1 /* 2 * QEMU Firmware configuration device emulation 3 * 4 * Copyright (c) 2008 Gleb Natapov 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "hw/hw.h" 27 #include "sysemu/sysemu.h" 28 #include "sysemu/dma.h" 29 #include "hw/boards.h" 30 #include "hw/nvram/fw_cfg.h" 31 #include "hw/sysbus.h" 32 #include "trace.h" 33 #include "qemu/error-report.h" 34 #include "qemu/option.h" 35 #include "qemu/config-file.h" 36 #include "qemu/cutils.h" 37 #include "qapi/error.h" 38 39 #define FW_CFG_FILE_SLOTS_DFLT 0x20 40 41 /* FW_CFG_VERSION bits */ 42 #define FW_CFG_VERSION 0x01 43 #define FW_CFG_VERSION_DMA 0x02 44 45 /* FW_CFG_DMA_CONTROL bits */ 46 #define FW_CFG_DMA_CTL_ERROR 0x01 47 #define FW_CFG_DMA_CTL_READ 0x02 48 #define FW_CFG_DMA_CTL_SKIP 0x04 49 #define FW_CFG_DMA_CTL_SELECT 0x08 50 #define FW_CFG_DMA_CTL_WRITE 0x10 51 52 #define FW_CFG_DMA_SIGNATURE 0x51454d5520434647ULL /* "QEMU CFG" */ 53 54 struct FWCfgEntry { 55 uint32_t len; 56 bool allow_write; 57 uint8_t *data; 58 void *callback_opaque; 59 FWCfgCallback select_cb; 60 FWCfgWriteCallback write_cb; 61 }; 62 63 #define JPG_FILE 0 64 #define BMP_FILE 1 65 66 static char *read_splashfile(char *filename, gsize *file_sizep, 67 int *file_typep) 68 { 69 GError *err = NULL; 70 gchar *content; 71 int file_type; 72 unsigned int filehead; 73 int bmp_bpp; 74 75 if (!g_file_get_contents(filename, &content, file_sizep, &err)) { 76 error_report("failed to read splash file '%s': %s", 77 filename, err->message); 78 g_error_free(err); 79 return NULL; 80 } 81 82 /* check file size */ 83 if (*file_sizep < 30) { 84 goto error; 85 } 86 87 /* check magic ID */ 88 filehead = ((content[0] & 0xff) + (content[1] << 8)) & 0xffff; 89 if (filehead == 0xd8ff) { 90 file_type = JPG_FILE; 91 } else if (filehead == 0x4d42) { 92 file_type = BMP_FILE; 93 } else { 94 goto error; 95 } 96 97 /* check BMP bpp */ 98 if (file_type == BMP_FILE) { 99 bmp_bpp = (content[28] + (content[29] << 8)) & 0xffff; 100 if (bmp_bpp != 24) { 101 goto error; 102 } 103 } 104 105 /* return values */ 106 *file_typep = file_type; 107 108 return content; 109 110 error: 111 error_report("splash file '%s' format not recognized; must be JPEG " 112 "or 24 bit BMP", filename); 113 g_free(content); 114 return NULL; 115 } 116 117 static void fw_cfg_bootsplash(FWCfgState *s) 118 { 119 const char *boot_splash_filename = NULL; 120 const char *boot_splash_time = NULL; 121 char *filename, *file_data; 122 gsize file_size; 123 int file_type; 124 125 /* get user configuration */ 126 QemuOptsList *plist = qemu_find_opts("boot-opts"); 127 QemuOpts *opts = QTAILQ_FIRST(&plist->head); 128 boot_splash_filename = qemu_opt_get(opts, "splash"); 129 boot_splash_time = qemu_opt_get(opts, "splash-time"); 130 131 /* insert splash time if user configurated */ 132 if (boot_splash_time) { 133 int64_t bst_val = qemu_opt_get_number(opts, "splash-time", -1); 134 uint16_t bst_le16; 135 136 /* validate the input */ 137 if (bst_val < 0 || bst_val > 0xffff) { 138 error_report("splash-time is invalid," 139 "it should be a value between 0 and 65535"); 140 exit(1); 141 } 142 /* use little endian format */ 143 bst_le16 = cpu_to_le16(bst_val); 144 fw_cfg_add_file(s, "etc/boot-menu-wait", 145 g_memdup(&bst_le16, sizeof bst_le16), sizeof bst_le16); 146 } 147 148 /* insert splash file if user configurated */ 149 if (boot_splash_filename) { 150 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, boot_splash_filename); 151 if (filename == NULL) { 152 error_report("failed to find file '%s'", boot_splash_filename); 153 return; 154 } 155 156 /* loading file data */ 157 file_data = read_splashfile(filename, &file_size, &file_type); 158 if (file_data == NULL) { 159 g_free(filename); 160 return; 161 } 162 g_free(boot_splash_filedata); 163 boot_splash_filedata = (uint8_t *)file_data; 164 boot_splash_filedata_size = file_size; 165 166 /* insert data */ 167 if (file_type == JPG_FILE) { 168 fw_cfg_add_file(s, "bootsplash.jpg", 169 boot_splash_filedata, boot_splash_filedata_size); 170 } else { 171 