1 /* 2 * QEMU Firmware configuration device emulation 3 * 4 * Copyright (c) 2008 Gleb Natapov 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 #include "qemu/osdep.h" 25 #include "hw/hw.h" 26 #include "sysemu/sysemu.h" 27 #include "sysemu/dma.h" 28 #include "hw/boards.h" 29 #include "hw/isa/isa.h" 30 #include "hw/nvram/fw_cfg.h" 31 #include "hw/sysbus.h" 32 #include "trace.h" 33 #include "qemu/error-report.h" 34 #include "qemu/config-file.h" 35 #include "qemu/cutils.h" 36 #include "qapi/error.h" 37 38 #define FW_CFG_FILE_SLOTS_DFLT 0x20 39 40 /* FW_CFG_VERSION bits */ 41 #define FW_CFG_VERSION 0x01 42 #define FW_CFG_VERSION_DMA 0x02 43 44 /* FW_CFG_DMA_CONTROL bits */ 45 #define FW_CFG_DMA_CTL_ERROR 0x01 46 #define FW_CFG_DMA_CTL_READ 0x02 47 #define FW_CFG_DMA_CTL_SKIP 0x04 48 #define FW_CFG_DMA_CTL_SELECT 0x08 49 #define FW_CFG_DMA_CTL_WRITE 0x10 50 51 #define FW_CFG_DMA_SIGNATURE 0x51454d5520434647ULL /* "QEMU CFG" */ 52 53 struct FWCfgEntry { 54 uint32_t len; 55 bool allow_write; 56 uint8_t *data; 57 void *callback_opaque; 58 FWCfgCallback select_cb; 59 FWCfgWriteCallback write_cb; 60 }; 61 62 #define JPG_FILE 0 63 #define BMP_FILE 1 64 65 static char *read_splashfile(char *filename, gsize *file_sizep, 66 int *file_typep) 67 { 68 GError *err = NULL; 69 gboolean res; 70 gchar *content; 71 int file_type; 72 unsigned int filehead; 73 int bmp_bpp; 74 75 res = g_file_get_contents(filename, &content, file_sizep, &err); 76 if (res == FALSE) { 77 error_report("failed to read splash file '%s'", filename); 78 g_error_free(err); 79 return NULL; 80 } 81 82 /* check file size */ 83 if (*file_sizep < 30) { 84 goto error; 85 } 86 87 /* check magic ID */ 88 filehead = ((content[0] & 0xff) + (content[1] << 8)) & 0xffff; 89 if (filehead == 0xd8ff) { 90 file_type = JPG_FILE; 91 } else if (filehead == 0x4d42) { 92 file_type = BMP_FILE; 93 } else { 94 goto error; 95 } 96 97 /* check BMP bpp */ 98 if (file_type == BMP_FILE) { 99 bmp_bpp = (content[28] + (content[29] << 8)) & 0xffff; 100 if (bmp_bpp != 24) { 101 goto error; 102 } 103 } 104 105 /* return values */ 106 *file_typep = file_type; 107 108 return content; 109 110 error: 111 error_report("splash file '%s' format not recognized; must be JPEG " 112 "or 24 bit BMP", filename); 113 g_free(content); 114 return NULL; 115 } 116 117 static void fw_cfg_bootsplash(FWCfgState *s) 118 { 119 int boot_splash_time = -1; 120 const char *boot_splash_filename = NULL; 121 char *p; 122 char *filename, *file_data; 123 gsize file_size; 124 int file_type; 125 const char *temp; 126 127 /* get user configuration */ 128 QemuOptsList *plist = qemu_find_opts("boot-opts"); 129 QemuOpts *opts = QTAILQ_FIRST(&plist->head); 130 if (opts != NULL) { 131 temp = qemu_opt_get(opts, "splash"); 132 if (temp != NULL) { 133 boot_splash_filename = temp; 134 } 135 temp = qemu_opt_get(opts, "splash-time"); 136 if (temp != NULL) { 137 p = (char *)temp; 138 boot_splash_time = strtol(p, &p, 10); 139 } 140 } 141 142 /* insert splash time if user configurated */ 143 if (boot_splash_time >= 0) { 144 /* validate the input */ 145 if (boot_splash_time > 0xffff) { 146 error_report("splash time is big than 65535, force it to 65535."); 147 boot_splash_time = 0xffff; 148 } 149 /* use little endian format */ 150 qemu_extra_params_fw[0] = (uint8_t)(boot_splash_time & 0xff); 151 qemu_extra_params_fw[1] = (uint8_t)((boot_splash_time >> 8) & 0xff); 152 fw_cfg_add_file(s, "etc/boot-menu-wait", qemu_extra_params_fw, 2); 153 } 154 155 /* insert splash file if user configurated */ 156 if (boot_splash_filename != NULL) { 157 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, boot_splash_filename); 158 if (filename == NULL) { 159 error_report("failed to find file '%s'.", boot_splash_filename); 160 return; 161 } 162 163 /* loading file data */ 164 file_data = read_splashfile(filename, &file_size, &file_type); 165 if (file_data == NULL) { 166 g_free(filename); 167 return; 168 } 169 g_free(boot_splash_filedata); 170 boot_splash_filedata = (uint8_t *)file_data; 171 boot_splash_filedata_size = file_size; 172 173 /* insert data */ 174 if (file_type == JPG_FILE) { 175 fw_cfg_add_file(s, "bootsplash.jpg", 176 boot_splash_filedata, boot_splash_filedata_size); 177 } else { 178 fw_cfg_add_file(s, "bootsplash.bmp", 179 boot_splash_filedata, boot_splash_filedata_size); 180 } 181 g_free(filename); 182 } 183 } 184 185 static void fw_cfg_reboot(FWCfgState *s) 186 { 187 int reboot_timeout = -1; 188 char *p; 189 const char *temp; 190 191 /* get user configuration */ 192 QemuOptsList *plist = qemu_find_opts("boot-opts"); 193 QemuOpts *opts = QTAILQ_FIRST(&plist->head); 194 if (opts != NULL) { 195 temp = qemu_opt_get(opts, "reboot-timeout"); 196 if (temp != NULL) { 197 p = (char *)temp; 198 reboot_timeout = strtol(p, &p, 10); 199 } 200 } 201 /* validate the input */ 202 if (reboot_timeout > 0xffff) { 203 error_report("reboot timeout is larger than 65535, force it to 65535."); 204 reboot_timeout = 0xffff; 205 } 206 fw_cfg_add_file(s, "etc/boot-fail-wait", g_memdup(&reboot_timeout, 4), 4); 207 } 208 209 static void fw_cfg_write(FWCfgState *s, uint8_t value) 210 { 211 /* nothing, write support removed in QEMU v2.4+ */ 212 } 213 214 static inline uint16_t fw_cfg_file_slots(const FWCfgState *s) 215 { 216 return s->file_slots; 217 } 218 219 /* Note: this function returns an exclusive limit. */ 220 static inline uint32_t fw_cfg_max_entry(const FWCfgState *s) 221 { 222 return FW_CFG_FILE_FIRST + fw_cfg_file_slots(s); 223 } 224 225 static int fw_cfg_select(FWCfgState *s, uint16_t key) 226 { 227 int arch, ret; 228 FWCfgEntry *e; 229 230 s->cur_offset = 0; 231 if ((key & FW_CFG_ENTRY_MASK) >= fw_cfg_max_entry(s)) { 232 s->cur_entry = FW_CFG_INVALID; 233 ret = 0; 234 } else { 235 s->cur_entry = key; 236 ret = 1; 237 /* entry successfully selected, now run callback if present */ 238 arch = !!(key & FW_CFG_ARCH_LOCAL); 239 e = &s->entries[arch][key & FW_CFG_ENTRY_MASK]; 240 if (e->select_cb) { 241 e->select_cb(e->callback_opaque); 242 } 243 } 244 245 trace_fw_cfg_select(s, key, ret); 246 return ret; 247 } 248 249 static uint64_t fw_cfg_data_read(void *opaque, hwaddr addr, unsigned size) 250 { 251 FWCfgState *s = opaque; 252 int arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL); 253 FWCfgEntry *e = (s->cur_entry == FW_CFG_INVALID) ? NULL : 254 &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK]; 255 uint64_t value = 0; 256 257 assert(size > 0 && size <= sizeof(value)); 258 if (s->cur_entry != FW_CFG_INVALID && e->data && s->cur_offset < e->len) { 259 /* The least significant 'size' bytes of the return value are 260 * expected to contain a string preserving portion of the item 261 * data, padded with zeros on the right in case we run out early. 262 * In technical terms, we're composing the host-endian representation 263 * of the big endian interpretation of the fw_cfg string. 264 */ 265 do { 266 value = (value << 8) | e->data[s->cur_offset++]; 267 } while (--size && s->cur_offset < e->len); 268 /* If size is still not zero, we *did* run out early, so continue 269 * left-shifting, to add the appropriate number of padding zeros 270 * on the right. 271 */ 272 value <<= 8 * size; 273 } 274 275 trace_fw_cfg_read(s, value); 276 return value; 277 } 278 279 static void fw_cfg_data_mem_write(void *opaque, hwaddr addr, 280 uint64_t value, unsigned size) 281 { 282 FWCfgState *s = opaque; 283 unsigned i = size; 284 285 do { 286 fw_cfg_write(s, value >> (8 * --i)); 287 } while (i); 288 } 289 290 static void fw_cfg_dma_transfer(FWCfgState *s) 291 { 292 dma_addr_t len; 293 FWCfgDmaAccess dma; 294 int arch; 295 FWCfgEntry *e; 296 int read = 0, write = 0; 297 dma_addr_t dma_addr; 298 299 /* Reset the address before the next access */ 300 dma_addr = s->dma_addr; 301 s->dma_addr = 0; 302 303 if (dma_memory_read(s->dma_as, dma_addr, &dma, sizeof(dma))) { 304 stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control), 305 FW_CFG_DMA_CTL_ERROR); 306 return; 307 } 308 309 dma.address = be64_to_cpu(dma.address); 310 dma.length = be32_to_cpu(dma.length); 311 dma.control = be32_to_cpu(dma.control); 312 313 