xref: /openbmc/qemu/hw/nvram/fw_cfg.c (revision 0a553c58)
1 /*
2  * QEMU Firmware configuration device emulation
3  *
4  * Copyright (c) 2008 Gleb Natapov
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "hw/hw.h"
27 #include "sysemu/sysemu.h"
28 #include "sysemu/dma.h"
29 #include "hw/boards.h"
30 #include "hw/nvram/fw_cfg.h"
31 #include "hw/sysbus.h"
32 #include "trace.h"
33 #include "qemu/error-report.h"
34 #include "qemu/option.h"
35 #include "qemu/config-file.h"
36 #include "qemu/cutils.h"
37 #include "qapi/error.h"
38 
39 #define FW_CFG_FILE_SLOTS_DFLT 0x20
40 
41 /* FW_CFG_VERSION bits */
42 #define FW_CFG_VERSION      0x01
43 #define FW_CFG_VERSION_DMA  0x02
44 
45 /* FW_CFG_DMA_CONTROL bits */
46 #define FW_CFG_DMA_CTL_ERROR   0x01
47 #define FW_CFG_DMA_CTL_READ    0x02
48 #define FW_CFG_DMA_CTL_SKIP    0x04
49 #define FW_CFG_DMA_CTL_SELECT  0x08
50 #define FW_CFG_DMA_CTL_WRITE   0x10
51 
52 #define FW_CFG_DMA_SIGNATURE 0x51454d5520434647ULL /* "QEMU CFG" */
53 
54 struct FWCfgEntry {
55     uint32_t len;
56     bool allow_write;
57     uint8_t *data;
58     void *callback_opaque;
59     FWCfgCallback select_cb;
60     FWCfgWriteCallback write_cb;
61 };
62 
63 #define JPG_FILE 0
64 #define BMP_FILE 1
65 
66 static char *read_splashfile(char *filename, gsize *file_sizep,
67                              int *file_typep)
68 {
69     GError *err = NULL;
70     gchar *content;
71     int file_type;
72     unsigned int filehead;
73     int bmp_bpp;
74 
75     if (!g_file_get_contents(filename, &content, file_sizep, &err)) {
76         error_report("failed to read splash file '%s': %s",
77                      filename, err->message);
78         g_error_free(err);
79         return NULL;
80     }
81 
82     /* check file size */
83     if (*file_sizep < 30) {
84         goto error;
85     }
86 
87     /* check magic ID */
88     filehead = lduw_le_p(content);
89     if (filehead == 0xd8ff) {
90         file_type = JPG_FILE;
91     } else if (filehead == 0x4d42) {
92         file_type = BMP_FILE;
93     } else {
94         goto error;
95     }
96 
97     /* check BMP bpp */
98     if (file_type == BMP_FILE) {
99         bmp_bpp = lduw_le_p(&content[28]);
100         if (bmp_bpp != 24) {
101             goto error;
102         }
103     }
104 
105     /* return values */
106     *file_typep = file_type;
107 
108     return content;
109 
110 error:
111     error_report("splash file '%s' format not recognized; must be JPEG "
112                  "or 24 bit BMP", filename);
113     g_free(content);
114     return NULL;
115 }
116 
117 static void fw_cfg_bootsplash(FWCfgState *s)
118 {
119     const char *boot_splash_filename = NULL;
120     const char *boot_splash_time = NULL;
121     char *filename, *file_data;
122     gsize file_size;
123     int file_type;
124 
125     /* get user configuration */
126     QemuOptsList *plist = qemu_find_opts("boot-opts");
127     QemuOpts *opts = QTAILQ_FIRST(&plist->head);
128     boot_splash_filename = qemu_opt_get(opts, "splash");
129     boot_splash_time = qemu_opt_get(opts, "splash-time");
130 
131     /* insert splash time if user configurated */
132     if (boot_splash_time) {
133         int64_t bst_val = qemu_opt_get_number(opts, "splash-time", -1);
134         uint16_t bst_le16;
135 
136         /* validate the input */
137         if (bst_val < 0 || bst_val > 0xffff) {
138             error_report("splash-time is invalid,"
139                          "it should be a value between 0 and 65535");
140             exit(1);
141         }
142         /* use little endian format */
143         bst_le16 = cpu_to_le16(bst_val);
144         fw_cfg_add_file(s, "etc/boot-menu-wait",
145                         g_memdup(&bst_le16, sizeof bst_le16), sizeof bst_le16);
146     }
147 
148     /* insert splash file if user configurated */
149     if (boot_splash_filename) {
150         filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, boot_splash_filename);
151         if (filename == NULL) {
152             error_report("failed to find file '%s'", boot_splash_filename);
153             return;
154         }
155 
156         /* loading file data */
157         file_data = read_splashfile(filename, &file_size, &file_type);
158         if (file_data == NULL) {
159             g_free(filename);
160             return;
161         }
162         g_free(boot_splash_filedata);
163         boot_splash_filedata = (uint8_t *)file_data;
164 
165         /* insert data */
166         if (file_type == JPG_FILE) {
167             fw_cfg_add_file(s, "bootsplash.jpg",
168                             boot_splash_filedata, file_size);
169         } else {
170             fw_cfg_add_file(s, "bootsplash.bmp",
171                             boot_splash_filedata, file_size);
172         }
173         g_free(filename);
174     }
175 }
176 
177 static void fw_cfg_reboot(FWCfgState *s)
178 {
179     const char *reboot_timeout = NULL;
180     int64_t rt_val = -1;
181 
182     /* get user configuration */
183     QemuOptsList *plist = qemu_find_opts("boot-opts");
184     QemuOpts *opts = QTAILQ_FIRST(&plist->head);
