xref: /openbmc/qemu/hw/nvram/fw_cfg.c (revision 4b9fa0b4)
1 /*
2  * QEMU Firmware configuration device emulation
3  *
4  * Copyright (c) 2008 Gleb Natapov
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "qemu-common.h"
27 #include "sysemu/sysemu.h"
28 #include "sysemu/dma.h"
29 #include "sysemu/reset.h"
30 #include "hw/boards.h"
31 #include "hw/nvram/fw_cfg.h"
32 #include "hw/qdev-properties.h"
33 #include "hw/sysbus.h"
34 #include "migration/qemu-file-types.h"
35 #include "migration/vmstate.h"
36 #include "trace.h"
37 #include "qemu/error-report.h"
38 #include "qemu/option.h"
39 #include "qemu/config-file.h"
40 #include "qemu/cutils.h"
41 #include "qapi/error.h"
42 
43 #define FW_CFG_FILE_SLOTS_DFLT 0x20
44 
45 /* FW_CFG_VERSION bits */
46 #define FW_CFG_VERSION      0x01
47 #define FW_CFG_VERSION_DMA  0x02
48 
49 /* FW_CFG_DMA_CONTROL bits */
50 #define FW_CFG_DMA_CTL_ERROR   0x01
51 #define FW_CFG_DMA_CTL_READ    0x02
52 #define FW_CFG_DMA_CTL_SKIP    0x04
53 #define FW_CFG_DMA_CTL_SELECT  0x08
54 #define FW_CFG_DMA_CTL_WRITE   0x10
55 
56 #define FW_CFG_DMA_SIGNATURE 0x51454d5520434647ULL /* "QEMU CFG" */
57 
58 struct FWCfgEntry {
59     uint32_t len;
60     bool allow_write;
61     uint8_t *data;
62     void *callback_opaque;
63     FWCfgCallback select_cb;
64     FWCfgWriteCallback write_cb;
65 };
66 
67 /**
68  * key_name:
69  *
70  * @key: The uint16 selector key.
71  *
72  * Returns: The stringified name if the selector refers to a well-known
73  *          numerically defined item, or NULL on key lookup failure.
74  */
75 static const char *key_name(uint16_t key)
76 {
77     static const char *fw_cfg_wellknown_keys[FW_CFG_FILE_FIRST] = {
78         [FW_CFG_SIGNATURE] = "signature",
79         [FW_CFG_ID] = "id",
80         [FW_CFG_UUID] = "uuid",
81         [FW_CFG_RAM_SIZE] = "ram_size",
82         [FW_CFG_NOGRAPHIC] = "nographic",
83         [FW_CFG_NB_CPUS] = "nb_cpus",
84         [FW_CFG_MACHINE_ID] = "machine_id",
85         [FW_CFG_KERNEL_ADDR] = "kernel_addr",
86         [FW_CFG_KERNEL_SIZE] = "kernel_size",
87         [FW_CFG_KERNEL_CMDLINE] = "kernel_cmdline",
88         [FW_CFG_INITRD_ADDR] = "initrd_addr",
89         [FW_CFG_INITRD_SIZE] = "initdr_size",
90         [FW_CFG_BOOT_DEVICE] = "boot_device",
91         [FW_CFG_NUMA] = "numa",
92         [FW_CFG_BOOT_MENU] = "boot_menu",
93         [FW_CFG_MAX_CPUS] = "max_cpus",
94         [FW_CFG_KERNEL_ENTRY] = "kernel_entry",
95         [FW_CFG_KERNEL_DATA] = "kernel_data",
96         [FW_CFG_INITRD_DATA] = "initrd_data",
97         [FW_CFG_CMDLINE_ADDR] = "cmdline_addr",
98         [FW_CFG_CMDLINE_SIZE] = "cmdline_size",
99         [FW_CFG_CMDLINE_DATA] = "cmdline_data",
100         [FW_CFG_SETUP_ADDR] = "setup_addr",
101         [FW_CFG_SETUP_SIZE] = "setup_size",
102         [FW_CFG_SETUP_DATA] = "setup_data",
103         [FW_CFG_FILE_DIR] = "file_dir",
104     };
105 
106     if (key & FW_CFG_ARCH_LOCAL) {
107         return fw_cfg_arch_key_name(key);
108     }
109     if (key < FW_CFG_FILE_FIRST) {
110         return fw_cfg_wellknown_keys[key];
111     }
112 
113     return NULL;
114 }
115 
116 static inline const char *trace_key_name(uint16_t key)
117 {
118     const char *name = key_name(key);
119 
120     return name ? name : "unknown";
121 }
122 
123 #define JPG_FILE 0
124 #define BMP_FILE 1
125 
126 static char *read_splashfile(char *filename, gsize *file_sizep,
127                              int *file_typep)
128 {
129     GError *err = NULL;
130     gchar *content;
131     int file_type;
132     unsigned int filehead;
133     int bmp_bpp;
134 
135     if (!g_file_get_contents(filename, &content, file_sizep, &err)) {
136         error_report("failed to read splash file '%s': %s",
137                      filename, err->message);
138         g_error_free(err);
139         return NULL;
140     }
141 
142     /* check file size */
143     if (*file_sizep < 30) {
144         goto error;
145     }
146 
147     /* check magic ID */
148     filehead = lduw_le_p(content);
149     if (filehead == 0xd8ff) {
150         file_type = JPG_FILE;
151     } else if (filehead == 0x4d42) {
152         file_type = BMP_FILE;
153     } else {
154         goto error;
155     }
156 
157     /* check BMP bpp */
158     if (file_type == BMP_FILE) {
159         bmp_bpp = lduw_le_p(&content[28]);
160         if (bmp_bpp != 24) {
161             goto error;
162         }
163     }
164 
165     /* return values */
166     *file_typep = file_type;
167 
168     return content;
169 
170 error:
171     error_report("splash file '%s' format not recognized; must be JPEG "
172                  "or 24 bit BMP", filename);
173     g_free(content);
174     return NULL;
175 }
176 
177 static void fw_cfg_bootsplash(FWCfgState *s)
178 {
179     const char *boot_splash_filename = NULL;
180     const char *boot_splash_time = NULL;
181     char *filename, *file_data;
182     gsize file_size;
183     int file_type;
184 
185     /* get user configuration */
186     QemuOptsList *plist = qemu_find_opts("boot-opts");
187     QemuOpts *opts = QTAILQ_FIRST(&plist->head);