if (dma.control & FW_CFG_DMA_CTL_SELECT) { 314 fw_cfg_select(s, dma.control >> 16); 315 } 316 317 arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL); 318 e = (s->cur_entry == FW_CFG_INVALID) ? NULL : 319 &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK]; 320 321 if (dma.control & FW_CFG_DMA_CTL_READ) { 322 read = 1; 323 write = 0; 324 } else if (dma.control & FW_CFG_DMA_CTL_WRITE) { 325 read = 0; 326 write = 1; 327 } else if (dma.control & FW_CFG_DMA_CTL_SKIP) { 328 read = 0; 329 write = 0; 330 } else { 331 dma.length = 0; 332 } 333 334 dma.control = 0; 335 336 while (dma.length > 0 && !(dma.control & FW_CFG_DMA_CTL_ERROR)) { 337 if (s->cur_entry == FW_CFG_INVALID || !e->data || 338 s->cur_offset >= e->len) { 339 len = dma.length; 340 341 /* If the access is not a read access, it will be a skip access, 342 * tested before. 343 */ 344 if (read) { 345 if (dma_memory_set(s->dma_as, dma.address, 0, len)) { 346 dma.control |= FW_CFG_DMA_CTL_ERROR; 347 } 348 } 349 if (write) { 350 dma.control |= FW_CFG_DMA_CTL_ERROR; 351 } 352 } else { 353 if (dma.length <= (e->len - s->cur_offset)) { 354 len = dma.length; 355 } else { 356 len = (e->len - s->cur_offset); 357 } 358 359 /* If the access is not a read access, it will be a skip access, 360 * tested before. 361 */ 362 if (read) { 363 if (dma_memory_write(s->dma_as, dma.address, 364 &e->data[s->cur_offset], len)) { 365 dma.control |= FW_CFG_DMA_CTL_ERROR; 366 } 367 } 368 if (write) { 369 if (!e->allow_write || 370 len != dma.length || 371 dma_memory_read(s->dma_as, dma.address, 372 &e->data[s->cur_offset], len)) { 373 dma.control |= FW_CFG_DMA_CTL_ERROR; 374 } else if (e->write_cb) { 375 e->write_cb(e->callback_opaque, s->cur_offset, len); 376 } 377 } 378 379 s->cur_offset += len; 380 } 381 382 dma.address += len; 383 dma.length -= len; 384 385 } 386 387 stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control), 388 dma.control); 389 390 trace_fw_cfg_read(s, 0); 391 } 392 393 static uint64_t fw_cfg_dma_mem_read(void *opaque, hwaddr addr, 394 unsigned size) 395 { 396 /* Return a signature value (and handle various read sizes) */ 397 return extract64(FW_CFG_DMA_SIGNATURE, (8 - addr - size) * 8, size * 8); 398 } 399 400 static void fw_cfg_dma_mem_write(void *opaque, hwaddr addr, 401 uint64_t value, unsigned size) 402 { 403 FWCfgState *s = opaque; 404 405 if (size == 4) { 406 if (addr == 0) { 407 /* FWCfgDmaAccess high address */ 408 s->dma_addr = value << 32; 409 } else if (addr == 4) { 410 /* FWCfgDmaAccess low address */ 411 s->dma_addr |= value; 412 fw_cfg_dma_transfer(s); 413 } 414 } else if (size == 8 && addr == 0) { 415 s->dma_addr = value; 416 fw_cfg_dma_transfer(s); 417 } 418 } 419 420 static bool fw_cfg_dma_mem_valid(void *opaque, hwaddr addr, 421 unsigned size, bool is_write) 422 { 423 return !is_write || ((size == 4 && (addr == 0 || addr == 4)) || 424 (size == 8 && addr == 0)); 425 } 426 427 static bool fw_cfg_data_mem_valid(void *opaque, hwaddr addr, 428 unsigned size, bool is_write) 429 { 430 return addr == 0; 431 } 432 433 static void fw_cfg_ctl_mem_write(void *opaque, hwaddr addr, 434 uint64_t value, unsigned size) 435 { 436 fw_cfg_select(opaque, (uint16_t)value); 437 } 438 439 static bool fw_cfg_ctl_mem_valid(void *opaque, hwaddr addr, 440 unsigned size, bool is_write) 441 { 442 return is_write && size == 2; 443 } 444 445 static void fw_cfg_comb_write(void *opaque, hwaddr addr, 446 uint64_t value, unsigned size) 447 { 448 switch (size) { 449 case 1: 450 fw_cfg_write(opaque, (uint8_t)value); 451 break; 452 case 2: 453 fw_cfg_select(opaque, (uint16_t)value); 454 break; 455 } 456 } 457 458 static bool fw_cfg_comb_valid(void *opaque, hwaddr addr, 459 unsigned size, bool is_write) 460 { 461 return (size == 1) || (is_write && size == 2); 462 } 463 464 static const MemoryRegionOps fw_cfg_ctl_mem_ops = { 465 .write = fw_cfg_ctl_mem_write, 466 .endianness = DEVICE_BIG_ENDIAN, 467 .valid.accepts = fw_cfg_ctl_mem_valid, 468 }; 469 470 static const MemoryRegionOps fw_cfg_data_mem_ops = { 471 .read = fw_cfg_data_read, 