1 /* 2 * QEMU Firmware configuration device emulation 3 * 4 * Copyright (c) 2008 Gleb Natapov 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "hw/hw.h" 27 #include "sysemu/sysemu.h" 28 #include "sysemu/dma.h" 29 #include "hw/boards.h" 30 #include "hw/nvram/fw_cfg.h" 31 #include "hw/sysbus.h" 32 #include "trace.h" 33 #include "qemu/error-report.h" 34 #include "qemu/option.h" 35 #include "qemu/config-file.h" 36 #include "qemu/cutils.h" 37 #include "qapi/error.h" 38 39 #define FW_CFG_FILE_SLOTS_DFLT 0x20 40 41 /* FW_CFG_VERSION bits */ 42 #define FW_CFG_VERSION 0x01 43 #define FW_CFG_VERSION_DMA 0x02 44 45 /* FW_CFG_DMA_CONTROL bits */ 46 #define FW_CFG_DMA_CTL_ERROR 0x01 47 #define FW_CFG_DMA_CTL_READ 0x02 48 #define FW_CFG_DMA_CTL_SKIP 0x04 49 #define FW_CFG_DMA_CTL_SELECT 0x08 50 #define FW_CFG_DMA_CTL_WRITE 0x10 51 52 #define FW_CFG_DMA_SIGNATURE 0x51454d5520434647ULL /* "QEMU CFG" */ 53 54 struct FWCfgEntry { 55 uint32_t len; 56 bool allow_write; 57 uint8_t *data; 58 void *callback_opaque; 59 FWCfgCallback select_cb; 60 FWCfgWriteCallback write_cb; 61 }; 62 63 /** 64 * key_name: 65 * 66 * @key: The uint16 selector key. 67 * 68 * Returns: The stringified name if the selector refers to a well-known 69 * numerically defined item, or NULL on key lookup failure. 70 */ 71 static const char *key_name(uint16_t key) 72 { 73 static const char *fw_cfg_wellknown_keys[FW_CFG_FILE_FIRST] = { 74 [FW_CFG_SIGNATURE] = "signature", 75 [FW_CFG_ID] = "id", 76 [FW_CFG_UUID] = "uuid", 77 [FW_CFG_RAM_SIZE] = "ram_size", 78 [FW_CFG_NOGRAPHIC] = "nographic", 79 [FW_CFG_NB_CPUS] = "nb_cpus", 80 [FW_CFG_MACHINE_ID] = "machine_id", 81 [FW_CFG_KERNEL_ADDR] = "kernel_addr", 82 [FW_CFG_KERNEL_SIZE] = "kernel_size", 83 [FW_CFG_KERNEL_CMDLINE] = "kernel_cmdline", 84 [FW_CFG_INITRD_ADDR] = "initrd_addr", 85 [FW_CFG_INITRD_SIZE] = "initdr_size", 86 [FW_CFG_BOOT_DEVICE] = "boot_device", 87 [FW_CFG_NUMA] = "numa", 88 [FW_CFG_BOOT_MENU] = "boot_menu", 89 [FW_CFG_MAX_CPUS] = "max_cpus", 90 [FW_CFG_KERNEL_ENTRY] = "kernel_entry", 91 [FW_CFG_KERNEL_DATA] = "kernel_data", 92 [FW_CFG_INITRD_DATA] = "initrd_data", 93 [FW_CFG_CMDLINE_ADDR] = "cmdline_addr", 94 [FW_CFG_CMDLINE_SIZE] = "cmdline_size", 95 [FW_CFG_CMDLINE_DATA] = "cmdline_data", 96 [FW_CFG_SETUP_ADDR] = "setup_addr", 97 [FW_CFG_SETUP_SIZE] = "setup_size", 98 [FW_CFG_SETUP_DATA] = "setup_data", 99 [FW_CFG_FILE_DIR] = "file_dir", 100 }; 101 102 if (key & FW_CFG_ARCH_LOCAL) { 103 return fw_cfg_arch_key_name(key); 104 } 105 if (key < FW_CFG_FILE_FIRST) { 106 return fw_cfg_wellknown_keys[key]; 107 } 108 109 return NULL; 110 } 111 112 static inline const char *trace_key_name(uint16_t key) 113 { 114 const char *name = key_name(key); 115 116 return name ? name : "unknown"; 117 } 118 119 #define JPG_FILE 0 120 #define BMP_FILE 1 121 122 static char *read_splashfile(char *filename, gsize *file_sizep, 123 int *file_typep) 124 { 125 GError *err = NULL; 126 gchar *content; 127 int file_type; 128 unsigned int filehead; 129 int bmp_bpp; 130 131 if (!g_file_get_contents(filename, &content, file_sizep, &err)) { 132 error_report("failed to read splash file '%s': %s", 133 filename, err->message); 134 g_error_free(err); 135 return NULL; 136 } 137 138 /* check file size */ 139 if (*file_sizep < 30) { 140 goto error; 141 } 142 143 /* check magic ID */ 144 filehead = lduw_le_p(content); 145 if (filehead == 0xd8ff) { 146 file_type = JPG_FILE; 147 } else if (filehead == 0x4d42) { 148 file_type = BMP_FILE; 149 } else { 150 goto error; 151 } 152 153 /* check BMP bpp */ 154 if (file_type == BMP_FILE) { 155 bmp_bpp = lduw_le_p(&content[28]); 156 if (bmp_bpp != 24) { 157 goto error; 158 } 159 } 160 161 /* return values */ 162 *file_typep = file_type; 163 164 return content; 165 166 error: 167 error_report("splash file '%s' format not recognized; must be JPEG " 168 "or 24 bit BMP", filename); 169 g_free(content); 170 return NULL; 171 } 172 173 static void fw_cfg_bootsplash(FWCfgState *s) 174 { 175 const char *boot_splash_filename = NULL; 176 const char *boot_splash_time = NULL; 177 char *filename, *file_data; 178 gsize file_size; 179 int file_type; 180 181 /* get user configuration */ 182 QemuOptsList *plist = qemu_find_opts("boot-opts"); 183 QemuOpts *opts = QTAILQ_FIRST(&plist->head); 184 