1 /* 2 * QEMU NVM Express Controller 3 * 4 * Copyright (c) 2012, Intel Corporation 5 * 6 * Written by Keith Busch <keith.busch@intel.com> 7 * 8 * This code is licensed under the GNU GPL v2 or later. 9 */ 10 11 /** 12 * Reference Specs: http://www.nvmexpress.org, 1.4, 1.3, 1.2, 1.1, 1.0e 13 * 14 * https://nvmexpress.org/developers/nvme-specification/ 15 * 16 * 17 * Notes on coding style 18 * --------------------- 19 * While QEMU coding style prefers lowercase hexadecimals in constants, the 20 * NVMe subsystem use this format from the NVMe specifications in the comments 21 * (i.e. 'h' suffix instead of '0x' prefix). 22 * 23 * Usage 24 * ----- 25 * See docs/system/nvme.rst for extensive documentation. 26 * 27 * Add options: 28 * -drive file=<file>,if=none,id=<drive_id> 29 * -device nvme-subsys,id=<subsys_id>,nqn=<nqn_id> 30 * -device nvme,serial=<serial>,id=<bus_name>, \ 31 * cmb_size_mb=<cmb_size_mb[optional]>, \ 32 * [pmrdev=<mem_backend_file_id>,] \ 33 * max_ioqpairs=<N[optional]>, \ 34 * aerl=<N[optional]>,aer_max_queued=<N[optional]>, \ 35 * mdts=<N[optional]>,vsl=<N[optional]>, \ 36 * zoned.zasl=<N[optional]>, \ 37 * zoned.auto_transition=<on|off[optional]>, \ 38 * sriov_max_vfs=<N[optional]> \ 39 * sriov_vq_flexible=<N[optional]> \ 40 * sriov_vi_flexible=<N[optional]> \ 41 * sriov_max_vi_per_vf=<N[optional]> \ 42 * sriov_max_vq_per_vf=<N[optional]> \ 43 * subsys=<subsys_id> 44 * -device nvme-ns,drive=<drive_id>,bus=<bus_name>,nsid=<nsid>,\ 45 * zoned=<true|false[optional]>, \ 46 * subsys=<subsys_id>,shared=<true|false[optional]>, \ 47 * detached=<true|false[optional]>, \ 48 * zoned.zone_size=<N[optional]>, \ 49 * zoned.zone_capacity=<N[optional]>, \ 50 * zoned.descr_ext_size=<N[optional]>, \ 51 * zoned.max_active=<N[optional]>, \ 52 * zoned.max_open=<N[optional]>, \ 53 * zoned.cross_read=<true|false[optional]> 54 * 55 * Note cmb_size_mb denotes size of CMB in MB. CMB is assumed to be at 56 * offset 0 in BAR2 and supports only WDS, RDS and SQS for now. By default, the 57 * device will use the "v1.4 CMB scheme" - use the `legacy-cmb` parameter to 58 * always enable the CMBLOC and CMBSZ registers (v1.3 behavior). 59 * 60 * Enabling pmr emulation can be achieved by pointing to memory-backend-file. 61 * For example: 62 * -object memory-backend-file,id=<mem_id>,share=on,mem-path=<file_path>, \ 63 * size=<size> .... -device nvme,...,pmrdev=<mem_id> 64 * 65 * The PMR will use BAR 4/5 exclusively. 66 * 67 * To place controller(s) and namespace(s) to a subsystem, then provide 68 * nvme-subsys device as above. 69 * 70 * nvme subsystem device parameters 71 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 72 * - `nqn` 73 * This parameter provides the `<nqn_id>` part of the string 74 * `nqn.2019-08.org.qemu:<nqn_id>` which will be reported in the SUBNQN field 75 * of subsystem controllers. Note that `<nqn_id>` should be unique per 76 * subsystem, but this is not enforced by QEMU. If not specified, it will 77 * default to the value of the `id` parameter (`<subsys_id>`). 78 * 79 * nvme device parameters 80 * ~~~~~~~~~~~~~~~~~~~~~~ 81 * - `subsys` 82 * Specifying this parameter attaches the controller to the subsystem and 83 * the SUBNQN field in the controller will report the NQN of the subsystem 84 * device. This also enables multi controller capability represented in 85 * Identify Controller data structure in CMIC (Controller Multi-path I/O and 86 * Namespace Sharing Capabilities). 87 * 88 * - `aerl` 89 * The Asynchronous Event Request Limit (AERL). Indicates the maximum number 90 * of concurrently outstanding Asynchronous Event Request commands support 91 * by the controller. This is a 0's based value. 92 * 93 * - `aer_max_queued` 94 * This is the maximum number of events that the device will enqueue for 95 * completion when there are no outstanding AERs. When the maximum number of 96 * enqueued events are reached, subsequent events will be dropped. 97 * 98 * - `mdts` 99 * Indicates the maximum data transfer size for a command that transfers data 100 * between host-accessible memory and the controller. The value is specified 101 * as a power of two (2^n) and is in units of the minimum memory page size 102 * (CAP.MPSMIN). The default value is 7 (i.e. 512 KiB). 103 * 104 * - `vsl` 105 * Indicates the maximum data size limit for the Verify command. Like `mdts`, 106 * this value is specified as a power of two (2^n) and is in units of the 107 * minimum memory page size (CAP.MPSMIN). The default value is 7 (i.e. 512 108 * KiB). 109 * 110 * - `zoned.zasl` 111 * Indicates the maximum data transfer size for the Zone Append command. Like 112 * `mdts`, the value is specified as a power of two (2^n) and is in units of 113 * the minimum memory page size (CAP.MPSMIN). The default value is 0 (i.e. 114 * defaulting to the value of `mdts`). 115 * 116 * - `zoned.auto_transition` 117 * Indicates if zones in zone state implicitly opened can be automatically 118 * transitioned to zone state closed for resource management purposes. 119 * Defaults to 'on'. 120 * 121 * - `sriov_max_vfs` 122 * Indicates the maximum number of PCIe virtual functions supported 123 * by the controller. The default value is 0. Specifying a non-zero value 124 * enables reporting of both SR-IOV and ARI capabilities by the NVMe device. 125 * Virtual function controllers will not report SR-IOV capability. 126 * 127 * NOTE: Single Root I/O Virtualization support is experimental. 128 * All the related parameters may be subject to change. 129 * 130 * - `sriov_vq_flexible` 131 * Indicates the total number of flexible queue resources assignable to all 132 * the secondary controllers. Implicitly sets the number of primary 133 * controller's private resources to `(max_ioqpairs - sriov_vq_flexible)`. 134 * 135 * - `sriov_vi_flexible` 136 * Indicates the total number of flexible interrupt resources assignable to 137 * all the secondary controllers. Implicitly sets the number of primary 138 * controller's private resources to `(msix_qsize - sriov_vi_flexible)`. 139 * 140 * - `sriov_max_vi_per_vf` 141 * Indicates the maximum number of virtual interrupt resources assignable 142 * to a secondary controller. The default 0 resolves to 143 * `(sriov_vi_flexible / sriov_max_vfs)`. 144 * 145 * - `sriov_max_vq_per_vf` 146 * Indicates the maximum number of virtual queue resources assignable to 147 * a secondary controller. The default 0 resolves to 148 * `(sriov_vq_flexible / sriov_max_vfs)`. 149 * 150 * nvme namespace device parameters 151 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 152 * - `shared` 153 * When the parent nvme device (as defined explicitly by the 'bus' parameter 154 * or implicitly by the most recently defined NvmeBus) is linked to an 155 * nvme-subsys device, the namespace will be attached to all controllers in 156 * the subsystem. If set to 'off' (the default), the namespace will remain a 157 * private namespace and may only be attached to a single controller at a 158 * time. 159 * 160 * - `detached` 161 * This parameter is only valid together with the `subsys` parameter. If left 162 * at the default value (`false/off`), the namespace will be attached to all 163 * controllers in the NVMe subsystem at boot-up. If set to `true/on`, the 164 * namespace will be available in the subsystem but not attached to any 165 * controllers. 166 * 167 * Setting `zoned` to true selects Zoned Command Set at the namespace. 168 * In this case, the following namespace properties are available to configure 169 * zoned operation: 170 * zoned.zone_size=<zone size in bytes, default: 128MiB> 171 * The number may be followed by K, M, G as in kilo-, mega- or giga-. 172 * 173 * zoned.zone_capacity=<zone capacity in bytes, default: zone size> 174 * The value 0 (default) forces zone capacity to be the same as zone 175 * size. The value of this property may not exceed zone size. 176 * 177 * zoned.descr_ext_size=<zone descriptor extension size, default 0> 178 * This value needs to be specified in 64B units. If it is zero, 179 * namespace(s) will not support zone descriptor extensions. 180 * 181 * zoned.max_active=<Maximum Active Resources (zones), default: 0> 182 * The default value means there is no limit to the number of 183 * concurrently active zones. 184 * 185 * zoned.max_open=<Maximum Open Resources (zones), default: 0> 186 * The default value means there is no limit to the number of 187 * concurrently open zones. 188 * 189 * zoned.cross_read=<enable RAZB, default: false> 190 * Setting this property to true enables Read Across Zone Boundaries. 191 */ 192 193 #include "qemu/osdep.h" 194 #include "qemu/cutils.h" 195 #include "qemu/error-report.h" 196 #include "qemu/log.h" 197 #include "qemu/units.h" 198 #include "qemu/range.h" 199 #include "qapi/error.h" 200 #include "qapi/visitor.h" 201 #include "sysemu/sysemu.h" 202 #include "sysemu/block-backend.h" 203 #include "sysemu/hostmem.h" 204 #include "hw/pci/msix.h" 205 #include "hw/pci/pcie_sriov.h" 206 #include "migration/vmstate.h" 207 208 #include "nvme.h" 209 #include "dif.h" 210 #include "trace.h" 211 212 #define NVME_MAX_IOQPAIRS 0xffff 213 #define NVME_DB_SIZE 4 214 #define NVME_SPEC_VER 0x00010400 215 #define NVME_CMB_BIR 2 216 #define NVME_PMR_BIR 4 217 #define NVME_TEMPERATURE 0x143 218 #define NVME_TEMPERATURE_WARNING 0x157 219 #define NVME_TEMPERATURE_CRITICAL 0x175 220 #define NVME_NUM_FW_SLOTS 1 221 #define NVME_DEFAULT_MAX_ZA_SIZE (128 * KiB) 222 #define NVME_MAX_VFS 127 223 #define NVME_VF_RES_GRANULARITY 1 224 #define NVME_VF_OFFSET 0x1 225 #define NVME_VF_STRIDE 1 226 227 #define NVME_GUEST_ERR(trace, fmt, ...) \ 228 do { \ 229 (trace_##trace)(__VA_ARGS__); \ 230 qemu_log_mask(LOG_GUEST_ERROR, #trace \ 231 " in %s: " fmt "\n", __func__, ## __VA_ARGS__); \ 232 } while (0) 233 234 static const bool nvme_feature_support[NVME_FID_MAX] = { 235 [NVME_ARBITRATION] = true, 236 [NVME_POWER_MANAGEMENT] = true, 237 [NVME_TEMPERATURE_THRESHOLD] = true, 238 [NVME_ERROR_RECOVERY] = true, 239 [NVME_VOLATILE_WRITE_CACHE] = true, 240 [NVME_NUMBER_OF_QUEUES] = true, 241 [NVME_INTERRUPT_COALESCING] = true, 242 [NVME_INTERRUPT_VECTOR_CONF] = true, 243 [NVME_WRITE_ATOMICITY] = true, 244 [NVME_ASYNCHRONOUS_EVENT_CONF] = true, 245 [NVME_TIMESTAMP] = true, 246 [NVME_HOST_BEHAVIOR_SUPPORT] = true, 247 [NVME_COMMAND_SET_PROFILE] = true, 248 [NVME_FDP_MODE] = true, 249 [NVME_FDP_EVENTS] = true, 250 }; 251 252 static const uint32_t nvme_feature_cap[NVME_FID_MAX] = { 253 [NVME_TEMPERATURE_THRESHOLD] = NVME_FEAT_CAP_CHANGE, 254 [NVME_ERROR_RECOVERY] = NVME_FEAT_CAP_CHANGE | NVME_FEAT_CAP_NS, 255 [NVME_VOLATILE_WRITE_CACHE] = NVME_FEAT_CAP_CHANGE, 256 [NVME_NUMBER_OF_QUEUES] = NVME_FEAT_CAP_CHANGE, 257 [NVME_ASYNCHRONOUS_EVENT_CONF] = NVME_FEAT_CAP_CHANGE, 258 [NVME_TIMESTAMP] = NVME_FEAT_CAP_CHANGE, 259 [NVME_HOST_BEHAVIOR_SUPPORT] = NVME_FEAT_CAP_CHANGE, 260 [NVME_COMMAND_SET_PROFILE] = NVME_FEAT_CAP_CHANGE, 261 [NVME_FDP_MODE] = NVME_FEAT_CAP_CHANGE, 262 [NVME_FDP_EVENTS] = NVME_FEAT_CAP_CHANGE | NVME_FEAT_CAP_NS, 263 }; 264 265 static const uint32_t nvme_cse_acs[256] = { 266 [NVME_ADM_CMD_DELETE_SQ] = NVME_CMD_EFF_CSUPP, 267 [NVME_ADM_CMD_CREATE_SQ] = NVME_CMD_EFF_CSUPP, 268 [NVME_ADM_CMD_GET_LOG_PAGE] = NVME_CMD_EFF_CSUPP, 269 [NVME_ADM_CMD_DELETE_CQ] = NVME_CMD_EFF_CSUPP, 270 [NVME_ADM_CMD_CREATE_CQ] = NVME_CMD_EFF_CSUPP, 271 [NVME_ADM_CMD_IDENTIFY] = NVME_CMD_EFF_CSUPP, 272 [NVME_ADM_CMD_ABORT] = NVME_CMD_EFF_CSUPP, 273 [NVME_ADM_CMD_SET_FEATURES] = NVME_CMD_EFF_CSUPP, 274 [NVME_ADM_CMD_GET_FEATURES] = NVME_CMD_EFF_CSUPP, 275 [NVME_ADM_CMD_ASYNC_EV_REQ] = NVME_CMD_EFF_CSUPP, 276 [NVME_ADM_CMD_NS_ATTACHMENT] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_NIC, 277 [NVME_ADM_CMD_VIRT_MNGMT] = NVME_CMD_EFF_CSUPP, 278 [NVME_ADM_CMD_DBBUF_CONFIG] = NVME_CMD_EFF_CSUPP, 279 [NVME_ADM_CMD_FORMAT_NVM] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, 280 [NVME_ADM_CMD_DIRECTIVE_RECV] = NVME_CMD_EFF_CSUPP, 281 [NVME_ADM_CMD_DIRECTIVE_SEND] = NVME_CMD_EFF_CSUPP, 282 }; 283 284 static const uint32_t nvme_cse_iocs_none[256]; 285 286 static const uint32_t nvme_cse_iocs_nvm[256] = { 287 [NVME_CMD_FLUSH] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, 288 [NVME_CMD_WRITE_ZEROES] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, 289 [NVME_CMD_WRITE] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, 290 [NVME_CMD_READ] = NVME_CMD_EFF_CSUPP, 291 [NVME_CMD_DSM] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, 292 [NVME_CMD_VERIFY] = NVME_CMD_EFF_CSUPP, 293 [NVME_CMD_COPY] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, 294 [NVME_CMD_COMPARE] = NVME_CMD_EFF_CSUPP, 295 [NVME_CMD_IO_MGMT_RECV] = NVME_CMD_EFF_CSUPP, 296 [NVME_CMD_IO_MGMT_SEND] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, 297 }; 298 299 static const uint32_t nvme_cse_iocs_zoned[256] = { 300 [NVME_CMD_FLUSH] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, 301 [NVME_CMD_WRITE_ZEROES] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, 302 [NVME_CMD_WRITE] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, 303 [NVME_CMD_READ] = NVME_CMD_EFF_CSUPP, 304 [NVME_CMD_DSM] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, 305 [NVME_CMD_VERIFY] = NVME_CMD_EFF_CSUPP, 306 [NVME_CMD_COPY] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, 307 [NVME_CMD_COMPARE] = NVME_CMD_EFF_CSUPP, 308 [NVME_CMD_ZONE_APPEND] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, 309 [NVME_CMD_ZONE_MGMT_SEND] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, 310 [NVME_CMD_ZONE_MGMT_RECV] = NVME_CMD_EFF_CSUPP, 311 }; 312 313 static void nvme_process_sq(void *opaque); 314 static void nvme_ctrl_reset(NvmeCtrl *n, NvmeResetType rst); 315 static inline uint64_t nvme_get_timestamp(const NvmeCtrl *n); 316 317 static uint16_t nvme_sqid(NvmeRequest *req) 318 { 319 return le16_to_cpu(req->sq->sqid); 320 } 321 322 static inline uint16_t nvme_make_pid(NvmeNamespace *ns, uint16_t rg, 323 uint16_t ph) 324 { 325 uint16_t rgif = ns->endgrp->fdp.rgif; 326 327 if (!rgif) { 328 return ph; 329 } 330 331 return (rg << (16 - rgif)) | ph; 332 } 333 334 static inline bool nvme_ph_valid(NvmeNamespace *ns, uint16_t ph) 335 { 336 return ph < ns->fdp.nphs; 337 } 338 339 static inline bool nvme_rg_valid(NvmeEnduranceGroup *endgrp, uint16_t rg) 340 { 341 return rg < endgrp->fdp.nrg; 342 } 343 344 static inline uint16_t nvme_pid2ph(NvmeNamespace *ns, uint16_t pid) 345 { 346 uint16_t rgif = ns->endgrp->fdp.rgif; 347 348 if (!rgif) { 349 return pid; 350 } 351 352 return pid & ((1 << (15 - rgif)) - 1); 353 } 354 355 static inline uint16_t nvme_pid2rg(NvmeNamespace *ns, uint16_t pid) 356 { 357 uint16_t rgif = ns->endgrp->fdp.rgif; 358 359 if (!rgif) { 360 return 0; 361 } 362 363 return pid >> (16 - rgif); 364 } 365 366 static inline bool nvme_parse_pid(NvmeNamespace *ns, uint16_t pid, 367 uint16_t *ph, uint16_t *rg) 368 { 369 *rg = nvme_pid2rg(ns, pid); 370 *ph = nvme_pid2ph(ns, pid); 371 372 return nvme_ph_valid(ns, *ph) && nvme_rg_valid(ns->endgrp, *rg); 373 } 374 375 static void nvme_assign_zone_state(NvmeNamespace *ns, NvmeZone *zone, 376 NvmeZoneState state) 377 { 378 if (QTAILQ_IN_USE(zone, entry)) { 379 switch (nvme_get_zone_state(zone)) { 380 case NVME_ZONE_STATE_EXPLICITLY_OPEN: 381 QTAILQ_REMOVE(&ns->exp_open_zones, zone, entry); 382 break; 383 case NVME_ZONE_STATE_IMPLICITLY_OPEN: 384 QTAILQ_REMOVE(&ns->imp_open_zones, zone, entry); 385 break; 386 case NVME_ZONE_STATE_CLOSED: 387 QTAILQ_REMOVE(&ns->closed_zones, zone, entry); 388 break; 389 case NVME_ZONE_STATE_FULL: 390 QTAILQ_REMOVE(&ns->full_zones, zone, entry); 391 default: 392 ; 393 } 394 } 395 396 nvme_set_zone_state(zone, state); 397 398 switch (state) { 399 case NVME_ZONE_STATE_EXPLICITLY_OPEN: 400 QTAILQ_INSERT_TAIL(&ns->exp_open_zones, zone, entry); 401 break; 402 case NVME_ZONE_STATE_IMPLICITLY_OPEN: 403 QTAILQ_INSERT_TAIL(&ns->imp_open_zones, zone, entry); 404 break; 405 case NVME_ZONE_STATE_CLOSED: 406 QTAILQ_INSERT_TAIL(&ns->closed_zones, zone, entry); 407 break; 408 case NVME_ZONE_STATE_FULL: 409 QTAILQ_INSERT_TAIL(&ns->full_zones, zone, entry); 410 case NVME_ZONE_STATE_READ_ONLY: 411 break; 412 default: 413 zone->d.za = 0; 414 } 415 } 416 417 static uint16_t nvme_zns_check_resources(NvmeNamespace *ns, uint32_t act, 418 uint32_t opn, uint32_t zrwa) 419 { 420 if (ns->params.max_active_zones != 0 && 421 ns->nr_active_zones + act > ns->params.max_active_zones) { 422 trace_pci_nvme_err_insuff_active_res(ns->params.max_active_zones); 423 return NVME_ZONE_TOO_MANY_ACTIVE | NVME_DNR; 424 } 425 426 if (ns->params.max_open_zones != 0 && 427 ns->nr_open_zones + opn > ns->params.max_open_zones) { 428 trace_pci_nvme_err_insuff_open_res(ns->params.max_open_zones); 429 return NVME_ZONE_TOO_MANY_OPEN | NVME_DNR; 430 } 431 432 if (zrwa > ns->zns.numzrwa) { 433 return NVME_NOZRWA | NVME_DNR; 434 } 435 436 return NVME_SUCCESS; 437 } 438 439 /* 440 * Check if we can open a zone without exceeding open/active limits. 441 * AOR stands for "Active and Open Resources" (see TP 4053 section 2.5). 442 */ 443 static uint16_t nvme_aor_check(NvmeNamespace *ns, uint32_t act, uint32_t opn) 444 { 445 return nvme_zns_check_resources(ns, act, opn, 0); 446 } 447 448 static NvmeFdpEvent *nvme_fdp_alloc_event(NvmeCtrl *n, NvmeFdpEventBuffer *ebuf) 449 { 450 NvmeFdpEvent *ret = NULL; 451 bool is_full = ebuf->next == ebuf->start && ebuf->nelems; 452 453 ret = &ebuf->events[ebuf->next++]; 454 if (unlikely(ebuf->next == NVME_FDP_MAX_EVENTS)) { 455 ebuf->next = 0; 456 } 457 if (is_full) { 458 ebuf->start = ebuf->next; 459 } else { 460 ebuf->nelems++; 461 } 462 463 memset(ret, 0, sizeof(NvmeFdpEvent)); 464 ret->timestamp = nvme_get_timestamp(n); 465 466 return ret; 467 } 468 469 static inline int log_event(NvmeRuHandle *ruh, uint8_t event_type) 470 { 471 return (ruh->event_filter >> nvme_fdp_evf_shifts[event_type]) & 0x1; 472 } 473 474 static bool nvme_update_ruh(NvmeCtrl *n, NvmeNamespace *ns, uint16_t pid) 475 { 476 NvmeEnduranceGroup *endgrp = ns->endgrp; 477 NvmeRuHandle *ruh; 478 NvmeReclaimUnit *ru; 479 NvmeFdpEvent *e = NULL; 480 uint16_t ph, rg, ruhid; 481 482 if (!nvme_parse_pid(ns, pid, &ph, &rg)) { 483 return false; 484 } 485 486 ruhid = ns->fdp.phs[ph]; 487 488 ruh = &endgrp->fdp.ruhs[ruhid]; 489 ru = &ruh->rus[rg]; 490 491 if (ru->ruamw) { 492 if (log_event(ruh, FDP_EVT_RU_NOT_FULLY_WRITTEN)) { 493 e = nvme_fdp_alloc_event(n, &endgrp->fdp.host_events); 494 e->type = FDP_EVT_RU_NOT_FULLY_WRITTEN; 495 e->flags = FDPEF_PIV | FDPEF_NSIDV | FDPEF_LV; 496 e->pid = cpu_to_le16(pid); 497 e->nsid = cpu_to_le32(ns->params.nsid); 498 e->rgid = cpu_to_le16(rg); 499 e->ruhid = cpu_to_le16(ruhid); 500 } 501 502 /* log (eventual) GC overhead of prematurely swapping the RU */ 503 nvme_fdp_stat_inc(&endgrp->fdp.mbmw, nvme_l2b(ns, ru->ruamw)); 504 } 505 506 ru->ruamw = ruh->ruamw; 507 508 return true; 509 } 510 511 static bool nvme_addr_is_cmb(NvmeCtrl *n, hwaddr addr) 512 { 513 hwaddr hi, lo; 514 515 if (!n->cmb.cmse) { 516 return false; 517 } 518 519 lo = n->params.legacy_cmb ? n->cmb.mem.addr : n->cmb.cba; 520 hi = lo + int128_get64(n->cmb.mem.size); 521 522 return addr >= lo && addr < hi; 523 } 524 525 static inline void *nvme_addr_to_cmb(NvmeCtrl *n, hwaddr addr) 526 { 527 hwaddr base = n->params.legacy_cmb ? n->cmb.mem.addr : n->cmb.cba; 528 return &n->cmb.buf[addr - base]; 529 } 530 531 static bool nvme_addr_is_pmr(NvmeCtrl *n, hwaddr addr) 532 { 533 hwaddr hi; 534 535 if (!n->pmr.cmse) { 536 return false; 537 } 538 539 hi = n->pmr.cba + int128_get64(n->pmr.dev->mr.size); 540 541 return addr >= n->pmr.cba && addr < hi; 542 } 543 544 static inline void *nvme_addr_to_pmr(NvmeCtrl *n, hwaddr addr) 545 { 546 return memory_region_get_ram_ptr(&n->pmr.dev->mr) + (addr - n->pmr.cba); 547 } 548 549 static inline bool nvme_addr_is_iomem(NvmeCtrl *n, hwaddr addr) 550 { 551 hwaddr hi, lo; 552 553 /* 554 * The purpose of this check is to guard against invalid "local" access to 555 * the iomem (i.e. controller registers). Thus, we check against the range 556 * covered by the 'bar0' MemoryRegion since that is currently composed of 557 * two subregions (the NVMe "MBAR" and the MSI-X table/pba). Note, however, 558 * that if the device model is ever changed to allow the CMB to be located 559 * in BAR0 as well, then this must be changed. 