472 .write = fw_cfg_data_mem_write, 473 .endianness = DEVICE_BIG_ENDIAN, 474 .valid = { 475 .min_access_size = 1, 476 .max_access_size = 1, 477 .accepts = fw_cfg_data_mem_valid, 478 }, 479 }; 480 481 static const MemoryRegionOps fw_cfg_comb_mem_ops = { 482 .read = fw_cfg_data_read, 483 .write = fw_cfg_comb_write, 484 .endianness = DEVICE_LITTLE_ENDIAN, 485 .valid.accepts = fw_cfg_comb_valid, 486 }; 487 488 static const MemoryRegionOps fw_cfg_dma_mem_ops = { 489 .read = fw_cfg_dma_mem_read, 490 .write = fw_cfg_dma_mem_write, 491 .endianness = DEVICE_BIG_ENDIAN, 492 .valid.accepts = fw_cfg_dma_mem_valid, 493 .valid.max_access_size = 8, 494 .impl.max_access_size = 8, 495 }; 496 497 static void fw_cfg_reset(DeviceState *d) 498 { 499 FWCfgState *s = FW_CFG(d); 500 501 /* we never register a read callback for FW_CFG_SIGNATURE */ 502 fw_cfg_select(s, FW_CFG_SIGNATURE); 503 } 504 505 /* Save restore 32 bit int as uint16_t 506 This is a Big hack, but it is how the old state did it. 507 Or we broke compatibility in the state, or we can't use struct tm 508 */ 509 510 static int get_uint32_as_uint16(QEMUFile *f, void *pv, size_t size, 511 VMStateField *field) 512 { 513 uint32_t *v = pv; 514 *v = qemu_get_be16(f); 515 return 0; 516 } 517 518 static int put_unused(QEMUFile *f, void *pv, size_t size, VMStateField *field, 519 QJSON *vmdesc) 520 { 521 fprintf(stderr, "uint32_as_uint16 is only used for backward compatibility.\n"); 522 fprintf(stderr, "This functions shouldn't be called.\n"); 523 524 return 0; 525 } 526 527 static const VMStateInfo vmstate_hack_uint32_as_uint16 = { 528 .name = "int32_as_uint16", 529 .get = get_uint32_as_uint16, 530 .put = put_unused, 531 }; 532 533 #define VMSTATE_UINT16_HACK(_f, _s, _t) \ 534 VMSTATE_SINGLE_TEST(_f, _s, _t, 0, vmstate_hack_uint32_as_uint16, uint32_t) 535 536 537 static bool is_version_1(void *opaque, int version_id) 538 { 539 return version_id == 1; 540 } 541 542 bool fw_cfg_dma_enabled(void *opaque) 543 { 544 FWCfgState *s = opaque; 545 546 return s->dma_enabled; 547 } 548 549 static const VMStateDescription vmstate_fw_cfg_dma = { 550 .name = "fw_cfg/dma", 551 .needed = fw_cfg_dma_enabled, 552 .fields = (VMStateField[]) { 553 VMSTATE_UINT64(dma_addr, FWCfgState), 554 VMSTATE_END_OF_LIST() 555 }, 556 }; 557 558 static const VMStateDescription vmstate_fw_cfg = { 559 .name = "fw_cfg", 560 .version_id = 2, 561 .minimum_version_id = 1, 562 .fields = (VMStateField[]) { 563 VMSTATE_UINT16(cur_entry, FWCfgState), 564 VMSTATE_UINT16_HACK(cur_offset, FWCfgState, is_version_1), 565 VMSTATE_UINT32_V(cur_offset, FWCfgState, 2), 566 VMSTATE_END_OF_LIST() 567 }, 568 .subsections = (const VMStateDescription*[]) { 569 &vmstate_fw_cfg_dma, 570 NULL, 571 } 572 }; 573 574 static void fw_cfg_add_bytes_callback(FWCfgState *s, uint16_t key, 575 FWCfgCallback select_cb, 576 FWCfgWriteCallback write_cb, 577 void *callback_opaque, 578 void *data, size_t len, 579 bool read_only) 580 { 581 int arch = !!(key & FW_CFG_ARCH_LOCAL); 582 583 key &= FW_CFG_ENTRY_MASK; 584 585 assert(key < fw_cfg_max_entry(s) && len < UINT32_MAX); 586 assert(s->entries[arch][key].data == NULL); /* avoid key conflict */ 587 588 s->entries[arch][key].data = data; 589 s->entries[arch][key].len = (uint32_t)len; 590 s->entries[arch][key].select_cb = select_cb; 591 s->entries[arch][key].write_cb = write_cb; 592 s->entries[arch][key].callback_opaque = callback_opaque; 593 s->entries[arch][key].allow_write = !read_only; 594 } 595 596 static void *fw_cfg_modify_bytes_read(FWCfgState *s, uint16_t key, 597 void *data, size_t len) 598 { 599 void *ptr; 600 int arch = !!