188     boot_splash_filename = qemu_opt_get(opts, "splash");
189     boot_splash_time = qemu_opt_get(opts, "splash-time");
190 
191     /* insert splash time if user configurated */
192     if (boot_splash_time) {
193         int64_t bst_val = qemu_opt_get_number(opts, "splash-time", -1);
194         uint16_t bst_le16;
195 
196         /* validate the input */
197         if (bst_val < 0 || bst_val > 0xffff) {
198             error_report("splash-time is invalid,"
199                          "it should be a value between 0 and 65535");
200             exit(1);
201         }
202         /* use little endian format */
203         bst_le16 = cpu_to_le16(bst_val);
204         fw_cfg_add_file(s, "etc/boot-menu-wait",
205                         g_memdup(&bst_le16, sizeof bst_le16), sizeof bst_le16);
206     }
207 
208     /* insert splash file if user configurated */
209     if (boot_splash_filename) {
210         filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, boot_splash_filename);
211         if (filename == NULL) {
212             error_report("failed to find file '%s'", boot_splash_filename);
213             return;
214         }
215 
216         /* loading file data */
217         file_data = read_splashfile(filename, &file_size, &file_type);
218         if (file_data == NULL) {
219             g_free(filename);
220             return;
221         }
222         g_free(boot_splash_filedata);
223         boot_splash_filedata = (uint8_t *)file_data;
224 
225         /* insert data */
226         if (file_type == JPG_FILE) {
227             fw_cfg_add_file(s, "bootsplash.jpg",
228                             boot_splash_filedata, file_size);
229         } else {
230             fw_cfg_add_file(s, "bootsplash.bmp",
231                             boot_splash_filedata, file_size);
232         }
233         g_free(filename);
234     }
235 }
236 
237 static void fw_cfg_reboot(FWCfgState *s)
238 {
239     const char *reboot_timeout = NULL;
240     int64_t rt_val = -1;
241     uint32_t rt_le32;
242 
243     /* get user configuration */
244     QemuOptsList *plist = qemu_find_opts("boot-opts");
245     QemuOpts *opts = QTAILQ_FIRST(&plist->head);
246     reboot_timeout = qemu_opt_get(opts, "reboot-timeout");
247 
248     if (reboot_timeout) {
249         rt_val = qemu_opt_get_number(opts, "reboot-timeout", -1);
250         /* validate the input */
251         if (rt_val < 0 || rt_val > 0xffff) {
252             error_report("reboot timeout is invalid,"
253                          "it should be a value between 0 and 65535");
254             exit(1);
255         }
256     }
257 
258     rt_le32 = cpu_to_le32(rt_val);
259     fw_cfg_add_file(s, "etc/boot-fail-wait", g_memdup(&rt_le32, 4), 4);
260 }
261 
262 static void fw_cfg_write(FWCfgState *s, uint8_t value)
263 {
264     /* nothing, write support removed in QEMU v2.4+ */
265 }
266 
267 static inline uint16_t fw_cfg_file_slots(const FWCfgState *s)
268 {
269     return s->file_slots;
270 }
271 
272 /* Note: this function returns an exclusive limit. */
273 static inline uint32_t fw_cfg_max_entry(const FWCfgState *s)
274 {
275     return FW_CFG_FILE_FIRST + fw_cfg_file_slots(s);
276 }
277 
278 static int fw_cfg_select(FWCfgState *s, uint16_t key)
279 {
280     int arch, ret;
281     FWCfgEntry *e;
282 
283     s->cur_offset = 0;
284     if ((key & FW_CFG_ENTRY_MASK) >= fw_cfg_max_entry(s)) {
285         s->cur_entry = FW_CFG_INVALID;
286         ret = 0;
287     } else {
288         s->cur_entry = key;
289         ret = 1;
290         /* entry successfully selected, now run callback if present */
291         arch = !!(key & FW_CFG_ARCH_LOCAL);
292         e = &s->entries[arch][key & FW_CFG_ENTRY_MASK];
293         if (e->select_cb) {
294             e->select_cb(e->callback_opaque);
295         }
296     }
297 
298     trace_fw_cfg_select(s, key, trace_key_name(key), ret);
299     return ret;
300 }
301 
302 static uint64_t fw_cfg_data_read(void *opaque, hwaddr addr, unsigned size)
303 {
304     FWCfgState *s = opaque;
305     int arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL);
306     FWCfgEntry *e = (s->cur_entry == FW_CFG_INVALID) ? NULL :
307                     &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK];
308     uint64_t value = 0;
309 
310     assert(size > 0 && size <= sizeof(value));
311     if (s->cur_entry != FW_CFG_INVALID && e->data && s->cur_offset < e->len) {
312         /* The least significant 'size' bytes of the return value are
313          * expected to contain a string preserving portion of the item
314          * data, padded with zeros on the right in case we run out early.
315          * In technical terms, we're composing the host-endian representation
316          * of the big endian interpretation of the fw_cfg string.
317          */
318         do {
319             value = (value << 8) | e->data[s->cur_offset++];
320         } while (--size && s->cur_offset < e->len);
321         /* If size is still not zero, we *did* run out early, so continue
322          * left-shifting, to add the appropriate number of padding zeros
323          * on the right.
