xref: /openbmc/qemu/hw/nvram/fw_cfg.c (revision 06d4c71f)
1 /*
2  * QEMU Firmware configuration device emulation
3  *
4  * Copyright (c) 2008 Gleb Natapov
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "qemu-common.h"
27 #include "sysemu/sysemu.h"
28 #include "sysemu/dma.h"
29 #include "sysemu/reset.h"
30 #include "hw/boards.h"
31 #include "hw/nvram/fw_cfg.h"
32 #include "hw/qdev-properties.h"
33 #include "hw/sysbus.h"
34 #include "migration/qemu-file-types.h"
35 #include "migration/vmstate.h"
36 #include "trace.h"
37 #include "qemu/error-report.h"
38 #include "qemu/option.h"
39 #include "qemu/config-file.h"
40 #include "qemu/cutils.h"
41 #include "qapi/error.h"
42 #include "hw/acpi/aml-build.h"
43 
44 #define FW_CFG_FILE_SLOTS_DFLT 0x20
45 
46 /* FW_CFG_VERSION bits */
47 #define FW_CFG_VERSION      0x01
48 #define FW_CFG_VERSION_DMA  0x02
49 
50 /* FW_CFG_DMA_CONTROL bits */
51 #define FW_CFG_DMA_CTL_ERROR   0x01
52 #define FW_CFG_DMA_CTL_READ    0x02
53 #define FW_CFG_DMA_CTL_SKIP    0x04
54 #define FW_CFG_DMA_CTL_SELECT  0x08
55 #define FW_CFG_DMA_CTL_WRITE   0x10
56 
57 #define FW_CFG_DMA_SIGNATURE 0x51454d5520434647ULL /* "QEMU CFG" */
58 
59 struct FWCfgEntry {
60     uint32_t len;
61     bool allow_write;
62     uint8_t *data;
63     void *callback_opaque;
64     FWCfgCallback select_cb;
65     FWCfgWriteCallback write_cb;
66 };
67 
68 /**
69  * key_name:
70  *
71  * @key: The uint16 selector key.
72  *
73  * Returns: The stringified name if the selector refers to a well-known
74  *          numerically defined item, or NULL on key lookup failure.
75  */
76 static const char *key_name(uint16_t key)
77 {
78     static const char *fw_cfg_wellknown_keys[FW_CFG_FILE_FIRST] = {
79         [FW_CFG_SIGNATURE] = "signature",
80         [FW_CFG_ID] = "id",
81         [FW_CFG_UUID] = "uuid",
82         [FW_CFG_RAM_SIZE] = "ram_size",
83         [FW_CFG_NOGRAPHIC] = "nographic",
84         [FW_CFG_NB_CPUS] = "nb_cpus",
85         [FW_CFG_MACHINE_ID] = "machine_id",
86         [FW_CFG_KERNEL_ADDR] = "kernel_addr",
87         [FW_CFG_KERNEL_SIZE] = "kernel_size",
88         [FW_CFG_KERNEL_CMDLINE] = "kernel_cmdline",
89         [FW_CFG_INITRD_ADDR] = "initrd_addr",
90         [FW_CFG_INITRD_SIZE] = "initdr_size",
91         [FW_CFG_BOOT_DEVICE] = "boot_device",
92         [FW_CFG_NUMA] = "numa",
93         [FW_CFG_BOOT_MENU] = "boot_menu",
94         [FW_CFG_MAX_CPUS] = "max_cpus",
95         [FW_CFG_KERNEL_ENTRY] = "kernel_entry",
96         [FW_CFG_KERNEL_DATA] = "kernel_data",
97         [FW_CFG_INITRD_DATA] = "initrd_data",
98         [FW_CFG_CMDLINE_ADDR] = "cmdline_addr",
99         [FW_CFG_CMDLINE_SIZE] = "cmdline_size",
100         [FW_CFG_CMDLINE_DATA] = "cmdline_data",
101         [FW_CFG_SETUP_ADDR] = "setup_addr",
102         [FW_CFG_SETUP_SIZE] = "setup_size",
103         [FW_CFG_SETUP_DATA] = "setup_data",
104         [FW_CFG_FILE_DIR] = "file_dir",
105     };
106 
107     if (key & FW_CFG_ARCH_LOCAL) {
108         return fw_cfg_arch_key_name(key);
109     }
110     if (key < FW_CFG_FILE_FIRST) {
111         return fw_cfg_wellknown_keys[key];
112     }
113 
114     return NULL;
115 }
116 
117 static inline const char *trace_key_name(uint16_t key)
118 {
119     const char *name = key_name(key);
120 
121     return name ? name : "unknown";
122 }
123 
124 #define JPG_FILE 0
125 #define BMP_FILE 1
126 
127 static char *read_splashfile(char *filename, gsize *file_sizep,
128                              int *file_typep)
129 {
130     GError *err = NULL;
131     gchar *content;
132     int file_type;
133     unsigned int filehead;
134     int bmp_bpp;
135 
136     if (!g_file_get_contents(filename, &content, file_sizep, &err)) {
137         error_report("failed to read splash file '%s': %s",
138                      filename, err->message);
139         g_error_free(err);
140         return NULL;
141     }
142 
143     /* check file size */
144     if (*file_sizep < 30) {
145         goto error;
146     }
147 
148     /* check magic ID */
149     filehead = lduw_le_p(content);
150     if (filehead == 0xd8ff) {
151         file_type = JPG_FILE;
152     } else if (filehead == 0x4d42) {
153         file_type = BMP_FILE;
154     } else {
155         goto error;
156     }
157 
158     /* check BMP bpp */
159     if (file_type == BMP_FILE) {
160         bmp_bpp = lduw_le_p(&content[28]);
161         if (bmp_bpp != 24) {
162             goto error;
163         }
164     }
165 
166     /* return values */
167     *file_typep = file_type;
168 
169     return content;
170 
171 error:
172     error_report("splash file '%s' format not recognized; must be JPEG "
173                  "or 24 bit BMP", filename);
174     g_free(content);
175     return NULL;
176 }
177 
178 static void fw_cfg_bootsplash(FWCfgState *s)
179 {
180     const char *boot_splash_filename = NULL;
181     const char *boot_splash_time = NULL;
182     char *filename, *file_data;
183     gsize file_size;
184     int file_type;
185 
186     /* get user configuration */
187     QemuOptsList *plist = qemu_find_opts("boot-opts");
188     QemuOpts *opts = QTAILQ_FIRST(&plist->head);
189     boot_splash_filename = qemu_opt_get(opts, "splash");
190     boot_splash_time = qemu_opt_get(opts, "splash-time");
191 
192     /* insert splash time if user configurated */
193     if (boot_splash_time) {
194         int64_t bst_val = qemu_opt_get_number(opts, "splash-time", -1);
195         uint16_t bst_le16;
196 
197         /* validate the input */
198         if (bst_val < 0 || bst_val > 0xffff) {
199             error_report("splash-time is invalid,"
200                          "it should be a value between 0 and 65535");
201             exit(1);
202         }
203         /* use little endian format */
204         bst_le16 = cpu_to_le16(bst_val);
205         fw_cfg_add_file(s, "etc/boot-menu-wait",
206                         g_memdup(&bst_le16, sizeof bst_le16), sizeof bst_le16);
207     }
208 
209     /* insert splash file if user configurated */
210     if (boot_splash_filename) {
211         filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, boot_splash_filename);
212         if (filename == NULL) {
213             error_report("failed to find file '%s'", boot_splash_filename);