(key & FW_CFG_ARCH_LOCAL); 601 602 key &= FW_CFG_ENTRY_MASK; 603 604 assert(key < fw_cfg_max_entry(s) && len < UINT32_MAX); 605 606 /* return the old data to the function caller, avoid memory leak */ 607 ptr = s->entries[arch][key].data; 608 s->entries[arch][key].data = data; 609 s->entries[arch][key].len = len; 610 s->entries[arch][key].callback_opaque = NULL; 611 s->entries[arch][key].allow_write = false; 612 613 return ptr; 614 } 615 616 void fw_cfg_add_bytes(FWCfgState *s, uint16_t key, void *data, size_t len) 617 { 618 fw_cfg_add_bytes_callback(s, key, NULL, NULL, NULL, data, len, true); 619 } 620 621 void fw_cfg_add_string(FWCfgState *s, uint16_t key, const char *value) 622 { 623 size_t sz = strlen(value) + 1; 624 625 fw_cfg_add_bytes(s, key, g_memdup(value, sz), sz); 626 } 627 628 void fw_cfg_add_i16(FWCfgState *s, uint16_t key, uint16_t value) 629 { 630 uint16_t *copy; 631 632 copy = g_malloc(sizeof(value)); 633 *copy = cpu_to_le16(value); 634 fw_cfg_add_bytes(s, key, copy, sizeof(value)); 635 } 636 637 void fw_cfg_modify_i16(FWCfgState *s, uint16_t key, uint16_t value) 638 { 639 uint16_t *copy, *old; 640 641 copy = g_malloc(sizeof(value)); 642 *copy = cpu_to_le16(value); 643 old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value)); 644 g_free(old); 645 } 646 647 void fw_cfg_add_i32(FWCfgState *s, uint16_t key, uint32_t value) 648 { 649 uint32_t *copy; 650 651 copy = g_malloc(sizeof(value)); 652 *copy = cpu_to_le32(value); 653 fw_cfg_add_bytes(s, key, copy, sizeof(value)); 654 } 655 656 void fw_cfg_add_i64(FWCfgState *s, uint16_t key, uint64_t value) 657 { 658 uint64_t *copy; 659 660 copy = g_malloc(sizeof(value)); 661 *copy = cpu_to_le64(value); 662 fw_cfg_add_bytes(s, key, copy, sizeof(value)); 663 } 664 665 void fw_cfg_set_order_override(FWCfgState *s, int order) 666 { 667 assert(s->fw_cfg_order_override == 0); 668 s->fw_cfg_order_override = order; 669 } 670 671 void fw_cfg_reset_order_override(FWCfgState *s) 672 { 673 assert(s->fw_cfg_order_override != 0); 674 s->fw_cfg_order_override = 0; 675 } 676 677 /* 678 * This is the legacy order list. For legacy systems, files are in 679 * the fw_cfg in the order defined below, by the "order" value. Note 680 * that some entries (VGA ROMs, NIC option ROMS, etc.) go into a 681 * specific area, but there may be more than one and they occur in the 682 * order that the user specifies them on the command line. Those are 683 * handled in a special manner, using the order override above. 684 * 685 * For non-legacy, the files are sorted by filename to avoid this kind 686 * of complexity in the future. 687 * 688 * This is only for x86, other arches don't implement versioning so 689 * they won't set legacy mode. 690 */ 691 static struct { 692 const char *name; 693 int order; 694 } fw_cfg_order[] = { 695 { "etc/boot-menu-wait", 10 }, 696 { "bootsplash.jpg", 11 }, 697 { "bootsplash.bmp", 12 }, 698 { "etc/boot-fail-wait", 15 }, 699 { "etc/smbios/smbios-tables", 20 }, 700 { "etc/smbios/smbios-anchor", 30 }, 701 { "etc/e820", 40 }, 702 { "etc/reserved-memory-end", 50 }, 703 { "genroms/kvmvapic.bin", 55 }, 704 { "genroms/linuxboot.bin", 60 }, 705 { }, /* VGA ROMs from pc_vga_init come here, 70. */ 706 { }, /* NIC option ROMs from pc_nic_init come here, 80. */ 707 { "etc/system-states", 90 }, 708 { }, /* User ROMs come here, 100. */ 709 { }, /* Device FW comes here, 110. */ 710 { "etc/extra-pci-roots", 120 }, 711 { "etc/acpi/tables", 130 }, 712 { "etc/table-loader", 140 }, 713 { "etc/tpm/log", 150 }, 714 { "etc/acpi/rsdp", 160 }, 715 { "bootorder", 170 }, 716 717 #define FW_CFG_ORDER_OVERRIDE_LAST 200 718 }; 719 720 static int get_fw_cfg_order(FWCfgState *s, const char *name) 721 { 722 int i; 723 724 if (s->fw_cfg_order_override > 0) { 725 return s->fw_cfg_order_override; 726 } 727 728 for (i = 0; i < ARRAY_SIZE(fw_cfg_order); i++) { 729 if (fw_cfg_order[i].name == NULL) { 730 continue; 731 } 732 733 if (strcmp(name, fw_cfg_order[i].name) == 0) { 734 return fw_cfg_order[i].order; 735 } 736 } 737 738 /* Stick unknown stuff at the end. */ 739 warn_report("Unknown firmware file in legacy mode: %s", name); 740 return FW_CFG_ORDER_OVERRIDE_LAST; 741 } 742 743 void fw_cfg_add_file_callback(FWCfgState *s, const char *filename, 744 FWCfgCallback select_cb, 745 FWCfgWriteCallback write_cb, 746 void *callback_opaque, 747 void *data, size_t len, bool read_only) 748 { 749 int i, index, count; 750 size_t dsize; 751 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 752 int order = 0; 753 754 if (!s->files) { 755 dsize = sizeof(uint32_t) + sizeof(FWCfgFile) * fw_cfg_file_slots(s); 756 s->files = g_malloc0(dsize); 757 fw_cfg_add_bytes(s, FW_CFG_FILE_DIR, s->files, dsize); 758 } 759 760 count = be32_to_cpu(s->files->count); 761 assert(count < fw_cfg_file_slots(s)); 762 763 /* Find the insertion point. */ 764 if (mc->legacy_fw_cfg_order) { 765 /* 766 * Sort by order. For files with the same order, we keep them 767 * in the sequence in which they were added. 