324          */
325         value <<= 8 * size;
326     }
327 
328     trace_fw_cfg_read(s, value);
329     return value;
330 }
331 
332 static void fw_cfg_data_mem_write(void *opaque, hwaddr addr,
333                                   uint64_t value, unsigned size)
334 {
335     FWCfgState *s = opaque;
336     unsigned i = size;
337 
338     do {
339         fw_cfg_write(s, value >> (8 * --i));
340     } while (i);
341 }
342 
343 static void fw_cfg_dma_transfer(FWCfgState *s)
344 {
345     dma_addr_t len;
346     FWCfgDmaAccess dma;
347     int arch;
348     FWCfgEntry *e;
349     int read = 0, write = 0;
350     dma_addr_t dma_addr;
351 
352     /* Reset the address before the next access */
353     dma_addr = s->dma_addr;
354     s->dma_addr = 0;
355 
356     if (dma_memory_read(s->dma_as, dma_addr, &dma, sizeof(dma))) {
357         stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control),
358                    FW_CFG_DMA_CTL_ERROR);
359         return;
360     }
361 
362     dma.address = be64_to_cpu(dma.address);
363     dma.length = be32_to_cpu(dma.length);
364     dma.control = be32_to_cpu(dma.control);
365 
366     if (dma.control & FW_CFG_DMA_CTL_SELECT) {
367         fw_cfg_select(s, dma.control >> 16);
368     }
369 
370     arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL);
371     e = (s->cur_entry == FW_CFG_INVALID) ? NULL :
372         &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK];
373 
374     if (dma.control & FW_CFG_DMA_CTL_READ) {
375         read = 1;
376         write = 0;
377     } else if (dma.control & FW_CFG_DMA_CTL_WRITE) {
378         read = 0;
379         write = 1;
380     } else if (dma.control & FW_CFG_DMA_CTL_SKIP) {
381         read = 0;
382         write = 0;
383     } else {
384         dma.length = 0;
385     }
386 
387     dma.control = 0;
388 
389     while (dma.length > 0 && !(dma.control & FW_CFG_DMA_CTL_ERROR)) {
390         if (s->cur_entry == FW_CFG_INVALID || !e->data ||
391                                 s->cur_offset >= e->len) {
392             len = dma.length;
393 
394             /* If the access is not a read access, it will be a skip access,
395              * tested before.
396              */
397             if (read) {
398                 if (dma_memory_set(s->dma_as, dma.address, 0, len)) {
399                     dma.control |= FW_CFG_DMA_CTL_ERROR;
400                 }
401             }
402             if (write) {
403                 dma.control |= FW_CFG_DMA_CTL_ERROR;
404             }
405         } else {
406             if (dma.length <= (e->len - s->cur_offset)) {
407                 len = dma.length;
408             } else {
409                 len = (e->len - s->cur_offset);
410             }
411 
412             /* If the access is not a read access, it will be a skip access,
413              * tested before.
414              */
415             if (read) {
416                 if (dma_memory_write(s->dma_as, dma.address,
417                                     &e->data[s->cur_offset], len)) {
418                     dma.control |= FW_CFG_DMA_CTL_ERROR;
419                 }
420             }
421             if (write) {
422                 if (!e->allow_write ||
423                     len != dma.length ||
424                     dma_memory_read(s->dma_as, dma.address,
425                                     &e->data[s->cur_offset], len)) {
426                     dma.control |= FW_CFG_DMA_CTL_ERROR;
427                 } else if (e->write_cb) {
428                     e->write_cb(e->callback_opaque, s->cur_offset, len);
429                 }
430             }
431 
432             s->cur_offset += len;
433         }
434 
435         dma.address += len;
436         dma.length  -= len;
437 
438     }
439 
440     stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control),
441                 dma.control);
442 
443     trace_fw_cfg_read(s, 0);
444 }
445 
446 static uint64_t fw_cfg_dma_mem_read(void *opaque, hwaddr addr,
447                                     unsigned size)
448 {
449     /* Return a signature value (and handle various read sizes) */
450     return extract64(FW_CFG_DMA_SIGNATURE, (8 - addr - size) * 8, size * 8);
451 }
452 
453 static void fw_cfg_dma_mem_write(void *opaque, hwaddr addr,
454                                  uint64_t value, unsigned size)
455 {
456     FWCfgState *s = opaque;
457 
458     if (size == 4) {
459         if (addr == 0) {
460             /* FWCfgDmaAccess high address */
461             s->dma_addr = value << 32;
462         } else if (addr == 4) {
463             /* FWCfgDmaAccess low address */
464             s->dma_addr |= value;
465             fw_cfg_dma_transfer(s);
466         }
467     } else if (size == 8 && addr == 0) {
468         s->dma_addr = value;
469         fw_cfg_dma_transfer(s);
470     }
471 }
472 
473 static bool fw_cfg_dma_mem_valid(void *opaque, hwaddr addr,
474                                  unsigned size, bool is_write,
475                                  MemTxAttrs attrs)
476 {