fw_cfg_add_file(s, "bootsplash.bmp", 172 boot_splash_filedata, boot_splash_filedata_size); 173 } 174 g_free(filename); 175 } 176 } 177 178 static void fw_cfg_reboot(FWCfgState *s) 179 { 180 const char *reboot_timeout = NULL; 181 int64_t rt_val = -1; 182 183 /* get user configuration */ 184 QemuOptsList *plist = qemu_find_opts("boot-opts"); 185 QemuOpts *opts = QTAILQ_FIRST(&plist->head); 186 reboot_timeout = qemu_opt_get(opts, "reboot-timeout"); 187 188 if (reboot_timeout) { 189 rt_val = qemu_opt_get_number(opts, "reboot-timeout", -1); 190 /* validate the input */ 191 if (rt_val < 0 || rt_val > 0xffff) { 192 error_report("reboot timeout is invalid," 193 "it should be a value between 0 and 65535"); 194 exit(1); 195 } 196 } 197 198 fw_cfg_add_file(s, "etc/boot-fail-wait", g_memdup(&rt_val, 4), 4); 199 } 200 201 static void fw_cfg_write(FWCfgState *s, uint8_t value) 202 { 203 /* nothing, write support removed in QEMU v2.4+ */ 204 } 205 206 static inline uint16_t fw_cfg_file_slots(const FWCfgState *s) 207 { 208 return s->file_slots; 209 } 210 211 /* Note: this function returns an exclusive limit. */ 212 static inline uint32_t fw_cfg_max_entry(const FWCfgState *s) 213 { 214 return FW_CFG_FILE_FIRST + fw_cfg_file_slots(s); 215 } 216 217 static int fw_cfg_select(FWCfgState *s, uint16_t key) 218 { 219 int arch, ret; 220 FWCfgEntry *e; 221 222 s->cur_offset = 0; 223 if ((key & FW_CFG_ENTRY_MASK) >= fw_cfg_max_entry(s)) { 224 s->cur_entry = FW_CFG_INVALID; 225 ret = 0; 226 } else { 227 s->cur_entry = key; 228 ret = 1; 229 /* entry successfully selected, now run callback if present */ 230 arch = !!(key & FW_CFG_ARCH_LOCAL); 231 e = &s->entries[arch][key & FW_CFG_ENTRY_MASK]; 232 if (e->select_cb) { 233 e->select_cb(e->callback_opaque); 234 } 235 } 236 237 trace_fw_cfg_select(s, key, ret); 238 return ret; 239 } 240 241 static uint64_t fw_cfg_data_read(void *opaque, hwaddr addr, unsigned size) 242 { 243 FWCfgState *s = opaque; 244 int arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL); 245 FWCfgEntry *e = (s->cur_entry == FW_CFG_INVALID) ? NULL : 246 &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK]; 247 uint64_t value = 0; 248 249 assert(size > 0 && size <= sizeof(value)); 250 if (s->cur_entry != FW_CFG_INVALID && e->data && s->cur_offset < e->len) { 251 /* The least significant 'size' bytes of the return value are 252 * expected to contain a string preserving portion of the item 253 * data, padded with zeros on the right in case we run out early. 254 * In technical terms, we're composing the host-endian representation 255 * of the big endian interpretation of the fw_cfg string. 256 */ 257 do { 258 value = (value << 8) | e->data[s->cur_offset++]; 259 } while (--size && s->cur_offset < e->len); 260 /* If size is still not zero, we *did* run out early, so continue 261 * left-shifting, to add the appropriate number of padding zeros 262 * on the right. 263 */ 264 value <<= 8 * size; 265 } 266 267 trace_fw_cfg_read(s, value); 268 return value; 269 } 270 271 static void fw_cfg_data_mem_write(void *opaque, hwaddr addr, 272 uint64_t value, unsigned size) 273 { 274 FWCfgState *s = opaque; 275 unsigned i = size; 276 277 do { 278 fw_cfg_write(s, value >> (8 * --i)); 279 } while (i); 280 } 281 282 static void fw_cfg_dma_transfer(FWCfgState *s) 283 { 284 dma_addr_t len; 285 FWCfgDmaAccess dma; 286 int arch; 287 FWCfgEntry *e; 288 int read = 0, write = 0; 289 dma_addr_t dma_addr; 290 291 /* Reset the address before the next access */ 292 dma_addr = s->dma_addr; 293 s->dma_addr = 0; 294 295 if (dma_memory_read(s->dma_as, dma_addr, &dma, sizeof(dma))) { 296 stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control), 297 FW_CFG_DMA_CTL_ERROR); 298 return; 299 } 300 301 dma.address = be64_to_cpu(dma.address); 302 dma.length = be32_to_cpu(dma.length); 303 dma.control = be32_to_cpu(dma.control); 304 305 if (dma.control & FW_CFG_DMA_CTL_SELECT) { 306 fw_cfg_select(s, dma.control >> 16); 307 } 308 309 arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL); 310 e = (s->cur_entry == FW_CFG_INVALID) ? NULL : 311 &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK]; 312 313 if (dma.control & FW_CFG_DMA_CTL_READ) { 314 read = 1; 315 write = 0; 316 } else if (dma.control & FW_CFG_DMA_CTL_WRITE) { 317 read = 0; 318 write = 1; 319 } else if (dma.control & FW_CFG_DMA_CTL_SKIP) { 320 read = 0; 321 write = 0; 322 } else { 323 dma.length = 0; 324 } 325 326 dma.control = 0; 327 328 while (dma.length > 0 && !