1 /* 2 * QEMU NVM Express 3 * 4 * Copyright (c) 2012 Intel Corporation 5 * Copyright (c) 2021 Minwoo Im 6 * Copyright (c) 2021 Samsung Electronics Co., Ltd. 7 * 8 * Authors: 9 * Keith Busch <kbusch@kernel.org> 10 * Klaus Jensen <k.jensen@samsung.com> 11 * Gollu Appalanaidu <anaidu.gollu@samsung.com> 12 * Dmitry Fomichev <dmitry.fomichev@wdc.com> 13 * Minwoo Im <minwoo.im.dev@gmail.com> 14 * 15 * This code is licensed under the GNU GPL v2 or later. 16 */ 17 18 #ifndef HW_NVME_NVME_H 19 #define HW_NVME_NVME_H 20 21 #include "qemu/uuid.h" 22 #include "hw/pci/pci_device.h" 23 #include "hw/block/block.h" 24 25 #include "block/nvme.h" 26 27 #define NVME_MAX_CONTROLLERS 256 28 #define NVME_MAX_NAMESPACES 256 29 #define NVME_EUI64_DEFAULT ((uint64_t)0x5254000000000000) 30 #define NVME_FDP_MAX_EVENTS 63 31 #define NVME_FDP_MAXPIDS 128 32 33 /* 34 * The controller only supports Submission and Completion Queue Entry Sizes of 35 * 64 and 16 bytes respectively. 36 */ 37 #define NVME_SQES 6 38 #define NVME_CQES 4 39 40 QEMU_BUILD_BUG_ON(NVME_MAX_NAMESPACES > NVME_NSID_BROADCAST - 1); 41 42 typedef struct NvmeCtrl NvmeCtrl; 43 typedef struct NvmeNamespace NvmeNamespace; 44 45 #define TYPE_NVME_BUS "nvme-bus" 46 OBJECT_DECLARE_SIMPLE_TYPE(NvmeBus, NVME_BUS) 47 48 typedef struct NvmeBus { 49 BusState parent_bus; 50 } NvmeBus; 51 52 #define TYPE_NVME_SUBSYS "nvme-subsys" 53 #define NVME_SUBSYS(obj) \ 54 OBJECT_CHECK(NvmeSubsystem, (obj), TYPE_NVME_SUBSYS) 55 #define SUBSYS_SLOT_RSVD (void *)0xFFFF 56 57 typedef struct NvmeReclaimUnit { 58 uint64_t ruamw; 59 } NvmeReclaimUnit; 60 61 typedef struct NvmeRuHandle { 62 uint8_t ruht; 63 uint8_t ruha; 64 uint64_t event_filter; 65 uint8_t lbafi; 66 uint64_t ruamw; 67 68 /* reclaim units indexed by reclaim group */ 69 NvmeReclaimUnit *rus; 70 } NvmeRuHandle; 71 72 typedef struct NvmeFdpEventBuffer { 73 NvmeFdpEvent events[NVME_FDP_MAX_EVENTS]; 74 unsigned int nelems; 75 unsigned int start; 76 unsigned int next; 77 } NvmeFdpEventBuffer; 78 79 typedef struct NvmeEnduranceGroup { 80 uint8_t event_conf; 81 82 struct { 83 NvmeFdpEventBuffer host_events, ctrl_events; 84 85 uint16_t nruh; 86 uint16_t nrg; 87 uint8_t rgif; 88 uint64_t runs; 89 90 uint64_t hbmw; 91 uint64_t mbmw; 92 uint64_t mbe; 93 94 bool enabled; 95 96 NvmeRuHandle *ruhs; 97 } fdp; 98 } NvmeEnduranceGroup; 99 100 typedef struct NvmeSubsystem { 101 DeviceState parent_obj; 102 NvmeBus bus; 103 uint8_t subnqn[256]; 104 char *serial; 105 106 NvmeCtrl *ctrls[NVME_MAX_CONTROLLERS]; 107 NvmeNamespace *namespaces[NVME_MAX_NAMESPACES + 1]; 108 NvmeEnduranceGroup endgrp; 109 110 struct { 111 char *nqn; 112 113 struct { 114 bool enabled; 115 uint64_t runs; 116 uint16_t nruh; 117 uint32_t nrg; 118 } fdp; 119 } params; 120 } NvmeSubsystem; 121 122 int nvme_subsys_register_ctrl(NvmeCtrl *n, Error **errp); 123 void nvme_subsys_unregister_ctrl(NvmeSubsystem *subsys, NvmeCtrl *n); 124 125 static inline NvmeCtrl *nvme_subsys_ctrl(NvmeSubsystem *subsys, 126 uint32_t cntlid) 127 { 128 if (!subsys || cntlid >= NVME_MAX_CONTROLLERS) { 129 return NULL; 130 } 131 132 if (subsys->ctrls[cntlid] == SUBSYS_SLOT_RSVD) { 133 return NULL; 134 } 135 136 return subsys->ctrls[cntlid]; 137 } 138 139 static inline NvmeNamespace *nvme_subsys_ns(NvmeSubsystem *subsys, 140 uint32_t nsid) 141 { 142 if (!subsys || !nsid || nsid > NVME_MAX_NAMESPACES) { 143 return NULL; 144 } 145 146 return subsys->namespaces[nsid]; 147 } 148 149 #define TYPE_NVME_NS "nvme-ns" 150 #define NVME_NS(obj) \ 151 OBJECT_CHECK(NvmeNamespace, (obj), TYPE_NVME_NS) 152 153 typedef struct NvmeZone { 154 NvmeZoneDescr d; 155 uint64_t w_ptr; 156 QTAILQ_ENTRY(NvmeZone) entry; 157 } NvmeZone; 158 159 #define FDP_EVT_MAX 0xff 160 #define NVME_FDP_MAX_NS_RUHS 32u 161 #define FDPVSS 0 162 163 static const uint8_t nvme_fdp_evf_shifts[FDP_EVT_MAX] = { 164 /* Host events */ 165 [FDP_EVT_RU_NOT_FULLY_WRITTEN] = 0, 166 [FDP_EVT_RU_ATL_EXCEEDED] = 1, 167 [FDP_EVT_CTRL_RESET_RUH] = 2, 168 [FDP_EVT_INVALID_PID] = 3, 169 /* CTRL events */ 170 [FDP_EVT_MEDIA_REALLOC] = 32, 171 [FDP_EVT_RUH_IMPLICIT_RU_CHANGE] = 33, 172 }; 173 174 #define NGUID_LEN 16 175 176 typedef struct { 177 uint8_t data[NGUID_LEN]; 178 } NvmeNGUID; 179 180 bool nvme_nguid_is_null(const NvmeNGUID *nguid); 181 182 extern const PropertyInfo qdev_prop_nguid; 183 184 #define DEFINE_PROP_NGUID_NODEFAULT(_name, _state, _field) \ 185 DEFINE_PROP(_name, _state, _field, qdev_prop_nguid, NvmeNGUID) 186 187 typedef struct NvmeNamespaceParams { 188 bool detached; 189 bool shared; 190 uint32_t nsid; 191 QemuUUID uuid; 192 NvmeNGUID nguid; 193 uint64_t eui64; 194 bool eui64_default; 195 196 uint16_t ms; 197 uint8_t mset; 198 uint8_t pi; 199 uint8_t pil; 200 uint8_t pif; 201 202 uint16_t mssrl; 203 uint32_t mcl; 204 uint8_t msrc; 205 206 bool zoned; 207 bool cross_zone_read; 208 uint64_t zone_size_bs; 209 uint64_t zone_cap_bs; 210 uint32_t max_active_zones; 211 uint32_t max_open_zones; 212 uint32_t zd_extension_size; 213 214 uint32_t numzrwa; 215 uint64_t zrwas; 216 uint64_t zrwafg; 217 218 struct { 219 char *ruhs; 220 } fdp; 221 } NvmeNamespaceParams; 222 223 