xref: /openbmc/qemu/hw/nvram/fw_cfg.c (revision 09a274d8)
1 /*
2  * QEMU Firmware configuration device emulation
3  *
4  * Copyright (c) 2008 Gleb Natapov
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "hw/hw.h"
27 #include "sysemu/sysemu.h"
28 #include "sysemu/dma.h"
29 #include "hw/boards.h"
30 #include "hw/nvram/fw_cfg.h"
31 #include "hw/sysbus.h"
32 #include "trace.h"
33 #include "qemu/error-report.h"
34 #include "qemu/option.h"
35 #include "qemu/config-file.h"
36 #include "qemu/cutils.h"
37 #include "qapi/error.h"
38 
39 #define FW_CFG_FILE_SLOTS_DFLT 0x20
40 
41 /* FW_CFG_VERSION bits */
42 #define FW_CFG_VERSION      0x01
43 #define FW_CFG_VERSION_DMA  0x02
44 
45 /* FW_CFG_DMA_CONTROL bits */
46 #define FW_CFG_DMA_CTL_ERROR   0x01
47 #define FW_CFG_DMA_CTL_READ    0x02
48 #define FW_CFG_DMA_CTL_SKIP    0x04
49 #define FW_CFG_DMA_CTL_SELECT  0x08
50 #define FW_CFG_DMA_CTL_WRITE   0x10
51 
52 #define FW_CFG_DMA_SIGNATURE 0x51454d5520434647ULL /* "QEMU CFG" */
53 
54 struct FWCfgEntry {
55     uint32_t len;
56     bool allow_write;
57     uint8_t *data;
58     void *callback_opaque;
59     FWCfgCallback select_cb;
60     FWCfgWriteCallback write_cb;
61 };
62 
63 #define JPG_FILE 0
64 #define BMP_FILE 1
65 
66 static char *read_splashfile(char *filename, gsize *file_sizep,
67                              int *file_typep)
68 {
69     GError *err = NULL;
70     gchar *content;
71     int file_type;
72     unsigned int filehead;
73     int bmp_bpp;
74 
75     if (!g_file_get_contents(filename, &content, file_sizep, &err)) {
76         error_report("failed to read splash file '%s': %s",
77                      filename, err->message);
78         g_error_free(err);
79         return NULL;
80     }
81 
82     /* check file size */
83     if (*file_sizep < 30) {
84         goto error;
85     }
86 
87     /* check magic ID */
88     filehead = ((content[0] & 0xff) + (content[1] << 8)) & 0xffff;
89     if (filehead == 0xd8ff) {
90         file_type = JPG_FILE;
91     } else if (filehead == 0x4d42) {
92         file_type = BMP_FILE;
93     } else {
94         goto error;
95     }
96 
97     /* check BMP bpp */
98     if (file_type == BMP_FILE) {
99         bmp_bpp = (content[28] + (content[29] << 8)) & 0xffff;
100         if (bmp_bpp != 24) {
101             goto error;
102         }
103     }
104 
105     /* return values */
106     *file_typep = file_type;
107 
108     return content;
109 
110 error:
111     error_report("splash file '%s' format not recognized; must be JPEG "
112                  "or 24 bit BMP", filename);
113     g_free(content);
114     return NULL;
115 }
116 
117 static void fw_cfg_bootsplash(FWCfgState *s)
118 {
119     const char *boot_splash_filename = NULL;
120     const char *boot_splash_time = NULL;
121     char *filename, *file_data;
122     gsize file_size;
123     int file_type;
124 
125     /* get user configuration */
126     QemuOptsList *plist = qemu_find_opts("boot-opts");
127     QemuOpts *opts = QTAILQ_FIRST(&plist->head);
128     boot_splash_filename = qemu_opt_get(opts, "splash");
129     boot_splash_time = qemu_opt_get(opts, "splash-time");
130 
131     /* insert splash time if user configurated */
132     if (boot_splash_time) {
133         int64_t bst_val = qemu_opt_get_number(opts, "splash-time", -1);
134         uint16_t bst_le16;
135 
136         /* validate the input */
137         if (bst_val < 0 || bst_val > 0xffff) {
138             error_report("splash-time is invalid,"
139                          "it should be a value between 0 and 65535");
140             exit(1);
141         }
142         /* use little endian format */
143         bst_le16 = cpu_to_le16(bst_val);
144         fw_cfg_add_file(s, "etc/boot-menu-wait",
145                         g_memdup(&bst_le16, sizeof bst_le16), sizeof bst_le16);
146     }
147 
148     /* insert splash file if user configurated */
149     if (boot_splash_filename) {
150         filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, boot_splash_filename);
151         if (filename == NULL) {
152             error_report("failed to find file '%s'", boot_splash_filename);
153             return;
154         }
155 
156         /* loading file data */
157         file_data = read_splashfile(filename, &file_size, &file_type);
158         if (file_data == NULL) {
159             g_free(filename);
160             return;
161         }
162         g_free(boot_splash_filedata);
163         boot_splash_filedata = (uint8_t *)file_data;
164         boot_splash_filedata_size = file_size;
165 
166         /* insert data */
167         if (file_type == JPG_FILE) {
168             fw_cfg_add_file(s, "bootsplash.jpg",
169                     boot_splash_filedata, boot_splash_filedata_size);
170         } else {
171             fw_cfg_add_file(s, "bootsplash.bmp",
172                     boot_splash_filedata, boot_splash_filedata_size);
173         }
174         g_free(filename);
175     }
176 }
177 
178 static void fw_cfg_reboot(FWCfgState *s)
179 {
180     const char *reboot_timeout = NULL;
181     int64_t rt_val = -1;
182 
183     /* get user configuration */
184     QemuOptsList *plist = qemu_find_opts("boot-opts");