185     reboot_timeout = qemu_opt_get(opts, "reboot-timeout");
186 
187     if (reboot_timeout) {
188         rt_val = qemu_opt_get_number(opts, "reboot-timeout", -1);
189         /* validate the input */
190         if (rt_val < 0 || rt_val > 0xffff) {
191             error_report("reboot timeout is invalid,"
192                          "it should be a value between 0 and 65535");
193             exit(1);
194         }
195     }
196 
197     fw_cfg_add_file(s, "etc/boot-fail-wait", g_memdup(&rt_val, 4), 4);
198 }
199 
200 static void fw_cfg_write(FWCfgState *s, uint8_t value)
201 {
202     /* nothing, write support removed in QEMU v2.4+ */
203 }
204 
205 static inline uint16_t fw_cfg_file_slots(const FWCfgState *s)
206 {
207     return s->file_slots;
208 }
209 
210 /* Note: this function returns an exclusive limit. */
211 static inline uint32_t fw_cfg_max_entry(const FWCfgState *s)
212 {
213     return FW_CFG_FILE_FIRST + fw_cfg_file_slots(s);
214 }
215 
216 static int fw_cfg_select(FWCfgState *s, uint16_t key)
217 {
218     int arch, ret;
219     FWCfgEntry *e;
220 
221     s->cur_offset = 0;
222     if ((key & FW_CFG_ENTRY_MASK) >= fw_cfg_max_entry(s)) {
223         s->cur_entry = FW_CFG_INVALID;
224         ret = 0;
225     } else {
226         s->cur_entry = key;
227         ret = 1;
228         /* entry successfully selected, now run callback if present */
229         arch = !!(key & FW_CFG_ARCH_LOCAL);
230         e = &s->entries[arch][key & FW_CFG_ENTRY_MASK];
231         if (e->select_cb) {
232             e->select_cb(e->callback_opaque);
233         }
234     }
235 
236     trace_fw_cfg_select(s, key, ret);
237     return ret;
238 }
239 
240 static uint64_t fw_cfg_data_read(void *opaque, hwaddr addr, unsigned size)
241 {
242     FWCfgState *s = opaque;
243     int arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL);
244     FWCfgEntry *e = (s->cur_entry == FW_CFG_INVALID) ? NULL :
245                     &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK];
246     uint64_t value = 0;
247 
248     assert(size > 0 && size <= sizeof(value));
249     if (s->cur_entry != FW_CFG_INVALID && e->data && s->cur_offset < e->len) {
250         /* The least significant 'size' bytes of the return value are
251          * expected to contain a string preserving portion of the item
252          * data, padded with zeros on the right in case we run out early.
253          * In technical terms, we're composing the host-endian representation
254          * of the big endian interpretation of the fw_cfg string.
255          */
256         do {
257             value = (value << 8) | e->data[s->cur_offset++];
258         } while (--size && s->cur_offset < e->len);
259         /* If size is still not zero, we *did* run out early, so continue
260          * left-shifting, to add the appropriate number of padding zeros
261          * on the right.
262          */
263         value <<= 8 * size;
264     }
265 
266     trace_fw_cfg_read(s, value);
267     return value;
268 }
269 
270 static void fw_cfg_data_mem_write(void *opaque, hwaddr addr,
271                                   uint64_t value, unsigned size)
272 {
273     FWCfgState *s = opaque;
274     unsigned i = size;
275 
276     do {
277         fw_cfg_write(s, value >> (8 * --i));
278     } while (i);
279 }
280 
281 static void fw_cfg_dma_transfer(FWCfgState *s)
282 {
283     dma_addr_t len;
284     FWCfgDmaAccess dma;
285     int arch;
286     FWCfgEntry *e;
287     int read = 0, write = 0;
288     dma_addr_t dma_addr;
289 
290     /* Reset the address before the next access */
291     dma_addr = s->dma_addr;
292     s->dma_addr = 0;
293 
294     if (dma_memory_read(s->dma_as, dma_addr, &dma, sizeof(dma))) {
295         stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control),
296                    FW_CFG_DMA_CTL_ERROR);
297         return;
298     }
299 
300     dma.address = be64_to_cpu(dma.address);
301     dma.length = be32_to_cpu(dma.length);
302     dma.control = be32_to_cpu(dma.control);
303 
304     if (dma.control & FW_CFG_DMA_CTL_SELECT) {
305         fw_cfg_select(s, dma.control >> 16);
306     }
307 
308     arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL);
309     e = (s->cur_entry == FW_CFG_INVALID) ? NULL :
310         &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK];
311 
312     if (dma.control & FW_CFG_DMA_CTL_READ) {
313         read = 1;
314         write = 0;
315     } else if (dma.control & FW_CFG_DMA_CTL_WRITE) {
316         read = 0;
317         write = 1;
318     } else if (dma.control & FW_CFG_DMA_CTL_SKIP) {
319         read = 0;
320         write = 0;
321     } else {
322         dma.length = 0;
323     }
324 
325     dma.control = 0;
326 
327     while (dma.length > 0 && !(dma.control & FW_CFG_DMA_CTL_ERROR)) {
328         if (s->cur_entry == FW_CFG_INVALID || !e->data ||
329                                 s->cur_offset >= e->len) {
330             len = dma.length;
331 
332             /* If the access is not a read access, it will be a skip access,
333              * tested before.