214             return;
215         }
216 
217         /* loading file data */
218         file_data = read_splashfile(filename, &file_size, &file_type);
219         if (file_data == NULL) {
220             g_free(filename);
221             return;
222         }
223         g_free(boot_splash_filedata);
224         boot_splash_filedata = (uint8_t *)file_data;
225 
226         /* insert data */
227         if (file_type == JPG_FILE) {
228             fw_cfg_add_file(s, "bootsplash.jpg",
229                             boot_splash_filedata, file_size);
230         } else {
231             fw_cfg_add_file(s, "bootsplash.bmp",
232                             boot_splash_filedata, file_size);
233         }
234         g_free(filename);
235     }
236 }
237 
238 static void fw_cfg_reboot(FWCfgState *s)
239 {
240     const char *reboot_timeout = NULL;
241     uint64_t rt_val = -1;
242     uint32_t rt_le32;
243 
244     /* get user configuration */
245     QemuOptsList *plist = qemu_find_opts("boot-opts");
246     QemuOpts *opts = QTAILQ_FIRST(&plist->head);
247     reboot_timeout = qemu_opt_get(opts, "reboot-timeout");
248 
249     if (reboot_timeout) {
250         rt_val = qemu_opt_get_number(opts, "reboot-timeout", -1);
251 
252         /* validate the input */
253         if (rt_val > 0xffff && rt_val != (uint64_t)-1) {
254             error_report("reboot timeout is invalid,"
255                          "it should be a value between -1 and 65535");
256             exit(1);
257         }
258     }
259 
260     rt_le32 = cpu_to_le32(rt_val);
261     fw_cfg_add_file(s, "etc/boot-fail-wait", g_memdup(&rt_le32, 4), 4);
262 }
263 
264 static void fw_cfg_write(FWCfgState *s, uint8_t value)
265 {
266     /* nothing, write support removed in QEMU v2.4+ */
267 }
268 
269 static inline uint16_t fw_cfg_file_slots(const FWCfgState *s)
270 {
271     return s->file_slots;
272 }
273 
274 /* Note: this function returns an exclusive limit. */
275 static inline uint32_t fw_cfg_max_entry(const FWCfgState *s)
276 {
277     return FW_CFG_FILE_FIRST + fw_cfg_file_slots(s);
278 }
279 
280 static int fw_cfg_select(FWCfgState *s, uint16_t key)
281 {
282     int arch, ret;
283     FWCfgEntry *e;
284 
285     s->cur_offset = 0;
286     if ((key & FW_CFG_ENTRY_MASK) >= fw_cfg_max_entry(s)) {
287         s->cur_entry = FW_CFG_INVALID;
288         ret = 0;
289     } else {
290         s->cur_entry = key;
291         ret = 1;
292         /* entry successfully selected, now run callback if present */
293         arch = !!(key & FW_CFG_ARCH_LOCAL);
294         e = &s->entries[arch][key & FW_CFG_ENTRY_MASK];
295         if (e->select_cb) {
296             e->select_cb(e->callback_opaque);
297         }
298     }
299 
300     trace_fw_cfg_select(s, key, trace_key_name(key), ret);
301     return ret;
302 }
303 
304 static uint64_t fw_cfg_data_read(void *opaque, hwaddr addr, unsigned size)
305 {
306     FWCfgState *s = opaque;
307     int arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL);
308     FWCfgEntry *e = (s->cur_entry == FW_CFG_INVALID) ? NULL :
309                     &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK];
310     uint64_t value = 0;
311 
312     assert(size > 0 && size <= sizeof(value));
313     if (s->cur_entry != FW_CFG_INVALID && e->data && s->cur_offset < e->len) {
314         /* The least significant 'size' bytes of the return value are
315          * expected to contain a string preserving portion of the item
316          * data, padded with zeros on the right in case we run out early.
317          * In technical terms, we're composing the host-endian representation
318          * of the big endian interpretation of the fw_cfg string.
319          */
320         do {
321             value = (value << 8) | e->data[s->cur_offset++];
322         } while (--size && s->cur_offset < e->len);
323         /* If size is still not zero, we *did* run out early, so continue
324          * left-shifting, to add the appropriate number of padding zeros
325          * on the right.
326          */
327         value <<= 8 * size;
328     }
329 
330     trace_fw_cfg_read(s, value);
331     return value;
332 }
333 
334 static void fw_cfg_data_mem_write(void *opaque, hwaddr addr,
335                                   uint64_t value, unsigned size)
336 {
337     FWCfgState *s = opaque;
338     unsigned i = size;
339 
340     do {
341         fw_cfg_write(s, value >> (8 * --i));
342     } while (i);
343 }
344 
345 static void fw_cfg_dma_transfer(FWCfgState *s)
346 {
347     dma_addr_t len;
348     FWCfgDmaAccess dma;
349     int arch;
350     FWCfgEntry *e;
351     int read = 0, write = 0;
352     dma_addr_t dma_addr;
353 
354     /* Reset the address before the next access */
355     dma_addr = s->dma_addr;
356     s->dma_addr = 0;
357 
358     if (dma_memory_read(s->dma_as, dma_addr, &dma, sizeof(dma))) {
359         stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control),
360                    FW_CFG_DMA_CTL_ERROR);
361         return;
362     }
363 
364     dma.address = be64_to_cpu(dma.address);
365     dma.length = be32_to_cpu(dma.length);
366     dma.control = be32_to_cpu(dma.control);
367 
368     if (dma.control & FW_CFG_DMA_CTL_SELECT) {
369         fw_cfg_select(s, dma.control >> 16);
370     }
371 
372     arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL);
373     e = (s->cur_entry == FW_CFG_INVALID) ? NULL :
374         &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK];
375 
376     if (dma.control & FW_CFG_DMA_CTL_READ) {
377         read = 1;
378         write = 0;
379     } else if (dma.control & FW_CFG_DMA_CTL_WRITE) {
380         read = 0;
381         write = 1;
382     } else if (dma.control & FW_CFG_DMA_CTL_SKIP) {
383         read = 0;
384         write = 0;
385     } else {
386         dma.length = 0;
387     }
388 
389     dma.control = 0;
390 
391     while (dma.length > 0 && !(dma.control & FW_CFG_DMA_CTL_ERROR)) {
392         if (s->cur_entry == FW_CFG_INVALID || !e->data ||
393                                 s->cur_offset >= e->len) {
394             len = dma.length;
395 
396             /* If the access is not a read access, it will be a skip access,
397              * tested before.
