1 /* 2 * QEMU Firmware configuration device emulation 3 * 4 * Copyright (c) 2008 Gleb Natapov 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "qemu-common.h" 27 #include "qemu/datadir.h" 28 #include "sysemu/sysemu.h" 29 #include "sysemu/dma.h" 30 #include "sysemu/reset.h" 31 #include "hw/boards.h" 32 #include "hw/nvram/fw_cfg.h" 33 #include "hw/qdev-properties.h" 34 #include "hw/sysbus.h" 35 #include "migration/qemu-file-types.h" 36 #include "migration/vmstate.h" 37 #include "trace.h" 38 #include "qemu/error-report.h" 39 #include "qemu/option.h" 40 #include "qemu/config-file.h" 41 #include "qemu/cutils.h" 42 #include "qapi/error.h" 43 #include "hw/acpi/aml-build.h" 44 #include "hw/pci/pci_bus.h" 45 46 #define FW_CFG_FILE_SLOTS_DFLT 0x20 47 48 /* FW_CFG_VERSION bits */ 49 #define FW_CFG_VERSION 0x01 50 #define FW_CFG_VERSION_DMA 0x02 51 52 /* FW_CFG_DMA_CONTROL bits */ 53 #define FW_CFG_DMA_CTL_ERROR 0x01 54 #define FW_CFG_DMA_CTL_READ 0x02 55 #define FW_CFG_DMA_CTL_SKIP 0x04 56 #define FW_CFG_DMA_CTL_SELECT 0x08 57 #define FW_CFG_DMA_CTL_WRITE 0x10 58 59 #define FW_CFG_DMA_SIGNATURE 0x51454d5520434647ULL /* "QEMU CFG" */ 60 61 struct FWCfgEntry { 62 uint32_t len; 63 bool allow_write; 64 uint8_t *data; 65 void *callback_opaque; 66 FWCfgCallback select_cb; 67 FWCfgWriteCallback write_cb; 68 }; 69 70 /** 71 * key_name: 72 * 73 * @key: The uint16 selector key. 74 * 75 * Returns: The stringified name if the selector refers to a well-known 76 * numerically defined item, or NULL on key lookup failure. 77 */ 78 static const char *key_name(uint16_t key) 79 { 80 static const char *fw_cfg_wellknown_keys[FW_CFG_FILE_FIRST] = { 81 [FW_CFG_SIGNATURE] = "signature", 82 [FW_CFG_ID] = "id", 83 [FW_CFG_UUID] = "uuid", 84 [FW_CFG_RAM_SIZE] = "ram_size", 85 [FW_CFG_NOGRAPHIC] = "nographic", 86 [FW_CFG_NB_CPUS] = "nb_cpus", 87 [FW_CFG_MACHINE_ID] = "machine_id", 88 [FW_CFG_KERNEL_ADDR] = "kernel_addr", 89 [FW_CFG_KERNEL_SIZE] = "kernel_size", 90 [FW_CFG_KERNEL_CMDLINE] = "kernel_cmdline", 91 [FW_CFG_INITRD_ADDR] = "initrd_addr", 92 [FW_CFG_INITRD_SIZE] = "initdr_size", 93 [FW_CFG_BOOT_DEVICE] = "boot_device", 94 [FW_CFG_NUMA] = "numa", 95 [FW_CFG_BOOT_MENU] = "boot_menu", 96 [FW_CFG_MAX_CPUS] = "max_cpus", 97 [FW_CFG_KERNEL_ENTRY] = "kernel_entry", 98 [FW_CFG_KERNEL_DATA] = "kernel_data", 99 [FW_CFG_INITRD_DATA] = "initrd_data", 100 [FW_CFG_CMDLINE_ADDR] = "cmdline_addr", 101 [FW_CFG_CMDLINE_SIZE] = "cmdline_size", 102 [FW_CFG_CMDLINE_DATA] = "cmdline_data", 103 [FW_CFG_SETUP_ADDR] = "setup_addr", 104 [FW_CFG_SETUP_SIZE] = "setup_size", 105 [FW_CFG_SETUP_DATA] = "setup_data", 106 [FW_CFG_FILE_DIR] = "file_dir", 107 }; 108 109 if (key & FW_CFG_ARCH_LOCAL) { 110 return fw_cfg_arch_key_name(key); 111 } 112 if (key < FW_CFG_FILE_FIRST) { 113 return fw_cfg_wellknown_keys[key]; 114 } 115 116 return NULL; 117 } 118 119 static inline const char *trace_key_name(uint16_t key) 120 { 121 const char *name = key_name(key); 122 123 return name ? name : "unknown"; 124 } 125 126 #define JPG_FILE 0 127 #define BMP_FILE 1 128 129 static char *read_splashfile(char *filename, gsize *file_sizep, 130 int *file_typep) 131 { 132 GError *err = NULL; 133 gchar *content; 134 int file_type; 135 unsigned int filehead; 136 int bmp_bpp; 137 138 if (!g_file_get_contents(filename, &content, file_sizep, &err)) { 139 error_report("failed to read splash file '%s': %s", 140 filename, err->message); 141 g_error_free(err); 142 return NULL; 143 } 144 145 /* check file size */ 146 if (*file_sizep < 30) { 147 goto error; 148 } 149 150 /* check magic ID */ 151 filehead = lduw_le_p(content); 152 if (filehead == 0xd8ff) { 153 file_type = JPG_FILE; 154 } else if (filehead == 0x4d42) { 155 file_type = BMP_FILE; 156 } else { 157 goto error; 158 } 159 160 /* check BMP bpp */ 161 if (file_type == BMP_FILE) { 162 bmp_bpp = lduw_le_p(&content[28]); 163 if (bmp_bpp != 24) { 164 goto error; 165 } 166 } 167 168 /* return values */ 169 *file_typep = file_type; 170 171 return content; 172 173 error: 174 error_report("splash file '%s' format not recognized; must be JPEG " 175 "or 24 bit BMP", filename); 176 g_free(content); 177 return NULL; 178 } 179 180 static void fw_cfg_bootsplash(FWCfgState *s) 181 { 182 const char *boot_splash_filename = NULL; 183 const char *boot_splash_time = NULL; 184 char *filename, *file_data; 185 gsize file_size; 186 int file_type; 187 188 /* get user configuration */ 189 QemuOptsList *plist = qemu_find_opts("boot-opts"); 190 QemuOpts *opts = QTAILQ_FIRST(&plist->head); 191 boot_splash_filename = qemu_opt_get(opts, "splash"); 192 boot_splash_time = qemu_opt_get(opts, "splash-time"); 193 194 /* insert splash time if user configurated */ 195 if (boot_splash_time) { 196 int64_t bst_val = qemu_opt_get_number(opts, "splash-time", -1); 197 uint16_t bst_le16; 198 199 /* validate the input */ 200 if (bst_val < 0 || bst_val > 0xffff) { 201 error_report("splash-time is invalid," 202 "it should be a value between 0 and 65535"); 203 exit(1); 204 } 