xref: /openbmc/qemu/hw/nvram/fw_cfg.c (revision 2038f8c8)
1 /*
2  * QEMU Firmware configuration device emulation
3  *
4  * Copyright (c) 2008 Gleb Natapov
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "qemu-common.h"
27 #include "sysemu/sysemu.h"
28 #include "sysemu/dma.h"
29 #include "sysemu/reset.h"
30 #include "hw/boards.h"
31 #include "hw/nvram/fw_cfg.h"
32 #include "hw/qdev-properties.h"
33 #include "hw/sysbus.h"
34 #include "migration/qemu-file-types.h"
35 #include "migration/vmstate.h"
36 #include "trace.h"
37 #include "qemu/error-report.h"
38 #include "qemu/option.h"
39 #include "qemu/config-file.h"
40 #include "qemu/cutils.h"
41 #include "qapi/error.h"
42 
43 #define FW_CFG_FILE_SLOTS_DFLT 0x20
44 
45 /* FW_CFG_VERSION bits */
46 #define FW_CFG_VERSION      0x01
47 #define FW_CFG_VERSION_DMA  0x02
48 
49 /* FW_CFG_DMA_CONTROL bits */
50 #define FW_CFG_DMA_CTL_ERROR   0x01
51 #define FW_CFG_DMA_CTL_READ    0x02
52 #define FW_CFG_DMA_CTL_SKIP    0x04
53 #define FW_CFG_DMA_CTL_SELECT  0x08
54 #define FW_CFG_DMA_CTL_WRITE   0x10
55 
56 #define FW_CFG_DMA_SIGNATURE 0x51454d5520434647ULL /* "QEMU CFG" */
57 
58 struct FWCfgEntry {
59     uint32_t len;
60     bool allow_write;
61     uint8_t *data;
62     void *callback_opaque;
63     FWCfgCallback select_cb;
64     FWCfgWriteCallback write_cb;
65 };
66 
67 /**
68  * key_name:
69  *
70  * @key: The uint16 selector key.
71  *
72  * Returns: The stringified name if the selector refers to a well-known
73  *          numerically defined item, or NULL on key lookup failure.
74  */
75 static const char *key_name(uint16_t key)
76 {
77     static const char *fw_cfg_wellknown_keys[FW_CFG_FILE_FIRST] = {
78         [FW_CFG_SIGNATURE] = "signature",
79         [FW_CFG_ID] = "id",
80         [FW_CFG_UUID] = "uuid",
81         [FW_CFG_RAM_SIZE] = "ram_size",
82         [FW_CFG_NOGRAPHIC] = "nographic",
83         [FW_CFG_NB_CPUS] = "nb_cpus",
84         [FW_CFG_MACHINE_ID] = "machine_id",
85         [FW_CFG_KERNEL_ADDR] = "kernel_addr",
86         [FW_CFG_KERNEL_SIZE] = "kernel_size",
87         [FW_CFG_KERNEL_CMDLINE] = "kernel_cmdline",
88         [FW_CFG_INITRD_ADDR] = "initrd_addr",
89         [FW_CFG_INITRD_SIZE] = "initdr_size",
90         [FW_CFG_BOOT_DEVICE] = "boot_device",
91         [FW_CFG_NUMA] = "numa",
92         [FW_CFG_BOOT_MENU] = "boot_menu",
93         [FW_CFG_MAX_CPUS] = "max_cpus",
94         [FW_CFG_KERNEL_ENTRY] = "kernel_entry",
95         [FW_CFG_KERNEL_DATA] = "kernel_data",
96         [FW_CFG_INITRD_DATA] = "initrd_data",
97         [FW_CFG_CMDLINE_ADDR] = "cmdline_addr",
98         [FW_CFG_CMDLINE_SIZE] = "cmdline_size",
99         [FW_CFG_CMDLINE_DATA] = "cmdline_data",
100         [FW_CFG_SETUP_ADDR] = "setup_addr",
101         [FW_CFG_SETUP_SIZE] = "setup_size",
102         [FW_CFG_SETUP_DATA] = "setup_data",
103         [FW_CFG_FILE_DIR] = "file_dir",
104     };
105 
106     if (key & FW_CFG_ARCH_LOCAL) {
107         return fw_cfg_arch_key_name(key);
108     }
109     if (key < FW_CFG_FILE_FIRST) {
110         return fw_cfg_wellknown_keys[key];
111     }
112 
113     return NULL;
114 }
115 
116 static inline const char *trace_key_name(uint16_t key)
117 {
118     const char *name = key_name(key);
119 
120     return name ? name : "unknown";
121 }
122 
123 #define JPG_FILE 0
124 #define BMP_FILE 1
125 
126 static char *read_splashfile(char *filename, gsize *file_sizep,
127                              int *file_typep)
128 {
129     GError *err = NULL;
130     gchar *content;
131     int file_type;
132     unsigned int filehead;
133     int bmp_bpp;
134 
135     if (!g_file_get_contents(filename, &content, file_sizep, &err)) {
136         error_report("failed to read splash file '%s': %s",
137                      filename, err->message);
138         g_error_free(err);
139         return NULL;
140     }
141 
142     /* check file size */
143     if (*file_sizep < 30) {
144         goto error;
145     }
146 
147     /* check magic ID */
148     filehead = lduw_le_p(content);
149     if (filehead == 0xd8ff) {
150         file_type = JPG_FILE;
151     } else if (filehead == 0x4d42) {
152         file_type = BMP_FILE;
153     } else {
154         goto error;
155     }
156 
157     /* check BMP bpp */
158     if (file_type == BMP_FILE) {
159         bmp_bpp = lduw_le_p(&content[28]);
160         if (bmp_bpp != 24) {
161             goto error;
162         }
163     }
164 
165     /* return values */
166     *file_typep = file_type;
167 
168     return content;
169 
170 error:
171     error_report("splash file '%s' format not recognized; must be JPEG "
172                  "or 24 bit BMP", filename);
173     g_free(content);
174     return NULL;
175 }
176 
177 static void fw_cfg_bootsplash(FWCfgState *s)
178 {
179     const char *boot_splash_filename = NULL;
180     const char *boot_splash_time = NULL;
181     char *filename, *file_data;
182     gsize file_size;
183     int file_type;
184 
185     /* get user configuration */
186     QemuOptsList *plist = qemu_find_opts("boot-opts");
187     QemuOpts *opts = QTAILQ_FIRST(&plist->head);