560 */ 561 lo = n->bar0.addr; 562 hi = lo + int128_get64(n->bar0.size); 563 564 return addr >= lo && addr < hi; 565 } 566 567 static int nvme_addr_read(NvmeCtrl *n, hwaddr addr, void *buf, int size) 568 { 569 hwaddr hi = addr + size - 1; 570 if (hi < addr) { 571 return 1; 572 } 573 574 if (n->bar.cmbsz && nvme_addr_is_cmb(n, addr) && nvme_addr_is_cmb(n, hi)) { 575 memcpy(buf, nvme_addr_to_cmb(n, addr), size); 576 return 0; 577 } 578 579 if (nvme_addr_is_pmr(n, addr) && nvme_addr_is_pmr(n, hi)) { 580 memcpy(buf, nvme_addr_to_pmr(n, addr), size); 581 return 0; 582 } 583 584 return pci_dma_read(PCI_DEVICE(n), addr, buf, size); 585 } 586 587 static int nvme_addr_write(NvmeCtrl *n, hwaddr addr, const void *buf, int size) 588 { 589 hwaddr hi = addr + size - 1; 590 if (hi < addr) { 591 return 1; 592 } 593 594 if (n->bar.cmbsz && nvme_addr_is_cmb(n, addr) && nvme_addr_is_cmb(n, hi)) { 595 memcpy(nvme_addr_to_cmb(n, addr), buf, size); 596 return 0; 597 } 598 599 if (nvme_addr_is_pmr(n, addr) && nvme_addr_is_pmr(n, hi)) { 600 memcpy(nvme_addr_to_pmr(n, addr), buf, size); 601 return 0; 602 } 603 604 return pci_dma_write(PCI_DEVICE(n), addr, buf, size); 605 } 606 607 static bool nvme_nsid_valid(NvmeCtrl *n, uint32_t nsid) 608 { 609 return nsid && 610 (nsid == NVME_NSID_BROADCAST || nsid <= NVME_MAX_NAMESPACES); 611 } 612 613 static int nvme_check_sqid(NvmeCtrl *n, uint16_t sqid) 614 { 615 return sqid < n->conf_ioqpairs + 1 && n->sq[sqid] != NULL ? 0 : -1; 616 } 617 618 static int nvme_check_cqid(NvmeCtrl *n, uint16_t cqid) 619 { 620 return cqid < n->conf_ioqpairs + 1 && n->cq[cqid] != NULL ? 0 : -1; 621 } 622 623 static void nvme_inc_cq_tail(NvmeCQueue *cq) 624 { 625 cq->tail++; 626 if (cq->tail >= cq->size) { 627 cq->tail = 0; 628 cq->phase = !cq->phase; 629 } 630 } 631 632 static void nvme_inc_sq_head(NvmeSQueue *sq) 633 { 634 sq->head = (sq->head + 1) % sq->size; 635 } 636 637 static uint8_t nvme_cq_full(NvmeCQueue *cq) 638 { 639 return (cq->tail + 1) % cq->size == cq->head; 640 } 641 642 static uint8_t nvme_sq_empty(NvmeSQueue *sq) 643 { 644 return sq->head == sq->tail; 645 } 646 647 static void nvme_irq_check(NvmeCtrl *n) 648 { 649 PCIDevice *pci = PCI_DEVICE(n); 650 uint32_t intms = ldl_le_p(&n->bar.intms); 651 652 if (msix_enabled(pci)) { 653 return; 654 } 655 if (~intms & n->irq_status) { 656 pci_irq_assert(pci); 657 } else { 658 pci_irq_deassert(pci); 659 } 660 } 661 662 static void nvme_irq_assert(NvmeCtrl *n, NvmeCQueue *cq) 663 { 664 PCIDevice *pci = PCI_DEVICE(n); 665 666 if (cq->irq_enabled) { 667 if (msix_enabled(pci)) { 668 trace_pci_nvme_irq_msix(cq->vector); 669 msix_notify(pci, cq->vector); 670 } else { 671 trace_pci_nvme_irq_pin(); 672 assert(cq->vector < 32); 673 n->irq_status |= 1 << cq->vector; 674 nvme_irq_check(n); 675 } 676 } else { 677 trace_pci_nvme_irq_masked(); 678 } 679 } 680 681 static void nvme_irq_deassert(NvmeCtrl *n, NvmeCQueue *cq) 682 { 683 if (cq->irq_enabled) { 684 if (msix_enabled(PCI_DEVICE(n))) { 685 return; 686 } else { 687 assert(cq->vector < 32); 688 if (!n->cq_pending) { 689 n->irq_status &= ~(1 << cq->vector); 690 } 691 nvme_irq_check(n); 692 } 693 } 694 } 695 696 static void nvme_req_clear(NvmeRequest *req) 697 { 698 req->ns = NULL; 699 req->opaque = NULL; 700 req->aiocb = NULL; 701 memset(&req->cqe, 0x0, sizeof(req->cqe)); 702 req->status = NVME_SUCCESS; 703 } 704 705 static inline void nvme_sg_init(NvmeCtrl *n, NvmeSg *sg, bool dma) 706 { 707 if (dma) { 708 pci_dma_sglist_init(&sg->qsg, PCI_DEVICE(n), 0); 709 sg->flags = NVME_SG_DMA; 710 } else { 711 qemu_iovec_init(&sg->iov, 0); 712 } 713 714 sg->flags |= NVME_SG_ALLOC; 715 } 716 717 static inline void nvme_sg_unmap(NvmeSg *sg) 718 { 719 if (!(sg->flags & NVME_SG_ALLOC)) { 720 return; 721 } 722 723 if (sg->flags & NVME_SG_DMA) { 724 qemu_sglist_destroy(&sg->qsg); 725 } else { 726 qemu_iovec_destroy(&sg->iov); 727 } 728 729 memset(sg, 0x0, sizeof(*sg)); 730 } 731 732 /* 733 * When metadata is transferred as extended LBAs, the DPTR mapped into `sg` 734 * holds both data and metadata. This function splits the data and metadata 735 * into two separate QSG/IOVs. 736 */ 737 static void nvme_sg_split(NvmeSg *sg, NvmeNamespace *ns, NvmeSg *data, 738 NvmeSg *mdata) 739 { 740 NvmeSg *dst = data; 741 uint32_t trans_len, count = ns->lbasz; 742 uint64_t offset = 0; 743 bool dma = sg->flags & NVME_SG_DMA; 744 size_t sge_len; 745 size_t sg_len = dma ? sg->qsg.size : sg->iov.size; 746 int sg_idx = 0; 747 748 assert(sg->flags & NVME_SG_ALLOC); 749 750 while (sg_len) { 751 sge_len = dma ? sg->qsg.sg[sg_idx].len : sg->iov.iov[sg_idx].iov_len; 752 753 trans_len = MIN(sg_len, count); 754 trans_len = MIN(trans_len, sge_len - offset); 755 756 if (dst) { 757 if (dma) { 758 qemu_sglist_add(&dst->qsg, sg->qsg.sg[sg_idx].base + offset, 759 trans_len); 760 } else { 761 qemu_iovec_add(&dst->iov, 762 sg->iov.iov[sg_idx].iov_base + offset, 763 trans_len); 764 } 765 } 766 767 sg_len -= trans_len; 768 count -= trans_len; 769 offset += trans_len; 770 771 if (count == 0) { 772 dst = (dst == data) ? mdata : data; 773 count = (dst == data) ? ns->lbasz : ns->lbaf.ms; 774 } 775 776 if (sge_len == offset) { 777 offset = 0; 778 sg_idx++; 779 } 780 } 781 } 782 783 static uint16_t nvme_map_addr_cmb(NvmeCtrl *n, QEMUIOVector *iov, hwaddr addr, 784 size_t len) 785 { 786 if (!len) { 787 return NVME_SUCCESS; 788 } 789 790 trace_pci_nvme_map_addr_cmb(addr, len); 791 792 if (!nvme_addr_is_cmb(n, addr) || !nvme_addr_is_cmb(n, addr + len - 1)) { 793 return NVME_DATA_TRAS_ERROR; 794 } 795 796 qemu_iovec_add(iov, nvme_addr_to_cmb(n, addr), len); 797 798 return NVME_SUCCESS; 799 } 800 801 static uint16_t nvme_map_addr_pmr(NvmeCtrl *n, QEMUIOVector *iov, hwaddr addr, 802 size_t len) 803 { 804 if (!len) { 805 return NVME_SUCCESS; 806 } 807 808 if (!nvme_addr_is_pmr(n, addr) || !nvme_addr_is_pmr(n, addr + len - 1)) { 809 return NVME_DATA_TRAS_ERROR; 810 } 811 812 qemu_iovec_add(iov, nvme_addr_to_pmr(n, addr), len); 813 814 return NVME_SUCCESS; 815 } 816 817 static uint16_t nvme_map_addr(NvmeCtrl *n, NvmeSg *sg, hwaddr addr, size_t len) 818 { 819 bool cmb = false, pmr = false; 820 821 if (!len) { 822 return NVME_SUCCESS; 823 } 824 825 trace_pci_nvme_map_addr(addr, len); 826 827 if (nvme_addr_is_iomem(n, addr)) { 828 return NVME_DATA_TRAS_ERROR; 829 } 830 831 if (nvme_addr_is_cmb(n, addr)) { 832 cmb = true; 833 } else if (nvme_addr_is_pmr(n, addr)) { 834 pmr = true; 835 } 836 837 if (cmb || pmr) { 838 if (sg->flags & NVME_SG_DMA) { 839 return NVME_INVALID_USE_OF_CMB | NVME_DNR; 840 } 841 842 if (sg->iov.niov + 1 > IOV_MAX) { 843 goto max_mappings_exceeded; 844 } 845 846 if (cmb) { 847 return nvme_map_addr_cmb(n, &sg->iov, addr, len); 848 } else { 849 return nvme_map_addr_pmr(n, &sg->iov, addr, len); 850 } 851 } 852 853 if (!(sg->flags & NVME_SG_DMA)) { 854 return NVME_INVALID_USE_OF_CMB | NVME_DNR; 855 } 856 857 if (sg->qsg.nsg + 1 > IOV_MAX) { 858 goto max_mappings_exceeded; 859 } 860 861 qemu_sglist_add(&sg->qsg, addr, len); 862 863 return NVME_SUCCESS; 864 865 max_mappings_exceeded: 866 NVME_GUEST_ERR(pci_nvme_ub_too_many_mappings, 867 "number of mappings exceed 1024"); 868 return NVME_INTERNAL_DEV_ERROR | NVME_DNR; 869 } 870 871 static inline bool nvme_addr_is_dma(NvmeCtrl *n, hwaddr addr) 872 { 873 return !(nvme_addr_is_cmb(n, addr) || nvme_addr_is_pmr(n, addr)); 874 } 875 876 static uint16_t nvme_map_prp(NvmeCtrl *n, NvmeSg *sg, uint64_t prp1, 877 uint64_t prp2, uint32_t len) 878 { 879 hwaddr trans_len = n->page_size - (prp1 % n->page_size); 880 trans_len = MIN(len, trans_len); 881 int num_prps = (len >> n->page_bits) + 1; 882 uint16_t status; 883 int ret; 884 885 trace_pci_nvme_map_prp(trans_len, len, prp1, prp2, num_prps); 886 887 nvme_sg_init(n, sg, nvme_addr_is_dma(n, prp1)); 888 889 status = nvme_map_addr(n, sg, prp1, trans_len); 890 if (status) { 891 goto unmap; 892 } 893 894 len -= trans_len; 895 if (len) { 896 if (len > n->page_size) { 897 g_autofree uint64_t *prp_list = g_new(uint64_t, n->max_prp_ents); 898 uint32_t nents, prp_trans; 899 int i = 0; 900 901 /* 902 * The first PRP list entry, pointed to by PRP2 may contain offset. 903 * Hence, we need to calculate the number of entries in based on 904 * that offset. 905 */ 906 nents = (n->page_size - (prp2 & (n->page_size - 1))) >> 3; 907 prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t); 908 ret = nvme_addr_read(n, prp2, (void *)prp_list, prp_trans); 909 if (ret) { 910 trace_pci_nvme_err_addr_read(prp2); 911 status = NVME_DATA_TRAS_ERROR; 912 goto unmap; 913 } 914 while (len != 0) { 915 uint64_t prp_ent = le64_to_cpu(prp_list[i]); 916 917 if (i == nents - 1 && len > n->page_size) { 918 if (unlikely(prp_ent & (n->page_size - 1))) { 919 trace_pci_nvme_err_invalid_prplist_ent(prp_ent); 920 status = NVME_INVALID_PRP_OFFSET | NVME_DNR; 921 goto unmap; 922 } 923 924 i = 0; 925 nents = (len + n->page_size - 1) >> n->page_bits; 926 nents = MIN(nents, n->max_prp_ents); 927 prp_trans = nents * sizeof(uint64_t); 928 ret = nvme_addr_read(n, prp_ent, (void *)prp_list, 929 prp_trans); 930 if (ret) { 931 trace_pci_nvme_err_addr_read(prp_ent); 932 status = NVME_DATA_TRAS_ERROR; 933 goto unmap; 934 } 935 prp_ent = le64_to_cpu(prp_list[i]); 936 } 937 938 if (unlikely(prp_ent & (n->page_size - 1))) { 939 trace_pci_nvme_err_invalid_prplist_ent(prp_ent); 940 status = NVME_INVALID_PRP_OFFSET | NVME_DNR; 941 goto unmap; 942 } 943 944 trans_len = MIN(len, n->page_size); 945 status = nvme_map_addr(n, sg, prp_ent, trans_len); 946 if (status) { 947 goto unmap; 948 } 949 950 len -= trans_len; 951 i++; 952 } 953 } else { 954 if (unlikely(prp2 & (n->page_size - 1))) { 955 trace_pci_nvme_err_invalid_prp2_align(prp2); 956 status = NVME_INVALID_PRP_OFFSET | NVME_DNR; 957 goto unmap; 958 } 959 status = nvme_map_addr(n, sg, prp2, len); 960 if (status) { 961 goto unmap; 962 } 963 } 964 } 965 966 return NVME_SUCCESS; 967 968 unmap: 969 nvme_sg_unmap(sg); 970 return status; 971 } 972 973 /* 974 * Map 'nsgld' data descriptors from 'segment'. The function will subtract the 975 * number of bytes mapped in len. 976 */ 977 static uint16_t nvme_map_sgl_data(NvmeCtrl *n, NvmeSg *sg, 978 NvmeSglDescriptor *segment, uint64_t nsgld, 979 size_t *len, NvmeCmd *cmd) 980 { 981 dma_addr_t addr, trans_len; 982 uint32_t dlen; 983 uint16_t status; 984 985 for (int i = 0; i < nsgld; i++) { 986 uint8_t type = NVME_SGL_TYPE(segment[i].type); 987 988 switch (type) { 989 case NVME_SGL_DESCR_TYPE_DATA_BLOCK: 990 break; 991 case NVME_SGL_DESCR_TYPE_SEGMENT: 992 case NVME_SGL_DESCR_TYPE_LAST_SEGMENT: 993 return NVME_INVALID_NUM_SGL_DESCRS | NVME_DNR; 994 default: 995 return NVME_SGL_DESCR_TYPE_INVALID | NVME_DNR; 996 } 997 998 dlen = le32_to_cpu(segment[i].len); 999 1000 if (!dlen) { 1001 continue; 1002 } 1003 1004 if (*len == 0) { 1005 /* 1006 * All data has been mapped, but the SGL contains additional 1007 * segments and/or descriptors. The controller might accept 1008 * ignoring the rest of the SGL. 1009 */ 1010 uint32_t sgls = le32_to_cpu(n->id_ctrl.sgls); 1011 if (sgls & NVME_CTRL_SGLS_EXCESS_LENGTH) { 1012 break; 1013 } 1014 1015 trace_pci_nvme_err_invalid_sgl_excess_length(dlen); 1016 return NVME_DATA_SGL_LEN_INVALID | NVME_DNR; 1017 } 1018 1019 trans_len = MIN(*len, dlen); 1020 1021 addr = le64_to_cpu(segment[i].addr); 1022 1023 if (UINT64_MAX - addr < dlen) { 1024 return NVME_DATA_SGL_LEN_INVALID | NVME_DNR; 1025 } 1026 1027 status = nvme_map_addr(n, sg, addr, trans_len); 1028 if (status) { 1029 return status; 1030 } 1031 1032 *len -= trans_len; 1033 } 1034 1035 return NVME_SUCCESS; 1036 } 1037 1038 static uint16_t nvme_map_sgl(NvmeCtrl *n, NvmeSg *sg, NvmeSglDescriptor sgl, 1039 size_t len, NvmeCmd *cmd) 1040 { 1041 /* 1042 * Read the segment in chunks of 256 descriptors (one 4k page) to avoid 1043 * dynamically allocating a potentially huge SGL. The spec allows the SGL 1044 * to be larger (as in number of bytes required to describe the SGL 1045 * descriptors and segment chain) than the command transfer size, so it is 1046 * not bounded by MDTS. 1047 */ 1048 #define SEG_CHUNK_SIZE 256 1049 1050 NvmeSglDescriptor segment[SEG_CHUNK_SIZE], *sgld, *last_sgld; 1051 uint64_t nsgld; 1052 uint32_t seg_len; 1053 uint16_t status; 1054 hwaddr addr; 1055 int ret; 1056 1057 sgld = &sgl; 1058 addr = le64_to_cpu(sgl.addr); 1059 1060 trace_pci_nvme_map_sgl(NVME_SGL_TYPE(sgl.type), len); 1061 1062 nvme_sg_init(n, sg, nvme_addr_is_dma(n, addr)); 1063 1064 /* 1065 * If the entire transfer can be described with a single data block it can 1066 * be mapped directly. 1067 */ 1068 if (NVME_SGL_TYPE(sgl.type) == NVME_SGL_DESCR_TYPE_DATA_BLOCK) { 1069 status = nvme_map_sgl_data(n, sg, sgld, 1, &len, cmd); 1070 if (status) { 1071 goto unmap; 1072 } 1073 1074 goto out; 1075 } 1076 1077 for (;;) { 1078 switch (NVME_SGL_TYPE(sgld->type)) { 1079 case NVME_SGL_DESCR_TYPE_SEGMENT: 1080 case NVME_SGL_DESCR_TYPE_LAST_SEGMENT: 1081 break; 1082 default: 1083 return NVME_INVALID_SGL_SEG_DESCR | NVME_DNR; 1084 } 1085 1086 seg_len = le32_to_cpu(sgld->len); 1087 1088 /* check the length of the (Last) Segment descriptor */ 1089 if (!seg_len || seg_len & 0xf) { 1090 return NVME_INVALID_SGL_SEG_DESCR | NVME_DNR; 1091 } 1092 1093 if (UINT64_MAX - addr < seg_len) { 1094 return NVME_DATA_SGL_LEN_INVALID | NVME_DNR; 1095 } 1096 1097 nsgld = seg_len / sizeof(NvmeSglDescriptor); 1098 1099 while (nsgld > SEG_CHUNK_SIZE) { 1100 if (nvme_addr_read(n, addr, segment, sizeof(segment))) { 1101 trace_pci_nvme_err_addr_read(addr); 1102 status = NVME_DATA_TRAS_ERROR; 1103 goto unmap; 1104 } 1105 1106 status = nvme_map_sgl_data(n, sg, segment, SEG_CHUNK_SIZE, 1107 &len, cmd); 1108 if (status) { 1109 goto unmap; 1110 } 1111 1112 nsgld -= SEG_CHUNK_SIZE; 1113 addr += SEG_CHUNK_SIZE * sizeof(NvmeSglDescriptor); 1114 } 1115 1116 ret = nvme_addr_read(n, addr, segment, nsgld * 1117 sizeof(NvmeSglDescriptor)); 1118 if (ret) { 1119 trace_pci_nvme_err_addr_read(addr); 1120 status = NVME_DATA_TRAS_ERROR; 1121 goto unmap; 1122 } 1123 1124 last_sgld = &segment[nsgld - 1]; 1125 1126 /* 1127 * If the segment ends with a Data Block, then we are done. 1128 */ 1129 if (NVME_SGL_TYPE(last_sgld->type) == NVME_SGL_DESCR_TYPE_DATA_BLOCK) { 1130 status = nvme_map_sgl_data(n, sg, segment, nsgld, &len, cmd); 1131 if (status) { 1132 goto unmap; 1133 } 1134 1135 goto out; 1136 } 1137 1138 /* 1139 * If the last descriptor was not a Data Block, then the current 1140 * segment must not be a Last Segment. 1141 */ 1142 if (NVME_SGL_TYPE(sgld->type) == NVME_SGL_DESCR_TYPE_LAST_SEGMENT) { 1143 status = NVME_INVALID_SGL_SEG_DESCR | NVME_DNR; 1144 goto unmap; 1145 } 1146 1147 sgld = last_sgld; 1148 addr = le64_to_cpu(sgld->addr); 1149 1150 /* 1151 * Do not map the last descriptor; it will be a Segment or Last Segment 1152 * descriptor and is handled by the next iteration. 1153 */ 1154 status = nvme_map_sgl_data(n, sg, segment, nsgld - 1, &len, cmd); 1155 if (status) { 1156 goto unmap; 1157 } 1158 } 1159 1160 out: 1161 /* if there is any residual left in len, the SGL was too short */ 1162 if (len) { 1163 status = NVME_DATA_SGL_LEN_INVALID | NVME_DNR; 1164 goto unmap; 1165 } 1166 1167 return NVME_SUCCESS; 1168 1169 unmap: 1170 nvme_sg_unmap(sg); 1171 return status; 1172 } 1173 1174 uint16_t nvme_map_dptr(NvmeCtrl *n, NvmeSg *sg, size_t len, 1175 NvmeCmd *cmd) 1176 { 1177 uint64_t prp1, prp2; 1178 1179 switch (NVME_CMD_FLAGS_PSDT(cmd->flags)) { 1180 case NVME_PSDT_PRP: 1181 prp1 = le64_to_cpu(cmd->dptr.prp1); 1182 prp2 = le64_to_cpu(cmd->dptr.prp2); 1183 1184 return nvme_map_prp(n, sg, prp1, prp2, len); 1185 case NVME_PSDT_SGL_MPTR_CONTIGUOUS: 1186 case NVME_PSDT_SGL_MPTR_SGL: 1187 return nvme_map_sgl(n, sg, cmd->dptr.sgl, len, cmd); 1188 default: 1189 return NVME_INVALID_FIELD; 1190 } 1191 } 1192 1193 static uint16_t nvme_map_mptr(NvmeCtrl *n, NvmeSg *sg, size_t len, 1194 NvmeCmd *cmd) 1195 { 1196 int psdt = NVME_CMD_FLAGS_PSDT(cmd->flags); 1197 hwaddr mptr = le64_to_cpu(cmd->mptr); 1198 uint16_t status; 1199 1200 if (psdt == NVME_PSDT_SGL_MPTR_SGL) { 1201 NvmeSglDescriptor sgl; 1202 1203 if (nvme_addr_read(n, mptr, &sgl, sizeof(sgl))) { 1204 return NVME_DATA_TRAS_ERROR; 1205 } 1206 1207 status = nvme_map_sgl(n, sg, sgl, len, cmd); 1208 if (status && (status & 0x7ff) == NVME_DATA_SGL_LEN_INVALID) { 1209 status = NVME_MD_SGL_LEN_INVALID | NVME_DNR; 1210 } 1211 1212 return status; 1213 } 1214 1215 nvme_sg_init(n, sg, nvme_addr_is_dma(n, mptr)); 1216 status = nvme_map_addr(n, sg, mptr, len); 1217 if (status) { 1218 nvme_sg_unmap(sg); 1219 } 1220 1221 return status; 1222 } 1223 1224 static uint16_t nvme_map_data(NvmeCtrl *n, uint32_t nlb, NvmeRequest *req) 1225 { 1226 NvmeNamespace *ns = req->ns; 1227 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; 1228 bool pi = !!NVME_ID_NS_DPS_TYPE(ns->id_ns.dps); 1229 bool pract = !!(le16_to_cpu(rw->control) & NVME_RW_PRINFO_PRACT); 1230 size_t len = nvme_l2b(ns, nlb); 1231 uint16_t status; 1232 1233 if (nvme_ns_ext(ns) && 1234 !(pi && pract && ns->lbaf.ms == nvme_pi_tuple_size(ns))) { 1235 NvmeSg sg; 1236 1237 len += nvme_m2b(ns, nlb); 1238 1239 status = nvme_map_dptr(n, &sg, len, &req->cmd); 1240 if (status) { 1241 return status; 1242 } 1243 1244 nvme_sg_init(n, &req->sg, sg.flags & NVME_SG_DMA); 1245 nvme_sg_split(&sg, ns, &req->sg, NULL); 1246 nvme_sg_unmap(&sg); 1247 1248 return NVME_SUCCESS; 1249 } 1250 1251 return nvme_map_dptr(n, &req->sg, len, &req->cmd); 1252 } 1253 1254 static uint16_t nvme_map_mdata(NvmeCtrl *n, uint32_t nlb, NvmeRequest *req) 1255 { 1256 NvmeNamespace *ns = req->ns; 1257 size_t len = nvme_m2b(ns, nlb); 1258 uint16_t status; 1259 1260 if (nvme_ns_ext(ns)) { 1261 NvmeSg sg; 1262 1263 len += nvme_l2b(ns, nlb); 1264 1265 status = nvme_map_dptr(n, &sg, len, &req->cmd); 1266 if (status) { 1267 return status; 1268 } 1269 1270 nvme_sg_init(n, &req->sg, sg.flags & NVME_SG_DMA); 1271 nvme_sg_split(&sg, ns, NULL, &req->sg); 1272 nvme_sg_unmap(&sg); 1273 1274 return NVME_SUCCESS; 1275 } 1276 1277 return nvme_map_mptr(n, &req->sg, len, &req->cmd); 1278 } 1279 1280 static uint16_t nvme_tx_interleaved(NvmeCtrl *n, NvmeSg *sg, uint8_t *ptr, 1281 uint32_t len, uint32_t bytes, 1282 int32_t skip_bytes, int64_t offset, 1283 NvmeTxDirection dir) 1284 { 1285 hwaddr addr; 1286 uint32_t trans_len, count = bytes; 1287 bool dma = sg->flags & NVME_SG_DMA; 1288 int64_t sge_len; 1289 int sg_idx = 0; 1290 int ret; 1291 1292 assert(sg->flags & NVME_SG_ALLOC); 1293 1294 while (len) { 1295 sge_len = dma ? sg->qsg.sg[sg_idx].len : sg->iov.iov[sg_idx].iov_len; 1296 1297 if (sge_len - offset < 0) { 1298 offset -= sge_len; 1299 sg_idx++; 1300 continue; 1301 } 1302 1303 if (sge_len == offset) { 1304 offset = 0; 1305 sg_idx++; 1306 continue; 1307 } 1308 1309 trans_len = MIN(len, count); 1310 trans_len = MIN(trans_len, sge_len - offset); 1311 1312 if (dma) { 1313 addr = sg->qsg.sg[sg_idx].base + offset; 1314 } else { 1315 addr = (hwaddr)(uintptr_t)sg->iov.iov[sg_idx].iov_base + offset; 1316 } 1317 1318 if (dir == NVME_TX_DIRECTION_TO_DEVICE) { 1319 ret = nvme_addr_read(n, addr, ptr, trans_len); 1320 } else { 1321 ret = nvme_addr_write(n, addr, ptr, trans_len); 1322 } 1323 1324 if (ret) { 1325 return NVME_DATA_TRAS_ERROR; 1326 } 1327 1328 ptr += trans_len; 1329 len -= trans_len; 1330 count -= trans_len; 1331 offset += trans_len; 1332 1333 if (count == 0) { 1334 count = bytes; 1335 offset += skip_bytes; 1336 } 1337 } 1338 1339 return NVME_SUCCESS; 1340 } 1341 1342 static uint16_t nvme_tx(NvmeCtrl *n, NvmeSg *sg, void *ptr, uint32_t len, 1343 NvmeTxDirection dir) 1344 { 1345 assert(sg->flags & NVME_SG_ALLOC); 1346 1347 if (sg->flags & NVME_SG_DMA) { 1348 const MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED; 1349 dma_addr_t residual; 1350 1351 if (dir == NVME_TX_DIRECTION_TO_DEVICE) { 1352 dma_buf_write(ptr, len, &residual, &sg->qsg, attrs); 1353 } else { 1354 dma_buf_read(ptr, len, &residual, &sg->qsg, attrs); 1355 } 1356 1357 if (unlikely(residual)) { 1358 trace_pci_nvme_err_invalid_dma(); 1359 return NVME_INVALID_FIELD | NVME_DNR; 1360 } 1361 } else { 1362 size_t bytes; 1363 1364 if (dir == NVME_TX_DIRECTION_TO_DEVICE) { 1365 bytes = qemu_iovec_to_buf(&sg->iov, 0, ptr, len); 1366 } else { 1367 bytes = qemu_iovec_from_buf(&sg->iov, 0, ptr, len); 1368 } 1369 1370 if (unlikely(bytes != len)) { 1371 trace_pci_nvme_err_invalid_dma(); 1372 return NVME_INVALID_FIELD | NVME_DNR; 1373 } 1374 } 1375 1376 return NVME_SUCCESS; 1377 } 1378 1379 static inline uint16_t nvme_c2h(NvmeCtrl *n, void *ptr, uint32_t len, 1380 NvmeRequest *req) 1381 { 1382 uint16_t status; 1383 1384 status = nvme_map_dptr(n, &req->sg, len, &req->cmd); 1385 if (status) { 1386 return status; 1387 } 1388 1389 return nvme_tx(n, &req->sg, ptr, len, NVME_TX_DIRECTION_FROM_DEVICE); 1390 } 1391 1392 static inline uint16_t nvme_h2c(NvmeCtrl *n, void *ptr, uint32_t len, 1393 NvmeRequest *req) 1394 { 1395 uint16_t status; 1396 1397 status = nvme_map_dptr(n, &req->sg, len, &req->cmd); 1398 if (status) { 1399 return status; 1400 } 1401 1402 return nvme_tx(n, &req->sg, ptr, len, NVME_TX_DIRECTION_TO_DEVICE); 1403 } 1404 1405 uint16_t nvme_bounce_data(NvmeCtrl *n, void *ptr, uint32_t len, 1406 NvmeTxDirection dir, NvmeRequest *req) 1407 { 1408 NvmeNamespace *ns = req->ns; 1409 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; 1410 bool pi = !!NVME_ID_NS_DPS_TYPE(ns->id_ns.dps); 1411 bool pract = !!