205 /* use little endian format */ 206 bst_le16 = cpu_to_le16(bst_val); 207 fw_cfg_add_file(s, "etc/boot-menu-wait", 208 g_memdup(&bst_le16, sizeof bst_le16), sizeof bst_le16); 209 } 210 211 /* insert splash file if user configurated */ 212 if (boot_splash_filename) { 213 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, boot_splash_filename); 214 if (filename == NULL) { 215 error_report("failed to find file '%s'", boot_splash_filename); 216 return; 217 } 218 219 /* loading file data */ 220 file_data = read_splashfile(filename, &file_size, &file_type); 221 if (file_data == NULL) { 222 g_free(filename); 223 return; 224 } 225 g_free(boot_splash_filedata); 226 boot_splash_filedata = (uint8_t *)file_data; 227 228 /* insert data */ 229 if (file_type == JPG_FILE) { 230 fw_cfg_add_file(s, "bootsplash.jpg", 231 boot_splash_filedata, file_size); 232 } else { 233 fw_cfg_add_file(s, "bootsplash.bmp", 234 boot_splash_filedata, file_size); 235 } 236 g_free(filename); 237 } 238 } 239 240 static void fw_cfg_reboot(FWCfgState *s) 241 { 242 const char *reboot_timeout = NULL; 243 uint64_t rt_val = -1; 244 uint32_t rt_le32; 245 246 /* get user configuration */ 247 QemuOptsList *plist = qemu_find_opts("boot-opts"); 248 QemuOpts *opts = QTAILQ_FIRST(&plist->head); 249 reboot_timeout = qemu_opt_get(opts, "reboot-timeout"); 250 251 if (reboot_timeout) { 252 rt_val = qemu_opt_get_number(opts, "reboot-timeout", -1); 253 254 /* validate the input */ 255 if (rt_val > 0xffff && rt_val != (uint64_t)-1) { 256 error_report("reboot timeout is invalid," 257 "it should be a value between -1 and 65535"); 258 exit(1); 259 } 260 } 261 262 rt_le32 = cpu_to_le32(rt_val); 263 fw_cfg_add_file(s, "etc/boot-fail-wait", g_memdup(&rt_le32, 4), 4); 264 } 265 266 static void fw_cfg_write(FWCfgState *s, uint8_t value) 267 { 268 /* nothing, write support removed in QEMU v2.4+ */ 269 } 270 271 static inline uint16_t fw_cfg_file_slots(const FWCfgState *s) 272 { 273 return s->file_slots; 274 } 275 276 /* Note: this function returns an exclusive limit. */ 277 static inline uint32_t fw_cfg_max_entry(const FWCfgState *s) 278 { 279 return FW_CFG_FILE_FIRST + fw_cfg_file_slots(s); 280 } 281 282 static int fw_cfg_select(FWCfgState *s, uint16_t key) 283 { 284 int arch, ret; 285 FWCfgEntry *e; 286 287 s->cur_offset = 0; 288 if ((key & FW_CFG_ENTRY_MASK) >= fw_cfg_max_entry(s)) { 289 s->cur_entry = FW_CFG_INVALID; 290 ret = 0; 291 } else { 292 s->cur_entry = key; 293 ret = 1; 294 /* entry successfully selected, now run callback if present */ 295 arch = !!(key & FW_CFG_ARCH_LOCAL); 296 e = &s->entries[arch][key & FW_CFG_ENTRY_MASK]; 297 if (e->select_cb) { 298 e->select_cb(e->callback_opaque); 299 } 300 } 301 302 trace_fw_cfg_select(s, key, trace_key_name(key), ret); 303 return ret; 304 } 305 306 static uint64_t fw_cfg_data_read(void *opaque, hwaddr addr, unsigned size) 307 { 308 FWCfgState *s = opaque; 309 int arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL); 310 FWCfgEntry *e = (s->cur_entry == FW_CFG_INVALID) ? NULL : 311 &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK]; 312 uint64_t value = 0; 313 314 assert(size > 0 && size <= sizeof(value)); 315 if (s->cur_entry != FW_CFG_INVALID && e->data && s->cur_offset < e->len) { 316 /* The least significant 'size' bytes of the return value are 317 * expected to contain a string preserving portion of the item 318 * data, padded with zeros on the right in case we run out early. 319 * In technical terms, we're composing the host-endian representation 320 * of the big endian interpretation of the fw_cfg string. 321 */ 322 do { 323 value = (value << 8) | e->data[s->cur_offset++]; 324 } while (--size && s->cur_offset < e->len); 325 /* If size is still not zero, we *did* run out early, so continue 326 * left-shifting, to add the appropriate number of padding zeros 327 * on the right. 328 */ 329 value <<= 8 * size; 330 } 331 332 trace_fw_cfg_read(s, value); 333 return value; 334 } 335 336 static void fw_cfg_data_mem_write(void *opaque, hwaddr addr, 337 uint64_t value, unsigned size) 338 { 339 FWCfgState *s = opaque; 340 unsigned i = size; 341 342 do { 343 fw_cfg_write(s, value >> (8 * --i)); 344 } while (i); 345 } 346 347 static void fw_cfg_dma_transfer(FWCfgState *s) 348 { 349 dma_addr_t len; 350 FWCfgDmaAccess dma; 351 int arch; 352 FWCfgEntry *e; 353 int read = 0, write = 0; 354 dma_addr_t dma_addr; 355 356 /* Reset the address before the next access */ 357 dma_addr = s->dma_addr; 358 s->dma_addr = 0; 359 360 if (dma_memory_read(s->dma_as, dma_addr, &dma, sizeof(dma))) { 361 stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control), 362 FW_CFG_DMA_CTL_ERROR); 363 return; 364 } 365 366 dma.address = be64_to_cpu(dma.address); 367 dma.length = be32_to_cpu(dma.length); 368 dma.control = be32_to_cpu(dma.control); 369 370 if (dma.control & FW_CFG_DMA_CTL_SELECT) { 371 fw_cfg_select(s, dma.control >> 16); 372 } 373 374 arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL); 375 e = (s->cur_entry == FW_CFG_INVALID) ? NULL : 376 &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK]; 377 378 if (dma.control & FW_CFG_DMA_CTL_READ) { 379 read = 1; 380 write = 0; 381 } else if (dma.control & FW_CFG_DMA_CTL_WRITE) { 382 read = 0; 383 write = 1; 384 } else if (dma.control & FW_CFG_DMA_CTL_SKIP) { 385 read = 0; 386 write = 0; 387 } else { 388 dma.length = 0; 389 } 390 391 dma.control = 0; 392 393 while (dma.length > 0 && !