334              */
335             if (read) {
336                 if (dma_memory_set(s->dma_as, dma.address, 0, len)) {
337                     dma.control |= FW_CFG_DMA_CTL_ERROR;
338                 }
339             }
340             if (write) {
341                 dma.control |= FW_CFG_DMA_CTL_ERROR;
342             }
343         } else {
344             if (dma.length <= (e->len - s->cur_offset)) {
345                 len = dma.length;
346             } else {
347                 len = (e->len - s->cur_offset);
348             }
349 
350             /* If the access is not a read access, it will be a skip access,
351              * tested before.
352              */
353             if (read) {
354                 if (dma_memory_write(s->dma_as, dma.address,
355                                     &e->data[s->cur_offset], len)) {
356                     dma.control |= FW_CFG_DMA_CTL_ERROR;
357                 }
358             }
359             if (write) {
360                 if (!e->allow_write ||
361                     len != dma.length ||
362                     dma_memory_read(s->dma_as, dma.address,
363                                     &e->data[s->cur_offset], len)) {
364                     dma.control |= FW_CFG_DMA_CTL_ERROR;
365                 } else if (e->write_cb) {
366                     e->write_cb(e->callback_opaque, s->cur_offset, len);
367                 }
368             }
369 
370             s->cur_offset += len;
371         }
372 
373         dma.address += len;
374         dma.length  -= len;
375 
376     }
377 
378     stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control),
379                 dma.control);
380 
381     trace_fw_cfg_read(s, 0);
382 }
383 
384 static uint64_t fw_cfg_dma_mem_read(void *opaque, hwaddr addr,
385                                     unsigned size)
386 {
387     /* Return a signature value (and handle various read sizes) */
388     return extract64(FW_CFG_DMA_SIGNATURE, (8 - addr - size) * 8, size * 8);
389 }
390 
391 static void fw_cfg_dma_mem_write(void *opaque, hwaddr addr,
392                                  uint64_t value, unsigned size)
393 {
394     FWCfgState *s = opaque;
395 
396     if (size == 4) {
397         if (addr == 0) {
398             /* FWCfgDmaAccess high address */
399             s->dma_addr = value << 32;
400         } else if (addr == 4) {
401             /* FWCfgDmaAccess low address */
402             s->dma_addr |= value;
403             fw_cfg_dma_transfer(s);
404         }
405     } else if (size == 8 && addr == 0) {
406         s->dma_addr = value;
407         fw_cfg_dma_transfer(s);
408     }
409 }
410 
411 static bool fw_cfg_dma_mem_valid(void *opaque, hwaddr addr,
412                                  unsigned size, bool is_write,
413                                  MemTxAttrs attrs)
414 {
415     return !is_write || ((size == 4 && (addr == 0 || addr == 4)) ||
416                          (size == 8 && addr == 0));
417 }
418 
419 static bool fw_cfg_data_mem_valid(void *opaque, hwaddr addr,
420                                   unsigned size, bool is_write,
421                                   MemTxAttrs attrs)
422 {
423     return addr == 0;
424 }
425 
426 static uint64_t fw_cfg_ctl_mem_read(void *opaque, hwaddr addr, unsigned size)
427 {
428     return 0;
429 }
430 
431 static void fw_cfg_ctl_mem_write(void *opaque, hwaddr addr,
432                                  uint64_t value, unsigned size)
433 {
434     fw_cfg_select(opaque, (uint16_t)value);
435 }
436 
437 static bool fw_cfg_ctl_mem_valid(void *opaque, hwaddr addr,
438                                  unsigned size, bool is_write,
439                                  MemTxAttrs attrs)
440 {
441     return is_write && size == 2;
442 }
443 
444 static void fw_cfg_comb_write(void *opaque, hwaddr addr,
445                               uint64_t value, unsigned size)
446 {
447     switch (size) {
448     case 1:
449         fw_cfg_write(opaque, (uint8_t)value);
450         break;
451     case 2:
452         fw_cfg_select(opaque, (uint16_t)value);
453         break;
454     }
455 }
456 
457 static bool fw_cfg_comb_valid(void *opaque, hwaddr addr,
458                               unsigned size, bool is_write,
459                               MemTxAttrs attrs)
460 {
461     return (size == 1) || (is_write && size == 2);
462 }
463 
464 static const MemoryRegionOps fw_cfg_ctl_mem_ops = {
465     .read = fw_cfg_ctl_mem_read,
466     .write = fw_cfg_ctl_mem_write,
467     .endianness = DEVICE_BIG_ENDIAN,
468     .valid.accepts = fw_cfg_ctl_mem_valid,
469 };
470 
471 static const MemoryRegionOps fw_cfg_data_mem_ops = {
472     .read = fw_cfg_data_read,
473     .write = fw_cfg_data_mem_write,
474     .endianness = DEVICE_BIG_ENDIAN,
475     .valid = {
476         .min_access_size = 1,
477         .max_access_size = 1,
478         .accepts = fw_cfg_data_mem_valid,
479     },
480 };
481 
482 static const MemoryRegionOps fw_cfg_comb_mem_ops = {
483     .read = fw_cfg_data_read,
484     .write = fw_cfg_comb_write,
485     .endianness = DEVICE_LITTLE_ENDIAN,
486     .valid.accepts = fw_cfg_comb_valid,
487 };
488 
489 static const MemoryRegionOps fw_cfg_dma_mem_ops = {
490     .read = fw_cfg_dma_mem_read,
491     .write = fw_cfg_dma_mem_write,
492     .endianness = DEVICE_BIG_ENDIAN,
493     .valid.accepts = fw_cfg_dma_mem_valid,
494     .valid.max_access_size = 8,
495     .impl.max_access_size = 8,
496 };
497 
498 static void fw_cfg_reset(DeviceState *d)
499 {
500     FWCfgState *s = FW_CFG(d);
501 
502     /* we never register a read callback for FW_CFG_SIGNATURE */
503     fw_cfg_select(s, FW_CFG_SIGNATURE);