typedef struct NvmeAtomic { 224 uint32_t atomic_max_write_size; 225 bool atomic_writes; 226 } NvmeAtomic; 227 228 typedef struct NvmeNamespace { 229 DeviceState parent_obj; 230 BlockConf blkconf; 231 int32_t bootindex; 232 int64_t size; 233 int64_t moff; 234 NvmeIdNs id_ns; 235 NvmeIdNsNvm id_ns_nvm; 236 NvmeIdNsInd id_ns_ind; 237 NvmeLBAF lbaf; 238 unsigned int nlbaf; 239 size_t lbasz; 240 const uint32_t *iocs; 241 uint8_t csi; 242 uint16_t status; 243 int attached; 244 uint8_t pif; 245 246 struct { 247 uint16_t zrwas; 248 uint16_t zrwafg; 249 uint32_t numzrwa; 250 } zns; 251 252 QTAILQ_ENTRY(NvmeNamespace) entry; 253 254 NvmeIdNsZoned *id_ns_zoned; 255 NvmeZone *zone_array; 256 QTAILQ_HEAD(, NvmeZone) exp_open_zones; 257 QTAILQ_HEAD(, NvmeZone) imp_open_zones; 258 QTAILQ_HEAD(, NvmeZone) closed_zones; 259 QTAILQ_HEAD(, NvmeZone) full_zones; 260 uint32_t num_zones; 261 uint64_t zone_size; 262 uint64_t zone_capacity; 263 uint32_t zone_size_log2; 264 uint8_t *zd_extensions; 265 int32_t nr_open_zones; 266 int32_t nr_active_zones; 267 268 NvmeNamespaceParams params; 269 NvmeSubsystem *subsys; 270 NvmeEnduranceGroup *endgrp; 271 272 struct { 273 uint32_t err_rec; 274 } features; 275 276 struct { 277 uint16_t nphs; 278 /* reclaim unit handle identifiers indexed by placement handle */ 279 uint16_t *phs; 280 } fdp; 281 } NvmeNamespace; 282 283 static inline uint32_t nvme_nsid(NvmeNamespace *ns) 284 { 285 if (ns) { 286 return ns->params.nsid; 287 } 288 289 return 0; 290 } 291 292 static inline size_t nvme_l2b(NvmeNamespace *ns, uint64_t lba) 293 { 294 return lba << ns->lbaf.ds; 295 } 296 297 static inline size_t nvme_m2b(NvmeNamespace *ns, uint64_t lba) 298 { 299 return ns->lbaf.ms * lba; 300 } 301 302 static inline int64_t nvme_moff(NvmeNamespace *ns, uint64_t lba) 303 { 304 return ns->moff + nvme_m2b(ns, lba); 305 } 306 307 static inline bool nvme_ns_ext(NvmeNamespace *ns) 308 { 309 return !!NVME_ID_NS_FLBAS_EXTENDED(ns->id_ns.flbas); 310 } 311 312 static inline NvmeZoneState nvme_get_zone_state(NvmeZone *zone) 313 { 314 return zone->d.zs >> 4; 315 } 316 317 static inline void nvme_set_zone_state(NvmeZone *zone, NvmeZoneState state) 318 { 319 zone->d.zs = state << 4; 320 } 321 322 static inline uint64_t nvme_zone_rd_boundary(NvmeNamespace *ns, NvmeZone *zone) 323 { 324 return zone->d.zslba + ns->zone_size; 325 } 326 327 static inline uint64_t nvme_zone_wr_boundary(NvmeZone *zone) 328 { 329 return zone->d.zslba + zone->d.zcap; 330 } 331 332 static inline bool nvme_wp_is_valid(NvmeZone *zone) 333 { 334 uint8_t st = nvme_get_zone_state(zone); 335 336 return st != NVME_ZONE_STATE_FULL && 337 st != NVME_ZONE_STATE_READ_ONLY && 338 st != NVME_ZONE_STATE_OFFLINE; 339 } 340 341 static inline uint8_t *nvme_get_zd_extension(NvmeNamespace *ns, 342 uint32_t zone_idx) 343 { 344 return &ns->zd_extensions[zone_idx * ns->params.zd_extension_size]; 345 } 346 347 static inline void nvme_aor_inc_open(NvmeNamespace *ns) 348 { 349 assert(ns->nr_open_zones >= 0); 350 if (ns->params.max_open_zones) { 351 ns->nr_open_zones++; 352 assert(ns->nr_open_zones <= ns->params.max_open_zones); 353 } 354 } 355 356 static inline void nvme_aor_dec_open(NvmeNamespace *ns) 357 { 358 if (ns->params.max_open_zones) { 359 assert(ns->nr_open_zones > 0); 360 ns->nr_open_zones--; 361 } 362 assert(ns->nr_open_zones >= 0); 363 } 364 365 static inline void nvme_aor_inc_active(NvmeNamespace *ns) 366 { 367 assert(ns->nr_active_zones >= 0); 368 if (ns->params.max_active_zones) { 369 ns->nr_active_zones++; 370 assert(ns->nr_active_zones <= ns->params.max_active_zones); 371 } 372 } 373 374 static inline void nvme_aor_dec_active(NvmeNamespace *ns) 375 { 376 if (ns->params.max_active_zones) { 377 assert(ns->nr_active_zones > 0); 378 ns->nr_active_zones--; 379 assert(ns->nr_active_zones >= ns->nr_open_zones); 380 } 381 assert(ns->nr_active_zones >= 0); 382 } 383 384 static inline void nvme_fdp_stat_inc(uint64_t *a, uint64_t b) 385 { 386 uint64_t ret = *a + b; 387 *a = ret < *a ? UINT64_MAX : ret; 388 } 389 390 void nvme_ns_init_format(NvmeNamespace *ns); 391 int nvme_ns_setup(NvmeNamespace *ns, Error **errp); 392 void nvme_ns_drain(NvmeNamespace *ns); 393 void nvme_ns_shutdown(NvmeNamespace *ns); 394 void nvme_ns_cleanup(NvmeNamespace *ns); 395 396 typedef struct NvmeAsyncEvent { 397 QTAILQ_ENTRY(NvmeAsyncEvent) entry; 398 NvmeAerResult result; 399 } NvmeAsyncEvent; 400 401 enum { 402 NVME_SG_ALLOC = 1 << 0, 403 NVME_SG_DMA = 1 << 1, 404 }; 405 406 typedef struct NvmeSg { 407 int flags; 408 409 union { 410 QEMUSGList qsg; 411 QEMUIOVector iov; 412 }; 413 } NvmeSg; 414 415 typedef enum NvmeTxDirection { 416 NVME_TX_DIRECTION_TO_DEVICE = 0, 417 NVME_TX_DIRECTION_FROM_DEVICE = 1, 418 } NvmeTxDirection; 419 420 typedef struct NvmeRequest { 421 struct NvmeSQueue *sq; 422 struct NvmeNamespace *ns; 423 BlockAIOCB *aiocb; 424 uint16_t status; 425 void *opaque; 426 NvmeCqe cqe; 427 NvmeCmd cmd; 428 BlockAcctCookie acct; 429 NvmeSg sg; 430 bool atomic_write; 431 QTAILQ_ENTRY(NvmeRequest)entry; 432 } NvmeRequest; 433 434 typedef struct NvmeBounceContext { 435 NvmeRequest *req; 436 437 