1 /* 2 * QEMU Firmware configuration device emulation 3 * 4 * Copyright (c) 2008 Gleb Natapov 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "qemu-common.h" 27 #include "qemu/datadir.h" 28 #include "sysemu/sysemu.h" 29 #include "sysemu/dma.h" 30 #include "sysemu/reset.h" 31 #include "hw/boards.h" 32 #include "hw/nvram/fw_cfg.h" 33 #include "hw/qdev-properties.h" 34 #include "hw/sysbus.h" 35 #include "migration/qemu-file-types.h" 36 #include "migration/vmstate.h" 37 #include "trace.h" 38 #include "qemu/error-report.h" 39 #include "qemu/option.h" 40 #include "qemu/config-file.h" 41 #include "qemu/cutils.h" 42 #include "qapi/error.h" 43 #include "hw/acpi/aml-build.h" 44 #include "hw/pci/pci_bus.h" 45 46 #define FW_CFG_FILE_SLOTS_DFLT 0x20 47 48 /* FW_CFG_VERSION bits */ 49 #define FW_CFG_VERSION 0x01 50 #define FW_CFG_VERSION_DMA 0x02 51 52 /* FW_CFG_DMA_CONTROL bits */ 53 #define FW_CFG_DMA_CTL_ERROR 0x01 54 #define FW_CFG_DMA_CTL_READ 0x02 55 #define FW_CFG_DMA_CTL_SKIP 0x04 56 #define FW_CFG_DMA_CTL_SELECT 0x08 57 #define FW_CFG_DMA_CTL_WRITE 0x10 58 59 #define FW_CFG_DMA_SIGNATURE 0x51454d5520434647ULL /* "QEMU CFG" */ 60 61 struct FWCfgEntry { 62 uint32_t len; 63 bool allow_write; 64 uint8_t *data; 65 void *callback_opaque; 66 FWCfgCallback select_cb; 67 FWCfgWriteCallback write_cb; 68 }; 69 70 /** 71 * key_name: 72 * 73 * @key: The uint16 selector key. 74 * 75 * Returns: The stringified name if the selector refers to a well-known 76 * numerically defined item, or NULL on key lookup failure. 77 */ 78 static const char *key_name(uint16_t key) 79 { 80 static const char *fw_cfg_wellknown_keys[FW_CFG_FILE_FIRST] = { 81 [FW_CFG_SIGNATURE] = "signature", 82 [FW_CFG_ID] = "id", 83 [FW_CFG_UUID] = "uuid", 84 [FW_CFG_RAM_SIZE] = "ram_size", 85 [FW_CFG_NOGRAPHIC] = "nographic", 86 [FW_CFG_NB_CPUS] = "nb_cpus", 87 [FW_CFG_MACHINE_ID] = "machine_id", 88 [FW_CFG_KERNEL_ADDR] = "kernel_addr", 89 [FW_CFG_KERNEL_SIZE] = "kernel_size", 90 [FW_CFG_KERNEL_CMDLINE] = "kernel_cmdline", 91 [FW_CFG_INITRD_ADDR] = "initrd_addr", 92 [FW_CFG_INITRD_SIZE] = "initdr_size", 93 [FW_CFG_BOOT_DEVICE] = "boot_device", 94 [FW_CFG_NUMA] = "numa", 95 [FW_CFG_BOOT_MENU] = "boot_menu", 96 [FW_CFG_MAX_CPUS] = "max_cpus", 97 [FW_CFG_KERNEL_ENTRY] = "kernel_entry", 98 [FW_CFG_KERNEL_DATA] = "kernel_data", 99 [FW_CFG_INITRD_DATA] = "initrd_data", 100 [FW_CFG_CMDLINE_ADDR] = "cmdline_addr", 101 [FW_CFG_CMDLINE_SIZE] = "cmdline_size", 102 [FW_CFG_CMDLINE_DATA] = "cmdline_data", 103 [FW_CFG_SETUP_ADDR] = "setup_addr", 104 [FW_CFG_SETUP_SIZE] = "setup_size", 105 [FW_CFG_SETUP_DATA] = "setup_data", 106 [FW_CFG_FILE_DIR] = "file_dir", 107 }; 108 109 if (key & FW_CFG_ARCH_LOCAL) { 110 return fw_cfg_arch_key_name(key); 111 } 112 if (key < FW_CFG_FILE_FIRST) { 113 return fw_cfg_wellknown_keys[key]; 114 } 115 116 return NULL; 117 } 118 119 static inline const char *trace_key_name(uint16_t key) 120 { 121 const char *name = key_name(key); 122 123 return name ? name : "unknown"; 124 } 125 126 #define JPG_FILE 0 127 #define BMP_FILE 1 128 129 static char *read_splashfile(char *filename, gsize *file_sizep, 130 int *file_typep) 131 { 132 GError *err = NULL; 133 gchar *content; 134 int file_type; 135 unsigned int filehead; 136 int bmp_bpp; 137 138 if (!g_file_get_contents(filename, &content, file_sizep, &err)) { 139 error_report("failed to read splash file '%s': %s", 140 filename, err->message); 141 g_error_free(err); 142 return NULL; 143 } 144 145 /* check file size */ 146 if (*file_sizep < 30) { 147 goto error; 148 } 149 150 /* check magic ID */ 151 filehead = lduw_le_p(content); 152 if (filehead == 0xd8ff) { 153 file_type = JPG_FILE; 154 } else if (filehead == 0x4d42) { 155 file_type = BMP_FILE; 156 } else { 157 goto error; 158 } 159 160 /* check BMP bpp */ 161 if (file_type == BMP_FILE) { 162 bmp_bpp = lduw_le_p(&content[28]); 163 if (bmp_bpp != 24) { 164 goto error; 165 } 166 } 167 168 /* return values */ 169 *file_typep = file_type; 170 171 return content; 172 173 error: 174 error_report("splash file '%s' format not recognized; must be JPEG " 175 "or 24 bit BMP", filename); 176 g_free(content); 177 return NULL; 178 } 179 180 static void fw_cfg_bootsplash(FWCfgState *s) 181 { 182 const char *boot_splash_filename = NULL; 183 const char *boot_splash_time = NULL; 184 char *filename, *file_data; 185 gsize file_size; 186 int file_type; 187 188 /* get user configuration */ 189 QemuOptsList *plist = qemu_find_opts("boot-opts"); 190 QemuOpts *opts = QTAILQ_FIRST(&plist->head); 191 boot_splash_filename = qemu_opt_get(opts, "splash"); 192 boot_splash_time = qemu_opt_get(opts, "splash-time"); 193 194 /* insert splash time if user configurated */ 195 if (boot_splash_time) { 196 int64_t bst_val = qemu_opt_get_number(opts, "splash-time", -1); 197 uint16_t bst_le16; 198 199 /* validate the input */ 200 if (bst_val < 0 || bst_val > 0xffff) { 201 error_report("splash-time is invalid," 202 "it should be a value between 0 and 65535"); 203 exit(1); 204 } 205 /* use little endian format */ 206 bst_le16 = cpu_to_le16(bst_val); 207 fw_cfg_add_file(s, "etc/boot-menu-wait", 208 g_memdup(&bst_le16, sizeof bst_le16), sizeof bst_le16); 209 } 210 211 /* insert splash file if user configurated */ 212 if (boot_splash_filename) { 213 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, boot_splash_filename); 214 if (filename == NULL) { 215 error_report("failed to find file '%s'", boot_splash_filename); 216 return; 217 } 218 219 /* loading file data */ 220 file_data = read_splashfile(filename, &file_size, &file_type); 221 if (file_data == NULL) { 222 g_free(filename); 223 return; 224 } 225 g_free(boot_splash_filedata); 226 boot_splash_filedata = (uint8_t *)file_data; 227 228 /* insert data */ 229 if (file_type == JPG_FILE) { 230 fw_cfg_add_file(s, "bootsplash.jpg", 231 boot_splash_filedata, file_size); 232 } else { 233 fw_cfg_add_file(s, "bootsplash.bmp", 234 boot_splash_filedata, file_size); 235 } 236 g_free(filename); 237 } 238 } 239 240 static void fw_cfg_reboot(FWCfgState *s) 241 { 242 const char *reboot_timeout = NULL; 243 uint64_t rt_val = -1; 244 uint32_t rt_le32; 245 246 /* get user configuration */ 247 QemuOptsList *plist = qemu_find_opts("boot-opts"); 248 QemuOpts *opts = QTAILQ_FIRST(&plist->head); 249 reboot_timeout = qemu_opt_get(opts, "reboot-timeout"); 250 251 if (reboot_timeout) { 252 rt_val = qemu_opt_get_number(opts, "reboot-timeout", -1); 253 254 /* validate the input */ 255 if (rt_val > 0xffff && rt_val != (uint64_t)-1) { 256 error_report("reboot timeout is invalid," 257 "it should be a value between -1 and 65535"); 258 exit(1); 259 } 260 } 261 262 rt_le32 = cpu_to_le32(rt_val); 263 fw_cfg_add_file(s, "etc/boot-fail-wait", g_memdup(&rt_le32, 4), 4); 264 } 265 266 static void fw_cfg_write(FWCfgState *s, uint8_t value) 267 { 268 /* nothing, write support removed in QEMU v2.4+ */ 269 } 270 271 static inline uint16_t fw_cfg_file_slots(const FWCfgState *s) 272 { 273 return s->file_slots; 274 } 275 276 /* Note: this function returns an exclusive limit. */ 277 static inline uint32_t fw_cfg_max_entry(const FWCfgState *s) 278 { 279 return FW_CFG_FILE_FIRST + fw_cfg_file_slots(s); 280 } 281 282 static int fw_cfg_select(FWCfgState *s, uint16_t key) 283 { 284 int arch, ret; 285 FWCfgEntry *e; 286 287 s->cur_offset = 0; 288 if ((key & FW_CFG_ENTRY_MASK) >= fw_cfg_max_entry(s)) { 289 s->cur_entry = FW_CFG_INVALID; 290 ret = 0; 291 } else { 292 s->cur_entry = key; 293 ret = 1; 294 /* entry successfully selected, now run callback if present */ 295 arch = !!(key & FW_CFG_ARCH_LOCAL); 296 e = &s->entries[arch][key & FW_CFG_ENTRY_MASK]; 297 if (e->select_cb) { 298 e->select_cb(e->callback_opaque); 299 } 300 } 301 302 trace_fw_cfg_select(s, key, trace_key_name(key), ret); 303 return ret; 304 } 305 306 static uint64_t fw_cfg_data_read(void *opaque, hwaddr addr, unsigned size) 307 { 308 FWCfgState *s = opaque; 309 int arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL); 310 FWCfgEntry *e = (s->cur_entry == FW_CFG_INVALID) ? NULL : 311 &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK]; 312 uint64_t value = 0; 313 314 assert(size > 0 && size <= sizeof(value)); 315 if (s->cur_entry != FW_CFG_INVALID && e->data && s->cur_offset < e->len) { 316 /* The least significant 'size' bytes of the return value are 317 * expected to contain a string preserving portion of the item 318 * data, padded with zeros on the right in case we run out early. 319 * In technical terms, we're composing the host-endian representation 320 * of the big endian interpretation of the fw_cfg string. 321 */ 322 do { 323 value = (value << 8) | e->data[s->cur_offset++]; 324 } while (--size && s->cur_offset < e->len); 325 /* If size is still not zero, we *did* run out early, so continue 326 * left-shifting, to add the appropriate number of padding zeros 327 * on the right. 328 */ 329 value <<= 8 * size; 330 } 331 332 trace_fw_cfg_read(s, value); 333 return value; 334 } 335 336 static void fw_cfg_data_mem_write(void *opaque, hwaddr addr, 337 uint64_t value, unsigned size) 338 { 339 FWCfgState *s = opaque; 340 unsigned i = size; 341 342 do { 343 fw_cfg_write(s, value >> (8 * --i)); 344 } while (i); 345 } 346 347 static void fw_cfg_dma_transfer(FWCfgState *s) 348 { 349 dma_addr_t len; 350 FWCfgDmaAccess dma; 351 int arch; 352 FWCfgEntry *e; 353 int read = 0, write = 0; 354 dma_addr_t dma_addr; 355 356 /* Reset the address before the next access */ 357 dma_addr = s->dma_addr; 358 s->dma_addr = 0; 359 360 if (dma_memory_read(s->dma_as, dma_addr, &dma, sizeof(dma))) { 361 stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control), 362 FW_CFG_DMA_CTL_ERROR); 363 return; 364 } 365 366 dma.address = be64_to_cpu(dma.address); 367 dma.length = be32_to_cpu(dma.length); 368 dma.control = be32_to_cpu(dma.control); 369 370 if (dma.control & FW_CFG_DMA_CTL_SELECT) { 371 fw_cfg_select(s, dma.control >> 16); 372 } 373 374 arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL); 375 e = (s->cur_entry == FW_CFG_INVALID) ? NULL : 376 &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK]; 377 378 if (dma.control & FW_CFG_DMA_CTL_READ) { 379 read = 1; 380 write = 0; 381 } else if (dma.control & FW_CFG_DMA_CTL_WRITE) { 382 read = 0; 383 write = 1; 384 } else if (dma.control & FW_CFG_DMA_CTL_SKIP) { 385 read = 0; 386 write = 0; 387 } else { 388 dma.length = 0; 389 } 390 391 dma.control = 0; 392 393 while (dma.length > 0 && !