185     QemuOpts *opts = QTAILQ_FIRST(&plist->head);
186     reboot_timeout = qemu_opt_get(opts, "reboot-timeout");
187 
188     if (reboot_timeout) {
189         rt_val = qemu_opt_get_number(opts, "reboot-timeout", -1);
190         /* validate the input */
191         if (rt_val < 0 || rt_val > 0xffff) {
192             error_report("reboot timeout is invalid,"
193                          "it should be a value between 0 and 65535");
194             exit(1);
195         }
196     }
197 
198     fw_cfg_add_file(s, "etc/boot-fail-wait", g_memdup(&rt_val, 4), 4);
199 }
200 
201 static void fw_cfg_write(FWCfgState *s, uint8_t value)
202 {
203     /* nothing, write support removed in QEMU v2.4+ */
204 }
205 
206 static inline uint16_t fw_cfg_file_slots(const FWCfgState *s)
207 {
208     return s->file_slots;
209 }
210 
211 /* Note: this function returns an exclusive limit. */
212 static inline uint32_t fw_cfg_max_entry(const FWCfgState *s)
213 {
214     return FW_CFG_FILE_FIRST + fw_cfg_file_slots(s);
215 }
216 
217 static int fw_cfg_select(FWCfgState *s, uint16_t key)
218 {
219     int arch, ret;
220     FWCfgEntry *e;
221 
222     s->cur_offset = 0;
223     if ((key & FW_CFG_ENTRY_MASK) >= fw_cfg_max_entry(s)) {
224         s->cur_entry = FW_CFG_INVALID;
225         ret = 0;
226     } else {
227         s->cur_entry = key;
228         ret = 1;
229         /* entry successfully selected, now run callback if present */
230         arch = !!(key & FW_CFG_ARCH_LOCAL);
231         e = &s->entries[arch][key & FW_CFG_ENTRY_MASK];
232         if (e->select_cb) {
233             e->select_cb(e->callback_opaque);
234         }
235     }
236 
237     trace_fw_cfg_select(s, key, ret);
238     return ret;
239 }
240 
241 static uint64_t fw_cfg_data_read(void *opaque, hwaddr addr, unsigned size)
242 {
243     FWCfgState *s = opaque;
244     int arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL);
245     FWCfgEntry *e = (s->cur_entry == FW_CFG_INVALID) ? NULL :
246                     &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK];
247     uint64_t value = 0;
248 
249     assert(size > 0 && size <= sizeof(value));
250     if (s->cur_entry != FW_CFG_INVALID && e->data && s->cur_offset < e->len) {
251         /* The least significant 'size' bytes of the return value are
252          * expected to contain a string preserving portion of the item
253          * data, padded with zeros on the right in case we run out early.
254          * In technical terms, we're composing the host-endian representation
255          * of the big endian interpretation of the fw_cfg string.
256          */
257         do {
258             value = (value << 8) | e->data[s->cur_offset++];
259         } while (--size && s->cur_offset < e->len);
260         /* If size is still not zero, we *did* run out early, so continue
261          * left-shifting, to add the appropriate number of padding zeros
262          * on the right.
263          */
264         value <<= 8 * size;
265     }
266 
267     trace_fw_cfg_read(s, value);
268     return value;
269 }
270 
271 static void fw_cfg_data_mem_write(void *opaque, hwaddr addr,
272                                   uint64_t value, unsigned size)
273 {
274     FWCfgState *s = opaque;
275     unsigned i = size;
276 
277     do {
278         fw_cfg_write(s, value >> (8 * --i));
279     } while (i);
280 }
281 
282 static void fw_cfg_dma_transfer(FWCfgState *s)
283 {
284     dma_addr_t len;
285     FWCfgDmaAccess dma;
286     int arch;
287     FWCfgEntry *e;
288     int read = 0, write = 0;
289     dma_addr_t dma_addr;
290 
291     /* Reset the address before the next access */
292     dma_addr = s->dma_addr;
293     s->dma_addr = 0;
294 
295     if (dma_memory_read(s->dma_as, dma_addr, &dma, sizeof(dma))) {
296         stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control),
297                    FW_CFG_DMA_CTL_ERROR);
298         return;
299     }
300 
301     dma.address = be64_to_cpu(dma.address);
302     dma.length = be32_to_cpu(dma.length);
303     dma.control = be32_to_cpu(dma.control);
304 
305     if (dma.control & FW_CFG_DMA_CTL_SELECT) {
306         fw_cfg_select(s, dma.control >> 16);
307     }
308 
309     arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL);
310     e = (s->cur_entry == FW_CFG_INVALID) ? NULL :
311         &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK];
312 
313     if (dma.control & FW_CFG_DMA_CTL_READ) {
314         read = 1;
315         write = 0;
316     } else if (dma.control & FW_CFG_DMA_CTL_WRITE) {
317         read = 0;
318         write = 1;
319     } else if (dma.control & FW_CFG_DMA_CTL_SKIP) {
320         read = 0;
321         write = 0;
322     } else {
323         dma.length = 0;
324     }
325 
326     dma.control = 0;
327 
328     while (dma.length > 0 && !(dma.control & FW_CFG_DMA_CTL_ERROR)) {
329         if (s->cur_entry == FW_CFG_INVALID || !e->data ||
330                                 s->cur_offset >= e->len) {
331             len = dma.length;
332 
333             /* If the access is not a read access, it will be a skip access,
334              * tested before.