(le16_to_cpu(rw->control) & NVME_RW_PRINFO_PRACT); 1412 1413 if (nvme_ns_ext(ns) && 1414 !(pi && pract && ns->lbaf.ms == nvme_pi_tuple_size(ns))) { 1415 return nvme_tx_interleaved(n, &req->sg, ptr, len, ns->lbasz, 1416 ns->lbaf.ms, 0, dir); 1417 } 1418 1419 return nvme_tx(n, &req->sg, ptr, len, dir); 1420 } 1421 1422 uint16_t nvme_bounce_mdata(NvmeCtrl *n, void *ptr, uint32_t len, 1423 NvmeTxDirection dir, NvmeRequest *req) 1424 { 1425 NvmeNamespace *ns = req->ns; 1426 uint16_t status; 1427 1428 if (nvme_ns_ext(ns)) { 1429 return nvme_tx_interleaved(n, &req->sg, ptr, len, ns->lbaf.ms, 1430 ns->lbasz, ns->lbasz, dir); 1431 } 1432 1433 nvme_sg_unmap(&req->sg); 1434 1435 status = nvme_map_mptr(n, &req->sg, len, &req->cmd); 1436 if (status) { 1437 return status; 1438 } 1439 1440 return nvme_tx(n, &req->sg, ptr, len, dir); 1441 } 1442 1443 static inline void nvme_blk_read(BlockBackend *blk, int64_t offset, 1444 uint32_t align, BlockCompletionFunc *cb, 1445 NvmeRequest *req) 1446 { 1447 assert(req->sg.flags & NVME_SG_ALLOC); 1448 1449 if (req->sg.flags & NVME_SG_DMA) { 1450 req->aiocb = dma_blk_read(blk, &req->sg.qsg, offset, align, cb, req); 1451 } else { 1452 req->aiocb = blk_aio_preadv(blk, offset, &req->sg.iov, 0, cb, req); 1453 } 1454 } 1455 1456 static inline void nvme_blk_write(BlockBackend *blk, int64_t offset, 1457 uint32_t align, BlockCompletionFunc *cb, 1458 NvmeRequest *req) 1459 { 1460 assert(req->sg.flags & NVME_SG_ALLOC); 1461 1462 if (req->sg.flags & NVME_SG_DMA) { 1463 req->aiocb = dma_blk_write(blk, &req->sg.qsg, offset, align, cb, req); 1464 } else { 1465 req->aiocb = blk_aio_pwritev(blk, offset, &req->sg.iov, 0, cb, req); 1466 } 1467 } 1468 1469 static void nvme_update_cq_eventidx(const NvmeCQueue *cq) 1470 { 1471 trace_pci_nvme_update_cq_eventidx(cq->cqid, cq->head); 1472 1473 stl_le_pci_dma(PCI_DEVICE(cq->ctrl), cq->ei_addr, cq->head, 1474 MEMTXATTRS_UNSPECIFIED); 1475 } 1476 1477 static void nvme_update_cq_head(NvmeCQueue *cq) 1478 { 1479 ldl_le_pci_dma(PCI_DEVICE(cq->ctrl), cq->db_addr, &cq->head, 1480 MEMTXATTRS_UNSPECIFIED); 1481 1482 trace_pci_nvme_update_cq_head(cq->cqid, cq->head); 1483 } 1484 1485 static void nvme_post_cqes(void *opaque) 1486 { 1487 NvmeCQueue *cq = opaque; 1488 NvmeCtrl *n = cq->ctrl; 1489 NvmeRequest *req, *next; 1490 bool pending = cq->head != cq->tail; 1491 int ret; 1492 1493 QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) { 1494 NvmeSQueue *sq; 1495 hwaddr addr; 1496 1497 if (n->dbbuf_enabled) { 1498 nvme_update_cq_eventidx(cq); 1499 nvme_update_cq_head(cq); 1500 } 1501 1502 if (nvme_cq_full(cq)) { 1503 break; 1504 } 1505 1506 sq = req->sq; 1507 req->cqe.status = cpu_to_le16((req->status << 1) | cq->phase); 1508 req->cqe.sq_id = cpu_to_le16(sq->sqid); 1509 req->cqe.sq_head = cpu_to_le16(sq->head); 1510 addr = cq->dma_addr + (cq->tail << NVME_CQES); 1511 ret = pci_dma_write(PCI_DEVICE(n), addr, (void *)&req->cqe, 1512 sizeof(req->cqe)); 1513 if (ret) { 1514 trace_pci_nvme_err_addr_write(addr); 1515 trace_pci_nvme_err_cfs(); 1516 stl_le_p(&n->bar.csts, NVME_CSTS_FAILED); 1517 break; 1518 } 1519 QTAILQ_REMOVE(&cq->req_list, req, entry); 1520 nvme_inc_cq_tail(cq); 1521 nvme_sg_unmap(&req->sg); 1522 QTAILQ_INSERT_TAIL(&sq->req_list, req, entry); 1523 } 1524 if (cq->tail != cq->head) { 1525 if (cq->irq_enabled && !pending) { 1526 n->cq_pending++; 1527 } 1528 1529 nvme_irq_assert(n, cq); 1530 } 1531 } 1532 1533 static void nvme_enqueue_req_completion(NvmeCQueue *cq, NvmeRequest *req) 1534 { 1535 assert(cq->cqid == req->sq->cqid); 1536 trace_pci_nvme_enqueue_req_completion(nvme_cid(req), cq->cqid, 1537 le32_to_cpu(req->cqe.result), 1538 le32_to_cpu(req->cqe.dw1), 1539 req->status); 1540 1541 if (req->status) { 1542 trace_pci_nvme_err_req_status(nvme_cid(req), nvme_nsid(req->ns), 1543 req->status, req->cmd.opcode); 1544 } 1545 1546 QTAILQ_REMOVE(&req->sq->out_req_list, req, entry); 1547 QTAILQ_INSERT_TAIL(&cq->req_list, req, entry); 1548 1549 qemu_bh_schedule(cq->bh); 1550 } 1551 1552 static void nvme_process_aers(void *opaque) 1553 { 1554 NvmeCtrl *n = opaque; 1555 NvmeAsyncEvent *event, *next; 1556 1557 trace_pci_nvme_process_aers(n->aer_queued); 1558 1559 QTAILQ_FOREACH_SAFE(event, &n->aer_queue, entry, next) { 1560 NvmeRequest *req; 1561 NvmeAerResult *result; 1562 1563 /* can't post cqe if there is nothing to complete */ 1564 if (!n->outstanding_aers) { 1565 trace_pci_nvme_no_outstanding_aers(); 1566 break; 1567 } 1568 1569 /* ignore if masked (cqe posted, but event not cleared) */ 1570 if (n->aer_mask & (1 << event->result.event_type)) { 1571 trace_pci_nvme_aer_masked(event->result.event_type, n->aer_mask); 1572 continue; 1573 } 1574 1575 QTAILQ_REMOVE(&n->aer_queue, event, entry); 1576 n->aer_queued--; 1577 1578 n->aer_mask |= 1 << event->result.event_type; 1579 n->outstanding_aers--; 1580 1581 req = n->aer_reqs[n->outstanding_aers]; 1582 1583 result = (NvmeAerResult *) &req->cqe.result; 1584 result->event_type = event->result.event_type; 1585 result->event_info = event->result.event_info; 1586 result->log_page = event->result.log_page; 1587 g_free(event); 1588 1589 trace_pci_nvme_aer_post_cqe(result->event_type, result->event_info, 1590 result->log_page); 1591 1592 nvme_enqueue_req_completion(&n->admin_cq, req); 1593 } 1594 } 1595 1596 static void nvme_enqueue_event(NvmeCtrl *n, uint8_t event_type, 1597 uint8_t event_info, uint8_t log_page) 1598 { 1599 NvmeAsyncEvent *event; 1600 1601 trace_pci_nvme_enqueue_event(event_type, event_info, log_page); 1602 1603 if (n->aer_queued == n->params.aer_max_queued) { 1604 trace_pci_nvme_enqueue_event_noqueue(n->aer_queued); 1605 return; 1606 } 1607 1608 event = g_new(NvmeAsyncEvent, 1); 1609 event->result = (NvmeAerResult) { 1610 .event_type = event_type, 1611 .event_info = event_info, 1612 .log_page = log_page, 1613 }; 1614 1615 QTAILQ_INSERT_TAIL(&n->aer_queue, event, entry); 1616 n->aer_queued++; 1617 1618 nvme_process_aers(n); 1619 } 1620 1621 static void nvme_smart_event(NvmeCtrl *n, uint8_t event) 1622 { 1623 uint8_t aer_info; 1624 1625 /* Ref SPEC <Asynchronous Event Information 0x2013 SMART / Health Status> */ 1626 if (!(NVME_AEC_SMART(n->features.async_config) & event)) { 1627 return; 1628 } 1629 1630 switch (event) { 1631 case NVME_SMART_SPARE: 1632 aer_info = NVME_AER_INFO_SMART_SPARE_THRESH; 1633 break; 1634 case NVME_SMART_TEMPERATURE: 1635 aer_info = NVME_AER_INFO_SMART_TEMP_THRESH; 1636 break; 1637 case NVME_SMART_RELIABILITY: 1638 case NVME_SMART_MEDIA_READ_ONLY: 1639 case NVME_SMART_FAILED_VOLATILE_MEDIA: 1640 case NVME_SMART_PMR_UNRELIABLE: 1641 aer_info = NVME_AER_INFO_SMART_RELIABILITY; 1642 break; 1643 default: 1644 return; 1645 } 1646 1647 nvme_enqueue_event(n, NVME_AER_TYPE_SMART, aer_info, NVME_LOG_SMART_INFO); 1648 } 1649 1650 static void nvme_clear_events(NvmeCtrl *n, uint8_t event_type) 1651 { 1652 n->aer_mask &= ~(1 << event_type); 1653 if (!QTAILQ_EMPTY(&n->aer_queue)) { 1654 nvme_process_aers(n); 1655 } 1656 } 1657 1658 static inline uint16_t nvme_check_mdts(NvmeCtrl *n, size_t len) 1659 { 1660 uint8_t mdts = n->params.mdts; 1661 1662 if (mdts && len > n->page_size << mdts) { 1663 trace_pci_nvme_err_mdts(len); 1664 return NVME_INVALID_FIELD | NVME_DNR; 1665 } 1666 1667 return NVME_SUCCESS; 1668 } 1669 1670 static inline uint16_t nvme_check_bounds(NvmeNamespace *ns, uint64_t slba, 1671 uint32_t nlb) 1672 { 1673 uint64_t nsze = le64_to_cpu(ns->id_ns.nsze); 1674 1675 if (unlikely(UINT64_MAX - slba < nlb || slba + nlb > nsze)) { 1676 trace_pci_nvme_err_invalid_lba_range(slba, nlb, nsze); 1677 return NVME_LBA_RANGE | NVME_DNR; 1678 } 1679 1680 return NVME_SUCCESS; 1681 } 1682 1683 static int nvme_block_status_all(NvmeNamespace *ns, uint64_t slba, 1684 uint32_t nlb, int flags) 1685 { 1686 BlockDriverState *bs = blk_bs(ns->blkconf.blk); 1687 1688 int64_t pnum = 0, bytes = nvme_l2b(ns, nlb); 1689 int64_t offset = nvme_l2b(ns, slba); 1690 int ret; 1691 1692 /* 1693 * `pnum` holds the number of bytes after offset that shares the same 1694 * allocation status as the byte at offset. If `pnum` is different from 1695 * `bytes`, we should check the allocation status of the next range and 1696 * continue this until all bytes have been checked. 1697 */ 1698 do { 1699 bytes -= pnum; 1700 1701 ret = bdrv_block_status(bs, offset, bytes, &pnum, NULL, NULL); 1702 if (ret < 0) { 1703 return ret; 1704 } 1705 1706 1707 trace_pci_nvme_block_status(offset, bytes, pnum, ret, 1708 !!(ret & BDRV_BLOCK_ZERO)); 1709 1710 if (!(ret & flags)) { 1711 return 1; 1712 } 1713 1714 offset += pnum; 1715 } while (pnum != bytes); 1716 1717 return 0; 1718 } 1719 1720 static uint16_t nvme_check_dulbe(NvmeNamespace *ns, uint64_t slba, 1721 uint32_t nlb) 1722 { 1723 int ret; 1724 Error *err = NULL; 1725 1726 ret = nvme_block_status_all(ns, slba, nlb, BDRV_BLOCK_DATA); 1727 if (ret) { 1728 if (ret < 0) { 1729 error_setg_errno(&err, -ret, "unable to get block status"); 1730 error_report_err(err); 1731 1732 return NVME_INTERNAL_DEV_ERROR; 1733 } 1734 1735 return NVME_DULB; 1736 } 1737 1738 return NVME_SUCCESS; 1739 } 1740 1741 static void nvme_aio_err(NvmeRequest *req, int ret) 1742 { 1743 uint16_t status = NVME_SUCCESS; 1744 Error *local_err = NULL; 1745 1746 switch (req->cmd.opcode) { 1747 case NVME_CMD_READ: 1748 status = NVME_UNRECOVERED_READ; 1749 break; 1750 case NVME_CMD_FLUSH: 1751 case NVME_CMD_WRITE: 1752 case NVME_CMD_WRITE_ZEROES: 1753 case NVME_CMD_ZONE_APPEND: 1754 case NVME_CMD_COPY: 1755 status = NVME_WRITE_FAULT; 1756 break; 1757 default: 1758 status = NVME_INTERNAL_DEV_ERROR; 1759 break; 1760 } 1761 1762 trace_pci_nvme_err_aio(nvme_cid(req), strerror(-ret), status); 1763 1764 error_setg_errno(&local_err, -ret, "aio failed"); 1765 error_report_err(local_err); 1766 1767 /* 1768 * Set the command status code to the first encountered error but allow a 1769 * subsequent Internal Device Error to trump it. 1770 */ 1771 if (req->status && status != NVME_INTERNAL_DEV_ERROR) { 1772 return; 1773 } 1774 1775 req->status = status; 1776 } 1777 1778 static inline uint32_t nvme_zone_idx(NvmeNamespace *ns, uint64_t slba) 1779 { 1780 return ns->zone_size_log2 > 0 ? slba >> ns->zone_size_log2 : 1781 slba / ns->zone_size; 1782 } 1783 1784 static inline NvmeZone *nvme_get_zone_by_slba(NvmeNamespace *ns, uint64_t slba) 1785 { 1786 uint32_t zone_idx = nvme_zone_idx(ns, slba); 1787 1788 if (zone_idx >= ns->num_zones) { 1789 return NULL; 1790 } 1791 1792 return &ns->zone_array[zone_idx]; 1793 } 1794 1795 static uint16_t nvme_check_zone_state_for_write(NvmeZone *zone) 1796 { 1797 uint64_t zslba = zone->d.zslba; 1798 1799 switch (nvme_get_zone_state(zone)) { 1800 case NVME_ZONE_STATE_EMPTY: 1801 case NVME_ZONE_STATE_IMPLICITLY_OPEN: 1802 case NVME_ZONE_STATE_EXPLICITLY_OPEN: 1803 case NVME_ZONE_STATE_CLOSED: 1804 return NVME_SUCCESS; 1805 case NVME_ZONE_STATE_FULL: 1806 trace_pci_nvme_err_zone_is_full(zslba); 1807 return NVME_ZONE_FULL; 1808 case NVME_ZONE_STATE_OFFLINE: 1809 trace_pci_nvme_err_zone_is_offline(zslba); 1810 return NVME_ZONE_OFFLINE; 1811 case NVME_ZONE_STATE_READ_ONLY: 1812 trace_pci_nvme_err_zone_is_read_only(zslba); 1813 return NVME_ZONE_READ_ONLY; 1814 default: 1815 assert(false); 1816 } 1817 1818 return NVME_INTERNAL_DEV_ERROR; 1819 } 1820 1821 static uint16_t nvme_check_zone_write(NvmeNamespace *ns, NvmeZone *zone, 1822 uint64_t slba, uint32_t nlb) 1823 { 1824 uint64_t zcap = nvme_zone_wr_boundary(zone); 1825 uint16_t status; 1826 1827 status = nvme_check_zone_state_for_write(zone); 1828 if (status) { 1829 return status; 1830 } 1831 1832 if (zone->d.za & NVME_ZA_ZRWA_VALID) { 1833 uint64_t ezrwa = zone->w_ptr + 2 * ns->zns.zrwas; 1834 1835 if (slba < zone->w_ptr || slba + nlb > ezrwa) { 1836 trace_pci_nvme_err_zone_invalid_write(slba, zone->w_ptr); 1837 return NVME_ZONE_INVALID_WRITE; 1838 } 1839 } else { 1840 if (unlikely(slba != zone->w_ptr)) { 1841 trace_pci_nvme_err_write_not_at_wp(slba, zone->d.zslba, 1842 zone->w_ptr); 1843 return NVME_ZONE_INVALID_WRITE; 1844 } 1845 } 1846 1847 if (unlikely((slba + nlb) > zcap)) { 1848 trace_pci_nvme_err_zone_boundary(slba, nlb, zcap); 1849 return NVME_ZONE_BOUNDARY_ERROR; 1850 } 1851 1852 return NVME_SUCCESS; 1853 } 1854 1855 static uint16_t nvme_check_zone_state_for_read(NvmeZone *zone) 1856 { 1857 switch (nvme_get_zone_state(zone)) { 1858 case NVME_ZONE_STATE_EMPTY: 1859 case NVME_ZONE_STATE_IMPLICITLY_OPEN: 1860 case NVME_ZONE_STATE_EXPLICITLY_OPEN: 1861 case NVME_ZONE_STATE_FULL: 1862 case NVME_ZONE_STATE_CLOSED: 1863 case NVME_ZONE_STATE_READ_ONLY: 1864 return NVME_SUCCESS; 1865 case NVME_ZONE_STATE_OFFLINE: 1866 trace_pci_nvme_err_zone_is_offline(zone->d.zslba); 1867 return NVME_ZONE_OFFLINE; 1868 default: 1869 assert(false); 1870 } 1871 1872 return NVME_INTERNAL_DEV_ERROR; 1873 } 1874 1875 static uint16_t nvme_check_zone_read(NvmeNamespace *ns, uint64_t slba, 1876 uint32_t nlb) 1877 { 1878 NvmeZone *zone; 1879 uint64_t bndry, end; 1880 uint16_t status; 1881 1882 zone = nvme_get_zone_by_slba(ns, slba); 1883 assert(zone); 1884 1885 bndry = nvme_zone_rd_boundary(ns, zone); 1886 end = slba + nlb; 1887 1888 status = nvme_check_zone_state_for_read(zone); 1889 if (status) { 1890 ; 1891 } else if (unlikely(end > bndry)) { 1892 if (!ns->params.cross_zone_read) { 1893 status = NVME_ZONE_BOUNDARY_ERROR; 1894 } else { 1895 /* 1896 * Read across zone boundary - check that all subsequent 1897 * zones that are being read have an appropriate state. 1898 */ 1899 do { 1900 zone++; 1901 status = nvme_check_zone_state_for_read(zone); 1902 if (status) { 1903 break; 1904 } 1905 } while (end > nvme_zone_rd_boundary(ns, zone)); 1906 } 1907 } 1908 1909 return status; 1910 } 1911 1912 static uint16_t nvme_zrm_finish(NvmeNamespace *ns, NvmeZone *zone) 1913 { 1914 switch (nvme_get_zone_state(zone)) { 1915 case NVME_ZONE_STATE_FULL: 1916 return NVME_SUCCESS; 1917 1918 case NVME_ZONE_STATE_IMPLICITLY_OPEN: 1919 case NVME_ZONE_STATE_EXPLICITLY_OPEN: 1920 nvme_aor_dec_open(ns); 1921 /* fallthrough */ 1922 case NVME_ZONE_STATE_CLOSED: 1923 nvme_aor_dec_active(ns); 1924 1925 if (zone->d.za & NVME_ZA_ZRWA_VALID) { 1926 zone->d.za &= ~NVME_ZA_ZRWA_VALID; 1927 if (ns->params.numzrwa) { 1928 ns->zns.numzrwa++; 1929 } 1930 } 1931 1932 /* fallthrough */ 1933 case NVME_ZONE_STATE_EMPTY: 1934 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_FULL); 1935 return NVME_SUCCESS; 1936 1937 default: 1938 return NVME_ZONE_INVAL_TRANSITION; 1939 } 1940 } 1941 1942 static uint16_t nvme_zrm_close(NvmeNamespace *ns, NvmeZone *zone) 1943 { 1944 switch (nvme_get_zone_state(zone)) { 1945 case NVME_ZONE_STATE_EXPLICITLY_OPEN: 1946 case NVME_ZONE_STATE_IMPLICITLY_OPEN: 1947 nvme_aor_dec_open(ns); 1948 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_CLOSED); 1949 /* fall through */ 1950 case NVME_ZONE_STATE_CLOSED: 1951 return NVME_SUCCESS; 1952 1953 default: 1954 return NVME_ZONE_INVAL_TRANSITION; 1955 } 1956 } 1957 1958 static uint16_t nvme_zrm_reset(NvmeNamespace *ns, NvmeZone *zone) 1959 { 1960 switch (nvme_get_zone_state(zone)) { 1961 case NVME_ZONE_STATE_EXPLICITLY_OPEN: 1962 case NVME_ZONE_STATE_IMPLICITLY_OPEN: 1963 nvme_aor_dec_open(ns); 1964 /* fallthrough */ 1965 case NVME_ZONE_STATE_CLOSED: 1966 nvme_aor_dec_active(ns); 1967 1968 if (zone->d.za & NVME_ZA_ZRWA_VALID) { 1969 if (ns->params.numzrwa) { 1970 ns->zns.numzrwa++; 1971 } 1972 } 1973 1974 /* fallthrough */ 1975 case NVME_ZONE_STATE_FULL: 1976 zone->w_ptr = zone->d.zslba; 1977 zone->d.wp = zone->w_ptr; 1978 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_EMPTY); 1979 /* fallthrough */ 1980 case NVME_ZONE_STATE_EMPTY: 1981 return NVME_SUCCESS; 1982 1983 default: 1984 return NVME_ZONE_INVAL_TRANSITION; 1985 } 1986 } 1987 1988 static void nvme_zrm_auto_transition_zone(NvmeNamespace *ns) 1989 { 1990 NvmeZone *zone; 1991 1992 if (ns->params.max_open_zones && 1993 ns->nr_open_zones == ns->params.max_open_zones) { 1994 zone = QTAILQ_FIRST(&ns->imp_open_zones); 1995 if (zone) { 1996 /* 1997 * Automatically close this implicitly open zone. 1998 */ 1999 QTAILQ_REMOVE(&ns->imp_open_zones, zone, entry); 2000 nvme_zrm_close(ns, zone); 2001 } 2002 } 2003 } 2004 2005 enum { 2006 NVME_ZRM_AUTO = 1 << 0, 2007 NVME_ZRM_ZRWA = 1 << 1, 2008 }; 2009 2010 static uint16_t nvme_zrm_open_flags(NvmeCtrl *n, NvmeNamespace *ns, 2011 NvmeZone *zone, int flags) 2012 { 2013 int act = 0; 2014 uint16_t status; 2015 2016 switch (nvme_get_zone_state(zone)) { 2017 case NVME_ZONE_STATE_EMPTY: 2018 act = 1; 2019 2020 /* fallthrough */ 2021 2022 case NVME_ZONE_STATE_CLOSED: 2023 if (n->params.auto_transition_zones) { 2024 nvme_zrm_auto_transition_zone(ns); 2025 } 2026 status = nvme_zns_check_resources(ns, act, 1, 2027 (flags & NVME_ZRM_ZRWA) ? 1 : 0); 2028 if (status) { 2029 return status; 2030 } 2031 2032 if (act) { 2033 nvme_aor_inc_active(ns); 2034 } 2035 2036 nvme_aor_inc_open(ns); 2037 2038 if (flags & NVME_ZRM_AUTO) { 2039 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_IMPLICITLY_OPEN); 2040 return NVME_SUCCESS; 2041 } 2042 2043 /* fallthrough */ 2044 2045 case NVME_ZONE_STATE_IMPLICITLY_OPEN: 2046 if (flags & NVME_ZRM_AUTO) { 2047 return NVME_SUCCESS; 2048 } 2049 2050 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_EXPLICITLY_OPEN); 2051 2052 /* fallthrough */ 2053 2054 case NVME_ZONE_STATE_EXPLICITLY_OPEN: 2055 if (flags & NVME_ZRM_ZRWA) { 2056 ns->zns.numzrwa--; 2057 2058 zone->d.za |= NVME_ZA_ZRWA_VALID; 2059 } 2060 2061 return NVME_SUCCESS; 2062 2063 default: 2064 return NVME_ZONE_INVAL_TRANSITION; 2065 } 2066 } 2067 2068 static inline uint16_t nvme_zrm_auto(NvmeCtrl *n, NvmeNamespace *ns, 2069 NvmeZone *zone) 2070 { 2071 return nvme_zrm_open_flags(n, ns, zone, NVME_ZRM_AUTO); 2072 } 2073 2074 static void nvme_advance_zone_wp(NvmeNamespace *ns, NvmeZone *zone, 2075 uint32_t nlb) 2076 { 2077 zone->d.wp += nlb; 2078 2079 if (zone->d.wp == nvme_zone_wr_boundary(zone)) { 2080 nvme_zrm_finish(ns, zone); 2081 } 2082 } 2083 2084 static void nvme_zoned_zrwa_implicit_flush(NvmeNamespace *ns, NvmeZone *zone, 2085 uint32_t nlbc) 2086 { 2087 uint16_t nzrwafgs = DIV_ROUND_UP(nlbc, ns->zns.zrwafg); 2088 2089 nlbc = nzrwafgs * ns->zns.zrwafg; 2090 2091 trace_pci_nvme_zoned_zrwa_implicit_flush(zone->d.zslba, nlbc); 2092 2093 zone->w_ptr += nlbc; 2094 2095 nvme_advance_zone_wp(ns, zone, nlbc); 2096 } 2097 2098 static void nvme_finalize_zoned_write(NvmeNamespace *ns, NvmeRequest *req) 2099 { 2100 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; 2101 NvmeZone *zone; 2102 uint64_t slba; 2103 uint32_t nlb; 2104 2105 slba = le64_to_cpu(rw->slba); 2106 nlb = le16_to_cpu(rw->nlb) + 1; 2107 zone = nvme_get_zone_by_slba(ns, slba); 2108 assert(zone); 2109 2110 if (zone->d.za & NVME_ZA_ZRWA_VALID) { 2111 uint64_t ezrwa = zone->w_ptr + ns->zns.zrwas - 1; 2112 uint64_t elba = slba + nlb - 1; 2113 2114 if (elba > ezrwa) { 2115 nvme_zoned_zrwa_implicit_flush(ns, zone, elba - ezrwa); 2116 } 2117 2118 return; 2119 } 2120 2121 nvme_advance_zone_wp(ns, zone, nlb); 2122 } 2123 2124 static inline bool nvme_is_write(NvmeRequest *req) 2125 { 2126 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; 2127 2128 return rw->opcode == NVME_CMD_WRITE || 2129 rw->opcode == NVME_CMD_ZONE_APPEND || 2130 rw->opcode == NVME_CMD_WRITE_ZEROES; 2131 } 2132 2133 static void nvme_misc_cb(void *opaque, int ret) 2134 { 2135 NvmeRequest *req = opaque; 2136 2137 trace_pci_nvme_misc_cb(nvme_cid(req)); 2138 2139 if (ret) { 2140 nvme_aio_err(req, ret); 2141 } 2142 2143 nvme_enqueue_req_completion(nvme_cq(req), req); 2144 } 2145 2146 void nvme_rw_complete_cb(void *opaque, int ret) 2147 { 2148 NvmeRequest *req = opaque; 2149 NvmeNamespace *ns = req->ns; 2150 BlockBackend *blk = ns->blkconf.blk; 2151 BlockAcctCookie *acct = &req->acct; 2152 BlockAcctStats *stats = blk_get_stats(blk); 2153 2154 trace_pci_nvme_rw_complete_cb(nvme_cid(req), blk_name(blk)); 2155 2156 if (ret) { 2157 block_acct_failed(stats, acct); 2158 nvme_aio_err(req, ret); 2159 } else { 2160 block_acct_done(stats, acct); 2161 } 2162 2163 if (ns->params.zoned && nvme_is_write(req)) { 2164 nvme_finalize_zoned_write(ns, req); 2165 } 2166 2167 nvme_enqueue_req_completion(nvme_cq(req), req); 2168 } 2169 2170 static void nvme_rw_cb(void *opaque, int ret) 2171 { 2172 NvmeRequest *req = opaque; 2173 NvmeNamespace *ns = req->ns; 2174 2175 BlockBackend *blk = ns->blkconf.blk; 2176 2177 trace_pci_nvme_rw_cb(nvme_cid(req), blk_name(blk)); 2178 2179 if (ret) { 2180 goto out; 2181 } 2182 2183 if (ns->lbaf.ms) { 2184 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; 2185 uint64_t slba = le64_to_cpu(rw->slba); 2186 uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1; 2187 uint64_t offset = nvme_moff(ns, slba); 2188 2189 if (req->cmd.opcode == NVME_CMD_WRITE_ZEROES) { 2190 size_t mlen = nvme_m2b(ns, nlb); 2191 2192 req->aiocb = blk_aio_pwrite_zeroes(blk, offset, mlen, 2193 BDRV_REQ_MAY_UNMAP, 2194 nvme_rw_complete_cb, req); 2195 return; 2196 } 2197 2198 if (nvme_ns_ext(ns) || req->cmd.mptr) { 2199 uint16_t status; 2200 2201 nvme_sg_unmap(&req->sg); 2202 status = nvme_map_mdata(nvme_ctrl(req), nlb, req); 2203 if (status) { 2204 ret = -EFAULT; 2205 goto out; 2206 } 2207 2208 if (req->cmd.opcode == NVME_CMD_READ) { 2209 return nvme_blk_read(blk, offset, 1, nvme_rw_complete_cb, req); 2210 } 2211 2212 return nvme_blk_write(blk, offset, 1, nvme_rw_complete_cb, req); 2213 } 2214 } 2215 2216 out: 2217 nvme_rw_complete_cb(req, ret); 2218 } 2219 2220 static void nvme_verify_cb(void *opaque, int ret) 2221 { 2222 NvmeBounceContext *ctx = opaque; 2223 NvmeRequest *req = ctx->req; 2224 NvmeNamespace *ns = req->ns; 2225 BlockBackend *blk = ns->blkconf.blk; 2226 BlockAcctCookie *acct = &req->acct; 2227 BlockAcctStats *stats = blk_get_stats(blk); 2228 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; 2229 uint64_t slba = le64_to_cpu(rw->slba); 2230 uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control)); 2231 uint16_t apptag = le16_to_cpu(rw->apptag); 2232 uint16_t appmask = le16_to_cpu(rw->appmask); 2233 uint64_t reftag = le32_to_cpu(rw->reftag); 2234 uint64_t cdw3 = le32_to_cpu(rw->cdw3); 2235 uint16_t status; 2236 2237 reftag |= cdw3 << 32; 2238 2239 trace_pci_nvme_verify_cb(nvme_cid(req), prinfo, apptag, appmask, reftag); 2240 2241 if (ret) { 2242 block_acct_failed(stats, acct); 2243 nvme_aio_err(req, ret); 2244 goto out; 2245 } 2246 2247 block_acct_done(stats, acct); 2248 2249 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) { 2250 status = nvme_dif_mangle_mdata(ns, ctx->mdata.bounce, 2251 ctx->mdata.iov.size, slba); 2252 if (status) { 2253 req->status = status; 2254 goto out; 2255 } 2256 2257 req->status = nvme_dif_check(ns, ctx->data.bounce, ctx->data.iov.size, 2258 ctx->mdata.bounce, ctx->mdata.iov.size, 2259 prinfo, slba, apptag, appmask, &reftag); 2260 } 2261 2262 out: 2263 qemu_iovec_destroy(&ctx->data.iov); 2264 g_free(ctx->data.bounce); 2265 2266 qemu_iovec_destroy(&ctx->mdata.iov); 2267 g_free(ctx->mdata.bounce); 2268 2269 g_free(ctx); 2270 2271 nvme_enqueue_req_completion(nvme_cq(req), req); 2272 } 2273 2274 2275 static void nvme_verify_mdata_in_cb(void *opaque, int ret) 2276 { 2277 NvmeBounceContext *ctx = opaque; 2278 NvmeRequest *req = ctx->req; 2279 NvmeNamespace *ns = req->ns; 2280 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; 2281 uint64_t slba = le64_to_cpu(rw->slba); 2282 uint32_t nlb = le16_to_cpu(rw->nlb) + 1; 2283 size_t mlen = nvme_m2b(ns, nlb); 2284 uint64_t offset = nvme_moff(ns, slba); 2285 BlockBackend *blk = ns->blkconf.blk; 2286 2287 trace_pci_nvme_verify_mdata_in_cb(nvme_cid(req), blk_name(blk)); 2288 2289 if (ret) { 2290 goto out; 2291 } 2292 2293 ctx->mdata.bounce = g_malloc(mlen); 2294 2295 qemu_iovec_reset(&ctx->mdata.iov); 2296 qemu_iovec_add(&ctx->mdata.iov, ctx->mdata.bounce, mlen); 2297 2298 req->aiocb = blk_aio_preadv(blk, offset, &ctx->mdata.iov, 0, 2299 nvme_verify_cb, ctx); 2300 return; 2301 2302 out: 2303 nvme_verify_cb(ctx, ret); 2304 } 2305 2306 struct nvme_compare_ctx { 2307 struct { 2308 QEMUIOVector iov; 2309 uint8_t *bounce; 2310 } data; 2311 2312 struct { 2313 QEMUIOVector iov; 2314 uint8_t *bounce; 2315 } mdata; 2316 }; 2317 2318 static void nvme_compare_mdata_cb(void *opaque, int ret) 2319 { 2320 NvmeRequest *req = opaque; 2321 NvmeNamespace *ns = req->ns; 2322 NvmeCtrl *n = nvme_ctrl(req); 2323 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; 2324 uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control)); 2325 uint16_t apptag = le16_to_cpu(rw->apptag); 2326 uint16_t appmask = le16_to_cpu(rw->appmask); 2327 uint64_t reftag = le32_to_cpu(rw->reftag); 2328 uint64_t cdw3 = le32_to_cpu(rw->cdw3); 2329 struct nvme_compare_ctx *ctx = req->opaque; 2330 g_autofree uint8_t *buf = NULL; 2331 BlockBackend *blk = ns->blkconf.blk; 2332 BlockAcctCookie *acct = &req->acct; 2333 BlockAcctStats *stats = blk_get_stats(blk); 2334 uint16_t status = NVME_SUCCESS; 2335 2336 reftag |= cdw3 << 32; 2337 2338 trace_pci_nvme_compare_mdata_cb(nvme_cid(req)); 2339 2340 if (ret) { 2341 block_acct_failed(stats, acct); 2342 nvme_aio_err(req, ret); 2343 goto out; 2344 } 2345 2346 buf = g_malloc(ctx->mdata.iov.size); 2347 2348 status = nvme_bounce_mdata(n, buf, ctx->mdata.iov.size, 2349 NVME_TX_DIRECTION_TO_DEVICE, req); 2350 if (status) { 2351 req->status = status; 2352 goto out; 2353 } 2354 2355 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) { 2356 uint64_t slba = le64_to_cpu(rw->slba); 2357 uint8_t *bufp; 2358 uint8_t *mbufp = ctx->mdata.bounce; 2359 uint8_t *end = mbufp + ctx->mdata.iov.size; 2360 int16_t pil = 0; 2361 2362 status = nvme_dif_check(ns, ctx->data.bounce, ctx->data.iov.size, 2363 ctx->mdata.bounce, ctx->mdata.iov.size, prinfo, 2364 slba, apptag, appmask, &reftag); 2365 if (status) { 2366 req->status = status; 2367 goto out; 2368 } 2369 2370 /* 2371 * When formatted with protection information, do not compare the DIF 2372 * tuple. 2373 */ 2374 if (!(ns->id_ns.dps & NVME_ID_NS_DPS_FIRST_EIGHT)) { 2375 pil = ns->lbaf.ms - nvme_pi_tuple_size(ns); 2376 } 2377 2378 for (bufp = buf; mbufp < end; bufp += ns->lbaf.ms, mbufp += ns->lbaf.ms) { 2379 if (memcmp(bufp + pil, mbufp + pil, ns->lbaf.ms - pil)) { 2380 req->status = NVME_CMP_FAILURE | NVME_DNR; 2381 goto out; 2382 } 2383 } 2384 2385 goto out; 2386 } 2387 2388 if (memcmp(buf, ctx->mdata.bounce, ctx->mdata.iov.size)) { 2389 req->status = NVME_CMP_FAILURE | NVME_DNR; 2390 goto out; 2391 } 2392 2393 block_acct_done(stats, acct); 2394 2395 out: 2396 qemu_iovec_destroy(&ctx->data.iov); 2397 g_free(ctx->data.bounce); 2398 2399 qemu_iovec_destroy(&ctx->mdata.iov); 2400 g_free(ctx->mdata.bounce); 2401 2402 g_free(ctx); 2403 2404 nvme_enqueue_req_completion(nvme_cq(req), req); 2405 } 2406 2407 static void nvme_compare_data_cb(void *opaque, int ret) 2408 { 2409 NvmeRequest *req = opaque; 2410 NvmeCtrl *n = nvme_ctrl(req); 2411 NvmeNamespace *ns = req->ns; 2412 BlockBackend *blk = ns->blkconf.blk; 2413 BlockAcctCookie *acct = &req->acct; 2414 BlockAcctStats *stats = blk_get_stats(blk); 2415 2416 struct nvme_compare_ctx *ctx = req->opaque; 2417 g_autofree uint8_t *buf = NULL; 2418 uint16_t status; 2419 2420 trace_pci_nvme_compare_data_cb(nvme_cid(req)); 2421 2422 if (ret) { 2423 block_acct_failed(stats, acct); 2424 nvme_aio_err(req, ret); 2425 goto out; 2426 } 2427 2428 buf = g_malloc(ctx->data.iov.size); 2429 2430 status = nvme_bounce_data(n, buf, ctx->data.iov.size, 2431 NVME_TX_DIRECTION_TO_DEVICE, req); 2432 if (status) { 2433 req->status = status; 2434 goto out; 2435 } 2436 2437 if (memcmp(buf, ctx->data.bounce, ctx->data.iov.size)) { 2438 req->status = NVME_CMP_FAILURE | NVME_DNR; 2439 goto out; 2440 } 2441 2442 if (ns->lbaf.ms) { 2443 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; 2444 uint64_t slba = le64_to_cpu(rw->slba); 2445 uint32_t nlb = le16_to_cpu(rw->nlb) + 1; 2446 size_t mlen = nvme_m2b(ns, nlb); 2447 uint64_t offset = nvme_moff(ns, slba); 2448 2449 ctx->mdata.bounce = g_malloc(mlen); 2450 2451 qemu_iovec_init(&ctx->mdata.iov, 1); 2452 qemu_iovec_add(&ctx->mdata.iov, ctx->mdata.bounce, mlen); 2453 2454 req->aiocb = blk_aio_preadv(blk, offset, &ctx->mdata.iov, 0, 2455 nvme_compare_mdata_cb, req); 2456 return; 2457 } 2458 2459 block_acct_done(stats, acct); 2460 2461 out: 2462 qemu_iovec_destroy(&ctx->data.iov); 2463 g_free(ctx->data.bounce); 2464 g_free(ctx); 2465 2466 nvme_enqueue_req_completion(nvme_cq(req), req); 2467 } 2468 2469 typedef struct NvmeDSMAIOCB { 2470 BlockAIOCB common; 2471 BlockAIOCB *aiocb; 2472 NvmeRequest *req; 2473 int ret; 2474 2475 NvmeDsmRange *range; 2476 unsigned int nr; 2477 unsigned int idx; 2478 } NvmeDSMAIOCB; 2479 2480 static void nvme_dsm_cancel(BlockAIOCB *aiocb) 2481 { 2482 NvmeDSMAIOCB *iocb = container_of(aiocb, NvmeDSMAIOCB, common); 2483 2484 /* break nvme_dsm_cb loop */ 2485 iocb->idx = iocb->nr; 2486 iocb->ret = -ECANCELED; 2487 2488 if (iocb->aiocb) { 2489 blk_aio_cancel_async(iocb->aiocb); 2490 iocb->aiocb = NULL; 2491 } else { 2492 /* 2493 * We only reach this if nvme_dsm_cancel() has already been called or 2494 * the command ran to completion. 2495 */ 2496 assert(iocb->idx == iocb->nr); 2497 } 2498 } 2499 2500 static const AIOCBInfo nvme_dsm_aiocb_info = { 2501 .aiocb_size = sizeof(NvmeDSMAIOCB), 2502 .cancel_async = nvme_dsm_cancel, 2503 }; 2504 2505 static void nvme_dsm_cb(void *opaque, int ret); 2506 2507 static void nvme_dsm_md_cb(void *opaque, int ret) 2508 { 2509 NvmeDSMAIOCB *iocb = opaque; 2510 NvmeRequest *req = iocb->req; 2511 NvmeNamespace *ns = req->ns; 2512 NvmeDsmRange *range; 2513 uint64_t slba; 2514 uint32_t nlb; 2515 2516 if (ret < 0 || iocb->ret < 0 || !ns->lbaf.ms) { 2517 goto done; 2518 } 2519 2520 range = &iocb->range[iocb->idx - 1]; 2521 slba = le64_to_cpu(range->slba); 2522 nlb = le32_to_cpu(range->nlb); 2523 2524 /* 2525 * Check that all block were discarded (zeroed); otherwise we do not zero 2526 * the metadata. 2527 */ 2528 2529 ret = nvme_block_status_all(ns, slba, nlb, BDRV_BLOCK_ZERO); 2530 if (ret) { 2531 if (ret < 0) { 2532 goto done; 2533 } 2534 2535 nvme_dsm_cb(iocb, 0); 2536 return; 2537 } 2538 2539 iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk, nvme_moff(ns, slba), 2540 nvme_m2b(ns, nlb), BDRV_REQ_MAY_UNMAP, 2541 nvme_dsm_cb, iocb); 2542 return; 2543 2544 done: 2545 nvme_dsm_cb(iocb, ret); 2546 } 2547 2548 static void nvme_dsm_cb(void *opaque, int ret) 2549 { 2550 NvmeDSMAIOCB *iocb = opaque; 2551 NvmeRequest *req = iocb->req; 2552 NvmeCtrl *n = nvme_ctrl(req); 2553 NvmeNamespace *ns = req->ns; 2554 NvmeDsmRange *range; 2555 uint64_t slba; 2556 uint32_t nlb; 2557 2558 if (iocb->ret < 0) { 2559 goto done; 2560 } else if (ret < 0) { 2561 iocb->ret = ret; 2562 goto done; 2563 } 2564 2565 next: 2566 if (iocb->idx == iocb->nr) { 2567 goto done; 2568 } 2569 2570 range = &iocb->range[iocb->idx++]; 2571 slba = le64_to_cpu(range->slba); 2572 nlb = le32_to_cpu(range->nlb); 2573 2574 trace_pci_nvme_dsm_deallocate(slba, nlb); 2575 2576 if (nlb > n->dmrsl) { 2577 trace_pci_nvme_dsm_single_range_limit_exceeded(nlb, n->dmrsl); 2578 goto next; 2579 } 2580 2581 if (nvme_check_bounds(ns, slba, nlb)) { 2582 trace_pci_nvme_err_invalid_lba_range(slba, nlb, 2583 ns->id_ns.nsze); 2584 goto next; 2585 } 2586 2587 iocb->aiocb = blk_aio_pdiscard(ns->blkconf.blk, nvme_l2b(ns, slba), 2588 nvme_l2b(ns, nlb), 2589 nvme_dsm_md_cb, iocb); 2590 return; 2591 2592 done: 2593 iocb->aiocb = NULL; 2594 iocb->common.cb(iocb->common.opaque, iocb->ret); 2595 qemu_aio_unref(iocb); 2596 } 2597 2598 static uint16_t nvme_dsm(NvmeCtrl *n, NvmeRequest *req) 2599 { 2600 NvmeNamespace *ns = req->ns; 2601 NvmeDsmCmd *dsm = (NvmeDsmCmd *) &req->cmd; 2602 uint32_t attr = le32_to_cpu(dsm->attributes); 2603 uint32_t nr = (le32_to_cpu(dsm->nr) & 0xff) + 1; 2604 uint16_t status = NVME_SUCCESS; 2605 2606 trace_pci_nvme_dsm(nr, attr); 2607 2608 if (attr & NVME_DSMGMT_AD) { 2609 NvmeDSMAIOCB *iocb = blk_aio_get(&nvme_dsm_aiocb_info, ns->blkconf.blk, 2610 nvme_misc_cb, req); 2611 2612 iocb->req = req; 2613 iocb->ret = 0; 2614 iocb->range = g_new(NvmeDsmRange, nr); 2615 iocb->nr = nr; 2616 iocb->idx = 0; 2617 2618 status = nvme_h2c(n, (uint8_t *)iocb->range, sizeof(NvmeDsmRange) * nr, 2619 req); 2620 if (status) { 2621 g_free(iocb->range); 2622 qemu_aio_unref(iocb); 2623 2624 return status; 2625 } 2626 2627 req->aiocb = &iocb->common; 2628 nvme_dsm_cb(iocb, 0); 2629 2630 return NVME_NO_COMPLETE; 2631 } 2632 2633 return status; 2634 } 2635 2636 static uint16_t nvme_verify(NvmeCtrl *n, NvmeRequest *req) 2637 { 2638 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; 2639 NvmeNamespace *ns = req->ns; 2640 BlockBackend *blk = ns->blkconf.blk; 2641 uint64_t slba = le64_to_cpu(rw->slba); 2642 uint32_t nlb = le16_to_cpu(rw->nlb) + 1; 2643 size_t len = nvme_l2b(ns, nlb); 2644 int64_t offset = nvme_l2b(ns, slba); 2645 uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control)); 2646 uint32_t reftag = le32_to_cpu(rw->reftag); 2647 NvmeBounceContext *ctx = NULL; 2648 uint16_t status; 2649 2650 trace_pci_nvme_verify(nvme_cid(req), nvme_nsid(ns), slba, nlb); 2651 2652 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) { 2653 status = nvme_check_prinfo(ns, prinfo, slba, reftag); 2654 if (status) { 2655 return status; 2656 } 2657 2658 if (prinfo & NVME_PRINFO_PRACT) { 2659 return NVME_INVALID_PROT_INFO | NVME_DNR; 2660 } 2661 } 2662 2663 if (len > n->page_size << n->params.vsl) { 2664 return NVME_INVALID_FIELD | NVME_DNR; 2665 } 2666 2667 status = nvme_check_bounds(ns, slba, nlb); 2668 if (status) { 2669 return status; 2670 } 2671 2672 if (NVME_ERR_REC_DULBE(ns->features.err_rec)) { 2673 status = nvme_check_dulbe(ns, slba, nlb); 2674 if (status) { 2675 return status; 2676 } 2677 } 2678 2679 ctx = g_new0(NvmeBounceContext, 1); 2680 ctx->req = req; 2681 2682 ctx->data.bounce = g_malloc(len); 2683 2684 qemu_iovec_init(&ctx->data.iov, 1); 2685 qemu_iovec_add(&ctx->data.iov, ctx->data.bounce, len); 2686 2687 block_acct_start(blk_get_stats(blk), &req->acct, ctx->data.iov.size, 2688 BLOCK_ACCT_READ); 2689 2690 req->aiocb = blk_aio_preadv(ns->blkconf.blk, offset, &ctx->data.iov, 0, 2691 nvme_verify_mdata_in_cb, ctx); 2692 return NVME_NO_COMPLETE; 2693 } 2694 2695 typedef struct NvmeCopyAIOCB { 2696 BlockAIOCB common; 2697 BlockAIOCB *aiocb; 2698 NvmeRequest *req; 2699 int ret; 2700 2701 void *ranges; 2702 unsigned int format; 2703 int nr; 2704 int idx; 2705 2706 uint8_t *bounce; 2707 QEMUIOVector iov; 2708 struct { 2709 BlockAcctCookie read; 2710 BlockAcctCookie write; 2711 } acct; 2712 2713 uint64_t reftag; 2714 uint64_t slba; 2715 2716 NvmeZone *zone; 2717 } NvmeCopyAIOCB; 2718 2719 static void nvme_copy_cancel(BlockAIOCB *aiocb) 2720 { 2721 NvmeCopyAIOCB *iocb = container_of(aiocb, NvmeCopyAIOCB, common); 2722 2723 iocb->ret = -ECANCELED; 2724 2725 if (iocb->aiocb) { 2726 blk_aio_cancel_async(iocb->aiocb); 2727 iocb->aiocb = NULL; 2728 } 2729 } 2730 2731 static const AIOCBInfo nvme_copy_aiocb_info = { 2732 .aiocb_size = sizeof(NvmeCopyAIOCB), 2733 .cancel_async = nvme_copy_cancel, 2734 }; 2735 2736 static void nvme_copy_done(NvmeCopyAIOCB *iocb) 2737 { 2738 NvmeRequest *req = iocb->req; 2739 NvmeNamespace *ns = req->ns; 2740 BlockAcctStats *stats = blk_get_stats(ns->blkconf.blk); 2741 2742 if (iocb->idx != iocb->nr) { 2743 req->cqe.result = cpu_to_le32(iocb->idx); 2744 } 2745 2746 qemu_iovec_destroy(&iocb->iov); 2747 g_free(iocb->bounce); 2748 2749 if (iocb->ret < 0) { 2750 block_acct_failed(stats, &iocb->acct.read); 2751 block_acct_failed(stats, &iocb->acct.write); 2752 } else { 2753 block_acct_done(stats, &iocb->acct.read); 2754 block_acct_done(stats, &iocb->acct.write); 2755 } 2756 2757 iocb->common.cb(iocb->common.opaque, iocb->ret); 2758 qemu_aio_unref(iocb); 2759 } 2760 2761 static void nvme_do_copy(NvmeCopyAIOCB *iocb); 2762 2763 static void nvme_copy_source_range_parse_format0(void *ranges, int idx, 2764 uint64_t *slba, uint32_t *nlb, 2765 uint16_t *apptag, 2766 uint16_t *appmask, 2767 uint64_t *reftag) 2768 { 2769 NvmeCopySourceRangeFormat0 *_ranges = ranges; 2770 2771 if (slba) { 2772 *slba = le64_to_cpu(_ranges[idx].slba); 2773 } 2774 2775 if (nlb) { 2776 *nlb = le16_to_cpu(_ranges[idx].nlb) + 1; 2777 } 2778 2779 if (apptag) { 2780 *apptag = le16_to_cpu(_ranges[idx].apptag); 2781 } 2782 2783 if (appmask) { 2784 *appmask = le16_to_cpu(_ranges[idx].appmask); 2785 } 2786 2787 if (reftag) { 2788 *reftag = le32_to_cpu(_ranges[idx].reftag); 2789 } 2790 } 2791 2792 static void nvme_copy_source_range_parse_format1(void *ranges, int idx, 2793 uint64_t *slba, uint32_t *nlb, 2794 uint16_t *apptag, 2795 uint16_t *appmask, 2796 uint64_t *reftag) 2797 { 2798 NvmeCopySourceRangeFormat1 *_ranges = ranges; 2799 2800 if (slba) { 2801 *slba = le64_to_cpu(_ranges[idx].slba); 2802 } 2803 2804 if (nlb) { 2805 *nlb = le16_to_cpu(_ranges[idx].nlb) + 1; 2806 } 2807 2808 if (apptag) { 2809 *apptag = le16_to_cpu(_ranges[idx].apptag); 2810 } 2811 2812 if (appmask) { 2813 *appmask = le16_to_cpu(_ranges[idx].appmask); 2814 } 2815 2816 if (reftag) { 2817 *reftag = 0; 2818 2819 *reftag |= (uint64_t)_ranges[idx].sr[4] << 40; 2820 *reftag |= (uint64_t)_ranges[idx].sr[5] << 32; 2821 *reftag |= (uint64_t)_ranges[idx].sr[6] << 24; 2822 *reftag |= (uint64_t)_ranges[idx].sr[7] << 16; 2823 *reftag |= (uint64_t)_ranges[idx].sr[8] << 8; 2824 *reftag |= (uint64_t)_ranges[idx].sr[9]; 2825 } 2826 } 2827 2828 static void nvme_copy_source_range_parse(void *ranges, int idx, uint8_t format, 2829 uint64_t *slba, uint32_t *nlb, 2830 uint16_t *apptag, uint16_t *appmask, 2831 uint64_t *reftag) 2832 { 2833 switch (format) { 2834 case NVME_COPY_FORMAT_0: 2835 nvme_copy_source_range_parse_format0(ranges, idx, slba, nlb, apptag, 2836 appmask, reftag); 2837 break; 2838 2839 case NVME_COPY_FORMAT_1: 2840 nvme_copy_source_range_parse_format1(ranges, idx, slba, nlb, apptag, 2841 appmask, reftag); 2842 break; 2843 2844 default: 2845 abort(); 2846 } 2847 } 2848 2849 static inline uint16_t nvme_check_copy_mcl(NvmeNamespace *ns, 2850 NvmeCopyAIOCB *iocb, uint16_t nr) 2851 { 2852 uint32_t copy_len = 0; 2853 2854 for (int idx = 0; idx < nr; idx++) { 2855 uint32_t nlb; 2856 nvme_copy_source_range_parse(iocb->ranges, idx, iocb->format, NULL, 2857 &nlb, NULL, NULL, NULL); 2858 copy_len += nlb + 1; 2859 } 2860 2861 if (copy_len > ns->id_ns.mcl) { 2862 return NVME_CMD_SIZE_LIMIT | NVME_DNR; 2863 } 2864 2865 return NVME_SUCCESS; 2866 } 2867 2868 static void nvme_copy_out_completed_cb(void *opaque, int ret) 2869 { 2870 NvmeCopyAIOCB *iocb = opaque; 2871 NvmeRequest *req = iocb->req; 2872 NvmeNamespace *ns = req->ns; 2873 uint32_t nlb; 2874 2875 nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, NULL, 2876 &nlb, NULL, NULL, NULL); 2877 2878 if (ret < 0) { 2879 iocb->ret = ret; 2880 goto out; 2881 } else if (iocb->ret < 0) { 2882 goto out; 2883 } 2884 2885 if (ns->params.zoned) { 2886 nvme_advance_zone_wp(ns, iocb->zone, nlb); 2887 } 2888 2889 iocb->idx++; 2890 iocb->slba += nlb; 2891 out: 2892 nvme_do_copy(iocb); 2893 } 2894 2895 static void nvme_copy_out_cb(void *opaque, int ret) 2896 { 2897 NvmeCopyAIOCB *iocb = opaque; 2898 NvmeRequest *req = iocb->req; 2899 NvmeNamespace *ns = req->ns; 2900 uint32_t nlb; 2901 size_t mlen; 2902 uint8_t *mbounce; 2903 2904 if (ret < 0 || iocb->ret < 0 || !ns->lbaf.ms) { 2905 goto out; 2906 } 2907 2908 nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, NULL, 2909 &nlb, NULL, NULL, NULL); 2910 2911 mlen = nvme_m2b(ns, nlb); 2912 mbounce = iocb->bounce + nvme_l2b(ns, nlb); 2913 2914 qemu_iovec_reset(&iocb->iov); 2915 qemu_iovec_add(&iocb->iov, mbounce, mlen); 2916 2917 iocb->aiocb = blk_aio_pwritev(ns->blkconf.blk, nvme_moff(ns, iocb->slba), 2918 &iocb->iov, 0, nvme_copy_out_completed_cb, 2919 iocb); 2920 2921 return; 2922 2923 out: 2924 nvme_copy_out_completed_cb(iocb, ret); 2925 } 2926 2927 static void nvme_copy_in_completed_cb(void *opaque, int ret) 2928 { 2929 NvmeCopyAIOCB *iocb = opaque; 2930 NvmeRequest *req = iocb->req; 2931 NvmeNamespace *ns = req->ns; 2932 uint32_t nlb; 2933 uint64_t slba; 2934 uint16_t apptag, appmask; 2935 uint64_t reftag; 2936 size_t len; 2937 uint16_t status; 2938 2939 if (ret < 0) { 2940 iocb->ret = ret; 2941 goto out; 2942 } else if (iocb->ret < 0) { 2943 goto out; 2944 } 2945 2946 nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, &slba, 2947 &nlb, &apptag, &appmask, &reftag); 2948 len = nvme_l2b(ns, nlb); 2949 2950 trace_pci_nvme_copy_out(iocb->slba, nlb); 2951 2952 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) { 2953 NvmeCopyCmd *copy = (NvmeCopyCmd *)&req->cmd; 2954 2955 uint16_t prinfor = ((copy->control[0] >> 4) & 0xf); 2956 uint16_t prinfow = ((copy->control[2] >> 2) & 0xf); 2957 2958 size_t mlen = nvme_m2b(ns, nlb); 2959 uint8_t *mbounce = iocb->bounce + nvme_l2b(ns, nlb); 2960 2961 status = nvme_dif_mangle_mdata(ns, mbounce, mlen, slba); 2962 if (status) { 2963 goto invalid; 2964 } 2965 status = nvme_dif_check(ns, iocb->bounce, len, mbounce, mlen, prinfor, 2966 slba, apptag, appmask, &reftag); 2967 if (status) { 2968 goto invalid; 2969 } 2970 2971 apptag = le16_to_cpu(copy->apptag); 2972 appmask = le16_to_cpu(copy->appmask); 2973 2974 if (prinfow & NVME_PRINFO_PRACT) { 2975 status = nvme_check_prinfo(ns, prinfow, iocb->slba, iocb->reftag); 2976 if (status) { 2977 goto invalid; 2978 } 2979 2980 nvme_dif_pract_generate_dif(ns, iocb->bounce, len, mbounce, mlen, 2981 apptag, &iocb->reftag); 2982 } else { 2983 status = nvme_dif_check(ns, iocb->bounce, len, mbounce, mlen, 2984 prinfow, iocb->slba, apptag, appmask, 2985 &iocb->reftag); 2986 if (status) { 2987 goto invalid; 2988 } 2989 } 2990 } 2991 2992 status = nvme_check_bounds(ns, iocb->slba, nlb); 2993 if (status) { 2994 goto invalid; 2995 } 2996 2997 if (ns->params.zoned) { 2998 status = nvme_check_zone_write(ns, iocb->zone, iocb->slba, nlb); 2999 if (status) { 3000 goto invalid; 3001 } 3002 3003 if (!