1 /* 2 * QEMU Firmware configuration device emulation 3 * 4 * Copyright (c) 2008 Gleb Natapov 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 #include "qemu/osdep.h" 25 #include "hw/hw.h" 26 #include "sysemu/sysemu.h" 27 #include "sysemu/dma.h" 28 #include "hw/boards.h" 29 #include "hw/isa/isa.h" 30 #include "hw/nvram/fw_cfg.h" 31 #include "hw/sysbus.h" 32 #include "hw/boards.h" 33 #include "trace.h" 34 #include "qemu/error-report.h" 35 #include "qemu/config-file.h" 36 #include "qemu/cutils.h" 37 38 #define FW_CFG_NAME "fw_cfg" 39 #define FW_CFG_PATH "/machine/" FW_CFG_NAME 40 41 #define TYPE_FW_CFG "fw_cfg" 42 #define TYPE_FW_CFG_IO "fw_cfg_io" 43 #define TYPE_FW_CFG_MEM "fw_cfg_mem" 44 45 #define FW_CFG(obj) OBJECT_CHECK(FWCfgState, (obj), TYPE_FW_CFG) 46 #define FW_CFG_IO(obj) OBJECT_CHECK(FWCfgIoState, (obj), TYPE_FW_CFG_IO) 47 #define FW_CFG_MEM(obj) OBJECT_CHECK(FWCfgMemState, (obj), TYPE_FW_CFG_MEM) 48 49 /* FW_CFG_VERSION bits */ 50 #define FW_CFG_VERSION 0x01 51 #define FW_CFG_VERSION_DMA 0x02 52 53 /* FW_CFG_DMA_CONTROL bits */ 54 #define FW_CFG_DMA_CTL_ERROR 0x01 55 #define FW_CFG_DMA_CTL_READ 0x02 56 #define FW_CFG_DMA_CTL_SKIP 0x04 57 #define FW_CFG_DMA_CTL_SELECT 0x08 58 59 #define FW_CFG_DMA_SIGNATURE 0x51454d5520434647ULL /* "QEMU CFG" */ 60 61 typedef struct FWCfgEntry { 62 uint32_t len; 63 uint8_t *data; 64 void *callback_opaque; 65 FWCfgReadCallback read_callback; 66 } FWCfgEntry; 67 68 struct FWCfgState { 69 /*< private >*/ 70 SysBusDevice parent_obj; 71 /*< public >*/ 72 73 FWCfgEntry entries[2][FW_CFG_MAX_ENTRY]; 74 int entry_order[FW_CFG_MAX_ENTRY]; 75 FWCfgFiles *files; 76 uint16_t cur_entry; 77 uint32_t cur_offset; 78 Notifier machine_ready; 79 80 int fw_cfg_order_override; 81 82 bool dma_enabled; 83 dma_addr_t dma_addr; 84 AddressSpace *dma_as; 85 MemoryRegion dma_iomem; 86 }; 87 88 struct FWCfgIoState { 89 /*< private >*/ 90 FWCfgState parent_obj; 91 /*< public >*/ 92 93 MemoryRegion comb_iomem; 94 uint32_t iobase, dma_iobase; 95 }; 96 97 struct FWCfgMemState { 98 /*< private >*/ 99 FWCfgState parent_obj; 100 /*< public >*/ 101 102 MemoryRegion ctl_iomem, data_iomem; 103 uint32_t data_width; 104 MemoryRegionOps wide_data_ops; 105 }; 106 107 #define JPG_FILE 0 108 #define BMP_FILE 1 109 110 static char *read_splashfile(char *filename, gsize *file_sizep, 111 int *file_typep) 112 { 113 GError *err = NULL; 114 gboolean res; 115 gchar *content; 116 int file_type; 117 unsigned int filehead; 118 int bmp_bpp; 119 120 res = g_file_get_contents(filename, &content, file_sizep, &err); 121 if (res == FALSE) { 122 error_report("failed to read splash file '%s'", filename); 123 g_error_free(err); 124 return NULL; 125 } 126 127 /* check file size */ 128 if (*file_sizep < 30) { 129 goto error; 130 } 131 132 /* check magic ID */ 133 filehead = ((content[0] & 0xff) + (content[1] << 8)) & 0xffff; 134 if (filehead == 0xd8ff) { 135 file_type = JPG_FILE; 136 } else if (filehead == 0x4d42) { 137 file_type = BMP_FILE; 138 } else { 139 goto error; 140 } 141 142 /* check BMP bpp */ 143 if (file_type == BMP_FILE) { 144 bmp_bpp = (content[28] + (content[29] << 8)) & 0xffff; 145 if (bmp_bpp != 24) { 146 goto error; 147 } 148 } 149 150 /* return values */ 151 *file_typep = file_type; 152 153 return content; 154 155 error: 156 error_report("splash file '%s' format not recognized; must be JPEG " 157 "or 24 bit BMP", filename); 158 g_free(content); 159 return NULL; 160 } 161 162 static void fw_cfg_bootsplash(FWCfgState *s) 163 { 164 int boot_splash_time = -1; 165 const char *boot_splash_filename = NULL; 166 char *p; 167 char *filename, *file_data; 168 gsize file_size; 169 int file_type; 170 const char *temp; 171 172 /* get user configuration */ 173 QemuOptsList *plist = qemu_find_opts("boot-opts"); 174 QemuOpts *opts = QTAILQ_FIRST(&plist->head); 175 if (opts != NULL) { 176 temp = qemu_opt_get(opts, "splash"); 177 if (temp != NULL) { 178 boot_splash_filename = temp; 179 } 180 temp = qemu_opt_get(opts, "splash-time"); 181 if (temp != NULL) { 182 p = (char *)temp; 183 boot_splash_time = strtol(p, (char **)&p, 10); 184 } 185 } 186 187 /* insert splash time if user configurated */ 188 if (boot_splash_time >= 0) { 189 /* validate the input */ 190 if (boot_splash_time > 0xffff) { 191 error_report("splash time is big than 65535, force it to 65535."); 192 boot_splash_time = 0xffff; 193 } 194 /* use little endian format */ 195 qemu_extra_params_fw[0] = (uint8_t)(boot_splash_time & 0xff); 196 qemu_extra_params_fw[1] = (uint8_t)((boot_splash_time >> 8) & 0xff); 197 fw_cfg_add_file(s, "etc/boot-menu-wait", qemu_extra_params_fw, 2); 198 } 199 200 /* insert splash file if user configurated */ 201 if (boot_splash_filename != NULL) { 202 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, boot_splash_filename); 203 if (filename == NULL) { 204 error_report("failed to find file '%s'.", boot_splash_filename); 205 return; 206 } 207 208 /* loading file data */ 209 file_data = read_splashfile(filename, &file_size, &file_type); 210 if (file_data == NULL) { 211 g_free(filename); 212 return; 213 } 214 g_free(boot_splash_filedata); 215 boot_splash_filedata = (uint8_t *)file_data; 216 boot_splash_filedata_size = file_size; 217 218 /* insert data */ 219 if (file_type == JPG_FILE) { 220 fw_cfg_add_file(s, "bootsplash.jpg", 221 boot_splash_filedata, boot_splash_filedata_size); 222 } else { 223 fw_cfg_add_file(s, "bootsplash.bmp", 224 boot_splash_filedata, boot_splash_filedata_size); 225 } 226 g_free(filename); 227 } 228 } 229 230 static void fw_cfg_reboot(FWCfgState *s) 231 { 232 int reboot_timeout = -1; 233 char *p; 234 const char *temp; 235 236 /* get user configuration */ 237 QemuOptsList *plist = qemu_find_opts("boot-opts"); 238 QemuOpts *opts = QTAILQ_FIRST(&plist->head); 239 if (opts != NULL) { 240 temp = qemu_opt_get(opts, "reboot-timeout"); 241 if (temp != NULL) { 242 p = (char *)temp; 243 reboot_timeout = strtol(p, (char **)&p, 10); 244 } 245 } 246 /* validate the input */ 247 if (reboot_timeout > 0xffff) { 248 error_report("reboot timeout is larger than 65535, force it to 65535."); 249 reboot_timeout = 0xffff; 250 } 251 fw_cfg_add_file(s, "etc/boot-fail-wait", g_memdup(&reboot_timeout, 4), 4); 252 } 253 254 static void fw_cfg_write(FWCfgState *s, uint8_t value) 255 { 256 /* nothing, write support removed in QEMU v2.4+ */ 257 } 258 259 static int fw_cfg_select(FWCfgState *s, uint16_t key) 260 { 261 int arch, ret; 262 FWCfgEntry *e; 263 264 s->cur_offset = 0; 265 if ((key & FW_CFG_ENTRY_MASK) >= FW_CFG_MAX_ENTRY) { 266 s->cur_entry = FW_CFG_INVALID; 267 ret = 0; 268 } else { 269 s->cur_entry = key; 270 ret = 1; 271 /* entry successfully selected, now run callback if present */ 272 arch = !!(key & FW_CFG_ARCH_LOCAL); 273 e = &s->entries[arch][key & FW_CFG_ENTRY_MASK]; 274 if (e->read_callback) { 275 e->read_callback(e->callback_opaque); 276 } 277 } 278 279 trace_fw_cfg_select(s, key, ret); 280 return ret; 281 } 282 283 static uint64_t fw_cfg_data_read(void *opaque, hwaddr addr, unsigned size) 284 { 285 FWCfgState *s = opaque; 286 int arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL); 287 FWCfgEntry *e = (s->cur_entry == FW_CFG_INVALID) ? NULL : 288 &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK]; 289 uint64_t value = 0; 290 291 assert(size > 0 && size <= sizeof(value)); 292 if (s->cur_entry != FW_CFG_INVALID && e->data && s->cur_offset < e->len) { 293 /* The least significant 'size' bytes of the return value are 294 * expected to contain a string preserving portion of the item 295 * data, padded with zeros on the right in case we run out early. 296 * In technical terms, we're composing the host-endian representation 297 * of the big endian interpretation of the fw_cfg string. 