boot_splash_filename = qemu_opt_get(opts, "splash"); 185 boot_splash_time = qemu_opt_get(opts, "splash-time"); 186 187 /* insert splash time if user configurated */ 188 if (boot_splash_time) { 189 int64_t bst_val = qemu_opt_get_number(opts, "splash-time", -1); 190 uint16_t bst_le16; 191 192 /* validate the input */ 193 if (bst_val < 0 || bst_val > 0xffff) { 194 error_report("splash-time is invalid," 195 "it should be a value between 0 and 65535"); 196 exit(1); 197 } 198 /* use little endian format */ 199 bst_le16 = cpu_to_le16(bst_val); 200 fw_cfg_add_file(s, "etc/boot-menu-wait", 201 g_memdup(&bst_le16, sizeof bst_le16), sizeof bst_le16); 202 } 203 204 /* insert splash file if user configurated */ 205 if (boot_splash_filename) { 206 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, boot_splash_filename); 207 if (filename == NULL) { 208 error_report("failed to find file '%s'", boot_splash_filename); 209 return; 210 } 211 212 /* loading file data */ 213 file_data = read_splashfile(filename, &file_size, &file_type); 214 if (file_data == NULL) { 215 g_free(filename); 216 return; 217 } 218 g_free(boot_splash_filedata); 219 boot_splash_filedata = (uint8_t *)file_data; 220 221 /* insert data */ 222 if (file_type == JPG_FILE) { 223 fw_cfg_add_file(s, "bootsplash.jpg", 224 boot_splash_filedata, file_size); 225 } else { 226 fw_cfg_add_file(s, "bootsplash.bmp", 227 boot_splash_filedata, file_size); 228 } 229 g_free(filename); 230 } 231 } 232 233 static void fw_cfg_reboot(FWCfgState *s) 234 { 235 const char *reboot_timeout = NULL; 236 int64_t rt_val = -1; 237 uint32_t rt_le32; 238 239 /* get user configuration */ 240 QemuOptsList *plist = qemu_find_opts("boot-opts"); 241 QemuOpts *opts = QTAILQ_FIRST(&plist->head); 242 reboot_timeout = qemu_opt_get(opts, "reboot-timeout"); 243 244 if (reboot_timeout) { 245 rt_val = qemu_opt_get_number(opts, "reboot-timeout", -1); 246 /* validate the input */ 247 if (rt_val < 0 || rt_val > 0xffff) { 248 error_report("reboot timeout is invalid," 249 "it should be a value between 0 and 65535"); 250 exit(1); 251 } 252 } 253 254 rt_le32 = cpu_to_le32(rt_val); 255 fw_cfg_add_file(s, "etc/boot-fail-wait", g_memdup(&rt_le32, 4), 4); 256 } 257 258 static void fw_cfg_write(FWCfgState *s, uint8_t value) 259 { 260 /* nothing, write support removed in QEMU v2.4+ */ 261 } 262 263 static inline uint16_t fw_cfg_file_slots(const FWCfgState *s) 264 { 265 return s->file_slots; 266 } 267 268 /* Note: this function returns an exclusive limit. */ 269 static inline uint32_t fw_cfg_max_entry(const FWCfgState *s) 270 { 271 return FW_CFG_FILE_FIRST + fw_cfg_file_slots(s); 272 } 273 274 static int fw_cfg_select(FWCfgState *s, uint16_t key) 275 { 276 int arch, ret; 277 FWCfgEntry *e; 278 279 s->cur_offset = 0; 280 if ((key & FW_CFG_ENTRY_MASK) >= fw_cfg_max_entry(s)) { 281 s->cur_entry = FW_CFG_INVALID; 282 ret = 0; 283 } else { 284 s->cur_entry = key; 285 ret = 1; 286 /* entry successfully selected, now run callback if present */ 287 arch = !!(key & FW_CFG_ARCH_LOCAL); 288 e = &s->entries[arch][key & FW_CFG_ENTRY_MASK]; 289 if (e->select_cb) { 290 e->select_cb(e->callback_opaque); 291 } 292 } 293 294 trace_fw_cfg_select(s, key, trace_key_name(key), ret); 295 return ret; 296 } 297 298 static uint64_t fw_cfg_data_read(void *opaque, hwaddr addr, unsigned size) 299 { 300 FWCfgState *s = opaque; 301 int arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL); 302 FWCfgEntry *e = (s->cur_entry == FW_CFG_INVALID) ? NULL : 303 &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK]; 304 uint64_t value = 0; 305 306 assert(size > 0 && size <= sizeof(value)); 307 if (s->cur_entry != FW_CFG_INVALID && e->data && s->cur_offset < e->len) { 308 /* The least significant 'size' bytes of the return value are 309 * expected to contain a string preserving portion of the item 310 * data, padded with zeros on the right in case we run out early. 311 * In technical terms, we're composing the host-endian representation 312 * of the big endian interpretation of the fw_cfg string. 313 */ 314 do { 315 value = (value << 8) | e->data[s->cur_offset++]; 316 } while (--size && s->cur_offset < e->len); 317 /* If size is still not zero, we *did* run out early, so continue 318 * left-shifting, to add the appropriate number of padding zeros 319 * on the right. 