398              */
399             if (read) {
400                 if (dma_memory_set(s->dma_as, dma.address, 0, len)) {
401                     dma.control |= FW_CFG_DMA_CTL_ERROR;
402                 }
403             }
404             if (write) {
405                 dma.control |= FW_CFG_DMA_CTL_ERROR;
406             }
407         } else {
408             if (dma.length <= (e->len - s->cur_offset)) {
409                 len = dma.length;
410             } else {
411                 len = (e->len - s->cur_offset);
412             }
413 
414             /* If the access is not a read access, it will be a skip access,
415              * tested before.
416              */
417             if (read) {
418                 if (dma_memory_write(s->dma_as, dma.address,
419                                     &e->data[s->cur_offset], len)) {
420                     dma.control |= FW_CFG_DMA_CTL_ERROR;
421                 }
422             }
423             if (write) {
424                 if (!e->allow_write ||
425                     len != dma.length ||
426                     dma_memory_read(s->dma_as, dma.address,
427                                     &e->data[s->cur_offset], len)) {
428                     dma.control |= FW_CFG_DMA_CTL_ERROR;
429                 } else if (e->write_cb) {
430                     e->write_cb(e->callback_opaque, s->cur_offset, len);
431                 }
432             }
433 
434             s->cur_offset += len;
435         }
436 
437         dma.address += len;
438         dma.length  -= len;
439 
440     }
441 
442     stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control),
443                 dma.control);
444 
445     trace_fw_cfg_read(s, 0);
446 }
447 
448 static uint64_t fw_cfg_dma_mem_read(void *opaque, hwaddr addr,
449                                     unsigned size)
450 {
451     /* Return a signature value (and handle various read sizes) */
452     return extract64(FW_CFG_DMA_SIGNATURE, (8 - addr - size) * 8, size * 8);
453 }
454 
455 static void fw_cfg_dma_mem_write(void *opaque, hwaddr addr,
456                                  uint64_t value, unsigned size)
457 {
458     FWCfgState *s = opaque;
459 
460     if (size == 4) {
461         if (addr == 0) {
462             /* FWCfgDmaAccess high address */
463             s->dma_addr = value << 32;
464         } else if (addr == 4) {
465             /* FWCfgDmaAccess low address */
466             s->dma_addr |= value;
467             fw_cfg_dma_transfer(s);
468         }
469     } else if (size == 8 && addr == 0) {
470         s->dma_addr = value;
471         fw_cfg_dma_transfer(s);
472     }
473 }
474 
475 static bool fw_cfg_dma_mem_valid(void *opaque, hwaddr addr,
476                                  unsigned size, bool is_write,
477                                  MemTxAttrs attrs)
478 {
479     return !is_write || ((size == 4 && (addr == 0 || addr == 4)) ||
480                          (size == 8 && addr == 0));
481 }
482 
483 static bool fw_cfg_data_mem_valid(void *opaque, hwaddr addr,
484                                   unsigned size, bool is_write,
485                                   MemTxAttrs attrs)
486 {
487     return addr == 0;
488 }
489 
490 static uint64_t fw_cfg_ctl_mem_read(void *opaque, hwaddr addr, unsigned size)
491 {
492     return 0;
493 }
494 
495 static void fw_cfg_ctl_mem_write(void *opaque, hwaddr addr,
496                                  uint64_t value, unsigned size)
497 {
498     fw_cfg_select(opaque, (uint16_t)value);
499 }
500 
501 static bool fw_cfg_ctl_mem_valid(void *opaque, hwaddr addr,
502                                  unsigned size, bool is_write,
503                                  MemTxAttrs attrs)
504 {
505     return is_write && size == 2;
506 }
507 
508 static void fw_cfg_comb_write(void *opaque, hwaddr addr,
509                               uint64_t value, unsigned size)
510 {
511     switch (size) {
512     case 1:
513         fw_cfg_write(opaque, (uint8_t)value);
514         break;
515     case 2:
516         fw_cfg_select(opaque, (uint16_t)value);
517         break;
518     }
519 }
520 
521 static bool fw_cfg_comb_valid(void *opaque, hwaddr addr,
522                               unsigned size, bool is_write,
523                               MemTxAttrs attrs)
524 {
525     return (size == 1) || (is_write && size == 2);
526 }
527 
528 static const MemoryRegionOps fw_cfg_ctl_mem_ops = {
529     .read = fw_cfg_ctl_mem_read,
530     .write = fw_cfg_ctl_mem_write,
531     .endianness = DEVICE_BIG_ENDIAN,
532     .valid.accepts = fw_cfg_ctl_mem_valid,
533 };
534 
535 static const MemoryRegionOps fw_cfg_data_mem_ops = {
536     .read = fw_cfg_data_read,
537     .write = fw_cfg_data_mem_write,
538     .endianness = DEVICE_BIG_ENDIAN,
539     .valid = {
540         .min_access_size = 1,
541         .max_access_size = 1,
542         .accepts = fw_cfg_data_mem_valid,
543     },
544 };
545 
546 static const MemoryRegionOps fw_cfg_comb_mem_ops = {
547     .read = fw_cfg_data_read,
548     .write = fw_cfg_comb_write,
549     .endianness = DEVICE_LITTLE_ENDIAN,
550     .valid.accepts = fw_cfg_comb_valid,
551 };
552 
553 static const MemoryRegionOps fw_cfg_dma_mem_ops = {
554     .read = fw_cfg_dma_mem_read,
555     .write = fw_cfg_dma_mem_write,
556     .endianness = DEVICE_BIG_ENDIAN,
557     .valid.accepts = fw_cfg_dma_mem_valid,
558     .valid.max_access_size = 8,
559     .impl.max_access_size = 8,
560 };
561 
562 static void fw_cfg_reset(DeviceState *d)
563 {
564     FWCfgState *s = FW_CFG(d);
565 
566     /* we never register a read callback for FW_CFG_SIGNATURE */
567     fw_cfg_select(s, FW_CFG_SIGNATURE);