477     return !is_write || ((size == 4 && (addr == 0 || addr == 4)) ||
478                          (size == 8 && addr == 0));
479 }
480 
481 static bool fw_cfg_data_mem_valid(void *opaque, hwaddr addr,
482                                   unsigned size, bool is_write,
483                                   MemTxAttrs attrs)
484 {
485     return addr == 0;
486 }
487 
488 static uint64_t fw_cfg_ctl_mem_read(void *opaque, hwaddr addr, unsigned size)
489 {
490     return 0;
491 }
492 
493 static void fw_cfg_ctl_mem_write(void *opaque, hwaddr addr,
494                                  uint64_t value, unsigned size)
495 {
496     fw_cfg_select(opaque, (uint16_t)value);
497 }
498 
499 static bool fw_cfg_ctl_mem_valid(void *opaque, hwaddr addr,
500                                  unsigned size, bool is_write,
501                                  MemTxAttrs attrs)
502 {
503     return is_write && size == 2;
504 }
505 
506 static void fw_cfg_comb_write(void *opaque, hwaddr addr,
507                               uint64_t value, unsigned size)
508 {
509     switch (size) {
510     case 1:
511         fw_cfg_write(opaque, (uint8_t)value);
512         break;
513     case 2:
514         fw_cfg_select(opaque, (uint16_t)value);
515         break;
516     }
517 }
518 
519 static bool fw_cfg_comb_valid(void *opaque, hwaddr addr,
520                               unsigned size, bool is_write,
521                               MemTxAttrs attrs)
522 {
523     return (size == 1) || (is_write && size == 2);
524 }
525 
526 static const MemoryRegionOps fw_cfg_ctl_mem_ops = {
527     .read = fw_cfg_ctl_mem_read,
528     .write = fw_cfg_ctl_mem_write,
529     .endianness = DEVICE_BIG_ENDIAN,
530     .valid.accepts = fw_cfg_ctl_mem_valid,
531 };
532 
533 static const MemoryRegionOps fw_cfg_data_mem_ops = {
534     .read = fw_cfg_data_read,
535     .write = fw_cfg_data_mem_write,
536     .endianness = DEVICE_BIG_ENDIAN,
537     .valid = {
538         .min_access_size = 1,
539         .max_access_size = 1,
540         .accepts = fw_cfg_data_mem_valid,
541     },
542 };
543 
544 static const MemoryRegionOps fw_cfg_comb_mem_ops = {
545     .read = fw_cfg_data_read,
546     .write = fw_cfg_comb_write,
547     .endianness = DEVICE_LITTLE_ENDIAN,
548     .valid.accepts = fw_cfg_comb_valid,
549 };
550 
551 static const MemoryRegionOps fw_cfg_dma_mem_ops = {
552     .read = fw_cfg_dma_mem_read,
553     .write = fw_cfg_dma_mem_write,
554     .endianness = DEVICE_BIG_ENDIAN,
555     .valid.accepts = fw_cfg_dma_mem_valid,
556     .valid.max_access_size = 8,
557     .impl.max_access_size = 8,
558 };
559 
560 static void fw_cfg_reset(DeviceState *d)
561 {
562     FWCfgState *s = FW_CFG(d);
563 
564     /* we never register a read callback for FW_CFG_SIGNATURE */
565     fw_cfg_select(s, FW_CFG_SIGNATURE);
566 }
567 
568 /* Save restore 32 bit int as uint16_t
569    This is a Big hack, but it is how the old state did it.
570    Or we broke compatibility in the state, or we can't use struct tm
571  */
572 
573 static int get_uint32_as_uint16(QEMUFile *f, void *pv, size_t size,
574                                 const VMStateField *field)
575 {
576     uint32_t *v = pv;
577     *v = qemu_get_be16(f);
578     return 0;
579 }
580 
581 static int put_unused(QEMUFile *f, void *pv, size_t size,
582                       const VMStateField *field, QJSON *vmdesc)
583 {
584     fprintf(stderr, "uint32_as_uint16 is only used for backward compatibility.\n");
585     fprintf(stderr, "This functions shouldn't be called.\n");
586 
587     return 0;
588 }
589 
590 static const VMStateInfo vmstate_hack_uint32_as_uint16 = {
591     .name = "int32_as_uint16",
592     .get  = get_uint32_as_uint16,
593     .put  = put_unused,
594 };
595 
596 #define VMSTATE_UINT16_HACK(_f, _s, _t)                                    \
597     VMSTATE_SINGLE_TEST(_f, _s, _t, 0, vmstate_hack_uint32_as_uint16, uint32_t)
598 
599 
600 static bool is_version_1(void *opaque, int version_id)
601 {
602     return version_id == 1;
603 }
604 
605 bool fw_cfg_dma_enabled(void *opaque)
606 {
607     FWCfgState *s = opaque;
608 
609     return s->dma_enabled;
610 }
611 
612 static const VMStateDescription vmstate_fw_cfg_dma = {
613     .name = "fw_cfg/dma",
614     .needed = fw_cfg_dma_enabled,
615     .fields = (VMStateField[]) {
616         VMSTATE_UINT64(dma_addr, FWCfgState),
617         VMSTATE_END_OF_LIST()
618     },
619 };
620 
621 static const VMStateDescription vmstate_fw_cfg = {
622     .name = "fw_cfg",
623     .version_id = 2,
624     .minimum_version_id = 1,
625     .fields = (VMStateField[]) {
626         VMSTATE_UINT16(cur_entry, FWCfgState),
627         VMSTATE_UINT16_HACK(cur_offset, FWCfgState, is_version_1),
628         VMSTATE_UINT32_V(cur_offset, FWCfgState, 2),
629         VMSTATE_END_OF_LIST()
630     },
631     .subsections = (const VMStateDescription*[]) {
632         &vmstate_fw_cfg_dma,
633         NULL,
634     }
635 };
636 
637 static void fw_cfg_add_bytes_callback(FWCfgState *s, uint16_t key,
638                                       FWCfgCallback select_cb,