188     boot_splash_filename = qemu_opt_get(opts, "splash");
189     boot_splash_time = qemu_opt_get(opts, "splash-time");
190 
191     /* insert splash time if user configurated */
192     if (boot_splash_time) {
193         int64_t bst_val = qemu_opt_get_number(opts, "splash-time", -1);
194         uint16_t bst_le16;
195 
196         /* validate the input */
197         if (bst_val < 0 || bst_val > 0xffff) {
198             error_report("splash-time is invalid,"
199                          "it should be a value between 0 and 65535");
200             exit(1);
201         }
202         /* use little endian format */
203         bst_le16 = cpu_to_le16(bst_val);
204         fw_cfg_add_file(s, "etc/boot-menu-wait",
205                         g_memdup(&bst_le16, sizeof bst_le16), sizeof bst_le16);
206     }
207 
208     /* insert splash file if user configurated */
209     if (boot_splash_filename) {
210         filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, boot_splash_filename);
211         if (filename == NULL) {
212             error_report("failed to find file '%s'", boot_splash_filename);
213             return;
214         }
215 
216         /* loading file data */
217         file_data = read_splashfile(filename, &file_size, &file_type);
218         if (file_data == NULL) {
219             g_free(filename);
220             return;
221         }
222         g_free(boot_splash_filedata);
223         boot_splash_filedata = (uint8_t *)file_data;
224 
225         /* insert data */
226         if (file_type == JPG_FILE) {
227             fw_cfg_add_file(s, "bootsplash.jpg",
228                             boot_splash_filedata, file_size);
229         } else {
230             fw_cfg_add_file(s, "bootsplash.bmp",
231                             boot_splash_filedata, file_size);
232         }
233         g_free(filename);
234     }
235 }
236 
237 static void fw_cfg_reboot(FWCfgState *s)
238 {
239     const char *reboot_timeout = NULL;
240     int64_t rt_val = -1;
241     uint32_t rt_le32;
242 
243     /* get user configuration */
244     QemuOptsList *plist = qemu_find_opts("boot-opts");
245     QemuOpts *opts = QTAILQ_FIRST(&plist->head);
246     reboot_timeout = qemu_opt_get(opts, "reboot-timeout");
247 
248     if (reboot_timeout) {
249         rt_val = qemu_opt_get_number(opts, "reboot-timeout", -1);
250         /* validate the input */
251         if (rt_val < 0 || rt_val > 0xffff) {
252             error_report("reboot timeout is invalid,"
253                          "it should be a value between 0 and 65535");
254             exit(1);
255         }
256     }
257 
258     rt_le32 = cpu_to_le32(rt_val);
259     fw_cfg_add_file(s, "etc/boot-fail-wait", g_memdup(&rt_le32, 4), 4);
260 }
261 
262 static void fw_cfg_write(FWCfgState *s, uint8_t value)
263 {
264     /* nothing, write support removed in QEMU v2.4+ */
265 }
266 
267 static inline uint16_t fw_cfg_file_slots(const FWCfgState *s)
268 {
269     return s->file_slots;
270 }
271 
272 /* Note: this function returns an exclusive limit. */
273 static inline uint32_t fw_cfg_max_entry(const FWCfgState *s)
274 {
275     return FW_CFG_FILE_FIRST + fw_cfg_file_slots(s);
276 }
277 
278 static int fw_cfg_select(FWCfgState *s, uint16_t key)
279 {
280     int arch, ret;
281     FWCfgEntry *e;
282 
283     s->cur_offset = 0;
284     if ((key & FW_CFG_ENTRY_MASK) >= fw_cfg_max_entry(s)) {
285         s->cur_entry = FW_CFG_INVALID;
286         ret = 0;
287     } else {
288         s->cur_entry = key;
289         ret = 1;
290         /* entry successfully selected, now run callback if present */
291         arch = !!(key & FW_CFG_ARCH_LOCAL);
292         e = &s->entries[arch][key & FW_CFG_ENTRY_MASK];
293         if (e->select_cb) {
294             e->select_cb(e->callback_opaque);
295         }
296     }
297 
298     trace_fw_cfg_select(s, key, trace_key_name(key), ret);
299     return ret;
300 }
301 
302 static uint64_t fw_cfg_data_read(void *opaque, hwaddr addr, unsigned size)
303 {
304     FWCfgState *s = opaque;
305     int arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL);
306     FWCfgEntry *e = (s->cur_entry == FW_CFG_INVALID) ? NULL :
307                     &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK];
308     uint64_t value = 0;
309 
310     assert(size > 0 && size <= sizeof(value));
311     if (s->cur_entry != FW_CFG_INVALID && e->data && s->cur_offset < e->len) {
312         /* The least significant 'size' bytes of the return value are
313          * expected to contain a string preserving portion of the item
314          * data, padded with zeros on the right in case we run out early.
315          * In technical terms, we're composing the host-endian representation
316          * of the big endian interpretation of the fw_cfg string.
317          */
318         do {
319             value = (value << 8) | e->data[s->cur_offset++];
320         } while (--size && s->cur_offset < e->len);
321         /* If size is still not zero, we *did* run out early, so continue
322          * left-shifting, to add the appropriate number of padding zeros
323          * on the right.