335              */
336             if (read) {
337                 if (dma_memory_set(s->dma_as, dma.address, 0, len)) {
338                     dma.control |= FW_CFG_DMA_CTL_ERROR;
339                 }
340             }
341             if (write) {
342                 dma.control |= FW_CFG_DMA_CTL_ERROR;
343             }
344         } else {
345             if (dma.length <= (e->len - s->cur_offset)) {
346                 len = dma.length;
347             } else {
348                 len = (e->len - s->cur_offset);
349             }
350 
351             /* If the access is not a read access, it will be a skip access,
352              * tested before.
353              */
354             if (read) {
355                 if (dma_memory_write(s->dma_as, dma.address,
356                                     &e->data[s->cur_offset], len)) {
357                     dma.control |= FW_CFG_DMA_CTL_ERROR;
358                 }
359             }
360             if (write) {
361                 if (!e->allow_write ||
362                     len != dma.length ||
363                     dma_memory_read(s->dma_as, dma.address,
364                                     &e->data[s->cur_offset], len)) {
365                     dma.control |= FW_CFG_DMA_CTL_ERROR;
366                 } else if (e->write_cb) {
367                     e->write_cb(e->callback_opaque, s->cur_offset, len);
368                 }
369             }
370 
371             s->cur_offset += len;
372         }
373 
374         dma.address += len;
375         dma.length  -= len;
376 
377     }
378 
379     stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control),
380                 dma.control);
381 
382     trace_fw_cfg_read(s, 0);
383 }
384 
385 static uint64_t fw_cfg_dma_mem_read(void *opaque, hwaddr addr,
386                                     unsigned size)
387 {
388     /* Return a signature value (and handle various read sizes) */
389     return extract64(FW_CFG_DMA_SIGNATURE, (8 - addr - size) * 8, size * 8);
390 }
391 
392 static void fw_cfg_dma_mem_write(void *opaque, hwaddr addr,
393                                  uint64_t value, unsigned size)
394 {
395     FWCfgState *s = opaque;
396 
397     if (size == 4) {
398         if (addr == 0) {
399             /* FWCfgDmaAccess high address */
400             s->dma_addr = value << 32;
401         } else if (addr == 4) {
402             /* FWCfgDmaAccess low address */
403             s->dma_addr |= value;
404             fw_cfg_dma_transfer(s);
405         }
406     } else if (size == 8 && addr == 0) {
407         s->dma_addr = value;
408         fw_cfg_dma_transfer(s);
409     }
410 }
411 
412 static bool fw_cfg_dma_mem_valid(void *opaque, hwaddr addr,
413                                  unsigned size, bool is_write,
414                                  MemTxAttrs attrs)
415 {
416     return !is_write || ((size == 4 && (addr == 0 || addr == 4)) ||
417                          (size == 8 && addr == 0));
418 }
419 
420 static bool fw_cfg_data_mem_valid(void *opaque, hwaddr addr,
421                                   unsigned size, bool is_write,
422                                   MemTxAttrs attrs)
423 {
424     return addr == 0;
425 }
426 
427 static uint64_t fw_cfg_ctl_mem_read(void *opaque, hwaddr addr, unsigned size)
428 {
429     return 0;
430 }
431 
432 static void fw_cfg_ctl_mem_write(void *opaque, hwaddr addr,
433                                  uint64_t value, unsigned size)
434 {
435     fw_cfg_select(opaque, (uint16_t)value);
436 }
437 
438 static bool fw_cfg_ctl_mem_valid(void *opaque, hwaddr addr,
439                                  unsigned size, bool is_write,
440                                  MemTxAttrs attrs)
441 {
442     return is_write && size == 2;
443 }
444 
445 static void fw_cfg_comb_write(void *opaque, hwaddr addr,
446                               uint64_t value, unsigned size)
447 {
448     switch (size) {
449     case 1:
450         fw_cfg_write(opaque, (uint8_t)value);
451         break;
452     case 2:
453         fw_cfg_select(opaque, (uint16_t)value);
454         break;
455     }
456 }
457 
458 static bool fw_cfg_comb_valid(void *opaque, hwaddr addr,
459                               unsigned size, bool is_write,
460                               MemTxAttrs attrs)
461 {
462     return (size == 1) || (is_write && size == 2);
463 }
464 
465 static const MemoryRegionOps fw_cfg_ctl_mem_ops = {
466     .read = fw_cfg_ctl_mem_read,
467     .write = fw_cfg_ctl_mem_write,
468     .endianness = DEVICE_BIG_ENDIAN,
469     .valid.accepts = fw_cfg_ctl_mem_valid,
470 };
471 
472 static const MemoryRegionOps fw_cfg_data_mem_ops = {
473     .read = fw_cfg_data_read,
474     .write = fw_cfg_data_mem_write,
475     .endianness = DEVICE_BIG_ENDIAN,
476     .valid = {
477         .min_access_size = 1,
478         .max_access_size = 1,
479         .accepts = fw_cfg_data_mem_valid,
480     },
481 };
482 
483 static const MemoryRegionOps fw_cfg_comb_mem_ops = {
484     .read = fw_cfg_data_read,
485     .write = fw_cfg_comb_write,
486     .endianness = DEVICE_LITTLE_ENDIAN,
487     .valid.accepts = fw_cfg_comb_valid,
488 };
489 
490 static const MemoryRegionOps fw_cfg_dma_mem_ops = {
491     .read = fw_cfg_dma_mem_read,
492     .write = fw_cfg_dma_mem_write,
493     .endianness = DEVICE_BIG_ENDIAN,
494     .valid.accepts = fw_cfg_dma_mem_valid,
495     .valid.max_access_size = 8,
496     .impl.max_access_size = 8,
497 };
498 
499 static void fw_cfg_reset(DeviceState *d)
500 {
501     FWCfgState *s = FW_CFG(d);
502 
503     /* we never register a read callback for FW_CFG_SIGNATURE */
504     fw_cfg_select(s, FW_CFG_SIGNATURE);