504 }
505 
506 /* Save restore 32 bit int as uint16_t
507    This is a Big hack, but it is how the old state did it.
508    Or we broke compatibility in the state, or we can't use struct tm
509  */
510 
511 static int get_uint32_as_uint16(QEMUFile *f, void *pv, size_t size,
512                                 const VMStateField *field)
513 {
514     uint32_t *v = pv;
515     *v = qemu_get_be16(f);
516     return 0;
517 }
518 
519 static int put_unused(QEMUFile *f, void *pv, size_t size,
520                       const VMStateField *field, QJSON *vmdesc)
521 {
522     fprintf(stderr, "uint32_as_uint16 is only used for backward compatibility.\n");
523     fprintf(stderr, "This functions shouldn't be called.\n");
524 
525     return 0;
526 }
527 
528 static const VMStateInfo vmstate_hack_uint32_as_uint16 = {
529     .name = "int32_as_uint16",
530     .get  = get_uint32_as_uint16,
531     .put  = put_unused,
532 };
533 
534 #define VMSTATE_UINT16_HACK(_f, _s, _t)                                    \
535     VMSTATE_SINGLE_TEST(_f, _s, _t, 0, vmstate_hack_uint32_as_uint16, uint32_t)
536 
537 
538 static bool is_version_1(void *opaque, int version_id)
539 {
540     return version_id == 1;
541 }
542 
543 bool fw_cfg_dma_enabled(void *opaque)
544 {
545     FWCfgState *s = opaque;
546 
547     return s->dma_enabled;
548 }
549 
550 static const VMStateDescription vmstate_fw_cfg_dma = {
551     .name = "fw_cfg/dma",
552     .needed = fw_cfg_dma_enabled,
553     .fields = (VMStateField[]) {
554         VMSTATE_UINT64(dma_addr, FWCfgState),
555         VMSTATE_END_OF_LIST()
556     },
557 };
558 
559 static const VMStateDescription vmstate_fw_cfg = {
560     .name = "fw_cfg",
561     .version_id = 2,
562     .minimum_version_id = 1,
563     .fields = (VMStateField[]) {
564         VMSTATE_UINT16(cur_entry, FWCfgState),
565         VMSTATE_UINT16_HACK(cur_offset, FWCfgState, is_version_1),
566         VMSTATE_UINT32_V(cur_offset, FWCfgState, 2),
567         VMSTATE_END_OF_LIST()
568     },
569     .subsections = (const VMStateDescription*[]) {
570         &vmstate_fw_cfg_dma,
571         NULL,
572     }
573 };
574 
575 static void fw_cfg_add_bytes_callback(FWCfgState *s, uint16_t key,
576                                       FWCfgCallback select_cb,
577                                       FWCfgWriteCallback write_cb,
578                                       void *callback_opaque,
579                                       void *data, size_t len,
580                                       bool read_only)
581 {
582     int arch = !!(key & FW_CFG_ARCH_LOCAL);
583 
584     key &= FW_CFG_ENTRY_MASK;
585 
586     assert(key < fw_cfg_max_entry(s) && len < UINT32_MAX);
587     assert(s->entries[arch][key].data == NULL); /* avoid key conflict */
588 
589     s->entries[arch][key].data = data;
590     s->entries[arch][key].len = (uint32_t)len;
591     s->entries[arch][key].select_cb = select_cb;
592     s->entries[arch][key].write_cb = write_cb;
593     s->entries[arch][key].callback_opaque = callback_opaque;
594     s->entries[arch][key].allow_write = !read_only;
595 }
596 
597 static void *fw_cfg_modify_bytes_read(FWCfgState *s, uint16_t key,
598                                               void *data, size_t len)
599 {
600     void *ptr;
601     int arch = !!(key & FW_CFG_ARCH_LOCAL);
602 
603     key &= FW_CFG_ENTRY_MASK;
604 
605     assert(key < fw_cfg_max_entry(s) && len < UINT32_MAX);
606 
607     /* return the old data to the function caller, avoid memory leak */
608     ptr = s->entries[arch][key].data;
609     s->entries[arch][key].data = data;
610     s->entries[arch][key].len = len;
611     s->entries[arch][key].callback_opaque = NULL;
612     s->entries[arch][key].allow_write = false;
613 
614     return ptr;
615 }
616 
617 void fw_cfg_add_bytes(FWCfgState *s, uint16_t key, void *data, size_t len)
618 {
619     fw_cfg_add_bytes_callback(s, key, NULL, NULL, NULL, data, len, true);
620 }
621 
622 void fw_cfg_add_string(FWCfgState *s, uint16_t key, const char *value)
623 {
624     size_t sz = strlen(value) + 1;
625 
626     fw_cfg_add_bytes(s, key, g_memdup(value, sz), sz);
627 }
628 
629 void fw_cfg_add_i16(FWCfgState *s, uint16_t key, uint16_t value)
630 {
631     uint16_t *copy;
632 
633     copy = g_malloc(sizeof(value));
634     *copy = cpu_to_le16(value);
635     fw_cfg_add_bytes(s, key, copy, sizeof(value));
636 }
637 