(dma.control & FW_CFG_DMA_CTL_ERROR)) { 394 if (s->cur_entry == FW_CFG_INVALID || !e->data || 395 s->cur_offset >= e->len) { 396 len = dma.length; 397 398 /* If the access is not a read access, it will be a skip access, 399 * tested before. 400 */ 401 if (read) { 402 if (dma_memory_set(s->dma_as, dma.address, 0, len, 403 MEMTXATTRS_UNSPECIFIED)) { 404 dma.control |= FW_CFG_DMA_CTL_ERROR; 405 } 406 } 407 if (write) { 408 dma.control |= FW_CFG_DMA_CTL_ERROR; 409 } 410 } else { 411 if (dma.length <= (e->len - s->cur_offset)) { 412 len = dma.length; 413 } else { 414 len = (e->len - s->cur_offset); 415 } 416 417 /* If the access is not a read access, it will be a skip access, 418 * tested before. 419 */ 420 if (read) { 421 if (dma_memory_write(s->dma_as, dma.address, 422 &e->data[s->cur_offset], len)) { 423 dma.control |= FW_CFG_DMA_CTL_ERROR; 424 } 425 } 426 if (write) { 427 if (!e->allow_write || 428 len != dma.length || 429 dma_memory_read(s->dma_as, dma.address, 430 &e->data[s->cur_offset], len)) { 431 dma.control |= FW_CFG_DMA_CTL_ERROR; 432 } else if (e->write_cb) { 433 e->write_cb(e->callback_opaque, s->cur_offset, len); 434 } 435 } 436 437 s->cur_offset += len; 438 } 439 440 dma.address += len; 441 dma.length -= len; 442 443 } 444 445 stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control), 446 dma.control); 447 448 trace_fw_cfg_read(s, 0); 449 } 450 451 static uint64_t fw_cfg_dma_mem_read(void *opaque, hwaddr addr, 452 unsigned size) 453 { 454 /* Return a signature value (and handle various read sizes) */ 455 return extract64(FW_CFG_DMA_SIGNATURE, (8 - addr - size) * 8, size * 8); 456 } 457 458 static void fw_cfg_dma_mem_write(void *opaque, hwaddr addr, 459 uint64_t value, unsigned size) 460 { 461 FWCfgState *s = opaque; 462 463 if (size == 4) { 464 if (addr == 0) { 465 /* FWCfgDmaAccess high address */ 466 s->dma_addr = value << 32; 467 } else if (addr == 4) { 468 /* FWCfgDmaAccess low address */ 469 s->dma_addr |= value; 470 fw_cfg_dma_transfer(s); 471 } 472 } else if (size == 8 && addr == 0) { 473 s->dma_addr = value; 474 fw_cfg_dma_transfer(s); 475 } 476 } 477 478 static bool fw_cfg_dma_mem_valid(void *opaque, hwaddr addr, 479 unsigned size, bool is_write, 480 MemTxAttrs attrs) 481 { 482 return !is_write || ((size == 4 && (addr == 0 || addr == 4)) || 483 (size == 8 && addr == 0)); 484 } 485 486 static bool fw_cfg_data_mem_valid(void *opaque, hwaddr addr, 487 unsigned size, bool is_write, 488 MemTxAttrs attrs) 489 { 490 return addr == 0; 491 } 492 493 static uint64_t fw_cfg_ctl_mem_read(void *opaque, hwaddr addr, unsigned size) 494 { 495 return 0; 496 } 497 498 static void fw_cfg_ctl_mem_write(void *opaque, hwaddr addr, 499 uint64_t value, unsigned size) 500 { 501 fw_cfg_select(opaque, (uint16_t)value); 502 } 503 504 static bool fw_cfg_ctl_mem_valid(void *opaque, hwaddr addr, 505 unsigned size, bool is_write, 506 MemTxAttrs attrs) 507 { 508 return is_write && size == 2; 509 } 510 511 static void fw_cfg_comb_write(void *opaque, hwaddr addr, 512 uint64_t value, unsigned size) 513 { 514 switch (size) { 515 case 1: 516 fw_cfg_write(opaque, (uint8_t)value); 517 break; 518 case 2: 519 fw_cfg_select(opaque, (uint16_t)value); 520 break; 521 } 522 } 523 524 static bool fw_cfg_comb_valid(void *opaque, hwaddr addr, 525 unsigned size, bool is_write, 526 MemTxAttrs attrs) 527 { 528 return (size == 1) || (is_write && size == 2); 529 } 530 531 static const MemoryRegionOps fw_cfg_ctl_mem_ops = { 532 .read = fw_cfg_ctl_mem_read, 533 .write = fw_cfg_ctl_mem_write, 534 .endianness = DEVICE_BIG_ENDIAN, 535 .valid.accepts = fw_cfg_ctl_mem_valid, 536 }; 537 538 static const MemoryRegionOps fw_cfg_data_mem_ops = { 539 .read = fw_cfg_data_read, 540 .write = fw_cfg_data_mem_write, 541 .endianness = DEVICE_BIG_ENDIAN, 542 .valid = { 543 .min_access_size = 1, 544 .max_access_size = 1, 545 .accepts = fw_cfg_data_mem_valid, 546 }, 547 }; 548 549 static const MemoryRegionOps fw_cfg_comb_mem_ops = { 550 .read = fw_cfg_data_read, 551 .write = fw_cfg_comb_write, 552 .endianness = DEVICE_LITTLE_ENDIAN, 553 .valid.accepts = fw_cfg_comb_valid, 554 }; 555 556 static const MemoryRegionOps fw_cfg_dma_mem_ops = { 557 .read = fw_cfg_dma_mem_read, 558 .write = fw_cfg_dma_mem_write, 559 .endianness = DEVICE_BIG_ENDIAN, 560 .valid.accepts = fw_cfg_dma_mem_valid, 561 .valid.max_access_size = 8, 562 .impl.max_access_size = 8, 563 }; 564 565 static void fw_cfg_reset(DeviceState *d) 566 { 567 FWCfgState *s = FW_CFG(d); 568 569 /* we never register a read callback for FW_CFG_SIGNATURE */ 570 fw_cfg_select(s, FW_CFG_SIGNATURE); 571 } 572 573 /* Save restore 32 bit int as uint16_t 574 This is a Big hack, but it is how the old state did it. 575 Or we broke compatibility in the state, or we can't use struct tm 576 */ 577 578 static int get_uint32_as_uint16(QEMUFile *f, void *pv, size_t size, 579 const VMStateField *field) 580 { 581 uint32_t *v = pv; 582 *v = qemu_get_be16(f); 583 return 0; 584 } 585 586 static int put_unused(QEMUFile *f, void *pv, size_t size, 587 const VMStateField *field, JSONWriter *vmdesc) 588 { 589 fprintf(stderr, "uint32_as_uint16 is only used for backward compatibility.