505 }
506 
507 /* Save restore 32 bit int as uint16_t
508    This is a Big hack, but it is how the old state did it.
509    Or we broke compatibility in the state, or we can't use struct tm
510  */
511 
512 static int get_uint32_as_uint16(QEMUFile *f, void *pv, size_t size,
513                                 const VMStateField *field)
514 {
515     uint32_t *v = pv;
516     *v = qemu_get_be16(f);
517     return 0;
518 }
519 
520 static int put_unused(QEMUFile *f, void *pv, size_t size,
521                       const VMStateField *field, QJSON *vmdesc)
522 {
523     fprintf(stderr, "uint32_as_uint16 is only used for backward compatibility.\n");
524     fprintf(stderr, "This functions shouldn't be called.\n");
525 
526     return 0;
527 }
528 
529 static const VMStateInfo vmstate_hack_uint32_as_uint16 = {
530     .name = "int32_as_uint16",
531     .get  = get_uint32_as_uint16,
532     .put  = put_unused,
533 };
534 
535 #define VMSTATE_UINT16_HACK(_f, _s, _t)                                    \
536     VMSTATE_SINGLE_TEST(_f, _s, _t, 0, vmstate_hack_uint32_as_uint16, uint32_t)
537 
538 
539 static bool is_version_1(void *opaque, int version_id)
540 {
541     return version_id == 1;
542 }
543 
544 bool fw_cfg_dma_enabled(void *opaque)
545 {
546     FWCfgState *s = opaque;
547 
548     return s->dma_enabled;
549 }
550 
551 static const VMStateDescription vmstate_fw_cfg_dma = {
552     .name = "fw_cfg/dma",
553     .needed = fw_cfg_dma_enabled,
554     .fields = (VMStateField[]) {
555         VMSTATE_UINT64(dma_addr, FWCfgState),
556         VMSTATE_END_OF_LIST()
557     },
558 };
559 
560 static const VMStateDescription vmstate_fw_cfg = {
561     .name = "fw_cfg",
562     .version_id = 2,
563     .minimum_version_id = 1,
564     .fields = (VMStateField[]) {
565         VMSTATE_UINT16(cur_entry, FWCfgState),
566         VMSTATE_UINT16_HACK(cur_offset, FWCfgState, is_version_1),
567         VMSTATE_UINT32_V(cur_offset, FWCfgState, 2),
568         VMSTATE_END_OF_LIST()
569     },
570     .subsections = (const VMStateDescription*[]) {
571         &vmstate_fw_cfg_dma,
572         NULL,
573     }
574 };
575 
576 static void fw_cfg_add_bytes_callback(FWCfgState *s, uint16_t key,
577                                       FWCfgCallback select_cb,
578                                       FWCfgWriteCallback write_cb,
579                                       void *callback_opaque,
580                                       void *data, size_t len,
581                                       bool read_only)
582 {
583     int arch = !!(key & FW_CFG_ARCH_LOCAL);
584 
585     key &= FW_CFG_ENTRY_MASK;
586 
587     assert(key < fw_cfg_max_entry(s) && len < UINT32_MAX);
588     assert(s->entries[arch][key].data == NULL); /* avoid key conflict */
589 
590     s->entries[arch][key].data = data;
591     s->entries[arch][key].len = (uint32_t)len;
592     s->entries[arch][key].select_cb = select_cb;
593     s->entries[arch][key].write_cb = write_cb;
594     s->entries[arch][key].callback_opaque = callback_opaque;
595     s->entries[arch][key].allow_write = !read_only;
596 }
597 
598 static void *fw_cfg_modify_bytes_read(FWCfgState *s, uint16_t key,
599                                               void *data, size_t len)
600 {
601     void *ptr;
602     int arch = !!(key & FW_CFG_ARCH_LOCAL);
603 
604     key &= FW_CFG_ENTRY_MASK;
605 
606     assert(key < fw_cfg_max_entry(s) && len < UINT32_MAX);
607 
608     /* return the old data to the function caller, avoid memory leak */
609     ptr = s->entries[arch][key].data;
610     s->entries[arch][key].data = data;
611     s->entries[arch][key].len = len;
612     s->entries[arch][key].callback_opaque = NULL;
613     s->entries[arch][key].allow_write = false;
614 
615     return ptr;
616 }
617 
618 void fw_cfg_add_bytes(FWCfgState *s, uint16_t key, void *data, size_t len)
619 {
620     fw_cfg_add_bytes_callback(s, key, NULL, NULL, NULL, data, len, true);
621 }
622 
623 void fw_cfg_add_string(FWCfgState *s, uint16_t key, const char *value)
624 {
625     size_t sz = strlen(value) + 1;
626 
627     fw_cfg_add_bytes(s, key, g_memdup(value, sz), sz);
628 }
629 
630 void fw_cfg_add_i16(FWCfgState *s, uint16_t key, uint16_t value)
631 {
632     uint16_t *copy;
633 
634     copy = g_malloc(sizeof(value));
635     *copy = cpu_to_le16(value);
636     fw_cfg_add_bytes(s, key, copy, sizeof(value));
637 }
638 