568 }
569 
570 /* Save restore 32 bit int as uint16_t
571    This is a Big hack, but it is how the old state did it.
572    Or we broke compatibility in the state, or we can't use struct tm
573  */
574 
575 static int get_uint32_as_uint16(QEMUFile *f, void *pv, size_t size,
576                                 const VMStateField *field)
577 {
578     uint32_t *v = pv;
579     *v = qemu_get_be16(f);
580     return 0;
581 }
582 
583 static int put_unused(QEMUFile *f, void *pv, size_t size,
584                       const VMStateField *field, QJSON *vmdesc)
585 {
586     fprintf(stderr, "uint32_as_uint16 is only used for backward compatibility.\n");
587     fprintf(stderr, "This functions shouldn't be called.\n");
588 
589     return 0;
590 }
591 
592 static const VMStateInfo vmstate_hack_uint32_as_uint16 = {
593     .name = "int32_as_uint16",
594     .get  = get_uint32_as_uint16,
595     .put  = put_unused,
596 };
597 
598 #define VMSTATE_UINT16_HACK(_f, _s, _t)                                    \
599     VMSTATE_SINGLE_TEST(_f, _s, _t, 0, vmstate_hack_uint32_as_uint16, uint32_t)
600 
601 
602 static bool is_version_1(void *opaque, int version_id)
603 {
604     return version_id == 1;
605 }
606 
607 bool fw_cfg_dma_enabled(void *opaque)
608 {
609     FWCfgState *s = opaque;
610 
611     return s->dma_enabled;
612 }
613 
614 static bool fw_cfg_acpi_mr_restore(void *opaque)
615 {
616     FWCfgState *s = opaque;
617     bool mr_aligned;
618 
619     mr_aligned = QEMU_IS_ALIGNED(s->table_mr_size, qemu_real_host_page_size) &&
620                  QEMU_IS_ALIGNED(s->linker_mr_size, qemu_real_host_page_size) &&
621                  QEMU_IS_ALIGNED(s->rsdp_mr_size, qemu_real_host_page_size);
622     return s->acpi_mr_restore && !mr_aligned;
623 }
624 
625 static void fw_cfg_update_mr(FWCfgState *s, uint16_t key, size_t size)
626 {
627     MemoryRegion *mr;
628     ram_addr_t offset;
629     int arch = !!(key & FW_CFG_ARCH_LOCAL);
630     void *ptr;
631 
632     key &= FW_CFG_ENTRY_MASK;
633     assert(key < fw_cfg_max_entry(s));
634 
635     ptr = s->entries[arch][key].data;
636     mr = memory_region_from_host(ptr, &offset);
637 
638     memory_region_ram_resize(mr, size, &error_abort);
639 }
640 
641 static int fw_cfg_acpi_mr_restore_post_load(void *opaque, int version_id)
642 {
643     FWCfgState *s = opaque;
644     int i, index;
645 
646     assert(s->files);
647 
648     index = be32_to_cpu(s->files->count);
649 
650     for (i = 0; i < index; i++) {
651         if (!strcmp(s->files->f[i].name, ACPI_BUILD_TABLE_FILE)) {
652             fw_cfg_update_mr(s, FW_CFG_FILE_FIRST + i, s->table_mr_size);
653         } else if (!strcmp(s->files->f[i].name, ACPI_BUILD_LOADER_FILE)) {
654             fw_cfg_update_mr(s, FW_CFG_FILE_FIRST + i, s->linker_mr_size);
655         } else if (!strcmp(s->files->f[i].name, ACPI_BUILD_RSDP_FILE)) {
656             fw_cfg_update_mr(s, FW_CFG_FILE_FIRST + i, s->rsdp_mr_size);
657         }
658     }
659 
660     return 0;
661 }
662 
663 static const VMStateDescription vmstate_fw_cfg_dma = {
664     .name = "fw_cfg/dma",
665     .needed = fw_cfg_dma_enabled,
666     .fields = (VMStateField[]) {
667         VMSTATE_UINT64(dma_addr, FWCfgState),
668         VMSTATE_END_OF_LIST()
669     },
670 };
671 
672 static const VMStateDescription vmstate_fw_cfg_acpi_mr = {
673     .name = "fw_cfg/acpi_mr",
674     .version_id = 1,
675     .minimum_version_id = 1,
676     .needed = fw_cfg_acpi_mr_restore,
677     .post_load = fw_cfg_acpi_mr_restore_post_load,
678     .fields = (VMStateField[]) {
679         VMSTATE_UINT64(table_mr_size, FWCfgState),
680         VMSTATE_UINT64(linker_mr_size, FWCfgState),
681         VMSTATE_UINT64(rsdp_mr_size, FWCfgState),
682         VMSTATE_END_OF_LIST()
683     },
684 };
685 
686 static const VMStateDescription vmstate_fw_cfg = {
687     .name = "fw_cfg",
688     .version_id = 2,
689     .minimum_version_id = 1,
690     .fields = (VMStateField[]) {
691         VMSTATE_UINT16(cur_entry, FWCfgState),
692         VMSTATE_UINT16_HACK(cur_offset, FWCfgState, is_version_1),
693         VMSTATE_UINT32_V(cur_offset, FWCfgState, 2),
694         VMSTATE_END_OF_LIST()
695     },
696     .subsections = (const VMStateDescription*[]) {
697         &vmstate_fw_cfg_dma,
698         &vmstate_fw_cfg_acpi_mr,
699         NULL,
700     }
701 };
702 
703 static void fw_cfg_add_bytes_callback(FWCfgState *s, uint16_t key,
704                                       FWCfgCallback select_cb,
705                                       FWCfgWriteCallback write_cb,
706                                       void *callback_opaque,
707                                       void *data, size_t len,
708                                       bool read_only)
709 {
710     int arch = !!(key & FW_CFG_ARCH_LOCAL);
711 
712     key &= FW_CFG_ENTRY_MASK;
713 
714     assert(key < fw_cfg_max_entry(s) && len < UINT32_MAX);
715     assert(s->entries[arch][key].data == NULL); /* avoid key conflict */
716 
717     s->entries[arch][key].data = data;
718     s->entries[arch][key].len = (uint32_t)len;
719     s->entries[arch][key].select_cb = select_cb;
720     s->entries[arch][key].write_cb = write_cb;
721     s->entries[arch][key].callback_opaque = callback_opaque;
722     s->entries[arch][key].allow_write = !read_only;
723 }
724 