324          */
325         value <<= 8 * size;
326     }
327 
328     trace_fw_cfg_read(s, value);
329     return value;
330 }
331 
332 static void fw_cfg_data_mem_write(void *opaque, hwaddr addr,
333                                   uint64_t value, unsigned size)
334 {
335     FWCfgState *s = opaque;
336     unsigned i = size;
337 
338     do {
339         fw_cfg_write(s, value >> (8 * --i));
340     } while (i);
341 }
342 
343 static void fw_cfg_dma_transfer(FWCfgState *s)
344 {
345     dma_addr_t len;
346     FWCfgDmaAccess dma;
347     int arch;
348     FWCfgEntry *e;
349     int read = 0, write = 0;
350     dma_addr_t dma_addr;
351 
352     /* Reset the address before the next access */
353     dma_addr = s->dma_addr;
354     s->dma_addr = 0;
355 
356     if (dma_memory_read(s->dma_as, dma_addr, &dma, sizeof(dma))) {
357         stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control),
358                    FW_CFG_DMA_CTL_ERROR);
359         return;
360     }
361 
362     dma.address = be64_to_cpu(dma.address);
363     dma.length = be32_to_cpu(dma.length);
364     dma.control = be32_to_cpu(dma.control);
365 
366     if (dma.control & FW_CFG_DMA_CTL_SELECT) {
367         fw_cfg_select(s, dma.control >> 16);
368     }
369 
370     arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL);
371     e = (s->cur_entry == FW_CFG_INVALID) ? NULL :
372         &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK];
373 
374     if (dma.control & FW_CFG_DMA_CTL_READ) {
375         read = 1;
376         write = 0;
377     } else if (dma.control & FW_CFG_DMA_CTL_WRITE) {
378         read = 0;
379         write = 1;
380     } else if (dma.control & FW_CFG_DMA_CTL_SKIP) {
381         read = 0;
382         write = 0;
383     } else {
384         dma.length = 0;
385     }
386 
387     dma.control = 0;
388 
389     while (dma.length > 0 && !(dma.control & FW_CFG_DMA_CTL_ERROR)) {
390         if (s->cur_entry == FW_CFG_INVALID || !e->data ||
391                                 s->cur_offset >= e->len) {
392             len = dma.length;
393 
394             /* If the access is not a read access, it will be a skip access,
395              * tested before.
396              */
397             if (read) {
398                 if (dma_memory_set(s->dma_as, dma.address, 0, len)) {
399                     dma.control |= FW_CFG_DMA_CTL_ERROR;
400                 }
401             }
402             if (write) {
403                 dma.control |= FW_CFG_DMA_CTL_ERROR;
404             }
405         } else {
406             if (dma.length <= (e->len - s->cur_offset)) {
407                 len = dma.length;
408             } else {
409                 len = (e->len - s->cur_offset);
410             }
411 
412             /* If the access is not a read access, it will be a skip access,
413              * tested before.
414              */
415             if (read) {
416                 if (dma_memory_write(s->dma_as, dma.address,
417                                     &e->data[s->cur_offset], len)) {
418                     dma.control |= FW_CFG_DMA_CTL_ERROR;
419                 }
420             }
421             if (write) {
422                 if (!e->allow_write ||
423                     len != dma.length ||
424                     dma_memory_read(s->dma_as, dma.address,
425                                     &e->data[s->cur_offset], len)) {
426                     dma.control |= FW_CFG_DMA_CTL_ERROR;
427                 } else if (e->write_cb) {
428                     e->write_cb(e->callback_opaque, s->cur_offset, len);
429                 }
430             }
431 
432             s->cur_offset += len;
433         }
434 
435         dma.address += len;
436         dma.length  -= len;
437 
438     }
439 
440     stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control),
441                 dma.control);
442 
443     trace_fw_cfg_read(s, 0);
444 }
445 
446 static uint64_t fw_cfg_dma_mem_read(void *opaque, hwaddr addr,
447                                     unsigned size)
448 {
449     /* Return a signature value (and handle various read sizes) */
450     return extract64(FW_CFG_DMA_SIGNATURE, (8 - addr - size) * 8, size * 8);
451 }
452 
453 static void fw_cfg_dma_mem_write(void *opaque, hwaddr addr,
454                                  uint64_t value, unsigned size)
455 {
456     FWCfgState *s = opaque;
457 
458     if (size == 4) {
459         if (addr == 0) {
460             /* FWCfgDmaAccess high address */
461             s->dma_addr = value << 32;
462         } else if (addr == 4) {
463             /* FWCfgDmaAccess low address */
464             s->dma_addr |= value;
465             fw_cfg_dma_transfer(s);
466         }
467     } else if (size == 8 && addr == 0) {
468         s->dma_addr = value;
469         fw_cfg_dma_transfer(s);
470     }
471 }
472 
473 static bool fw_cfg_dma_mem_valid(void *opaque, hwaddr addr,
474                                  unsigned size, bool is_write,
475                                  MemTxAttrs attrs)
476 {
477     return !is_write || ((size == 4 && (addr == 0 || addr == 4)) ||
478                          (size == 8 && addr == 0));
479 }
480 
481 static bool fw_cfg_data_mem_valid(void *opaque, hwaddr addr,
482                                   unsigned size, bool is_write,
483                                   MemTxAttrs attrs)
484 {
485     return addr == 0;
486 }
487 
488 static uint64_t fw_cfg_ctl_mem_read(void *opaque, hwaddr addr, unsigned size)
489 {
490     return 0;
491 }
492 
493 static void fw_cfg_ctl_mem_write(void *opaque, hwaddr addr,
494                                  uint64_t value, unsigned size)
495 {
