1 /* 2 * QEMU NVM Express Virtual Namespace 3 * 4 * Copyright (c) 2019 CNEX Labs 5 * Copyright (c) 2020 Samsung Electronics 6 * 7 * Authors: 8 * Klaus Jensen <k.jensen@samsung.com> 9 * 10 * This work is licensed under the terms of the GNU GPL, version 2. See the 11 * COPYING file in the top-level directory. 12 * 13 */ 14 15 #include "qemu/osdep.h" 16 #include "qemu/units.h" 17 #include "qemu/cutils.h" 18 #include "qemu/error-report.h" 19 #include "qapi/error.h" 20 #include "qemu/bitops.h" 21 #include "sysemu/sysemu.h" 22 #include "sysemu/block-backend.h" 23 24 #include "nvme.h" 25 #include "trace.h" 26 27 #define MIN_DISCARD_GRANULARITY (4 * KiB) 28 #define NVME_DEFAULT_ZONE_SIZE (128 * MiB) 29 30 void nvme_ns_init_format(NvmeNamespace *ns) 31 { 32 NvmeIdNs *id_ns = &ns->id_ns; 33 BlockDriverInfo bdi; 34 int npdg, ret; 35 int64_t nlbas; 36 37 ns->lbaf = id_ns->lbaf[NVME_ID_NS_FLBAS_INDEX(id_ns->flbas)]; 38 ns->lbasz = 1 << ns->lbaf.ds; 39 40 nlbas = ns->size / (ns->lbasz + ns->lbaf.ms); 41 42 id_ns->nsze = cpu_to_le64(nlbas); 43 44 /* no thin provisioning */ 45 id_ns->ncap = id_ns->nsze; 46 id_ns->nuse = id_ns->ncap; 47 48 ns->moff = nlbas << ns->lbaf.ds; 49 50 npdg = ns->blkconf.discard_granularity / ns->lbasz; 51 52 ret = bdrv_get_info(blk_bs(ns->blkconf.blk), &bdi); 53 if (ret >= 0 && bdi.cluster_size > ns->blkconf.discard_granularity) { 54 npdg = bdi.cluster_size / ns->lbasz; 55 } 56 57 id_ns->npda = id_ns->npdg = npdg - 1; 58 } 59 60 static int nvme_ns_init(NvmeNamespace *ns, Error **errp) 61 { 62 static uint64_t ns_count; 63 NvmeIdNs *id_ns = &ns->id_ns; 64 NvmeIdNsNvm *id_ns_nvm = &ns->id_ns_nvm; 65 uint8_t ds; 66 uint16_t ms; 67 int i; 68 69 ns->csi = NVME_CSI_NVM; 70 ns->status = 0x0; 71 72 ns->id_ns.dlfeat = 0x1; 73 74 /* support DULBE and I/O optimization fields */ 75 id_ns->nsfeat |= (0x4 | 0x10); 76 77 if (ns->params.shared) { 78 id_ns->nmic |= NVME_NMIC_NS_SHARED; 79 } 80 81 /* Substitute a missing EUI-64 by an autogenerated one */ 82 ++ns_count; 83 if (!ns->params.eui64 && ns->params.eui64_default) { 84 ns->params.eui64 = ns_count + NVME_EUI64_DEFAULT; 85 } 86 87 /* simple copy */ 88 id_ns->mssrl = cpu_to_le16(ns->params.mssrl); 89 id_ns->mcl = cpu_to_le32(ns->params.mcl); 90 id_ns->msrc = ns->params.msrc; 91 id_ns->eui64 = cpu_to_be64(ns->params.eui64); 92 93 ds = 31 - clz32(ns->blkconf.logical_block_size); 94 ms = ns->params.ms; 95 96 id_ns->mc = NVME_ID_NS_MC_EXTENDED | NVME_ID_NS_MC_SEPARATE; 97 98 if (ms && ns->params.mset) { 99 id_ns->flbas |= NVME_ID_NS_FLBAS_EXTENDED; 100 } 101 102 id_ns->dpc = 0x1f; 103 id_ns->dps = ns->params.pi; 104 if (ns->params.pi && ns->params.pil) { 105 id_ns->dps |= NVME_ID_NS_DPS_FIRST_EIGHT; 106 } 107 108 ns->pif = ns->params.pif; 109 110 static const NvmeLBAF lbaf[16] = { 111 [0] = { .ds = 9 }, 112 [1] = { .ds = 9, .ms = 8 }, 113 [2] = { .ds = 9, .ms = 16 }, 114 [3] = { .ds = 9, .ms = 64 }, 115 [4] = { .ds = 12 }, 116 [5] = { .ds = 12, .ms = 8 }, 117 [6] = { .ds = 12, .ms = 16 }, 118 [7] = { .ds = 12, .ms = 64 }, 119 }; 120 121 ns->nlbaf = 8; 122 123 memcpy(&id_ns->lbaf, &lbaf, sizeof(lbaf)); 124 125 for (i = 0; i < ns->nlbaf; i++) { 126 NvmeLBAF *lbaf = &id_ns->lbaf[i]; 127 if (lbaf->ds == ds) { 128 if (lbaf->ms == ms) { 129 id_ns->flbas |= i; 130 goto lbaf_found; 131 } 132 } 133 } 134 135 /* add non-standard lba format */ 136 id_ns->lbaf[ns->nlbaf].ds = ds; 137 id_ns->lbaf[ns->nlbaf].ms = ms; 138 ns->nlbaf++; 139 140 id_ns->flbas |= i; 141 142 143 lbaf_found: 144 id_ns_nvm->elbaf[i] = (ns->pif & 0x3) << 7; 145 id_ns->nlbaf = ns->nlbaf - 1; 146 nvme_ns_init_format(ns); 147 148 return 0; 149 } 150 151 static int nvme_ns_init_blk(NvmeNamespace *ns, Error **errp) 152 { 153 bool read_only; 154 155 if (!blkconf_blocksizes(&ns->blkconf, errp)) { 156 return -1; 157 } 158 159 read_only = !blk_supports_write_perm(ns->blkconf.blk); 160 if (!blkconf_apply_backend_options(&ns->blkconf, read_only, false, errp)) { 161 return -1; 162 } 163 164 if (ns->blkconf.discard_granularity == -1) { 165 ns->blkconf.discard_granularity = 166 MAX(ns->blkconf.logical_block_size, MIN_DISCARD_GRANULARITY); 167 } 168 169 ns->size = blk_getlength(ns->blkconf.blk); 170 if (ns->size < 0) { 171 error_setg_errno(errp, -ns->size, "could not get blockdev size"); 172 return -1; 173 } 174 175 return 0; 176 } 177 178 static int nvme_ns_zoned_check_calc_geometry(NvmeNamespace *ns, Error **errp) 179 { 180 uint64_t zone_size, zone_cap; 181 182 /* Make sure that the values of ZNS properties are sane */ 183 if (ns->params.zone_size_bs) { 184 zone_size = ns->params.zone_size_bs; 185 } else { 186 zone_size = NVME_DEFAULT_ZONE_SIZE; 187 } 188 if (ns->params.zone_cap_bs) { 189 zone_cap = ns->params.zone_cap_bs; 190 } else { 191 zone_cap = zone_size; 192 } 193 if (zone_cap > zone_size) { 194 error_setg(errp, "zone capacity %"PRIu64"B exceeds " 195 "zone size %"PRIu64"B", zone_cap, zone_size); 196 return -1; 197 } 198 if (zone_size < ns->lbasz) { 199 error_setg(errp, "zone size %"PRIu64"B too small, " 200 "must be at least %zuB", zone_size, ns->lbasz); 201 return -1; 202 } 203 if (zone_cap < ns->lbasz) { 204 error_setg(errp, "zone capacity %"PRIu64"B too small, " 205 "must be at least %zuB", zone_cap, ns->lbasz); 206 return -1; 207 } 208 209 /* 210 * Save the main zone geometry values to avoid 211 * calculating them later again. 212 */ 213 ns->zone_size = zone_size / ns->lbasz; 214 ns->zone_capacity = zone_cap / ns->lbasz; 215 ns->num_zones = le64_to_cpu(ns->id_ns.nsze) / ns->zone_size; 216 217 /* Do a few more sanity checks of ZNS properties */ 218 if (!ns->num_zones) { 219 error_setg(errp, 220 "insufficient drive capacity, must be at least the size " 221 "of one zone (%"PRIu64"B)", zone_size); 222 return -1; 223 } 224 225 return 0; 226 } 227 228 static void nvme_ns_zoned_init_state(NvmeNamespace *ns) 229 { 230 uint64_t start = 0, zone_size = ns->zone_size; 231 uint64_t capacity = ns->num_zones * zone_size; 232 NvmeZone *zone; 233 int i; 234 235 ns->zone_array = g_new0(NvmeZone, ns->num_zones); 236 if (ns->params.zd_extension_size) { 237 ns->zd_extensions = g_malloc0(ns->params.zd_extension_size * 238 ns->num_zones); 239 } 240 241 QTAILQ_INIT(&ns->exp_open_zones); 242 QTAILQ_INIT(&ns->imp_open_zones); 243 QTAILQ_INIT(&ns->closed_zones); 244 QTAILQ_INIT(&ns->full_zones); 245 246 zone = ns->zone_array; 247 for (i = 0; i < ns->num_zones; i++, zone++) { 248 if (start + zone_size > capacity) { 249 zone_size = capacity - start; 250 } 251 zone->d.zt = NVME_ZONE_TYPE_SEQ_WRITE; 252 nvme_set_zone_state(zone, NVME_ZONE_STATE_EMPTY); 253 zone->d.za = 0; 254 zone->d.zcap = ns->zone_capacity; 255 zone->d.zslba = start; 256 zone->d.wp = start; 257 zone->w_ptr = start; 258 start += zone_size; 259 } 260 261 ns->zone_size_log2 = 0; 262 if (is_power_of_2(ns->zone_size)) { 263 ns->zone_size_log2 = 63 - clz64(ns->zone_size); 264 } 265 } 266 267 static void nvme_ns_init_zoned(NvmeNamespace *ns) 268 { 269 NvmeIdNsZoned *id_ns_z; 270 int i; 271 272 nvme_ns_zoned_init_state(ns); 273 274 id_ns_z = g_new0(NvmeIdNsZoned, 1); 275 276 /* MAR/MOR are zeroes-based, FFFFFFFFFh means no limit */ 277 id_ns_z->mar = cpu_to_le32(ns->params.max_active_zones - 1); 278 id_ns_z->mor = cpu_to_le32(ns->params.max_open_zones - 1); 279 id_ns_z->zoc = 0; 280 id_ns_z->ozcs = ns->params.cross_zone_read ? 281 NVME_ID_NS_ZONED_OZCS_RAZB : 0x00; 282 283 for (i = 0; i <= ns->id_ns.nlbaf; i++) { 284 id_ns_z->lbafe[i].zsze = cpu_to_le64(ns->zone_size); 285 id_ns_z->lbafe[i].zdes = 286 ns->params.zd_extension_size >> 6; /* Units of 64B */ 287 } 288 289 if (ns->params.zrwas) { 290 ns->zns.numzrwa = ns->params.numzrwa ? 291 ns->params.numzrwa : ns->num_zones; 292 293 ns->zns.zrwas = ns->params.zrwas >> ns->lbaf.ds; 294 ns->zns.zrwafg = ns->params.zrwafg >> ns->lbaf.ds; 295 296 id_ns_z->ozcs |= NVME_ID_NS_ZONED_OZCS_ZRWASUP; 297 id_ns_z->zrwacap = NVME_ID_NS_ZONED_ZRWACAP_EXPFLUSHSUP; 298 299 id_ns_z->numzrwa = cpu_to_le32(ns->params.numzrwa); 300 id_ns_z->zrwas = cpu_to_le16(ns->zns.zrwas); 301 id_ns_z->zrwafg = cpu_to_le16(ns->zns.zrwafg); 302 } 303 304 id_ns_z->ozcs = cpu_to_le16(id_ns_z->ozcs); 305 306 ns->csi = NVME_CSI_ZONED; 307 ns->id_ns.nsze = cpu_to_le64(ns->num_zones * ns->zone_size); 308 ns->id_ns.ncap = ns->id_ns.nsze; 309 ns->id_ns.nuse = ns->id_ns.ncap; 310 311 /* 312 * The device uses the BDRV_BLOCK_ZERO flag to determine the "deallocated" 313 * status of logical blocks. Since the spec defines that logical blocks 314 * SHALL be deallocated when then zone is in the Empty or Offline states, 315 * we can only support DULBE if the zone size is a multiple of the 316 * calculated NPDG. 317 */ 318 if (ns->zone_size % (ns->id_ns.npdg + 1)) { 319 warn_report("the zone size (%"PRIu64" blocks) is not a multiple of " 320 "the calculated deallocation granularity (%d