298 */ 299 do { 300 value = (value << 8) | e->data[s->cur_offset++]; 301 } while (--size && s->cur_offset < e->len); 302 /* If size is still not zero, we *did* run out early, so continue 303 * left-shifting, to add the appropriate number of padding zeros 304 * on the right. 305 */ 306 value <<= 8 * size; 307 } 308 309 trace_fw_cfg_read(s, value); 310 return value; 311 } 312 313 static void fw_cfg_data_mem_write(void *opaque, hwaddr addr, 314 uint64_t value, unsigned size) 315 { 316 FWCfgState *s = opaque; 317 unsigned i = size; 318 319 do { 320 fw_cfg_write(s, value >> (8 * --i)); 321 } while (i); 322 } 323 324 static void fw_cfg_dma_transfer(FWCfgState *s) 325 { 326 dma_addr_t len; 327 FWCfgDmaAccess dma; 328 int arch; 329 FWCfgEntry *e; 330 int read; 331 dma_addr_t dma_addr; 332 333 /* Reset the address before the next access */ 334 dma_addr = s->dma_addr; 335 s->dma_addr = 0; 336 337 if (dma_memory_read(s->dma_as, dma_addr, &dma, sizeof(dma))) { 338 stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control), 339 FW_CFG_DMA_CTL_ERROR); 340 return; 341 } 342 343 dma.address = be64_to_cpu(dma.address); 344 dma.length = be32_to_cpu(dma.length); 345 dma.control = be32_to_cpu(dma.control); 346 347 if (dma.control & FW_CFG_DMA_CTL_SELECT) { 348 fw_cfg_select(s, dma.control >> 16); 349 } 350 351 arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL); 352 e = (s->cur_entry == FW_CFG_INVALID) ? NULL : 353 &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK]; 354 355 if (dma.control & FW_CFG_DMA_CTL_READ) { 356 read = 1; 357 } else if (dma.control & FW_CFG_DMA_CTL_SKIP) { 358 read = 0; 359 } else { 360 dma.length = 0; 361 } 362 363 dma.control = 0; 364 365 while (dma.length > 0 && !(dma.control & FW_CFG_DMA_CTL_ERROR)) { 366 if (s->cur_entry == FW_CFG_INVALID || !e->data || 367 s->cur_offset >= e->len) { 368 len = dma.length; 369 370 /* If the access is not a read access, it will be a skip access, 371 * tested before. 372 */ 373 if (read) { 374 if (dma_memory_set(s->dma_as, dma.address, 0, len)) { 375 dma.control |= FW_CFG_DMA_CTL_ERROR; 376 } 377 } 378 379 } else { 380 if (dma.length <= (e->len - s->cur_offset)) { 381 len = dma.length; 382 } else { 383 len = (e->len - s->cur_offset); 384 } 385 386 /* If the access is not a read access, it will be a skip access, 387 * tested before. 388 */ 389 if (read) { 390 if (dma_memory_write(s->dma_as, dma.address, 391 &e->data[s->cur_offset], len)) { 392 dma.control |= FW_CFG_DMA_CTL_ERROR; 393 } 394 } 395 396 s->cur_offset += len; 397 } 398 399 dma.address += len; 400 dma.length -= len; 401 402 } 403 404 stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control), 405 dma.control); 406 407 trace_fw_cfg_read(s, 0); 408 } 409 410 static uint64_t fw_cfg_dma_mem_read(void *opaque, hwaddr addr, 411 unsigned size) 412 { 413 /* Return a signature value (and handle various read sizes) */ 414 return extract64(FW_CFG_DMA_SIGNATURE, (8 - addr - size) * 8, size * 8); 415 } 416 417 static void fw_cfg_dma_mem_write(void *opaque, hwaddr addr, 418 uint64_t value, unsigned size) 419 { 420 FWCfgState *s = opaque; 421 422 if (size == 4) { 423 if (addr == 0) { 424 /* FWCfgDmaAccess high address */ 425 s->dma_addr = value << 32; 426 } else if (addr == 4) { 427 /* FWCfgDmaAccess low address */ 428 s->dma_addr |= value; 429 fw_cfg_dma_transfer(s); 430 } 431 } else if (size == 8 && addr == 0) { 432 s->dma_addr = value; 433 fw_cfg_dma_transfer(s); 434 } 435 } 436 437 static bool fw_cfg_dma_mem_valid(void *opaque, hwaddr addr, 438 unsigned size, bool is_write) 439 { 440 return !is_write || ((size == 4 && (addr == 0 || addr == 4)) || 441 (size == 8 && addr == 0)); 442 } 443 444 static bool fw_cfg_data_mem_valid(void *opaque, hwaddr addr, 445 unsigned size, bool is_write) 446 { 447 return addr == 0; 448 } 449 450 static void fw_cfg_ctl_mem_write(void *opaque, hwaddr