320 */ 321 value <<= 8 * size; 322 } 323 324 trace_fw_cfg_read(s, value); 325 return value; 326 } 327 328 static void fw_cfg_data_mem_write(void *opaque, hwaddr addr, 329 uint64_t value, unsigned size) 330 { 331 FWCfgState *s = opaque; 332 unsigned i = size; 333 334 do { 335 fw_cfg_write(s, value >> (8 * --i)); 336 } while (i); 337 } 338 339 static void fw_cfg_dma_transfer(FWCfgState *s) 340 { 341 dma_addr_t len; 342 FWCfgDmaAccess dma; 343 int arch; 344 FWCfgEntry *e; 345 int read = 0, write = 0; 346 dma_addr_t dma_addr; 347 348 /* Reset the address before the next access */ 349 dma_addr = s->dma_addr; 350 s->dma_addr = 0; 351 352 if (dma_memory_read(s->dma_as, dma_addr, &dma, sizeof(dma))) { 353 stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control), 354 FW_CFG_DMA_CTL_ERROR); 355 return; 356 } 357 358 dma.address = be64_to_cpu(dma.address); 359 dma.length = be32_to_cpu(dma.length); 360 dma.control = be32_to_cpu(dma.control); 361 362 if (dma.control & FW_CFG_DMA_CTL_SELECT) { 363 fw_cfg_select(s, dma.control >> 16); 364 } 365 366 arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL); 367 e = (s->cur_entry == FW_CFG_INVALID) ? NULL : 368 &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK]; 369 370 if (dma.control & FW_CFG_DMA_CTL_READ) { 371 read = 1; 372 write = 0; 373 } else if (dma.control & FW_CFG_DMA_CTL_WRITE) { 374 read = 0; 375 write = 1; 376 } else if (dma.control & FW_CFG_DMA_CTL_SKIP) { 377 read = 0; 378 write = 0; 379 } else { 380 dma.length = 0; 381 } 382 383 dma.control = 0; 384 385 while (dma.length > 0 && !(dma.control & FW_CFG_DMA_CTL_ERROR)) { 386 if (s->cur_entry == FW_CFG_INVALID || !e->data || 387 s->cur_offset >= e->len) { 388 len = dma.length; 389 390 /* If the access is not a read access, it will be a skip access, 391 * tested before. 392 */ 393 if (read) { 394 if (dma_memory_set(s->dma_as, dma.address, 0, len)) { 395 dma.control |= FW_CFG_DMA_CTL_ERROR; 396 } 397 } 398 if (write) { 399 dma.control |= FW_CFG_DMA_CTL_ERROR; 400 } 401 } else { 402 if (dma.length <= (e->len - s->cur_offset)) { 403 len = dma.length; 404 } else { 405 len = (e->len - s->cur_offset); 406 } 407 408 /* If the access is not a read access, it will be a skip access, 409 * tested before. 410 */ 411 if (read) { 412 if (dma_memory_write(s->dma_as, dma.address, 413 &e->data[s->cur_offset], len)) { 414 dma.control |= FW_CFG_DMA_CTL_ERROR; 415 } 416 } 417 if (write) { 418 if (!e->allow_write || 419 len != dma.length || 420 dma_memory_read(s->dma_as, dma.address, 421 &e->data[s->cur_offset], len)) { 422 dma.control |= FW_CFG_DMA_CTL_ERROR; 423 } else if (e->write_cb) { 424 e->write_cb(e->callback_opaque, s->cur_offset, len); 425 } 426 } 427 428 s->cur_offset += len; 429 } 430 431 dma.address += len; 432 dma.length -= len; 433 434 } 435 436 stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control), 437 dma.control); 438 439 trace_fw_cfg_read(s, 0); 440 } 441 442 static uint64_t fw_cfg_dma_mem_read(void *opaque, hwaddr addr, 443 unsigned size) 444 { 445 /* Return a signature value (and handle various read sizes) */ 446 return extract64(FW_CFG_DMA_SIGNATURE, (8 - addr - size) * 8, size * 8); 447 } 448 449 static void fw_cfg_dma_mem_write(void *opaque, hwaddr addr, 450 uint64_t value, unsigned size) 451 { 452 FWCfgState *s = opaque; 453 454 if (size == 4) { 455 if (addr == 0) { 456 /* FWCfgDmaAccess high address */ 457 s->dma_addr = value << 32; 458 } else if (addr == 4) { 459 /* FWCfgDmaAccess low address */ 460 s->dma_addr |= value; 461 fw_cfg_dma_transfer(s); 462 } 463 } else if (size == 8 && addr == 0) { 464 s->dma_addr = value; 465 fw_cfg_dma_transfer(s); 466 } 467 } 468 469 static bool fw_cfg_dma_mem_valid(void *opaque, hwaddr addr, 470 unsigned size, bool is_write, 471 MemTxAttrs attrs) 472 { 473 return !is_write || ((size == 4 && (addr == 0 || addr == 4)) || 474 (size == 8 && addr == 0)); 475 } 476 477 static bool fw_cfg_data_mem_valid(void *opaque, hwaddr addr, 478 unsigned size, bool is_write, 479 MemTxAttrs attrs) 480 { 481 return addr == 0; 482 } 483 484 static uint64_t fw_cfg_ctl_mem_read(void *opaque, hwaddr addr, unsigned size) 485 { 486 return 0; 487 } 488 489 static void fw_cfg_ctl_mem_write(void *opaque, hwaddr addr, 490 uint64_t