496     fw_cfg_select(opaque, (uint16_t)value);
497 }
498 
499 static bool fw_cfg_ctl_mem_valid(void *opaque, hwaddr addr,
500                                  unsigned size, bool is_write,
501                                  MemTxAttrs attrs)
502 {
503     return is_write && size == 2;
504 }
505 
506 static void fw_cfg_comb_write(void *opaque, hwaddr addr,
507                               uint64_t value, unsigned size)
508 {
509     switch (size) {
510     case 1:
511         fw_cfg_write(opaque, (uint8_t)value);
512         break;
513     case 2:
514         fw_cfg_select(opaque, (uint16_t)value);
515         break;
516     }
517 }
518 
519 static bool fw_cfg_comb_valid(void *opaque, hwaddr addr,
520                               unsigned size, bool is_write,
521                               MemTxAttrs attrs)
522 {
523     return (size == 1) || (is_write && size == 2);
524 }
525 
526 static const MemoryRegionOps fw_cfg_ctl_mem_ops = {
527     .read = fw_cfg_ctl_mem_read,
528     .write = fw_cfg_ctl_mem_write,
529     .endianness = DEVICE_BIG_ENDIAN,
530     .valid.accepts = fw_cfg_ctl_mem_valid,
531 };
532 
533 static const MemoryRegionOps fw_cfg_data_mem_ops = {
534     .read = fw_cfg_data_read,
535     .write = fw_cfg_data_mem_write,
536     .endianness = DEVICE_BIG_ENDIAN,
537     .valid = {
538         .min_access_size = 1,
539         .max_access_size = 1,
540         .accepts = fw_cfg_data_mem_valid,
541     },
542 };
543 
544 static const MemoryRegionOps fw_cfg_comb_mem_ops = {
545     .read = fw_cfg_data_read,
546     .write = fw_cfg_comb_write,
547     .endianness = DEVICE_LITTLE_ENDIAN,
548     .valid.accepts = fw_cfg_comb_valid,
549 };
550 
551 static const MemoryRegionOps fw_cfg_dma_mem_ops = {
552     .read = fw_cfg_dma_mem_read,
553     .write = fw_cfg_dma_mem_write,
554     .endianness = DEVICE_BIG_ENDIAN,
555     .valid.accepts = fw_cfg_dma_mem_valid,
556     .valid.max_access_size = 8,
557     .impl.max_access_size = 8,
558 };
559 
560 static void fw_cfg_reset(DeviceState *d)
561 {
562     FWCfgState *s = FW_CFG(d);
563 
564     /* we never register a read callback for FW_CFG_SIGNATURE */
565     fw_cfg_select(s, FW_CFG_SIGNATURE);
566 }
567 
568 /* Save restore 32 bit int as uint16_t
569    This is a Big hack, but it is how the old state did it.
570    Or we broke compatibility in the state, or we can't use struct tm
571  */
572 
573 static int get_uint32_as_uint16(QEMUFile *f, void *pv, size_t size,
574                                 const VMStateField *field)
575 {
576     uint32_t *v = pv;
577     *v = qemu_get_be16(f);
578     return 0;
579 }
580 
581 static int put_unused(QEMUFile *f, void *pv, size_t size,
582                       const VMStateField *field, QJSON *vmdesc)
583 {
584     fprintf(stderr, "uint32_as_uint16 is only used for backward compatibility.\n");
585     fprintf(stderr, "This functions shouldn't be called.\n");
586 
587     return 0;
588 }
589 
590 static const VMStateInfo vmstate_hack_uint32_as_uint16 = {
591     .name = "int32_as_uint16",
592     .get  = get_uint32_as_uint16,
593     .put  = put_unused,
594 };
595 
596 #define VMSTATE_UINT16_HACK(_f, _s, _t)                                    \
597     VMSTATE_SINGLE_TEST(_f, _s, _t, 0, vmstate_hack_uint32_as_uint16, uint32_t)
598 
599 
600 static bool is_version_1(void *opaque, int version_id)
601 {
602     return version_id == 1;
603 }
604 
605 bool fw_cfg_dma_enabled(void *opaque)
606 {
607     FWCfgState *s = opaque;
608 
609     return s->dma_enabled;
610 }
611 
612 static const VMStateDescription vmstate_fw_cfg_dma = {
613     .name = "fw_cfg/dma",
614     .needed = fw_cfg_dma_enabled,
615     .fields = (VMStateField[]) {
616         VMSTATE_UINT64(dma_addr, FWCfgState),
617         VMSTATE_END_OF_LIST()
618     },
619 };
620 
621 static const VMStateDescription vmstate_fw_cfg = {
622     .name = "fw_cfg",
623     .version_id = 2,
624     .minimum_version_id = 1,
625     .fields = (VMStateField[]) {
626         VMSTATE_UINT16(cur_entry, FWCfgState),
627         VMSTATE_UINT16_HACK(cur_offset, FWCfgState, is_version_1),
628         VMSTATE_UINT32_V(cur_offset, FWCfgState, 2),
629         VMSTATE_END_OF_LIST()
630     },
631     .subsections = (const VMStateDescription*[]) {
632         &vmstate_fw_cfg_dma,
633         NULL,
634     }
635 };
636 
637 static void fw_cfg_add_bytes_callback(FWCfgState *s, uint16_t key,
638                                       FWCfgCallback select_cb,
639                                       FWCfgWriteCallback write_cb,
640                                       void *callback_opaque,
641                                       void *data, size_t len,
642                                       bool read_only)
643 {
644     int arch = !!(key & FW_CFG_ARCH_LOCAL);
645 
646     key &= FW_CFG_ENTRY_MASK;
647 
648     assert(key < fw_cfg_max_entry(s) && len < UINT32_MAX);
649     assert(s->entries[arch][key].data == NULL); /* avoid key conflict */
650 
651     s->entries[arch][key].data = data;
652     s->entries[arch][key].len = (uint32_t)len;
653     s->entries[arch][key].select_cb = select_cb;
654     s->entries[arch][key].write_cb = write_cb;
655     s->entries[arch][key].callback_opaque = callback_opaque;
656     s->entries[arch][key].allow_write = !read_only;
657 }
658 
659 static void *fw_cfg_modify_bytes_read(FWCfgState *s, uint16_t key,
660                                               void *data, size_t len)
661 {
662     void *ptr;
663     int arch = !!(key & FW_CFG_ARCH_LOCAL);
664 
665     key &= FW_CFG_ENTRY_MASK;
666 
667     assert(key < fw_cfg_max_entry(s) && len < UINT32_MAX);
668 
669     /* return the old data to the function caller, avoid memory leak */