(dma.control & FW_CFG_DMA_CTL_ERROR)) { 394 if (s->cur_entry == FW_CFG_INVALID || !e->data || 395 s->cur_offset >= e->len) { 396 len = dma.length; 397 398 /* If the access is not a read access, it will be a skip access, 399 * tested before. 400 */ 401 if (read) { 402 if (dma_memory_set(s->dma_as, dma.address, 0, len)) { 403 dma.control |= FW_CFG_DMA_CTL_ERROR; 404 } 405 } 406 if (write) { 407 dma.control |= FW_CFG_DMA_CTL_ERROR; 408 } 409 } else { 410 if (dma.length <= (e->len - s->cur_offset)) { 411 len = dma.length; 412 } else { 413 len = (e->len - s->cur_offset); 414 } 415 416 /* If the access is not a read access, it will be a skip access, 417 * tested before. 418 */ 419 if (read) { 420 if (dma_memory_write(s->dma_as, dma.address, 421 &e->data[s->cur_offset], len)) { 422 dma.control |= FW_CFG_DMA_CTL_ERROR; 423 } 424 } 425 if (write) { 426 if (!e->allow_write || 427 len != dma.length || 428 dma_memory_read(s->dma_as, dma.address, 429 &e->data[s->cur_offset], len)) { 430 dma.control |= FW_CFG_DMA_CTL_ERROR; 431 } else if (e->write_cb) { 432 e->write_cb(e->callback_opaque, s->cur_offset, len); 433 } 434 } 435 436 s->cur_offset += len; 437 } 438 439 dma.address += len; 440 dma.length -= len; 441 442 } 443 444 stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control), 445 dma.control); 446 447 trace_fw_cfg_read(s, 0); 448 } 449 450 static uint64_t fw_cfg_dma_mem_read(void *opaque, hwaddr addr, 451 unsigned size) 452 { 453 /* Return a signature value (and handle various read sizes) */ 454 return extract64(FW_CFG_DMA_SIGNATURE, (8 - addr - size) * 8, size * 8); 455 } 456 457 static void fw_cfg_dma_mem_write(void *opaque, hwaddr addr, 458 uint64_t value, unsigned size) 459 { 460 FWCfgState *s = opaque; 461 462 if (size == 4) { 463 if (addr == 0) { 464 /* FWCfgDmaAccess high address */ 465 s->dma_addr = value << 32; 466 } else if (addr == 4) { 467 /* FWCfgDmaAccess low address */ 468 s->dma_addr |= value; 469 fw_cfg_dma_transfer(s); 470 } 471 } else if (size == 8 && addr == 0) { 472 s->dma_addr = value; 473 fw_cfg_dma_transfer(s); 474 } 475 } 476 477 static bool fw_cfg_dma_mem_valid(void *opaque, hwaddr addr, 478 unsigned size, bool is_write, 479 MemTxAttrs attrs) 480 { 481 return !is_write || ((size == 4 && (addr == 0 || addr == 4)) || 482 (size == 8 && addr == 0)); 483 } 484 485 static bool fw_cfg_data_mem_valid(void *opaque, hwaddr addr, 486 unsigned size, bool is_write, 487 MemTxAttrs attrs) 488 { 489 return addr == 0; 490 } 491 492 static uint64_t fw_cfg_ctl_mem_read(void *opaque, hwaddr addr, unsigned size) 493 { 494 return 0; 495 } 496 497 static void fw_cfg_ctl_mem_write(void *opaque, hwaddr addr, 498 uint64_t value, unsigned size) 499 { 500 fw_cfg_select(opaque, (uint16_t)value); 501 } 502 503 static bool fw_cfg_ctl_mem_valid(void *opaque, hwaddr addr, 504 unsigned size, bool is_write, 505 MemTxAttrs attrs) 506 { 507 return is_write && size == 2; 508 } 509 510 static void fw_cfg_comb_write(void *opaque, hwaddr addr, 511 uint64_t value, unsigned size) 512 { 513 switch (size) { 514 case 1: 515 fw_cfg_write(opaque, (uint8_t)value); 516 break; 517 case 2: 518 fw_cfg_select(opaque, (uint16_t)value); 519 break; 520 } 521 } 522 523 static bool fw_cfg_comb_valid(void *opaque, hwaddr addr, 524 unsigned size, bool is_write, 525 MemTxAttrs attrs) 526 { 527 return (size == 1) || (is_write && size == 2); 528 } 529 530 static const MemoryRegionOps fw_cfg_ctl_mem_ops = { 531 .read = fw_cfg_ctl_mem_read, 532 .write = fw_cfg_ctl_mem_write, 533 .endianness = DEVICE_BIG_ENDIAN, 534 .valid.accepts = fw_cfg_ctl_mem_valid, 535 }; 536 537 static const MemoryRegionOps fw_cfg_data_mem_ops = { 538 .read = fw_cfg_data_read, 539 .write = fw_cfg_data_mem_write, 540 .endianness = DEVICE_BIG_ENDIAN, 541 .valid = { 542 .min_access_size = 1, 543 .max_access_size = 1, 544 .accepts = fw_cfg_data_mem_valid, 545 }, 546 }; 547 548 static const MemoryRegionOps fw_cfg_comb_mem_ops = { 549 .read = fw_cfg_data_read, 550 .write = fw_cfg_comb_write, 551 .endianness = DEVICE_LITTLE_ENDIAN, 552 .valid.accepts = fw_cfg_comb_valid, 553 }; 554 555 static const MemoryRegionOps fw_cfg_dma_mem_ops = { 556 .read = fw_cfg_dma_mem_read, 557 .write = fw_cfg_dma_mem_write, 558 .endianness = DEVICE_BIG_ENDIAN, 559 .valid.accepts = fw_cfg_dma_mem_valid, 560 .valid.max_access_size = 8, 561 .impl.max_access_size = 8, 562 }; 563 564 static void fw_cfg_reset(DeviceState *d) 565 { 566 FWCfgState *s = FW_CFG(d); 567 568 /* we never register a read callback for FW_CFG_SIGNATURE */ 569 fw_cfg_select(s, FW_CFG_SIGNATURE); 570 } 571 572 /* Save restore 32 bit int as uint16_t 573 This is a Big hack, but it is how the old state did it. 574 Or we broke compatibility in the state, or we can't use struct tm 575 */ 576 577 static int get_uint32_as_uint16(QEMUFile *f, void *pv, size_t size, 578 const VMStateField *field) 579 { 580 uint32_t *v = pv; 581 *v = qemu_get_be16(f); 582 return 0; 583 } 584 585 static int put_unused(QEMUFile *f, void *pv, size_t size, 586 const VMStateField *field, JSONWriter *vmdesc) 587 { 588 fprintf(stderr, "uint32_as_uint16 is only used for backward compatibility.