638 void fw_cfg_modify_i16(FWCfgState *s, uint16_t key, uint16_t value)
639 {
640     uint16_t *copy, *old;
641 
642     copy = g_malloc(sizeof(value));
643     *copy = cpu_to_le16(value);
644     old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value));
645     g_free(old);
646 }
647 
648 void fw_cfg_add_i32(FWCfgState *s, uint16_t key, uint32_t value)
649 {
650     uint32_t *copy;
651 
652     copy = g_malloc(sizeof(value));
653     *copy = cpu_to_le32(value);
654     fw_cfg_add_bytes(s, key, copy, sizeof(value));
655 }
656 
657 void fw_cfg_add_i64(FWCfgState *s, uint16_t key, uint64_t value)
658 {
659     uint64_t *copy;
660 
661     copy = g_malloc(sizeof(value));
662     *copy = cpu_to_le64(value);
663     fw_cfg_add_bytes(s, key, copy, sizeof(value));
664 }
665 
666 void fw_cfg_set_order_override(FWCfgState *s, int order)
667 {
668     assert(s->fw_cfg_order_override == 0);
669     s->fw_cfg_order_override = order;
670 }
671 
672 void fw_cfg_reset_order_override(FWCfgState *s)
673 {
674     assert(s->fw_cfg_order_override != 0);
675     s->fw_cfg_order_override = 0;
676 }
677 
678 /*
679  * This is the legacy order list.  For legacy systems, files are in
680  * the fw_cfg in the order defined below, by the "order" value.  Note
681  * that some entries (VGA ROMs, NIC option ROMS, etc.) go into a
682  * specific area, but there may be more than one and they occur in the
683  * order that the user specifies them on the command line.  Those are
684  * handled in a special manner, using the order override above.
685  *
686  * For non-legacy, the files are sorted by filename to avoid this kind
687  * of complexity in the future.
688  *
689  * This is only for x86, other arches don't implement versioning so
690  * they won't set legacy mode.
691  */
692 static struct {
693     const char *name;
694     int order;
695 } fw_cfg_order[] = {
696     { "etc/boot-menu-wait", 10 },
697     { "bootsplash.jpg", 11 },
698     { "bootsplash.bmp", 12 },
699     { "etc/boot-fail-wait", 15 },
700     { "etc/smbios/smbios-tables", 20 },
701     { "etc/smbios/smbios-anchor", 30 },
702     { "etc/e820", 40 },
703     { "etc/reserved-memory-end", 50 },
704     { "genroms/kvmvapic.bin", 55 },
705     { "genroms/linuxboot.bin", 60 },
706     { }, /* VGA ROMs from pc_vga_init come here, 70. */
707     { }, /* NIC option ROMs from pc_nic_init come here, 80. */
708     { "etc/system-states", 90 },
709     { }, /* User ROMs come here, 100. */
710     { }, /* Device FW comes here, 110. */
711     { "etc/extra-pci-roots", 120 },
712     { "etc/acpi/tables", 130 },
713     { "etc/table-loader", 140 },
714     { "etc/tpm/log", 150 },
715     { "etc/acpi/rsdp", 160 },
716     { "bootorder", 170 },
717 
718 #define FW_CFG_ORDER_OVERRIDE_LAST 200
719 };
720 
721 static int get_fw_cfg_order(FWCfgState *s, const char *name)
722 {
723     int i;
724 
725     if (s->fw_cfg_order_override > 0) {
726         return s->fw_cfg_order_override;
727     }
728 
729     for (i = 0; i < ARRAY_SIZE(fw_cfg_order); i++) {
730         if (fw_cfg_order[i].name == NULL) {
731             continue;
732         }
733 
734         if (strcmp(name, fw_cfg_order[i].name) == 0) {
735             return fw_cfg_order[i].order;
736         }
737     }
738 
739     /* Stick unknown stuff at the end. */
740     warn_report("Unknown firmware file in legacy mode: %s", name);
741     return FW_CFG_ORDER_OVERRIDE_LAST;
742 }
743 
744 void fw_cfg_add_file_callback(FWCfgState *s,  const char *filename,
745                               FWCfgCallback select_cb,
746                               FWCfgWriteCallback write_cb,
747                               void *callback_opaque,
748                               void *data, size_t len, bool read_only)
749 {
750     int i, index, count;
751     size_t dsize;
752     MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
753     int order = 0;
754 
755     if (!s->files) {
756         dsize = sizeof(uint32_t) + sizeof(FWCfgFile) * fw_cfg_file_slots(s);
757         s->files = g_malloc0(dsize);
758         fw_cfg_add_bytes(s, FW_CFG_FILE_DIR, s->files, dsize);
759     }
760 
761     count = be32_to_cpu(s->files->count);
762     assert(count < fw_cfg_file_slots(s));
763 
764     /* Find the insertion point. */
765     if (mc->legacy_fw_cfg_order) {
766         /*
767          * Sort by order. For files with the same order, we keep them
768          * in the sequence in which they were added.