725 static void *fw_cfg_modify_bytes_read(FWCfgState *s, uint16_t key,
726                                               void *data, size_t len)
727 {
728     void *ptr;
729     int arch = !!(key & FW_CFG_ARCH_LOCAL);
730 
731     key &= FW_CFG_ENTRY_MASK;
732 
733     assert(key < fw_cfg_max_entry(s) && len < UINT32_MAX);
734 
735     /* return the old data to the function caller, avoid memory leak */
736     ptr = s->entries[arch][key].data;
737     s->entries[arch][key].data = data;
738     s->entries[arch][key].len = len;
739     s->entries[arch][key].callback_opaque = NULL;
740     s->entries[arch][key].allow_write = false;
741 
742     return ptr;
743 }
744 
745 void fw_cfg_add_bytes(FWCfgState *s, uint16_t key, void *data, size_t len)
746 {
747     trace_fw_cfg_add_bytes(key, trace_key_name(key), len);
748     fw_cfg_add_bytes_callback(s, key, NULL, NULL, NULL, data, len, true);
749 }
750 
751 void fw_cfg_add_string(FWCfgState *s, uint16_t key, const char *value)
752 {
753     size_t sz = strlen(value) + 1;
754 
755     trace_fw_cfg_add_string(key, trace_key_name(key), value);
756     fw_cfg_add_bytes(s, key, g_memdup(value, sz), sz);
757 }
758 
759 void fw_cfg_modify_string(FWCfgState *s, uint16_t key, const char *value)
760 {
761     size_t sz = strlen(value) + 1;
762     char *old;
763 
764     old = fw_cfg_modify_bytes_read(s, key, g_memdup(value, sz), sz);
765     g_free(old);
766 }
767 
768 void fw_cfg_add_i16(FWCfgState *s, uint16_t key, uint16_t value)
769 {
770     uint16_t *copy;
771 
772     copy = g_malloc(sizeof(value));
773     *copy = cpu_to_le16(value);
774     trace_fw_cfg_add_i16(key, trace_key_name(key), value);
775     fw_cfg_add_bytes(s, key, copy, sizeof(value));
776 }
777 
778 void fw_cfg_modify_i16(FWCfgState *s, uint16_t key, uint16_t value)
779 {
780     uint16_t *copy, *old;
781 
782     copy = g_malloc(sizeof(value));
783     *copy = cpu_to_le16(value);
784     old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value));
785     g_free(old);
786 }
787 
788 void fw_cfg_add_i32(FWCfgState *s, uint16_t key, uint32_t value)
789 {
790     uint32_t *copy;
791 
792     copy = g_malloc(sizeof(value));
793     *copy = cpu_to_le32(value);
794     trace_fw_cfg_add_i32(key, trace_key_name(key), value);
795     fw_cfg_add_bytes(s, key, copy, sizeof(value));
796 }
797 
798 void fw_cfg_modify_i32(FWCfgState *s, uint16_t key, uint32_t value)
799 {
800     uint32_t *copy, *old;
801 
802     copy = g_malloc(sizeof(value));
803     *copy = cpu_to_le32(value);
804     old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value));
805     g_free(old);
806 }
807 
808 void fw_cfg_add_i64(FWCfgState *s, uint16_t key, uint64_t value)
809 {
810     uint64_t *copy;
811 
812     copy = g_malloc(sizeof(value));
813     *copy = cpu_to_le64(value);
814     trace_fw_cfg_add_i64(key, trace_key_name(key), value);
815     fw_cfg_add_bytes(s, key, copy, sizeof(value));
816 }
817 
818 void fw_cfg_modify_i64(FWCfgState *s, uint16_t key, uint64_t value)
819 {
820     uint64_t *copy, *old;
821 
822     copy = g_malloc(sizeof(value));
823     *copy = cpu_to_le64(value);
824     old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value));
825     g_free(old);
826 }
827 
828 void fw_cfg_set_order_override(FWCfgState *s, int order)
829 {
830     assert(s->fw_cfg_order_override == 0);
831     s->fw_cfg_order_override = order;
832 }
833 
834 void fw_cfg_reset_order_override(FWCfgState *s)
835 {
836     assert(s->fw_cfg_order_override != 0);
837     s->fw_cfg_order_override = 0;
838 }
839 
840 /*
841  * This is the legacy order list.  For legacy systems, files are in
842  * the fw_cfg in the order defined below, by the "order" value.  Note
843  * that some entries (VGA ROMs, NIC option ROMS, etc.) go into a
844  * specific area, but there may be more than one and they occur in the
845  * order that the user specifies them on the command line.  Those are
846  * handled in a special manner, using the order override above.
847  *
848  * For non-legacy, the files are sorted by filename to avoid this kind
849  * of complexity in the future.
850  *
851  * This is only for x86, other arches don't implement versioning so
852  * they won't set legacy mode.
853  */
854 static struct {
855     const char *name;
856     int order;
857 } fw_cfg_order[] = {
858     { "etc/boot-menu-wait", 10 },
859     { "bootsplash.jpg", 11 },
860     { "bootsplash.bmp", 12 },
861     { "etc/boot-fail-wait", 15 },
862     { "etc/smbios/smbios-tables", 20 },
863     { "etc/smbios/smbios-anchor", 30 },
864     { "etc/e820", 40 },
865     { "etc/reserved-memory-end", 50 },
866     { "genroms/kvmvapic.bin", 55 },
867     { "genroms/linuxboot.bin", 60 },
868     { }, /* VGA ROMs from pc_vga_init come here, 70. */
869     { }, /* NIC option ROMs from pc_nic_init come here, 80. */
870     { "etc/system-states", 90 },
871     { }, /* User ROMs come here, 100. */
872     { }, /* Device FW comes here, 110. */
873     { "etc/extra-pci-roots", 120 },
874     { "etc/acpi/tables", 130 },
875     { "etc/table-loader", 140 },
876     { "etc/tpm/log", 150 },
877     { "etc/acpi/rsdp", 160 },
878     { "bootorder", 170 },
879 
880 #define FW_CFG_ORDER_OVERRIDE_LAST 200
881 };
882 
883 /*
884  * Any sub-page size update to these table MRs will be lost during migration,
885  * as we use aligned size in ram_load_precopy() -> qemu_ram_resize() path.