639 void fw_cfg_modify_i16(FWCfgState *s, uint16_t key, uint16_t value)
640 {
641     uint16_t *copy, *old;
642 
643     copy = g_malloc(sizeof(value));
644     *copy = cpu_to_le16(value);
645     old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value));
646     g_free(old);
647 }
648 
649 void fw_cfg_add_i32(FWCfgState *s, uint16_t key, uint32_t value)
650 {
651     uint32_t *copy;
652 
653     copy = g_malloc(sizeof(value));
654     *copy = cpu_to_le32(value);
655     fw_cfg_add_bytes(s, key, copy, sizeof(value));
656 }
657 
658 void fw_cfg_add_i64(FWCfgState *s, uint16_t key, uint64_t value)
659 {
660     uint64_t *copy;
661 
662     copy = g_malloc(sizeof(value));
663     *copy = cpu_to_le64(value);
664     fw_cfg_add_bytes(s, key, copy, sizeof(value));
665 }
666 
667 void fw_cfg_set_order_override(FWCfgState *s, int order)
668 {
669     assert(s->fw_cfg_order_override == 0);
670     s->fw_cfg_order_override = order;
671 }
672 
673 void fw_cfg_reset_order_override(FWCfgState *s)
674 {
675     assert(s->fw_cfg_order_override != 0);
676     s->fw_cfg_order_override = 0;
677 }
678 
679 /*
680  * This is the legacy order list.  For legacy systems, files are in
681  * the fw_cfg in the order defined below, by the "order" value.  Note
682  * that some entries (VGA ROMs, NIC option ROMS, etc.) go into a
683  * specific area, but there may be more than one and they occur in the
684  * order that the user specifies them on the command line.  Those are
685  * handled in a special manner, using the order override above.
686  *
687  * For non-legacy, the files are sorted by filename to avoid this kind
688  * of complexity in the future.
689  *
690  * This is only for x86, other arches don't implement versioning so
691  * they won't set legacy mode.
692  */
693 static struct {
694     const char *name;
695     int order;
696 } fw_cfg_order[] = {
697     { "etc/boot-menu-wait", 10 },
698     { "bootsplash.jpg", 11 },
699     { "bootsplash.bmp", 12 },
700     { "etc/boot-fail-wait", 15 },
701     { "etc/smbios/smbios-tables", 20 },
702     { "etc/smbios/smbios-anchor", 30 },
703     { "etc/e820", 40 },
704     { "etc/reserved-memory-end", 50 },
705     { "genroms/kvmvapic.bin", 55 },
706     { "genroms/linuxboot.bin", 60 },
707     { }, /* VGA ROMs from pc_vga_init come here, 70. */
708     { }, /* NIC option ROMs from pc_nic_init come here, 80. */
709     { "etc/system-states", 90 },
710     { }, /* User ROMs come here, 100. */
711     { }, /* Device FW comes here, 110. */
712     { "etc/extra-pci-roots", 120 },
713     { "etc/acpi/tables", 130 },
714     { "etc/table-loader", 140 },
715     { "etc/tpm/log", 150 },
716     { "etc/acpi/rsdp", 160 },
717     { "bootorder", 170 },
718 
719 #define FW_CFG_ORDER_OVERRIDE_LAST 200
720 };
721 
722 static int get_fw_cfg_order(FWCfgState *s, const char *name)
723 {
724     int i;
725 
726     if (s->fw_cfg_order_override > 0) {
727         return s->fw_cfg_order_override;
728     }
729 
730     for (i = 0; i < ARRAY_SIZE(fw_cfg_order); i++) {
731         if (fw_cfg_order[i].name == NULL) {
732             continue;
733         }
734 
735         if (strcmp(name, fw_cfg_order[i].name) == 0) {
736             return fw_cfg_order[i].order;
737         }
738     }
739 
740     /* Stick unknown stuff at the end. */
741     warn_report("Unknown firmware file in legacy mode: %s", name);
742     return FW_CFG_ORDER_OVERRIDE_LAST;
743 }
744 
745 void fw_cfg_add_file_callback(FWCfgState *s,  const char *filename,
746                               FWCfgCallback select_cb,
747                               FWCfgWriteCallback write_cb,
748                               void *callback_opaque,
749                               void *data, size_t len, bool read_only)
750 {
751     int i, index, count;
752     size_t dsize;
753     MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
754     int order = 0;
755 
756     if (!s->files) {
757         dsize = sizeof(uint32_t) + sizeof(FWCfgFile) * fw_cfg_file_slots(s);
758         s->files = g_malloc0(dsize);
759         fw_cfg_add_bytes(s, FW_CFG_FILE_DIR, s->files, dsize);
760     }
761 
762     count = be32_to_cpu(s->files->count);
763     assert(count < fw_cfg_file_slots(s));
764 
765     /* Find the insertion point. */
766     if (mc->legacy_fw_cfg_order) {
767         /*
768          * Sort by order. For files with the same order, we keep them
769          * in the sequence in which they were added.