struct { 438 QEMUIOVector iov; 439 uint8_t *bounce; 440 } data, mdata; 441 } NvmeBounceContext; 442 443 static inline const char *nvme_adm_opc_str(uint8_t opc) 444 { 445 switch (opc) { 446 case NVME_ADM_CMD_DELETE_SQ: return "NVME_ADM_CMD_DELETE_SQ"; 447 case NVME_ADM_CMD_CREATE_SQ: return "NVME_ADM_CMD_CREATE_SQ"; 448 case NVME_ADM_CMD_GET_LOG_PAGE: return "NVME_ADM_CMD_GET_LOG_PAGE"; 449 case NVME_ADM_CMD_DELETE_CQ: return "NVME_ADM_CMD_DELETE_CQ"; 450 case NVME_ADM_CMD_CREATE_CQ: return "NVME_ADM_CMD_CREATE_CQ"; 451 case NVME_ADM_CMD_IDENTIFY: return "NVME_ADM_CMD_IDENTIFY"; 452 case NVME_ADM_CMD_ABORT: return "NVME_ADM_CMD_ABORT"; 453 case NVME_ADM_CMD_SET_FEATURES: return "NVME_ADM_CMD_SET_FEATURES"; 454 case NVME_ADM_CMD_GET_FEATURES: return "NVME_ADM_CMD_GET_FEATURES"; 455 case NVME_ADM_CMD_ASYNC_EV_REQ: return "NVME_ADM_CMD_ASYNC_EV_REQ"; 456 case NVME_ADM_CMD_NS_ATTACHMENT: return "NVME_ADM_CMD_NS_ATTACHMENT"; 457 case NVME_ADM_CMD_DIRECTIVE_SEND: return "NVME_ADM_CMD_DIRECTIVE_SEND"; 458 case NVME_ADM_CMD_VIRT_MNGMT: return "NVME_ADM_CMD_VIRT_MNGMT"; 459 case NVME_ADM_CMD_DIRECTIVE_RECV: return "NVME_ADM_CMD_DIRECTIVE_RECV"; 460 case NVME_ADM_CMD_DBBUF_CONFIG: return "NVME_ADM_CMD_DBBUF_CONFIG"; 461 case NVME_ADM_CMD_FORMAT_NVM: return "NVME_ADM_CMD_FORMAT_NVM"; 462 default: return "NVME_ADM_CMD_UNKNOWN"; 463 } 464 } 465 466 static inline const char *nvme_io_opc_str(uint8_t opc) 467 { 468 switch (opc) { 469 case NVME_CMD_FLUSH: return "NVME_NVM_CMD_FLUSH"; 470 case NVME_CMD_WRITE: return "NVME_NVM_CMD_WRITE"; 471 case NVME_CMD_READ: return "NVME_NVM_CMD_READ"; 472 case NVME_CMD_COMPARE: return "NVME_NVM_CMD_COMPARE"; 473 case NVME_CMD_WRITE_ZEROES: return "NVME_NVM_CMD_WRITE_ZEROES"; 474 case NVME_CMD_DSM: return "NVME_NVM_CMD_DSM"; 475 case NVME_CMD_VERIFY: return "NVME_NVM_CMD_VERIFY"; 476 case NVME_CMD_COPY: return "NVME_NVM_CMD_COPY"; 477 case NVME_CMD_ZONE_MGMT_SEND: return "NVME_ZONED_CMD_MGMT_SEND"; 478 case NVME_CMD_ZONE_MGMT_RECV: return "NVME_ZONED_CMD_MGMT_RECV"; 479 case NVME_CMD_ZONE_APPEND: return "NVME_ZONED_CMD_ZONE_APPEND"; 480 default: return "NVME_NVM_CMD_UNKNOWN"; 481 } 482 } 483 484 typedef struct NvmeSQueue { 485 struct NvmeCtrl *ctrl; 486 uint16_t sqid; 487 uint16_t cqid; 488 uint32_t head; 489 uint32_t tail; 490 uint32_t size; 491 uint64_t dma_addr; 492 uint64_t db_addr; 493 uint64_t ei_addr; 494 QEMUBH *bh; 495 EventNotifier notifier; 496 bool ioeventfd_enabled; 497 NvmeRequest *io_req; 498 QTAILQ_HEAD(, NvmeRequest) req_list; 499 QTAILQ_HEAD(, NvmeRequest) out_req_list; 500 