886  * In order to avoid the inconsistency in sizes save them seperately and
887  * migrate over in vmstate post_load().
888  */
889 static void fw_cfg_acpi_mr_save(FWCfgState *s, const char *filename, size_t len)
890 {
891     if (!strcmp(filename, ACPI_BUILD_TABLE_FILE)) {
892         s->table_mr_size = len;
893     } else if (!strcmp(filename, ACPI_BUILD_LOADER_FILE)) {
894         s->linker_mr_size = len;
895     } else if (!strcmp(filename, ACPI_BUILD_RSDP_FILE)) {
896         s->rsdp_mr_size = len;
897     }
898 }
899 
900 static int get_fw_cfg_order(FWCfgState *s, const char *name)
901 {
902     int i;
903 
904     if (s->fw_cfg_order_override > 0) {
905         return s->fw_cfg_order_override;
906     }
907 
908     for (i = 0; i < ARRAY_SIZE(fw_cfg_order); i++) {
909         if (fw_cfg_order[i].name == NULL) {
910             continue;
911         }
912 
913         if (strcmp(name, fw_cfg_order[i].name) == 0) {
914             return fw_cfg_order[i].order;
915         }
916     }
917 
918     /* Stick unknown stuff at the end. */
919     warn_report("Unknown firmware file in legacy mode: %s", name);
920     return FW_CFG_ORDER_OVERRIDE_LAST;
921 }
922 
923 void fw_cfg_add_file_callback(FWCfgState *s,  const char *filename,
924                               FWCfgCallback select_cb,
925                               FWCfgWriteCallback write_cb,
926                               void *callback_opaque,
927                               void *data, size_t len, bool read_only)
928 {
929     int i, index, count;
930     size_t dsize;
931     MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
932     int order = 0;
933 
934     if (!s->files) {
935         dsize = sizeof(uint32_t) + sizeof(FWCfgFile) * fw_cfg_file_slots(s);
936         s->files = g_malloc0(dsize);
937         fw_cfg_add_bytes(s, FW_CFG_FILE_DIR, s->files, dsize);
938     }
939 
940     count = be32_to_cpu(s->files->count);
941     assert(count < fw_cfg_file_slots(s));
942 
943     /* Find the insertion point. */
944     if (mc->legacy_fw_cfg_order) {
945         /*
946          * Sort by order. For files with the same order, we keep them
947          * in the sequence in which they were added.
948          */
949         order = get_fw_cfg_order(s, filename);
950         for (index = count;
951              index > 0 && order < s->entry_order[index - 1];
952              index--);
953     } else {
954         /* Sort by file name. */
955         for (index = count;
956              index > 0 && strcmp(filename, s->files->f[index - 1].name) < 0;
957              index--);
958     }
959 
960     /*
961      * Move all the entries from the index point and after down one
962      * to create a slot for the new entry.  Because calculations are
963      * being done with the index, make it so that "i" is the current
964      * index and "i - 1" is the one being copied from, thus the
965      * unusual start and end in the for statement.
966      */
967     for (i = count; i > index; i--) {
968         s->files->f[i] = s->files->f[i - 1];
969         s->files->f[i].select = cpu_to_be16(FW_CFG_FILE_FIRST + i);
970         s->entries[0][FW_CFG_FILE_FIRST + i] =
971             s->entries[0][FW_CFG_FILE_FIRST + i - 1];
972         s->entry_order[i] = s->entry_order[i - 1];
973     }
974 
975     memset(&s->files->f[index], 0, sizeof(FWCfgFile));
976     memset(&s->entries[0][FW_CFG_FILE_FIRST + index], 0, sizeof(FWCfgEntry));
977 
978     pstrcpy(s->files->f[index].name, sizeof(s->files->f[index].name), filename);
979     for (i = 0; i <= count; i++) {
980         if (i != index &&
981             strcmp(s->files->f[index].name, s->files->f[i].name) == 0) {
982             error_report("duplicate fw_cfg file name: %s",
983                          s->files->f[index].name);
984             exit(1);
985         }
986     }
987 
988     fw_cfg_add_bytes_callback(s, FW_CFG_FILE_FIRST + index,
989                               select_cb, write_cb,
990                               callback_opaque, data, len,
991                               read_only);
992 
993     s->files->f[index].size   = cpu_to_be32(len);
994     s->files->f[index].select = cpu_to_be16(FW_CFG_FILE_FIRST + index);
995     s->entry_order[index] = order;
996     trace_fw_cfg_add_file(s, index, s->files->f[index].name, len);
997 
998     s->files->count = cpu_to_be32(count+1);
999     fw_cfg_acpi_mr_save(s, filename, len);
1000 }
1001 
1002 void fw_cfg_add_file(FWCfgState *s,  const char *filename,
1003                      void *data, size_t len)
1004 {
1005     fw_cfg_add_file_callback(s, filename, NULL, NULL, NULL, data, len, true);
1006 }
1007 
1008 void *fw_cfg_modify_file(FWCfgState *s, const char *filename,
1009                         void *data, size_t len)
1010 {
1011     int i, index;
1012     void *ptr = NULL;
1013 
1014     assert(s->files);
1015 
1016     index = be32_to_cpu(s->files->count);
1017 
1018     for (i = 0; i < index; i++) {
1019         if (strcmp(filename, s->files->f[i].name) == 0) {
1020             ptr = fw_cfg_modify_bytes_read(s, FW_CFG_FILE_FIRST + i,
1021                                            data, len);
1022             s->files->f[i].size   = cpu_to_be32(len);
1023             fw_cfg_acpi_mr_save(s, filename, len);
1024             return ptr;
1025         }
1026     }
1027 
1028     assert(index < fw_cfg_file_slots(s));
1029 
1030     /* add new one */
1031     fw_cfg_add_file_callback(s, filename, NULL, NULL, NULL, data, len, true);