639                                       FWCfgWriteCallback write_cb,
640                                       void *callback_opaque,
641                                       void *data, size_t len,
642                                       bool read_only)
643 {
644     int arch = !!(key & FW_CFG_ARCH_LOCAL);
645 
646     key &= FW_CFG_ENTRY_MASK;
647 
648     assert(key < fw_cfg_max_entry(s) && len < UINT32_MAX);
649     assert(s->entries[arch][key].data == NULL); /* avoid key conflict */
650 
651     s->entries[arch][key].data = data;
652     s->entries[arch][key].len = (uint32_t)len;
653     s->entries[arch][key].select_cb = select_cb;
654     s->entries[arch][key].write_cb = write_cb;
655     s->entries[arch][key].callback_opaque = callback_opaque;
656     s->entries[arch][key].allow_write = !read_only;
657 }
658 
659 static void *fw_cfg_modify_bytes_read(FWCfgState *s, uint16_t key,
660                                               void *data, size_t len)
661 {
662     void *ptr;
663     int arch = !!(key & FW_CFG_ARCH_LOCAL);
664 
665     key &= FW_CFG_ENTRY_MASK;
666 
667     assert(key < fw_cfg_max_entry(s) && len < UINT32_MAX);
668 
669     /* return the old data to the function caller, avoid memory leak */
670     ptr = s->entries[arch][key].data;
671     s->entries[arch][key].data = data;
672     s->entries[arch][key].len = len;
673     s->entries[arch][key].callback_opaque = NULL;
674     s->entries[arch][key].allow_write = false;
675 
676     return ptr;
677 }
678 
679 void fw_cfg_add_bytes(FWCfgState *s, uint16_t key, void *data, size_t len)
680 {
681     trace_fw_cfg_add_bytes(key, trace_key_name(key), len);
682     fw_cfg_add_bytes_callback(s, key, NULL, NULL, NULL, data, len, true);
683 }
684 
685 void fw_cfg_add_string(FWCfgState *s, uint16_t key, const char *value)
686 {
687     size_t sz = strlen(value) + 1;
688 
689     trace_fw_cfg_add_string(key, trace_key_name(key), value);
690     fw_cfg_add_bytes(s, key, g_memdup(value, sz), sz);
691 }
692 
693 void fw_cfg_modify_string(FWCfgState *s, uint16_t key, const char *value)
694 {
695     size_t sz = strlen(value) + 1;
696     char *old;
697 
698     old = fw_cfg_modify_bytes_read(s, key, g_memdup(value, sz), sz);
699     g_free(old);
700 }
701 
702 void fw_cfg_add_i16(FWCfgState *s, uint16_t key, uint16_t value)
703 {
704     uint16_t *copy;
705 
706     copy = g_malloc(sizeof(value));
707     *copy = cpu_to_le16(value);
708     trace_fw_cfg_add_i16(key, trace_key_name(key), value);
709     fw_cfg_add_bytes(s, key, copy, sizeof(value));
710 }
711 
712 void fw_cfg_modify_i16(FWCfgState *s, uint16_t key, uint16_t value)
713 {
714     uint16_t *copy, *old;
715 
716     copy = g_malloc(sizeof(value));
717     *copy = cpu_to_le16(value);
718     old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value));
719     g_free(old);
720 }
721 
722 void fw_cfg_add_i32(FWCfgState *s, uint16_t key, uint32_t value)
723 {
724     uint32_t *copy;
725 
726     copy = g_malloc(sizeof(value));
727     *copy = cpu_to_le32(value);
728     trace_fw_cfg_add_i32(key, trace_key_name(key), value);
729     fw_cfg_add_bytes(s, key, copy, sizeof(value));
730 }
731 
732 void fw_cfg_modify_i32(FWCfgState *s, uint16_t key, uint32_t value)
733 {
734     uint32_t *copy, *old;
735 
736     copy = g_malloc(sizeof(value));
737     *copy = cpu_to_le32(value);
738     old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value));
739     g_free(old);
740 }
741 
742 void fw_cfg_add_i64(FWCfgState *s, uint16_t key, uint64_t value)
743 {
744     uint64_t *copy;
745 
746     copy = g_malloc(sizeof(value));
747     *copy = cpu_to_le64(value);
748     trace_fw_cfg_add_i64(key, trace_key_name(key), value);
749     fw_cfg_add_bytes(s, key, copy, sizeof(value));
750 }
751 
752 void fw_cfg_modify_i64(FWCfgState *s, uint16_t key, uint64_t value)
753 {
754     uint64_t *copy, *old;
755 
756     copy = g_malloc(sizeof(value));
757     *copy = cpu_to_le64(value);
758     old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value));
759     g_free(old);
760 }
761 
762 void fw_cfg_set_order_override(FWCfgState *s, int order)
763 {
764     assert(s->fw_cfg_order_override == 0);
765     s->fw_cfg_order_override = order;
766 }
767 
768 void fw_cfg_reset_order_override(FWCfgState *s)
769 {
770     assert(s->fw_cfg_order_override != 0);
771     s->fw_cfg_order_override = 0;
772 }
773 
774 /*
775  * This is the legacy order list.  For legacy systems, files are in
776  * the fw_cfg in the order defined below, by the "order" value.  Note
777  * that some entries (VGA ROMs, NIC option ROMS, etc.) go into a
778  * specific area, but there may be more than one and they occur in the
779  * order that the user specifies them on the command line.  Those are
780  * handled in a special manner, using the order override above.
781  *
782  * For non-legacy, the files are sorted by filename to avoid this kind
783  * of complexity in the future.
784  *
785  * This is only for x86, other arches don't implement versioning so
786  * they won't set legacy mode.