blocks); " 321 "DULBE support disabled", 322 ns->zone_size, ns->id_ns.npdg + 1); 323 324 ns->id_ns.nsfeat &= ~0x4; 325 } 326 327 ns->id_ns_zoned = id_ns_z; 328 } 329 330 static void nvme_clear_zone(NvmeNamespace *ns, NvmeZone *zone) 331 { 332 uint8_t state; 333 334 zone->w_ptr = zone->d.wp; 335 state = nvme_get_zone_state(zone); 336 if (zone->d.wp != zone->d.zslba || 337 (zone->d.za & NVME_ZA_ZD_EXT_VALID)) { 338 if (state != NVME_ZONE_STATE_CLOSED) { 339 trace_pci_nvme_clear_ns_close(state, zone->d.zslba); 340 nvme_set_zone_state(zone, NVME_ZONE_STATE_CLOSED); 341 } 342 nvme_aor_inc_active(ns); 343 QTAILQ_INSERT_HEAD(&ns->closed_zones, zone, entry); 344 } else { 345 trace_pci_nvme_clear_ns_reset(state, zone->d.zslba); 346 if (zone->d.za & NVME_ZA_ZRWA_VALID) { 347 zone->d.za &= ~NVME_ZA_ZRWA_VALID; 348 ns->zns.numzrwa++; 349 } 350 nvme_set_zone_state(zone, NVME_ZONE_STATE_EMPTY); 351 } 352 } 353 354 /* 355 * Close all the zones that are currently open. 356 */ 357 static void nvme_zoned_ns_shutdown(NvmeNamespace *ns) 358 { 359 NvmeZone *zone, *next; 360 361 QTAILQ_FOREACH_SAFE(zone, &ns->closed_zones, entry, next) { 362 QTAILQ_REMOVE(&ns->closed_zones, zone, entry); 363 nvme_aor_dec_active(ns); 364 nvme_clear_zone(ns, zone); 365 } 366 QTAILQ_FOREACH_SAFE(zone, &ns->imp_open_zones, entry, next) { 367 QTAILQ_REMOVE(&ns->imp_open_zones, zone, entry); 368 nvme_aor_dec_open(ns); 369 nvme_aor_dec_active(ns); 370 nvme_clear_zone(ns, zone); 371 } 372 QTAILQ_FOREACH_SAFE(zone, &ns->exp_open_zones, entry, next) { 373 QTAILQ_REMOVE(&ns->exp_open_zones, zone, entry); 374 nvme_aor_dec_open(ns); 375 nvme_aor_dec_active(ns); 376 nvme_clear_zone(ns, zone); 377 } 378 379 assert(ns->nr_open_zones == 0); 380 } 381 382 static NvmeRuHandle *nvme_find_ruh_by_attr(NvmeEnduranceGroup *endgrp, 383 uint8_t ruha, uint16_t *ruhid) 384 { 385 for (uint16_t i = 0; i < endgrp->fdp.nruh; i++) { 386 NvmeRuHandle *ruh = &endgrp->fdp.ruhs[i]; 387 388 if (ruh->ruha == ruha) { 389 *ruhid = i; 390 return ruh; 391 } 392 } 393 394 return NULL; 395 } 396 397 static bool nvme_ns_init_fdp(NvmeNamespace *ns, Error **errp) 398 { 399 NvmeEnduranceGroup *endgrp = ns->endgrp; 400 NvmeRuHandle *ruh; 401 uint8_t lbafi = NVME_ID_NS_FLBAS_INDEX(ns->id_ns.flbas); 402 g_autofree unsigned int *ruhids = NULL; 403 unsigned int n, m, *ruhid; 404 const char *endptr, *token; 405 char *r, *p; 406 uint16_t *ph; 407 408 if (!ns->params.fdp.ruhs) { 409 ns->fdp.nphs = 1; 410 ph = ns->fdp.phs = g_new(uint16_t, 1); 411 412 ruh = nvme_find_ruh_by_attr(endgrp, NVME_RUHA_CTRL, ph); 413 if (!ruh) { 414 ruh = nvme_find_ruh_by_attr(endgrp, NVME_RUHA_UNUSED, ph); 415 if (!ruh) { 416 error_setg(errp, "no unused reclaim unit handles left"); 417 return false; 418 } 419 420 ruh->ruha = NVME_RUHA_CTRL; 421 ruh->lbafi = lbafi; 422 ruh->ruamw = endgrp->fdp.runs >> ns->lbaf.ds; 423 424 for (uint16_t rg = 0; rg < endgrp->fdp.nrg; rg++) { 425 ruh->rus[rg].ruamw = ruh->ruamw; 426 } 427 } else if (ruh->lbafi != lbafi) { 428 error_setg(errp, "lba format index of controller assigned " 429 "reclaim unit handle does not match namespace lba " 430 "format index"); 431 return false; 432 } 433 434 return true; 435 } 436 437 ruhid = ruhids = g_new0(unsigned int, endgrp->fdp.nruh); 438 r = p = strdup(ns->params.fdp.ruhs); 439 440 /* parse the placement handle identifiers */ 441 while ((token = qemu_strsep(&p, ";")) != NULL) { 442 if (qemu_strtoui(token, &endptr, 0, &n) < 0) { 443 error_setg(errp, "cannot parse reclaim unit handle identifier"); 444 free(r); 445 return false; 446 } 447 448 m = n; 449 450 /* parse range */ 451 if (*endptr == '-') { 452 token = endptr + 1; 453 454 if (qemu_strtoui(token, NULL, 0, &m) < 0) { 455 error_setg(errp, "cannot parse reclaim unit handle identifier"); 456 free(r); 457 return false; 458 } 459 460 if (m < n) { 461 error_setg(errp, "invalid reclaim unit handle identifier range"); 462 free(r); 463 return false; 464 } 465 } 466 467 for (; n <= m; n++) { 468 if (ns->fdp.nphs++ == endgrp->fdp.nruh) { 469 error_setg(errp, "too many placement handles"); 470 free(r); 471 return false; 472 } 473 474 *ruhid++ = n; 475 } 476 } 477 478 free(r); 479 480 /* verify that the ruhids are unique */ 481 for (unsigned int i = 0; i < ns->fdp.nphs; i++) { 482 for (unsigned int j = i + 1; j < ns->fdp.nphs; j++) { 483 if (ruhids[i] == ruhids[j]) { 484 error_setg(errp, "duplicate reclaim unit handle identifier: %u", 485 ruhids[i]); 486 return false; 487 } 488 } 489 } 490 491 ph = ns->fdp.phs = g_new(uint16_t, ns->fdp.nphs); 492 493 ruhid = ruhids; 494 495 /* verify the identifiers */ 496 for (unsigned int i = 0; i < ns->fdp.nphs; i++, ruhid++, ph++) { 497 if (*ruhid >= endgrp->fdp.nruh) { 498 error_setg(errp, "invalid reclaim unit handle identifier"); 499 return false; 500 } 501 502 ruh = &endgrp->fdp.ruhs[*ruhid]; 503 504 switch (ruh->ruha) { 505 case NVME_RUHA_UNUSED: 506 ruh->ruha = NVME_RUHA_HOST; 507 ruh->lbafi = lbafi; 508 ruh->ruamw = endgrp->fdp.runs >> ns->lbaf.ds; 509 510 for (uint16_t rg = 0; rg < endgrp->fdp.nrg; rg++) { 511 ruh->rus[rg].ruamw = ruh->ruamw; 512 } 513 514 break; 515 516 case NVME_RUHA_HOST: 517 if (ruh->lbafi != lbafi) { 518 error_setg(errp, "lba format index of host assigned" 519 "reclaim unit handle does not match namespace " 520 "lba format index"); 521 return false; 522 } 523 524 break; 525 526 case NVME_RUHA_CTRL: 527 error_setg(errp, "reclaim unit handle is controller assigned"); 528 return false; 529 530 default: 531 abort(); 532 } 533 534 *ph = *ruhid; 535 } 536 537 return true; 538 } 539 540 static int nvme_ns_check_constraints(NvmeNamespace *ns, Error **errp) 541 { 542 unsigned int pi_size; 543 544 if (!ns->blkconf.blk) { 545 error_setg(errp, "block backend not configured"); 546 return -1; 547 } 548 549 if (ns->params.pi) { 550 if (ns->params.pi > NVME_ID_NS_DPS_TYPE_3) { 551 error_setg(errp, "invalid 