\n"); 590 fprintf(stderr, "This functions shouldn't be called.\n"); 591 592 return 0; 593 } 594 595 static const VMStateInfo vmstate_hack_uint32_as_uint16 = { 596 .name = "int32_as_uint16", 597 .get = get_uint32_as_uint16, 598 .put = put_unused, 599 }; 600 601 #define VMSTATE_UINT16_HACK(_f, _s, _t) \ 602 VMSTATE_SINGLE_TEST(_f, _s, _t, 0, vmstate_hack_uint32_as_uint16, uint32_t) 603 604 605 static bool is_version_1(void *opaque, int version_id) 606 { 607 return version_id == 1; 608 } 609 610 bool fw_cfg_dma_enabled(void *opaque) 611 { 612 FWCfgState *s = opaque; 613 614 return s->dma_enabled; 615 } 616 617 static bool fw_cfg_acpi_mr_restore(void *opaque) 618 { 619 FWCfgState *s = opaque; 620 bool mr_aligned; 621 622 mr_aligned = QEMU_IS_ALIGNED(s->table_mr_size, qemu_real_host_page_size) && 623 QEMU_IS_ALIGNED(s->linker_mr_size, qemu_real_host_page_size) && 624 QEMU_IS_ALIGNED(s->rsdp_mr_size, qemu_real_host_page_size); 625 return s->acpi_mr_restore && !mr_aligned; 626 } 627 628 static void fw_cfg_update_mr(FWCfgState *s, uint16_t key, size_t size) 629 { 630 MemoryRegion *mr; 631 ram_addr_t offset; 632 int arch = !!(key & FW_CFG_ARCH_LOCAL); 633 void *ptr; 634 635 key &= FW_CFG_ENTRY_MASK; 636 assert(key < fw_cfg_max_entry(s)); 637 638 ptr = s->entries[arch][key].data; 639 mr = memory_region_from_host(ptr, &offset); 640 641 memory_region_ram_resize(mr, size, &error_abort); 642 } 643 644 static int fw_cfg_acpi_mr_restore_post_load(void *opaque, int version_id) 645 { 646 FWCfgState *s = opaque; 647 int i, index; 648 649 assert(s->files); 650 651 index = be32_to_cpu(s->files->count); 652 653 for (i = 0; i < index; i++) { 654 if (!strcmp(s->files->f[i].name, ACPI_BUILD_TABLE_FILE)) { 655 fw_cfg_update_mr(s, FW_CFG_FILE_FIRST + i, s->table_mr_size); 656 } else if (!strcmp(s->files->f[i].name, ACPI_BUILD_LOADER_FILE)) { 657 fw_cfg_update_mr(s, FW_CFG_FILE_FIRST + i, s->linker_mr_size); 658 } else if (!strcmp(s->files->f[i].name, ACPI_BUILD_RSDP_FILE)) { 659 fw_cfg_update_mr(s, FW_CFG_FILE_FIRST + i, s->rsdp_mr_size); 660 } 661 } 662 663 return 0; 664 } 665 666 static const VMStateDescription vmstate_fw_cfg_dma = { 667 .name = "fw_cfg/dma", 668 .needed = fw_cfg_dma_enabled, 669 .fields = (VMStateField[]) { 670 VMSTATE_UINT64(dma_addr, FWCfgState), 671 VMSTATE_END_OF_LIST() 672 }, 673 }; 674 675 static const VMStateDescription vmstate_fw_cfg_acpi_mr = { 676 .name = "fw_cfg/acpi_mr", 677 .version_id = 1, 678 .minimum_version_id = 1, 679 .needed = fw_cfg_acpi_mr_restore, 680 .post_load = fw_cfg_acpi_mr_restore_post_load, 681 .fields = (VMStateField[]) { 682 VMSTATE_UINT64(table_mr_size, FWCfgState), 683 VMSTATE_UINT64(linker_mr_size, FWCfgState), 684 VMSTATE_UINT64(rsdp_mr_size, FWCfgState), 685 VMSTATE_END_OF_LIST() 686 }, 687 }; 688 689 static const VMStateDescription vmstate_fw_cfg = { 690 .name = "fw_cfg", 691 .version_id = 2, 692 .minimum_version_id = 1, 693 .fields = (VMStateField[]) { 694 VMSTATE_UINT16(cur_entry, FWCfgState), 695 VMSTATE_UINT16_HACK(cur_offset, FWCfgState, is_version_1), 696 VMSTATE_UINT32_V(cur_offset, FWCfgState, 2), 697 VMSTATE_END_OF_LIST() 698 }, 699 .subsections = (const VMStateDescription*[]) { 700 &vmstate_fw_cfg_dma, 701 &vmstate_fw_cfg_acpi_mr, 702 NULL, 703 } 704 }; 705 706 static void fw_cfg_add_bytes_callback(FWCfgState *s, uint16_t key, 707 FWCfgCallback select_cb, 708 FWCfgWriteCallback write_cb, 709 void *callback_opaque, 710 void *data, size_t len, 711 bool read_only) 712 { 713 int arch = !!(key & FW_CFG_ARCH_LOCAL); 714 715 key &= FW_CFG_ENTRY_MASK; 716 717 assert(key < fw_cfg_max_entry(s) && len < UINT32_MAX); 718 assert(s->entries[arch][key].data == NULL); /* avoid key conflict */ 719 720 s->entries[arch][key].data = data; 721 s->entries[arch][key].len = (uint32_t)len; 722 s->entries[arch][key].select_cb = select_cb; 723 s->entries[arch][key].write_cb = write_cb; 724 s->entries[arch][key].callback_opaque = callback_opaque; 725 s->entries[arch][key].allow_write = !read_only; 726 } 727 728 static void *fw_cfg_modify_bytes_read(FWCfgState *s, uint16_t key, 729 void *data, size_t len) 730 { 731 void *ptr; 732 int arch = !!