(iocb->zone->d.za & NVME_ZA_ZRWA_VALID)) { 3004 iocb->zone->w_ptr += nlb; 3005 } 3006 } 3007 3008 qemu_iovec_reset(&iocb->iov); 3009 qemu_iovec_add(&iocb->iov, iocb->bounce, len); 3010 3011 iocb->aiocb = blk_aio_pwritev(ns->blkconf.blk, nvme_l2b(ns, iocb->slba), 3012 &iocb->iov, 0, nvme_copy_out_cb, iocb); 3013 3014 return; 3015 3016 invalid: 3017 req->status = status; 3018 iocb->ret = -1; 3019 out: 3020 nvme_do_copy(iocb); 3021 } 3022 3023 static void nvme_copy_in_cb(void *opaque, int ret) 3024 { 3025 NvmeCopyAIOCB *iocb = opaque; 3026 NvmeRequest *req = iocb->req; 3027 NvmeNamespace *ns = req->ns; 3028 uint64_t slba; 3029 uint32_t nlb; 3030 3031 if (ret < 0 || iocb->ret < 0 || !ns->lbaf.ms) { 3032 goto out; 3033 } 3034 3035 nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, &slba, 3036 &nlb, NULL, NULL, NULL); 3037 3038 qemu_iovec_reset(&iocb->iov); 3039 qemu_iovec_add(&iocb->iov, iocb->bounce + nvme_l2b(ns, nlb), 3040 nvme_m2b(ns, nlb)); 3041 3042 iocb->aiocb = blk_aio_preadv(ns->blkconf.blk, nvme_moff(ns, slba), 3043 &iocb->iov, 0, nvme_copy_in_completed_cb, 3044 iocb); 3045 return; 3046 3047 out: 3048 nvme_copy_in_completed_cb(iocb, ret); 3049 } 3050 3051 static void nvme_do_copy(NvmeCopyAIOCB *iocb) 3052 { 3053 NvmeRequest *req = iocb->req; 3054 NvmeNamespace *ns = req->ns; 3055 uint64_t slba; 3056 uint32_t nlb; 3057 size_t len; 3058 uint16_t status; 3059 3060 if (iocb->ret < 0) { 3061 goto done; 3062 } 3063 3064 if (iocb->idx == iocb->nr) { 3065 goto done; 3066 } 3067 3068 nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, &slba, 3069 &nlb, NULL, NULL, NULL); 3070 len = nvme_l2b(ns, nlb); 3071 3072 trace_pci_nvme_copy_source_range(slba, nlb); 3073 3074 if (nlb > le16_to_cpu(ns->id_ns.mssrl)) { 3075 status = NVME_CMD_SIZE_LIMIT | NVME_DNR; 3076 goto invalid; 3077 } 3078 3079 status = nvme_check_bounds(ns, slba, nlb); 3080 if (status) { 3081 goto invalid; 3082 } 3083 3084 if (NVME_ERR_REC_DULBE(ns->features.err_rec)) { 3085 status = nvme_check_dulbe(ns, slba, nlb); 3086 if (status) { 3087 goto invalid; 3088 } 3089 } 3090 3091 if (ns->params.zoned) { 3092 status = nvme_check_zone_read(ns, slba, nlb); 3093 if (status) { 3094 goto invalid; 3095 } 3096 } 3097 3098 qemu_iovec_reset(&iocb->iov); 3099 qemu_iovec_add(&iocb->iov, iocb->bounce, len); 3100 3101 iocb->aiocb = blk_aio_preadv(ns->blkconf.blk, nvme_l2b(ns, slba), 3102 &iocb->iov, 0, nvme_copy_in_cb, iocb); 3103 return; 3104 3105 invalid: 3106 req->status = status; 3107 iocb->ret = -1; 3108 done: 3109 nvme_copy_done(iocb); 3110 } 3111 3112 static uint16_t nvme_copy(NvmeCtrl *n, NvmeRequest *req) 3113 { 3114 NvmeNamespace *ns = req->ns; 3115 NvmeCopyCmd *copy = (NvmeCopyCmd *)&req->cmd; 3116 NvmeCopyAIOCB *iocb = blk_aio_get(&nvme_copy_aiocb_info, ns->blkconf.blk, 3117 nvme_misc_cb, req); 3118 uint16_t nr = copy->nr + 1; 3119 uint8_t format = copy->control[0] & 0xf; 3120 uint16_t prinfor = ((copy->control[0] >> 4) & 0xf); 3121 uint16_t prinfow = ((copy->control[2] >> 2) & 0xf); 3122 size_t len = sizeof(NvmeCopySourceRangeFormat0); 3123 3124 uint16_t status; 3125 3126 trace_pci_nvme_copy(nvme_cid(req), nvme_nsid(ns), nr, format); 3127 3128 iocb->ranges = NULL; 3129 iocb->zone = NULL; 3130 3131 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps) && 3132 ((prinfor & NVME_PRINFO_PRACT) != (prinfow & NVME_PRINFO_PRACT))) { 3133 status = NVME_INVALID_FIELD | NVME_DNR; 3134 goto invalid; 3135 } 3136 3137 if (!(n->id_ctrl.ocfs & (1 << format))) { 3138 trace_pci_nvme_err_copy_invalid_format(format); 3139 status = NVME_INVALID_FIELD | NVME_DNR; 3140 goto invalid; 3141 } 3142 3143 if (nr > ns->id_ns.msrc + 1) { 3144 status = NVME_CMD_SIZE_LIMIT | NVME_DNR; 3145 goto invalid; 3146 } 3147 3148 if ((ns->pif == 0x0 && format != 0x0) || 3149 (ns->pif != 0x0 && format != 0x1)) { 3150 status = NVME_INVALID_FORMAT | NVME_DNR; 3151 goto invalid; 3152 } 3153 3154 if (ns->pif) { 3155 len = sizeof(NvmeCopySourceRangeFormat1); 3156 } 3157 3158 iocb->format = format; 3159 iocb->ranges = g_malloc_n(nr, len); 3160 status = nvme_h2c(n, (uint8_t *)iocb->ranges, len * nr, req); 3161 if (status) { 3162 goto invalid; 3163 } 3164 3165 iocb->slba = le64_to_cpu(copy->sdlba); 3166 3167 if (ns->params.zoned) { 3168 iocb->zone = nvme_get_zone_by_slba(ns, iocb->slba); 3169 if (!iocb->zone) { 3170 status = NVME_LBA_RANGE | NVME_DNR; 3171 goto invalid; 3172 } 3173 3174 status = nvme_zrm_auto(n, ns, iocb->zone); 3175 if (status) { 3176 goto invalid; 3177 } 3178 } 3179 3180 status = nvme_check_copy_mcl(ns, iocb, nr); 3181 if (status) { 3182 goto invalid; 3183 } 3184 3185 iocb->req = req; 3186 iocb->ret = 0; 3187 iocb->nr = nr; 3188 iocb->idx = 0; 3189 iocb->reftag = le32_to_cpu(copy->reftag); 3190 iocb->reftag |= (uint64_t)le32_to_cpu(copy->cdw3) << 32; 3191 iocb->bounce = g_malloc_n(le16_to_cpu(ns->id_ns.mssrl), 3192 ns->lbasz + ns->lbaf.ms); 3193 3194 qemu_iovec_init(&iocb->iov, 1); 3195 3196 block_acct_start(blk_get_stats(ns->blkconf.blk), &iocb->acct.read, 0, 3197 BLOCK_ACCT_READ); 3198 block_acct_start(blk_get_stats(ns->blkconf.blk), &iocb->acct.write, 0, 3199 BLOCK_ACCT_WRITE); 3200 3201 req->aiocb = &iocb->common; 3202 nvme_do_copy(iocb); 3203 3204 return NVME_NO_COMPLETE; 3205 3206 invalid: 3207 g_free(iocb->ranges); 3208 qemu_aio_unref(iocb); 3209 return status; 3210 } 3211 3212 static uint16_t nvme_compare(NvmeCtrl *n, NvmeRequest *req) 3213 { 3214 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; 3215 NvmeNamespace *ns = req->ns; 3216 BlockBackend *blk = ns->blkconf.blk; 3217 uint64_t slba = le64_to_cpu(rw->slba); 3218 uint32_t nlb = le16_to_cpu(rw->nlb) + 1; 3219 uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control)); 3220 size_t data_len = nvme_l2b(ns, nlb); 3221 size_t len = data_len; 3222 int64_t offset = nvme_l2b(ns, slba); 3223 struct nvme_compare_ctx *ctx = NULL; 3224 uint16_t status; 3225 3226 trace_pci_nvme_compare(nvme_cid(req), nvme_nsid(ns), slba, nlb); 3227 3228 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps) && (prinfo & NVME_PRINFO_PRACT)) { 3229 return NVME_INVALID_PROT_INFO | NVME_DNR; 3230 } 3231 3232 if (nvme_ns_ext(ns)) { 3233 len += nvme_m2b(ns, nlb); 3234 } 3235 3236 status = nvme_check_mdts(n, len); 3237 if (status) { 3238 return status; 3239 } 3240 3241 status = nvme_check_bounds(ns, slba, nlb); 3242 if (status) { 3243 return status; 3244 } 3245 3246 if (NVME_ERR_REC_DULBE(ns->features.err_rec)) { 3247 status = nvme_check_dulbe(ns, slba, nlb); 3248 if (status) { 3249 return status; 3250 } 3251 } 3252 3253 status = nvme_map_dptr(n, &req->sg, len, &req->cmd); 3254 if (status) { 3255 return status; 3256 } 3257 3258 ctx = g_new(struct nvme_compare_ctx, 1); 3259 ctx->data.bounce = g_malloc(data_len); 3260 3261 req->opaque = ctx; 3262 3263 qemu_iovec_init(&ctx->data.iov, 1); 3264 qemu_iovec_add(&ctx->data.iov, ctx->data.bounce, data_len); 3265 3266 block_acct_start(blk_get_stats(blk), &req->acct, data_len, 3267 BLOCK_ACCT_READ); 3268 req->aiocb = blk_aio_preadv(blk, offset, &ctx->data.iov, 0, 3269 nvme_compare_data_cb, req); 3270 3271 return NVME_NO_COMPLETE; 3272 } 3273 3274 typedef struct NvmeFlushAIOCB { 3275 BlockAIOCB common; 3276 BlockAIOCB *aiocb; 3277 NvmeRequest *req; 3278 int ret; 3279 3280 NvmeNamespace *ns; 3281 uint32_t nsid; 3282 bool broadcast; 3283 } NvmeFlushAIOCB; 3284 3285 static void nvme_flush_cancel(BlockAIOCB *acb) 3286 { 3287 NvmeFlushAIOCB *iocb = container_of(acb, NvmeFlushAIOCB, common); 3288 3289 iocb->ret = -ECANCELED; 3290 3291 if (iocb->aiocb) { 3292 blk_aio_cancel_async(iocb->aiocb); 3293 iocb->aiocb = NULL; 3294 } 3295 } 3296 3297 static const AIOCBInfo nvme_flush_aiocb_info = { 3298 .aiocb_size = sizeof(NvmeFlushAIOCB), 3299 .cancel_async = nvme_flush_cancel, 3300 }; 3301 3302 static void nvme_do_flush(NvmeFlushAIOCB *iocb); 3303 3304 static void nvme_flush_ns_cb(void *opaque, int ret) 3305 { 3306 NvmeFlushAIOCB *iocb = opaque; 3307 NvmeNamespace *ns = iocb->ns; 3308 3309 if (ret < 0) { 3310 iocb->ret = ret; 3311 goto out; 3312 } else if (iocb->ret < 0) { 3313 goto out; 3314 } 3315 3316 if (ns) { 3317 trace_pci_nvme_flush_ns(iocb->nsid); 3318 3319 iocb->ns = NULL; 3320 iocb->aiocb = blk_aio_flush(ns->blkconf.blk, nvme_flush_ns_cb, iocb); 3321 return; 3322 } 3323 3324 out: 3325 nvme_do_flush(iocb); 3326 } 3327 3328 static void nvme_do_flush(NvmeFlushAIOCB *iocb) 3329 { 3330 NvmeRequest *req = iocb->req; 3331 NvmeCtrl *n = nvme_ctrl(req); 3332 int i; 3333 3334 if (iocb->ret < 0) { 3335 goto done; 3336 } 3337 3338 if (iocb->broadcast) { 3339 for (i = iocb->nsid + 1; i <= NVME_MAX_NAMESPACES; i++) { 3340 iocb->ns = nvme_ns(n, i); 3341 if (iocb->ns) { 3342 iocb->nsid = i; 3343 break; 3344 } 3345 } 3346 } 3347 3348 if (!iocb->ns) { 3349 goto done; 3350 } 3351 3352 nvme_flush_ns_cb(iocb, 0); 3353 return; 3354 3355 done: 3356 iocb->common.cb(iocb->common.opaque, iocb->ret); 3357 qemu_aio_unref(iocb); 3358 } 3359 3360 static uint16_t nvme_flush(NvmeCtrl *n, NvmeRequest *req) 3361 { 3362 NvmeFlushAIOCB *iocb; 3363 uint32_t nsid = le32_to_cpu(req->cmd.nsid); 3364 uint16_t status; 3365 3366 iocb = qemu_aio_get(&nvme_flush_aiocb_info, NULL, nvme_misc_cb, req); 3367 3368 iocb->req = req; 3369 iocb->ret = 0; 3370 iocb->ns = NULL; 3371 iocb->nsid = 0; 3372 iocb->broadcast = (nsid == NVME_NSID_BROADCAST); 3373 3374 if (!iocb->broadcast) { 3375 if (!nvme_nsid_valid(n, nsid)) { 3376 status = NVME_INVALID_NSID | NVME_DNR; 3377 goto out; 3378 } 3379 3380 iocb->ns = nvme_ns(n, nsid); 3381 if (!iocb->ns) { 3382 status = NVME_INVALID_FIELD | NVME_DNR; 3383 goto out; 3384 } 3385 3386 iocb->nsid = nsid; 3387 } 3388 3389 req->aiocb = &iocb->common; 3390 nvme_do_flush(iocb); 3391 3392 return NVME_NO_COMPLETE; 3393 3394 out: 3395 qemu_aio_unref(iocb); 3396 3397 return status; 3398 } 3399 3400 static uint16_t nvme_read(NvmeCtrl *n, NvmeRequest *req) 3401 { 3402 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; 3403 NvmeNamespace *ns = req->ns; 3404 uint64_t slba = le64_to_cpu(rw->slba); 3405 uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1; 3406 uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control)); 3407 uint64_t data_size = nvme_l2b(ns, nlb); 3408 uint64_t mapped_size = data_size; 3409 uint64_t data_offset; 3410 BlockBackend *blk = ns->blkconf.blk; 3411 uint16_t status; 3412 3413 if (nvme_ns_ext(ns)) { 3414 mapped_size += nvme_m2b(ns, nlb); 3415 3416 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) { 3417 bool pract = prinfo & NVME_PRINFO_PRACT; 3418 3419 if (pract && ns->lbaf.ms == nvme_pi_tuple_size(ns)) { 3420 mapped_size = data_size; 3421 } 3422 } 3423 } 3424 3425 trace_pci_nvme_read(nvme_cid(req), nvme_nsid(ns), nlb, mapped_size, slba); 3426 3427 status = nvme_check_mdts(n, mapped_size); 3428 if (status) { 3429 goto invalid; 3430 } 3431 3432 status = nvme_check_bounds(ns, slba, nlb); 3433 if (status) { 3434 goto invalid; 3435 } 3436 3437 if (ns->params.zoned) { 3438 status = nvme_check_zone_read(ns, slba, nlb); 3439 if (status) { 3440 trace_pci_nvme_err_zone_read_not_ok(slba, nlb, status); 3441 goto invalid; 3442 } 3443 } 3444 3445 if (NVME_ERR_REC_DULBE(ns->features.err_rec)) { 3446 status = nvme_check_dulbe(ns, slba, nlb); 3447 if (status) { 3448 goto invalid; 3449 } 3450 } 3451 3452 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) { 3453 return nvme_dif_rw(n, req); 3454 } 3455 3456 status = nvme_map_data(n, nlb, req); 3457 if (status) { 3458 goto invalid; 3459 } 3460 3461 data_offset = nvme_l2b(ns, slba); 3462 3463 block_acct_start(blk_get_stats(blk), &req->acct, data_size, 3464 BLOCK_ACCT_READ); 3465 nvme_blk_read(blk, data_offset, BDRV_SECTOR_SIZE, nvme_rw_cb, req); 3466 return NVME_NO_COMPLETE; 3467 3468 invalid: 3469 block_acct_invalid(blk_get_stats(blk), BLOCK_ACCT_READ); 3470 return status | NVME_DNR; 3471 } 3472 3473 static void nvme_do_write_fdp(NvmeCtrl *n, NvmeRequest *req, uint64_t slba, 3474 uint32_t nlb) 3475 { 3476 NvmeNamespace *ns = req->ns; 3477 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; 3478 uint64_t data_size = nvme_l2b(ns, nlb); 3479 uint32_t dw12 = le32_to_cpu(req->cmd.cdw12); 3480 uint8_t dtype = (dw12 >> 20) & 0xf; 3481 uint16_t pid = le16_to_cpu(rw->dspec); 3482 uint16_t ph, rg, ruhid; 3483 NvmeReclaimUnit *ru; 3484 3485 if (dtype != NVME_DIRECTIVE_DATA_PLACEMENT || 3486 !nvme_parse_pid(ns, pid, &ph, &rg)) { 3487 ph = 0; 3488 rg = 0; 3489 } 3490 3491 ruhid = ns->fdp.phs[ph]; 3492 ru = &ns->endgrp->fdp.ruhs[ruhid].rus[rg]; 3493 3494 nvme_fdp_stat_inc(&ns->endgrp->fdp.hbmw, data_size); 3495 nvme_fdp_stat_inc(&ns->endgrp->fdp.mbmw, data_size); 3496 3497 while (nlb) { 3498 if (nlb < ru->ruamw) { 3499 ru->ruamw -= nlb; 3500 break; 3501 } 3502 3503 nlb -= ru->ruamw; 3504 nvme_update_ruh(n, ns, pid); 3505 } 3506 } 3507 3508 static uint16_t nvme_do_write(NvmeCtrl *n, NvmeRequest *req, bool append, 3509 bool wrz) 3510 { 3511 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; 3512 NvmeNamespace *ns = req->ns; 3513 uint64_t slba = le64_to_cpu(rw->slba); 3514 uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1; 3515 uint16_t ctrl = le16_to_cpu(rw->control); 3516 uint8_t prinfo = NVME_RW_PRINFO(ctrl); 3517 uint64_t data_size = nvme_l2b(ns, nlb); 3518 uint64_t mapped_size = data_size; 3519 uint64_t data_offset; 3520 NvmeZone *zone; 3521 NvmeZonedResult *res = (NvmeZonedResult *)&req->cqe; 3522 BlockBackend *blk = ns->blkconf.blk; 3523 uint16_t status; 3524 3525 if (nvme_ns_ext(ns)) { 3526 mapped_size += nvme_m2b(ns, nlb); 3527 3528 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) { 3529 bool pract = prinfo & NVME_PRINFO_PRACT; 3530 3531 if (pract && ns->lbaf.ms == nvme_pi_tuple_size(ns)) { 3532 mapped_size -= nvme_m2b(ns, nlb); 3533 } 3534 } 3535 } 3536 3537 trace_pci_nvme_write(nvme_cid(req), nvme_io_opc_str(rw->opcode), 3538 nvme_nsid(ns), nlb, mapped_size, slba); 3539 3540 if (!wrz) { 3541 status = nvme_check_mdts(n, mapped_size); 3542 if (status) { 3543 goto invalid; 3544 } 3545 } 3546 3547 status = nvme_check_bounds(ns, slba, nlb); 3548 if (status) { 3549 goto invalid; 3550 } 3551 3552 if (ns->params.zoned) { 3553 zone = nvme_get_zone_by_slba(ns, slba); 3554 assert(zone); 3555 3556 if (append) { 3557 bool piremap = !!(ctrl & NVME_RW_PIREMAP); 3558 3559 if (unlikely(zone->d.za & NVME_ZA_ZRWA_VALID)) { 3560 return NVME_INVALID_ZONE_OP | NVME_DNR; 3561 } 3562 3563 if (unlikely(slba != zone->d.zslba)) { 3564 trace_pci_nvme_err_append_not_at_start(slba, zone->d.zslba); 3565 status = NVME_INVALID_FIELD; 3566 goto invalid; 3567 } 3568 3569 if (n->params.zasl && 3570 data_size > (uint64_t)n->page_size << n->params.zasl) { 3571 trace_pci_nvme_err_zasl(data_size); 3572 return NVME_INVALID_FIELD | NVME_DNR; 3573 } 3574 3575 slba = zone->w_ptr; 3576 rw->slba = cpu_to_le64(slba); 3577 res->slba = cpu_to_le64(slba); 3578 3579 switch (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) { 3580 case NVME_ID_NS_DPS_TYPE_1: 3581 if (!piremap) { 3582 return NVME_INVALID_PROT_INFO | NVME_DNR; 3583 } 3584 3585 /* fallthrough */ 3586 3587 case NVME_ID_NS_DPS_TYPE_2: 3588 if (piremap) { 3589 uint32_t reftag = le32_to_cpu(rw->reftag); 3590 rw->reftag = cpu_to_le32(reftag + (slba - zone->d.zslba)); 3591 } 3592 3593 break; 3594 3595 case NVME_ID_NS_DPS_TYPE_3: 3596 if (piremap) { 3597 return NVME_INVALID_PROT_INFO | NVME_DNR; 3598 } 3599 3600 break; 3601 } 3602 } 3603 3604 status = nvme_check_zone_write(ns, zone, slba, nlb); 3605 if (status) { 3606 goto invalid; 3607 } 3608 3609 status = nvme_zrm_auto(n, ns, zone); 3610 if (status) { 3611 goto invalid; 3612 } 3613 3614 if (!(zone->d.za & NVME_ZA_ZRWA_VALID)) { 3615 zone->w_ptr += nlb; 3616 } 3617 } else if (ns->endgrp && ns->endgrp->fdp.enabled) { 3618 nvme_do_write_fdp(n, req, slba, nlb); 3619 } 3620 3621 data_offset = nvme_l2b(ns, slba); 3622 3623 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) { 3624 return nvme_dif_rw(n, req); 3625 } 3626 3627 if (!wrz) { 3628 status = nvme_map_data(n, nlb, req); 3629 if (status) { 3630 goto invalid; 3631 } 3632 3633 block_acct_start(blk_get_stats(blk), &req->acct, data_size, 3634 BLOCK_ACCT_WRITE); 3635 nvme_blk_write(blk, data_offset, BDRV_SECTOR_SIZE, nvme_rw_cb, req); 3636 } else { 3637 req->aiocb = blk_aio_pwrite_zeroes(blk, data_offset, data_size, 3638 BDRV_REQ_MAY_UNMAP, nvme_rw_cb, 3639 req); 3640 } 3641 3642 return NVME_NO_COMPLETE; 3643 3644 invalid: 3645 block_acct_invalid(blk_get_stats(blk), BLOCK_ACCT_WRITE); 3646 return status | NVME_DNR; 3647 } 3648 3649 static inline uint16_t nvme_write(NvmeCtrl *n, NvmeRequest *req) 3650 { 3651 return nvme_do_write(n, req, false, false); 3652 } 3653 3654 static inline uint16_t nvme_write_zeroes(NvmeCtrl *n, NvmeRequest *req) 3655 { 3656 return nvme_do_write(n, req, false, true); 3657 } 3658 3659 static inline uint16_t nvme_zone_append(NvmeCtrl *n, NvmeRequest *req) 3660 { 3661 return nvme_do_write(n, req, true, false); 3662 } 3663 3664 static uint16_t nvme_get_mgmt_zone_slba_idx(NvmeNamespace *ns, NvmeCmd *c, 3665 uint64_t *slba, uint32_t *zone_idx) 3666 { 3667 uint32_t dw10 = le32_to_cpu(c->cdw10); 3668 uint32_t dw11 = le32_to_cpu(c->cdw11); 3669 3670 if (!ns->params.zoned) { 3671 trace_pci_nvme_err_invalid_opc(c->opcode); 3672 return NVME_INVALID_OPCODE | NVME_DNR; 3673 } 3674 3675 *slba = ((uint64_t)dw11) << 32 | dw10; 3676 if (unlikely(*slba >= ns->id_ns.nsze)) { 3677 trace_pci_nvme_err_invalid_lba_range(*slba, 0, ns->id_ns.nsze); 3678 *slba = 0; 3679 return NVME_LBA_RANGE | NVME_DNR; 3680 } 3681 3682 *zone_idx = nvme_zone_idx(ns, *slba); 3683 assert(*zone_idx < ns->num_zones); 3684 3685 return NVME_SUCCESS; 3686 } 3687 3688 typedef uint16_t (*op_handler_t)(NvmeNamespace *, NvmeZone *, NvmeZoneState, 3689 NvmeRequest *); 3690 3691 enum NvmeZoneProcessingMask { 3692 NVME_PROC_CURRENT_ZONE = 0, 3693 NVME_PROC_OPENED_ZONES = 1 << 0, 3694 NVME_PROC_CLOSED_ZONES = 1 << 1, 3695 NVME_PROC_READ_ONLY_ZONES = 1 << 2, 3696 NVME_PROC_FULL_ZONES = 1 << 3, 3697 }; 3698 3699 static uint16_t nvme_open_zone(NvmeNamespace *ns, NvmeZone *zone, 3700 NvmeZoneState state, NvmeRequest *req) 3701 { 3702 NvmeZoneSendCmd *cmd = (NvmeZoneSendCmd *)&req->cmd; 3703 int flags = 0; 3704 3705 if (cmd->zsflags & NVME_ZSFLAG_ZRWA_ALLOC) { 3706 uint16_t ozcs = le16_to_cpu(ns->id_ns_zoned->ozcs); 3707 3708 if (!