(dma.control & FW_CFG_DMA_CTL_ERROR)) { 329 if (s->cur_entry == FW_CFG_INVALID || !e->data || 330 s->cur_offset >= e->len) { 331 len = dma.length; 332 333 /* If the access is not a read access, it will be a skip access, 334 * tested before. 335 */ 336 if (read) { 337 if (dma_memory_set(s->dma_as, dma.address, 0, len)) { 338 dma.control |= FW_CFG_DMA_CTL_ERROR; 339 } 340 } 341 if (write) { 342 dma.control |= FW_CFG_DMA_CTL_ERROR; 343 } 344 } else { 345 if (dma.length <= (e->len - s->cur_offset)) { 346 len = dma.length; 347 } else { 348 len = (e->len - s->cur_offset); 349 } 350 351 /* If the access is not a read access, it will be a skip access, 352 * tested before. 353 */ 354 if (read) { 355 if (dma_memory_write(s->dma_as, dma.address, 356 &e->data[s->cur_offset], len)) { 357 dma.control |= FW_CFG_DMA_CTL_ERROR; 358 } 359 } 360 if (write) { 361 if (!e->allow_write || 362 len != dma.length || 363 dma_memory_read(s->dma_as, dma.address, 364 &e->data[s->cur_offset], len)) { 365 dma.control |= FW_CFG_DMA_CTL_ERROR; 366 } else if (e->write_cb) { 367 e->write_cb(e->callback_opaque, s->cur_offset, len); 368 } 369 } 370 371 s->cur_offset += len; 372 } 373 374 dma.address += len; 375 dma.length -= len; 376 377 } 378 379 stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control), 380 dma.control); 381 382 trace_fw_cfg_read(s, 0); 383 } 384 385 static uint64_t fw_cfg_dma_mem_read(void *opaque, hwaddr addr, 386 unsigned size) 387 { 388 /* Return a signature value (and handle various read sizes) */ 389 return extract64(FW_CFG_DMA_SIGNATURE, (8 - addr - size) * 8, size * 8); 390 } 391 392 static void fw_cfg_dma_mem_write(void *opaque, hwaddr addr, 393 uint64_t value, unsigned size) 394 { 395 FWCfgState *s = opaque; 396 397 if (size == 4) { 398 if (addr == 0) { 399 /* FWCfgDmaAccess high address */ 400 s->dma_addr = value << 32; 401 } else if (addr == 4) { 402 /* FWCfgDmaAccess low address */ 403 s->dma_addr |= value; 404 fw_cfg_dma_transfer(s); 405 } 406 } else if (size == 8 && addr == 0) { 407 s->dma_addr = value; 408 fw_cfg_dma_transfer(s); 409 } 410 } 411 412 static bool fw_cfg_dma_mem_valid(void *opaque, hwaddr addr, 413 unsigned size, bool is_write, 414 MemTxAttrs attrs) 415 { 416 return !is_write || ((size == 4 && (addr == 0 || addr == 4)) || 417 (size == 8 && addr == 0)); 418 } 419 420 static bool fw_cfg_data_mem_valid(void *opaque, hwaddr addr, 421 unsigned size, bool is_write, 422 MemTxAttrs attrs) 423 { 424 return addr == 0; 425 } 426 427 static uint64_t fw_cfg_ctl_mem_read(void *opaque, hwaddr addr, unsigned size) 428 { 429 return 0; 430 } 431 432 static void fw_cfg_ctl_mem_write(void *opaque, hwaddr addr, 433 uint64_t value, unsigned size) 434 { 435 fw_cfg_select(opaque, (uint16_t)value); 436 } 437 438 static bool fw_cfg_ctl_mem_valid(void *opaque, hwaddr addr, 439 unsigned size, bool is_write, 440 MemTxAttrs attrs) 441 { 442 return is_write && size == 2; 443 } 444 445 static void fw_cfg_comb_write(void *opaque, hwaddr addr, 446 uint64_t value, unsigned size) 447 { 448 switch (size) { 449 case 1: 450 fw_cfg_write(opaque, (uint8_t)value); 451 break; 452 case 2: 453 fw_cfg_select(opaque, (uint16_t)value); 454 break; 455 } 456 } 457 458 static bool fw_cfg_comb_valid(void *opaque, hwaddr addr, 459 unsigned size, bool is_write, 460 MemTxAttrs attrs) 461 { 462 return (size == 1) || (is_write && size == 2); 463 } 464 465 static const MemoryRegionOps fw_cfg_ctl_mem_ops = { 466 .read = fw_cfg_ctl_mem_read, 467 .write = fw_cfg_ctl_mem_write, 468 .endianness = DEVICE_BIG_ENDIAN, 469 .valid.accepts = fw_cfg_ctl_mem_valid, 