670     ptr = s->entries[arch][key].data;
671     s->entries[arch][key].data = data;
672     s->entries[arch][key].len = len;
673     s->entries[arch][key].callback_opaque = NULL;
674     s->entries[arch][key].allow_write = false;
675 
676     return ptr;
677 }
678 
679 void fw_cfg_add_bytes(FWCfgState *s, uint16_t key, void *data, size_t len)
680 {
681     trace_fw_cfg_add_bytes(key, trace_key_name(key), len);
682     fw_cfg_add_bytes_callback(s, key, NULL, NULL, NULL, data, len, true);
683 }
684 
685 void fw_cfg_add_string(FWCfgState *s, uint16_t key, const char *value)
686 {
687     size_t sz = strlen(value) + 1;
688 
689     trace_fw_cfg_add_string(key, trace_key_name(key), value);
690     fw_cfg_add_bytes(s, key, g_memdup(value, sz), sz);
691 }
692 
693 void fw_cfg_add_i16(FWCfgState *s, uint16_t key, uint16_t value)
694 {
695     uint16_t *copy;
696 
697     copy = g_malloc(sizeof(value));
698     *copy = cpu_to_le16(value);
699     trace_fw_cfg_add_i16(key, trace_key_name(key), value);
700     fw_cfg_add_bytes(s, key, copy, sizeof(value));
701 }
702 
703 void fw_cfg_modify_i16(FWCfgState *s, uint16_t key, uint16_t value)
704 {
705     uint16_t *copy, *old;
706 
707     copy = g_malloc(sizeof(value));
708     *copy = cpu_to_le16(value);
709     old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value));
710     g_free(old);
711 }
712 
713 void fw_cfg_add_i32(FWCfgState *s, uint16_t key, uint32_t value)
714 {
715     uint32_t *copy;
716 
717     copy = g_malloc(sizeof(value));
718     *copy = cpu_to_le32(value);
719     trace_fw_cfg_add_i32(key, trace_key_name(key), value);
720     fw_cfg_add_bytes(s, key, copy, sizeof(value));
721 }
722 
723 void fw_cfg_add_i64(FWCfgState *s, uint16_t key, uint64_t value)
724 {
725     uint64_t *copy;
726 
727     copy = g_malloc(sizeof(value));
728     *copy = cpu_to_le64(value);
729     trace_fw_cfg_add_i64(key, trace_key_name(key), value);
730     fw_cfg_add_bytes(s, key, copy, sizeof(value));
731 }
732 
733 void fw_cfg_set_order_override(FWCfgState *s, int order)
734 {
735     assert(s->fw_cfg_order_override == 0);
736     s->fw_cfg_order_override = order;
737 }
738 
739 void fw_cfg_reset_order_override(FWCfgState *s)
740 {
741     assert(s->fw_cfg_order_override != 0);
742     s->fw_cfg_order_override = 0;
743 }
744 
745 /*
746  * This is the legacy order list.  For legacy systems, files are in
747  * the fw_cfg in the order defined below, by the "order" value.  Note
748  * that some entries (VGA ROMs, NIC option ROMS, etc.) go into a
749  * specific area, but there may be more than one and they occur in the
750  * order that the user specifies them on the command line.  Those are
751  * handled in a special manner, using the order override above.
752  *
753  * For non-legacy, the files are sorted by filename to avoid this kind
754  * of complexity in the future.
755  *
756  * This is only for x86, other arches don't implement versioning so
757  * they won't set legacy mode.
758  */
759 static struct {
760     const char *name;
761     int order;
762 } fw_cfg_order[] = {
763     { "etc/boot-menu-wait", 10 },
764     { "bootsplash.jpg", 11 },
765     { "bootsplash.bmp", 12 },
766     { "etc/boot-fail-wait", 15 },
767     { "etc/smbios/smbios-tables", 20 },
768     { "etc/smbios/smbios-anchor", 30 },
769     { "etc/e820", 40 },
770     { "etc/reserved-memory-end", 50 },
771     { "genroms/kvmvapic.bin", 55 },
772     { "genroms/linuxboot.bin", 60 },
773     { }, /* VGA ROMs from pc_vga_init come here, 70. */
774     { }, /* NIC option ROMs from pc_nic_init come here, 80. */
775     { "etc/system-states", 90 },
776     { }, /* User ROMs come here, 100. */
777     { }, /* Device FW comes here, 110. */
778     { "etc/extra-pci-roots", 120 },
779     { "etc/acpi/tables", 130 },
780     { "etc/table-loader", 140 },
781     { "etc/tpm/log", 150 },
782     { "etc/acpi/rsdp", 160 },
783     { "bootorder", 170 },
784 
785 #define FW_CFG_ORDER_OVERRIDE_LAST 200
786 };
787 
788 static int get_fw_cfg_order(FWCfgState *s, const char *name)
789 {
790     int i;
791 
792     if (s->fw_cfg_order_override > 0) {
793         return s->fw_cfg_order_override;
794     }
795 
796     for (i = 0; i < ARRAY_SIZE(fw_cfg_order); i++) {
797         if (fw_cfg_order[i].name == NULL) {
798             continue;
799         }
800 
801         if (strcmp(name, fw_cfg_order[i].name) == 0) {
802             return fw_cfg_order[i].order;
803         }
804     }
805 
806     /* Stick unknown stuff at the end. */
807     warn_report("Unknown firmware file in legacy mode: %s", name);
808     return FW_CFG_ORDER_OVERRIDE_LAST;
809 }
810 
811 void fw_cfg_add_file_callback(FWCfgState *s,  const char *filename,
812                               FWCfgCallback select_cb,
813                               FWCfgWriteCallback write_cb,
814                               void *callback_opaque,
815                               void *data, size_t len, bool read_only)
816 {
817     int i, index, count;
818     size_t dsize;
819     MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
820     int order = 0;
821 
822     if (!s->files) {
823         dsize = sizeof(uint32_t) + sizeof(FWCfgFile) * fw_cfg_file_slots(s);
824         s->files = g_malloc0(dsize);
825         fw_cfg_add_bytes(s, FW_CFG_FILE_DIR, s->files, dsize);
826     }
827 
828     count = be32_to_cpu(s->files->count);
829     assert(count < fw_cfg_file_slots(s));
830 
831     /* Find the insertion point. */
832     if (mc->legacy_fw_cfg_order) {
833         /*
834          * Sort by order. For files with the same order, we keep them
835          * in the sequence in which they were added.