769          */
770         order = get_fw_cfg_order(s, filename);
771         for (index = count;
772              index > 0 && order < s->entry_order[index - 1];
773              index--);
774     } else {
775         /* Sort by file name. */
776         for (index = count;
777              index > 0 && strcmp(filename, s->files->f[index - 1].name) < 0;
778              index--);
779     }
780 
781     /*
782      * Move all the entries from the index point and after down one
783      * to create a slot for the new entry.  Because calculations are
784      * being done with the index, make it so that "i" is the current
785      * index and "i - 1" is the one being copied from, thus the
786      * unusual start and end in the for statement.
787      */
788     for (i = count; i > index; i--) {
789         s->files->f[i] = s->files->f[i - 1];
790         s->files->f[i].select = cpu_to_be16(FW_CFG_FILE_FIRST + i);
791         s->entries[0][FW_CFG_FILE_FIRST + i] =
792             s->entries[0][FW_CFG_FILE_FIRST + i - 1];
793         s->entry_order[i] = s->entry_order[i - 1];
794     }
795 
796     memset(&s->files->f[index], 0, sizeof(FWCfgFile));
797     memset(&s->entries[0][FW_CFG_FILE_FIRST + index], 0, sizeof(FWCfgEntry));
798 
799     pstrcpy(s->files->f[index].name, sizeof(s->files->f[index].name), filename);
800     for (i = 0; i <= count; i++) {
801         if (i != index &&
802             strcmp(s->files->f[index].name, s->files->f[i].name) == 0) {
803             error_report("duplicate fw_cfg file name: %s",
804                          s->files->f[index].name);
805             exit(1);
806         }
807     }
808 
809     fw_cfg_add_bytes_callback(s, FW_CFG_FILE_FIRST + index,
810                               select_cb, write_cb,
811                               callback_opaque, data, len,
812                               read_only);
813 
814     s->files->f[index].size   = cpu_to_be32(len);
815     s->files->f[index].select = cpu_to_be16(FW_CFG_FILE_FIRST + index);
816     s->entry_order[index] = order;
817     trace_fw_cfg_add_file(s, index, s->files->f[index].name, len);
818 
819     s->files->count = cpu_to_be32(count+1);
820 }
821 
822 void fw_cfg_add_file(FWCfgState *s,  const char *filename,
823                      void *data, size_t len)
824 {
825     fw_cfg_add_file_callback(s, filename, NULL, NULL, NULL, data, len, true);
826 }
827 
828 void *fw_cfg_modify_file(FWCfgState *s, const char *filename,
829                         void *data, size_t len)
830 {
831     int i, index;
832     void *ptr = NULL;
833 
834     assert(s->files);
835 
836     index = be32_to_cpu(s->files->count);
837 
838     for (i = 0; i < index; i++) {
839         if (strcmp(filename, s->files->f[i].name) == 0) {
840             ptr = fw_cfg_modify_bytes_read(s, FW_CFG_FILE_FIRST + i,
841                                            data, len);
842             s->files->f[i].size   = cpu_to_be32(len);
843             return ptr;
844         }
845     }
846 
847     assert(index < fw_cfg_file_slots(s));
848 
849     /* add new one */
850     fw_cfg_add_file_callback(s, filename, NULL, NULL, NULL, data, len, true);
851     return NULL;
852 }
853 
854 static void fw_cfg_machine_reset(void *opaque)
855 {
856     void *ptr;
857     size_t len;
858     FWCfgState *s = opaque;
859     char *bootindex = get_boot_devices_list(&len);
860 
861     ptr = fw_cfg_modify_file(s, "bootorder", (uint8_t *)bootindex, len);
862     g_free(ptr);
863 }
864 
865 static void fw_cfg_machine_ready(struct Notifier *n, void *data)
866 {
867     FWCfgState *s = container_of(n, FWCfgState, machine_ready);
868     qemu_register_reset(fw_cfg_machine_reset, s);
869 }
870 
871 
872 
873 static void fw_cfg_common_realize(DeviceState *dev, Error **errp)
874 {
875     FWCfgState *s = FW_CFG(dev);
876     MachineState *machine = MACHINE(qdev_get_machine());
877     uint32_t version = FW_CFG_VERSION;
878 
879     if (!fw_cfg_find()) {
880         error_setg(errp, "at most one %s device is permitted", TYPE_FW_CFG);
881         return;
882     }
883 
884     fw_cfg_add_bytes(s, FW_CFG_SIGNATURE, (char *)"QEMU", 4);
885     fw_cfg_add_bytes(s, FW_CFG_UUID, &qemu_uuid, 16);
886     fw_cfg_add_i16(s, FW_CFG_NOGRAPHIC, (uint16_t)!machine->enable_graphics);
887     fw_cfg_add_i16(s, FW_CFG_BOOT_MENU, (uint16_t)boot_menu);
888     fw_cfg_bootsplash(s);
889     fw_cfg_reboot(s);
890 
891     if (s->dma_enabled) {
892         version |= FW_CFG_VERSION_DMA;