1032     return NULL;
1033 }
1034 
1035 static void fw_cfg_machine_reset(void *opaque)
1036 {
1037     MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
1038     FWCfgState *s = opaque;
1039     void *ptr;
1040     size_t len;
1041     char *buf;
1042 
1043     buf = get_boot_devices_list(&len);
1044     ptr = fw_cfg_modify_file(s, "bootorder", (uint8_t *)buf, len);
1045     g_free(ptr);
1046 
1047     if (!mc->legacy_fw_cfg_order) {
1048         buf = get_boot_devices_lchs_list(&len);
1049         ptr = fw_cfg_modify_file(s, "bios-geometry", (uint8_t *)buf, len);
1050         g_free(ptr);
1051     }
1052 }
1053 
1054 static void fw_cfg_machine_ready(struct Notifier *n, void *data)
1055 {
1056     FWCfgState *s = container_of(n, FWCfgState, machine_ready);
1057     qemu_register_reset(fw_cfg_machine_reset, s);
1058 }
1059 
1060 static Property fw_cfg_properties[] = {
1061     DEFINE_PROP_BOOL("acpi-mr-restore", FWCfgState, acpi_mr_restore, true),
1062     DEFINE_PROP_END_OF_LIST(),
1063 };
1064 
1065 static void fw_cfg_common_realize(DeviceState *dev, Error **errp)
1066 {
1067     FWCfgState *s = FW_CFG(dev);
1068     MachineState *machine = MACHINE(qdev_get_machine());
1069     uint32_t version = FW_CFG_VERSION;
1070 
1071     if (!fw_cfg_find()) {
1072         error_setg(errp, "at most one %s device is permitted", TYPE_FW_CFG);
1073         return;
1074     }
1075 
1076     fw_cfg_add_bytes(s, FW_CFG_SIGNATURE, (char *)"QEMU", 4);
1077     fw_cfg_add_bytes(s, FW_CFG_UUID, &qemu_uuid, 16);
1078     fw_cfg_add_i16(s, FW_CFG_NOGRAPHIC, (uint16_t)!machine->enable_graphics);
1079     fw_cfg_add_i16(s, FW_CFG_BOOT_MENU, (uint16_t)boot_menu);
1080     fw_cfg_bootsplash(s);
1081     fw_cfg_reboot(s);
1082 
1083     if (s->dma_enabled) {
1084         version |= FW_CFG_VERSION_DMA;
1085     }
1086 
1087     fw_cfg_add_i32(s, FW_CFG_ID, version);
1088 
1089     s->machine_ready.notify = fw_cfg_machine_ready;
1090     qemu_add_machine_init_done_notifier(&s->machine_ready);
1091 }
1092 
1093 FWCfgState *fw_cfg_init_io_dma(uint32_t iobase, uint32_t dma_iobase,
1094                                 AddressSpace *dma_as)
1095 {
1096     DeviceState *dev;
1097     SysBusDevice *sbd;
1098     FWCfgIoState *ios;
1099     FWCfgState *s;
1100     bool dma_requested = dma_iobase && dma_as;
1101 
1102     dev = qdev_create(NULL, TYPE_FW_CFG_IO);
1103     if (!dma_requested) {
1104         qdev_prop_set_bit(dev, "dma_enabled", false);
1105     }
1106 
1107     object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG,
1108                               OBJECT(dev));
1109     qdev_init_nofail(dev);
1110 
1111     sbd = SYS_BUS_DEVICE(dev);
1112     ios = FW_CFG_IO(dev);
1113     sysbus_add_io(sbd, iobase, &ios->comb_iomem);
1114 
1115     s = FW_CFG(dev);
1116 
1117     if (s->dma_enabled) {
1118         /* 64 bits for the address field */
1119         s->dma_as = dma_as;
1120         s->dma_addr = 0;
1121         sysbus_add_io(sbd, dma_iobase, &s->dma_iomem);
1122     }
1123 
1124     return s;
1125 }
1126 
1127 FWCfgState *fw_cfg_init_io(uint32_t iobase)
1128 {
1129     return fw_cfg_init_io_dma(iobase, 0, NULL);
1130 }
1131 
1132 FWCfgState *fw_cfg_init_mem_wide(hwaddr ctl_addr,
1133                                  hwaddr data_addr, uint32_t data_width,
1134                                  hwaddr dma_addr, AddressSpace *dma_as)
1135 {
1136     DeviceState *dev;
1137     SysBusDevice *sbd;
1138     FWCfgState *s;
1139     bool dma_requested = dma_addr && dma_as;
1140 
1141     dev = qdev_create(NULL, TYPE_FW_CFG_MEM);
1142     qdev_prop_set_uint32(dev, "data_width", data_width);
1143     if (!dma_requested) {
1144         qdev_prop_set_bit(dev, "dma_enabled", false);
1145     }
1146 
1147     object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG,
1148                               OBJECT(dev));
1149     qdev_init_nofail(dev);
1150 
1151     sbd = SYS_BUS_DEVICE(dev);
1152     sysbus_mmio_map(sbd, 0, ctl_addr);
1153     sysbus_mmio_map(sbd, 1, data_addr);
1154 
1155     s = FW_CFG(dev);
1156 
1157     if (s->dma_enabled) {
1158         s->dma_as = dma_as;
1159         s->dma_addr = 0;
1160         sysbus_mmio_map(sbd, 2, dma_addr);
1161     }
1162 
1163     return s;
1164 }
1165 
1166 FWCfgState *fw_cfg_init_mem(hwaddr ctl_addr, hwaddr data_addr)
1167 {
1168     return fw_cfg_init_mem_wide(ctl_addr, data_addr,
1169                                 fw_cfg_data_mem_ops.valid.max_access_size,
1170                                 0, NULL);
1171 }
1172 
1173 
1174 FWCfgState *fw_cfg_find(void)
1175 {
1176     /* Returns NULL unless there is exactly one fw_cfg device */
1177     return FW_CFG(object_resolve_path_type("", TYPE_FW_CFG, NULL));
1178 }
1179 
1180 
1181 static void fw_cfg_class_init(ObjectClass *klass, void *data)
1182 {
1183     DeviceClass *dc = DEVICE_CLASS(klass);
1184 
1185     dc->reset = fw_cfg_reset;
1186     dc->vmsd = &vmstate_fw_cfg;
1187 
1188     device_class_set_props(dc, fw_cfg_properties);
1189 }
1190 
1191 static const TypeInfo fw_cfg_info = {
1192     .name          = TYPE_FW_CFG,
1193     .parent        = TYPE_SYS_BUS_DEVICE,
1194     .abstract      = true,
1195     .instance_size = sizeof(FWCfgState),
1196     .class_init    = fw_cfg_class_init,
1197 };
1198 
1199 static void fw_cfg_file_slots_allocate(FWCfgState *s, Error **errp)
1200 {
1201     uint16_t file_slots_max;
1202 
1203     if (fw_cfg_file_slots(s) < FW_CFG_FILE_SLOTS_MIN) {