\n"); 589 fprintf(stderr, "This functions shouldn't be called.\n"); 590 591 return 0; 592 } 593 594 static const VMStateInfo vmstate_hack_uint32_as_uint16 = { 595 .name = "int32_as_uint16", 596 .get = get_uint32_as_uint16, 597 .put = put_unused, 598 }; 599 600 #define VMSTATE_UINT16_HACK(_f, _s, _t) \ 601 VMSTATE_SINGLE_TEST(_f, _s, _t, 0, vmstate_hack_uint32_as_uint16, uint32_t) 602 603 604 static bool is_version_1(void *opaque, int version_id) 605 { 606 return version_id == 1; 607 } 608 609 bool fw_cfg_dma_enabled(void *opaque) 610 { 611 FWCfgState *s = opaque; 612 613 return s->dma_enabled; 614 } 615 616 static bool fw_cfg_acpi_mr_restore(void *opaque) 617 { 618 FWCfgState *s = opaque; 619 bool mr_aligned; 620 621 mr_aligned = QEMU_IS_ALIGNED(s->table_mr_size, qemu_real_host_page_size) && 622 QEMU_IS_ALIGNED(s->linker_mr_size, qemu_real_host_page_size) && 623 QEMU_IS_ALIGNED(s->rsdp_mr_size, qemu_real_host_page_size); 624 return s->acpi_mr_restore && !mr_aligned; 625 } 626 627 static void fw_cfg_update_mr(FWCfgState *s, uint16_t key, size_t size) 628 { 629 MemoryRegion *mr; 630 ram_addr_t offset; 631 int arch = !!(key & FW_CFG_ARCH_LOCAL); 632 void *ptr; 633 634 key &= FW_CFG_ENTRY_MASK; 635 assert(key < fw_cfg_max_entry(s)); 636 637 ptr = s->entries[arch][key].data; 638 mr = memory_region_from_host(ptr, &offset); 639 640 memory_region_ram_resize(mr, size, &error_abort); 641 } 642 643 static int fw_cfg_acpi_mr_restore_post_load(void *opaque, int version_id) 644 { 645 FWCfgState *s = opaque; 646 int i, index; 647 648 assert(s->files); 649 650 index = be32_to_cpu(s->files->count); 651 652 for (i = 0; i < index; i++) { 653 if (!strcmp(s->files->f[i].name, ACPI_BUILD_TABLE_FILE)) { 654 fw_cfg_update_mr(s, FW_CFG_FILE_FIRST + i, s->table_mr_size); 655 } else if (!strcmp(s->files->f[i].name, ACPI_BUILD_LOADER_FILE)) { 656 fw_cfg_update_mr(s, FW_CFG_FILE_FIRST + i, s->linker_mr_size); 657 } else if (!strcmp(s->files->f[i].name, ACPI_BUILD_RSDP_FILE)) { 658 fw_cfg_update_mr(s, FW_CFG_FILE_FIRST + i, s->rsdp_mr_size); 659 } 660 } 661 662 return 0; 663 } 664 665 static const VMStateDescription vmstate_fw_cfg_dma = { 666 .name = "fw_cfg/dma", 667 .needed = fw_cfg_dma_enabled, 668 .fields = (VMStateField[]) { 669 VMSTATE_UINT64(dma_addr, FWCfgState), 670 VMSTATE_END_OF_LIST() 671 }, 672 }; 673 674 static const VMStateDescription vmstate_fw_cfg_acpi_mr = { 675 .name = "fw_cfg/acpi_mr", 676 .version_id = 1, 677 .minimum_version_id = 1, 678 .needed = fw_cfg_acpi_mr_restore, 679 .post_load = fw_cfg_acpi_mr_restore_post_load, 680 .fields = (VMStateField[]) { 681 VMSTATE_UINT64(table_mr_size, FWCfgState), 682 VMSTATE_UINT64(linker_mr_size, FWCfgState), 683 VMSTATE_UINT64(rsdp_mr_size, FWCfgState), 684 VMSTATE_END_OF_LIST() 685 }, 686 }; 687 688 static const VMStateDescription vmstate_fw_cfg = { 689 .name = "fw_cfg", 690 .version_id = 2, 691 .minimum_version_id = 1, 692 .fields = (VMStateField[]) { 693 VMSTATE_UINT16(cur_entry, FWCfgState), 694 VMSTATE_UINT16_HACK(cur_offset, FWCfgState, is_version_1), 695 VMSTATE_UINT32_V(cur_offset, FWCfgState, 2), 696 VMSTATE_END_OF_LIST() 697 }, 698 .subsections = (const VMStateDescription*[]) { 699 &vmstate_fw_cfg_dma, 700 &vmstate_fw_cfg_acpi_mr, 701 NULL, 702 } 703 }; 704 705 static void fw_cfg_add_bytes_callback(FWCfgState *s, uint16_t key, 706 FWCfgCallback select_cb, 707 FWCfgWriteCallback write_cb, 708 void *callback_opaque, 709 void *data, size_t len, 710 bool read_only) 711 { 712 int arch = !!(key & FW_CFG_ARCH_LOCAL); 713 714 key &= FW_CFG_ENTRY_MASK; 715 716 assert(key < fw_cfg_max_entry(s) && len < UINT32_MAX); 717 assert(s->entries[arch][key].data == NULL); /* avoid key conflict */ 718 719 s->entries[arch][key].data = data; 720 s->entries[arch][key].len = (uint32_t)len; 721 s->entries[arch][key].select_cb = select_cb; 722 s->entries[arch][key].write_cb = write_cb; 723 s->entries[arch][key].callback_opaque = callback_opaque; 724 s->entries[arch][key].allow_write = !read_only; 725 } 726 727 static void *fw_cfg_modify_bytes_read(FWCfgState *s, uint16_t key, 728 void *data, size_t len) 729 { 730 void *ptr; 731 int arch = !!