value, unsigned size) 491 { 492 fw_cfg_select(opaque, (uint16_t)value); 493 } 494 495 static bool fw_cfg_ctl_mem_valid(void *opaque, hwaddr addr, 496 unsigned size, bool is_write, 497 MemTxAttrs attrs) 498 { 499 return is_write && size == 2; 500 } 501 502 static void fw_cfg_comb_write(void *opaque, hwaddr addr, 503 uint64_t value, unsigned size) 504 { 505 switch (size) { 506 case 1: 507 fw_cfg_write(opaque, (uint8_t)value); 508 break; 509 case 2: 510 fw_cfg_select(opaque, (uint16_t)value); 511 break; 512 } 513 } 514 515 static bool fw_cfg_comb_valid(void *opaque, hwaddr addr, 516 unsigned size, bool is_write, 517 MemTxAttrs attrs) 518 { 519 return (size == 1) || (is_write && size == 2); 520 } 521 522 static const MemoryRegionOps fw_cfg_ctl_mem_ops = { 523 .read = fw_cfg_ctl_mem_read, 524 .write = fw_cfg_ctl_mem_write, 525 .endianness = DEVICE_BIG_ENDIAN, 526 .valid.accepts = fw_cfg_ctl_mem_valid, 527 }; 528 529 static const MemoryRegionOps fw_cfg_data_mem_ops = { 530 .read = fw_cfg_data_read, 531 .write = fw_cfg_data_mem_write, 532 .endianness = DEVICE_BIG_ENDIAN, 533 .valid = { 534 .min_access_size = 1, 535 .max_access_size = 1, 536 .accepts = fw_cfg_data_mem_valid, 537 }, 538 }; 539 540 static const MemoryRegionOps fw_cfg_comb_mem_ops = { 541 .read = fw_cfg_data_read, 542 .write = fw_cfg_comb_write, 543 .endianness = DEVICE_LITTLE_ENDIAN, 544 .valid.accepts = fw_cfg_comb_valid, 545 }; 546 547 static const MemoryRegionOps fw_cfg_dma_mem_ops = { 548 .read = fw_cfg_dma_mem_read, 549 .write = fw_cfg_dma_mem_write, 550 .endianness = DEVICE_BIG_ENDIAN, 551 .valid.accepts = fw_cfg_dma_mem_valid, 552 .valid.max_access_size = 8, 553 .impl.max_access_size = 8, 554 }; 555 556 static void fw_cfg_reset(DeviceState *d) 557 { 558 FWCfgState *s = FW_CFG(d); 559 560 /* we never register a read callback for FW_CFG_SIGNATURE */ 561 fw_cfg_select(s, FW_CFG_SIGNATURE); 562 } 563 564 /* Save restore 32 bit int as uint16_t 565 This is a Big hack, but it is how the old state did it. 566 Or we broke compatibility in the state, or we can't use struct tm 567 */ 568 569 static int get_uint32_as_uint16(QEMUFile *f, void *pv, size_t size, 570 const VMStateField *field) 571 { 572 uint32_t *v = pv; 573 *v = qemu_get_be16(f); 574 return 0; 575 } 576 577 static int put_unused(QEMUFile *f, void *pv, size_t size, 578 const VMStateField *field, QJSON *vmdesc) 579 { 580 fprintf(stderr, "uint32_as_uint16 is only used for backward compatibility.\n"); 581 fprintf(stderr, "This functions shouldn't be called.\n"); 582 583 return 0; 584 } 585 586 static const VMStateInfo vmstate_hack_uint32_as_uint16 = { 587 .name = "int32_as_uint16", 588 .get = get_uint32_as_uint16, 589 .put = put_unused, 590 }; 591 592 #define VMSTATE_UINT16_HACK(_f, _s, _t) \ 593 VMSTATE_SINGLE_TEST(_f, _s, _t, 0, vmstate_hack_uint32_as_uint16, uint32_t) 594 595 596 static bool is_version_1(void *opaque, int version_id) 597 { 598 return version_id == 1; 599 } 600 601 bool fw_cfg_dma_enabled(void *opaque) 602 { 603 FWCfgState *s = opaque; 604 605 return s->dma_enabled; 606 } 607 608 static const VMStateDescription vmstate_fw_cfg_dma = { 609 .name = "fw_cfg/dma", 610 .needed = fw_cfg_dma_enabled, 611 .fields = (VMStateField[]) { 612 VMSTATE_UINT64(dma_addr, FWCfgState), 613 VMSTATE_END_OF_LIST() 614 }, 615 }; 616 617 static const VMStateDescription vmstate_fw_cfg = { 618 .name = "fw_cfg", 619 .version_id = 2, 620 .minimum_version_id = 1, 621 .fields = (VMStateField[]) { 622 VMSTATE_UINT16(cur_entry, FWCfgState), 623 VMSTATE_UINT16_HACK(cur_offset, FWCfgState, is_version_1), 624 VMSTATE_UINT32_V(cur_offset, FWCfgState, 2), 625 VMSTATE_END_OF_LIST() 626 }, 627 .subsections = (const VMStateDescription*[]) { 628 &vmstate_fw_cfg_dma, 629 NULL, 630 } 631 }; 632 633 static void fw_cfg_add_bytes_callback(FWCfgState *s, uint16_t key, 634 FWCfgCallback select_cb, 635 FWCfgWriteCallback write_cb, 636 void *callback_opaque, 637 void *data, size_t len, 638 bool read_only) 639 { 640 int arch = !!