836          */
837         order = get_fw_cfg_order(s, filename);
838         for (index = count;
839              index > 0 && order < s->entry_order[index - 1];
840              index--);
841     } else {
842         /* Sort by file name. */
843         for (index = count;
844              index > 0 && strcmp(filename, s->files->f[index - 1].name) < 0;
845              index--);
846     }
847 
848     /*
849      * Move all the entries from the index point and after down one
850      * to create a slot for the new entry.  Because calculations are
851      * being done with the index, make it so that "i" is the current
852      * index and "i - 1" is the one being copied from, thus the
853      * unusual start and end in the for statement.
854      */
855     for (i = count; i > index; i--) {
856         s->files->f[i] = s->files->f[i - 1];
857         s->files->f[i].select = cpu_to_be16(FW_CFG_FILE_FIRST + i);
858         s->entries[0][FW_CFG_FILE_FIRST + i] =
859             s->entries[0][FW_CFG_FILE_FIRST + i - 1];
860         s->entry_order[i] = s->entry_order[i - 1];
861     }
862 
863     memset(&s->files->f[index], 0, sizeof(FWCfgFile));
864     memset(&s->entries[0][FW_CFG_FILE_FIRST + index], 0, sizeof(FWCfgEntry));
865 
866     pstrcpy(s->files->f[index].name, sizeof(s->files->f[index].name), filename);
867     for (i = 0; i <= count; i++) {
868         if (i != index &&
869             strcmp(s->files->f[index].name, s->files->f[i].name) == 0) {
870             error_report("duplicate fw_cfg file name: %s",
871                          s->files->f[index].name);
872             exit(1);
873         }
874     }
875 
876     fw_cfg_add_bytes_callback(s, FW_CFG_FILE_FIRST + index,
877                               select_cb, write_cb,
878                               callback_opaque, data, len,
879                               read_only);
880 
881     s->files->f[index].size   = cpu_to_be32(len);
882     s->files->f[index].select = cpu_to_be16(FW_CFG_FILE_FIRST + index);
883     s->entry_order[index] = order;
884     trace_fw_cfg_add_file(s, index, s->files->f[index].name, len);
885 
886     s->files->count = cpu_to_be32(count+1);
887 }
888 
889 void fw_cfg_add_file(FWCfgState *s,  const char *filename,
890                      void *data, size_t len)
891 {
892     fw_cfg_add_file_callback(s, filename, NULL, NULL, NULL, data, len, true);
893 }
894 
895 void *fw_cfg_modify_file(FWCfgState *s, const char *filename,
896                         void *data, size_t len)
897 {
898     int i, index;
899     void *ptr = NULL;
900 
901     assert(s->files);
902 
903     index = be32_to_cpu(s->files->count);
904 
905     for (i = 0; i < index; i++) {
906         if (strcmp(filename, s->files->f[i].name) == 0) {
907             ptr = fw_cfg_modify_bytes_read(s, FW_CFG_FILE_FIRST + i,
908                                            data, len);
909             s->files->f[i].size   = cpu_to_be32(len);
910             return ptr;
911         }
912     }
913 
914     assert(index < fw_cfg_file_slots(s));
915 
916     /* add new one */
917     fw_cfg_add_file_callback(s, filename, NULL, NULL, NULL, data, len, true);
918     return NULL;
919 }
920 
921 static void fw_cfg_machine_reset(void *opaque)
922 {
923     void *ptr;
924     size_t len;
925     FWCfgState *s = opaque;
926     char *bootindex = get_boot_devices_list(&len);
927 
928     ptr = fw_cfg_modify_file(s, "bootorder", (uint8_t *)bootindex, len);
929     g_free(ptr);
930 }
931 
932 static void fw_cfg_machine_ready(struct Notifier *n, void *data)
933 {
934     FWCfgState *s = container_of(n, FWCfgState, machine_ready);
935     qemu_register_reset(fw_cfg_machine_reset, s);
936 }
937 
938 
939 
940 static void fw_cfg_common_realize(DeviceState *dev, Error **errp)
941 {
942     FWCfgState *s = FW_CFG(dev);
943     MachineState *machine = MACHINE(qdev_get_machine());
944     uint32_t version = FW_CFG_VERSION;
945 
946     if (!fw_cfg_find()) {
947         error_setg(errp, "at most one %s device is permitted", TYPE_FW_CFG);
948         return;
949     }
950 
951     fw_cfg_add_bytes(s, FW_CFG_SIGNATURE, (char *)"QEMU", 4);
952     fw_cfg_add_bytes(s, FW_CFG_UUID, &qemu_uuid, 16);
953     fw_cfg_add_i16(s, FW_CFG_NOGRAPHIC, (uint16_t)!machine->enable_graphics);
954     fw_cfg_add_i16(s, FW_CFG_BOOT_MENU, (uint16_t)boot_menu);
955     fw_cfg_bootsplash(s);
956     fw_cfg_reboot(s);
957 
958     if (s->dma_enabled) {
959         version |= FW_CFG_VERSION_DMA;
960     }