'pi' value"); 552 return -1; 553 } 554 555 switch (ns->params.pif) { 556 case NVME_PI_GUARD_16: 557 pi_size = 8; 558 break; 559 case NVME_PI_GUARD_64: 560 pi_size = 16; 561 break; 562 default: 563 error_setg(errp, "invalid 'pif'"); 564 return -1; 565 } 566 567 if (ns->params.ms < pi_size) { 568 error_setg(errp, "at least %u bytes of metadata required to " 569 "enable protection information", pi_size); 570 return -1; 571 } 572 } 573 574 if (ns->params.nsid > NVME_MAX_NAMESPACES) { 575 error_setg(errp, "invalid namespace id (must be between 0 and %d)", 576 NVME_MAX_NAMESPACES); 577 return -1; 578 } 579 580 if (ns->params.zoned && ns->endgrp && ns->endgrp->fdp.enabled) { 581 error_setg(errp, "cannot be a zoned- in an FDP configuration"); 582 return -1; 583 } 584 585 if (ns->params.zoned) { 586 if (ns->params.max_active_zones) { 587 if (ns->params.max_open_zones > ns->params.max_active_zones) { 588 error_setg(errp, "max_open_zones (%u) exceeds " 589 "max_active_zones (%u)", ns->params.max_open_zones, 590 ns->params.max_active_zones); 591 return -1; 592 } 593 594 if (!ns->params.max_open_zones) { 595 ns->params.max_open_zones = ns->params.max_active_zones; 596 } 597 } 598 599 if (ns->params.zd_extension_size) { 600 if (ns->params.zd_extension_size & 0x3f) { 601 error_setg(errp, "zone descriptor extension size must be a " 602 "multiple of 64B"); 603 return -1; 604 } 605 if ((ns->params.zd_extension_size >> 6) > 0xff) { 606 error_setg(errp, 607 "zone descriptor extension size is too large"); 608 return -1; 609 } 610 } 611 612 if (ns->params.zrwas) { 613 if (ns->params.zrwas % ns->blkconf.logical_block_size) { 614 error_setg(errp, "zone random write area size (zoned.zrwas " 615 "%"PRIu64") must be a multiple of the logical " 616 "block size (logical_block_size %"PRIu32")", 617 ns->params.zrwas, ns->blkconf.logical_block_size); 618 return -1; 619 } 620 621 if (ns->params.zrwafg == -1) { 622 ns->params.zrwafg = ns->blkconf.logical_block_size; 623 } 624 625 if (ns->params.zrwas % ns->params.zrwafg) { 626 error_setg(errp, "zone random write area size (zoned.zrwas " 627 "%"PRIu64") must be a multiple of the zone random " 628 "write area flush granularity (zoned.zrwafg, " 629 "%"PRIu64")", ns->params.zrwas, ns->params.zrwafg); 630 return -1; 631 } 632 633 if (ns->params.max_active_zones) { 634 if (ns->params.numzrwa > ns->params.max_active_zones) { 635 error_setg(errp, "number of zone random write area " 636 "resources (zoned.numzrwa, %d) must be less " 637 "than or equal to maximum active resources " 638 "(zoned.max_active_zones, %d)", 639 ns->params.numzrwa, 640 ns->params.max_active_zones); 641 return -1; 642 } 643 } 644 } 645 } 646 647 return 0; 648 } 649 650 int nvme_ns_setup(NvmeNamespace *ns, Error **errp) 651 { 652 if (nvme_ns_check_constraints(ns, errp)) { 653 return -1; 654 } 655 656 if (nvme_ns_init_blk(ns, errp)) { 657 return -1; 658 } 659 660 if (nvme_ns_init(ns, errp)) { 