768 */ 769 order = get_fw_cfg_order(s, filename); 770 for (index = count; 771 index > 0 && order < s->entry_order[index - 1]; 772 index--); 773 } else { 774 /* Sort by file name. */ 775 for (index = count; 776 index > 0 && strcmp(filename, s->files->f[index - 1].name) < 0; 777 index--); 778 } 779 780 /* 781 * Move all the entries from the index point and after down one 782 * to create a slot for the new entry. Because calculations are 783 * being done with the index, make it so that "i" is the current 784 * index and "i - 1" is the one being copied from, thus the 785 * unusual start and end in the for statement. 786 */ 787 for (i = count + 1; i > index; i--) { 788 s->files->f[i] = s->files->f[i - 1]; 789 s->files->f[i].select = cpu_to_be16(FW_CFG_FILE_FIRST + i); 790 s->entries[0][FW_CFG_FILE_FIRST + i] = 791 s->entries[0][FW_CFG_FILE_FIRST + i - 1]; 792 s->entry_order[i] = s->entry_order[i - 1]; 793 } 794 795 memset(&s->files->f[index], 0, sizeof(FWCfgFile)); 796 memset(&s->entries[0][FW_CFG_FILE_FIRST + index], 0, sizeof(FWCfgEntry)); 797 798 pstrcpy(s->files->f[index].name, sizeof(s->files->f[index].name), filename); 799 for (i = 0; i <= count; i++) { 800 if (i != index && 801 strcmp(s->files->f[index].name, s->files->f[i].name) == 0) { 802 error_report("duplicate fw_cfg file name: %s", 803 s->files->f[index].name); 804 exit(1); 805 } 806 } 807 808 fw_cfg_add_bytes_callback(s, FW_CFG_FILE_FIRST + index, 809 select_cb, write_cb, 810 callback_opaque, data, len, 811 read_only); 812 813 s->files->f[index].size = cpu_to_be32(len); 814 s->files->f[index].select = cpu_to_be16(FW_CFG_FILE_FIRST + index); 815 s->entry_order[index] = order; 816 trace_fw_cfg_add_file(s, index, s->files->f[index].name, len); 817 818 s->files->count = cpu_to_be32(count+1); 819 } 820 821 void fw_cfg_add_file(FWCfgState *s, const char *filename, 822 void *data, size_t len) 823 { 824 fw_cfg_add_file_callback(s, filename, NULL, NULL, NULL, data, len, true); 825 } 826 827 void *fw_cfg_modify_file(FWCfgState *s, const char *filename, 828 void *data, size_t len) 829 { 830 int i, index; 831 void *ptr = NULL; 832 833 assert(s->files); 834 835 index = be32_to_cpu(s->files->count); 836 assert(index < fw_cfg_file_slots(s)); 837 838 for (i = 0; i < index; i++) { 839 if (strcmp(filename, s->files->f[i].name) == 0) { 840 ptr = fw_cfg_modify_bytes_read(s, FW_CFG_FILE_FIRST + i, 841 data, len); 842 s->files->f[i].size = cpu_to_be32(len); 843 return ptr; 844 } 845 } 846 /* add new one */ 847 fw_cfg_add_file_callback(s, filename, NULL, NULL, NULL, data, len, true); 848 return NULL; 849 } 850 851 static void fw_cfg_machine_reset(void *opaque) 852 { 853 void *ptr; 854 size_t len; 855 FWCfgState *s = opaque; 856 char *bootindex = get_boot_devices_list(&len, false); 857 858 ptr = fw_cfg_modify_file(s, "bootorder", (uint8_t *)bootindex, len); 859 g_free(ptr); 860 } 861 862 static void fw_cfg_machine_ready(struct Notifier *n, void *data) 863 { 864 FWCfgState *s = container_of(n, FWCfgState, machine_ready); 865 qemu_register_reset(fw_cfg_machine_reset, s); 866 } 867 868 869 870 static void fw_cfg_common_realize(DeviceState *dev, Error **errp) 871 { 872 FWCfgState *s = FW_CFG(dev); 873 MachineState *machine = MACHINE(qdev_get_machine()); 874 uint32_t version = FW_CFG_VERSION; 875 876 if (!fw_cfg_find()) { 877 error_setg(errp, "at most one %s device is permitted", TYPE_FW_CFG); 878 return; 879 } 880 881 fw_cfg_add_bytes(s, FW_CFG_SIGNATURE, (char *)"QEMU", 4); 882 fw_cfg_add_bytes(s, FW_CFG_UUID, &qemu_uuid, 16); 883 