770          */
771         order = get_fw_cfg_order(s, filename);
772         for (index = count;
773              index > 0 && order < s->entry_order[index - 1];
774              index--);
775     } else {
776         /* Sort by file name. */
777         for (index = count;
778              index > 0 && strcmp(filename, s->files->f[index - 1].name) < 0;
779              index--);
780     }
781 
782     /*
783      * Move all the entries from the index point and after down one
784      * to create a slot for the new entry.  Because calculations are
785      * being done with the index, make it so that "i" is the current
786      * index and "i - 1" is the one being copied from, thus the
787      * unusual start and end in the for statement.
788      */
789     for (i = count; i > index; i--) {
790         s->files->f[i] = s->files->f[i - 1];
791         s->files->f[i].select = cpu_to_be16(FW_CFG_FILE_FIRST + i);
792         s->entries[0][FW_CFG_FILE_FIRST + i] =
793             s->entries[0][FW_CFG_FILE_FIRST + i - 1];
794         s->entry_order[i] = s->entry_order[i - 1];
795     }
796 
797     memset(&s->files->f[index], 0, sizeof(FWCfgFile));
798     memset(&s->entries[0][FW_CFG_FILE_FIRST + index], 0, sizeof(FWCfgEntry));
799 
800     pstrcpy(s->files->f[index].name, sizeof(s->files->f[index].name), filename);
801     for (i = 0; i <= count; i++) {
802         if (i != index &&
803             strcmp(s->files->f[index].name, s->files->f[i].name) == 0) {
804             error_report("duplicate fw_cfg file name: %s",
805                          s->files->f[index].name);
806             exit(1);
807         }
808     }
809 
810     fw_cfg_add_bytes_callback(s, FW_CFG_FILE_FIRST + index,
811                               select_cb, write_cb,
812                               callback_opaque, data, len,
813                               read_only);
814 
815     s->files->f[index].size   = cpu_to_be32(len);
816     s->files->f[index].select = cpu_to_be16(FW_CFG_FILE_FIRST + index);
817     s->entry_order[index] = order;
818     trace_fw_cfg_add_file(s, index, s->files->f[index].name, len);
819 
820     s->files->count = cpu_to_be32(count+1);
821 }
822 
823 void fw_cfg_add_file(FWCfgState *s,  const char *filename,
824                      void *data, size_t len)
825 {
826     fw_cfg_add_file_callback(s, filename, NULL, NULL, NULL, data, len, true);
827 }
828 
829 void *fw_cfg_modify_file(FWCfgState *s, const char *filename,
830                         void *data, size_t len)
831 {
832     int i, index;
833     void *ptr = NULL;
834 
835     assert(s->files);
836 
837     index = be32_to_cpu(s->files->count);
838 
839     for (i = 0; i < index; i++) {
840         if (strcmp(filename, s->files->f[i].name) == 0) {
841             ptr = fw_cfg_modify_bytes_read(s, FW_CFG_FILE_FIRST + i,
842                                            data, len);
843             s->files->f[i].size   = cpu_to_be32(len);
844             return ptr;
845         }
846     }
847 
848     assert(index < fw_cfg_file_slots(s));
849 
850     /* add new one */
851     fw_cfg_add_file_callback(s, filename, NULL, NULL, NULL, data, len, true);
852     return NULL;
853 }
854 
855 static void fw_cfg_machine_reset(void *opaque)
856 {
857     void *ptr;
858     size_t len;
859     FWCfgState *s = opaque;
860     char *bootindex = get_boot_devices_list(&len);
861 
862     ptr = fw_cfg_modify_file(s, "bootorder", (uint8_t *)bootindex, len);
863     g_free(ptr);
864 }
865 
866 static void fw_cfg_machine_ready(struct Notifier *n, void *data)
867 {
868     FWCfgState *s = container_of(n, FWCfgState, machine_ready);
869     qemu_register_reset(fw_cfg_machine_reset, s);
870 }
871 
872 
873 
874 static void fw_cfg_common_realize(DeviceState *dev, Error **errp)
875 {
876     FWCfgState *s = FW_CFG(dev);
877     MachineState *machine = MACHINE(qdev_get_machine());
878     uint32_t version = FW_CFG_VERSION;
879 
880     if (!fw_cfg_find()) {
881         error_setg(errp, "at most one %s device is permitted", TYPE_FW_CFG);
882         return;
883     }
884 
885     fw_cfg_add_bytes(s, FW_CFG_SIGNATURE, (char *)"QEMU", 4);
886     fw_cfg_add_bytes(s, FW_CFG_UUID, &qemu_uuid, 16);
887     fw_cfg_add_i16(s, FW_CFG_NOGRAPHIC, (uint16_t)!machine->enable_graphics);
888     fw_cfg_add_i16(s, FW_CFG_BOOT_MENU, (uint16_t)boot_menu);
889     fw_cfg_bootsplash(s);
890     fw_cfg_reboot(s);
891 
892     if (s->dma_enabled) {
893         version |= FW_CFG_VERSION_DMA;