893     }
894 
895     fw_cfg_add_i32(s, FW_CFG_ID, version);
896 
897     s->machine_ready.notify = fw_cfg_machine_ready;
898     qemu_add_machine_init_done_notifier(&s->machine_ready);
899 }
900 
901 FWCfgState *fw_cfg_init_io_dma(uint32_t iobase, uint32_t dma_iobase,
902                                 AddressSpace *dma_as)
903 {
904     DeviceState *dev;
905     SysBusDevice *sbd;
906     FWCfgIoState *ios;
907     FWCfgState *s;
908     bool dma_requested = dma_iobase && dma_as;
909 
910     dev = qdev_create(NULL, TYPE_FW_CFG_IO);
911     if (!dma_requested) {
912         qdev_prop_set_bit(dev, "dma_enabled", false);
913     }
914 
915     object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG,
916                               OBJECT(dev), NULL);
917     qdev_init_nofail(dev);
918 
919     sbd = SYS_BUS_DEVICE(dev);
920     ios = FW_CFG_IO(dev);
921     sysbus_add_io(sbd, iobase, &ios->comb_iomem);
922 
923     s = FW_CFG(dev);
924 
925     if (s->dma_enabled) {
926         /* 64 bits for the address field */
927         s->dma_as = dma_as;
928         s->dma_addr = 0;
929         sysbus_add_io(sbd, dma_iobase, &s->dma_iomem);
930     }
931 
932     return s;
933 }
934 
935 FWCfgState *fw_cfg_init_io(uint32_t iobase)
936 {
937     return fw_cfg_init_io_dma(iobase, 0, NULL);
938 }
939 
940 FWCfgState *fw_cfg_init_mem_wide(hwaddr ctl_addr,
941                                  hwaddr data_addr, uint32_t data_width,
942                                  hwaddr dma_addr, AddressSpace *dma_as)
943 {
944     DeviceState *dev;
945     SysBusDevice *sbd;
946     FWCfgState *s;
947     bool dma_requested = dma_addr && dma_as;
948 
949     dev = qdev_create(NULL, TYPE_FW_CFG_MEM);
950     qdev_prop_set_uint32(dev, "data_width", data_width);
951     if (!dma_requested) {
952         qdev_prop_set_bit(dev, "dma_enabled", false);
953     }
954 
955     object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG,
956                               OBJECT(dev), NULL);
957     qdev_init_nofail(dev);
958 
959     sbd = SYS_BUS_DEVICE(dev);
960     sysbus_mmio_map(sbd, 0, ctl_addr);
961     sysbus_mmio_map(sbd, 1, data_addr);
962 
963     s = FW_CFG(dev);
964 
965     if (s->dma_enabled) {
966         s->dma_as = dma_as;
967         s->dma_addr = 0;
968         sysbus_mmio_map(sbd, 2, dma_addr);
969     }
970 
971     return s;
972 }
973 
974 FWCfgState *fw_cfg_init_mem(hwaddr ctl_addr, hwaddr data_addr)
975 {
976     return fw_cfg_init_mem_wide(ctl_addr, data_addr,
977                                 fw_cfg_data_mem_ops.valid.max_access_size,
978                                 0, NULL);
979 }
980 
981 
982 FWCfgState *fw_cfg_find(void)
983 {
984     /* Returns NULL unless there is exactly one fw_cfg device */
985     return FW_CFG(object_resolve_path_type("", TYPE_FW_CFG, NULL));
986 }
987 
988 
989 static void fw_cfg_class_init(ObjectClass *klass, void *data)
990 {
991     DeviceClass *dc = DEVICE_CLASS(klass);
992 
993     dc->reset = fw_cfg_reset;
994     dc->vmsd = &vmstate_fw_cfg;
995 }
996 
997 static const TypeInfo fw_cfg_info = {
998     .name          = TYPE_FW_CFG,
999     .parent        = TYPE_SYS_BUS_DEVICE,
1000     .abstract      = true,
1001     .instance_size = sizeof(FWCfgState),
1002     .class_init    = fw_cfg_class_init,
1003 };
1004 
1005 static void fw_cfg_file_slots_allocate(FWCfgState *s, Error **errp)
1006 {
1007     uint16_t file_slots_max;
1008 
1009     if (fw_cfg_file_slots(s) < FW_CFG_FILE_SLOTS_MIN) {
1010         error_setg(errp, "\"file_slots\" must be at least 0x%x",
1011                    FW_CFG_FILE_SLOTS_MIN);
1012         return;
1013     }
1014 
1015     /* (UINT16_MAX & FW_CFG_ENTRY_MASK) is the highest inclusive selector value
1016      * that we permit. The actual (exclusive) value coming from the
1017      * configuration is (FW_CFG_FILE_FIRST + fw_cfg_file_slots(s)). */
1018     file_slots_max = (UINT16_MAX & FW_CFG_ENTRY_MASK) - FW_CFG_FILE_FIRST + 1;
1019     if (fw_cfg_file_slots(s) > file_slots_max) {
1020         error_setg(errp, "\"file_slots\" must not exceed 0x%" PRIx16,
1021                    file_slots_max);
1022         return;
1023     }
1024 
1025     s->entries[0] = g_new0(FWCfgEntry, fw_cfg_max_entry(s));
1026     s->entries[1] = g_new0(FWCfgEntry, fw_cfg_max_entry(s));
1027     s->entry_order = g_new0(int, fw_cfg_max_entry(s));
1028 }
1029 
1030 static Property fw_cfg_io_properties[] = {