470 }; 471 472 static const MemoryRegionOps fw_cfg_data_mem_ops = { 473 .read = fw_cfg_data_read, 474 .write = fw_cfg_data_mem_write, 475 .endianness = DEVICE_BIG_ENDIAN, 476 .valid = { 477 .min_access_size = 1, 478 .max_access_size = 1, 479 .accepts = fw_cfg_data_mem_valid, 480 }, 481 }; 482 483 static const MemoryRegionOps fw_cfg_comb_mem_ops = { 484 .read = fw_cfg_data_read, 485 .write = fw_cfg_comb_write, 486 .endianness = DEVICE_LITTLE_ENDIAN, 487 .valid.accepts = fw_cfg_comb_valid, 488 }; 489 490 static const MemoryRegionOps fw_cfg_dma_mem_ops = { 491 .read = fw_cfg_dma_mem_read, 492 .write = fw_cfg_dma_mem_write, 493 .endianness = DEVICE_BIG_ENDIAN, 494 .valid.accepts = fw_cfg_dma_mem_valid, 495 .valid.max_access_size = 8, 496 .impl.max_access_size = 8, 497 }; 498 499 static void fw_cfg_reset(DeviceState *d) 500 { 501 FWCfgState *s = FW_CFG(d); 502 503 /* we never register a read callback for FW_CFG_SIGNATURE */ 504 fw_cfg_select(s, FW_CFG_SIGNATURE); 505 } 506 507 /* Save restore 32 bit int as uint16_t 508 This is a Big hack, but it is how the old state did it. 509 Or we broke compatibility in the state, or we can't use struct tm 510 */ 511 512 static int get_uint32_as_uint16(QEMUFile *f, void *pv, size_t size, 513 const VMStateField *field) 514 { 515 uint32_t *v = pv; 516 *v = qemu_get_be16(f); 517 return 0; 518 } 519 520 static int put_unused(QEMUFile *f, void *pv, size_t size, 521 const VMStateField *field, QJSON *vmdesc) 522 { 523 fprintf(stderr, "uint32_as_uint16 is only used for backward compatibility.\n"); 524 fprintf(stderr, "This functions shouldn't be called.\n"); 525 526 return 0; 527 } 528 529 static const VMStateInfo vmstate_hack_uint32_as_uint16 = { 530 .name = "int32_as_uint16", 531 .get = get_uint32_as_uint16, 532 .put = put_unused, 533 }; 534 535 #define VMSTATE_UINT16_HACK(_f, _s, _t) \ 536 VMSTATE_SINGLE_TEST(_f, _s, _t, 0, vmstate_hack_uint32_as_uint16, uint32_t) 537 538 539 static bool is_version_1(void *opaque, int version_id) 540 { 541 return version_id == 1; 542 } 543 544 bool fw_cfg_dma_enabled(void *opaque) 545 { 546 FWCfgState *s = opaque; 547 548 return s->dma_enabled; 549 } 550 551 static const VMStateDescription vmstate_fw_cfg_dma = { 552 .name = "fw_cfg/dma", 553 .needed = fw_cfg_dma_enabled, 554 .fields = (VMStateField[]) { 555 VMSTATE_UINT64(dma_addr, FWCfgState), 556 VMSTATE_END_OF_LIST() 557 }, 558 }; 559 560 static const VMStateDescription vmstate_fw_cfg = { 561 .name = "fw_cfg", 562 .version_id = 2, 563 .minimum_version_id = 1, 564 .fields = (VMStateField[]) { 565 VMSTATE_UINT16(cur_entry, FWCfgState), 566 VMSTATE_UINT16_HACK(cur_offset, FWCfgState, is_version_1), 567 VMSTATE_UINT32_V(cur_offset, FWCfgState, 2), 568 VMSTATE_END_OF_LIST() 569 }, 570 .subsections = (const VMStateDescription*[]) { 571 &vmstate_fw_cfg_dma, 572 NULL, 573 } 574 }; 575 576 static void fw_cfg_add_bytes_callback(FWCfgState *s, uint16_t key, 577 FWCfgCallback select_cb, 578 FWCfgWriteCallback write_cb, 579 void *callback_opaque, 580 void *data, size_t len, 581 bool read_only) 582 { 583 int arch = !!(key & FW_CFG_ARCH_LOCAL); 584 585 key &= FW_CFG_ENTRY_MASK; 586 587 assert(key < fw_cfg_max_entry(s) && len < UINT32_MAX); 588 assert(s->entries[arch][key].data == NULL); /* avoid key conflict */ 589 590 s->entries[arch][key].data = data; 591 s->entries[arch][key].len = (uint32_t)len; 592 s->entries[arch][key].select_cb = select_cb; 593 s->entries[arch][key].write_cb = write_cb; 594 s->entries[arch][key].callback_opaque = callback_opaque; 595 s->entries[arch][key].allow_write = !read_only; 596 } 597 598 static void *fw_cfg_modify_bytes_read(FWCfgState *s, uint16_t key, 599 void *data, size_t len) 600 { 601 void *ptr; 602 int arch = !!