787  */
788 static struct {
789     const char *name;
790     int order;
791 } fw_cfg_order[] = {
792     { "etc/boot-menu-wait", 10 },
793     { "bootsplash.jpg", 11 },
794     { "bootsplash.bmp", 12 },
795     { "etc/boot-fail-wait", 15 },
796     { "etc/smbios/smbios-tables", 20 },
797     { "etc/smbios/smbios-anchor", 30 },
798     { "etc/e820", 40 },
799     { "etc/reserved-memory-end", 50 },
800     { "genroms/kvmvapic.bin", 55 },
801     { "genroms/linuxboot.bin", 60 },
802     { }, /* VGA ROMs from pc_vga_init come here, 70. */
803     { }, /* NIC option ROMs from pc_nic_init come here, 80. */
804     { "etc/system-states", 90 },
805     { }, /* User ROMs come here, 100. */
806     { }, /* Device FW comes here, 110. */
807     { "etc/extra-pci-roots", 120 },
808     { "etc/acpi/tables", 130 },
809     { "etc/table-loader", 140 },
810     { "etc/tpm/log", 150 },
811     { "etc/acpi/rsdp", 160 },
812     { "bootorder", 170 },
813 
814 #define FW_CFG_ORDER_OVERRIDE_LAST 200
815 };
816 
817 static int get_fw_cfg_order(FWCfgState *s, const char *name)
818 {
819     int i;
820 
821     if (s->fw_cfg_order_override > 0) {
822         return s->fw_cfg_order_override;
823     }
824 
825     for (i = 0; i < ARRAY_SIZE(fw_cfg_order); i++) {
826         if (fw_cfg_order[i].name == NULL) {
827             continue;
828         }
829 
830         if (strcmp(name, fw_cfg_order[i].name) == 0) {
831             return fw_cfg_order[i].order;
832         }
833     }
834 
835     /* Stick unknown stuff at the end. */
836     warn_report("Unknown firmware file in legacy mode: %s", name);
837     return FW_CFG_ORDER_OVERRIDE_LAST;
838 }
839 
840 void fw_cfg_add_file_callback(FWCfgState *s,  const char *filename,
841                               FWCfgCallback select_cb,
842                               FWCfgWriteCallback write_cb,
843                               void *callback_opaque,
844                               void *data, size_t len, bool read_only)
845 {
846     int i, index, count;
847     size_t dsize;
848     MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
849     int order = 0;
850 
851     if (!s->files) {
852         dsize = sizeof(uint32_t) + sizeof(FWCfgFile) * fw_cfg_file_slots(s);
853         s->files = g_malloc0(dsize);
854         fw_cfg_add_bytes(s, FW_CFG_FILE_DIR, s->files, dsize);
855     }
856 
857     count = be32_to_cpu(s->files->count);
858     assert(count < fw_cfg_file_slots(s));
859 
860     /* Find the insertion point. */
861     if (mc->legacy_fw_cfg_order) {
862         /*
863          * Sort by order. For files with the same order, we keep them
864          * in the sequence in which they were added.
865          */
866         order = get_fw_cfg_order(s, filename);
867         for (index = count;
868              index > 0 && order < s->entry_order[index - 1];
869              index--);
870     } else {
871         /* Sort by file name. */
872         for (index = count;
873              index > 0 && strcmp(filename, s->files->f[index - 1].name) < 0;
874              index--);
875     }
876 
877     /*
878      * Move all the entries from the index point and after down one
879      * to create a slot for the new entry.  Because calculations are
880      * being done with the index, make it so that "i" is the current
881      * index and "i - 1" is the one being copied from, thus the
882      * unusual start and end in the for statement.
883      */
884     for (i = count; i > index; i--) {
885         s->files->f[i] = s->files->f[i - 1];
886         s->files->f[i].select = cpu_to_be16(FW_CFG_FILE_FIRST + i);
887         s->entries[0][FW_CFG_FILE_FIRST + i] =
888             s->entries[0][FW_CFG_FILE_FIRST + i - 1];
889         s->entry_order[i] = s->entry_order[i - 1];
890     }
891 
892     memset(&s->files->f[index], 0, sizeof(FWCfgFile));
893     memset(&s->entries[0][FW_CFG_FILE_FIRST + index], 0, sizeof(FWCfgEntry));
894 
895     pstrcpy(s->files->f[index].name, sizeof(s->files->f[index].name), filename);
896     for (i = 0; i <= count; i++) {
897         if (i != index &&
898             strcmp(s->files->f[index].name, s->files->f[i].name) == 0) {
899             error_report("duplicate fw_cfg file name: %s",
900                          s->files->f[index].name);
901             exit(1);
902         }
903     }
904 
905     fw_cfg_add_bytes_callback(s, FW_CFG_FILE_FIRST + index,
906                               select_cb, write_cb,
907                               callback_opaque, data, len,
908                               read_only);
909 
910     s->files->f[index].size   = cpu_to_be32(len);
911     s->files->f[index].select = cpu_to_be16(FW_CFG_FILE_FIRST + index);
912     s->entry_order[index] = order;
913     trace_fw_cfg_add_file(s, index, s->files->f[index].name, len);
914 
915     s->files->count = cpu_to_be32(count+1);
916 }
917 
918 void fw_cfg_add_file(FWCfgState *s,  const char *filename,
919                      void *data, size_t len)
920 {
921     fw_cfg_add_file_callback(s, filename, NULL, NULL, NULL, data, len, true);
922 }
923 
924 void *fw_cfg_modify_file(FWCfgState *s, const char *filename,
925                         void *data, size_t len)
926 {
927     int i, index;
928     void *ptr = NULL;
929 
930     assert(s->files);
931 
932     index = be32_to_cpu(s->files->count);
933 
934     for (i = 0; i < index; i++) {