(key & FW_CFG_ARCH_LOCAL); 641 642 key &= FW_CFG_ENTRY_MASK; 643 644 assert(key < fw_cfg_max_entry(s) && len < UINT32_MAX); 645 assert(s->entries[arch][key].data == NULL); /* avoid key conflict */ 646 647 s->entries[arch][key].data = data; 648 s->entries[arch][key].len = (uint32_t)len; 649 s->entries[arch][key].select_cb = select_cb; 650 s->entries[arch][key].write_cb = write_cb; 651 s->entries[arch][key].callback_opaque = callback_opaque; 652 s->entries[arch][key].allow_write = !read_only; 653 } 654 655 static void *fw_cfg_modify_bytes_read(FWCfgState *s, uint16_t key, 656 void *data, size_t len) 657 { 658 void *ptr; 659 int arch = !!(key & FW_CFG_ARCH_LOCAL); 660 661 key &= FW_CFG_ENTRY_MASK; 662 663 assert(key < fw_cfg_max_entry(s) && len < UINT32_MAX); 664 665 /* return the old data to the function caller, avoid memory leak */ 666 ptr = s->entries[arch][key].data; 667 s->entries[arch][key].data = data; 668 s->entries[arch][key].len = len; 669 s->entries[arch][key].callback_opaque = NULL; 670 s->entries[arch][key].allow_write = false; 671 672 return ptr; 673 } 674 675 void fw_cfg_add_bytes(FWCfgState *s, uint16_t key, void *data, size_t len) 676 { 677 trace_fw_cfg_add_bytes(key, trace_key_name(key), len); 678 fw_cfg_add_bytes_callback(s, key, NULL, NULL, NULL, data, len, true); 679 } 680 681 void fw_cfg_add_string(FWCfgState *s, uint16_t key, const char *value) 682 { 683 size_t sz = strlen(value) + 1; 684 685 trace_fw_cfg_add_string(key, trace_key_name(key), value); 686 fw_cfg_add_bytes(s, key, g_memdup(value, sz), sz); 687 } 688 689 void fw_cfg_add_i16(FWCfgState *s, uint16_t key, uint16_t value) 690 { 691 uint16_t *copy; 692 693 copy = g_malloc(sizeof(value)); 694 *copy = cpu_to_le16(value); 695 trace_fw_cfg_add_i16(key, trace_key_name(key), value); 696 fw_cfg_add_bytes(s, key, copy, sizeof(value)); 697 } 698 699 void fw_cfg_modify_i16(FWCfgState *s, uint16_t key, uint16_t value) 700 { 701 uint16_t *copy, *old; 702 703 copy = g_malloc(sizeof(value)); 704 *copy = cpu_to_le16(value); 705 old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value)); 706 g_free(old); 707 } 708 709 void fw_cfg_add_i32(FWCfgState *s, uint16_t key, uint32_t value) 710 { 711 uint32_t *copy; 712 713 copy = g_malloc(sizeof(value)); 714 *copy = cpu_to_le32(value); 715 trace_fw_cfg_add_i32(key, trace_key_name(key), value); 716 fw_cfg_add_bytes(s, key, copy, sizeof(value)); 717 } 718 719 void fw_cfg_add_i64(FWCfgState *s, uint16_t key, uint64_t value) 720 { 721 uint64_t *copy; 722 723 copy = g_malloc(sizeof(value)); 724 *copy = cpu_to_le64(value); 725 trace_fw_cfg_add_i64(key, trace_key_name(key), value); 726 fw_cfg_add_bytes(s, key, copy, sizeof(value)); 727 } 728 729 void fw_cfg_set_order_override(FWCfgState *s, int order) 730 { 731 assert(s->fw_cfg_order_override == 0); 732 s->fw_cfg_order_override = order; 733 } 734 735 void fw_cfg_reset_order_override(FWCfgState *s) 736 { 737 assert(s->fw_cfg_order_override != 0); 738 s->fw_cfg_order_override = 0; 739 } 740 741 /* 742 * This is the legacy order list. For legacy systems, files are in 743 * the fw_cfg in the order defined below, by the "order" value. Note 744 * that some entries (VGA ROMs, NIC option ROMS, etc.) go into a 745 * specific area, but there may be more than one and they occur in the 746 * order that the user specifies them on the command line. Those are 747 * handled in a special manner, using the order override above. 748 * 749 * For non-legacy, the files are sorted by filename to avoid this kind 750 * of complexity in the future. 751 * 752 * This is only for x86, other arches don't implement versioning so 753 * they won't set legacy mode. 754 */ 755 static struct { 756 const char *name; 757 int order; 758 } fw_cfg_order[] = { 759 { "etc/boot-menu-wait", 10 }, 760 { "bootsplash.jpg", 11 }, 761 { "bootsplash.bmp", 12 }, 762 { "etc/boot-fail-wait", 15 }, 763 { "etc/smbios/smbios-tables", 20 }, 764 { "etc/smbios/smbios-anchor", 30 }, 765 { "etc/e820", 40 }, 766 { "etc/reserved-memory-end", 50 }, 767 { "genroms/kvmvapic.bin", 55 }, 768 { "genroms/linuxboot.bin", 60 }, 769 { }, /* VGA ROMs from pc_vga_init come here, 70. */ 770 { }, /* NIC option ROMs from pc_nic_init come here, 80. */ 771 { "etc/system-states", 90 }, 772 { }, /* User ROMs come here, 100. */ 773 { }, /* Device FW comes here, 110. */ 774 { "etc/extra-pci-roots", 120 }, 775 { "etc/acpi/tables", 130 }, 776 { "etc/table-loader", 140 }, 777 { "etc/tpm/log", 150 }, 778 { "etc/acpi/rsdp", 160 }, 779 { "bootorder", 170 }, 780 781 #define FW_CFG_ORDER_OVERRIDE_LAST 200 782 }; 783 