1204         error_setg(errp, "\"file_slots\" must be at least 0x%x",
1205                    FW_CFG_FILE_SLOTS_MIN);
1206         return;
1207     }
1208 
1209     /* (UINT16_MAX & FW_CFG_ENTRY_MASK) is the highest inclusive selector value
1210      * that we permit. The actual (exclusive) value coming from the
1211      * configuration is (FW_CFG_FILE_FIRST + fw_cfg_file_slots(s)). */
1212     file_slots_max = (UINT16_MAX & FW_CFG_ENTRY_MASK) - FW_CFG_FILE_FIRST + 1;
1213     if (fw_cfg_file_slots(s) > file_slots_max) {
1214         error_setg(errp, "\"file_slots\" must not exceed 0x%" PRIx16,
1215                    file_slots_max);
1216         return;
1217     }
1218 
1219     s->entries[0] = g_new0(FWCfgEntry, fw_cfg_max_entry(s));
1220     s->entries[1] = g_new0(FWCfgEntry, fw_cfg_max_entry(s));
1221     s->entry_order = g_new0(int, fw_cfg_max_entry(s));
1222 }
1223 
1224 static Property fw_cfg_io_properties[] = {
1225     DEFINE_PROP_BOOL("dma_enabled", FWCfgIoState, parent_obj.dma_enabled,
1226                      true),
1227     DEFINE_PROP_UINT16("x-file-slots", FWCfgIoState, parent_obj.file_slots,
1228                        FW_CFG_FILE_SLOTS_DFLT),
1229     DEFINE_PROP_END_OF_LIST(),
1230 };
1231 
1232 static void fw_cfg_io_realize(DeviceState *dev, Error **errp)
1233 {
1234     FWCfgIoState *s = FW_CFG_IO(dev);
1235     Error *local_err = NULL;
1236 
1237     fw_cfg_file_slots_allocate(FW_CFG(s), &local_err);
1238     if (local_err) {
1239         error_propagate(errp, local_err);
1240         return;
1241     }
1242 
1243     /* when using port i/o, the 8-bit data register ALWAYS overlaps
1244      * with half of the 16-bit control register. Hence, the total size
1245      * of the i/o region used is FW_CFG_CTL_SIZE */
1246     memory_region_init_io(&s->comb_iomem, OBJECT(s), &fw_cfg_comb_mem_ops,
1247                           FW_CFG(s), "fwcfg", FW_CFG_CTL_SIZE);
1248 
1249     if (FW_CFG(s)->dma_enabled) {
1250         memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s),
1251                               &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma",
1252                               sizeof(dma_addr_t));
1253     }
1254 
1255     fw_cfg_common_realize(dev, errp);
1256 }
1257 
1258 static void fw_cfg_io_class_init(ObjectClass *klass, void *data)
1259 {
1260     DeviceClass *dc = DEVICE_CLASS(klass);
1261 
1262     dc->realize = fw_cfg_io_realize;
1263     device_class_set_props(dc, fw_cfg_io_properties);
1264 }
1265 
1266 static const TypeInfo fw_cfg_io_info = {
1267     .name          = TYPE_FW_CFG_IO,
1268     .parent        = TYPE_FW_CFG,
1269     .instance_size = sizeof(FWCfgIoState),
1270     .class_init    = fw_cfg_io_class_init,
1271 };
1272 
1273 
1274 static Property fw_cfg_mem_properties[] = {
1275     DEFINE_PROP_UINT32("data_width", FWCfgMemState, data_width, -1),
1276     DEFINE_PROP_BOOL("dma_enabled", FWCfgMemState, parent_obj.dma_enabled,
1277                      true),
1278     DEFINE_PROP_UINT16("x-file-slots", FWCfgMemState, parent_obj.file_slots,
1279                        FW_CFG_FILE_SLOTS_DFLT),
1280     DEFINE_PROP_END_OF_LIST(),
1281 };
1282 
1283 static void fw_cfg_mem_realize(DeviceState *dev, Error **errp)
1284 {
1285     FWCfgMemState *s = FW_CFG_MEM(dev);
1286     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1287     const MemoryRegionOps *data_ops = &fw_cfg_data_mem_ops;
1288     Error *local_err = NULL;
1289 
1290     fw_cfg_file_slots_allocate(FW_CFG(s), &local_err);
1291     if (local_err) {
1292         error_propagate(errp, local_err);
1293         return;
1294     }
1295 
1296     memory_region_init_io(&s->ctl_iomem, OBJECT(s), &fw_cfg_ctl_mem_ops,
1297                           FW_CFG(s), "fwcfg.ctl", FW_CFG_CTL_SIZE);
1298     sysbus_init_mmio(sbd, &s->ctl_iomem);
1299 
1300     if (s->data_width > data_ops->valid.max_access_size) {
1301         s->wide_data_ops = *data_ops;
1302 
1303         s->wide_data_ops.valid.max_access_size = s->data_width;
1304         s->wide_data_ops.impl.max_access_size  = s->data_width;
1305         data_ops = &s->wide_data_ops;
1306     }
1307     memory_region_init_io(&s->data_iomem, OBJECT(s), data_ops, FW_CFG(s),
1308                           "fwcfg.data", data_ops->valid.max_access_size);
1309     sysbus_init_mmio(sbd, &s->data_iomem);
1310 
1311     if (FW_CFG(s)->dma_enabled) {
1312         memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s),
1313                               &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma",
1314                               sizeof(dma_addr_t));
1315         sysbus_init_mmio(sbd, &FW_CFG(s)->dma_iomem);
1316     }
1317 
1318     fw_cfg_common_realize(dev, errp);
1319 }
1320 
1321 static void fw_cfg_mem_class_init(ObjectClass *klass, void *data)
1322 {
1323     DeviceClass *dc = DEVICE_CLASS(klass);
1324 
1325     dc->realize = fw_cfg_mem_realize;
1326     device_class_set_props(dc, fw_cfg_mem_properties);
1327 }
1328 
1329 static const TypeInfo fw_cfg_mem_info = {
1330     .name          = TYPE_FW_CFG_MEM,
1331     .parent        = TYPE_FW_CFG,
1332     .instance_size = sizeof(FWCfgMemState),
1333     .class_init    = fw_cfg_mem_class_init,
1334 };
1335 
1336 
1337 static void fw_cfg_register_types(void)
1338 {
1339     type_register_static(&fw_cfg_info);
1340     type_register_static(&fw_cfg_io_info);
1341     type_register_static(&fw_cfg_mem_info);
1342 }
1343 
1344 type_init(fw_cfg_register_types)
1345