935         if (strcmp(filename, s->files->f[i].name) == 0) {
936             ptr = fw_cfg_modify_bytes_read(s, FW_CFG_FILE_FIRST + i,
937                                            data, len);
938             s->files->f[i].size   = cpu_to_be32(len);
939             return ptr;
940         }
941     }
942 
943     assert(index < fw_cfg_file_slots(s));
944 
945     /* add new one */
946     fw_cfg_add_file_callback(s, filename, NULL, NULL, NULL, data, len, true);
947     return NULL;
948 }
949 
950 static void fw_cfg_machine_reset(void *opaque)
951 {
952     void *ptr;
953     size_t len;
954     FWCfgState *s = opaque;
955     char *bootindex = get_boot_devices_list(&len);
956 
957     ptr = fw_cfg_modify_file(s, "bootorder", (uint8_t *)bootindex, len);
958     g_free(ptr);
959 }
960 
961 static void fw_cfg_machine_ready(struct Notifier *n, void *data)
962 {
963     FWCfgState *s = container_of(n, FWCfgState, machine_ready);
964     qemu_register_reset(fw_cfg_machine_reset, s);
965 }
966 
967 
968 
969 static void fw_cfg_common_realize(DeviceState *dev, Error **errp)
970 {
971     FWCfgState *s = FW_CFG(dev);
972     MachineState *machine = MACHINE(qdev_get_machine());
973     uint32_t version = FW_CFG_VERSION;
974 
975     if (!fw_cfg_find()) {
976         error_setg(errp, "at most one %s device is permitted", TYPE_FW_CFG);
977         return;
978     }
979 
980     fw_cfg_add_bytes(s, FW_CFG_SIGNATURE, (char *)"QEMU", 4);
981     fw_cfg_add_bytes(s, FW_CFG_UUID, &qemu_uuid, 16);
982     fw_cfg_add_i16(s, FW_CFG_NOGRAPHIC, (uint16_t)!machine->enable_graphics);
983     fw_cfg_add_i16(s, FW_CFG_BOOT_MENU, (uint16_t)boot_menu);
984     fw_cfg_bootsplash(s);
985     fw_cfg_reboot(s);
986 
987     if (s->dma_enabled) {
988         version |= FW_CFG_VERSION_DMA;
989     }
990 
991     fw_cfg_add_i32(s, FW_CFG_ID, version);
992 
993     s->machine_ready.notify = fw_cfg_machine_ready;
994     qemu_add_machine_init_done_notifier(&s->machine_ready);
995 }
996 
997 FWCfgState *fw_cfg_init_io_dma(uint32_t iobase, uint32_t dma_iobase,
998                                 AddressSpace *dma_as)
999 {
1000     DeviceState *dev;
1001     SysBusDevice *sbd;
1002     FWCfgIoState *ios;
1003     FWCfgState *s;
1004     bool dma_requested = dma_iobase && dma_as;
1005 
1006     dev = qdev_create(NULL, TYPE_FW_CFG_IO);
1007     if (!dma_requested) {
1008         qdev_prop_set_bit(dev, "dma_enabled", false);
1009     }
1010 
1011     object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG,
1012                               OBJECT(dev), NULL);
1013     qdev_init_nofail(dev);
1014 
1015     sbd = SYS_BUS_DEVICE(dev);
1016     ios = FW_CFG_IO(dev);
1017     sysbus_add_io(sbd, iobase, &ios->comb_iomem);
1018 
1019     s = FW_CFG(dev);
1020 
1021     if (s->dma_enabled) {
1022         /* 64 bits for the address field */
1023         s->dma_as = dma_as;
1024         s->dma_addr = 0;
1025         sysbus_add_io(sbd, dma_iobase, &s->dma_iomem);
1026     }
1027 
1028     return s;
1029 }
1030 
1031 FWCfgState *fw_cfg_init_io(uint32_t iobase)
1032 {
1033     return fw_cfg_init_io_dma(iobase, 0, NULL);
1034 }
1035 
1036 FWCfgState *fw_cfg_init_mem_wide(hwaddr ctl_addr,
1037                                  hwaddr data_addr, uint32_t data_width,
1038                                  hwaddr dma_addr, AddressSpace *dma_as)
1039 {
1040     DeviceState *dev;
1041     SysBusDevice *sbd;
1042     FWCfgState *s;
1043     bool dma_requested = dma_addr && dma_as;
1044 
1045     dev = qdev_create(NULL, TYPE_FW_CFG_MEM);
1046     qdev_prop_set_uint32(dev, "data_width", data_width);
1047     if (!dma_requested) {
1048         qdev_prop_set_bit(dev, "dma_enabled", false);
1049     }
1050 
1051     object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG,
1052                               OBJECT(dev), NULL);
1053     qdev_init_nofail(dev);
1054 
1055     sbd = SYS_BUS_DEVICE(dev);
1056     sysbus_mmio_map(sbd, 0, ctl_addr);
1057     sysbus_mmio_map(sbd, 1, data_addr);
1058 
1059     s = FW_CFG(dev);
1060 
1061     if (s->dma_enabled) {
1062         s->dma_as = dma_as;
1063         s->dma_addr = 0;
1064         sysbus_mmio_map(sbd, 2, dma_addr);
1065     }
1066 
1067     return s;
1068 }
1069 
1070 FWCfgState *fw_cfg_init_mem(hwaddr ctl_addr, hwaddr data_addr)
1071 {
1072     return fw_cfg_init_mem_wide(ctl_addr, data_addr,
1073                                 fw_cfg_data_mem_ops.valid.max_access_size,
1074                                 0, NULL);
1075 }
1076 
1077 
1078 FWCfgState *fw_cfg_find(void)
1079 {
1080     /* Returns NULL unless there is exactly one fw_cfg device */
1081     return FW_CFG(object_resolve_path_type("", TYPE_FW_CFG, NULL));
1082 }
1083 
1084 
1085 static void fw_cfg_class_init(ObjectClass *klass, void *data)
1086 {
1087     DeviceClass *dc = DEVICE_CLASS(klass);
1088 
1089     dc->reset = fw_cfg_reset;
1090     dc->vmsd = &vmstate_fw_cfg;
1091 }
1092 
1093 static const TypeInfo fw_cfg_info = {
1094     .name          = TYPE_FW_CFG,
1095     .parent        = TYPE_SYS_BUS_DEVICE,
1096     .abstract      = true,
1097     .instance_size = sizeof(FWCfgState),
1098     .class_init    = fw_cfg_class_init,
1099 };
1100 
1101 static void fw_cfg_file_slots_allocate(FWCfgState *s, Error **errp)
1102 {
1103     uint16_t file_slots_max;
1104 
1105     if (fw_cfg_file_slots(s) < FW_CFG_FILE_SLOTS_MIN) {
1106         error_setg(errp, "\"file_slots\" must be at least 0x%x",