961 
962     fw_cfg_add_i32(s, FW_CFG_ID, version);
963 
964     s->machine_ready.notify = fw_cfg_machine_ready;
965     qemu_add_machine_init_done_notifier(&s->machine_ready);
966 }
967 
968 FWCfgState *fw_cfg_init_io_dma(uint32_t iobase, uint32_t dma_iobase,
969                                 AddressSpace *dma_as)
970 {
971     DeviceState *dev;
972     SysBusDevice *sbd;
973     FWCfgIoState *ios;
974     FWCfgState *s;
975     bool dma_requested = dma_iobase && dma_as;
976 
977     dev = qdev_create(NULL, TYPE_FW_CFG_IO);
978     if (!dma_requested) {
979         qdev_prop_set_bit(dev, "dma_enabled", false);
980     }
981 
982     object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG,
983                               OBJECT(dev), NULL);
984     qdev_init_nofail(dev);
985 
986     sbd = SYS_BUS_DEVICE(dev);
987     ios = FW_CFG_IO(dev);
988     sysbus_add_io(sbd, iobase, &ios->comb_iomem);
989 
990     s = FW_CFG(dev);
991 
992     if (s->dma_enabled) {
993         /* 64 bits for the address field */
994         s->dma_as = dma_as;
995         s->dma_addr = 0;
996         sysbus_add_io(sbd, dma_iobase, &s->dma_iomem);
997     }
998 
999     return s;
1000 }
1001 
1002 FWCfgState *fw_cfg_init_io(uint32_t iobase)
1003 {
1004     return fw_cfg_init_io_dma(iobase, 0, NULL);
1005 }
1006 
1007 FWCfgState *fw_cfg_init_mem_wide(hwaddr ctl_addr,
1008                                  hwaddr data_addr, uint32_t data_width,
1009                                  hwaddr dma_addr, AddressSpace *dma_as)
1010 {
1011     DeviceState *dev;
1012     SysBusDevice *sbd;
1013     FWCfgState *s;
1014     bool dma_requested = dma_addr && dma_as;
1015 
1016     dev = qdev_create(NULL, TYPE_FW_CFG_MEM);
1017     qdev_prop_set_uint32(dev, "data_width", data_width);
1018     if (!dma_requested) {
1019         qdev_prop_set_bit(dev, "dma_enabled", false);
1020     }
1021 
1022     object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG,
1023                               OBJECT(dev), NULL);
1024     qdev_init_nofail(dev);
1025 
1026     sbd = SYS_BUS_DEVICE(dev);
1027     sysbus_mmio_map(sbd, 0, ctl_addr);
1028     sysbus_mmio_map(sbd, 1, data_addr);
1029 
1030     s = FW_CFG(dev);
1031 
1032     if (s->dma_enabled) {
1033         s->dma_as = dma_as;
1034         s->dma_addr = 0;
1035         sysbus_mmio_map(sbd, 2, dma_addr);
1036     }
1037 
1038     return s;
1039 }
1040 
1041 FWCfgState *fw_cfg_init_mem(hwaddr ctl_addr, hwaddr data_addr)
1042 {
1043     return fw_cfg_init_mem_wide(ctl_addr, data_addr,
1044                                 fw_cfg_data_mem_ops.valid.max_access_size,
1045                                 0, NULL);
1046 }
1047 
1048 
1049 FWCfgState *fw_cfg_find(void)
1050 {
1051     /* Returns NULL unless there is exactly one fw_cfg device */
1052     return FW_CFG(object_resolve_path_type("", TYPE_FW_CFG, NULL));
1053 }
1054 
1055 
1056 static void fw_cfg_class_init(ObjectClass *klass, void *data)
1057 {
1058     DeviceClass *dc = DEVICE_CLASS(klass);
1059 
1060     dc->reset = fw_cfg_reset;
1061     dc->vmsd = &vmstate_fw_cfg;
1062 }
1063 
1064 static const TypeInfo fw_cfg_info = {
1065     .name          = TYPE_FW_CFG,
1066     .parent        = TYPE_SYS_BUS_DEVICE,
1067     .abstract      = true,
1068     .instance_size = sizeof(FWCfgState),
1069     .class_init    = fw_cfg_class_init,
1070 };
1071 
1072 static void fw_cfg_file_slots_allocate(FWCfgState *s, Error **errp)
1073 {
1074     uint16_t file_slots_max;
1075 
1076     if (fw_cfg_file_slots(s) < FW_CFG_FILE_SLOTS_MIN) {
1077         error_setg(errp, "\"file_slots\" must be at least 0x%x",
1078                    FW_CFG_FILE_SLOTS_MIN);
1079         return;
1080     }
1081 
1082     /* (UINT16_MAX & FW_CFG_ENTRY_MASK) is the highest inclusive selector value
1083      * that we permit. The actual (exclusive) value coming from the
1084      * configuration is (FW_CFG_FILE_FIRST + fw_cfg_file_slots(s)). */
1085     file_slots_max = (UINT16_MAX & FW_CFG_ENTRY_MASK) - FW_CFG_FILE_FIRST + 1;
1086     if (fw_cfg_file_slots(s) > file_slots_max) {
1087         error_setg(errp, "\"file_slots\" must not exceed 0x%" PRIx16,
1088                    file_slots_max);
1089         return;
1090     }
1091 
1092     s->entries[0] = g_new0(FWCfgEntry, fw_cfg_max_entry(s));
1093     s->entries[1] = g_new0(FWCfgEntry, fw_cfg_max_entry(s));
1094     s->entry_order = g_new0(int, fw_cfg_max_entry(s));
1095 }
1096 
1097 static Property fw_cfg_io_properties[] = {