(key & FW_CFG_ARCH_LOCAL); 732 733 key &= FW_CFG_ENTRY_MASK; 734 735 assert(key < fw_cfg_max_entry(s) && len < UINT32_MAX); 736 737 /* return the old data to the function caller, avoid memory leak */ 738 ptr = s->entries[arch][key].data; 739 s->entries[arch][key].data = data; 740 s->entries[arch][key].len = len; 741 s->entries[arch][key].callback_opaque = NULL; 742 s->entries[arch][key].allow_write = false; 743 744 return ptr; 745 } 746 747 void fw_cfg_add_bytes(FWCfgState *s, uint16_t key, void *data, size_t len) 748 { 749 trace_fw_cfg_add_bytes(key, trace_key_name(key), len); 750 fw_cfg_add_bytes_callback(s, key, NULL, NULL, NULL, data, len, true); 751 } 752 753 void fw_cfg_add_string(FWCfgState *s, uint16_t key, const char *value) 754 { 755 size_t sz = strlen(value) + 1; 756 757 trace_fw_cfg_add_string(key, trace_key_name(key), value); 758 fw_cfg_add_bytes(s, key, g_memdup(value, sz), sz); 759 } 760 761 void fw_cfg_modify_string(FWCfgState *s, uint16_t key, const char *value) 762 { 763 size_t sz = strlen(value) + 1; 764 char *old; 765 766 old = fw_cfg_modify_bytes_read(s, key, g_memdup(value, sz), sz); 767 g_free(old); 768 } 769 770 void fw_cfg_add_i16(FWCfgState *s, uint16_t key, uint16_t value) 771 { 772 uint16_t *copy; 773 774 copy = g_malloc(sizeof(value)); 775 *copy = cpu_to_le16(value); 776 trace_fw_cfg_add_i16(key, trace_key_name(key), value); 777 fw_cfg_add_bytes(s, key, copy, sizeof(value)); 778 } 779 780 void fw_cfg_modify_i16(FWCfgState *s, uint16_t key, uint16_t value) 781 { 782 uint16_t *copy, *old; 783 784 copy = g_malloc(sizeof(value)); 785 *copy = cpu_to_le16(value); 786 old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value)); 787 g_free(old); 788 } 789 790 void fw_cfg_add_i32(FWCfgState *s, uint16_t key, uint32_t value) 791 { 792 uint32_t *copy; 793 794 copy = g_malloc(sizeof(value)); 795 *copy = cpu_to_le32(value); 796 trace_fw_cfg_add_i32(key, trace_key_name(key), value); 797 fw_cfg_add_bytes(s, key, copy, sizeof(value)); 798 } 799 800 void fw_cfg_modify_i32(FWCfgState *s, uint16_t key, uint32_t value) 801 { 802 uint32_t *copy, *old; 803 804 copy = g_malloc(sizeof(value)); 805 *copy = cpu_to_le32(value); 806 old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value)); 807 g_free(old); 808 } 809 810 void fw_cfg_add_i64(FWCfgState *s, uint16_t key, uint64_t value) 811 { 812 uint64_t *copy; 813 814 copy = g_malloc(sizeof(value)); 815 *copy = cpu_to_le64(value); 816 trace_fw_cfg_add_i64(key, trace_key_name(key), value); 817 fw_cfg_add_bytes(s, key, copy, sizeof(value)); 818 } 819 820 void fw_cfg_modify_i64(FWCfgState *s, uint16_t key, uint64_t value) 821 { 822 uint64_t *copy, *old; 823 824 copy = g_malloc(sizeof(value)); 825 *copy = cpu_to_le64(value); 826 old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value)); 827 g_free(old); 828 } 829 830 void fw_cfg_set_order_override(FWCfgState *s, int order) 831 { 832 assert(s->fw_cfg_order_override == 0); 833 s->fw_cfg_order_override = order; 834 } 835 836 void fw_cfg_reset_order_override(FWCfgState *s) 837 { 838 assert(s->fw_cfg_order_override != 0); 839 s->fw_cfg_order_override = 0; 840 } 841 842 /* 843 * This is the legacy order list. For legacy systems, files are in 844 * the fw_cfg in the order defined below, by the "order" value. Note 845 * that some entries (VGA ROMs, NIC option ROMS, etc.) go into a 846 * specific area, but there may be more than one and they occur in the 847 * order that the user specifies them on the command line. Those are 848 * handled in a special manner, using the order override above. 849 * 850 * For non-legacy, the files are sorted by filename to avoid this kind 851 * of complexity in the future. 852 * 853 * This is only for x86, other arches don't implement versioning so 854 * they won't set legacy mode. 855 */ 856 static struct { 857 const char *name; 858 int order; 859 } fw_cfg_order[] = { 860 { "etc/boot-menu-wait", 10 }, 861 { "bootsplash.jpg", 11 }, 862 { "bootsplash.bmp", 12 }, 863 { "etc/boot-fail-wait", 15 }, 864 { "etc/smbios/smbios-tables", 20 }, 865 { "etc/smbios/smbios-anchor", 30 }, 866 { "etc/e820", 40 }, 867 { "etc/reserved-memory-end", 50 }, 868 { "genroms/kvmvapic.bin", 55 }, 869 { "genroms/linuxboot.bin", 60 }, 870 { }, /* VGA ROMs from pc_vga_init come here, 70. */ 871 { }, /* NIC option ROMs from pc_nic_init come here, 80. */ 872 { "etc/system-states", 90 }, 873 { }, /* User ROMs come here, 100. */ 874 { }, /* Device FW comes here, 110. */ 875 { "etc/extra-pci-roots", 120 }, 876 { "etc/acpi/tables", 130 }, 877 { "etc/table-loader", 140 }, 878 { "etc/tpm/log", 150 }, 879 { "etc/acpi/rsdp", 160 }, 880 { "bootorder", 170 }, 881 { "etc/msr_feature_control", 180 }, 882 883 #define FW_CFG_ORDER_OVERRIDE_LAST 200 884 }; 885 886 /* 887 * Any sub-page size update to these table MRs will be lost during migration, 888 * as we use aligned size in ram_load_precopy() -> qemu_ram_resize() path. 889 * In order to avoid the inconsistency in sizes save them seperately and 890 * migrate over in vmstate post_load(). 