QTAILQ_ENTRY(NvmeSQueue) entry; 501 } NvmeSQueue; 502 503 typedef struct NvmeCQueue { 504 struct NvmeCtrl *ctrl; 505 uint8_t phase; 506 uint16_t cqid; 507 uint16_t irq_enabled; 508 uint32_t head; 509 uint32_t tail; 510 uint32_t vector; 511 uint32_t size; 512 uint64_t dma_addr; 513 uint64_t db_addr; 514 uint64_t ei_addr; 515 QEMUBH *bh; 516 EventNotifier notifier; 517 bool ioeventfd_enabled; 518 QTAILQ_HEAD(, NvmeSQueue) sq_list; 519 QTAILQ_HEAD(, NvmeRequest) req_list; 520 } NvmeCQueue; 521 522 #define TYPE_NVME "nvme" 523 #define NVME(obj) \ 524 OBJECT_CHECK(NvmeCtrl, (obj), TYPE_NVME) 525 526 typedef struct NvmeParams { 527 char *serial; 528 uint32_t num_queues; /* deprecated since 5.1 */ 529 uint32_t max_ioqpairs; 530 uint16_t msix_qsize; 531 uint16_t mqes; 532 uint32_t cmb_size_mb; 533 uint8_t aerl; 534 uint32_t aer_max_queued; 535 uint8_t mdts; 536 uint8_t vsl; 537 bool use_intel_id; 538 uint8_t zasl; 539 bool auto_transition_zones; 540 bool legacy_cmb; 541 bool ioeventfd; 542 uint16_t sriov_max_vfs; 543 uint16_t sriov_vq_flexible; 544 uint16_t sriov_vi_flexible; 545 uint32_t sriov_max_vq_per_vf; 546 uint32_t sriov_max_vi_per_vf; 547 bool msix_exclusive_bar; 548 549 struct { 550 bool mem; 551 } ctratt; 552 553 uint16_t atomic_awun; 554 uint16_t atomic_awupf; 555 bool atomic_dn; 556 } NvmeParams; 557 558 typedef struct NvmeCtrl { 559 PCIDevice parent_obj; 560 MemoryRegion bar0; 561 MemoryRegion iomem; 562 NvmeBar bar; 563 NvmeParams params; 564 NvmeBus bus; 565 566 uint16_t cntlid; 567 bool qs_created; 568 uint32_t page_size; 569 uint16_t page_bits; 570 uint16_t max_prp_ents; 571 uint32_t max_q_ents; 572 uint8_t outstanding_aers; 573 uint32_t irq_status; 574 int cq_pending; 575 uint64_t host_timestamp; /* Timestamp sent by the host */ 576 uint64_t timestamp_set_qemu_clock_ms; /* QEMU clock time */ 577 uint64_t starttime_ms; 578 uint16_t temperature; 579 uint8_t smart_critical_warning; 580 uint32_t conf_msix_qsize; 581 uint32_t conf_ioqpairs; 582 uint64_t dbbuf_dbs; 583 uint64_t dbbuf_eis; 584 bool dbbuf_enabled; 585 586 struct { 587 MemoryRegion mem; 588 uint8_t *buf; 589 bool cmse; 590 hwaddr cba; 591 } cmb; 592 593 struct { 594 HostMemoryBackend *dev; 595 bool cmse; 596 hwaddr cba; 597 } pmr; 598 599 uint8_t aer_mask; 600 NvmeRequest **aer_reqs; 601 QTAILQ_HEAD(, NvmeAsyncEvent) aer_queue; 602 int aer_queued; 603 604 uint32_t dmrsl; 605 606 /* Namespace ID is started with 1 so bitmap should be 1-based */ 607 #define NVME_CHANGED_NSID_SIZE (NVME_MAX_NAMESPACES + 1) 608 DECLARE_BITMAP(changed_nsids, NVME_CHANGED_NSID_SIZE); 