr = 0; 993 sysbus_add_io(sbd, dma_iobase, &s->dma_iomem); 994 } 995 996 return s; 997 } 998 999 FWCfgState *fw_cfg_init_io(uint32_t iobase) 1000 { 1001 return fw_cfg_init_io_dma(iobase, 0, NULL); 1002 } 1003 1004 FWCfgState *fw_cfg_init_mem_wide(hwaddr ctl_addr, 1005 hwaddr data_addr, uint32_t data_width, 1006 hwaddr dma_addr, AddressSpace *dma_as) 1007 { 1008 DeviceState *dev; 1009 SysBusDevice *sbd; 1010 FWCfgState *s; 1011 bool dma_requested = dma_addr && dma_as; 1012 1013 dev = qdev_create(NULL, TYPE_FW_CFG_MEM); 1014 qdev_prop_set_uint32(dev, "data_width", data_width); 1015 if (!dma_requested) { 1016 qdev_prop_set_bit(dev, "dma_enabled", false); 1017 } 1018 1019 object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG, 1020 OBJECT(dev), NULL); 1021 qdev_init_nofail(dev); 1022 1023 sbd = SYS_BUS_DEVICE(dev); 1024 sysbus_mmio_map(sbd, 0, ctl_addr); 1025 sysbus_mmio_map(sbd, 1, data_addr); 1026 1027 s = FW_CFG(dev); 1028 1029 if (s->dma_enabled) { 1030 s->dma_as = dma_as; 1031 s->dma_addr = 0; 1032 sysbus_mmio_map(sbd, 2, dma_addr); 1033 } 1034 1035 return s; 1036 } 1037 1038 FWCfgState *fw_cfg_init_mem(hwaddr ctl_addr, hwaddr data_addr) 1039 { 1040 return fw_cfg_init_mem_wide(ctl_addr, data_addr, 1041 fw_cfg_data_mem_ops.valid.max_access_size, 1042 0, NULL); 1043 } 1044 1045 1046 FWCfgState *fw_cfg_find(void) 1047 { 1048 /* Returns NULL unless there is exactly one fw_cfg device */ 1049 return FW_CFG(object_resolve_path_type("", TYPE_FW_CFG, NULL)); 1050 } 1051 1052 1053 static void fw_cfg_class_init(ObjectClass *klass, void *data) 1054 { 1055 DeviceClass *dc = DEVICE_CLASS(klass); 1056 1057 dc->reset = fw_cfg_reset; 1058 dc->vmsd = &vmstate_fw_cfg; 1059 } 1060 1061 static const TypeInfo fw_cfg_info = { 1062 .name = TYPE_FW_CFG, 1063 .parent = TYPE_SYS_BUS_DEVICE, 1064 .abstract = true, 1065 .instance_size = sizeof(FWCfgState), 1066 .class_init = fw_cfg_class_init, 1067 }; 1068 1069 static void fw_cfg_file_slots_allocate(FWCfgState *s, Error **errp) 1070 { 1071 uint16_t file_slots_max; 1072 1073 if (fw_cfg_file_slots(s) < FW_CFG_FILE_SLOTS_MIN) { 1074 error_setg(errp, "\"file_slots\" must be at least 0x%x", 1075 FW_CFG_FILE_SLOTS_MIN); 1076 return; 1077 } 1078 1079 /* (UINT16_MAX & FW_CFG_ENTRY_MASK) is the highest inclusive selector value 1080 * that we permit. The actual (exclusive) value coming from the 1081 * configuration is (FW_CFG_FILE_FIRST + fw_cfg_file_slots(s)). */ 1082 file_slots_max = (UINT16_MAX & FW_CFG_ENTRY_MASK) - FW_CFG_FILE_FIRST + 1; 1083 if (fw_cfg_file_slots(s) > file_slots_max) { 1084 error_setg(errp, "\"file_slots\" must not exceed 0x%" PRIx16, 1085 file_slots_max); 1086 return; 1087 } 1088 1089 s->entries[0] = g_new0(FWCfgEntry, fw_cfg_max_entry(s)); 1090 s->entries[1] = g_new0(FWCfgEntry, fw_cfg_max_entry(s)); 1091 s->entry_order = g_new0(int, fw_cfg_max_entry(s)); 1092 } 1093 1094 static Property fw_cfg_io_properties[] = { 1095 DEFINE_PROP_BOOL("dma_enabled", FWCfgIoState, parent_obj.dma_enabled, 1096 true), 1097 DEFINE_PROP_UINT16("x-file-slots", FWCfgIoState, parent_obj.file_slots, 1098 FW_CFG_FILE_SLOTS_DFLT), 1099 DEFINE_PROP_END_OF_LIST(), 1100 }; 1101 1102 static void fw_cfg_io_realize(DeviceState *dev, Error **errp) 1103 { 1104 FWCfgIoState *s = FW_CFG_IO(dev); 1105 Error *local_err = NULL; 1106 1107 fw_cfg_file_slots_allocate(FW_CFG(s), &local_err); 1108 if (local_err) { 1109 