(key & FW_CFG_ARCH_LOCAL); 603 604 key &= FW_CFG_ENTRY_MASK; 605 606 assert(key < fw_cfg_max_entry(s) && len < UINT32_MAX); 607 608 /* return the old data to the function caller, avoid memory leak */ 609 ptr = s->entries[arch][key].data; 610 s->entries[arch][key].data = data; 611 s->entries[arch][key].len = len; 612 s->entries[arch][key].callback_opaque = NULL; 613 s->entries[arch][key].allow_write = false; 614 615 return ptr; 616 } 617 618 void fw_cfg_add_bytes(FWCfgState *s, uint16_t key, void *data, size_t len) 619 { 620 fw_cfg_add_bytes_callback(s, key, NULL, NULL, NULL, data, len, true); 621 } 622 623 void fw_cfg_add_string(FWCfgState *s, uint16_t key, const char *value) 624 { 625 size_t sz = strlen(value) + 1; 626 627 fw_cfg_add_bytes(s, key, g_memdup(value, sz), sz); 628 } 629 630 void fw_cfg_add_i16(FWCfgState *s, uint16_t key, uint16_t value) 631 { 632 uint16_t *copy; 633 634 copy = g_malloc(sizeof(value)); 635 *copy = cpu_to_le16(value); 636 fw_cfg_add_bytes(s, key, copy, sizeof(value)); 637 } 638 639 void fw_cfg_modify_i16(FWCfgState *s, uint16_t key, uint16_t value) 640 { 641 uint16_t *copy, *old; 642 643 copy = g_malloc(sizeof(value)); 644 *copy = cpu_to_le16(value); 645 old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value)); 646 g_free(old); 647 } 648 649 void fw_cfg_add_i32(FWCfgState *s, uint16_t key, uint32_t value) 650 { 651 uint32_t *copy; 652 653 copy = g_malloc(sizeof(value)); 654 *copy = cpu_to_le32(value); 655 fw_cfg_add_bytes(s, key, copy, sizeof(value)); 656 } 657 658 void fw_cfg_add_i64(FWCfgState *s, uint16_t key, uint64_t value) 659 { 660 uint64_t *copy; 661 662 copy = g_malloc(sizeof(value)); 663 *copy = cpu_to_le64(value); 664 fw_cfg_add_bytes(s, key, copy, sizeof(value)); 665 } 666 667 void fw_cfg_set_order_override(FWCfgState *s, int order) 668 { 669 assert(s->fw_cfg_order_override == 0); 670 s->fw_cfg_order_override = order; 671 } 672 673 void fw_cfg_reset_order_override(FWCfgState *s) 674 { 675 assert(s->fw_cfg_order_override != 0); 676 s->fw_cfg_order_override = 0; 677 } 678 679 /* 680 * This is the legacy order list. For legacy systems, files are in 681 * the fw_cfg in the order defined below, by the "order" value. Note 682 * that some entries (VGA ROMs, NIC option ROMS, etc.) go into a 683 * specific area, but there may be more than one and they occur in the 684 * order that the user specifies them on the command line. Those are 685 * handled in a special manner, using the order override above. 686 * 687 * For non-legacy, the files are sorted by filename to avoid this kind 688 * of complexity in the future. 689 * 690 * This is only for x86, other arches don't implement versioning so 691 * they won't set legacy mode. 692 */ 693 static struct { 694 const char *name; 695 int order; 696 } fw_cfg_order[] = { 697 { "etc/boot-menu-wait", 10 }, 698 { "bootsplash.jpg", 11 }, 699 { "bootsplash.bmp", 12 }, 700 { "etc/boot-fail-wait", 15 }, 701 { "etc/smbios/smbios-tables", 20 }, 702 { "etc/smbios/smbios-anchor", 30 }, 703 { "etc/e820", 40 }, 704 { "etc/reserved-memory-end", 50 }, 705 { "genroms/kvmvapic.bin", 55 }, 706 { "genroms/linuxboot.bin", 60 }, 707 { }, /* VGA ROMs from pc_vga_init come here, 70. */ 708 { }, /* NIC option ROMs from pc_nic_init come here, 80. */ 709 { "etc/system-states", 90 }, 710 { }, /* User ROMs come here, 100. */ 711 { }, /* Device FW comes here, 110. */ 712 { "etc/extra-pci-roots", 120 }, 713 { "etc/acpi/tables", 130 }, 714 { "etc/table-loader", 140 }, 715 { "etc/tpm/log", 150 }, 716 { "etc/acpi/rsdp", 160 }, 717 { "bootorder", 170 }, 718 719 #define FW_CFG_ORDER_OVERRIDE_LAST 200 720 }; 721 722 static int get_fw_cfg_order(FWCfgState *s, const char *name) 723 { 724 int i; 725 726 if (s->fw_cfg_order_override > 0) { 727 return s->fw_cfg_order_override; 728 } 729 730 for (i = 0; i < ARRAY_SIZE(fw_cfg_order); i++) { 731 if (fw_cfg_order[i].name == NULL) { 732 continue; 733 } 734 735 if (strcmp(name, fw_cfg_order[i].name) == 0) { 736 return fw_cfg_order[i].order; 737 } 738 } 739 740 /* Stick unknown stuff at the end. */ 741 warn_report("Unknown firmware file in legacy mode: %s", name); 742 return FW_CFG_ORDER_OVERRIDE_LAST; 743 } 744 745 void fw_cfg_add_file_callback(FWCfgState *s, const char *filename, 746 FWCfgCallback select_cb, 747 FWCfgWriteCallback write_cb, 748 void *callback_opaque, 749 void *data, size_t len, bool read_only) 750 { 751 int i, index, count; 752 size_t dsize; 753 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 754 int order = 0; 755 756 if (!s->files) { 757 dsize = sizeof(uint32_t) + sizeof(FWCfgFile) * fw_cfg_file_slots(s); 758 s->files = g_malloc0(dsize); 759 fw_cfg_add_bytes(s, FW_CFG_FILE_DIR, s->files, dsize); 760 } 761 762 count = be32_to_cpu(s->files->count); 763 assert(count < fw_cfg_file_slots(s)); 764 765 /* Find the insertion point. */ 766 if (mc->legacy_fw_cfg_order) { 767 /* 768 * Sort by order. For files with the same order, we keep them 769 * in the sequence in which they were added. 770 */ 771 order = get_fw_cfg_order(s, filename); 772 for (index = count; 773 index > 0 && order < s->entry_order[index - 1]; 774 index--); 775 } else { 776 /* Sort by file name. */ 777 for (index = count; 778 index > 0 && strcmp(filename, s->files->f[index - 1].name) < 0; 779 index--); 780 } 781 782 /* 783 * Move all the entries from the index point and after down one 784 * to create a slot for the new entry. Because calculations are 785 * being done with the index, make it so that "i" is the current 786 * index and "i - 1" is the one being copied from, thus the 787 * unusual start and end in the for statement. 788 */ 789 for (i = count; i > index; i--) { 790 s->files->f[i] = s->files->f[i - 1]; 791 s->files->f[i].select = cpu_to_be16(FW_CFG_FILE_FIRST + i); 792 s->entries[0][FW_CFG_FILE_FIRST + i] = 793 s->entries[0][FW_CFG_FILE_FIRST + i - 1]; 794 s->entry_order[i] = s->entry_order[i - 1]; 795 } 796 797 memset(&s->files->f[index], 0, sizeof(FWCfgFile)); 798 memset(&s->entries[0][FW_CFG_FILE_FIRST + index], 0, sizeof(FWCfgEntry)); 799 800 pstrcpy(s->files->f[index].name, sizeof(s->files->f[index].name), filename); 801 for (i = 0; i <= count; i++) { 802 if (i != index && 803 strcmp(s->files->f[index].name, s->files->f[i].name) == 0) { 804 error_report("duplicate fw_cfg file name: %s", 805 s->files->f[index].name); 806 exit(1); 807 } 808 } 809 810 fw_cfg_add_bytes_callback(s, FW_CFG_FILE_FIRST + index, 811 select_cb, write_cb, 812 callback_opaque, data, len, 813 read_only); 814 815 s->files->f[index].size = cpu_to_be32(len); 816 s->files->f[index].select = cpu_to_be16(FW_CFG_FILE_FIRST + index); 817 s->entry_order[index] = order; 818 trace_fw_cfg_add_file(s, index, s->files->f[index].name, len); 819 820 s->files->count = cpu_to_be32(count+1); 821 } 822 823 void fw_cfg_add_file(FWCfgState *s, const char *filename, 824 void *data, size_t len) 825 { 826 fw_cfg_add_file_callback(s, filename, NULL, NULL, NULL, data, len, true); 827 } 828 829 void *fw_cfg_modify_file(FWCfgState *s, const char *filename, 830 void *data, size_t len) 831 { 832 int i, index; 833 void *ptr = NULL; 834 835 assert(s->files); 836 837 index = be32_to_cpu(s->files->count); 838 839 for (i = 0; i < index; i++) { 840 if (strcmp(filename, s->files->f[i].name) == 0) { 841 ptr = fw_cfg_modify_bytes_read(s, FW_CFG_FILE_FIRST + i, 842 data, len); 843 s->files->f[i].size = cpu_to_be32(len); 844 return ptr; 845 } 846 } 847 848 assert(index < fw_cfg_file_slots(s)); 849 850 /* add new one */ 851 fw_cfg_add_file_callback(s, filename, NULL, NULL, NULL, data, len, true); 852 return NULL; 853 } 854 855 static void fw_cfg_machine_reset(void *opaque) 856 { 857 void *ptr; 858 size_t len; 859 FWCfgState *s = opaque; 860 char *bootindex = get_boot_devices_list(&len); 861 862 ptr = fw_cfg_modify_file(s, "bootorder", (uint8_t *)bootindex, len); 863 g_free(ptr); 864 } 865 866 static void fw_cfg_machine_ready(struct Notifier *n, void *data) 867 { 868 FWCfgState *s = container_of(n, FWCfgState, machine_ready); 869 qemu_register_reset(fw_cfg_machine_reset, s); 870 } 871 872 873 874 static void fw_cfg_common_realize(DeviceState *dev, Error **errp) 875 { 876 FWCfgState *s = FW_CFG(dev); 877 MachineState *machine = MACHINE(qdev_get_machine()); 878 uint32_t version = FW_CFG_VERSION; 879 880 if (!fw_cfg_find()) { 881 error_setg(errp, "at most one %s device