894     }
895 
896     fw_cfg_add_i32(s, FW_CFG_ID, version);
897 
898     s->machine_ready.notify = fw_cfg_machine_ready;
899     qemu_add_machine_init_done_notifier(&s->machine_ready);
900 }
901 
902 FWCfgState *fw_cfg_init_io_dma(uint32_t iobase, uint32_t dma_iobase,
903                                 AddressSpace *dma_as)
904 {
905     DeviceState *dev;
906     SysBusDevice *sbd;
907     FWCfgIoState *ios;
908     FWCfgState *s;
909     bool dma_requested = dma_iobase && dma_as;
910 
911     dev = qdev_create(NULL, TYPE_FW_CFG_IO);
912     if (!dma_requested) {
913         qdev_prop_set_bit(dev, "dma_enabled", false);
914     }
915 
916     object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG,
917                               OBJECT(dev), NULL);
918     qdev_init_nofail(dev);
919 
920     sbd = SYS_BUS_DEVICE(dev);
921     ios = FW_CFG_IO(dev);
922     sysbus_add_io(sbd, iobase, &ios->comb_iomem);
923 
924     s = FW_CFG(dev);
925 
926     if (s->dma_enabled) {
927         /* 64 bits for the address field */
928         s->dma_as = dma_as;
929         s->dma_addr = 0;
930         sysbus_add_io(sbd, dma_iobase, &s->dma_iomem);
931     }
932 
933     return s;
934 }
935 
936 FWCfgState *fw_cfg_init_io(uint32_t iobase)
937 {
938     return fw_cfg_init_io_dma(iobase, 0, NULL);
939 }
940 
941 FWCfgState *fw_cfg_init_mem_wide(hwaddr ctl_addr,
942                                  hwaddr data_addr, uint32_t data_width,
943                                  hwaddr dma_addr, AddressSpace *dma_as)
944 {
945     DeviceState *dev;
946     SysBusDevice *sbd;
947     FWCfgState *s;
948     bool dma_requested = dma_addr && dma_as;
949 
950     dev = qdev_create(NULL, TYPE_FW_CFG_MEM);
951     qdev_prop_set_uint32(dev, "data_width", data_width);
952     if (!dma_requested) {
953         qdev_prop_set_bit(dev, "dma_enabled", false);
954     }
955 
956     object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG,
957                               OBJECT(dev), NULL);
958     qdev_init_nofail(dev);
959 
960     sbd = SYS_BUS_DEVICE(dev);
961     sysbus_mmio_map(sbd, 0, ctl_addr);
962     sysbus_mmio_map(sbd, 1, data_addr);
963 
964     s = FW_CFG(dev);
965 
966     if (s->dma_enabled) {
967         s->dma_as = dma_as;
968         s->dma_addr = 0;
969         sysbus_mmio_map(sbd, 2, dma_addr);
970     }
971 
972     return s;
973 }
974 
975 FWCfgState *fw_cfg_init_mem(hwaddr ctl_addr, hwaddr data_addr)
976 {
977     return fw_cfg_init_mem_wide(ctl_addr, data_addr,
978                                 fw_cfg_data_mem_ops.valid.max_access_size,
979                                 0, NULL);
980 }
981 
982 
983 FWCfgState *fw_cfg_find(void)
984 {
985     /* Returns NULL unless there is exactly one fw_cfg device */
986     return FW_CFG(object_resolve_path_type("", TYPE_FW_CFG, NULL));
987 }
988 
989 
990 static void fw_cfg_class_init(ObjectClass *klass, void *data)
991 {
992     DeviceClass *dc = DEVICE_CLASS(klass);
993 
994     dc->reset = fw_cfg_reset;
995     dc->vmsd = &vmstate_fw_cfg;
996 }
997 
998 static const TypeInfo fw_cfg_info = {
999     .name          = TYPE_FW_CFG,
1000     .parent        = TYPE_SYS_BUS_DEVICE,
1001     .abstract      = true,
1002     .instance_size = sizeof(FWCfgState),
1003     .class_init    = fw_cfg_class_init,
1004 };
1005 
1006 static void fw_cfg_file_slots_allocate(FWCfgState *s, Error **errp)
1007 {
1008     uint16_t file_slots_max;
1009 
1010     if (fw_cfg_file_slots(s) < FW_CFG_FILE_SLOTS_MIN) {
1011         error_setg(errp, "\"file_slots\" must be at least 0x%x",
1012                    FW_CFG_FILE_SLOTS_MIN);
1013         return;
1014     }
1015 
1016     /* (UINT16_MAX & FW_CFG_ENTRY_MASK) is the highest inclusive selector value
1017      * that we permit. The actual (exclusive) value coming from the
1018      * configuration is (FW_CFG_FILE_FIRST + fw_cfg_file_slots(s)). */
1019     file_slots_max = (UINT16_MAX & FW_CFG_ENTRY_MASK) - FW_CFG_FILE_FIRST + 1;
1020     if (fw_cfg_file_slots(s) > file_slots_max) {
1021         error_setg(errp, "\"file_slots\" must not exceed 0x%" PRIx16,
1022                    file_slots_max);
1023         return;
1024     }
1025 
1026     s->entries[0] = g_new0(FWCfgEntry, fw_cfg_max_entry(s));
1027     s->entries[1] = g_new0(FWCfgEntry, fw_cfg_max_entry(s));
1028     s->entry_order = g_new0(int, fw_cfg_max_entry(s));
1029 }
1030 
1031 static Property fw_cfg_io_properties[] = {