891 */ 892 static void fw_cfg_acpi_mr_save(FWCfgState *s, const char *filename, size_t len) 893 { 894 if (!strcmp(filename, ACPI_BUILD_TABLE_FILE)) { 895 s->table_mr_size = len; 896 } else if (!strcmp(filename, ACPI_BUILD_LOADER_FILE)) { 897 s->linker_mr_size = len; 898 } else if (!strcmp(filename, ACPI_BUILD_RSDP_FILE)) { 899 s->rsdp_mr_size = len; 900 } 901 } 902 903 static int get_fw_cfg_order(FWCfgState *s, const char *name) 904 { 905 int i; 906 907 if (s->fw_cfg_order_override > 0) { 908 return s->fw_cfg_order_override; 909 } 910 911 for (i = 0; i < ARRAY_SIZE(fw_cfg_order); i++) { 912 if (fw_cfg_order[i].name == NULL) { 913 continue; 914 } 915 916 if (strcmp(name, fw_cfg_order[i].name) == 0) { 917 return fw_cfg_order[i].order; 918 } 919 } 920 921 /* Stick unknown stuff at the end. */ 922 warn_report("Unknown firmware file in legacy mode: %s", name); 923 return FW_CFG_ORDER_OVERRIDE_LAST; 924 } 925 926 void fw_cfg_add_file_callback(FWCfgState *s, const char *filename, 927 FWCfgCallback select_cb, 928 FWCfgWriteCallback write_cb, 929 void *callback_opaque, 930 void *data, size_t len, bool read_only) 931 { 932 int i, index, count; 933 size_t dsize; 934 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 935 int order = 0; 936 937 if (!s->files) { 938 dsize = sizeof(uint32_t) + sizeof(FWCfgFile) * fw_cfg_file_slots(s); 939 s->files = g_malloc0(dsize); 940 fw_cfg_add_bytes(s, FW_CFG_FILE_DIR, s->files, dsize); 941 } 942 943 count = be32_to_cpu(s->files->count); 944 assert(count < fw_cfg_file_slots(s)); 945 946 /* Find the insertion point. */ 947 if (mc->legacy_fw_cfg_order) { 948 /* 949 * Sort by order. For files with the same order, we keep them 950 * in the sequence in which they were added. 951 */ 952 order = get_fw_cfg_order(s, filename); 953 for (index = count; 954 index > 0 && order < s->entry_order[index - 1]; 955 index--); 956 } else { 957 /* Sort by file name. */ 958 for (index = count; 959 index > 0 && strcmp(filename, s->files->f[index - 1].name) < 0; 960 index--); 961 } 962 963 /* 964 * Move all the entries from the index point and after down one 965 * to create a slot for the new entry. Because calculations are 966 * being done with the index, make it so that "i" is the current 967 * index and "i - 1" is the one being copied from, thus the 968 * unusual start and end in the for statement. 969 */ 970 for (i = count; i > index; i--) { 971 s->files->f[i] = s->files->f[i - 1]; 972 s->files->f[i].select = cpu_to_be16(FW_CFG_FILE_FIRST + i); 973 s->entries[0][FW_CFG_FILE_FIRST + i] = 974 s->entries[0][FW_CFG_FILE_FIRST + i - 1]; 975 s->entry_order[i] = s->entry_order[i - 1]; 976 } 977 978 memset(&s->files->f[index], 0, sizeof(FWCfgFile)); 979 memset(&s->entries[0][FW_CFG_FILE_FIRST + index], 0, sizeof(FWCfgEntry)); 980 981 pstrcpy(s->files->f[index].name, sizeof(s->files->f[index].name), filename); 982 for (i = 0; i <= count; i++) { 983 if (i != index && 984 strcmp(s->files->f[index].name, s->files->f[i].name) == 0) { 985 error_report("duplicate fw_cfg file name: %s", 986 s->files->f[index].name); 987 exit(1); 988 } 989 } 990 991 fw_cfg_add_bytes_callback(s, FW_CFG_FILE_FIRST + index, 992 select_cb, write_cb, 993 callback_opaque, data, len, 994 read_only); 995 996 s->files->f[index].size = cpu_to_be32(len); 997 s->files->f[index].select = cpu_to_be16(FW_CFG_FILE_FIRST + index); 998 s->entry_order[index] = order; 999 trace_fw_cfg_add_file(s, index, s->files->f[index].name, len); 1000 1001 s->files->count = cpu_to_be32(count+1); 1002 fw_cfg_acpi_mr_save(s, filename, len); 1003 } 1004 1005 void fw_cfg_add_file(FWCfgState *s, const char *filename, 1006 void *data, size_t len) 1007 { 1008 fw_cfg_add_file_callback(s, filename, NULL, NULL, NULL, data, len, true); 1009 } 1010 1011 void *fw_cfg_modify_file(FWCfgState *s, const char *filename, 1012 void *data, size_t len) 1013 { 1014 int i, index; 1015 void *ptr = NULL; 1016 1017 assert(s->files); 1018 1019 index = be32_to_cpu(s->files->count); 1020 1021 for (i = 0; i < index; i++) { 1022 if (strcmp(filename, s->files->f[i].name) == 0) { 1023 ptr = fw_cfg_modify_bytes_read(s, FW_CFG_FILE_FIRST + i, 1024 data, len); 1025 s->files->f[i].size = cpu_to_be32(len); 1026 fw_cfg_acpi_mr_save(s, filename, len); 1027 return ptr; 1028 } 1029 } 1030 1031 assert(index < fw_cfg_file_slots(s)); 1032 1033 /* add new one */ 1034 fw_cfg_add_file_callback(s, filename, NULL, NULL, NULL, data, len, true); 1035 return NULL; 1036 } 1037 1038 bool fw_cfg_add_from_generator(FWCfgState *s, const char *filename, 1039 const char *gen_id, Error **errp) 1040 { 1041 FWCfgDataGeneratorClass *klass; 1042 GByteArray *array; 1043 Object *obj; 1044 gsize size; 1045 1046 obj = object_resolve_path_component(object_get_objects_root(), gen_id); 1047 if (!obj) { 1048 error_setg(errp, "Cannot find object ID '%s'", gen_id); 1049 return false; 1050 } 1051 if (!object_dynamic_cast(obj, TYPE_FW_CFG_DATA_GENERATOR_INTERFACE)) { 1052 error_setg(errp, "Object ID '%s' is not a '%s' subclass", 1053 gen_id, TYPE_FW_CFG_DATA_GENERATOR_INTERFACE); 1054 return false; 1055 } 1056 klass = FW_CFG_DATA_GENERATOR_GET_CLASS(obj); 1057 array = klass->get_data(obj, errp); 1058 if (!array) { 1059 return false; 