(key & FW_CFG_ARCH_LOCAL); 733 734 key &= FW_CFG_ENTRY_MASK; 735 736 assert(key < fw_cfg_max_entry(s) && len < UINT32_MAX); 737 738 /* return the old data to the function caller, avoid memory leak */ 739 ptr = s->entries[arch][key].data; 740 s->entries[arch][key].data = data; 741 s->entries[arch][key].len = len; 742 s->entries[arch][key].callback_opaque = NULL; 743 s->entries[arch][key].allow_write = false; 744 745 return ptr; 746 } 747 748 void fw_cfg_add_bytes(FWCfgState *s, uint16_t key, void *data, size_t len) 749 { 750 trace_fw_cfg_add_bytes(key, trace_key_name(key), len); 751 fw_cfg_add_bytes_callback(s, key, NULL, NULL, NULL, data, len, true); 752 } 753 754 void fw_cfg_add_string(FWCfgState *s, uint16_t key, const char *value) 755 { 756 size_t sz = strlen(value) + 1; 757 758 trace_fw_cfg_add_string(key, trace_key_name(key), value); 759 fw_cfg_add_bytes(s, key, g_memdup(value, sz), sz); 760 } 761 762 void fw_cfg_modify_string(FWCfgState *s, uint16_t key, const char *value) 763 { 764 size_t sz = strlen(value) + 1; 765 char *old; 766 767 old = fw_cfg_modify_bytes_read(s, key, g_memdup(value, sz), sz); 768 g_free(old); 769 } 770 771 void fw_cfg_add_i16(FWCfgState *s, uint16_t key, uint16_t value) 772 { 773 uint16_t *copy; 774 775 copy = g_malloc(sizeof(value)); 776 *copy = cpu_to_le16(value); 777 trace_fw_cfg_add_i16(key, trace_key_name(key), value); 778 fw_cfg_add_bytes(s, key, copy, sizeof(value)); 779 } 780 781 void fw_cfg_modify_i16(FWCfgState *s, uint16_t key, uint16_t value) 782 { 783 uint16_t *copy, *old; 784 785 copy = g_malloc(sizeof(value)); 786 *copy = cpu_to_le16(value); 787 old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value)); 788 g_free(old); 789 } 790 791 void fw_cfg_add_i32(FWCfgState *s, uint16_t key, uint32_t value) 792 { 793 uint32_t *copy; 794 795 copy = g_malloc(sizeof(value)); 796 *copy = cpu_to_le32(value); 797 trace_fw_cfg_add_i32(key, trace_key_name(key), value); 798 fw_cfg_add_bytes(s, key, copy, sizeof(value)); 799 } 800 801 void fw_cfg_modify_i32(FWCfgState *s, uint16_t key, uint32_t value) 802 { 803 uint32_t *copy, *old; 804 805 copy = g_malloc(sizeof(value)); 806 *copy = cpu_to_le32(value); 807 old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value)); 808 g_free(old); 809 } 810 811 void fw_cfg_add_i64(FWCfgState *s, uint16_t key, uint64_t value) 812 { 813 uint64_t *copy; 814 815 copy = g_malloc(sizeof(value)); 816 *copy = cpu_to_le64(value); 817 trace_fw_cfg_add_i64(key, trace_key_name(key), value); 818 fw_cfg_add_bytes(s, key, copy, sizeof(value)); 819 } 820 821 void fw_cfg_modify_i64(FWCfgState *s, uint16_t key, uint64_t value) 822 { 823 uint64_t *copy, *old; 824 825 copy = g_malloc(sizeof(value)); 826 *copy = cpu_to_le64(value); 827 old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value)); 828 g_free(old); 829 } 830 831 void fw_cfg_set_order_override(FWCfgState *s, int order) 832 { 833 assert(s->fw_cfg_order_override == 0); 834 s->fw_cfg_order_override = order; 835 } 836 837 void fw_cfg_reset_order_override(FWCfgState *s) 838 { 839 assert(s->fw_cfg_order_override != 0); 840 s->fw_cfg_order_override = 0; 841 } 842 843 /* 844 * This is the legacy order list. For legacy systems, files are in 845 * the fw_cfg in the order defined below, by the "order" value. Note 846 * that some entries (VGA ROMs, NIC option ROMS, etc.) go into a 847 * specific area, but there may be more than one and they occur in the 848 * order that the user specifies them on the command line. Those are 849 * handled in a special manner, using the order override above. 850 * 851 * For non-legacy, the files are sorted by filename to avoid this kind 852 * of complexity in the future. 853 * 854 * This is only for x86, other arches don't implement versioning so 855 * they won't set legacy mode. 856 */ 857 static struct { 858 const char *name; 859 int order; 860 } fw_cfg_order[] = { 861 { "etc/boot-menu-wait", 10 }, 862 { "bootsplash.jpg", 11 }, 863 { "bootsplash.bmp", 12 }, 864 { "etc/boot-fail-wait", 15 }, 865 { "etc/smbios/smbios-tables", 20 }, 866 { "etc/smbios/smbios-anchor", 30 }, 867 { "etc/e820", 40 }, 868 { "etc/reserved-memory-end", 50 }, 869 { "genroms/kvmvapic.bin", 55 }, 870 { "genroms/linuxboot.bin", 60 }, 871 { }, /* VGA ROMs from pc_vga_init come here, 70. */ 872 { }, /* NIC option ROMs from pc_nic_init come here, 80. */ 873 { "etc/system-states", 90 }, 874 { }, /* User ROMs come here, 100. */ 875 { }, /* Device FW comes here, 110. */ 876 { "etc/extra-pci-roots", 120 }, 877 { "etc/acpi/tables", 130 }, 878 { "etc/table-loader", 140 }, 879 { "etc/tpm/log", 150 }, 880 { "etc/acpi/rsdp", 160 }, 881 { "bootorder", 170 }, 882 { "etc/msr_feature_control", 180 }, 883 884 #define FW_CFG_ORDER_OVERRIDE_LAST 200 885 }; 886 887 /* 888 * Any sub-page size update to these table MRs will be lost during migration, 889 * as we use aligned size in ram_load_precopy() -> qemu_ram_resize() path. 890 * In order to avoid the inconsistency in sizes save them seperately and 891 * migrate over in vmstate post_load(). 