addr, 451 uint64_t value, unsigned size) 452 { 453 fw_cfg_select(opaque, (uint16_t)value); 454 } 455 456 static bool fw_cfg_ctl_mem_valid(void *opaque, hwaddr addr, 457 unsigned size, bool is_write) 458 { 459 return is_write && size == 2; 460 } 461 462 static void fw_cfg_comb_write(void *opaque, hwaddr addr, 463 uint64_t value, unsigned size) 464 { 465 switch (size) { 466 case 1: 467 fw_cfg_write(opaque, (uint8_t)value); 468 break; 469 case 2: 470 fw_cfg_select(opaque, (uint16_t)value); 471 break; 472 } 473 } 474 475 static bool fw_cfg_comb_valid(void *opaque, hwaddr addr, 476 unsigned size, bool is_write) 477 { 478 return (size == 1) || (is_write && size == 2); 479 } 480 481 static const MemoryRegionOps fw_cfg_ctl_mem_ops = { 482 .write = fw_cfg_ctl_mem_write, 483 .endianness = DEVICE_BIG_ENDIAN, 484 .valid.accepts = fw_cfg_ctl_mem_valid, 485 }; 486 487 static const MemoryRegionOps fw_cfg_data_mem_ops = { 488 .read = fw_cfg_data_read, 489 .write = fw_cfg_data_mem_write, 490 .endianness = DEVICE_BIG_ENDIAN, 491 .valid = { 492 .min_access_size = 1, 493 .max_access_size = 1, 494 .accepts = fw_cfg_data_mem_valid, 495 }, 496 }; 497 498 static const MemoryRegionOps fw_cfg_comb_mem_ops = { 499 .read = fw_cfg_data_read, 500 .write = fw_cfg_comb_write, 501 .endianness = DEVICE_LITTLE_ENDIAN, 502 .valid.accepts = fw_cfg_comb_valid, 503 }; 504 505 static const MemoryRegionOps fw_cfg_dma_mem_ops = { 506 .read = fw_cfg_dma_mem_read, 507 .write = fw_cfg_dma_mem_write, 508 .endianness = DEVICE_BIG_ENDIAN, 509 .valid.accepts = fw_cfg_dma_mem_valid, 510 .valid.max_access_size = 8, 511 .impl.max_access_size = 8, 512 }; 513 514 static void fw_cfg_reset(DeviceState *d) 515 { 516 FWCfgState *s = FW_CFG(d); 517 518 /* we never register a read callback for FW_CFG_SIGNATURE */ 519 fw_cfg_select(s, FW_CFG_SIGNATURE); 520 } 521 522 /* Save restore 32 bit int as uint16_t 523 This is a Big hack, but it is how the old state did it. 524 Or we broke compatibility in the state, or we can't use struct tm 525 */ 526 527 static int get_uint32_as_uint16(QEMUFile *f, void *pv, size_t size) 528 { 529 uint32_t *v = pv; 530 *v = qemu_get_be16(f); 531 return 0; 532 } 533 534 static void put_unused(QEMUFile *f, void *pv, size_t size) 535 { 536 fprintf(stderr, "uint32_as_uint16 is only used for backward compatibility.\n"); 537 fprintf(stderr, "This functions shouldn't be called.\n"); 538 } 539 540 static const VMStateInfo vmstate_hack_uint32_as_uint16 = { 541 .name = "int32_as_uint16", 542 .get = get_uint32_as_uint16, 543 .put = put_unused, 544 }; 545 546 #define VMSTATE_UINT16_HACK(_f, _s, _t) \ 547 VMSTATE_SINGLE_TEST(_f, _s, _t, 0, vmstate_hack_uint32_as_uint16, uint32_t) 548 549 550 static bool is_version_1(void *opaque, int version_id) 551 { 552 return version_id == 1; 553 } 554 555 bool fw_cfg_dma_enabled(void *opaque) 556 { 557 FWCfgState *s = opaque; 558 559 return s->dma_enabled; 560 } 561 562 static const VMStateDescription vmstate_fw_cfg_dma = { 563 .name = "fw_cfg/dma", 564 .needed = fw_cfg_dma_enabled, 565 .fields = (VMStateField[]) { 566 VMSTATE_UINT64(dma_addr, FWCfgState), 567 VMSTATE_END_OF_LIST() 568 }, 569 }; 570 571 static const VMStateDescription vmstate_fw_cfg = { 572 .name = "fw_cfg", 573 .version_id = 2, 574 .minimum_version_id = 1, 575 .fields = (VMStateField[]) { 576 VMSTATE_UINT16(cur_entry, FWCfgState), 577 VMSTATE_UINT16_HACK(cur_offset, FWCfgState, is_version_1), 578 VMSTATE_UINT32_V(cur_offset, FWCfgState, 2), 579 VMSTATE_END_OF_LIST() 580 }, 581 .subsections = (const VMStateDescription*[]) { 582 &vmstate_fw_cfg_dma, 583 NULL, 584 } 585 }; 586 587 static void fw_cfg_add_bytes_read_callback(FWCfgState *s, uint16_t key, 588 FWCfgReadCallback callback, 589 void *callback_opaque, 590 void *data, size_t len) 591 { 592 int arch = !!