1060 } 1061 size = array->len; 1062 fw_cfg_add_file(s, filename, g_byte_array_free(array, FALSE), size); 1063 1064 return true; 1065 } 1066 1067 void fw_cfg_add_extra_pci_roots(PCIBus *bus, FWCfgState *s) 1068 { 1069 int extra_hosts = 0; 1070 1071 if (!bus) { 1072 return; 1073 } 1074 1075 QLIST_FOREACH(bus, &bus->child, sibling) { 1076 /* look for expander root buses */ 1077 if (pci_bus_is_root(bus)) { 1078 extra_hosts++; 1079 } 1080 } 1081 1082 if (extra_hosts && s) { 1083 uint64_t *val = g_malloc(sizeof(*val)); 1084 *val = cpu_to_le64(extra_hosts); 1085 fw_cfg_add_file(s, "etc/extra-pci-roots", val, sizeof(*val)); 1086 } 1087 } 1088 1089 static void fw_cfg_machine_reset(void *opaque) 1090 { 1091 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 1092 FWCfgState *s = opaque; 1093 void *ptr; 1094 size_t len; 1095 char *buf; 1096 1097 buf = get_boot_devices_list(&len); 1098 ptr = fw_cfg_modify_file(s, "bootorder", (uint8_t *)buf, len); 1099 g_free(ptr); 1100 1101 if (!mc->legacy_fw_cfg_order) { 1102 buf = get_boot_devices_lchs_list(&len); 1103 ptr = fw_cfg_modify_file(s, "bios-geometry", (uint8_t *)buf, len); 1104 g_free(ptr); 1105 } 1106 } 1107 1108 static void fw_cfg_machine_ready(struct Notifier *n, void *data) 1109 { 1110 FWCfgState *s = container_of(n, FWCfgState, machine_ready); 1111 qemu_register_reset(fw_cfg_machine_reset, s); 1112 } 1113 1114 static Property fw_cfg_properties[] = { 1115 DEFINE_PROP_BOOL("acpi-mr-restore", FWCfgState, acpi_mr_restore, true), 1116 DEFINE_PROP_END_OF_LIST(), 1117 }; 1118 1119 static void fw_cfg_common_realize(DeviceState *dev, Error **errp) 1120 { 1121 FWCfgState *s = FW_CFG(dev); 1122 MachineState *machine = MACHINE(qdev_get_machine()); 1123 uint32_t version = FW_CFG_VERSION; 1124 1125 if (!fw_cfg_find()) { 1126 error_setg(errp, "at most one %s device is permitted", TYPE_FW_CFG); 1127 return; 1128 } 1129 1130 fw_cfg_add_bytes(s, FW_CFG_SIGNATURE, (char *)"QEMU", 4); 1131 fw_cfg_add_bytes(s, FW_CFG_UUID, &qemu_uuid, 16); 1132 fw_cfg_add_i16(s, FW_CFG_NOGRAPHIC, (uint16_t)!machine->enable_graphics); 1133 fw_cfg_add_i16(s, FW_CFG_BOOT_MENU, (uint16_t)boot_menu); 1134 fw_cfg_bootsplash(s); 1135 fw_cfg_reboot(s); 1136 1137 if (s->dma_enabled) { 1138 version |= FW_CFG_VERSION_DMA; 1139 } 1140 1141 fw_cfg_add_i32(s, FW_CFG_ID, version); 1142 1143 s->machine_ready.notify = fw_cfg_machine_ready; 1144 qemu_add_machine_init_done_notifier(&s->machine_ready); 1145 } 1146 1147 FWCfgState *fw_cfg_init_io_dma(uint32_t iobase, uint32_t dma_iobase, 1148 AddressSpace *dma_as) 1149 { 1150 DeviceState *dev; 1151 SysBusDevice *sbd; 1152 FWCfgIoState *ios; 1153 FWCfgState *s; 1154 bool dma_requested = dma_iobase && dma_as; 1155 1156 dev = qdev_new(TYPE_FW_CFG_IO); 1157 if (!dma_requested) { 1158 qdev_prop_set_bit(dev, "dma_enabled", false); 1159 } 1160 1161 object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG, 1162 OBJECT(dev)); 1163 1164 sbd = SYS_BUS_DEVICE(dev); 1165 sysbus_realize_and_unref(sbd, &error_fatal); 1166 ios = FW_CFG_IO(dev); 1167 sysbus_add_io(sbd, iobase, &ios->comb_iomem); 1168 1169 s = FW_CFG(dev); 1170 1171 if (s->dma_enabled) { 1172 /* 64 bits for the address field */ 1173 s->dma_as = dma_as; 1174 s->dma_addr = 0; 1175 sysbus_add_io(sbd, dma_iobase, &s->dma_iomem); 1176 } 1177 1178 return s; 1179 } 1180 1181 FWCfgState *fw_cfg_init_io(uint32_t iobase) 1182 { 1183 return fw_cfg_init_io_dma(iobase, 0, NULL); 1184 } 1185 1186 FWCfgState *fw_cfg_init_mem_wide(hwaddr ctl_addr, 1187 hwaddr data_addr, uint32_t data_width, 1188 hwaddr dma_addr, AddressSpace *dma_as) 1189 { 1190 DeviceState *dev; 1191 SysBusDevice *sbd; 1192 FWCfgState *s; 1193 bool dma_requested = dma_addr && dma_as; 1194 1195 dev = qdev_new(TYPE_FW_CFG_MEM); 1196 qdev_prop_set_uint32(dev, "data_width", data_width); 1197 if (!dma_requested) { 1198 qdev_prop_set_bit(dev, "dma_enabled", false); 1199 } 1200 1201 object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG, 1202 OBJECT(dev)); 1203 1204 sbd = SYS_BUS_DEVICE(dev); 1205 sysbus_realize_and_unref(sbd, &error_fatal); 1206 sysbus_mmio_map(sbd, 0, ctl_addr); 1207 sysbus_mmio_map(sbd, 1, data_addr); 1208 1209 s = FW_CFG(dev); 1210 1211 if (s->dma_enabled) { 1212 s->dma_as = dma_as; 1213 s->dma_addr = 0; 1214 sysbus_mmio_map(sbd, 2, dma_addr); 1215 } 1216 1217 return s; 1218 } 1219 1220 FWCfgState *fw_cfg_init_mem(hwaddr ctl_addr, hwaddr data_addr) 1221 { 1222 return fw_cfg_init_mem_wide(ctl_addr, data_addr, 1223 fw_cfg_data_mem_ops.valid.max_access_size, 1224 0, NULL); 1225 } 1226 1227 1228 FWCfgState *fw_cfg_find(void) 1229 { 1230 /* Returns NULL unless there is exactly one fw_cfg device */ 1231 return FW_CFG(object_resolve_path_type("", TYPE_FW_CFG, NULL)); 1232 } 1233 1234 1235 static void fw_cfg_class_init(ObjectClass *klass, void *data) 1236 { 1237 DeviceClass *dc = DEVICE_CLASS(klass); 1238 1239 dc->reset = fw_cfg_reset; 1240 dc->vmsd = &vmstate_fw_cfg; 1241 1242 device_class_set_props(dc, fw_cfg_properties); 1243 } 