(ozcs & NVME_ID_NS_ZONED_OZCS_ZRWASUP)) { 3709 return NVME_INVALID_ZONE_OP | NVME_DNR; 3710 } 3711 3712 if (zone->w_ptr % ns->zns.zrwafg) { 3713 return NVME_NOZRWA | NVME_DNR; 3714 } 3715 3716 flags = NVME_ZRM_ZRWA; 3717 } 3718 3719 return nvme_zrm_open_flags(nvme_ctrl(req), ns, zone, flags); 3720 } 3721 3722 static uint16_t nvme_close_zone(NvmeNamespace *ns, NvmeZone *zone, 3723 NvmeZoneState state, NvmeRequest *req) 3724 { 3725 return nvme_zrm_close(ns, zone); 3726 } 3727 3728 static uint16_t nvme_finish_zone(NvmeNamespace *ns, NvmeZone *zone, 3729 NvmeZoneState state, NvmeRequest *req) 3730 { 3731 return nvme_zrm_finish(ns, zone); 3732 } 3733 3734 static uint16_t nvme_offline_zone(NvmeNamespace *ns, NvmeZone *zone, 3735 NvmeZoneState state, NvmeRequest *req) 3736 { 3737 switch (state) { 3738 case NVME_ZONE_STATE_READ_ONLY: 3739 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_OFFLINE); 3740 /* fall through */ 3741 case NVME_ZONE_STATE_OFFLINE: 3742 return NVME_SUCCESS; 3743 default: 3744 return NVME_ZONE_INVAL_TRANSITION; 3745 } 3746 } 3747 3748 static uint16_t nvme_set_zd_ext(NvmeNamespace *ns, NvmeZone *zone) 3749 { 3750 uint16_t status; 3751 uint8_t state = nvme_get_zone_state(zone); 3752 3753 if (state == NVME_ZONE_STATE_EMPTY) { 3754 status = nvme_aor_check(ns, 1, 0); 3755 if (status) { 3756 return status; 3757 } 3758 nvme_aor_inc_active(ns); 3759 zone->d.za |= NVME_ZA_ZD_EXT_VALID; 3760 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_CLOSED); 3761 return NVME_SUCCESS; 3762 } 3763 3764 return NVME_ZONE_INVAL_TRANSITION; 3765 } 3766 3767 static uint16_t nvme_bulk_proc_zone(NvmeNamespace *ns, NvmeZone *zone, 3768 enum NvmeZoneProcessingMask proc_mask, 3769 op_handler_t op_hndlr, NvmeRequest *req) 3770 { 3771 uint16_t status = NVME_SUCCESS; 3772 NvmeZoneState zs = nvme_get_zone_state(zone); 3773 bool proc_zone; 3774 3775 switch (zs) { 3776 case NVME_ZONE_STATE_IMPLICITLY_OPEN: 3777 case NVME_ZONE_STATE_EXPLICITLY_OPEN: 3778 proc_zone = proc_mask & NVME_PROC_OPENED_ZONES; 3779 break; 3780 case NVME_ZONE_STATE_CLOSED: 3781 proc_zone = proc_mask & NVME_PROC_CLOSED_ZONES; 3782 break; 3783 case NVME_ZONE_STATE_READ_ONLY: 3784 proc_zone = proc_mask & NVME_PROC_READ_ONLY_ZONES; 3785 break; 3786 case NVME_ZONE_STATE_FULL: 3787 proc_zone = proc_mask & NVME_PROC_FULL_ZONES; 3788 break; 3789 default: 3790 proc_zone = false; 3791 } 3792 3793 if (proc_zone) { 3794 status = op_hndlr(ns, zone, zs, req); 3795 } 3796 3797 return status; 3798 } 3799 3800 static uint16_t nvme_do_zone_op(NvmeNamespace *ns, NvmeZone *zone, 3801 enum NvmeZoneProcessingMask proc_mask, 3802 op_handler_t op_hndlr, NvmeRequest *req) 3803 { 3804 NvmeZone *next; 3805 uint16_t status = NVME_SUCCESS; 3806 int i; 3807 3808 if (!proc_mask) { 3809 status = op_hndlr(ns, zone, nvme_get_zone_state(zone), req); 3810 } else { 3811 if (proc_mask & NVME_PROC_CLOSED_ZONES) { 3812 QTAILQ_FOREACH_SAFE(zone, &ns->closed_zones, entry, next) { 3813 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr, 3814 req); 3815 if (status && status != NVME_NO_COMPLETE) { 3816 goto out; 3817 } 3818 } 3819 } 3820 if (proc_mask & NVME_PROC_OPENED_ZONES) { 3821 QTAILQ_FOREACH_SAFE(zone, &ns->imp_open_zones, entry, next) { 3822 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr, 3823 req); 3824 if (status && status != NVME_NO_COMPLETE) { 3825 goto out; 3826 } 3827 } 3828 3829 QTAILQ_FOREACH_SAFE(zone, &ns->exp_open_zones, entry, next) { 3830 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr, 3831 req); 3832 if (status && status != NVME_NO_COMPLETE) { 3833 goto out; 3834 } 3835 } 3836 } 3837 if (proc_mask & NVME_PROC_FULL_ZONES) { 3838 QTAILQ_FOREACH_SAFE(zone, &ns->full_zones, entry, next) { 3839 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr, 3840 req); 3841 if (status && status != NVME_NO_COMPLETE) { 3842 goto out; 3843 } 3844 } 3845 } 3846 3847 if (proc_mask & NVME_PROC_READ_ONLY_ZONES) { 3848 for (i = 0; i < ns->num_zones; i++, zone++) { 3849 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr, 3850 req); 3851 if (status && status != NVME_NO_COMPLETE) { 3852 goto out; 3853 } 3854 } 3855 } 3856 } 3857 3858 out: 3859 return status; 3860 } 3861 3862 typedef struct NvmeZoneResetAIOCB { 3863 BlockAIOCB common; 3864 BlockAIOCB *aiocb; 3865 NvmeRequest *req; 3866 int ret; 3867 3868 bool all; 3869 int idx; 3870 NvmeZone *zone; 3871 } NvmeZoneResetAIOCB; 3872 3873 static void nvme_zone_reset_cancel(BlockAIOCB *aiocb) 3874 { 3875 NvmeZoneResetAIOCB *iocb = container_of(aiocb, NvmeZoneResetAIOCB, common); 3876 NvmeRequest *req = iocb->req; 3877 NvmeNamespace *ns = req->ns; 3878 3879 iocb->idx = ns->num_zones; 3880 3881 iocb->ret = -ECANCELED; 3882 3883 if (iocb->aiocb) { 3884 blk_aio_cancel_async(iocb->aiocb); 3885 iocb->aiocb = NULL; 3886 } 3887 } 3888 3889 static const AIOCBInfo nvme_zone_reset_aiocb_info = { 3890 .aiocb_size = sizeof(NvmeZoneResetAIOCB), 3891 .cancel_async = nvme_zone_reset_cancel, 3892 }; 3893 3894 static void nvme_zone_reset_cb(void *opaque, int ret); 3895 3896 static void nvme_zone_reset_epilogue_cb(void *opaque, int ret) 3897 { 3898 NvmeZoneResetAIOCB *iocb = opaque; 3899 NvmeRequest *req = iocb->req; 3900 NvmeNamespace *ns = req->ns; 3901 int64_t moff; 3902 int count; 3903 3904 if (ret < 0 || iocb->ret < 0 || !ns->lbaf.ms) { 3905 goto out; 3906 } 3907 3908 moff = nvme_moff(ns, iocb->zone->d.zslba); 3909 count = nvme_m2b(ns, ns->zone_size); 3910 3911 iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk, moff, count, 3912 BDRV_REQ_MAY_UNMAP, 3913 nvme_zone_reset_cb, iocb); 3914 return; 3915 3916 out: 3917 nvme_zone_reset_cb(iocb, ret); 3918 } 3919 3920 static void nvme_zone_reset_cb(void *opaque, int ret) 3921 { 3922 NvmeZoneResetAIOCB *iocb = opaque; 3923 NvmeRequest *req = iocb->req; 3924 NvmeNamespace *ns = req->ns; 3925 3926 if (iocb->ret < 0) { 3927 goto done; 3928 } else if (ret < 0) { 3929 iocb->ret = ret; 3930 goto done; 3931 } 3932 3933 if (iocb->zone) { 3934 nvme_zrm_reset(ns, iocb->zone); 3935 3936 if (!iocb->all) { 3937 goto done; 3938 } 3939 } 3940 3941 while (iocb->idx < ns->num_zones) { 3942 NvmeZone *zone = &ns->zone_array[iocb->idx++]; 3943 3944 switch (nvme_get_zone_state(zone)) { 3945 case NVME_ZONE_STATE_EMPTY: 3946 if (!iocb->all) { 3947 goto done; 3948 } 3949 3950 continue; 3951 3952 case NVME_ZONE_STATE_EXPLICITLY_OPEN: 3953 case NVME_ZONE_STATE_IMPLICITLY_OPEN: 3954 case NVME_ZONE_STATE_CLOSED: 3955 case NVME_ZONE_STATE_FULL: 3956 iocb->zone = zone; 3957 break; 3958 3959 default: 3960 continue; 3961 } 3962 3963 trace_pci_nvme_zns_zone_reset(zone->d.zslba); 3964 3965 iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk, 3966 nvme_l2b(ns, zone->d.zslba), 3967 nvme_l2b(ns, ns->zone_size), 3968 BDRV_REQ_MAY_UNMAP, 3969 nvme_zone_reset_epilogue_cb, 3970 iocb); 3971 return; 3972 } 3973 3974 done: 3975 iocb->aiocb = NULL; 3976 3977 iocb->common.cb(iocb->common.opaque, iocb->ret); 3978 qemu_aio_unref(iocb); 3979 } 3980 3981 static uint16_t nvme_zone_mgmt_send_zrwa_flush(NvmeCtrl *n, NvmeZone *zone, 3982 uint64_t elba, NvmeRequest *req) 3983 { 3984 NvmeNamespace *ns = req->ns; 3985 uint16_t ozcs = le16_to_cpu(ns->id_ns_zoned->ozcs); 3986 uint64_t wp = zone->d.wp; 3987 uint32_t nlb = elba - wp + 1; 3988 uint16_t status; 3989 3990 3991 if (!(ozcs & NVME_ID_NS_ZONED_OZCS_ZRWASUP)) { 3992 return NVME_INVALID_ZONE_OP | NVME_DNR; 3993 } 3994 3995 if (!(zone->d.za & NVME_ZA_ZRWA_VALID)) { 3996 return NVME_INVALID_FIELD | NVME_DNR; 3997 } 3998 3999 if (elba < wp || elba > wp + ns->zns.zrwas) { 4000 return NVME_ZONE_BOUNDARY_ERROR | NVME_DNR; 4001 } 4002 4003 if (nlb % ns->zns.zrwafg) { 4004 return NVME_INVALID_FIELD | NVME_DNR; 4005 } 4006 4007 status = nvme_zrm_auto(n, ns, zone); 4008 if (status) { 4009 return status; 4010 } 4011 4012 zone->w_ptr += nlb; 4013 4014 nvme_advance_zone_wp(ns, zone, nlb); 4015 4016 return NVME_SUCCESS; 4017 } 4018 4019 static uint16_t nvme_zone_mgmt_send(NvmeCtrl *n, NvmeRequest *req) 4020 { 4021 NvmeZoneSendCmd *cmd = (NvmeZoneSendCmd *)&req->cmd; 4022 NvmeNamespace *ns = req->ns; 4023 NvmeZone *zone; 4024 NvmeZoneResetAIOCB *iocb; 4025 uint8_t *zd_ext; 4026 uint64_t slba = 0; 4027 uint32_t zone_idx = 0; 4028 uint16_t status; 4029 uint8_t action = cmd->zsa; 4030 bool all; 4031 enum NvmeZoneProcessingMask proc_mask = NVME_PROC_CURRENT_ZONE; 4032 4033 all = cmd->zsflags & NVME_ZSFLAG_SELECT_ALL; 4034 4035 req->status = NVME_SUCCESS; 4036 4037 if (!all) { 4038 status = nvme_get_mgmt_zone_slba_idx(ns, &req->cmd, &slba, &zone_idx); 4039 if (status) { 4040 return status; 4041 } 4042 } 4043 4044 zone = &ns->zone_array[zone_idx]; 4045 if (slba != zone->d.zslba && action != NVME_ZONE_ACTION_ZRWA_FLUSH) { 4046 trace_pci_nvme_err_unaligned_zone_cmd(action, slba, zone->d.zslba); 4047 return NVME_INVALID_FIELD | NVME_DNR; 4048 } 4049 4050 switch (action) { 4051 4052 case NVME_ZONE_ACTION_OPEN: 4053 if (all) { 4054 proc_mask = NVME_PROC_CLOSED_ZONES; 4055 } 4056 trace_pci_nvme_open_zone(slba, zone_idx, all); 4057 status = nvme_do_zone_op(ns, zone, proc_mask, nvme_open_zone, req); 4058 break; 4059 4060 case NVME_ZONE_ACTION_CLOSE: 4061 if (all) { 4062 proc_mask = NVME_PROC_OPENED_ZONES; 4063 } 4064 trace_pci_nvme_close_zone(slba, zone_idx, all); 4065 status = nvme_do_zone_op(ns, zone, proc_mask, nvme_close_zone, req); 4066 break; 4067 4068 case NVME_ZONE_ACTION_FINISH: 4069 if (all) { 4070 proc_mask = NVME_PROC_OPENED_ZONES | NVME_PROC_CLOSED_ZONES; 4071 } 4072 trace_pci_nvme_finish_zone(slba, zone_idx, all); 4073 status = nvme_do_zone_op(ns, zone, proc_mask, nvme_finish_zone, req); 4074 break; 4075 4076 case NVME_ZONE_ACTION_RESET: 4077 trace_pci_nvme_reset_zone(slba, zone_idx, all); 4078 4079 iocb = blk_aio_get(&nvme_zone_reset_aiocb_info, ns->blkconf.blk, 4080 nvme_misc_cb, req); 4081 4082 iocb->req = req; 4083 iocb->ret = 0; 4084 iocb->all = all; 4085 iocb->idx = zone_idx; 4086 iocb->zone = NULL; 4087 4088 req->aiocb = &iocb->common; 4089 nvme_zone_reset_cb(iocb, 0); 4090 4091 return NVME_NO_COMPLETE; 4092 4093 case NVME_ZONE_ACTION_OFFLINE: 4094 if (all) { 4095 proc_mask = NVME_PROC_READ_ONLY_ZONES; 4096 } 4097 trace_pci_nvme_offline_zone(slba, zone_idx, all); 4098 status = nvme_do_zone_op(ns, zone, proc_mask, nvme_offline_zone, req); 4099 break; 4100 4101 case NVME_ZONE_ACTION_SET_ZD_EXT: 4102 trace_pci_nvme_set_descriptor_extension(slba, zone_idx); 4103 if (all || !ns->params.zd_extension_size) { 4104 return NVME_INVALID_FIELD | NVME_DNR; 4105 } 4106 zd_ext = nvme_get_zd_extension(ns, zone_idx); 4107 status = nvme_h2c(n, zd_ext, ns->params.zd_extension_size, req); 4108 if (status) { 4109 trace_pci_nvme_err_zd_extension_map_error(zone_idx); 4110 return status; 4111 } 4112 4113 status = nvme_set_zd_ext(ns, zone); 4114 if (status == NVME_SUCCESS) { 4115 trace_pci_nvme_zd_extension_set(zone_idx); 4116 return status; 4117 } 4118 break; 4119 4120 case NVME_ZONE_ACTION_ZRWA_FLUSH: 4121 if (all) { 4122 return NVME_INVALID_FIELD | NVME_DNR; 4123 } 4124 4125 return nvme_zone_mgmt_send_zrwa_flush(n, zone, slba, req); 4126 4127 default: 4128 trace_pci_nvme_err_invalid_mgmt_action(action); 4129 status = NVME_INVALID_FIELD; 4130 } 4131 4132 if (status == NVME_ZONE_INVAL_TRANSITION) { 4133 trace_pci_nvme_err_invalid_zone_state_transition(action, slba, 4134 zone->d.za); 4135 } 4136 if (status) { 4137 status |= NVME_DNR; 4138 } 4139 4140 return status; 4141 } 4142 4143 static bool nvme_zone_matches_filter(uint32_t zafs, NvmeZone *zl) 4144 { 4145 NvmeZoneState zs = nvme_get_zone_state(zl); 4146 4147 switch (zafs) { 4148 case NVME_ZONE_REPORT_ALL: 4149 return true; 4150 case NVME_ZONE_REPORT_EMPTY: 4151 return zs == NVME_ZONE_STATE_EMPTY; 4152 case NVME_ZONE_REPORT_IMPLICITLY_OPEN: 4153 return zs == NVME_ZONE_STATE_IMPLICITLY_OPEN; 4154 case NVME_ZONE_REPORT_EXPLICITLY_OPEN: 4155 return zs == NVME_ZONE_STATE_EXPLICITLY_OPEN; 4156 case NVME_ZONE_REPORT_CLOSED: 4157 return zs == NVME_ZONE_STATE_CLOSED; 4158 case NVME_ZONE_REPORT_FULL: 4159 return zs == NVME_ZONE_STATE_FULL; 4160 case NVME_ZONE_REPORT_READ_ONLY: 4161 return zs == NVME_ZONE_STATE_READ_ONLY; 4162 case NVME_ZONE_REPORT_OFFLINE: 4163 return zs == NVME_ZONE_STATE_OFFLINE; 4164 default: 4165 return false; 4166 } 4167 } 4168 4169 static uint16_t nvme_zone_mgmt_recv(NvmeCtrl *n, NvmeRequest *req) 4170 { 4171 NvmeCmd *cmd = (NvmeCmd *)&req->cmd; 4172 NvmeNamespace *ns = req->ns; 4173 /* cdw12 is zero-based number of dwords to return. Convert to bytes */ 4174 uint32_t data_size = (le32_to_cpu(cmd->cdw12) + 1) << 2; 4175 uint32_t dw13 = le32_to_cpu(cmd->cdw13); 4176 uint32_t zone_idx, zra, zrasf, partial; 4177 uint64_t max_zones, nr_zones = 0; 4178 uint16_t status; 4179 uint64_t slba; 4180 NvmeZoneDescr *z; 4181 NvmeZone *zone; 4182 NvmeZoneReportHeader *header; 4183 void *buf, *buf_p; 4184 size_t zone_entry_sz; 4185 int i; 4186 4187 req->status = NVME_SUCCESS; 4188 4189 status = nvme_get_mgmt_zone_slba_idx(ns, cmd, &slba, &zone_idx); 4190 if (status) { 4191 return status; 4192 } 4193 4194 zra = dw13 & 0xff; 4195 if (zra != NVME_ZONE_REPORT && zra != NVME_ZONE_REPORT_EXTENDED) { 4196 return NVME_INVALID_FIELD | NVME_DNR; 4197 } 4198 if (zra == NVME_ZONE_REPORT_EXTENDED && !ns->params.zd_extension_size) { 4199 return NVME_INVALID_FIELD | NVME_DNR; 4200 } 4201 4202 zrasf = (dw13 >> 8) & 0xff; 4203 if (zrasf > NVME_ZONE_REPORT_OFFLINE) { 4204 return NVME_INVALID_FIELD | NVME_DNR; 4205 } 4206 4207 if (data_size < sizeof(NvmeZoneReportHeader)) { 4208 return NVME_INVALID_FIELD | NVME_DNR; 4209 } 4210 4211 status = nvme_check_mdts(n, data_size); 4212 if (status) { 4213 return status; 4214 } 4215 4216 partial = (dw13 >> 16) & 0x01; 4217 4218 zone_entry_sz = sizeof(NvmeZoneDescr); 4219 if (zra == NVME_ZONE_REPORT_EXTENDED) { 4220 zone_entry_sz += ns->params.zd_extension_size; 4221 } 4222 4223 max_zones = (data_size - sizeof(NvmeZoneReportHeader)) / zone_entry_sz; 4224 buf = g_malloc0(data_size); 4225 4226 zone = &ns->zone_array[zone_idx]; 4227 for (i = zone_idx; i < ns->num_zones; i++) { 4228 if (partial && nr_zones >= max_zones) { 4229 break; 4230 } 4231 if (nvme_zone_matches_filter(zrasf, zone++)) { 4232 nr_zones++; 4233 } 4234 } 4235 header = buf; 4236 header->nr_zones = cpu_to_le64(nr_zones); 4237 4238 buf_p = buf + sizeof(NvmeZoneReportHeader); 4239 for (; zone_idx < ns->num_zones && max_zones > 0; zone_idx++) { 4240 zone = &ns->zone_array[zone_idx]; 4241 if (nvme_zone_matches_filter(zrasf, zone)) { 4242 z = buf_p; 4243 buf_p += sizeof(NvmeZoneDescr); 4244 4245 z->zt = zone->d.zt; 4246 z->zs = zone->d.zs; 4247 z->zcap = cpu_to_le64(zone->d.zcap); 4248 z->zslba = cpu_to_le64(zone->d.zslba); 4249 z->za = zone->d.za; 4250 4251 if (nvme_wp_is_valid(zone)) { 4252 z->wp = cpu_to_le64(zone->d.wp); 4253 } else { 4254 z->wp = cpu_to_le64(~0ULL); 4255 } 4256 4257 if (zra == NVME_ZONE_REPORT_EXTENDED) { 4258 if (zone->d.za & NVME_ZA_ZD_EXT_VALID) { 4259 memcpy(buf_p, nvme_get_zd_extension(ns, zone_idx), 4260 ns->params.zd_extension_size); 4261 } 4262 buf_p += ns->params.zd_extension_size; 4263 } 4264 4265 max_zones--; 4266 } 4267 } 4268 4269 status = nvme_c2h(n, (uint8_t *)buf, data_size, req); 4270 4271 g_free(buf); 4272 4273 return status; 4274 } 4275 4276 static uint16_t nvme_io_mgmt_recv_ruhs(NvmeCtrl *n, NvmeRequest *req, 4277 size_t len) 4278 { 4279 NvmeNamespace *ns = req->ns; 4280 NvmeEnduranceGroup *endgrp; 4281 NvmeRuhStatus *hdr; 4282 NvmeRuhStatusDescr *ruhsd; 4283 unsigned int nruhsd; 4284 uint16_t rg, ph, *ruhid; 4285 size_t trans_len; 4286 g_autofree uint8_t *buf = NULL; 4287 4288 if (!n->subsys) { 4289 return NVME_INVALID_FIELD | NVME_DNR; 4290 } 4291 4292 if (ns->params.nsid == 0 || ns->params.nsid == 0xffffffff) { 4293 return NVME_INVALID_NSID | NVME_DNR; 4294 } 4295 4296 if (!n->subsys->endgrp.fdp.enabled) { 4297 return NVME_FDP_DISABLED | NVME_DNR; 4298 } 4299 4300 endgrp = ns->endgrp; 4301 4302 nruhsd = ns->fdp.nphs * endgrp->fdp.nrg; 4303 trans_len = sizeof(NvmeRuhStatus) + nruhsd * sizeof(NvmeRuhStatusDescr); 4304 buf = g_malloc(trans_len); 4305 4306 trans_len = MIN(trans_len, len); 4307 4308 hdr = (NvmeRuhStatus *)buf; 4309 ruhsd = (NvmeRuhStatusDescr *)(buf + sizeof(NvmeRuhStatus)); 4310 4311 hdr->nruhsd = cpu_to_le16(nruhsd); 4312 4313 ruhid = ns->fdp.phs; 4314 4315 for (ph = 0; ph < ns->fdp.nphs; ph++, ruhid++) { 4316 NvmeRuHandle *ruh = &endgrp->fdp.ruhs[*ruhid]; 4317 4318 for (rg = 0; rg < endgrp->fdp.nrg; rg++, ruhsd++) { 4319 uint16_t pid = nvme_make_pid(ns, rg, ph); 4320 4321 ruhsd->pid = cpu_to_le16(pid); 4322 ruhsd->ruhid = *ruhid; 4323 ruhsd->earutr = 0; 4324 ruhsd->ruamw = cpu_to_le64(ruh->rus[rg].ruamw); 4325 } 4326 } 4327 4328 return nvme_c2h(n, buf, trans_len, req); 4329 } 4330 4331 static uint16_t nvme_io_mgmt_recv(NvmeCtrl *n, NvmeRequest *req) 4332 { 4333 NvmeCmd *cmd = &req->cmd; 4334 uint32_t cdw10 = le32_to_cpu(cmd->cdw10); 4335 uint32_t numd = le32_to_cpu(cmd->cdw11); 4336 uint8_t mo = (cdw10 & 0xff); 4337 size_t len = (numd + 1) << 2; 4338 4339 switch (mo) { 4340 case NVME_IOMR_MO_NOP: 4341 return 0; 4342 case NVME_IOMR_MO_RUH_STATUS: 4343 return nvme_io_mgmt_recv_ruhs(n, req, len); 4344 default: 4345 return NVME_INVALID_FIELD | NVME_DNR; 4346 }; 4347 } 4348 4349 static uint16_t nvme_io_mgmt_send_ruh_update(NvmeCtrl *n, NvmeRequest *req) 4350 { 4351 NvmeCmd *cmd = &req->cmd; 4352 NvmeNamespace *ns = req->ns; 4353 uint32_t cdw10 = le32_to_cpu(cmd->cdw10); 4354 uint16_t ret = NVME_SUCCESS; 4355 uint32_t npid = (cdw10 >> 1) + 1; 4356 unsigned int i = 0; 4357 g_autofree uint16_t *pids = NULL; 4358 uint32_t maxnpid; 4359 4360 if (!ns->endgrp || !ns->endgrp->fdp.enabled) { 4361 return NVME_FDP_DISABLED | NVME_DNR; 4362 } 4363 4364 maxnpid = n->subsys->endgrp.fdp.nrg * n->subsys->endgrp.fdp.nruh; 4365 4366 if (unlikely(npid >= MIN(NVME_FDP_MAXPIDS, maxnpid))) { 4367 return NVME_INVALID_FIELD | NVME_DNR; 4368 } 4369 4370 pids = g_new(uint16_t, npid); 4371 4372 ret = nvme_h2c(n, pids, npid * sizeof(uint16_t), req); 4373 if (ret) { 4374 return ret; 4375 } 4376 4377 for (; i < npid; i++) { 4378 if (!nvme_update_ruh(n, ns, pids[i])) { 4379 return NVME_INVALID_FIELD | NVME_DNR; 4380 } 4381 } 4382 4383 return ret; 4384 } 4385 4386 static uint16_t nvme_io_mgmt_send(NvmeCtrl *n, NvmeRequest *req) 4387 { 4388 NvmeCmd *cmd = &req->cmd; 4389 uint32_t cdw10 = le32_to_cpu(cmd->cdw10); 4390 uint8_t mo = (cdw10 & 0xff); 4391 4392 switch (mo) { 4393 case NVME_IOMS_MO_NOP: 4394 return 0; 4395 case NVME_IOMS_MO_RUH_UPDATE: 4396 return nvme_io_mgmt_send_ruh_update(n, req); 4397 default: 4398 return NVME_INVALID_FIELD | NVME_DNR; 4399 }; 4400 } 4401 4402 static uint16_t nvme_io_cmd(NvmeCtrl *n, NvmeRequest *req) 4403 { 4404 NvmeNamespace *ns; 4405 uint32_t nsid = le32_to_cpu(req->cmd.nsid); 4406 4407 trace_pci_nvme_io_cmd(nvme_cid(req), nsid, nvme_sqid(req), 4408 req->cmd.opcode, nvme_io_opc_str(req->cmd.opcode)); 4409 4410 if (!nvme_nsid_valid(n, nsid)) { 4411 return NVME_INVALID_NSID | NVME_DNR; 4412 } 4413 4414 /* 4415 * In the base NVM command set, Flush may apply to all namespaces 4416 * (indicated by NSID being set to FFFFFFFFh). But if that feature is used 4417 * along with TP 4056 (Namespace Types), it may be pretty screwed up. 4418 * 4419 * If NSID is indeed set to FFFFFFFFh, we simply cannot associate the 4420 * opcode with a specific command since we cannot determine a unique I/O 4421 * command set. Opcode 0h could have any other meaning than something 4422 * equivalent to flushing and say it DOES have completely different 4423 * semantics in some other command set - does an NSID of FFFFFFFFh then 4424 * mean "for all namespaces, apply whatever command set specific command 4425 * that uses the 0h opcode?" Or does it mean "for all namespaces, apply 4426 * whatever command that uses the 0h opcode if, and only if, it allows NSID 4427 * to be FFFFFFFFh"? 4428 * 4429 * Anyway (and luckily), for now, we do not care about this since the 4430 * device only supports namespace types that includes the NVM Flush command 4431 * (NVM and Zoned), so always do an NVM Flush. 4432 */ 4433 if (req->cmd.opcode == NVME_CMD_FLUSH) { 4434 return nvme_flush(n, req); 4435 } 4436 4437 ns = nvme_ns(n, nsid); 4438 if (unlikely(!ns)) { 4439 return NVME_INVALID_FIELD | NVME_DNR; 4440 } 4441 4442 if (!