1032     DEFINE_PROP_BOOL("dma_enabled", FWCfgIoState, parent_obj.dma_enabled,
1033                      true),
1034     DEFINE_PROP_UINT16("x-file-slots", FWCfgIoState, parent_obj.file_slots,
1035                        FW_CFG_FILE_SLOTS_DFLT),
1036     DEFINE_PROP_END_OF_LIST(),
1037 };
1038 
1039 static void fw_cfg_io_realize(DeviceState *dev, Error **errp)
1040 {
1041     FWCfgIoState *s = FW_CFG_IO(dev);
1042     Error *local_err = NULL;
1043 
1044     fw_cfg_file_slots_allocate(FW_CFG(s), &local_err);
1045     if (local_err) {
1046         error_propagate(errp, local_err);
1047         return;
1048     }
1049 
1050     /* when using port i/o, the 8-bit data register ALWAYS overlaps
1051      * with half of the 16-bit control register. Hence, the total size
1052      * of the i/o region used is FW_CFG_CTL_SIZE */
1053     memory_region_init_io(&s->comb_iomem, OBJECT(s), &fw_cfg_comb_mem_ops,
1054                           FW_CFG(s), "fwcfg", FW_CFG_CTL_SIZE);
1055 
1056     if (FW_CFG(s)->dma_enabled) {
1057         memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s),
1058                               &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma",
1059                               sizeof(dma_addr_t));
1060     }
1061 
1062     fw_cfg_common_realize(dev, errp);
1063 }
1064 
1065 static void fw_cfg_io_class_init(ObjectClass *klass, void *data)
1066 {
1067     DeviceClass *dc = DEVICE_CLASS(klass);
1068 
1069     dc->realize = fw_cfg_io_realize;
1070     dc->props = fw_cfg_io_properties;
1071 }
1072 
1073 static const TypeInfo fw_cfg_io_info = {
1074     .name          = TYPE_FW_CFG_IO,
1075     .parent        = TYPE_FW_CFG,
1076     .instance_size = sizeof(FWCfgIoState),
1077     .class_init    = fw_cfg_io_class_init,
1078 };
1079 
1080 
1081 static Property fw_cfg_mem_properties[] = {
1082     DEFINE_PROP_UINT32("data_width", FWCfgMemState, data_width, -1),
1083     DEFINE_PROP_BOOL("dma_enabled", FWCfgMemState, parent_obj.dma_enabled,
1084                      true),
1085     DEFINE_PROP_UINT16("x-file-slots", FWCfgMemState, parent_obj.file_slots,
1086                        FW_CFG_FILE_SLOTS_DFLT),
1087     DEFINE_PROP_END_OF_LIST(),
1088 };
1089 
1090 static void fw_cfg_mem_realize(DeviceState *dev, Error **errp)
1091 {
1092     FWCfgMemState *s = FW_CFG_MEM(dev);
1093     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1094     const MemoryRegionOps *data_ops = &fw_cfg_data_mem_ops;
1095     Error *local_err = NULL;
1096 
1097     fw_cfg_file_slots_allocate(FW_CFG(s), &local_err);
1098     if (local_err) {
1099         error_propagate(errp, local_err);
1100         return;
1101     }
1102 
1103     memory_region_init_io(&s->ctl_iomem, OBJECT(s), &fw_cfg_ctl_mem_ops,
1104                           FW_CFG(s), "fwcfg.ctl", FW_CFG_CTL_SIZE);
1105     sysbus_init_mmio(sbd, &s->ctl_iomem);
1106 
1107     if (s->data_width > data_ops->valid.max_access_size) {
1108         s->wide_data_ops = *data_ops;
1109 
1110         s->wide_data_ops.valid.max_access_size = s->data_width;
1111         s->wide_data_ops.impl.max_access_size  = s->data_width;
1112         data_ops = &s->wide_data_ops;
1113     }
1114     memory_region_init_io(&s->data_iomem, OBJECT(s), data_ops, FW_CFG(s),
1115                           "fwcfg.data", data_ops->valid.max_access_size);
1116     sysbus_init_mmio(sbd, &s->data_iomem);
1117 
1118     if (FW_CFG(s)->dma_enabled) {
1119         memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s),
1120                               &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma",
1121                               sizeof(dma_addr_t));
1122         sysbus_init_mmio(sbd, &FW_CFG(s)->dma_iomem);
1123     }
1124 
1125     fw_cfg_common_realize(dev, errp);
1126 }
1127 
1128 static void fw_cfg_mem_class_init(ObjectClass *klass, void *data)
1129 {
1130     DeviceClass *dc = DEVICE_CLASS(klass);
1131 
1132     dc->realize = fw_cfg_mem_realize;
1133     dc->props = fw_cfg_mem_properties;
1134 }
1135 
1136 static const TypeInfo fw_cfg_mem_info = {
1137     .name          = TYPE_FW_CFG_MEM,
1138     .parent        = TYPE_FW_CFG,
1139     .instance_size = sizeof(FWCfgMemState),
1140     .class_init    = fw_cfg_mem_class_init,
1141 };
1142 
1143 
1144 static void fw_cfg_register_types(void)
1145 {
1146     type_register_static(&fw_cfg_info);
1147     type_register_static(&fw_cfg_io_info);
1148     type_register_static(&fw_cfg_mem_info);
1149 }
1150 
1151 type_init(fw_cfg_register_types)
1152