892 */ 893 static void fw_cfg_acpi_mr_save(FWCfgState *s, const char *filename, size_t len) 894 { 895 if (!strcmp(filename, ACPI_BUILD_TABLE_FILE)) { 896 s->table_mr_size = len; 897 } else if (!strcmp(filename, ACPI_BUILD_LOADER_FILE)) { 898 s->linker_mr_size = len; 899 } else if (!strcmp(filename, ACPI_BUILD_RSDP_FILE)) { 900 s->rsdp_mr_size = len; 901 } 902 } 903 904 static int get_fw_cfg_order(FWCfgState *s, const char *name) 905 { 906 int i; 907 908 if (s->fw_cfg_order_override > 0) { 909 return s->fw_cfg_order_override; 910 } 911 912 for (i = 0; i < ARRAY_SIZE(fw_cfg_order); i++) { 913 if (fw_cfg_order[i].name == NULL) { 914 continue; 915 } 916 917 if (strcmp(name, fw_cfg_order[i].name) == 0) { 918 return fw_cfg_order[i].order; 919 } 920 } 921 922 /* Stick unknown stuff at the end. */ 923 warn_report("Unknown firmware file in legacy mode: %s", name); 924 return FW_CFG_ORDER_OVERRIDE_LAST; 925 } 926 927 void fw_cfg_add_file_callback(FWCfgState *s, const char *filename, 928 FWCfgCallback select_cb, 929 FWCfgWriteCallback write_cb, 930 void *callback_opaque, 931 void *data, size_t len, bool read_only) 932 { 933 int i, index, count; 934 size_t dsize; 935 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 936 int order = 0; 937 938 if (!s->files) { 939 dsize = sizeof(uint32_t) + sizeof(FWCfgFile) * fw_cfg_file_slots(s); 940 s->files = g_malloc0(dsize); 941 fw_cfg_add_bytes(s, FW_CFG_FILE_DIR, s->files, dsize); 942 } 943 944 count = be32_to_cpu(s->files->count); 945 assert(count < fw_cfg_file_slots(s)); 946 947 /* Find the insertion point. */ 948 if (mc->legacy_fw_cfg_order) { 949 /* 950 * Sort by order. For files with the same order, we keep them 951 * in the sequence in which they were added. 952 */ 953 order = get_fw_cfg_order(s, filename); 954 for (index = count; 955 index > 0 && order < s->entry_order[index - 1]; 956 index--); 957 } else { 958 /* Sort by file name. */ 959 for (index = count; 960 index > 0 && strcmp(filename, s->files->f[index - 1].name) < 0; 961 index--); 962 } 963 964 /* 965 * Move all the entries from the index point and after down one 966 * to create a slot for the new entry. Because calculations are 967 * being done with the index, make it so that "i" is the current 968 * index and "i - 1" is the one being copied from, thus the 969 * unusual start and end in the for statement. 970 */ 971 for (i = count; i > index; i--) { 972 s->files->f[i] = s->files->f[i - 1]; 973 s->files->f[i].select = cpu_to_be16(FW_CFG_FILE_FIRST + i); 974 s->entries[0][FW_CFG_FILE_FIRST + i] = 975 s->entries[0][FW_CFG_FILE_FIRST + i - 1]; 976 s->entry_order[i] = s->entry_order[i - 1]; 977 } 978 979 memset(&s->files->f[index], 0, sizeof(FWCfgFile)); 980 memset(&s->entries[0][FW_CFG_FILE_FIRST + index], 0, sizeof(FWCfgEntry)); 981 982 pstrcpy(s->files->f[index].name, sizeof(s->files->f[index].name), filename); 983 for (i = 0; i <= count; i++) { 984 if (i != index && 985 strcmp(s->files->f[index].name, s->files->f[i].name) == 0) { 986 error_report("duplicate fw_cfg file name: %s", 987 s->files->f[index].name); 988 exit(1); 989 } 990 } 991 992 fw_cfg_add_bytes_callback(s, FW_CFG_FILE_FIRST + index, 993 select_cb, write_cb, 994 callback_opaque, data, len, 995 read_only); 996 997 s->files->f[index].size = cpu_to_be32(len); 998 s->files->f[index].select = cpu_to_be16(FW_CFG_FILE_FIRST + index); 999 s->entry_order[index] = order; 1000 trace_fw_cfg_add_file(s, index, s->files->f[index].name, len); 1001 1002 s->files->count = cpu_to_be32(count+1); 1003 fw_cfg_acpi_mr_save(s, filename, len); 1004 } 1005 1006 void fw_cfg_add_file(FWCfgState *s, const char *filename, 1007 void *data, size_t len) 1008 { 1009 fw_cfg_add_file_callback(s, filename, NULL, NULL, NULL, data, len, true); 1010 } 1011 1012 void *fw_cfg_modify_file(FWCfgState *s, const char *filename, 1013 void *data, size_t len) 1014 { 1015 int i, index; 1016 void *ptr = NULL; 1017 1018 assert(s->files); 1019 1020 index = be32_to_cpu(s->files->count); 1021 1022 for (i = 0; i < index; i++) { 1023 if (strcmp(filename, s->files->f[i].name) == 0) { 1024 ptr = fw_cfg_modify_bytes_read(s, FW_CFG_FILE_FIRST + i, 1025 data, len); 1026 s->files->f[i].size = cpu_to_be32(len); 1027 fw_cfg_acpi_mr_save(s, filename, len); 1028 return ptr; 1029 } 1030 } 1031 1032 assert(index < fw_cfg_file_slots(s)); 1033 1034 /* add new one */ 1035 fw_cfg_add_file_callback(s, filename, NULL, NULL, NULL, data, len, true); 1036 return NULL; 1037 } 1038 1039 bool fw_cfg_add_from_generator(FWCfgState *s, const char *filename, 1040 const char *gen_id, Error **errp) 1041 { 1042 FWCfgDataGeneratorClass *klass; 1043 GByteArray *array; 1044 Object *obj; 1045 gsize size; 1046 1047 obj = object_resolve_path_component(object_get_objects_root(), gen_id); 1048 if (!obj) { 1049 error_setg(errp, "Cannot find object ID '%s'", gen_id); 1050 return false; 1051 } 1052 if (!object_dynamic_cast(obj, TYPE_FW_CFG_DATA_GENERATOR_INTERFACE)) { 1053 error_setg(errp, "Object ID '%s' is not a '%s' subclass", 1054 gen_id, TYPE_FW_CFG_DATA_GENERATOR_INTERFACE); 1055 return false; 1056 } 1057 klass = FW_CFG_DATA_GENERATOR_GET_CLASS(obj); 1058 array = klass->get_data(obj, errp); 1059 if (!array) { 1060 return