1098     DEFINE_PROP_BOOL("dma_enabled", FWCfgIoState, parent_obj.dma_enabled,
1099                      true),
1100     DEFINE_PROP_UINT16("x-file-slots", FWCfgIoState, parent_obj.file_slots,
1101                        FW_CFG_FILE_SLOTS_DFLT),
1102     DEFINE_PROP_END_OF_LIST(),
1103 };
1104 
1105 static void fw_cfg_io_realize(DeviceState *dev, Error **errp)
1106 {
1107     FWCfgIoState *s = FW_CFG_IO(dev);
1108     Error *local_err = NULL;
1109 
1110     fw_cfg_file_slots_allocate(FW_CFG(s), &local_err);
1111     if (local_err) {
1112         error_propagate(errp, local_err);
1113         return;
1114     }
1115 
1116     /* when using port i/o, the 8-bit data register ALWAYS overlaps
1117      * with half of the 16-bit control register. Hence, the total size
1118      * of the i/o region used is FW_CFG_CTL_SIZE */
1119     memory_region_init_io(&s->comb_iomem, OBJECT(s), &fw_cfg_comb_mem_ops,
1120                           FW_CFG(s), "fwcfg", FW_CFG_CTL_SIZE);
1121 
1122     if (FW_CFG(s)->dma_enabled) {
1123         memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s),
1124                               &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma",
1125                               sizeof(dma_addr_t));
1126     }
1127 
1128     fw_cfg_common_realize(dev, errp);
1129 }
1130 
1131 static void fw_cfg_io_class_init(ObjectClass *klass, void *data)
1132 {
1133     DeviceClass *dc = DEVICE_CLASS(klass);
1134 
1135     dc->realize = fw_cfg_io_realize;
1136     dc->props = fw_cfg_io_properties;
1137 }
1138 
1139 static const TypeInfo fw_cfg_io_info = {
1140     .name          = TYPE_FW_CFG_IO,
1141     .parent        = TYPE_FW_CFG,
1142     .instance_size = sizeof(FWCfgIoState),
1143     .class_init    = fw_cfg_io_class_init,
1144 };
1145 
1146 
1147 static Property fw_cfg_mem_properties[] = {
1148     DEFINE_PROP_UINT32("data_width", FWCfgMemState, data_width, -1),
1149     DEFINE_PROP_BOOL("dma_enabled", FWCfgMemState, parent_obj.dma_enabled,
1150                      true),
1151     DEFINE_PROP_UINT16("x-file-slots", FWCfgMemState, parent_obj.file_slots,
1152                        FW_CFG_FILE_SLOTS_DFLT),
1153     DEFINE_PROP_END_OF_LIST(),
1154 };
1155 
1156 static void fw_cfg_mem_realize(DeviceState *dev, Error **errp)
1157 {
1158     FWCfgMemState *s = FW_CFG_MEM(dev);
1159     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1160     const MemoryRegionOps *data_ops = &fw_cfg_data_mem_ops;
1161     Error *local_err = NULL;
1162 
1163     fw_cfg_file_slots_allocate(FW_CFG(s), &local_err);
1164     if (local_err) {
1165         error_propagate(errp, local_err);
1166         return;
1167     }
1168 
1169     memory_region_init_io(&s->ctl_iomem, OBJECT(s), &fw_cfg_ctl_mem_ops,
1170                           FW_CFG(s), "fwcfg.ctl", FW_CFG_CTL_SIZE);
1171     sysbus_init_mmio(sbd, &s->ctl_iomem);
1172 
1173     if (s->data_width > data_ops->valid.max_access_size) {
1174         s->wide_data_ops = *data_ops;
1175 
1176         s->wide_data_ops.valid.max_access_size = s->data_width;
1177         s->wide_data_ops.impl.max_access_size  = s->data_width;
1178         data_ops = &s->wide_data_ops;
1179     }
1180     memory_region_init_io(&s->data_iomem, OBJECT(s), data_ops, FW_CFG(s),
1181                           "fwcfg.data", data_ops->valid.max_access_size);
1182     sysbus_init_mmio(sbd, &s->data_iomem);
1183 
1184     if (FW_CFG(s)->dma_enabled) {
1185         memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s),
1186                               &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma",
1187                               sizeof(dma_addr_t));
1188         sysbus_init_mmio(sbd, &FW_CFG(s)->dma_iomem);
1189     }
1190 
1191     fw_cfg_common_realize(dev, errp);
1192 }
1193 
1194 static void fw_cfg_mem_class_init(ObjectClass *klass, void *data)
1195 {
1196     DeviceClass *dc = DEVICE_CLASS(klass);
1197 
1198     dc->realize = fw_cfg_mem_realize;
1199     dc->props = fw_cfg_mem_properties;
1200 }
1201 
1202 static const TypeInfo fw_cfg_mem_info = {
1203     .name          = TYPE_FW_CFG_MEM,
1204     .parent        = TYPE_FW_CFG,
1205     .instance_size = sizeof(FWCfgMemState),
1206     .class_init    = fw_cfg_mem_class_init,
1207 };
1208 
1209 
1210 static void fw_cfg_register_types(void)
1211 {
1212     type_register_static(&fw_cfg_info);
1213     type_register_static(&fw_cfg_io_info);
1214     type_register_static(&fw_cfg_mem_info);
1215 }
1216 
1217 type_init(fw_cfg_register_types)
1218