is permitted", TYPE_FW_CFG); 882 return; 883 } 884 885 fw_cfg_add_bytes(s, FW_CFG_SIGNATURE, (char *)"QEMU", 4); 886 fw_cfg_add_bytes(s, FW_CFG_UUID, &qemu_uuid, 16); 887 fw_cfg_add_i16(s, FW_CFG_NOGRAPHIC, (uint16_t)!machine->enable_graphics); 888 fw_cfg_add_i16(s, FW_CFG_BOOT_MENU, (uint16_t)boot_menu); 889 fw_cfg_bootsplash(s); 890 fw_cfg_reboot(s); 891 892 if (s->dma_enabled) { 893 version |= FW_CFG_VERSION_DMA; 894 } 895 896 fw_cfg_add_i32(s, FW_CFG_ID, version); 897 898 s->machine_ready.notify = fw_cfg_machine_ready; 899 qemu_add_machine_init_done_notifier(&s->machine_ready); 900 } 901 902 FWCfgState *fw_cfg_init_io_dma(uint32_t iobase, uint32_t dma_iobase, 903 AddressSpace *dma_as) 904 { 905 DeviceState *dev; 906 SysBusDevice *sbd; 907 FWCfgIoState *ios; 908 FWCfgState *s; 909 bool dma_requested = dma_iobase && dma_as; 910 911 dev = qdev_create(NULL, TYPE_FW_CFG_IO); 912 if (!dma_requested) { 913 qdev_prop_set_bit(dev, "dma_enabled", false); 914 } 915 916 object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG, 917 OBJECT(dev), NULL); 918 qdev_init_nofail(dev); 919 920 sbd = SYS_BUS_DEVICE(dev); 921 ios = FW_CFG_IO(dev); 922 sysbus_add_io(sbd, iobase, &ios->comb_iomem); 923 924 s = FW_CFG(dev); 925 926 if (s->dma_enabled) { 927 /* 64 bits for the address field */ 928 s->dma_as = dma_as; 929 s->dma_addr = 0; 930 sysbus_add_io(sbd, dma_iobase, &s->dma_iomem); 931 } 932 933 return s; 934 } 935 936 FWCfgState *fw_cfg_init_io(uint32_t iobase) 937 { 938 return fw_cfg_init_io_dma(iobase, 0, NULL); 939 } 940 941 FWCfgState *fw_cfg_init_mem_wide(hwaddr ctl_addr, 942 hwaddr data_addr, uint32_t data_width, 943 hwaddr dma_addr, AddressSpace *dma_as) 944 { 945 DeviceState *dev; 946 SysBusDevice *sbd; 947 FWCfgState *s; 948 bool dma_requested = dma_addr && dma_as; 949 950 dev = qdev_create(NULL, TYPE_FW_CFG_MEM); 951 qdev_prop_set_uint32(dev, "data_width", data_width); 952 if (!dma_requested) { 953 qdev_prop_set_bit(dev, "dma_enabled", false); 954 } 955 956 object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG, 957 OBJECT(dev), NULL); 958 qdev_init_nofail(dev); 959 960 sbd = SYS_BUS_DEVICE(dev); 961 sysbus_mmio_map(sbd, 0, ctl_addr); 962 sysbus_mmio_map(sbd, 1, data_addr); 963 964 s = FW_CFG(dev); 965 966 if (s->dma_enabled) { 967 s->dma_as = dma_as; 968 s->dma_addr = 0; 969 sysbus_mmio_map(sbd, 2, dma_addr); 970 } 971 972 return s; 973 } 974 975 FWCfgState *fw_cfg_init_mem(hwaddr ctl_addr, hwaddr data_addr) 976 { 977 return fw_cfg_init_mem_wide(ctl_addr, data_addr, 978 fw_cfg_data_mem_ops.valid.max_access_size, 979 0, NULL); 980 } 981 982 983 FWCfgState *fw_cfg_find(void) 984 { 985 /* Returns NULL unless there is exactly one fw_cfg device */ 986 return FW_CFG(object_resolve_path_type("", TYPE_FW_CFG, NULL)); 987 } 988 989 990 static void fw_cfg_class_init(ObjectClass *klass, void *data) 991 { 992 DeviceClass *dc = DEVICE_CLASS(klass); 993 994 dc->reset = fw_cfg_reset; 995 dc->vmsd = &vmstate_fw_cfg; 996 } 997 998 static const TypeInfo fw_cfg_info = { 999 .name = TYPE_FW_CFG, 1000 .parent = TYPE_SYS_BUS_DEVICE, 1001 .abstract = true, 1002 .instance_size = sizeof(FWCfgState), 1003 .class_init = fw_cfg_class_init, 1004 }; 1005 1006 static void fw_cfg_file_slots_allocate(FWCfgState *s, Error **errp) 1007 { 1008 uint16_t file_slots_max; 1009 1010 if (fw_cfg_file_slots(s) < FW_CFG_FILE_SLOTS_MIN) { 1011 error_setg(errp, "\"file_slots\" must be at least 0x%x", 1012 FW_CFG_FILE_SLOTS_MIN); 1013 return; 1014 } 1015 1016 /* (UINT16_MAX & FW_CFG_ENTRY_MASK) is the highest inclusive selector value 1017 * that we permit. The actual (exclusive) value coming from the 1018 * configuration is (FW_CFG_FILE_FIRST + fw_cfg_file_slots(s)). */ 1019 file_slots_max = (UINT16_MAX & FW_CFG_ENTRY_MASK) - FW_CFG_FILE_FIRST + 1; 1020 if (fw_cfg_file_slots(s) > file_slots_max) { 1021 error_setg(errp, "\"file_slots\" must not exceed 0x%" PRIx16, 1022 file_slots_max); 1023 return; 1024 } 1025 1026 s->entries[0] = g_new0(FWCfgEntry, fw_cfg_max_entry(s)); 1027 