661 return -1; 662 } 663 if (ns->params.zoned) { 664 if (nvme_ns_zoned_check_calc_geometry(ns, errp) != 0) { 665 return -1; 666 } 667 nvme_ns_init_zoned(ns); 668 } 669 670 if (ns->endgrp && ns->endgrp->fdp.enabled) { 671 if (!nvme_ns_init_fdp(ns, errp)) { 672 return -1; 673 } 674 } 675 676 return 0; 677 } 678 679 void nvme_ns_drain(NvmeNamespace *ns) 680 { 681 blk_drain(ns->blkconf.blk); 682 } 683 684 void nvme_ns_shutdown(NvmeNamespace *ns) 685 { 686 blk_flush(ns->blkconf.blk); 687 if (ns->params.zoned) { 688 nvme_zoned_ns_shutdown(ns); 689 } 690 } 691 692 void nvme_ns_cleanup(NvmeNamespace *ns) 693 { 694 if (ns->params.zoned) { 695 g_free(ns->id_ns_zoned); 696 g_free(ns->zone_array); 697 g_free(ns->zd_extensions); 698 } 699 700 if (ns->endgrp && ns->endgrp->fdp.enabled) { 701 g_free(ns->fdp.phs); 702 } 703 } 704 705 static void nvme_ns_unrealize(DeviceState *dev) 706 { 707 NvmeNamespace *ns = NVME_NS(dev); 708 709 nvme_ns_drain(ns); 710 nvme_ns_shutdown(ns); 711 nvme_ns_cleanup(ns); 712 } 713 714 static void nvme_ns_realize(DeviceState *dev, Error **errp) 715 { 716 NvmeNamespace *ns = NVME_NS(dev); 717 BusState *s = qdev_get_parent_bus(dev); 718 NvmeCtrl *n = NVME(s->parent); 719 NvmeSubsystem *subsys = n->subsys; 720 uint32_t nsid = ns->params.nsid; 721 int i; 722 723 if (!n->subsys) { 724 /* If no subsys, the ns cannot be attached to more than one ctrl. */ 725 ns->params.shared = false; 726 if (ns->params.detached) { 727 error_setg(errp, "detached requires that the nvme device is " 728 "linked to an nvme-subsys device"); 729 return; 730 } 731 } else { 732 /* 733 * If this namespace belongs to a subsystem (through a link on the 734 * controller device), reparent the device. 735 */ 736 if (!qdev_set_parent_bus(dev, &subsys->bus.parent_bus, errp)) { 737 return; 738 } 739 ns->subsys = subsys; 740 ns->endgrp = &subsys->endgrp; 741 } 742 743 if (nvme_ns_setup(ns, errp)) { 744 return; 745 } 746 747 if (!nsid) { 748 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { 749 if (nvme_ns(n, i) || nvme_subsys_ns(subsys, i)) { 750 continue; 751 } 752 753 nsid = ns->params.nsid = i; 754 break; 755 } 756 757 if (!nsid) { 758 error_setg(errp, "no free namespace id"); 759 return; 760 } 761 } else { 762 if (nvme_ns(n, nsid) || nvme_subsys_ns(subsys, nsid)) { 763 error_setg(errp, "namespace id '%d' already allocated", nsid); 764 return; 765 } 766 } 767 768 if (subsys) { 769 subsys->namespaces[nsid] = ns; 770 771 ns->id_ns.endgid = cpu_to_le16(0x1); 772 773 if (ns->params.detached) { 774 return; 775 } 776 777 if (ns->params.shared) { 778 for (i = 0; i < ARRAY_SIZE(subsys->ctrls); i++) { 779 NvmeCtrl *ctrl = subsys->ctrls[i]; 780 781 if (ctrl && ctrl != SUBSYS_SLOT_RSVD) { 782 nvme_attach_ns(ctrl, ns); 783 } 784 } 785 786 return; 787 } 788 789 } 790 791 nvme_attach_ns(n, ns); 792 } 793 794 static Property nvme_ns_props[] = { 795 DEFINE_BLOCK_PROPERTIES(NvmeNamespace, blkconf), 796 