1107                    FW_CFG_FILE_SLOTS_MIN);
1108         return;
1109     }
1110 
1111     /* (UINT16_MAX & FW_CFG_ENTRY_MASK) is the highest inclusive selector value
1112      * that we permit. The actual (exclusive) value coming from the
1113      * configuration is (FW_CFG_FILE_FIRST + fw_cfg_file_slots(s)). */
1114     file_slots_max = (UINT16_MAX & FW_CFG_ENTRY_MASK) - FW_CFG_FILE_FIRST + 1;
1115     if (fw_cfg_file_slots(s) > file_slots_max) {
1116         error_setg(errp, "\"file_slots\" must not exceed 0x%" PRIx16,
1117                    file_slots_max);
1118         return;
1119     }
1120 
1121     s->entries[0] = g_new0(FWCfgEntry, fw_cfg_max_entry(s));
1122     s->entries[1] = g_new0(FWCfgEntry, fw_cfg_max_entry(s));
1123     s->entry_order = g_new0(int, fw_cfg_max_entry(s));
1124 }
1125 
1126 static Property fw_cfg_io_properties[] = {
1127     DEFINE_PROP_BOOL("dma_enabled", FWCfgIoState, parent_obj.dma_enabled,
1128                      true),
1129     DEFINE_PROP_UINT16("x-file-slots", FWCfgIoState, parent_obj.file_slots,
1130                        FW_CFG_FILE_SLOTS_DFLT),
1131     DEFINE_PROP_END_OF_LIST(),
1132 };
1133 
1134 static void fw_cfg_io_realize(DeviceState *dev, Error **errp)
1135 {
1136     FWCfgIoState *s = FW_CFG_IO(dev);
1137     Error *local_err = NULL;
1138 
1139     fw_cfg_file_slots_allocate(FW_CFG(s), &local_err);
1140     if (local_err) {
1141         error_propagate(errp, local_err);
1142         return;
1143     }
1144 
1145     /* when using port i/o, the 8-bit data register ALWAYS overlaps
1146      * with half of the 16-bit control register. Hence, the total size
1147      * of the i/o region used is FW_CFG_CTL_SIZE */
1148     memory_region_init_io(&s->comb_iomem, OBJECT(s), &fw_cfg_comb_mem_ops,
1149                           FW_CFG(s), "fwcfg", FW_CFG_CTL_SIZE);
1150 
1151     if (FW_CFG(s)->dma_enabled) {
1152         memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s),
1153                               &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma",
1154                               sizeof(dma_addr_t));
1155     }
1156 
1157     fw_cfg_common_realize(dev, errp);
1158 }
1159 
1160 static void fw_cfg_io_class_init(ObjectClass *klass, void *data)
1161 {
1162     DeviceClass *dc = DEVICE_CLASS(klass);
1163 
1164     dc->realize = fw_cfg_io_realize;
1165     dc->props = fw_cfg_io_properties;
1166 }
1167 
1168 static const TypeInfo fw_cfg_io_info = {
1169     .name          = TYPE_FW_CFG_IO,
1170     .parent        = TYPE_FW_CFG,
1171     .instance_size = sizeof(FWCfgIoState),
1172     .class_init    = fw_cfg_io_class_init,
1173 };
1174 
1175 
1176 static Property fw_cfg_mem_properties[] = {
1177     DEFINE_PROP_UINT32("data_width", FWCfgMemState, data_width, -1),
1178     DEFINE_PROP_BOOL("dma_enabled", FWCfgMemState, parent_obj.dma_enabled,
1179                      true),
1180     DEFINE_PROP_UINT16("x-file-slots", FWCfgMemState, parent_obj.file_slots,
1181                        FW_CFG_FILE_SLOTS_DFLT),
1182     DEFINE_PROP_END_OF_LIST(),
1183 };
1184 
1185 static void fw_cfg_mem_realize(DeviceState *dev, Error **errp)
1186 {
1187     FWCfgMemState *s = FW_CFG_MEM(dev);
1188     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1189     const MemoryRegionOps *data_ops = &fw_cfg_data_mem_ops;
1190     Error *local_err = NULL;
1191 
1192     fw_cfg_file_slots_allocate(FW_CFG(s), &local_err);
1193     if (local_err) {
1194         error_propagate(errp, local_err);
1195         return;
1196     }
1197 
1198     memory_region_init_io(&s->ctl_iomem, OBJECT(s), &fw_cfg_ctl_mem_ops,
1199                           FW_CFG(s), "fwcfg.ctl", FW_CFG_CTL_SIZE);
1200     sysbus_init_mmio(sbd, &s->ctl_iomem);
1201 
1202     if (s->data_width > data_ops->valid.max_access_size) {
1203         s->wide_data_ops = *data_ops;
1204 
1205         s->wide_data_ops.valid.max_access_size = s->data_width;
1206         s->wide_data_ops.impl.max_access_size  = s->data_width;
1207         data_ops = &s->wide_data_ops;
1208     }
1209     memory_region_init_io(&s->data_iomem, OBJECT(s), data_ops, FW_CFG(s),
1210                           "fwcfg.data", data_ops->valid.max_access_size);
1211     sysbus_init_mmio(sbd, &s->data_iomem);
1212 
1213     if (FW_CFG(s)->dma_enabled) {
1214         memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s),
1215                               &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma",
1216                               sizeof(dma_addr_t));
1217         sysbus_init_mmio(sbd, &FW_CFG(s)->dma_iomem);
1218     }
1219 
1220     fw_cfg_common_realize(dev, errp);
1221 }
1222 
1223 static void fw_cfg_mem_class_init(ObjectClass *klass, void *data)
1224 {
1225     DeviceClass *dc = DEVICE_CLASS(klass);
1226 
1227     dc->realize = fw_cfg_mem_realize;
1228     dc->props = fw_cfg_mem_properties;
1229 }
1230 
1231 static const TypeInfo fw_cfg_mem_info = {
1232     .name          = TYPE_FW_CFG_MEM,
1233     .parent        = TYPE_FW_CFG,
1234     .instance_size = sizeof(FWCfgMemState),
1235     .class_init    = fw_cfg_mem_class_init,
1236 };
1237 
1238 
1239 static void fw_cfg_register_types(void)
1240 {
1241     type_register_static(&fw_cfg_info);
1242     type_register_static(&fw_cfg_io_info);
1243     type_register_static(&fw_cfg_mem_info);
1244 }
1245 
1246 type_init(fw_cfg_register_types)
1247