fw_cfg_add_i16(s, FW_CFG_NOGRAPHIC, (uint16_t)!machine->enable_graphics); 884 fw_cfg_add_i16(s, FW_CFG_BOOT_MENU, (uint16_t)boot_menu); 885 fw_cfg_bootsplash(s); 886 fw_cfg_reboot(s); 887 888 if (s->dma_enabled) { 889 version |= FW_CFG_VERSION_DMA; 890 } 891 892 fw_cfg_add_i32(s, FW_CFG_ID, version); 893 894 s->machine_ready.notify = fw_cfg_machine_ready; 895 qemu_add_machine_init_done_notifier(&s->machine_ready); 896 } 897 898 FWCfgState *fw_cfg_init_io_dma(uint32_t iobase, uint32_t dma_iobase, 899 AddressSpace *dma_as) 900 { 901 DeviceState *dev; 902 SysBusDevice *sbd; 903 FWCfgIoState *ios; 904 FWCfgState *s; 905 bool dma_requested = dma_iobase && dma_as; 906 907 dev = qdev_create(NULL, TYPE_FW_CFG_IO); 908 if (!dma_requested) { 909 qdev_prop_set_bit(dev, "dma_enabled", false); 910 } 911 912 object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG, 913 OBJECT(dev), NULL); 914 qdev_init_nofail(dev); 915 916 sbd = SYS_BUS_DEVICE(dev); 917 ios = FW_CFG_IO(dev); 918 sysbus_add_io(sbd, iobase, &ios->comb_iomem); 919 920 s = FW_CFG(dev); 921 922 if (s->dma_enabled) { 923 /* 64 bits for the address field */ 924 s->dma_as = dma_as; 925 s->dma_addr = 0; 926 sysbus_add_io(sbd, dma_iobase, &s->dma_iomem); 927 } 928 929 return s; 930 } 931 932 FWCfgState *fw_cfg_init_io(uint32_t iobase) 933 { 934 return fw_cfg_init_io_dma(iobase, 0, NULL); 935 } 936 937 FWCfgState *fw_cfg_init_mem_wide(hwaddr ctl_addr, 938 hwaddr data_addr, uint32_t data_width, 939 hwaddr dma_addr, AddressSpace *dma_as) 940 { 941 DeviceState *dev; 942 SysBusDevice *sbd; 943 FWCfgState *s; 944 bool dma_requested = dma_addr && dma_as; 945 946 dev = qdev_create(NULL, TYPE_FW_CFG_MEM); 947 qdev_prop_set_uint32(dev, "data_width", data_width); 948 if (!dma_requested) { 949 qdev_prop_set_bit(dev, "dma_enabled", false); 950 } 951 952 object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG, 953 OBJECT(dev), NULL); 954 qdev_init_nofail(dev); 955 956 sbd = SYS_BUS_DEVICE(dev); 957 sysbus_mmio_map(sbd, 0, ctl_addr); 958 sysbus_mmio_map(sbd, 1, data_addr); 959 960 s = FW_CFG(dev); 961 962 if (s->dma_enabled) { 963 s->dma_as = dma_as; 964 s->dma_addr = 0; 965 sysbus_mmio_map(sbd, 2, dma_addr); 966 } 967 968 return s; 969 } 970 971 FWCfgState *fw_cfg_init_mem(hwaddr ctl_addr, hwaddr data_addr) 972 { 973 return fw_cfg_init_mem_wide(ctl_addr, data_addr, 974 fw_cfg_data_mem_ops.valid.max_access_size, 975 0, NULL); 976 } 977 978 979 FWCfgState *fw_cfg_find(void) 980 { 981 /* Returns NULL unless there is exactly one fw_cfg device */ 982 return FW_CFG(object_resolve_path_type("", TYPE_FW_CFG, NULL)); 983 } 984 985 986 static void fw_cfg_class_init(ObjectClass *klass, void *data) 987 { 988 DeviceClass *dc = DEVICE_CLASS(klass); 989 990 dc->reset = fw_cfg_reset; 991 dc->vmsd = &vmstate_fw_cfg; 992 } 993 994 static const TypeInfo fw_cfg_info = { 995 .name = TYPE_FW_CFG, 996 .parent = TYPE_SYS_BUS_DEVICE, 997 .abstract = true, 998 .instance_size = sizeof(FWCfgState), 999 .class_init = fw_cfg_class_init, 1000 }; 1001 1002 static void fw_cfg_file_slots_allocate(FWCfgState *s, Error **errp) 1003 { 1004 uint16_t file_slots_max; 1005 1006 if (fw_cfg_file_slots(s) < FW_CFG_FILE_SLOTS_MIN) { 1007 error_setg(errp, "\"file_slots\" must be at least 0x%x", 1008 FW_CFG_FILE_SLOTS_MIN); 1009 return; 1010 } 1011 1012 /* (UINT16_MAX & FW_CFG_ENTRY_MASK) is the highest inclusive selector value 1013 * that we permit. The actual (exclusive) value coming from the 1014 * configuration is (FW_CFG_FILE_FIRST + fw_cfg_file_slots(s)). */ 1015 file_slots_max = (UINT16_MAX & FW_CFG_ENTRY_MASK) - FW_CFG_FILE_FIRST + 1; 1016 if (fw_cfg_file_slots(s) > file_slots_max) { 1017 error_setg(errp, "\"file_slots\" must not exceed 0x%" PRIx16, 1018 file_slots_max); 1019 return; 1020 } 1021 1022 s->entries[0] = g_new0(FWCfgEntry, fw_cfg_max_entry(s)); 1023 s->entries[1] = g_new0(FWCfgEntry, fw_cfg_max_entry(s)); 1024 s->entry_order = g_new0(int, fw_cfg_max_entry(s)); 1025 } 1026 1027 static Property fw_cfg_io_properties[] = { 1028 DEFINE_PROP_BOOL("dma_enabled", FWCfgIoState, parent_obj.dma_enabled, 1029 