(key & FW_CFG_ARCH_LOCAL); 593 594 key &= FW_CFG_ENTRY_MASK; 595 596 assert(key < FW_CFG_MAX_ENTRY && len < UINT32_MAX); 597 assert(s->entries[arch][key].data == NULL); /* avoid key conflict */ 598 599 s->entries[arch][key].data = data; 600 s->entries[arch][key].len = (uint32_t)len; 601 s->entries[arch][key].read_callback = callback; 602 s->entries[arch][key].callback_opaque = callback_opaque; 603 } 604 605 static void *fw_cfg_modify_bytes_read(FWCfgState *s, uint16_t key, 606 void *data, size_t len) 607 { 608 void *ptr; 609 int arch = !!(key & FW_CFG_ARCH_LOCAL); 610 611 key &= FW_CFG_ENTRY_MASK; 612 613 assert(key < FW_CFG_MAX_ENTRY && len < UINT32_MAX); 614 615 /* return the old data to the function caller, avoid memory leak */ 616 ptr = s->entries[arch][key].data; 617 s->entries[arch][key].data = data; 618 s->entries[arch][key].len = len; 619 s->entries[arch][key].callback_opaque = NULL; 620 621 return ptr; 622 } 623 624 void fw_cfg_add_bytes(FWCfgState *s, uint16_t key, void *data, size_t len) 625 { 626 fw_cfg_add_bytes_read_callback(s, key, NULL, NULL, data, len); 627 } 628 629 void fw_cfg_add_string(FWCfgState *s, uint16_t key, const char *value) 630 { 631 size_t sz = strlen(value) + 1; 632 633 fw_cfg_add_bytes(s, key, g_memdup(value, sz), sz); 634 } 635 636 void fw_cfg_add_i16(FWCfgState *s, uint16_t key, uint16_t value) 637 { 638 uint16_t *copy; 639 640 copy = g_malloc(sizeof(value)); 641 *copy = cpu_to_le16(value); 642 fw_cfg_add_bytes(s, key, copy, sizeof(value)); 643 } 644 645 void fw_cfg_modify_i16(FWCfgState *s, uint16_t key, uint16_t value) 646 { 647 uint16_t *copy, *old; 648 649 copy = g_malloc(sizeof(value)); 650 *copy = cpu_to_le16(value); 651 old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value)); 652 g_free(old); 653 } 654 655 void fw_cfg_add_i32(FWCfgState *s, uint16_t key, uint32_t value) 656 { 657 uint32_t *copy; 658 659 copy = g_malloc(sizeof(value)); 660 *copy = cpu_to_le32(value); 661 fw_cfg_add_bytes(s, key, copy, sizeof(value)); 662 } 663 664 void fw_cfg_add_i64(FWCfgState *s, uint16_t key, uint64_t value) 665 { 666 uint64_t *copy; 667 668 copy = g_malloc(sizeof(value)); 669 *copy = cpu_to_le64(value); 670 fw_cfg_add_bytes(s, key, copy, sizeof(value)); 671 } 672 673 void fw_cfg_set_order_override(FWCfgState *s, int order) 674 { 675 assert(s->fw_cfg_order_override == 0); 676 s->fw_cfg_order_override = order; 677 } 678 679 void fw_cfg_reset_order_override(FWCfgState *s) 680 { 681 assert(s->fw_cfg_order_override != 0); 682 s->fw_cfg_order_override = 0; 683 } 684 685 /* 686 * This is the legacy order list. For legacy systems, files are in 687 * the fw_cfg in the order defined below, by the "order" value. Note 688 * that some entries (VGA ROMs, NIC option ROMS, etc.) go into a 689 * specific area, but there may be more than one and they occur in the 690 * order that the user specifies them on the command line. Those are 691 * handled in a special manner, using the order override above. 692 * 693 * For non-legacy, the files are sorted by filename to avoid this kind 694 * of complexity in the future. 695 * 696 * This is only for x86, other arches don't implement versioning so 697 * they won't set legacy mode. 698 */ 699 static struct { 700 const char *name; 701 int order; 702 } fw_cfg_order[] = { 703 { "etc/boot-menu-wait", 10 }, 704 { "bootsplash.jpg", 11 }, 705 { "bootsplash.bmp", 12 }, 706 { "etc/boot-fail-wait", 15 }, 707 { "etc/smbios/smbios-tables", 20 }, 708 { "etc/smbios/smbios-anchor", 30 }, 709 { "etc/e820", 40 }, 710 { "etc/reserved-memory-end", 50 }, 711 { "genroms/kvmvapic.bin", 55 }, 712 { "genroms/linuxboot.bin", 60 }, 713 { }, /* VGA ROMs from pc_vga_init come here, 70. */ 714 { }, /* NIC option ROMs from pc_nic_init come here, 80. */ 715 { "etc/system-states", 90 }, 716 { }, /* User ROMs come here, 100. */ 717 { }, /* Device FW comes here, 110. */ 718 { "etc/extra-pci-roots", 120 }, 719 { "etc/acpi/tables", 130 }, 