error_propagate(errp, local_err); 1110 return; 1111 } 1112 1113 /* when using port i/o, the 8-bit data register ALWAYS overlaps 1114 * with half of the 16-bit control register. Hence, the total size 1115 * of the i/o region used is FW_CFG_CTL_SIZE */ 1116 memory_region_init_io(&s->comb_iomem, OBJECT(s), &fw_cfg_comb_mem_ops, 1117 FW_CFG(s), "fwcfg", FW_CFG_CTL_SIZE); 1118 1119 if (FW_CFG(s)->dma_enabled) { 1120 memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s), 1121 &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma", 1122 sizeof(dma_addr_t)); 1123 } 1124 1125 fw_cfg_common_realize(dev, errp); 1126 } 1127 1128 static void fw_cfg_io_class_init(ObjectClass *klass, void *data) 1129 { 1130 DeviceClass *dc = DEVICE_CLASS(klass); 1131 1132 dc->realize = fw_cfg_io_realize; 1133 dc->props = fw_cfg_io_properties; 1134 } 1135 1136 static const TypeInfo fw_cfg_io_info = { 1137 .name = TYPE_FW_CFG_IO, 1138 .parent = TYPE_FW_CFG, 1139 .instance_size = sizeof(FWCfgIoState), 1140 .class_init = fw_cfg_io_class_init, 1141 }; 1142 1143 1144 static Property fw_cfg_mem_properties[] = { 1145 DEFINE_PROP_UINT32("data_width", FWCfgMemState, data_width, -1), 1146 DEFINE_PROP_BOOL("dma_enabled", FWCfgMemState, parent_obj.dma_enabled, 1147 true), 1148 DEFINE_PROP_UINT16("x-file-slots", FWCfgMemState, parent_obj.file_slots, 1149 FW_CFG_FILE_SLOTS_DFLT), 1150 DEFINE_PROP_END_OF_LIST(), 1151 }; 1152 1153 static void fw_cfg_mem_realize(DeviceState *dev, Error **errp) 1154 { 1155 FWCfgMemState *s = FW_CFG_MEM(dev); 1156 SysBusDevice *sbd = SYS_BUS_DEVICE(dev); 1157 const MemoryRegionOps *data_ops = &fw_cfg_data_mem_ops; 1158 Error *local_err = NULL; 1159 1160 fw_cfg_file_slots_allocate(FW_CFG(s), &local_err); 1161 if (local_err) { 1162 error_propagate(errp, local_err); 1163 return; 1164 } 1165 1166 memory_region_init_io(&s->ctl_iomem, OBJECT(s), &fw_cfg_ctl_mem_ops, 1167 FW_CFG(s), "fwcfg.ctl", FW_CFG_CTL_SIZE); 1168 sysbus_init_mmio(sbd, &s->ctl_iomem); 1169 1170 if (s->data_width > data_ops->valid.max_access_size) { 1171 s->wide_data_ops = *data_ops; 1172 1173 s->wide_data_ops.valid.max_access_size = s->data_width; 1174 s->wide_data_ops.impl.max_access_size = s->data_width; 1175 data_ops = &s->wide_data_ops; 1176 } 1177 memory_region_init_io(&s->data_iomem, OBJECT(s), data_ops, FW_CFG(s), 1178 "fwcfg.data", data_ops->valid.max_access_size); 1179 sysbus_init_mmio(sbd, &s->data_iomem); 1180 1181 if (FW_CFG(s)->dma_enabled) { 1182 memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s), 1183 &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma", 1184 sizeof(dma_addr_t)); 1185 sysbus_init_mmio(sbd, &FW_CFG(s)->dma_iomem); 1186 } 1187 1188 fw_cfg_common_realize(dev, errp); 1189 } 1190 1191 static void fw_cfg_mem_class_init(ObjectClass *klass, void *data) 1192 { 1193 DeviceClass *dc = DEVICE_CLASS(klass); 1194 1195 dc->realize = fw_cfg_mem_realize; 1196 dc->props = fw_cfg_mem_properties; 1197 } 1198 1199 static const TypeInfo fw_cfg_mem_info = { 1200 .name = TYPE_FW_CFG_MEM, 1201 .parent = TYPE_FW_CFG, 1202 .instance_size = sizeof(FWCfgMemState), 1203 .class_init = fw_cfg_mem_class_init, 1204 }; 1205 1206 1207 static void fw_cfg_register_types(void) 1208 { 1209 type_register_static(&fw_cfg_info); 1210 type_register_static(&fw_cfg_io_info); 1211 type_register_static(&fw_cfg_mem_info); 1212 } 1213 1214 type_init(fw_cfg_register_types) 1215