true), 1030 DEFINE_PROP_UINT16("x-file-slots", FWCfgIoState, parent_obj.file_slots, 1031 FW_CFG_FILE_SLOTS_DFLT), 1032 DEFINE_PROP_END_OF_LIST(), 1033 }; 1034 1035 static void fw_cfg_io_realize(DeviceState *dev, Error **errp) 1036 { 1037 FWCfgIoState *s = FW_CFG_IO(dev); 1038 Error *local_err = NULL; 1039 1040 fw_cfg_file_slots_allocate(FW_CFG(s), &local_err); 1041 if (local_err) { 1042 error_propagate(errp, local_err); 1043 return; 1044 } 1045 1046 /* when using port i/o, the 8-bit data register ALWAYS overlaps 1047 * with half of the 16-bit control register. Hence, the total size 1048 * of the i/o region used is FW_CFG_CTL_SIZE */ 1049 memory_region_init_io(&s->comb_iomem, OBJECT(s), &fw_cfg_comb_mem_ops, 1050 FW_CFG(s), "fwcfg", FW_CFG_CTL_SIZE); 1051 1052 if (FW_CFG(s)->dma_enabled) { 1053 memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s), 1054 &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma", 1055 sizeof(dma_addr_t)); 1056 } 1057 1058 fw_cfg_common_realize(dev, errp); 1059 } 1060 1061 static void fw_cfg_io_class_init(ObjectClass *klass, void *data) 1062 { 1063 DeviceClass *dc = DEVICE_CLASS(klass); 1064 1065 dc->realize = fw_cfg_io_realize; 1066 dc->props = fw_cfg_io_properties; 1067 } 1068 1069 static const TypeInfo fw_cfg_io_info = { 1070 .name = TYPE_FW_CFG_IO, 1071 .parent = TYPE_FW_CFG, 1072 .instance_size = sizeof(FWCfgIoState), 1073 .class_init = fw_cfg_io_class_init, 1074 }; 1075 1076 1077 static Property fw_cfg_mem_properties[] = { 1078 DEFINE_PROP_UINT32("data_width", FWCfgMemState, data_width, -1), 1079 DEFINE_PROP_BOOL("dma_enabled", FWCfgMemState, parent_obj.dma_enabled, 1080 true), 1081 DEFINE_PROP_UINT16("x-file-slots", FWCfgMemState, parent_obj.file_slots, 1082 FW_CFG_FILE_SLOTS_DFLT), 1083 DEFINE_PROP_END_OF_LIST(), 1084 }; 1085 1086 static void fw_cfg_mem_realize(DeviceState *dev, Error **errp) 1087 { 1088 FWCfgMemState *s = FW_CFG_MEM(dev); 1089 SysBusDevice *sbd = SYS_BUS_DEVICE(dev); 1090 const MemoryRegionOps *data_ops = &fw_cfg_data_mem_ops; 1091 Error *local_err = NULL; 1092 1093 fw_cfg_file_slots_allocate(FW_CFG(s), &local_err); 1094 if (local_err) { 1095 error_propagate(errp, local_err); 1096 return; 1097 } 1098 1099 memory_region_init_io(&s->ctl_iomem, OBJECT(s), &fw_cfg_ctl_mem_ops, 1100 FW_CFG(s), "fwcfg.ctl", FW_CFG_CTL_SIZE); 1101 sysbus_init_mmio(sbd, &s->ctl_iomem); 1102 1103 if (s->data_width > data_ops->valid.max_access_size) { 1104 /* memberwise copy because the "old_mmio" member is const */ 1105 s->wide_data_ops.read = data_ops->read; 1106 s->wide_data_ops.write = data_ops->write; 1107 s->wide_data_ops.endianness = data_ops->endianness; 1108 s->wide_data_ops.valid = data_ops->valid; 1109 s->wide_data_ops.impl = data_ops->impl; 1110 1111 s->wide_data_ops.valid.max_access_size = s->data_width; 1112 s->wide_data_ops.impl.max_access_size = s->data_width; 1113 data_ops = &s->wide_data_ops; 1114 } 1115 memory_region_init_io(&s->data_iomem, OBJECT(s), data_ops, FW_CFG(s), 1116 "fwcfg.data", data_ops->valid.max_access_size); 1117 sysbus_init_mmio(sbd, &s->data_iomem); 1118 1119 if (FW_CFG(s)->dma_enabled) { 1120 memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s), 1121 &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma", 1122 sizeof(dma_addr_t)); 1123 sysbus_init_mmio(sbd, &FW_CFG(s)->dma_iomem); 1124 } 1125 1126 fw_cfg_common_realize(dev, errp); 1127 } 1128 1129 static void fw_cfg_mem_class_init(ObjectClass *klass, void *data) 1130 { 1131 DeviceClass *dc = DEVICE_CLASS(klass); 1132 1133 dc->realize = fw_cfg_mem_realize; 1134 dc->props = fw_cfg_mem_properties; 1135 } 1136 1137 static const TypeInfo fw_cfg_mem_info = { 1138 .name = TYPE_FW_CFG_MEM, 1139 .parent = TYPE_FW_CFG, 1140 .instance_size = sizeof(FWCfgMemState), 1141 .class_init = fw_cfg_mem_class_init, 1142 }; 1143 1144 1145 static void fw_cfg_register_types(void) 1146 { 1147 type_register_static(&fw_cfg_info); 1148 type_register_static(&fw_cfg_io_info); 1149 type_register_static(&fw_cfg_mem_info); 1150 } 1151 1152 type_init(fw_cfg_register_types) 1153