1244 1245 static const TypeInfo fw_cfg_info = { 1246 .name = TYPE_FW_CFG, 1247 .parent = TYPE_SYS_BUS_DEVICE, 1248 .abstract = true, 1249 .instance_size = sizeof(FWCfgState), 1250 .class_init = fw_cfg_class_init, 1251 }; 1252 1253 static void fw_cfg_file_slots_allocate(FWCfgState *s, Error **errp) 1254 { 1255 uint16_t file_slots_max; 1256 1257 if (fw_cfg_file_slots(s) < FW_CFG_FILE_SLOTS_MIN) { 1258 error_setg(errp, "\"file_slots\" must be at least 0x%x", 1259 FW_CFG_FILE_SLOTS_MIN); 1260 return; 1261 } 1262 1263 /* (UINT16_MAX & FW_CFG_ENTRY_MASK) is the highest inclusive selector value 1264 * that we permit. The actual (exclusive) value coming from the 1265 * configuration is (FW_CFG_FILE_FIRST + fw_cfg_file_slots(s)). */ 1266 file_slots_max = (UINT16_MAX & FW_CFG_ENTRY_MASK) - FW_CFG_FILE_FIRST + 1; 1267 if (fw_cfg_file_slots(s) > file_slots_max) { 1268 error_setg(errp, "\"file_slots\" must not exceed 0x%" PRIx16, 1269 file_slots_max); 1270 return; 1271 } 1272 1273 s->entries[0] = g_new0(FWCfgEntry, fw_cfg_max_entry(s)); 1274 s->entries[1] = g_new0(FWCfgEntry, fw_cfg_max_entry(s)); 1275 s->entry_order = g_new0(int, fw_cfg_max_entry(s)); 1276 } 1277 1278 static Property fw_cfg_io_properties[] = { 1279 DEFINE_PROP_BOOL("dma_enabled", FWCfgIoState, parent_obj.dma_enabled, 1280 true), 1281 DEFINE_PROP_UINT16("x-file-slots", FWCfgIoState, parent_obj.file_slots, 1282 FW_CFG_FILE_SLOTS_DFLT), 1283 DEFINE_PROP_END_OF_LIST(), 1284 }; 1285 1286 static void fw_cfg_io_realize(DeviceState *dev, Error **errp) 1287 { 1288 ERRP_GUARD(); 1289 FWCfgIoState *s = FW_CFG_IO(dev); 1290 1291 fw_cfg_file_slots_allocate(FW_CFG(s), errp); 1292 if (*errp) { 1293 return; 1294 } 1295 1296 /* when using port i/o, the 8-bit data register ALWAYS overlaps 1297 * with half of the 16-bit control register. Hence, the total size 1298 * of the i/o region used is FW_CFG_CTL_SIZE */ 1299 memory_region_init_io(&s->comb_iomem, OBJECT(s), &fw_cfg_comb_mem_ops, 1300 FW_CFG(s), "fwcfg", FW_CFG_CTL_SIZE); 1301 1302 if (FW_CFG(s)->dma_enabled) { 1303 memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s), 1304 &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma", 1305 sizeof(dma_addr_t)); 1306 } 1307 1308 fw_cfg_common_realize(dev, errp); 1309 } 1310 1311 static void fw_cfg_io_class_init(ObjectClass *klass, void *data) 1312 { 1313 DeviceClass *dc = DEVICE_CLASS(klass); 1314 1315 dc->realize = fw_cfg_io_realize; 1316 device_class_set_props(dc, fw_cfg_io_properties); 1317 } 1318 1319 static const TypeInfo fw_cfg_io_info = { 1320 .name = TYPE_FW_CFG_IO, 1321 .parent = TYPE_FW_CFG, 1322 .instance_size = sizeof(FWCfgIoState), 1323 .class_init = fw_cfg_io_class_init, 1324 }; 1325 1326 1327 static Property fw_cfg_mem_properties[] = { 1328 DEFINE_PROP_UINT32("data_width", FWCfgMemState, data_width, -1), 1329 DEFINE_PROP_BOOL("dma_enabled", FWCfgMemState, parent_obj.dma_enabled, 1330 true), 1331 DEFINE_PROP_UINT16("x-file-slots", FWCfgMemState, parent_obj.file_slots, 1332 FW_CFG_FILE_SLOTS_DFLT), 1333 DEFINE_PROP_END_OF_LIST(), 1334 }; 1335 1336 static void fw_cfg_mem_realize(DeviceState *dev, Error **errp) 1337 { 1338 ERRP_GUARD(); 1339 FWCfgMemState *s = FW_CFG_MEM(dev); 1340 SysBusDevice *sbd = SYS_BUS_DEVICE(dev); 1341 const MemoryRegionOps *data_ops = &fw_cfg_data_mem_ops; 1342 1343 fw_cfg_file_slots_allocate(FW_CFG(s), errp); 1344 if (*errp) { 1345 return; 1346 } 1347 1348 memory_region_init_io(&s->ctl_iomem, OBJECT(s), &fw_cfg_ctl_mem_ops, 1349 FW_CFG(s), "fwcfg.ctl", FW_CFG_CTL_SIZE); 1350 sysbus_init_mmio(sbd, &s->ctl_iomem); 1351 1352 if (s->data_width > data_ops->valid.max_access_size) { 1353 s->wide_data_ops = *data_ops; 1354 1355 s->wide_data_ops.valid.max_access_size = s->data_width; 1356 s->wide_data_ops.impl.max_access_size = s->data_width; 1357 data_ops = &s->wide_data_ops; 1358 } 1359 memory_region_init_io(&s->data_iomem, OBJECT(s), data_ops, FW_CFG(s), 1360 "fwcfg.data", data_ops->valid.max_access_size); 1361 sysbus_init_mmio(sbd, &s->data_iomem); 1362 1363 if (FW_CFG(s)->dma_enabled) { 1364 memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s), 1365 &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma", 1366 sizeof(dma_addr_t)); 1367 sysbus_init_mmio(sbd, &FW_CFG(s)->dma_iomem); 1368 } 1369 1370 fw_cfg_common_realize(dev, errp); 1371 } 1372 1373 static void fw_cfg_mem_class_init(ObjectClass *klass, void *data) 1374 { 1375 DeviceClass *dc = DEVICE_CLASS(klass); 1376 1377 dc->realize = fw_cfg_mem_realize; 1378 device_class_set_props(dc, fw_cfg_mem_properties); 1379 } 1380 1381 static const TypeInfo fw_cfg_mem_info = { 1382 .name = TYPE_FW_CFG_MEM, 1383 .parent = TYPE_FW_CFG, 1384 .instance_size = sizeof(FWCfgMemState), 1385 .class_init = fw_cfg_mem_class_init, 1386 }; 1387 1388 static void fw_cfg_register_types(void) 1389 { 1390 type_register_static(&fw_cfg_info); 1391 type_register_static(&fw_cfg_io_info); 1392 type_register_static(&fw_cfg_mem_info); 1393 } 1394 1395 type_init(fw_cfg_register_types) 1396