(ns->iocs[req->cmd.opcode] & NVME_CMD_EFF_CSUPP)) { 4443 trace_pci_nvme_err_invalid_opc(req->cmd.opcode); 4444 return NVME_INVALID_OPCODE | NVME_DNR; 4445 } 4446 4447 if (ns->status) { 4448 return ns->status; 4449 } 4450 4451 if (NVME_CMD_FLAGS_FUSE(req->cmd.flags)) { 4452 return NVME_INVALID_FIELD; 4453 } 4454 4455 req->ns = ns; 4456 4457 switch (req->cmd.opcode) { 4458 case NVME_CMD_WRITE_ZEROES: 4459 return nvme_write_zeroes(n, req); 4460 case NVME_CMD_ZONE_APPEND: 4461 return nvme_zone_append(n, req); 4462 case NVME_CMD_WRITE: 4463 return nvme_write(n, req); 4464 case NVME_CMD_READ: 4465 return nvme_read(n, req); 4466 case NVME_CMD_COMPARE: 4467 return nvme_compare(n, req); 4468 case NVME_CMD_DSM: 4469 return nvme_dsm(n, req); 4470 case NVME_CMD_VERIFY: 4471 return nvme_verify(n, req); 4472 case NVME_CMD_COPY: 4473 return nvme_copy(n, req); 4474 case NVME_CMD_ZONE_MGMT_SEND: 4475 return nvme_zone_mgmt_send(n, req); 4476 case NVME_CMD_ZONE_MGMT_RECV: 4477 return nvme_zone_mgmt_recv(n, req); 4478 case NVME_CMD_IO_MGMT_RECV: 4479 return nvme_io_mgmt_recv(n, req); 4480 case NVME_CMD_IO_MGMT_SEND: 4481 return nvme_io_mgmt_send(n, req); 4482 default: 4483 assert(false); 4484 } 4485 4486 return NVME_INVALID_OPCODE | NVME_DNR; 4487 } 4488 4489 static void nvme_cq_notifier(EventNotifier *e) 4490 { 4491 NvmeCQueue *cq = container_of(e, NvmeCQueue, notifier); 4492 NvmeCtrl *n = cq->ctrl; 4493 4494 if (!event_notifier_test_and_clear(e)) { 4495 return; 4496 } 4497 4498 nvme_update_cq_head(cq); 4499 4500 if (cq->tail == cq->head) { 4501 if (cq->irq_enabled) { 4502 n->cq_pending--; 4503 } 4504 4505 nvme_irq_deassert(n, cq); 4506 } 4507 4508 qemu_bh_schedule(cq->bh); 4509 } 4510 4511 static int nvme_init_cq_ioeventfd(NvmeCQueue *cq) 4512 { 4513 NvmeCtrl *n = cq->ctrl; 4514 uint16_t offset = (cq->cqid << 3) + (1 << 2); 4515 int ret; 4516 4517 ret = event_notifier_init(&cq->notifier, 0); 4518 if (ret < 0) { 4519 return ret; 4520 } 4521 4522 event_notifier_set_handler(&cq->notifier, nvme_cq_notifier); 4523 memory_region_add_eventfd(&n->iomem, 4524 0x1000 + offset, 4, false, 0, &cq->notifier); 4525 4526 return 0; 4527 } 4528 4529 static void nvme_sq_notifier(EventNotifier *e) 4530 { 4531 NvmeSQueue *sq = container_of(e, NvmeSQueue, notifier); 4532 4533 if (!event_notifier_test_and_clear(e)) { 4534 return; 4535 } 4536 4537 nvme_process_sq(sq); 4538 } 4539 4540 static int nvme_init_sq_ioeventfd(NvmeSQueue *sq) 4541 { 4542 NvmeCtrl *n = sq->ctrl; 4543 uint16_t offset = sq->sqid << 3; 4544 int ret; 4545 4546 ret = event_notifier_init(&sq->notifier, 0); 4547 if (ret < 0) { 4548 return ret; 4549 } 4550 4551 event_notifier_set_handler(&sq->notifier, nvme_sq_notifier); 4552 memory_region_add_eventfd(&n->iomem, 4553 0x1000 + offset, 4, false, 0, &sq->notifier); 4554 4555 return 0; 4556 } 4557 4558 static void nvme_free_sq(NvmeSQueue *sq, NvmeCtrl *n) 4559 { 4560 uint16_t offset = sq->sqid << 3; 4561 4562 n->sq[sq->sqid] = NULL; 4563 qemu_bh_delete(sq->bh); 4564 if (sq->ioeventfd_enabled) { 4565 memory_region_del_eventfd(&n->iomem, 4566 0x1000 + offset, 4, false, 0, &sq->notifier); 4567 event_notifier_set_handler(&sq->notifier, NULL); 4568 event_notifier_cleanup(&sq->notifier); 4569 } 4570 g_free(sq->io_req); 4571 if (sq->sqid) { 4572 g_free(sq); 4573 } 4574 } 4575 4576 static uint16_t nvme_del_sq(NvmeCtrl *n, NvmeRequest *req) 4577 { 4578 NvmeDeleteQ *c = (NvmeDeleteQ *)&req->cmd; 4579 NvmeRequest *r, *next; 4580 NvmeSQueue *sq; 4581 NvmeCQueue *cq; 4582 uint16_t qid = le16_to_cpu(c->qid); 4583 4584 if (unlikely(!qid || nvme_check_sqid(n, qid))) { 4585 trace_pci_nvme_err_invalid_del_sq(qid); 4586 return NVME_INVALID_QID | NVME_DNR; 4587 } 4588 4589 trace_pci_nvme_del_sq(qid); 4590 4591 sq = n->sq[qid]; 4592 while (!QTAILQ_EMPTY(&sq->out_req_list)) { 4593 r = QTAILQ_FIRST(&sq->out_req_list); 4594 assert(r->aiocb); 4595 blk_aio_cancel(r->aiocb); 4596 } 4597 4598 assert(QTAILQ_EMPTY(&sq->out_req_list)); 4599 4600 if (!nvme_check_cqid(n, sq->cqid)) { 4601 cq = n->cq[sq->cqid]; 4602 QTAILQ_REMOVE(&cq->sq_list, sq, entry); 4603 4604 nvme_post_cqes(cq); 4605 QTAILQ_FOREACH_SAFE(r, &cq->req_list, entry, next) { 4606 if (r->sq == sq) { 4607 QTAILQ_REMOVE(&cq->req_list, r, entry); 4608 QTAILQ_INSERT_TAIL(&sq->req_list, r, entry); 4609 } 4610 } 4611 } 4612 4613 nvme_free_sq(sq, n); 4614 return NVME_SUCCESS; 4615 } 4616 4617 static void nvme_init_sq(NvmeSQueue *sq, NvmeCtrl *n, uint64_t dma_addr, 4618 uint16_t sqid, uint16_t cqid, uint16_t size) 4619 { 4620 int i; 4621 NvmeCQueue *cq; 4622 4623 sq->ctrl = n; 4624 sq->dma_addr = dma_addr; 4625 sq->sqid = sqid; 4626 sq->size = size; 4627 sq->cqid = cqid; 4628 sq->head = sq->tail = 0; 4629 sq->io_req = g_new0(NvmeRequest, sq->size); 4630 4631 QTAILQ_INIT(&sq->req_list); 4632 QTAILQ_INIT(&sq->out_req_list); 4633 for (i = 0; i < sq->size; i++) { 4634 sq->io_req[i].sq = sq; 4635 QTAILQ_INSERT_TAIL(&(sq->req_list), &sq->io_req[i], entry); 4636 } 4637 4638 sq->bh = qemu_bh_new_guarded(nvme_process_sq, sq, 4639 &DEVICE(sq->ctrl)->mem_reentrancy_guard); 4640 4641 if (n->dbbuf_enabled) { 4642 sq->db_addr = n->dbbuf_dbs + (sqid << 3); 4643 sq->ei_addr = n->dbbuf_eis + (sqid << 3); 4644 4645 if (n->params.ioeventfd && sq->sqid != 0) { 4646 if (!nvme_init_sq_ioeventfd(sq)) { 4647 sq->ioeventfd_enabled = true; 4648 } 4649 } 4650 } 4651 4652 assert(n->cq[cqid]); 4653 cq = n->cq[cqid]; 4654 QTAILQ_INSERT_TAIL(&(cq->sq_list), sq, entry); 4655 n->sq[sqid] = sq; 4656 } 4657 4658 static uint16_t nvme_create_sq(NvmeCtrl *n, NvmeRequest *req) 4659 { 4660 NvmeSQueue *sq; 4661 NvmeCreateSq *c = (NvmeCreateSq *)&req->cmd; 4662 4663 uint16_t cqid = le16_to_cpu(c->cqid); 4664 uint16_t sqid = le16_to_cpu(c->sqid); 4665 uint16_t qsize = le16_to_cpu(c->qsize); 4666 uint16_t qflags = le16_to_cpu(c->sq_flags); 4667 uint64_t prp1 = le64_to_cpu(c->prp1); 4668 4669 trace_pci_nvme_create_sq(prp1, sqid, cqid, qsize, qflags); 4670 4671 if (unlikely(!cqid || nvme_check_cqid(n, cqid))) { 4672 trace_pci_nvme_err_invalid_create_sq_cqid(cqid); 4673 return NVME_INVALID_CQID | NVME_DNR; 4674 } 4675 if (unlikely(!sqid || sqid > n->conf_ioqpairs || n->sq[sqid] != NULL)) { 4676 trace_pci_nvme_err_invalid_create_sq_sqid(sqid); 4677 return NVME_INVALID_QID | NVME_DNR; 4678 } 4679 if (unlikely(!qsize || qsize > NVME_CAP_MQES(ldq_le_p(&n->bar.cap)))) { 4680 trace_pci_nvme_err_invalid_create_sq_size(qsize); 4681 return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR; 4682 } 4683 if (unlikely(prp1 & (n->page_size - 1))) { 4684 trace_pci_nvme_err_invalid_create_sq_addr(prp1); 4685 return NVME_INVALID_PRP_OFFSET | NVME_DNR; 4686 } 4687 if (unlikely(!(NVME_SQ_FLAGS_PC(qflags)))) { 4688 trace_pci_nvme_err_invalid_create_sq_qflags(NVME_SQ_FLAGS_PC(qflags)); 4689 return NVME_INVALID_FIELD | NVME_DNR; 4690 } 4691 sq = g_malloc0(sizeof(*sq)); 4692 nvme_init_sq(sq, n, prp1, sqid, cqid, qsize + 1); 4693 return NVME_SUCCESS; 4694 } 4695 4696 struct nvme_stats { 4697 uint64_t units_read; 4698 uint64_t units_written; 4699 uint64_t read_commands; 4700 uint64_t write_commands; 4701 }; 4702 4703 static void nvme_set_blk_stats(NvmeNamespace *ns, struct nvme_stats *stats) 4704 { 4705 BlockAcctStats *s = blk_get_stats(ns->blkconf.blk); 4706 4707 stats->units_read += s->nr_bytes[BLOCK_ACCT_READ]; 4708 stats->units_written += s->nr_bytes[BLOCK_ACCT_WRITE]; 4709 stats->read_commands += s->nr_ops[BLOCK_ACCT_READ]; 4710 stats->write_commands += s->nr_ops[BLOCK_ACCT_WRITE]; 4711 } 4712 4713 static uint16_t nvme_smart_info(NvmeCtrl *n, uint8_t rae, uint32_t buf_len, 4714 uint64_t off, NvmeRequest *req) 4715 { 4716 uint32_t nsid = le32_to_cpu(req->cmd.nsid); 4717 struct nvme_stats stats = { 0 }; 4718 NvmeSmartLog smart = { 0 }; 4719 uint32_t trans_len; 4720 NvmeNamespace *ns; 4721 time_t current_ms; 4722 uint64_t u_read, u_written; 4723 4724 if (off >= sizeof(smart)) { 4725 return NVME_INVALID_FIELD | NVME_DNR; 4726 } 4727 4728 if (nsid != 0xffffffff) { 4729 ns = nvme_ns(n, nsid); 4730 if (!ns) { 4731 return NVME_INVALID_NSID | NVME_DNR; 4732 } 4733 nvme_set_blk_stats(ns, &stats); 4734 } else { 4735 int i; 4736 4737 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { 4738 ns = nvme_ns(n, i); 4739 if (!ns) { 4740 continue; 4741 } 4742 nvme_set_blk_stats(ns, &stats); 4743 } 4744 } 4745 4746 trans_len = MIN(sizeof(smart) - off, buf_len); 4747 smart.critical_warning = n->smart_critical_warning; 4748 4749 u_read = DIV_ROUND_UP(stats.units_read >> BDRV_SECTOR_BITS, 1000); 4750 u_written = DIV_ROUND_UP(stats.units_written >> BDRV_SECTOR_BITS, 1000); 4751 4752 smart.data_units_read[0] = cpu_to_le64(u_read); 4753 smart.data_units_written[0] = cpu_to_le64(u_written); 4754 smart.host_read_commands[0] = cpu_to_le64(stats.read_commands); 4755 smart.host_write_commands[0] = cpu_to_le64(stats.write_commands); 4756 4757 smart.temperature = cpu_to_le16(n->temperature); 4758 4759 if ((n->temperature >= n->features.temp_thresh_hi) || 4760 (n->temperature <= n->features.temp_thresh_low)) { 4761 smart.critical_warning |= NVME_SMART_TEMPERATURE; 4762 } 4763 4764 current_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL); 4765 smart.power_on_hours[0] = 4766 cpu_to_le64((((current_ms - n->starttime_ms) / 1000) / 60) / 60); 4767 4768 if (!rae) { 4769 nvme_clear_events(n, NVME_AER_TYPE_SMART); 4770 } 4771 4772 return nvme_c2h(n, (uint8_t *) &smart + off, trans_len, req); 4773 } 4774 4775 static uint16_t nvme_endgrp_info(NvmeCtrl *n, uint8_t rae, uint32_t buf_len, 4776 uint64_t off, NvmeRequest *req) 4777 { 4778 uint32_t dw11 = le32_to_cpu(req->cmd.cdw11); 4779 uint16_t endgrpid = (dw11 >> 16) & 0xffff; 4780 struct nvme_stats stats = {}; 4781 NvmeEndGrpLog info = {}; 4782 int i; 4783 4784 if (!n->subsys || endgrpid != 0x1) { 4785 return NVME_INVALID_FIELD | NVME_DNR; 4786 } 4787 4788 if (off >= sizeof(info)) { 4789 return NVME_INVALID_FIELD | NVME_DNR; 4790 } 4791 4792 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { 4793 NvmeNamespace *ns = nvme_subsys_ns(n->subsys, i); 4794 if (!ns) { 4795 continue; 4796 } 4797 4798 nvme_set_blk_stats(ns, &stats); 4799 } 4800 4801 info.data_units_read[0] = 4802 cpu_to_le64(DIV_ROUND_UP(stats.units_read / 1000000000, 1000000000)); 4803 info.data_units_written[0] = 4804 cpu_to_le64(DIV_ROUND_UP(stats.units_written / 1000000000, 1000000000)); 4805 info.media_units_written[0] = 4806 cpu_to_le64(DIV_ROUND_UP(stats.units_written / 1000000000, 1000000000)); 4807 4808 info.host_read_commands[0] = cpu_to_le64(stats.read_commands); 4809 info.host_write_commands[0] = cpu_to_le64(stats.write_commands); 4810 4811 buf_len = MIN(sizeof(info) - off, buf_len); 4812 4813 return nvme_c2h(n, (uint8_t *)&info + off, buf_len, req); 4814 } 4815 4816 4817 static uint16_t nvme_fw_log_info(NvmeCtrl *n, uint32_t buf_len, uint64_t off, 4818 NvmeRequest *req) 4819 { 4820 uint32_t trans_len; 4821 NvmeFwSlotInfoLog fw_log = { 4822 .afi = 0x1, 4823 }; 4824 4825 if (off >= sizeof(fw_log)) { 4826 return NVME_INVALID_FIELD | NVME_DNR; 4827 } 4828 4829 strpadcpy((char *)&fw_log.frs1, sizeof(fw_log.frs1), "1.0", ' '); 4830 trans_len = MIN(sizeof(fw_log) - off, buf_len); 4831 4832 return nvme_c2h(n, (uint8_t *) &fw_log + off, trans_len, req); 4833 } 4834 4835 static uint16_t nvme_error_info(NvmeCtrl *n, uint8_t rae, uint32_t buf_len, 4836 uint64_t off, NvmeRequest *req) 4837 { 4838 uint32_t trans_len; 4839 NvmeErrorLog errlog; 4840 4841 if (off >= sizeof(errlog)) { 4842 return NVME_INVALID_FIELD | NVME_DNR; 4843 } 4844 4845 if (!rae) { 4846 nvme_clear_events(n, NVME_AER_TYPE_ERROR); 4847 } 4848 4849 memset(&errlog, 0x0, sizeof(errlog)); 4850 trans_len = MIN(sizeof(errlog) - off, buf_len); 4851 4852 return nvme_c2h(n, (uint8_t *)&errlog, trans_len, req); 4853 } 4854 4855 static uint16_t nvme_changed_nslist(NvmeCtrl *n, uint8_t rae, uint32_t buf_len, 4856 uint64_t off, NvmeRequest *req) 4857 { 4858 uint32_t nslist[1024]; 4859 uint32_t trans_len; 4860 int i = 0; 4861 uint32_t nsid; 4862 4863 if (off >= sizeof(nslist)) { 4864 trace_pci_nvme_err_invalid_log_page_offset(off, sizeof(nslist)); 4865 return NVME_INVALID_FIELD | NVME_DNR; 4866 } 4867 4868 memset(nslist, 0x0, sizeof(nslist)); 4869 trans_len = MIN(sizeof(nslist) - off, buf_len); 4870 4871 while ((nsid = find_first_bit(n->changed_nsids, NVME_CHANGED_NSID_SIZE)) != 4872 NVME_CHANGED_NSID_SIZE) { 4873 /* 4874 * If more than 1024 namespaces, the first entry in the log page should 4875 * be set to FFFFFFFFh and the others to 0 as spec. 4876 */ 4877 if (i == ARRAY_SIZE(nslist)) { 4878 memset(nslist, 0x0, sizeof(nslist)); 4879 nslist[0] = 0xffffffff; 4880 break; 4881 } 4882 4883 nslist[i++] = nsid; 4884 clear_bit(nsid, n->changed_nsids); 4885 } 4886 4887 /* 4888 * Remove all the remaining list entries in case returns directly due to 4889 * more than 1024 namespaces. 4890 */ 4891 if (nslist[0] == 0xffffffff) { 4892 bitmap_zero(n->changed_nsids, NVME_CHANGED_NSID_SIZE); 4893 } 4894 4895 if (!rae) { 4896 nvme_clear_events(n, NVME_AER_TYPE_NOTICE); 4897 } 4898 4899 return nvme_c2h(n, ((uint8_t *)nslist) + off, trans_len, req); 4900 } 4901 4902 static uint16_t nvme_cmd_effects(NvmeCtrl *n, uint8_t csi, uint32_t buf_len, 4903 uint64_t off, NvmeRequest *req) 4904 { 4905 NvmeEffectsLog log = {}; 4906 const uint32_t *src_iocs = NULL; 4907 uint32_t trans_len; 4908 4909 if (off >= sizeof(log)) { 4910 trace_pci_nvme_err_invalid_log_page_offset(off, sizeof(log)); 4911 return NVME_INVALID_FIELD | NVME_DNR; 4912 } 4913 4914 switch (NVME_CC_CSS(ldl_le_p(&n->bar.cc))) { 4915 case NVME_CC_CSS_NVM: 4916 src_iocs = nvme_cse_iocs_nvm; 4917 /* fall through */ 4918 case NVME_CC_CSS_ADMIN_ONLY: 4919 break; 4920 case NVME_CC_CSS_CSI: 4921 switch (csi) { 4922 case NVME_CSI_NVM: 4923 src_iocs = nvme_cse_iocs_nvm; 4924 break; 4925 case NVME_CSI_ZONED: 4926 src_iocs = nvme_cse_iocs_zoned; 4927 break; 4928 } 4929 } 4930 4931 memcpy(log.acs, nvme_cse_acs, sizeof(nvme_cse_acs)); 4932 4933 if (src_iocs) { 4934 memcpy(log.iocs, src_iocs, sizeof(log.iocs)); 4935 } 4936 4937 trans_len = MIN(sizeof(log) - off, buf_len); 4938 4939 return nvme_c2h(n, ((uint8_t *)&log) + off, trans_len, req); 4940 } 4941 4942 static size_t sizeof_fdp_conf_descr(size_t nruh, size_t vss) 4943 { 4944 size_t entry_siz = sizeof(NvmeFdpDescrHdr) + nruh * sizeof(NvmeRuhDescr) 4945 + vss; 4946 return ROUND_UP(entry_siz, 8); 4947 } 4948 4949 static uint16_t nvme_fdp_confs(NvmeCtrl *n, uint32_t endgrpid, uint32_t buf_len, 4950 uint64_t off, NvmeRequest *req) 4951 { 4952 uint32_t log_size, trans_len; 4953 g_autofree uint8_t *buf = NULL; 4954 NvmeFdpDescrHdr *hdr; 4955 NvmeRuhDescr *ruhd; 4956 NvmeEnduranceGroup *endgrp; 4957 NvmeFdpConfsHdr *log; 4958 size_t nruh, fdp_descr_size; 4959 int i; 4960 4961 if (endgrpid != 1 || !n->subsys) { 4962 return NVME_INVALID_FIELD | NVME_DNR; 4963 } 4964 4965 endgrp = &n->subsys->endgrp; 4966 4967 if (endgrp->fdp.enabled) { 4968 nruh = endgrp->fdp.nruh; 4969 } else { 4970 nruh = 1; 4971 } 4972 4973 fdp_descr_size = sizeof_fdp_conf_descr(nruh, FDPVSS); 4974 log_size = sizeof(NvmeFdpConfsHdr) + fdp_descr_size; 4975 4976 if (off >= log_size) { 4977 return NVME_INVALID_FIELD | NVME_DNR; 4978 } 4979 4980 trans_len = MIN(log_size - off, buf_len); 4981 4982 buf = g_malloc0(log_size); 4983 log = (NvmeFdpConfsHdr *)buf; 4984 hdr = (NvmeFdpDescrHdr *)(log + 1); 4985 ruhd = (NvmeRuhDescr *)(buf + sizeof(*log) + sizeof(*hdr)); 4986 4987 log->num_confs = cpu_to_le16(0); 4988 log->size = cpu_to_le32(log_size); 4989 4990 hdr->descr_size = cpu_to_le16(fdp_descr_size); 4991 if (endgrp->fdp.enabled) { 4992 hdr->fdpa = FIELD_DP8(hdr->fdpa, FDPA, VALID, 1); 4993 hdr->fdpa = FIELD_DP8(hdr->fdpa, FDPA, RGIF, endgrp->fdp.rgif); 4994 hdr->nrg = cpu_to_le16(endgrp->fdp.nrg); 4995 hdr->nruh = cpu_to_le16(endgrp->fdp.nruh); 4996 hdr->maxpids = cpu_to_le16(NVME_FDP_MAXPIDS - 1); 4997 hdr->nnss = cpu_to_le32(NVME_MAX_NAMESPACES); 4998 hdr->runs = cpu_to_le64(endgrp->fdp.runs); 4999 5000 for (i = 0; i < nruh; i++) { 5001 ruhd->ruht = NVME_RUHT_INITIALLY_ISOLATED; 5002 ruhd++; 5003 } 5004 } else { 5005 /* 1 bit for RUH in PIF -> 2 RUHs max. */ 5006 hdr->nrg = cpu_to_le16(1); 5007 hdr->nruh = cpu_to_le16(1); 5008 hdr->maxpids = cpu_to_le16(NVME_FDP_MAXPIDS - 1); 5009 hdr->nnss = cpu_to_le32(1); 5010 hdr->runs = cpu_to_le64(96 * MiB); 5011 5012 ruhd->ruht = NVME_RUHT_INITIALLY_ISOLATED; 5013 } 5014 5015 return nvme_c2h(n, (uint8_t *)buf + off, trans_len, req); 5016 } 5017 5018 static uint16_t nvme_fdp_ruh_usage(NvmeCtrl *n, uint32_t endgrpid, 5019 uint32_t dw10, uint32_t dw12, 5020 uint32_t buf_len, uint64_t off, 5021 NvmeRequest *req) 5022 { 5023 NvmeRuHandle *ruh; 5024 NvmeRuhuLog *hdr; 5025 NvmeRuhuDescr *ruhud; 5026 NvmeEnduranceGroup *endgrp; 5027 g_autofree uint8_t *buf = NULL; 5028 uint32_t log_size, trans_len; 5029 uint16_t i; 5030 5031 if (endgrpid != 1 || !n->subsys) { 5032 return NVME_INVALID_FIELD | NVME_DNR; 5033 } 5034 5035 endgrp = &n->subsys->endgrp; 5036 5037 if (!endgrp->fdp.enabled) { 5038 return NVME_FDP_DISABLED | NVME_DNR; 5039 } 5040 5041 log_size = sizeof(NvmeRuhuLog) + endgrp->fdp.nruh * sizeof(NvmeRuhuDescr); 5042 5043 if (off >= log_size) { 5044 return NVME_INVALID_FIELD | NVME_DNR; 5045 } 5046 5047 trans_len = MIN(log_size - off, buf_len); 5048 5049 buf = g_malloc0(log_size); 5050 hdr = (NvmeRuhuLog *)buf; 5051 ruhud = (NvmeRuhuDescr *)(hdr + 1); 5052 5053 ruh = endgrp->fdp.ruhs; 5054 hdr->nruh = cpu_to_le16(endgrp->fdp.nruh); 5055 5056 for (i = 0; i < endgrp->fdp.nruh; i++, ruhud++, ruh++) { 5057 ruhud->ruha = ruh->ruha; 5058 } 5059 5060 return nvme_c2h(n, (uint8_t *)buf + off, trans_len, req); 5061 } 5062 5063 static uint16_t nvme_fdp_stats(NvmeCtrl *n, uint32_t endgrpid, uint32_t buf_len, 5064 uint64_t off, NvmeRequest *req) 5065 { 5066 NvmeEnduranceGroup *endgrp; 5067 NvmeFdpStatsLog log = {}; 5068 uint32_t trans_len; 5069 5070 if (off >= sizeof(NvmeFdpStatsLog)) { 5071 return NVME_INVALID_FIELD | NVME_DNR; 5072 } 5073 5074 if (endgrpid != 1 || !n->subsys) { 5075 return NVME_INVALID_FIELD | NVME_DNR; 5076 } 5077 5078 if (!n->subsys->endgrp.fdp.enabled) { 5079 return NVME_FDP_DISABLED | NVME_DNR; 5080 } 5081 5082 endgrp = &n->subsys->endgrp; 5083 5084 trans_len = MIN(sizeof(log) - off, buf_len); 5085 5086 /* spec value is 128 bit, we only use 64 bit */ 5087 log.hbmw[0] = cpu_to_le64(endgrp->fdp.hbmw); 5088 log.mbmw[0] = cpu_to_le64(endgrp->fdp.mbmw); 5089 log.mbe[0] = cpu_to_le64(endgrp->fdp.mbe); 5090 5091 return nvme_c2h(n, (uint8_t *)&log + off, trans_len, req); 5092 } 5093 5094 static uint16_t nvme_fdp_events(NvmeCtrl *n, uint32_t endgrpid, 5095 uint32_t buf_len, uint64_t off, 5096 NvmeRequest *req) 5097 { 5098 NvmeEnduranceGroup *endgrp; 5099 NvmeCmd *cmd = &req->cmd; 5100 bool host_events = (cmd->cdw10 >> 8) & 0x1; 5101 uint32_t log_size, trans_len; 5102 NvmeFdpEventBuffer *ebuf; 5103 g_autofree NvmeFdpEventsLog *elog = NULL; 5104 NvmeFdpEvent *event; 5105 5106 if (endgrpid != 1 || !n->subsys) { 5107 return NVME_INVALID_FIELD | NVME_DNR; 5108 } 5109 5110 endgrp = &n->subsys->endgrp; 5111 5112 if (!endgrp->fdp.enabled) { 5113 return NVME_FDP_DISABLED | NVME_DNR; 5114 } 5115 5116 if (host_events) { 5117 ebuf = &endgrp->fdp.host_events; 5118 } else { 5119 ebuf = &endgrp->fdp.ctrl_events; 5120 } 5121 5122 log_size = sizeof(NvmeFdpEventsLog) + ebuf->nelems * sizeof(NvmeFdpEvent); 5123 5124 if (off >= log_size) { 5125 return NVME_INVALID_FIELD | NVME_DNR; 5126 } 5127 5128 trans_len = MIN(log_size - off, buf_len); 5129 elog = g_malloc0(log_size); 5130 elog->num_events = cpu_to_le32(ebuf->nelems); 5131 event = (NvmeFdpEvent *)(elog + 1); 5132 5133 if (ebuf->nelems && ebuf->start == ebuf->next) { 5134 unsigned int nelems = (NVME_FDP_MAX_EVENTS - ebuf->start); 5135 /* wrap over, copy [start;NVME_FDP_MAX_EVENTS[ and [0; next[ */ 5136 memcpy(event, &ebuf->events[ebuf->start], 5137 sizeof(NvmeFdpEvent) * nelems); 5138 memcpy(event + nelems, ebuf->events, 5139 sizeof(NvmeFdpEvent) * ebuf->next); 5140 } else if (ebuf->start < ebuf->next) { 5141 memcpy(event, &ebuf->events[ebuf->start], 5142 sizeof(NvmeFdpEvent) * (ebuf->next - ebuf->start)); 5143 } 5144 5145 return nvme_c2h(n, (uint8_t *)elog + off, trans_len, req); 5146 } 5147 5148 static uint16_t nvme_get_log(NvmeCtrl *n, NvmeRequest *req) 5149 { 5150 NvmeCmd *cmd = &req->cmd; 5151 5152 uint32_t dw10 = le32_to_cpu(cmd->cdw10); 5153 uint32_t dw11 = le32_to_cpu(cmd->cdw11); 5154 uint32_t dw12 = le32_to_cpu(cmd->cdw12); 5155 uint32_t dw13 = le32_to_cpu(cmd->cdw13); 5156 uint8_t lid = dw10 & 0xff; 5157 uint8_t lsp = (dw10 >> 8) & 0xf; 5158 uint8_t rae = (dw10 >> 15) & 0x1; 5159 uint8_t csi = le32_to_cpu(cmd->cdw14) >> 24; 5160 uint32_t numdl, numdu, lspi; 5161 uint64_t off, lpol, lpou; 5162 size_t len; 5163 uint16_t status; 5164 5165 numdl = (dw10 >> 16); 5166 numdu = (dw11 & 0xffff); 5167 lspi = (dw11 >> 16); 5168 lpol = dw12; 5169 lpou = dw13; 5170 5171 len = (((numdu << 16) | numdl) + 1) << 2; 5172 off = (lpou << 32ULL) | lpol; 5173 5174 if (off & 0x3) { 5175 return NVME_INVALID_FIELD | NVME_DNR; 5176 } 5177 5178 trace_pci_nvme_get_log(nvme_cid(req), lid, lsp, rae, len, off); 5179 5180 status = nvme_check_mdts(n, len); 5181 if (status) { 5182 return status; 5183 } 5184 5185 switch (lid) { 5186 case NVME_LOG_ERROR_INFO: 5187 return nvme_error_info(n, rae, len, off, req); 5188 case NVME_LOG_SMART_INFO: 5189 return nvme_smart_info(n, rae, len, off, req); 5190 case NVME_LOG_FW_SLOT_INFO: 5191 return nvme_fw_log_info(n, len, off, req); 5192 case NVME_LOG_CHANGED_NSLIST: 5193 return nvme_changed_nslist(n, rae, len, off, req); 5194 case NVME_LOG_CMD_EFFECTS: 5195 return nvme_cmd_effects(n, csi, len, off, req); 5196 case NVME_LOG_ENDGRP: 5197 return nvme_endgrp_info(n, rae, len, off, req); 5198 case NVME_LOG_FDP_CONFS: 5199 return nvme_fdp_confs(n, lspi, len, off, req); 5200 case NVME_LOG_FDP_RUH_USAGE: 5201 return nvme_fdp_ruh_usage(n, lspi, dw10, dw12, len, off, req); 5202 case NVME_LOG_FDP_STATS: 5203 return nvme_fdp_stats(n, lspi, len, off, req); 5204 case NVME_LOG_FDP_EVENTS: 5205 return nvme_fdp_events(n, lspi, len, off, req); 5206 default: 5207 trace_pci_nvme_err_invalid_log_page(nvme_cid(req), lid); 5208 return NVME_INVALID_FIELD | NVME_DNR; 5209 } 5210 } 5211 5212 static void nvme_free_cq(NvmeCQueue *cq, NvmeCtrl *n) 5213 { 5214 PCIDevice *pci = PCI_DEVICE(n); 5215 uint16_t offset = (cq->cqid << 3) + (1 << 2); 5216 5217 n->cq[cq->cqid] = NULL; 5218 qemu_bh_delete(cq->bh); 5219 if (cq->ioeventfd_enabled) { 5220 memory_region_del_eventfd(&n->iomem, 5221 0x1000 + offset, 4, false, 0, &cq->notifier); 5222 event_notifier_set_handler(&cq->notifier, NULL); 5223 event_notifier_cleanup(&cq->notifier); 5224 } 5225 if (msix_enabled(pci)) { 5226 msix_vector_unuse(pci, cq->vector); 5227 } 5228 if (cq->cqid) { 5229 g_free(cq); 5230 } 5231 } 5232 5233 static uint16_t nvme_del_cq(NvmeCtrl *n, NvmeRequest *req) 5234 { 5235 NvmeDeleteQ *c = (NvmeDeleteQ *)&req->cmd; 5236 NvmeCQueue *cq; 5237 uint16_t qid = le16_to_cpu(c->qid); 5238 5239 if (unlikely(!qid || nvme_check_cqid(n, qid))) { 5240 trace_pci_nvme_err_invalid_del_cq_cqid(qid); 5241 return NVME_INVALID_CQID | NVME_DNR; 5242 } 5243 5244 cq = n->cq[qid]; 5245 if (unlikely(!QTAILQ_EMPTY(&cq->sq_list))) { 5246 trace_pci_nvme_err_invalid_del_cq_notempty(qid); 5247 return NVME_INVALID_QUEUE_DEL; 5248 } 5249 5250 if (cq->irq_enabled && cq->tail != cq->head) { 5251 n->cq_pending--; 5252 } 5253 5254 nvme_irq_deassert(n, cq); 5255 trace_pci_nvme_del_cq(qid); 5256 nvme_free_cq(cq, n); 5257 return NVME_SUCCESS; 5258 } 5259 5260 static void nvme_init_cq(NvmeCQueue *cq, NvmeCtrl *n, uint64_t dma_addr, 5261 uint16_t cqid, uint16_t vector, uint16_t size, 5262 uint16_t irq_enabled) 5263 { 5264 PCIDevice *pci = PCI_DEVICE(n); 5265 5266 if (msix_enabled(pci)) { 5267 msix_vector_use(pci, vector); 5268 } 5269 cq->ctrl = n; 5270 cq->cqid = cqid; 5271 cq->size = size; 5272 cq->dma_addr = dma_addr; 5273 cq->phase = 1; 5274 cq->irq_enabled = irq_enabled; 5275 cq->vector = vector; 5276 cq->head = cq->tail = 0; 5277 QTAILQ_INIT(&cq->req_list); 5278 QTAILQ_INIT(&cq->sq_list); 5279 if (n->dbbuf_enabled) { 5280 cq->db_addr = n->dbbuf_dbs + (cqid << 3) + (1 << 2); 5281 cq->ei_addr = n->dbbuf_eis + (cqid << 3) + (1 << 2); 5282 5283 if (n->params.ioeventfd && cqid != 0) { 5284 if (!nvme_init_cq_ioeventfd(cq)) { 5285 cq->ioeventfd_enabled = true; 5286 } 5287 } 5288 } 5289 n->cq[cqid] = cq; 5290 cq->bh = qemu_bh_new_guarded(nvme_post_cqes, cq, 5291 &DEVICE(cq->ctrl)->mem_reentrancy_guard); 5292 } 5293 5294 static uint16_t nvme_create_cq(NvmeCtrl *n, NvmeRequest *req) 5295 { 5296 NvmeCQueue *cq; 5297 NvmeCreateCq *c = (NvmeCreateCq *)&req->cmd; 5298 uint16_t cqid = le16_to_cpu(c->cqid); 5299 uint16_t vector = le16_to_cpu(c->irq_vector); 5300 uint16_t qsize = le16_to_cpu(c->qsize); 5301 uint16_t qflags = le16_to_cpu(c->cq_flags); 5302 uint64_t prp1 = le64_to_cpu(c->prp1); 5303 uint32_t cc = ldq_le_p(&n->bar.cc); 5304 uint8_t iocqes = NVME_CC_IOCQES(cc); 5305 uint8_t iosqes = NVME_CC_IOSQES(cc); 5306 5307 trace_pci_nvme_create_cq(prp1, cqid, vector, qsize, qflags, 5308 NVME_CQ_FLAGS_IEN(qflags) != 0); 5309 5310 if (iosqes != NVME_SQES || iocqes != NVME_CQES) { 5311 trace_pci_nvme_err_invalid_create_cq_entry_size(iosqes, iocqes); 5312 return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR; 5313 } 5314 5315 if (unlikely(!cqid || cqid > n->conf_ioqpairs || n->cq[cqid] != NULL)) { 5316 trace_pci_nvme_err_invalid_create_cq_cqid(cqid); 5317 return NVME_INVALID_QID | NVME_DNR; 5318 } 5319 if (unlikely(!qsize || qsize > NVME_CAP_MQES(ldq_le_p(&n->bar.cap)))) { 5320 trace_pci_nvme_err_invalid_create_cq_size(qsize); 5321 return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR; 5322 } 5323 if (unlikely(prp1 & (n->page_size - 1))) { 5324 trace_pci_nvme_err_invalid_create_cq_addr(prp1); 5325 return NVME_INVALID_PRP_OFFSET | NVME_DNR; 5326 } 5327 if (unlikely(!msix_enabled(PCI_DEVICE(n)) && vector)) { 5328 trace_pci_nvme_err_invalid_create_cq_vector(vector); 5329 return NVME_INVALID_IRQ_VECTOR | NVME_DNR; 5330 } 5331 if (unlikely(vector >= n->conf_msix_qsize)) { 5332 trace_pci_nvme_err_invalid_create_cq_vector(vector); 5333 return NVME_INVALID_IRQ_VECTOR | NVME_DNR; 5334 } 5335 if (unlikely(!