false; 1061 } 1062 size = array->len; 1063 fw_cfg_add_file(s, filename, g_byte_array_free(array, FALSE), size); 1064 1065 return true; 1066 } 1067 1068 void fw_cfg_add_extra_pci_roots(PCIBus *bus, FWCfgState *s) 1069 { 1070 int extra_hosts = 0; 1071 1072 if (!bus) { 1073 return; 1074 } 1075 1076 QLIST_FOREACH(bus, &bus->child, sibling) { 1077 /* look for expander root buses */ 1078 if (pci_bus_is_root(bus)) { 1079 extra_hosts++; 1080 } 1081 } 1082 1083 if (extra_hosts && s) { 1084 uint64_t *val = g_malloc(sizeof(*val)); 1085 *val = cpu_to_le64(extra_hosts); 1086 fw_cfg_add_file(s, "etc/extra-pci-roots", val, sizeof(*val)); 1087 } 1088 } 1089 1090 static void fw_cfg_machine_reset(void *opaque) 1091 { 1092 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 1093 FWCfgState *s = opaque; 1094 void *ptr; 1095 size_t len; 1096 char *buf; 1097 1098 buf = get_boot_devices_list(&len); 1099 ptr = fw_cfg_modify_file(s, "bootorder", (uint8_t *)buf, len); 1100 g_free(ptr); 1101 1102 if (!mc->legacy_fw_cfg_order) { 1103 buf = get_boot_devices_lchs_list(&len); 1104 ptr = fw_cfg_modify_file(s, "bios-geometry", (uint8_t *)buf, len); 1105 g_free(ptr); 1106 } 1107 } 1108 1109 static void fw_cfg_machine_ready(struct Notifier *n, void *data) 1110 { 1111 FWCfgState *s = container_of(n, FWCfgState, machine_ready); 1112 qemu_register_reset(fw_cfg_machine_reset, s); 1113 } 1114 1115 static Property fw_cfg_properties[] = { 1116 DEFINE_PROP_BOOL("acpi-mr-restore", FWCfgState, acpi_mr_restore, true), 1117 DEFINE_PROP_END_OF_LIST(), 1118 }; 1119 1120 static void fw_cfg_common_realize(DeviceState *dev, Error **errp) 1121 { 1122 FWCfgState *s = FW_CFG(dev); 1123 MachineState *machine = MACHINE(qdev_get_machine()); 1124 uint32_t version = FW_CFG_VERSION; 1125 1126 if (!fw_cfg_find()) { 1127 error_setg(errp, "at most one %s device is permitted", TYPE_FW_CFG); 1128 return; 1129 } 1130 1131 fw_cfg_add_bytes(s, FW_CFG_SIGNATURE, (char *)"QEMU", 4); 1132 fw_cfg_add_bytes(s, FW_CFG_UUID, &qemu_uuid, 16); 1133 fw_cfg_add_i16(s, FW_CFG_NOGRAPHIC, (uint16_t)!machine->enable_graphics); 1134 fw_cfg_add_i16(s, FW_CFG_BOOT_MENU, (uint16_t)boot_menu); 1135 fw_cfg_bootsplash(s); 1136 fw_cfg_reboot(s); 1137 1138 if (s->dma_enabled) { 1139 version |= FW_CFG_VERSION_DMA; 1140 } 1141 1142 fw_cfg_add_i32(s, FW_CFG_ID, version); 1143 1144 s->machine_ready.notify = fw_cfg_machine_ready; 1145 qemu_add_machine_init_done_notifier(&s->machine_ready); 1146 } 1147 1148 FWCfgState *fw_cfg_init_io_dma(uint32_t iobase, uint32_t dma_iobase, 1149 AddressSpace *dma_as) 1150 { 1151 DeviceState *dev; 1152 SysBusDevice *sbd; 1153 FWCfgIoState *ios; 1154 FWCfgState *s; 1155 bool dma_requested = dma_iobase && dma_as; 1156 1157 dev = qdev_new(TYPE_FW_CFG_IO); 1158 if (!dma_requested) { 1159 qdev_prop_set_bit(dev, "dma_enabled", false); 1160 } 1161 1162 object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG, 1163 OBJECT(dev)); 1164 1165 sbd = SYS_BUS_DEVICE(dev); 1166 sysbus_realize_and_unref(sbd, &error_fatal); 1167 ios = FW_CFG_IO(dev); 1168 sysbus_add_io(sbd, iobase, &ios->comb_iomem); 1169 1170 s = FW_CFG(dev); 1171 1172 if (s->dma_enabled) { 1173 /* 64 bits for the address field */ 1174 s->dma_as = dma_as; 1175 s->dma_addr = 0; 1176 sysbus_add_io(sbd, dma_iobase, &s->dma_iomem); 1177 } 1178 1179 return s; 1180 } 1181 1182 FWCfgState *fw_cfg_init_io(uint32_t iobase) 1183 { 1184 return fw_cfg_init_io_dma(iobase, 0, NULL); 1185 } 1186 1187 FWCfgState *fw_cfg_init_mem_wide(hwaddr ctl_addr, 1188 hwaddr data_addr, uint32_t data_width, 1189 hwaddr dma_addr, AddressSpace *dma_as) 1190 { 1191 DeviceState *dev; 1192 SysBusDevice *sbd; 1193 FWCfgState *s; 1194 bool dma_requested = dma_addr && dma_as; 1195 1196 dev = qdev_new(TYPE_FW_CFG_MEM); 1197 qdev_prop_set_uint32(dev, "data_width", data_width); 1198 if (!dma_requested) { 1199 qdev_prop_set_bit(dev, "dma_enabled", false); 1200 } 1201 1202 object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG, 1203 OBJECT(dev)); 1204 1205 sbd = SYS_BUS_DEVICE(dev); 1206 sysbus_realize_and_unref(sbd, &error_fatal); 1207 sysbus_mmio_map(sbd, 0, ctl_addr); 1208 sysbus_mmio_map(sbd, 1, data_addr); 1209 1210 s = FW_CFG(dev); 1211 1212 if (s->dma_enabled) { 1213 s->dma_as = dma_as; 1214 s->dma_addr = 0; 1215 sysbus_mmio_map(sbd, 2, dma_addr); 1216 } 1217 1218 return s; 1219 } 1220 1221 FWCfgState *fw_cfg_init_mem(hwaddr ctl_addr, hwaddr data_addr) 1222 { 1223 return fw_cfg_init_mem_wide(ctl_addr, data_addr, 1224 fw_cfg_data_mem_ops.valid.max_access_size, 1225 0, NULL); 1226 } 1227 1228 1229 FWCfgState *fw_cfg_find(void) 1230 { 1231 /* Returns NULL unless there is exactly one fw_cfg device */ 1232 return FW_CFG(object_resolve_path_type("", TYPE_FW_CFG, NULL)); 1233 } 1234 1235 1236 static void fw_cfg_class_init(ObjectClass *klass, void *data) 1237 { 1238 DeviceClass *dc = DEVICE_CLASS(klass); 1239 1240 dc->reset = fw_cfg_reset; 1241 dc->vmsd = &vmstate_fw_cfg; 1242 1243 device_class_set_props(dc, fw_cfg_properties); 1244 } 1245 1246 static const TypeInfo fw_cfg_info = { 1247 .name = TYPE_FW_CFG, 1248 .parent = TYPE_SYS_BUS_DEVICE, 1249 .abstract = true, 1250 .instance_size = sizeof(FWCfgState), 1251 .class_init = fw_cfg_class_init, 1252 }; 1253 1254 static void fw_cfg_file_slots_allocate(FWCfgState *s, Error **errp) 1255 { 1256 uint16_t file_slots_max; 1257 1258 if (fw_cfg_file_slots(s) < FW_CFG_FILE_SLOTS_MIN) { 1259 error_setg(errp, "\"file_slots\" must be at least 0x%x", 1260 FW_CFG_FILE_SLOTS_MIN); 1261 return; 1262 } 1263 1264 /* (UINT16_MAX & FW_CFG_ENTRY_MASK) is the highest inclusive selector value 1265 * that we permit. The actual (exclusive) value coming from the 1266 * configuration is (FW_CFG_FILE_FIRST + fw_cfg_file_slots(s)). */ 1267 file_slots_max = (UINT16_MAX & FW_CFG_ENTRY_MASK) - FW_CFG_FILE_FIRST + 1; 1268 if (fw_cfg_file_slots(s) > file_slots_max) { 1269 error_setg(errp, "\"file_slots\" must not exceed 0x%" PRIx16, 1270 file_slots_max); 1271 return; 1272 } 1273 1274 s->entries[0] = g_new0(FWCfgEntry, fw_cfg_max_entry(s)); 1275 s->entries[1] = g_new0(FWCfgEntry, fw_cfg_max_entry(s)); 1276 s->entry_order = g_new0(int, fw_cfg_max_entry(s)); 1277 } 1278 1279 static Property fw_cfg_io_properties[] = { 1280 DEFINE_PROP_BOOL("dma_enabled", FWCfgIoState, parent_obj.dma_enabled, 1281 true), 1282 DEFINE_PROP_UINT16("x-file-slots", FWCfgIoState, parent_obj.file_slots, 1283 FW_CFG_FILE_SLOTS_DFLT), 1284 DEFINE_PROP_END_OF_LIST(), 1285 }; 1286 1287 static void fw_cfg_io_realize(DeviceState *dev, Error **errp) 1288 { 1289 ERRP_GUARD(); 1290 FWCfgIoState *s = FW_CFG_IO(dev); 1291 1292 fw_cfg_file_slots_allocate(FW_CFG(s), errp); 1293 if (*errp) { 1294 return; 1295 } 1296 1297 /* when using port i/o, the 8-bit data register ALWAYS overlaps 1298 * with half of the 16-bit control register. Hence, the total size 1299 * of the i/o region used is FW_CFG_CTL_SIZE */ 1300 memory_region_init_io(&s->comb_iomem, OBJECT(s), &fw_cfg_comb_mem_ops, 1301 FW_CFG(s), "fwcfg", FW_CFG_CTL_SIZE); 1302 1303 if (FW_CFG(s)->dma_enabled) { 1304 memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s), 1305 &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma", 1306 sizeof(dma_addr_t)); 1307 } 1308 1309 fw_cfg_common_realize(dev, errp); 1310 } 1311 1312 static void fw_cfg_io_class_init(ObjectClass *klass, void *data) 1313 { 1314 DeviceClass *dc = DEVICE_CLASS(klass); 1315 1316 dc->realize = fw_cfg_io_realize; 1317 device_class_set_props(dc, fw_cfg_io_properties); 1318 } 1319 1320 static const TypeInfo fw_cfg_io_info = { 1321 .name = TYPE_FW_CFG_IO, 1322 .parent = TYPE_FW_CFG, 1323 .instance_size = sizeof(FWCfgIoState), 1324 .class_init = fw_cfg_io_class_init, 1325 }; 1326 1327 1328 static Property fw_cfg_mem_properties[] = { 1329 DEFINE_PROP_UINT32("data_width", FWCfgMemState, data_width, -1), 1330 DEFINE_PROP_BOOL("dma_enabled", FWCfgMemState, parent_obj.dma_enabled, 1331 true), 1332 DEFINE_PROP_UINT16("x-file-slots", FWCfgMemState, parent_obj.file_slots, 1333 FW_CFG_FILE_SLOTS_DFLT), 1334 DEFINE_PROP_END_OF_LIST(), 1335 }; 1336 1337 static void fw_cfg_mem_realize(DeviceState *dev, Error **errp) 1338 { 1339 ERRP_GUARD(); 1340 FWCfgMemState *s = FW_CFG_MEM(dev); 1341 SysBusDevice *sbd = SYS_BUS_DEVICE(dev); 1342 const MemoryRegionOps *data_ops = &fw_cfg_data_mem_ops; 1343 1344 fw_cfg_file_slots_allocate(FW_CFG(s), errp); 1345 if (*errp) { 1346 return; 1347 } 1348 1349 memory_region_init_io(&s->ctl_iomem, OBJECT(s), &fw_cfg_ctl_mem_ops, 1350 FW_CFG(s), "fwcfg.ctl", FW_CFG_CTL_SIZE); 1351 sysbus_init_mmio(sbd, &s->ctl_iomem); 1352 1353 if (s->data_width > data_ops->valid.max_access_size) { 1354 s->wide_data_ops = *data_ops; 1355 1356 s->wide_data_ops.valid.max_access_size = s->data_width; 1357 s->wide_data_ops.impl.max_access_size = s->data_width; 1358 data_ops = &s->wide_data_ops; 1359 } 1360 memory_region_init_io(&s->data_iomem, OBJECT(s), data_ops, FW_CFG(s), 1361 "fwcfg.data", data_ops->valid.max_access_size); 1362 sysbus_init_mmio(sbd, &s->data_iomem); 1363 1364 if (FW_CFG(s)->dma_enabled) { 1365 memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s), 1366 &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma", 1367 sizeof(dma_addr_t)); 1368 sysbus_init_mmio(sbd, &FW_CFG(s)->dma_iomem); 1369 } 1370 1371 fw_cfg_common_realize(dev, errp); 1372 } 1373 1374 static void fw_cfg_mem_class_init(ObjectClass *klass, void *data) 1375 { 1376 DeviceClass *dc = DEVICE_CLASS(klass); 1377 1378 dc->realize = fw_cfg_mem_realize; 1379 device_class_set_props(dc, fw_cfg_mem_properties); 1380 } 1381 1382 static const TypeInfo fw_cfg_mem_info = { 1383 .name = TYPE_FW_CFG_MEM, 1384 .parent = TYPE_FW_CFG, 1385 .instance_size = sizeof(FWCfgMemState), 1386 .class_init = fw_cfg_mem_class_init, 1387 }; 1388 1389 static void fw_cfg_register_types(void) 1390 { 1391 type_register_static(&fw_cfg_info); 1392 type_register_static(&fw_cfg_io_info); 1393 type_register_static(&fw_cfg_mem_info); 1394 } 1395 1396 type_init(fw_cfg_register_types) 1397