1031     DEFINE_PROP_BOOL("dma_enabled", FWCfgIoState, parent_obj.dma_enabled,
1032                      true),
1033     DEFINE_PROP_UINT16("x-file-slots", FWCfgIoState, parent_obj.file_slots,
1034                        FW_CFG_FILE_SLOTS_DFLT),
1035     DEFINE_PROP_END_OF_LIST(),
1036 };
1037 
1038 static void fw_cfg_io_realize(DeviceState *dev, Error **errp)
1039 {
1040     FWCfgIoState *s = FW_CFG_IO(dev);
1041     Error *local_err = NULL;
1042 
1043     fw_cfg_file_slots_allocate(FW_CFG(s), &local_err);
1044     if (local_err) {
1045         error_propagate(errp, local_err);
1046         return;
1047     }
1048 
1049     /* when using port i/o, the 8-bit data register ALWAYS overlaps
1050      * with half of the 16-bit control register. Hence, the total size
1051      * of the i/o region used is FW_CFG_CTL_SIZE */
1052     memory_region_init_io(&s->comb_iomem, OBJECT(s), &fw_cfg_comb_mem_ops,
1053                           FW_CFG(s), "fwcfg", FW_CFG_CTL_SIZE);
1054 
1055     if (FW_CFG(s)->dma_enabled) {
1056         memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s),
1057                               &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma",
1058                               sizeof(dma_addr_t));
1059     }
1060 
1061     fw_cfg_common_realize(dev, errp);
1062 }
1063 
1064 static void fw_cfg_io_class_init(ObjectClass *klass, void *data)
1065 {
1066     DeviceClass *dc = DEVICE_CLASS(klass);
1067 
1068     dc->realize = fw_cfg_io_realize;
1069     dc->props = fw_cfg_io_properties;
1070 }
1071 
1072 static const TypeInfo fw_cfg_io_info = {
1073     .name          = TYPE_FW_CFG_IO,
1074     .parent        = TYPE_FW_CFG,
1075     .instance_size = sizeof(FWCfgIoState),
1076     .class_init    = fw_cfg_io_class_init,
1077 };
1078 
1079 
1080 static Property fw_cfg_mem_properties[] = {
1081     DEFINE_PROP_UINT32("data_width", FWCfgMemState, data_width, -1),
1082     DEFINE_PROP_BOOL("dma_enabled", FWCfgMemState, parent_obj.dma_enabled,
1083                      true),
1084     DEFINE_PROP_UINT16("x-file-slots", FWCfgMemState, parent_obj.file_slots,
1085                        FW_CFG_FILE_SLOTS_DFLT),
1086     DEFINE_PROP_END_OF_LIST(),
1087 };
1088 
1089 static void fw_cfg_mem_realize(DeviceState *dev, Error **errp)
1090 {
1091     FWCfgMemState *s = FW_CFG_MEM(dev);
1092     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1093     const MemoryRegionOps *data_ops = &fw_cfg_data_mem_ops;
1094     Error *local_err = NULL;
1095 
1096     fw_cfg_file_slots_allocate(FW_CFG(s), &local_err);
1097     if (local_err) {
1098         error_propagate(errp, local_err);
1099         return;
1100     }
1101 
1102     memory_region_init_io(&s->ctl_iomem, OBJECT(s), &fw_cfg_ctl_mem_ops,
1103                           FW_CFG(s), "fwcfg.ctl", FW_CFG_CTL_SIZE);
1104     sysbus_init_mmio(sbd, &s->ctl_iomem);
1105 
1106     if (s->data_width > data_ops->valid.max_access_size) {
1107         s->wide_data_ops = *data_ops;
1108 
1109         s->wide_data_ops.valid.max_access_size = s->data_width;
1110         s->wide_data_ops.impl.max_access_size  = s->data_width;
1111         data_ops = &s->wide_data_ops;
1112     }
1113     memory_region_init_io(&s->data_iomem, OBJECT(s), data_ops, FW_CFG(s),
1114                           "fwcfg.data", data_ops->valid.max_access_size);
1115     sysbus_init_mmio(sbd, &s->data_iomem);
1116 
1117     if (FW_CFG(s)->dma_enabled) {
1118         memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s),
1119                               &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma",
1120                               sizeof(dma_addr_t));
1121         sysbus_init_mmio(sbd, &FW_CFG(s)->dma_iomem);
1122     }
1123 
1124     fw_cfg_common_realize(dev, errp);
1125 }
1126 
1127 static void fw_cfg_mem_class_init(ObjectClass *klass, void *data)
1128 {
1129     DeviceClass *dc = DEVICE_CLASS(klass);
1130 
1131     dc->realize = fw_cfg_mem_realize;
1132     dc->props = fw_cfg_mem_properties;
1133 }
1134 
1135 static const TypeInfo fw_cfg_mem_info = {
1136     .name          = TYPE_FW_CFG_MEM,
1137     .parent        = TYPE_FW_CFG,
1138     .instance_size = sizeof(FWCfgMemState),
1139     .class_init    = fw_cfg_mem_class_init,
1140 };
1141 
1142 
1143 static void fw_cfg_register_types(void)
1144 {
1145     type_register_static(&fw_cfg_info);
1146     type_register_static(&fw_cfg_io_info);
1147     type_register_static(&fw_cfg_mem_info);
1148 }
1149 
1150 type_init(fw_cfg_register_types)
1151