DEFINE_PROP_BOOL("detached", NvmeNamespace, params.detached, false), 797 DEFINE_PROP_BOOL("shared", NvmeNamespace, params.shared, true), 798 DEFINE_PROP_UINT32("nsid", NvmeNamespace, params.nsid, 0), 799 DEFINE_PROP_UUID_NODEFAULT("uuid", NvmeNamespace, params.uuid), 800 DEFINE_PROP_UINT64("eui64", NvmeNamespace, params.eui64, 0), 801 DEFINE_PROP_UINT16("ms", NvmeNamespace, params.ms, 0), 802 DEFINE_PROP_UINT8("mset", NvmeNamespace, params.mset, 0), 803 DEFINE_PROP_UINT8("pi", NvmeNamespace, params.pi, 0), 804 DEFINE_PROP_UINT8("pil", NvmeNamespace, params.pil, 0), 805 DEFINE_PROP_UINT8("pif", NvmeNamespace, params.pif, 0), 806 DEFINE_PROP_UINT16("mssrl", NvmeNamespace, params.mssrl, 128), 807 DEFINE_PROP_UINT32("mcl", NvmeNamespace, params.mcl, 128), 808 DEFINE_PROP_UINT8("msrc", NvmeNamespace, params.msrc, 127), 809 DEFINE_PROP_BOOL("zoned", NvmeNamespace, params.zoned, false), 810 DEFINE_PROP_SIZE("zoned.zone_size", NvmeNamespace, params.zone_size_bs, 811 NVME_DEFAULT_ZONE_SIZE), 812 DEFINE_PROP_SIZE("zoned.zone_capacity", NvmeNamespace, params.zone_cap_bs, 813 0), 814 DEFINE_PROP_BOOL("zoned.cross_read", NvmeNamespace, 815 params.cross_zone_read, false), 816 DEFINE_PROP_UINT32("zoned.max_active", NvmeNamespace, 817 params.max_active_zones, 0), 818 DEFINE_PROP_UINT32("zoned.max_open", NvmeNamespace, 819 params.max_open_zones, 0), 820 DEFINE_PROP_UINT32("zoned.descr_ext_size", NvmeNamespace, 821 params.zd_extension_size, 0), 822 DEFINE_PROP_UINT32("zoned.numzrwa", NvmeNamespace, params.numzrwa, 0), 823 DEFINE_PROP_SIZE("zoned.zrwas", NvmeNamespace, params.zrwas, 0), 824 DEFINE_PROP_SIZE("zoned.zrwafg", NvmeNamespace, params.zrwafg, -1), 825 DEFINE_PROP_BOOL("eui64-default", NvmeNamespace, params.eui64_default, 826 false), 827 DEFINE_PROP_STRING("fdp.ruhs", NvmeNamespace, params.fdp.ruhs), 828 DEFINE_PROP_END_OF_LIST(), 829 }; 830 831 static void nvme_ns_class_init(ObjectClass *oc, void *data) 832 { 833 DeviceClass *dc = DEVICE_CLASS(oc); 834 835 set_bit(DEVICE_CATEGORY_STORAGE, dc->categories); 836 837 dc->bus_type = TYPE_NVME_BUS; 838 dc->realize = nvme_ns_realize; 839 dc->unrealize = nvme_ns_unrealize; 840 device_class_set_props(dc, nvme_ns_props); 841 dc->desc = "Virtual NVMe namespace"; 842 } 843 844 static void nvme_ns_instance_init(Object *obj) 845 { 846 NvmeNamespace *ns = NVME_NS(obj); 847 char *bootindex = g_strdup_printf("/namespace@%d,0", ns->params.nsid); 848 849 device_add_bootindex_property(obj, &ns->bootindex, "bootindex", 850 bootindex, DEVICE(obj)); 851 852 g_free(bootindex); 853 } 854 855 static const TypeInfo nvme_ns_info = { 856 .name = TYPE_NVME_NS, 857 .parent = TYPE_DEVICE, 858 .class_init = nvme_ns_class_init, 859 .instance_size = sizeof(NvmeNamespace), 860 .instance_init = nvme_ns_instance_init, 861 }; 862 863 static void nvme_ns_register_types(void) 864 { 865 type_register_static(&nvme_ns_info); 866 } 867 868 type_init(nvme_ns_register_types) 869