784 static int get_fw_cfg_order(FWCfgState *s, const char *name) 785 { 786 int i; 787 788 if (s->fw_cfg_order_override > 0) { 789 return s->fw_cfg_order_override; 790 } 791 792 for (i = 0; i < ARRAY_SIZE(fw_cfg_order); i++) { 793 if (fw_cfg_order[i].name == NULL) { 794 continue; 795 } 796 797 if (strcmp(name, fw_cfg_order[i].name) == 0) { 798 return fw_cfg_order[i].order; 799 } 800 } 801 802 /* Stick unknown stuff at the end. */ 803 warn_report("Unknown firmware file in legacy mode: %s", name); 804 return FW_CFG_ORDER_OVERRIDE_LAST; 805 } 806 807 void fw_cfg_add_file_callback(FWCfgState *s, const char *filename, 808 FWCfgCallback select_cb, 809 FWCfgWriteCallback write_cb, 810 void *callback_opaque, 811 void *data, size_t len, bool read_only) 812 { 813 int i, index, count; 814 size_t dsize; 815 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 816 int order = 0; 817 818 if (!s->files) { 819 dsize = sizeof(uint32_t) + sizeof(FWCfgFile) * fw_cfg_file_slots(s); 820 s->files = g_malloc0(dsize); 821 fw_cfg_add_bytes(s, FW_CFG_FILE_DIR, s->files, dsize); 822 } 823 824 count = be32_to_cpu(s->files->count); 825 assert(count < fw_cfg_file_slots(s)); 826 827 /* Find the insertion point. */ 828 if (mc->legacy_fw_cfg_order) { 829 /* 830 * Sort by order. For files with the same order, we keep them 831 * in the sequence in which they were added. 832 */ 833 order = get_fw_cfg_order(s, filename); 834 for (index = count; 835 index > 0 && order < s->entry_order[index - 1]; 836 index--); 837 } else { 838 /* Sort by file name. */ 839 for (index = count; 840 index > 0 && strcmp(filename, s->files->f[index - 1].name) < 0; 841 index--); 842 } 843 844 /* 845 * Move all the entries from the index point and after down one 846 * to create a slot for the new entry. Because calculations are 847 * being done with the index, make it so that "i" is the current 848 * index and "i - 1" is the one being copied from, thus the 849 * unusual start and end in the for statement. 850 */ 851 for (i = count; i > index; i--) { 852 s->files->f[i] = s->files->f[i - 1]; 853 s->files->f[i].select = cpu_to_be16(FW_CFG_FILE_FIRST + i); 854 s->entries[0][FW_CFG_FILE_FIRST + i] = 855 s->entries[0][FW_CFG_FILE_FIRST + i - 1]; 856 s->entry_order[i] = s->entry_order[i - 1]; 857 } 858 859 memset(&s->files->f[index], 0, sizeof(FWCfgFile)); 860 memset(&s->entries[0][FW_CFG_FILE_FIRST + index], 0, sizeof(FWCfgEntry)); 861 862 pstrcpy(s->files->f[index].name, sizeof(s->files->f[index].name), filename); 863 for (i = 0; i <= count; i++) { 864 if (i != index && 865 strcmp(s->files->f[index].name, s->files->f[i].name) == 0) { 866 error_report("duplicate fw_cfg file name: %s", 867 s->files->f[index].name); 868 exit(1); 869 } 870 } 871 872 fw_cfg_add_bytes_callback(s, FW_CFG_FILE_FIRST + index, 873 select_cb, write_cb, 874 callback_opaque, data, len, 875 read_only); 876 877 s->files->f[index].size = cpu_to_be32(len); 878 s->files->f[index].select = cpu_to_be16(FW_CFG_FILE_FIRST + index); 879 s->entry_order[index] = order; 880 trace_fw_cfg_add_file(s, index, s->files->f[index].name, len); 881 882 s->files->count = cpu_to_be32(count+1); 883 } 884 885 void fw_cfg_add_file(FWCfgState *s, const char *filename, 886 void *data, size_t len) 887 { 888 fw_cfg_add_file_callback(s, filename, NULL, NULL, NULL, data, len, true); 889 } 890 891 void *fw_cfg_modify_file(FWCfgState *s, const char *filename, 892 void *data, size_t len) 893 { 894 int i, index; 895 void *ptr = NULL; 896 897 assert(s->files); 898 899 index = be32_to_cpu(s->files->count); 900 901 for (i = 0; i < index; i++) { 902 if (strcmp(filename, s->files->f[i].name) == 0) { 903 ptr = fw_cfg_modify_bytes_read(s, FW_CFG_FILE_FIRST + i, 904 data, len); 905 s->files->f[i].size = cpu_to_be32(len); 906 return ptr; 907 } 908 } 909 910 assert(index < fw_cfg_file_slots(s)); 911 912 /* add new one */ 913 fw_cfg_add_file_callback(s, filename, NULL, NULL, NULL, data, len, true); 914 return NULL; 915 } 916 917 static void fw_cfg_machine_reset(void *opaque) 918 { 919 void *ptr; 920 size_t len; 921 FWCfgState *s = opaque; 922 char *bootindex = get_boot_devices_list(&len); 923 924 ptr = fw_cfg_modify_file(s, "bootorder", (uint8_t *)bootindex, len); 925 g_free(ptr); 926 } 927 928 static void fw_cfg_machine_ready(struct