720 { "etc/table-loader", 140 }, 721 { "etc/tpm/log", 150 }, 722 { "etc/acpi/rsdp", 160 }, 723 { "bootorder", 170 }, 724 725 #define FW_CFG_ORDER_OVERRIDE_LAST 200 726 }; 727 728 static int get_fw_cfg_order(FWCfgState *s, const char *name) 729 { 730 int i; 731 732 if (s->fw_cfg_order_override > 0) { 733 return s->fw_cfg_order_override; 734 } 735 736 for (i = 0; i < ARRAY_SIZE(fw_cfg_order); i++) { 737 if (fw_cfg_order[i].name == NULL) { 738 continue; 739 } 740 741 if (strcmp(name, fw_cfg_order[i].name) == 0) { 742 return fw_cfg_order[i].order; 743 } 744 } 745 746 /* Stick unknown stuff at the end. */ 747 error_report("warning: Unknown firmware file in legacy mode: %s\n", name); 748 return FW_CFG_ORDER_OVERRIDE_LAST; 749 } 750 751 void fw_cfg_add_file_callback(FWCfgState *s, const char *filename, 752 FWCfgReadCallback callback, void *callback_opaque, 753 void *data, size_t len) 754 { 755 int i, index, count; 756 size_t dsize; 757 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 758 int order = 0; 759 760 if (!s->files) { 761 dsize = sizeof(uint32_t) + sizeof(FWCfgFile) * FW_CFG_FILE_SLOTS; 762 s->files = g_malloc0(dsize); 763 fw_cfg_add_bytes(s, FW_CFG_FILE_DIR, s->files, dsize); 764 } 765 766 count = be32_to_cpu(s->files->count); 767 assert(count < FW_CFG_FILE_SLOTS); 768 769 /* Find the insertion point. */ 770 if (mc->legacy_fw_cfg_order) { 771 /* 772 * Sort by order. For files with the same order, we keep them 773 * in the sequence in which they were added. 774 */ 775 order = get_fw_cfg_order(s, filename); 776 for (index = count; 777 index > 0 && order < s->entry_order[index - 1]; 778 index--); 779 } else { 780 /* Sort by file name. */ 781 for (index = count; 782 index > 0 && strcmp(filename, s->files->f[index - 1].name) < 0; 783 index--); 784 } 785 786 /* 787 * Move all the entries from the index point and after down one 788 * to create a slot for the new entry. Because calculations are 789 * being done with the index, make it so that "i" is the current 790 * index and "i - 1" is the one being copied from, thus the 791 * unusual start and end in the for statement. 792 */ 793 for (i = count + 1; i > index; i--) { 794 s->files->f[i] = s->files->f[i - 1]; 795 s->files->f[i].select = cpu_to_be16(FW_CFG_FILE_FIRST + i); 796 s->entries[0][FW_CFG_FILE_FIRST + i] = 797 s->entries[0][FW_CFG_FILE_FIRST + i - 1]; 798 s->entry_order[i] = s->entry_order[i - 1]; 799 } 800 801 memset(&s->files->f[index], 0, sizeof(FWCfgFile)); 802 memset(&s->entries[0][FW_CFG_FILE_FIRST + index], 0, sizeof(FWCfgEntry)); 803 804 pstrcpy(s->files->f[index].name, sizeof(s->files->f[index].name), filename); 805 for (i = 0; i <= count; i++) { 806 if (i != index && 807 strcmp(s->files->f[index].name, s->files->f[i].name) == 0) { 808 error_report("duplicate fw_cfg file name: %s", 809 s->files->f[index].name); 810 exit(1); 811 } 812 } 813 814 fw_cfg_add_bytes_read_callback(s, FW_CFG_FILE_FIRST + index, 815 callback, callback_opaque, data, len); 816 817 s->files->f[index].size = cpu_to_be32(len); 818 s->files->f[index].select = cpu_to_be16(FW_CFG_FILE_FIRST + index); 819 s->entry_order[index] = order; 820 trace_fw_cfg_add_file(s, index, s->files->f[index].name, len); 821 822 s->files->count = cpu_to_be32(count+1); 823 } 824 825 void fw_cfg_add_file(FWCfgState *s, const char *filename, 826 void *data, size_t len) 827 { 828 fw_cfg_add_file_callback(s, filename, NULL, NULL, data, len); 829 } 830 831 void *fw_cfg_modify_file(FWCfgState *s, const char *filename, 832 void *data, size_t len) 833 { 834 int i, index; 835 void *ptr = NULL; 836 837 assert(s->files); 838 839 index = be32_to_cpu(s->files->count); 840 assert(index < FW_CFG_FILE_SLOTS); 841 842 for (i = 0; i < index; i++) { 843 if (strcmp(filename, s->files->f[i].name) == 0) { 844 ptr = fw_cfg_modify_bytes_read(s, FW_CFG_FILE_FIRST + i, 845 data, len); 846 s->files->f[i].size = cpu_to_be32(len); 847 return ptr; 848 } 849 } 850 /* add new one */ 851 fw_cfg_add_file_callback(s, filename, NULL, NULL, data, len); 852 return NULL; 853 } 854 855 static void fw_cfg_machine_reset(void *opaque) 856 { 857 void *ptr; 858 size_t len; 859 FWCfgState *s = opaque; 860 char *bootindex = get_boot_devices_list(&len, false); 861 862 ptr = fw_cfg_modify_file(s, "bootorder", (uint8_t *)bootindex, len); 863 g_free(ptr); 864 } 865 866 static void fw_cfg_machine_ready(struct Notifier *n, void *data) 867 { 868 FWCfgState *s = container_of(n, FWCfgState, machine_ready); 869 qemu_register_reset(fw_cfg_machine_reset, s); 870 } 871 872 873 874 static void fw_cfg_init1(DeviceState *dev) 875 { 876 FWCfgState *s = FW_CFG(dev); 877 MachineState *machine = MACHINE(qdev_get_machine()); 878 879 assert(!object_resolve_path(FW_CFG_PATH, NULL)); 880 881 object_property_add_child(OBJECT(machine), FW_CFG_NAME, OBJECT(s), NULL); 882 883 qdev_init_nofail(dev); 884 885 fw_cfg_add_bytes(s, FW_CFG_SIGNATURE, (char *)"QEMU", 4); 886 fw_cfg_add_bytes(s, FW_CFG_UUID, qemu_uuid, 16); 887 fw_cfg_add_i16(s, FW_CFG_NOGRAPHIC, (uint16_t)!machine->enable_graphics); 888 fw_cfg_add_i16(s, FW_CFG_NB_CPUS, (uint16_t)smp_cpus); 889 fw_cfg_add_i16(s, FW_CFG_BOOT_MENU, (uint16_t)boot_menu); 890 fw_cfg_bootsplash(s); 891 fw_cfg_reboot(s); 892 893 s->machine_ready.notify = fw_cfg_machine_ready; 894 qemu_add_machine_init_done_notifier(&s->machine_ready); 895 } 896 897 FWCfgState *fw_cfg_init_io_dma(uint32_t iobase, uint32_t dma_iobase, 898 AddressSpace *dma_as) 899 { 900 DeviceState *dev; 901 FWCfgState *s; 902 uint32_t version = FW_CFG_VERSION; 903 bool dma_requested = dma_iobase && dma_as; 904 905 dev = qdev_create(NULL, TYPE_FW_CFG_IO); 906 qdev_prop_set_uint32(dev, "iobase", iobase); 907 qdev_prop_set_uint32(dev, "dma_iobase", dma_iobase); 908 if (!dma_requested) { 909 qdev_prop_set_bit(dev, "dma_enabled", false); 910 } 911 912 fw_cfg_init1(dev); 913 s = FW_CFG(dev); 914 915 if (s->dma_enabled) { 916 /* 64 bits for the address field */ 917 s->dma_as = dma_as; 918 s->dma_addr = 0; 919 920 version |= FW_CFG_VERSION_DMA; 921 } 922 923 fw_cfg_add_i32(s, FW_CFG_ID, version); 924 925 return s; 926 } 927 928 FWCfgState *fw_cfg_init_io(uint32_t iobase) 929 { 930 return fw_cfg_init_io_dma(iobase, 0, NULL); 931 } 932 933 FWCfgState *fw_cfg_init_mem_wide(hwaddr ctl_addr, 934 hwaddr data_addr, uint32_t data_width, 935 hwaddr dma_addr, AddressSpace *dma_as) 936 { 937 DeviceState *dev; 938 SysBusDevice *sbd; 939 FWCfgState *s; 940 uint32_t version = FW_CFG_VERSION; 941 bool dma_requested = dma_addr && dma_as; 942 943 dev = qdev_create(NULL, TYPE_FW_CFG_MEM); 944 qdev_prop_set_uint32(dev, "data_width", data_width); 945 if (!dma_requested) { 946 qdev_prop_set_bit(dev, "dma_enabled", false); 947 } 948 949 fw_cfg_init1(dev); 950 951 sbd = SYS_BUS_DEVICE(dev); 952 sysbus_mmio_map(sbd, 0, ctl_addr); 953 sysbus_mmio_map(sbd, 1, data_addr); 954 955 s = FW_CFG(dev); 956 957 if (s->dma_enabled) { 958 s->dma_as = dma_as; 959 s->dma_addr = 0; 960 sysbus_mmio_map(sbd, 2, dma_addr); 961 version |= FW_CFG_VERSION_DMA; 962 } 963 964 fw_cfg_add_i32(s, FW_CFG_ID, version); 965 966 return s; 967 } 968 969 FWCfgState *fw_cfg_init_mem(hwaddr ctl_addr, hwaddr data_addr) 970 { 971 return fw_cfg_init_mem_wide(ctl_addr, data_addr, 972 fw_cfg_data_mem_ops.valid.max_access_size, 973 0, NULL); 974 } 975 976 977 FWCfgState *fw_cfg_find(void) 978 { 979 return FW_CFG(object_resolve_path(FW_CFG_PATH, NULL)); 980 } 981 982 static void fw_cfg_class_init(ObjectClass *klass, void *data) 983 { 984 DeviceClass *dc = DEVICE_CLASS(klass); 985 986 dc->reset = fw_cfg_reset; 987 dc->vmsd = &vmstate_fw_cfg; 988 } 989 990 static const TypeInfo fw_cfg_info = { 991 .name = TYPE_FW_CFG, 992 .parent = TYPE_SYS_BUS_DEVICE, 993 .instance_size = sizeof(FWCfgState), 994 .class_init = fw_cfg_class_init, 995 }; 996 997 998 static Property fw_cfg_io_properties[] = { 999 DEFINE_PROP_UINT32("iobase", FWCfgIoState, iobase, -1), 1000 DEFINE_PROP_UINT32("dma_iobase", FWCfgIoState, dma_iobase, -1), 1001 DEFINE_PROP_BOOL("dma_enabled", FWCfgIoState, parent_obj.dma_enabled, 1002 true), 1003 DEFINE_PROP_END_OF_LIST(), 1004 }; 1005 1006 static void fw_cfg_io_realize(DeviceState *dev, Error **errp) 1007 { 1008 FWCfgIoState *s = FW_CFG_IO(dev); 1009 SysBusDevice *sbd = SYS_BUS_DEVICE(dev); 1010 1011 /* when using port i/o, the 8-bit data register ALWAYS overlaps 1012 * with half of the 16-bit control register. Hence, the total size 1013 * of the i/o region used is FW_CFG_CTL_SIZE */ 1014 memory_region_init_io(&s->comb_iomem, OBJECT(s), &fw_cfg_comb_mem_ops, 1015 FW_CFG(s), "fwcfg", FW_CFG_CTL_SIZE); 1016 sysbus_add_io(sbd, s->iobase, &s->comb_iomem); 1017 1018 if (FW_CFG(s)->dma_enabled) { 1019 memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s), 1020 &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma", 1021 sizeof(dma_addr_t)); 1022 sysbus_add_io(sbd, s->dma_iobase, &FW_CFG(s)->dma_iomem); 1023 } 1024 } 1025 1026 static void fw_cfg_io_class_init(ObjectClass *klass, void *data) 1027 { 1028 DeviceClass *dc = DEVICE_CLASS(klass); 1029 1030 dc->realize = fw_cfg_io_realize; 1031 dc->props = fw_cfg_io_properties; 1032 } 1033 1034 static const TypeInfo fw_cfg_io_info = { 1035 .name = TYPE_FW_CFG_IO, 1036 .parent = TYPE_FW_CFG, 1037 .instance_size = sizeof(FWCfgIoState), 1038 .class_init = fw_cfg_io_class_init, 1039 }; 1040 1041 1042 static Property fw_cfg_mem_properties[] = { 1043 DEFINE_PROP_UINT32("data_width", FWCfgMemState, data_width, -1), 1044 DEFINE_PROP_BOOL("dma_enabled", FWCfgMemState, parent_obj.dma_enabled, 1045 true), 1046 DEFINE_PROP_END_OF_LIST(), 1047 }; 1048 1049 static void fw_cfg_mem_realize(DeviceState *dev, Error **errp) 1050 { 1051 FWCfgMemState *s = FW_CFG_MEM(dev); 1052 SysBusDevice *sbd = SYS_BUS_DEVICE(dev); 1053 const MemoryRegionOps *data_ops = &fw_cfg_data_mem_ops; 1054 1055 memory_region_init_io(&s->ctl_iomem, OBJECT(s), &fw_cfg_ctl_mem_ops, 1056 FW_CFG(s), "fwcfg.ctl", FW_CFG_CTL_SIZE); 1057 sysbus_init_mmio(sbd, &s->ctl_iomem); 1058 1059 if (s->data_width > data_ops->valid.max_access_size) { 1060 /* memberwise copy because the "old_mmio" member is const */ 1061 s->wide_data_ops.read = data_ops->read; 1062 s->wide_data_ops.write = data_ops->write; 1063 s->wide_data_ops.endianness = data_ops->endianness; 1064 s->wide_data_ops.valid = data_ops->valid; 1065 s->wide_data_ops.impl = data_ops->impl; 1066 1067 s->wide_data_ops.valid.max_access_size = s->data_width; 1068 s->wide_data_ops.impl.max_access_size = s->data_width; 1069 data_ops = &s->wide_data_ops; 1070 } 1071 memory_region_init_io(&s->data_iomem, OBJECT(s), data_ops, FW_CFG(s), 1072 "fwcfg.data", data_ops->valid.max_access_size); 1073 sysbus_init_mmio(sbd, &s->data_iomem); 1074 1075 if (FW_CFG(s)->dma_enabled) { 1076 memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s), 1077 &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma", 1078 sizeof(dma_addr_t)); 1079 sysbus_init_mmio(sbd, &FW_CFG(s)->dma_iomem); 1080 } 1081 } 1082 1083 static void fw_cfg_mem_class_init(ObjectClass *klass, void *data) 1084 { 1085 DeviceClass *dc = DEVICE_CLASS(klass); 1086 1087 dc->realize = fw_cfg_mem_realize; 1088 dc->props = fw_cfg_mem_properties; 1089 } 1090 1091 static const TypeInfo fw_cfg_mem_info = { 1092 .name = TYPE_FW_CFG_MEM, 1093 .parent = TYPE_FW_CFG, 1094 .instance_size = sizeof(FWCfgMemState), 1095 .class_init = fw_cfg_mem_class_init, 1096 }; 1097 1098 1099 static void fw_cfg_register_types(void) 1100 { 1101 type_register_static(&fw_cfg_info); 1102 type_register_static(&fw_cfg_io_info); 1103 type_register_static(&fw_cfg_mem_info); 1104 } 1105 1106 type_init(fw_cfg_register_types) 1107