609 610 NvmeSubsystem *subsys; 611 612 NvmeNamespace namespace; 613 NvmeNamespace *namespaces[NVME_MAX_NAMESPACES + 1]; 614 NvmeSQueue **sq; 615 NvmeCQueue **cq; 616 NvmeSQueue admin_sq; 617 NvmeCQueue admin_cq; 618 NvmeIdCtrl id_ctrl; 619 620 struct { 621 struct { 622 uint16_t temp_thresh_hi; 623 uint16_t temp_thresh_low; 624 }; 625 626 uint32_t async_config; 627 NvmeHostBehaviorSupport hbs; 628 } features; 629 630 NvmePriCtrlCap pri_ctrl_cap; 631 uint32_t nr_sec_ctrls; 632 NvmeSecCtrlEntry *sec_ctrl_list; 633 struct { 634 uint16_t vqrfap; 635 uint16_t virfap; 636 } next_pri_ctrl_cap; /* These override pri_ctrl_cap after reset */ 637 uint32_t dn; /* Disable Normal */ 638 NvmeAtomic atomic; 639 } NvmeCtrl; 640 641 typedef enum NvmeResetType { 642 NVME_RESET_FUNCTION = 0, 643 NVME_RESET_CONTROLLER = 1, 644 } NvmeResetType; 645 646 static inline NvmeNamespace *nvme_ns(NvmeCtrl *n, uint32_t nsid) 647 { 648 if (!nsid || nsid > NVME_MAX_NAMESPACES) { 649 return NULL; 650 } 651 652 return n->namespaces[nsid]; 653 } 654 655 static inline NvmeCQueue *nvme_cq(NvmeRequest *req) 656 { 657 NvmeSQueue *sq = req->sq; 658 NvmeCtrl *n = sq->ctrl; 659 660 return n->cq[sq->cqid]; 661 } 662 663 static inline NvmeCtrl *nvme_ctrl(NvmeRequest *req) 664 { 665 NvmeSQueue *sq = req->sq; 666 return sq->ctrl; 667 } 668 669 static inline uint16_t nvme_cid(NvmeRequest *req) 670 { 671 if (!req) { 672 return 0xffff; 673 } 674 675 return le16_to_cpu(req->cqe.cid); 676 } 677 678 static inline NvmeSecCtrlEntry *nvme_sctrl(NvmeCtrl *n) 679 { 680 PCIDevice *pci_dev = &n->parent_obj; 681 NvmeCtrl *pf = NVME(pcie_sriov_get_pf(pci_dev)); 682 683 if (pci_is_vf(pci_dev)) { 684 return &pf->sec_ctrl_list[pcie_sriov_vf_number(pci_dev)]; 685 } 686 687 return NULL; 688 } 689 690 static inline NvmeSecCtrlEntry *nvme_sctrl_for_cntlid(NvmeCtrl *n, 691 uint16_t cntlid) 692 { 693 NvmeSecCtrlEntry *list = n->sec_ctrl_list; 694 uint8_t i; 695 696 for (i = 0; i < n->nr_sec_ctrls; i++) { 697 if (le16_to_cpu(list[i].scid) == cntlid) { 698 return &list[i]; 699 } 700 } 701 702 return NULL; 703 } 704 705 void nvme_attach_ns(NvmeCtrl *n, NvmeNamespace *ns); 706 uint16_t nvme_bounce_data(NvmeCtrl *n, void *ptr, uint32_t len, 707 NvmeTxDirection dir, NvmeRequest *req); 708 uint16_t nvme_bounce_mdata(NvmeCtrl *n, void *ptr, uint32_t len, 709 NvmeTxDirection dir, NvmeRequest *req); 710 void nvme_rw_complete_cb(void *opaque, int ret); 711 uint16_t nvme_map_dptr(NvmeCtrl *n, NvmeSg *sg, size_t len, 712 NvmeCmd *cmd); 713 714 #endif /* HW_NVME_NVME_H */ 715