Notifier *n, void *data) 929 { 930 FWCfgState *s = container_of(n, FWCfgState, machine_ready); 931 qemu_register_reset(fw_cfg_machine_reset, s); 932 } 933 934 935 936 static void fw_cfg_common_realize(DeviceState *dev, Error **errp) 937 { 938 FWCfgState *s = FW_CFG(dev); 939 MachineState *machine = MACHINE(qdev_get_machine()); 940 uint32_t version = FW_CFG_VERSION; 941 942 if (!fw_cfg_find()) { 943 error_setg(errp, "at most one %s device is permitted", TYPE_FW_CFG); 944 return; 945 } 946 947 fw_cfg_add_bytes(s, FW_CFG_SIGNATURE, (char *)"QEMU", 4); 948 fw_cfg_add_bytes(s, FW_CFG_UUID, &qemu_uuid, 16); 949 fw_cfg_add_i16(s, FW_CFG_NOGRAPHIC, (uint16_t)!machine->enable_graphics); 950 fw_cfg_add_i16(s, FW_CFG_BOOT_MENU, (uint16_t)boot_menu); 951 fw_cfg_bootsplash(s); 952 fw_cfg_reboot(s); 953 954 if (s->dma_enabled) { 955 version |= FW_CFG_VERSION_DMA; 956 } 957 958 fw_cfg_add_i32(s, FW_CFG_ID, version); 959 960 s->machine_ready.notify = fw_cfg_machine_ready; 961 qemu_add_machine_init_done_notifier(&s->machine_ready); 962 } 963 964 FWCfgState *fw_cfg_init_io_dma(uint32_t iobase, uint32_t dma_iobase, 965 AddressSpace *dma_as) 966 { 967 DeviceState *dev; 968 SysBusDevice *sbd; 969 FWCfgIoState *ios; 970 FWCfgState *s; 971 bool dma_requested = dma_iobase && dma_as; 972 973 dev = qdev_create(NULL, TYPE_FW_CFG_IO); 974 if (!dma_requested) { 975 qdev_prop_set_bit(dev, "dma_enabled", false); 976 } 977 978 object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG, 979 OBJECT(dev), NULL); 980 qdev_init_nofail(dev); 981 982 sbd = SYS_BUS_DEVICE(dev); 983 ios = FW_CFG_IO(dev); 984 sysbus_add_io(sbd, iobase, &ios->comb_iomem); 985 986 s = FW_CFG(dev); 987 988 if (s->dma_enabled) { 989 /* 64 bits for the address field */ 990 s->dma_as = dma_as; 991 s->dma_addr = 0; 992 sysbus_add_io(sbd, dma_iobase, &s->dma_iomem); 993 } 994 995 return s; 996 } 997 998 FWCfgState *fw_cfg_init_io(uint32_t iobase) 999 { 1000 return fw_cfg_init_io_dma(iobase, 0, NULL); 1001 } 1002 1003 FWCfgState *fw_cfg_init_mem_wide(hwaddr ctl_addr, 1004 hwaddr data_addr, uint32_t data_width, 1005 hwaddr dma_addr, AddressSpace *dma_as) 1006 { 1007 DeviceState *dev; 1008 SysBusDevice *sbd; 1009 FWCfgState *s; 1010 bool dma_requested = dma_addr && dma_as; 1011 1012 dev = qdev_create(NULL, TYPE_FW_CFG_MEM); 1013 qdev_prop_set_uint32(dev, "data_width", data_width); 1014 if (!dma_requested) { 1015 qdev_prop_set_bit(dev, "dma_enabled", false); 1016 } 1017 1018 object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG, 1019 OBJECT(dev), NULL); 1020 qdev_init_nofail(dev); 1021 1022 sbd = SYS_BUS_DEVICE(dev); 1023 sysbus_mmio_map(sbd, 0, ctl_addr); 1024 sysbus_mmio_map(sbd, 1, data_addr); 1025 1026 s = FW_CFG(dev); 1027 1028 if (s->dma_enabled) { 1029 s->dma_as = dma_as; 1030 s->dma_addr = 0; 1031 sysbus_mmio_map(sbd, 2, dma_addr); 1032 } 1033 1034 return s; 1035 } 1036 1037 FWCfgState *fw_cfg_init_mem(hwaddr ctl_addr, hwaddr data_addr) 1038 { 1039 return fw_cfg_init_mem_wide(ctl_addr, data_addr, 1040 fw_cfg_data_mem_ops.valid.max_access_size, 1041 0, NULL); 1042 } 1043 1044 1045 FWCfgState *fw_cfg_find(void) 1046 { 1047 /* Returns NULL unless there is exactly one fw_cfg device */ 1048 return FW_CFG(object_resolve_path_type("", TYPE_FW_CFG, NULL)); 1049 } 1050 1051 1052 static void fw_cfg_class_init(ObjectClass *klass, void *data) 1053 { 1054 DeviceClass *dc = DEVICE_CLASS(klass); 1055 1056 dc->reset = fw_cfg_reset; 1057 dc->vmsd = &vmstate_fw_cfg; 1058 } 1059 1060 static const TypeInfo fw_cfg_info = { 1061 .name = TYPE_FW_CFG, 1062 .parent = TYPE_SYS_BUS_DEVICE, 1063 .abstract = true, 1064 .instance_size = sizeof(FWCfgState), 1065 .class_init = fw_cfg_class_init, 1066 }; 1067 1068 static void fw_cfg_file_slots_allocate(FWCfgState *s, Error **errp) 1069 { 1070 uint16_t file_slots_max; 1071 1072 if (fw_cfg_file_slots(s) < FW_CFG_FILE_SLOTS_MIN) { 1073 error_setg(errp, "\"file_slots\" must be at least 0x%x", 1074 FW_CFG_FILE_SLOTS_MIN); 1075 return; 1076 } 1077 1078 /* (UINT16_MAX & FW_CFG_ENTRY_MASK) is the highest inclusive selector value 1079 * that we permit. The actual (exclusive) value coming from the 1080 * configuration is (FW_CFG_FILE_FIRST + fw_cfg_file_slots(s)). */ 1081 file_slots_max = (UINT16_MAX & FW_CFG_ENTRY_MASK) - FW_CFG_FILE_FIRST + 1; 1082 if (fw_cfg_file_slots(s) > file_slots_max) { 1083 error_setg(errp, "\"file_slots\" must not exceed 0x%" PRIx16, 1084 file_slots_max); 1085 return; 1086 } 1087 1088 s->entries[0] = g_new0(FWCfgEntry, fw_cfg_max_entry(s)); 1089 s->entries[1] = g_new0(FWCfgEntry, fw_cfg_max_entry(s)); 1090 s->entry_order = g_new0(int, fw_cfg_max_entry(s)); 1091 } 1092 1093 static Property fw_cfg_io_properties[] = { 1094 DEFINE_PROP_BOOL("dma_enabled", FWCfgIoState, parent_obj.dma_enabled, 1095 true), 1096 DEFINE_PROP_UINT16("x-file-slots", FWCfgIoState, parent_obj.file_slots, 1097 FW_CFG_FILE_SLOTS_DFLT), 1098 DEFINE_PROP_END_OF_LIST(), 1099 }; 1100 1101 static void fw_cfg_io_realize(DeviceState *dev, Error **errp) 1102 { 1103 FWCfgIoState *s = FW_CFG_IO(dev); 1104 Error *local_err = NULL; 1105 1106 fw_cfg_file_slots_allocate(FW_CFG(s), &local_err); 1107 if (local_err) { 1108 error_propagate(errp, local_err); 1109 return; 1110 } 1111 1112 /* when using port i/o, the 8-bit data register ALWAYS overlaps 1113 * with half of the 16-bit control register. Hence, the total size 1114 * of the i/o region used is FW_CFG_CTL_SIZE */ 1115 memory_region_init_io(&s->comb_iomem, OBJECT(s), &fw_cfg_comb_mem_ops, 1116 FW_CFG(s), "fwcfg", FW_CFG_CTL_SIZE); 1117 1118 if (FW_CFG(s)->dma_enabled) { 1119 memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s), 1120 &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma", 1121 sizeof(dma_addr_t)); 1122 } 1123 1124 fw_cfg_common_realize(dev, errp); 1125 } 1126 1127 static void fw_cfg_io_class_init(ObjectClass *klass, void *data) 1128 { 1129 DeviceClass *dc = DEVICE_CLASS(klass); 1130 1131 dc->realize = fw_cfg_io_realize; 1132 dc->props = fw_cfg_io_properties; 1133 } 1134 1135 static const TypeInfo fw_cfg_io_info = { 1136 .name = TYPE_FW_CFG_IO, 1137 .parent = TYPE_FW_CFG, 1138 .instance_size = sizeof(FWCfgIoState), 1139 .class_init = fw_cfg_io_class_init, 1140 }; 1141 1142 1143 static Property fw_cfg_mem_properties[] = { 1144 DEFINE_PROP_UINT32("data_width", FWCfgMemState, data_width, -1), 1145 DEFINE_PROP_BOOL("dma_enabled", FWCfgMemState, parent_obj.dma_enabled, 1146 true), 1147 DEFINE_PROP_UINT16("x-file-slots", FWCfgMemState, parent_obj.file_slots, 1148 FW_CFG_FILE_SLOTS_DFLT), 1149 DEFINE_PROP_END_OF_LIST(), 1150 }; 1151 1152 static void fw_cfg_mem_realize(DeviceState *dev, Error **errp) 1153 { 1154 FWCfgMemState *s = FW_CFG_MEM(dev); 1155 SysBusDevice *sbd = SYS_BUS_DEVICE(dev); 1156 const MemoryRegionOps *data_ops = &fw_cfg_data_mem_ops; 1157 Error *local_err = NULL; 1158 1159 fw_cfg_file_slots_allocate(FW_CFG(s), &local_err); 1160 if (local_err) { 1161 error_propagate(errp, local_err); 1162 return; 1163 } 1164 1165 memory_region_init_io(&s->ctl_iomem, OBJECT(s), &fw_cfg_ctl_mem_ops, 1166 FW_CFG(s), "fwcfg.ctl", FW_CFG_CTL_SIZE); 1167 sysbus_init_mmio(sbd, &s->ctl_iomem); 1168 1169 if (s->data_width > data_ops->valid.max_access_size) { 1170 s->wide_data_ops = *data_ops; 1171 1172 s->wide_data_ops.valid.max_access_size = s->data_width; 1173 s->wide_data_ops.impl.max_access_size = s->data_width; 1174 data_ops = &s->wide_data_ops; 1175 } 1176 memory_region_init_io(&s->data_iomem, OBJECT(s), data_ops, FW_CFG(s), 1177 "fwcfg.data", data_ops->valid.max_access_size); 1178 sysbus_init_mmio(sbd, &s->data_iomem); 1179 1180 if (FW_CFG(s)->dma_enabled) { 1181 memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s), 1182 &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma", 1183 sizeof(dma_addr_t)); 1184 sysbus_init_mmio(sbd, &FW_CFG(s)->dma_iomem); 1185 } 1186 1187 fw_cfg_common_realize(dev, errp); 1188 } 1189 1190 static void fw_cfg_mem_class_init(ObjectClass *klass, void *data) 1191 { 1192 DeviceClass *dc = DEVICE_CLASS(klass); 1193 1194 dc->realize = fw_cfg_mem_realize; 1195 dc->props = fw_cfg_mem_properties; 1196 } 1197 1198 static const TypeInfo fw_cfg_mem_info = { 1199 .name = TYPE_FW_CFG_MEM, 1200 .parent = TYPE_FW_CFG, 1201 .instance_size = sizeof(FWCfgMemState), 1202 .class_init = fw_cfg_mem_class_init, 1203 }; 1204 1205 1206 static void fw_cfg_register_types(void) 1207 { 1208 type_register_static(&fw_cfg_info); 1209 type_register_static(&fw_cfg_io_info); 1210 type_register_static(&fw_cfg_mem_info); 1211 } 1212 1213 type_init(fw_cfg_register_types) 1214