s->entries[1] = g_new0(FWCfgEntry, fw_cfg_max_entry(s)); 1028 s->entry_order = g_new0(int, fw_cfg_max_entry(s)); 1029 } 1030 1031 static Property fw_cfg_io_properties[] = { 1032 DEFINE_PROP_BOOL("dma_enabled", FWCfgIoState, parent_obj.dma_enabled, 1033 true), 1034 DEFINE_PROP_UINT16("x-file-slots", FWCfgIoState, parent_obj.file_slots, 1035 FW_CFG_FILE_SLOTS_DFLT), 1036 DEFINE_PROP_END_OF_LIST(), 1037 }; 1038 1039 static void fw_cfg_io_realize(DeviceState *dev, Error **errp) 1040 { 1041 FWCfgIoState *s = FW_CFG_IO(dev); 1042 Error *local_err = NULL; 1043 1044 fw_cfg_file_slots_allocate(FW_CFG(s), &local_err); 1045 if (local_err) { 1046 error_propagate(errp, local_err); 1047 return; 1048 } 1049 1050 /* when using port i/o, the 8-bit data register ALWAYS overlaps 1051 * with half of the 16-bit control register. Hence, the total size 1052 * of the i/o region used is FW_CFG_CTL_SIZE */ 1053 memory_region_init_io(&s->comb_iomem, OBJECT(s), &fw_cfg_comb_mem_ops, 1054 FW_CFG(s), "fwcfg", FW_CFG_CTL_SIZE); 1055 1056 if (FW_CFG(s)->dma_enabled) { 1057 memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s), 1058 &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma", 1059 sizeof(dma_addr_t)); 1060 } 1061 1062 fw_cfg_common_realize(dev, errp); 1063 } 1064 1065 static void fw_cfg_io_class_init(ObjectClass *klass, void *data) 1066 { 1067 DeviceClass *dc = DEVICE_CLASS(klass); 1068 1069 dc->realize = fw_cfg_io_realize; 1070 dc->props = fw_cfg_io_properties; 1071 } 1072 1073 static const TypeInfo fw_cfg_io_info = { 1074 .name = TYPE_FW_CFG_IO, 1075 .parent = TYPE_FW_CFG, 1076 .instance_size = sizeof(FWCfgIoState), 1077 .class_init = fw_cfg_io_class_init, 1078 }; 1079 1080 1081 static Property fw_cfg_mem_properties[] = { 1082 DEFINE_PROP_UINT32("data_width", FWCfgMemState, data_width, -1), 1083 DEFINE_PROP_BOOL("dma_enabled", FWCfgMemState, parent_obj.dma_enabled, 1084 true), 1085 DEFINE_PROP_UINT16("x-file-slots", FWCfgMemState, parent_obj.file_slots, 1086 FW_CFG_FILE_SLOTS_DFLT), 1087 DEFINE_PROP_END_OF_LIST(), 1088 }; 1089 1090 static void fw_cfg_mem_realize(DeviceState *dev, Error **errp) 1091 { 1092 FWCfgMemState *s = FW_CFG_MEM(dev); 1093 SysBusDevice *sbd = SYS_BUS_DEVICE(dev); 1094 const MemoryRegionOps *data_ops = &fw_cfg_data_mem_ops; 1095 Error *local_err = NULL; 1096 1097 fw_cfg_file_slots_allocate(FW_CFG(s), &local_err); 1098 if (local_err) { 1099 error_propagate(errp, local_err); 1100 return; 1101 } 1102 1103 memory_region_init_io(&s->ctl_iomem, OBJECT(s), &fw_cfg_ctl_mem_ops, 1104 FW_CFG(s), "fwcfg.ctl", FW_CFG_CTL_SIZE); 1105 sysbus_init_mmio(sbd, &s->ctl_iomem); 1106 1107 if (s->data_width > data_ops->valid.max_access_size) { 1108 s->wide_data_ops = *data_ops; 1109 1110 s->wide_data_ops.valid.max_access_size = s->data_width; 1111 s->wide_data_ops.impl.max_access_size = s->data_width; 1112 data_ops = &s->wide_data_ops; 1113 } 1114 memory_region_init_io(&s->data_iomem, OBJECT(s), data_ops, FW_CFG(s), 1115 "fwcfg.data", data_ops->valid.max_access_size); 1116 sysbus_init_mmio(sbd, &s->data_iomem); 1117 1118 if (FW_CFG(s)->dma_enabled) { 1119 memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s), 1120 &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma", 1121 sizeof(dma_addr_t)); 1122 sysbus_init_mmio(sbd, &FW_CFG(s)->dma_iomem); 1123 } 1124 1125 fw_cfg_common_realize(dev, errp); 1126 } 1127 1128 static void fw_cfg_mem_class_init(ObjectClass *klass, void *data) 1129 { 1130 DeviceClass *dc = DEVICE_CLASS(klass); 1131 1132 dc->realize = fw_cfg_mem_realize; 1133 dc->props = fw_cfg_mem_properties; 1134 } 1135 1136 static const TypeInfo fw_cfg_mem_info = { 1137 .name = TYPE_FW_CFG_MEM, 1138 .parent = TYPE_FW_CFG, 1139 .instance_size = sizeof(FWCfgMemState), 1140 .class_init = fw_cfg_mem_class_init, 1141 }; 1142 1143 1144 static void fw_cfg_register_types(void) 1145 { 1146 type_register_static(&fw_cfg_info); 1147 type_register_static(&fw_cfg_io_info); 1148 type_register_static(&fw_cfg_mem_info); 1149 } 1150 1151 type_init(fw_cfg_register_types) 1152