(NVME_CQ_FLAGS_PC(qflags)))) { 5336 trace_pci_nvme_err_invalid_create_cq_qflags(NVME_CQ_FLAGS_PC(qflags)); 5337 return NVME_INVALID_FIELD | NVME_DNR; 5338 } 5339 5340 cq = g_malloc0(sizeof(*cq)); 5341 nvme_init_cq(cq, n, prp1, cqid, vector, qsize + 1, 5342 NVME_CQ_FLAGS_IEN(qflags)); 5343 5344 /* 5345 * It is only required to set qs_created when creating a completion queue; 5346 * creating a submission queue without a matching completion queue will 5347 * fail. 5348 */ 5349 n->qs_created = true; 5350 return NVME_SUCCESS; 5351 } 5352 5353 static uint16_t nvme_rpt_empty_id_struct(NvmeCtrl *n, NvmeRequest *req) 5354 { 5355 uint8_t id[NVME_IDENTIFY_DATA_SIZE] = {}; 5356 5357 return nvme_c2h(n, id, sizeof(id), req); 5358 } 5359 5360 static uint16_t nvme_identify_ctrl(NvmeCtrl *n, NvmeRequest *req) 5361 { 5362 trace_pci_nvme_identify_ctrl(); 5363 5364 return nvme_c2h(n, (uint8_t *)&n->id_ctrl, sizeof(n->id_ctrl), req); 5365 } 5366 5367 static uint16_t nvme_identify_ctrl_csi(NvmeCtrl *n, NvmeRequest *req) 5368 { 5369 NvmeIdentify *c = (NvmeIdentify *)&req->cmd; 5370 uint8_t id[NVME_IDENTIFY_DATA_SIZE] = {}; 5371 NvmeIdCtrlNvm *id_nvm = (NvmeIdCtrlNvm *)&id; 5372 5373 trace_pci_nvme_identify_ctrl_csi(c->csi); 5374 5375 switch (c->csi) { 5376 case NVME_CSI_NVM: 5377 id_nvm->vsl = n->params.vsl; 5378 id_nvm->dmrsl = cpu_to_le32(n->dmrsl); 5379 break; 5380 5381 case NVME_CSI_ZONED: 5382 ((NvmeIdCtrlZoned *)&id)->zasl = n->params.zasl; 5383 break; 5384 5385 default: 5386 return NVME_INVALID_FIELD | NVME_DNR; 5387 } 5388 5389 return nvme_c2h(n, id, sizeof(id), req); 5390 } 5391 5392 static uint16_t nvme_identify_ns(NvmeCtrl *n, NvmeRequest *req, bool active) 5393 { 5394 NvmeNamespace *ns; 5395 NvmeIdentify *c = (NvmeIdentify *)&req->cmd; 5396 uint32_t nsid = le32_to_cpu(c->nsid); 5397 5398 trace_pci_nvme_identify_ns(nsid); 5399 5400 if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) { 5401 return NVME_INVALID_NSID | NVME_DNR; 5402 } 5403 5404 ns = nvme_ns(n, nsid); 5405 if (unlikely(!ns)) { 5406 if (!active) { 5407 ns = nvme_subsys_ns(n->subsys, nsid); 5408 if (!ns) { 5409 return nvme_rpt_empty_id_struct(n, req); 5410 } 5411 } else { 5412 return nvme_rpt_empty_id_struct(n, req); 5413 } 5414 } 5415 5416 if (active || ns->csi == NVME_CSI_NVM) { 5417 return nvme_c2h(n, (uint8_t *)&ns->id_ns, sizeof(NvmeIdNs), req); 5418 } 5419 5420 return NVME_INVALID_CMD_SET | NVME_DNR; 5421 } 5422 5423 static uint16_t nvme_identify_ctrl_list(NvmeCtrl *n, NvmeRequest *req, 5424 bool attached) 5425 { 5426 NvmeIdentify *c = (NvmeIdentify *)&req->cmd; 5427 uint32_t nsid = le32_to_cpu(c->nsid); 5428 uint16_t min_id = le16_to_cpu(c->ctrlid); 5429 uint16_t list[NVME_CONTROLLER_LIST_SIZE] = {}; 5430 uint16_t *ids = &list[1]; 5431 NvmeNamespace *ns; 5432 NvmeCtrl *ctrl; 5433 int cntlid, nr_ids = 0; 5434 5435 trace_pci_nvme_identify_ctrl_list(c->cns, min_id); 5436 5437 if (!n->subsys) { 5438 return NVME_INVALID_FIELD | NVME_DNR; 5439 } 5440 5441 if (attached) { 5442 if (nsid == NVME_NSID_BROADCAST) { 5443 return NVME_INVALID_FIELD | NVME_DNR; 5444 } 5445 5446 ns = nvme_subsys_ns(n->subsys, nsid); 5447 if (!ns) { 5448 return NVME_INVALID_FIELD | NVME_DNR; 5449 } 5450 } 5451 5452 for (cntlid = min_id; cntlid < ARRAY_SIZE(n->subsys->ctrls); cntlid++) { 5453 ctrl = nvme_subsys_ctrl(n->subsys, cntlid); 5454 if (!ctrl) { 5455 continue; 5456 } 5457 5458 if (attached && !nvme_ns(ctrl, nsid)) { 5459 continue; 5460 } 5461 5462 ids[nr_ids++] = cntlid; 5463 } 5464 5465 list[0] = nr_ids; 5466 5467 return nvme_c2h(n, (uint8_t *)list, sizeof(list), req); 5468 } 5469 5470 static uint16_t nvme_identify_pri_ctrl_cap(NvmeCtrl *n, NvmeRequest *req) 5471 { 5472 trace_pci_nvme_identify_pri_ctrl_cap(le16_to_cpu(n->pri_ctrl_cap.cntlid)); 5473 5474 return nvme_c2h(n, (uint8_t *)&n->pri_ctrl_cap, 5475 sizeof(NvmePriCtrlCap), req); 5476 } 5477 5478 static uint16_t nvme_identify_sec_ctrl_list(NvmeCtrl *n, NvmeRequest *req) 5479 { 5480 NvmeIdentify *c = (NvmeIdentify *)&req->cmd; 5481 uint16_t pri_ctrl_id = le16_to_cpu(n->pri_ctrl_cap.cntlid); 5482 uint16_t min_id = le16_to_cpu(c->ctrlid); 5483 uint8_t num_sec_ctrl = n->sec_ctrl_list.numcntl; 5484 NvmeSecCtrlList list = {0}; 5485 uint8_t i; 5486 5487 for (i = 0; i < num_sec_ctrl; i++) { 5488 if (n->sec_ctrl_list.sec[i].scid >= min_id) { 5489 list.numcntl = num_sec_ctrl - i; 5490 memcpy(&list.sec, n->sec_ctrl_list.sec + i, 5491 list.numcntl * sizeof(NvmeSecCtrlEntry)); 5492 break; 5493 } 5494 } 5495 5496 trace_pci_nvme_identify_sec_ctrl_list(pri_ctrl_id, list.numcntl); 5497 5498 return nvme_c2h(n, (uint8_t *)&list, sizeof(list), req); 5499 } 5500 5501 static uint16_t nvme_identify_ns_csi(NvmeCtrl *n, NvmeRequest *req, 5502 bool active) 5503 { 5504 NvmeNamespace *ns; 5505 NvmeIdentify *c = (NvmeIdentify *)&req->cmd; 5506 uint32_t nsid = le32_to_cpu(c->nsid); 5507 5508 trace_pci_nvme_identify_ns_csi(nsid, c->csi); 5509 5510 if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) { 5511 return NVME_INVALID_NSID | NVME_DNR; 5512 } 5513 5514 ns = nvme_ns(n, nsid); 5515 if (unlikely(!ns)) { 5516 if (!active) { 5517 ns = nvme_subsys_ns(n->subsys, nsid); 5518 if (!ns) { 5519 return nvme_rpt_empty_id_struct(n, req); 5520 } 5521 } else { 5522 return nvme_rpt_empty_id_struct(n, req); 5523 } 5524 } 5525 5526 if (c->csi == NVME_CSI_NVM) { 5527 return nvme_c2h(n, (uint8_t *)&ns->id_ns_nvm, sizeof(NvmeIdNsNvm), 5528 req); 5529 } else if (c->csi == NVME_CSI_ZONED && ns->csi == NVME_CSI_ZONED) { 5530 return nvme_c2h(n, (uint8_t *)ns->id_ns_zoned, sizeof(NvmeIdNsZoned), 5531 req); 5532 } 5533 5534 return NVME_INVALID_FIELD | NVME_DNR; 5535 } 5536 5537 static uint16_t nvme_identify_nslist(NvmeCtrl *n, NvmeRequest *req, 5538 bool active) 5539 { 5540 NvmeNamespace *ns; 5541 NvmeIdentify *c = (NvmeIdentify *)&req->cmd; 5542 uint32_t min_nsid = le32_to_cpu(c->nsid); 5543 uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {}; 5544 static const int data_len = sizeof(list); 5545 uint32_t *list_ptr = (uint32_t *)list; 5546 int i, j = 0; 5547 5548 trace_pci_nvme_identify_nslist(min_nsid); 5549 5550 /* 5551 * Both FFFFFFFFh (NVME_NSID_BROADCAST) and FFFFFFFFEh are invalid values 5552 * since the Active Namespace ID List should return namespaces with ids 5553 * *higher* than the NSID specified in the command. This is also specified 5554 * in the spec (NVM Express v1.3d, Section 5.15.4). 5555 */ 5556 if (min_nsid >= NVME_NSID_BROADCAST - 1) { 5557 return NVME_INVALID_NSID | NVME_DNR; 5558 } 5559 5560 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { 5561 ns = nvme_ns(n, i); 5562 if (!ns) { 5563 if (!active) { 5564 ns = nvme_subsys_ns(n->subsys, i); 5565 if (!ns) { 5566 continue; 5567 } 5568 } else { 5569 continue; 5570 } 5571 } 5572 if (ns->params.nsid <= min_nsid) { 5573 continue; 5574 } 5575 list_ptr[j++] = cpu_to_le32(ns->params.nsid); 5576 if (j == data_len / sizeof(uint32_t)) { 5577 break; 5578 } 5579 } 5580 5581 return nvme_c2h(n, list, data_len, req); 5582 } 5583 5584 static uint16_t nvme_identify_nslist_csi(NvmeCtrl *n, NvmeRequest *req, 5585 bool active) 5586 { 5587 NvmeNamespace *ns; 5588 NvmeIdentify *c = (NvmeIdentify *)&req->cmd; 5589 uint32_t min_nsid = le32_to_cpu(c->nsid); 5590 uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {}; 5591 static const int data_len = sizeof(list); 5592 uint32_t *list_ptr = (uint32_t *)list; 5593 int i, j = 0; 5594 5595 trace_pci_nvme_identify_nslist_csi(min_nsid, c->csi); 5596 5597 /* 5598 * Same as in nvme_identify_nslist(), FFFFFFFFh/FFFFFFFFEh are invalid. 5599 */ 5600 if (min_nsid >= NVME_NSID_BROADCAST - 1) { 5601 return NVME_INVALID_NSID | NVME_DNR; 5602 } 5603 5604 if (c->csi != NVME_CSI_NVM && c->csi != NVME_CSI_ZONED) { 5605 return NVME_INVALID_FIELD | NVME_DNR; 5606 } 5607 5608 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { 5609 ns = nvme_ns(n, i); 5610 if (!ns) { 5611 if (!active) { 5612 ns = nvme_subsys_ns(n->subsys, i); 5613 if (!ns) { 5614 continue; 5615 } 5616 } else { 5617 continue; 5618 } 5619 } 5620 if (ns->params.nsid <= min_nsid || c->csi != ns->csi) { 5621 continue; 5622 } 5623 list_ptr[j++] = cpu_to_le32(ns->params.nsid); 5624 if (j == data_len / sizeof(uint32_t)) { 5625 break; 5626 } 5627 } 5628 5629 return nvme_c2h(n, list, data_len, req); 5630 } 5631 5632 static uint16_t nvme_identify_ns_descr_list(NvmeCtrl *n, NvmeRequest *req) 5633 { 5634 NvmeNamespace *ns; 5635 NvmeIdentify *c = (NvmeIdentify *)&req->cmd; 5636 uint32_t nsid = le32_to_cpu(c->nsid); 5637 uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {}; 5638 uint8_t *pos = list; 5639 struct { 5640 NvmeIdNsDescr hdr; 5641 uint8_t v[NVME_NIDL_UUID]; 5642 } QEMU_PACKED uuid = {}; 5643 struct { 5644 NvmeIdNsDescr hdr; 5645 uint64_t v; 5646 } QEMU_PACKED eui64 = {}; 5647 struct { 5648 NvmeIdNsDescr hdr; 5649 uint8_t v; 5650 } QEMU_PACKED csi = {}; 5651 5652 trace_pci_nvme_identify_ns_descr_list(nsid); 5653 5654 if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) { 5655 return NVME_INVALID_NSID | NVME_DNR; 5656 } 5657 5658 ns = nvme_ns(n, nsid); 5659 if (unlikely(!ns)) { 5660 return NVME_INVALID_FIELD | NVME_DNR; 5661 } 5662 5663 if (!qemu_uuid_is_null(&ns->params.uuid)) { 5664 uuid.hdr.nidt = NVME_NIDT_UUID; 5665 uuid.hdr.nidl = NVME_NIDL_UUID; 5666 memcpy(uuid.v, ns->params.uuid.data, NVME_NIDL_UUID); 5667 memcpy(pos, &uuid, sizeof(uuid)); 5668 pos += sizeof(uuid); 5669 } 5670 5671 if (ns->params.eui64) { 5672 eui64.hdr.nidt = NVME_NIDT_EUI64; 5673 eui64.hdr.nidl = NVME_NIDL_EUI64; 5674 eui64.v = cpu_to_be64(ns->params.eui64); 5675 memcpy(pos, &eui64, sizeof(eui64)); 5676 pos += sizeof(eui64); 5677 } 5678 5679 csi.hdr.nidt = NVME_NIDT_CSI; 5680 csi.hdr.nidl = NVME_NIDL_CSI; 5681 csi.v = ns->csi; 5682 memcpy(pos, &csi, sizeof(csi)); 5683 pos += sizeof(csi); 5684 5685 return nvme_c2h(n, list, sizeof(list), req); 5686 } 5687 5688 static uint16_t nvme_identify_cmd_set(NvmeCtrl *n, NvmeRequest *req) 5689 { 5690 uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {}; 5691 static const int data_len = sizeof(list); 5692 5693 trace_pci_nvme_identify_cmd_set(); 5694 5695 NVME_SET_CSI(*list, NVME_CSI_NVM); 5696 NVME_SET_CSI(*list, NVME_CSI_ZONED); 5697 5698 return nvme_c2h(n, list, data_len, req); 5699 } 5700 5701 static uint16_t nvme_identify(NvmeCtrl *n, NvmeRequest *req) 5702 { 5703 NvmeIdentify *c = (NvmeIdentify *)&req->cmd; 5704 5705 trace_pci_nvme_identify(nvme_cid(req), c->cns, le16_to_cpu(c->ctrlid), 5706 c->csi); 5707 5708 switch (c->cns) { 5709 case NVME_ID_CNS_NS: 5710 return nvme_identify_ns(n, req, true); 5711 case NVME_ID_CNS_NS_PRESENT: 5712 return nvme_identify_ns(n, req, false); 5713 case NVME_ID_CNS_NS_ATTACHED_CTRL_LIST: 5714 return nvme_identify_ctrl_list(n, req, true); 5715 case NVME_ID_CNS_CTRL_LIST: 5716 return nvme_identify_ctrl_list(n, req, false); 5717 case NVME_ID_CNS_PRIMARY_CTRL_CAP: 5718 return nvme_identify_pri_ctrl_cap(n, req); 5719 case NVME_ID_CNS_SECONDARY_CTRL_LIST: 5720 return nvme_identify_sec_ctrl_list(n, req); 5721 case NVME_ID_CNS_CS_NS: 5722 return nvme_identify_ns_csi(n, req, true); 5723 case NVME_ID_CNS_CS_NS_PRESENT: 5724 return nvme_identify_ns_csi(n, req, false); 5725 case NVME_ID_CNS_CTRL: 5726 return nvme_identify_ctrl(n, req); 5727 case NVME_ID_CNS_CS_CTRL: 5728 return nvme_identify_ctrl_csi(n, req); 5729 case NVME_ID_CNS_NS_ACTIVE_LIST: 5730 return nvme_identify_nslist(n, req, true); 5731 case NVME_ID_CNS_NS_PRESENT_LIST: 5732 return nvme_identify_nslist(n, req, false); 5733 case NVME_ID_CNS_CS_NS_ACTIVE_LIST: 5734 return nvme_identify_nslist_csi(n, req, true); 5735 case NVME_ID_CNS_CS_NS_PRESENT_LIST: 5736 return nvme_identify_nslist_csi(n, req, false); 5737 case NVME_ID_CNS_NS_DESCR_LIST: 5738 return nvme_identify_ns_descr_list(n, req); 5739 case NVME_ID_CNS_IO_COMMAND_SET: 5740 return nvme_identify_cmd_set(n, req); 5741 default: 5742 trace_pci_nvme_err_invalid_identify_cns(le32_to_cpu(c->cns)); 5743 return NVME_INVALID_FIELD | NVME_DNR; 5744 } 5745 } 5746 5747 static uint16_t nvme_abort(NvmeCtrl *n, NvmeRequest *req) 5748 { 5749 uint16_t sqid = le32_to_cpu(req->cmd.cdw10) & 0xffff; 5750 5751 req->cqe.result = 1; 5752 if (nvme_check_sqid(n, sqid)) { 5753 return NVME_INVALID_FIELD | NVME_DNR; 5754 } 5755 5756 return NVME_SUCCESS; 5757 } 5758 5759 static inline void nvme_set_timestamp(NvmeCtrl *n, uint64_t ts) 5760 { 5761 trace_pci_nvme_setfeat_timestamp(ts); 5762 5763 n->host_timestamp = le64_to_cpu(ts); 5764 n->timestamp_set_qemu_clock_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL); 5765 } 5766 5767 static inline uint64_t nvme_get_timestamp(const NvmeCtrl *n) 5768 { 5769 uint64_t current_time = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL); 5770 uint64_t elapsed_time = current_time - n->timestamp_set_qemu_clock_ms; 5771 5772 union nvme_timestamp { 5773 struct { 5774 uint64_t timestamp:48; 5775 uint64_t sync:1; 5776 uint64_t origin:3; 5777 uint64_t rsvd1:12; 5778 }; 5779 uint64_t all; 5780 }; 5781 5782 union nvme_timestamp ts; 5783 ts.all = 0; 5784 ts.timestamp = n->host_timestamp + elapsed_time; 5785 5786 /* If the host timestamp is non-zero, set the timestamp origin */ 5787 ts.origin = n->host_timestamp ? 0x01 : 0x00; 5788 5789 trace_pci_nvme_getfeat_timestamp(ts.all); 5790 5791 return cpu_to_le64(ts.all); 5792 } 5793 5794 static uint16_t nvme_get_feature_timestamp(NvmeCtrl *n, NvmeRequest *req) 5795 { 5796 uint64_t timestamp = nvme_get_timestamp(n); 5797 5798 return nvme_c2h(n, (uint8_t *)×tamp, sizeof(timestamp), req); 5799 } 5800 5801 static int nvme_get_feature_fdp(NvmeCtrl *n, uint32_t endgrpid, 5802 uint32_t *result) 5803 { 5804 *result = 0; 5805 5806 if (!n->subsys || !n->subsys->endgrp.fdp.enabled) { 5807 return NVME_INVALID_FIELD | NVME_DNR; 5808 } 5809 5810 *result = FIELD_DP16(0, FEAT_FDP, FDPE, 1); 5811 *result = FIELD_DP16(*result, FEAT_FDP, CONF_NDX, 0); 5812 5813 return NVME_SUCCESS; 5814 } 5815 5816 static uint16_t nvme_get_feature_fdp_events(NvmeCtrl *n, NvmeNamespace *ns, 5817 NvmeRequest *req, uint32_t *result) 5818 { 5819 NvmeCmd *cmd = &req->cmd; 5820 uint32_t cdw11 = le32_to_cpu(cmd->cdw11); 5821 uint16_t ph = cdw11 & 0xffff; 5822 uint8_t noet = (cdw11 >> 16) & 0xff; 5823 uint16_t ruhid, ret; 5824 uint32_t nentries = 0; 5825 uint8_t s_events_ndx = 0; 5826 size_t s_events_siz = sizeof(NvmeFdpEventDescr) * noet; 5827 g_autofree NvmeFdpEventDescr *s_events = g_malloc0(s_events_siz); 5828 NvmeRuHandle *ruh; 5829 NvmeFdpEventDescr *s_event; 5830 5831 if (!n->subsys || !n->subsys->endgrp.fdp.enabled) { 5832 return NVME_FDP_DISABLED | NVME_DNR; 5833 } 5834 5835 if (!nvme_ph_valid(ns, ph)) { 5836 return NVME_INVALID_FIELD | NVME_DNR; 5837 } 5838 5839 ruhid = ns->fdp.phs[ph]; 5840 ruh = &n->subsys->endgrp.fdp.ruhs[ruhid]; 5841 5842 assert(ruh); 5843 5844 if (unlikely(noet == 0)) { 5845 return NVME_INVALID_FIELD | NVME_DNR; 5846 } 5847 5848 for (uint8_t event_type = 0; event_type < FDP_EVT_MAX; event_type++) { 5849 uint8_t shift = nvme_fdp_evf_shifts[event_type]; 5850 if (!shift && event_type) { 5851 /* 5852 * only first entry (event_type == 0) has a shift value of 0 5853 * other entries are simply unpopulated. 5854 */ 5855 continue; 5856 } 5857 5858 nentries++; 5859 5860 s_event = &s_events[s_events_ndx]; 5861 s_event->evt = event_type; 5862 s_event->evta = (ruh->event_filter >> shift) & 0x1; 5863 5864 /* break if all `noet` entries are filled */ 5865 if ((++s_events_ndx) == noet) { 5866 break; 5867 } 5868 } 5869 5870 ret = nvme_c2h(n, s_events, s_events_siz, req); 5871 if (ret) { 5872 return ret; 5873 } 5874 5875 *result = nentries; 5876 return NVME_SUCCESS; 5877 } 5878 5879 static uint16_t nvme_get_feature(NvmeCtrl *n, NvmeRequest *req) 5880 { 5881 NvmeCmd *cmd = &req->cmd; 5882 uint32_t dw10 = le32_to_cpu(cmd->cdw10); 5883 uint32_t dw11 = le32_to_cpu(cmd->cdw11); 5884 uint32_t nsid = le32_to_cpu(cmd->nsid); 5885 uint32_t result; 5886 uint8_t fid = NVME_GETSETFEAT_FID(dw10); 5887 NvmeGetFeatureSelect sel = NVME_GETFEAT_SELECT(dw10); 5888 uint16_t iv; 5889 NvmeNamespace *ns; 5890 int i; 5891 uint16_t endgrpid = 0, ret = NVME_SUCCESS; 5892 5893 static const uint32_t nvme_feature_default[NVME_FID_MAX] = { 5894 [NVME_ARBITRATION] = NVME_ARB_AB_NOLIMIT, 5895 }; 5896 5897 trace_pci_nvme_getfeat(nvme_cid(req), nsid, fid, sel, dw11); 5898 5899 if (!nvme_feature_support[fid]) { 5900 return NVME_INVALID_FIELD | NVME_DNR; 5901 } 5902 5903 if (nvme_feature_cap[fid] & NVME_FEAT_CAP_NS) { 5904 if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) { 5905 /* 5906 * The Reservation Notification Mask and Reservation Persistence 5907 * features require a status code of Invalid Field in Command when 5908 * NSID is FFFFFFFFh. Since the device does not support those 5909 * features we can always return Invalid Namespace or Format as we 5910 * should do for all other features. 5911 */ 5912 return NVME_INVALID_NSID | NVME_DNR; 5913 } 5914 5915 if (!nvme_ns(n, nsid)) { 5916 return NVME_INVALID_FIELD | NVME_DNR; 5917 } 5918 } 5919 5920 switch (sel) { 5921 case NVME_GETFEAT_SELECT_CURRENT: 5922 break; 5923 case NVME_GETFEAT_SELECT_SAVED: 5924 /* no features are saveable by the controller; fallthrough */ 5925 case NVME_GETFEAT_SELECT_DEFAULT: 5926 goto defaults; 5927 case NVME_GETFEAT_SELECT_CAP: 5928 result = nvme_feature_cap[fid]; 5929 goto out; 5930 } 5931 5932 switch (fid) { 5933 case NVME_TEMPERATURE_THRESHOLD: 5934 result = 0; 5935 5936 /* 5937 * The controller only implements the Composite Temperature sensor, so 5938 * return 0 for all other sensors. 5939 */ 5940 if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) { 5941 goto out; 5942 } 5943 5944 switch (NVME_TEMP_THSEL(dw11)) { 5945 case NVME_TEMP_THSEL_OVER: 5946 result = n->features.temp_thresh_hi; 5947 goto out; 5948 case NVME_TEMP_THSEL_UNDER: 5949 result = n->features.temp_thresh_low; 5950 goto out; 5951 } 5952 5953 return NVME_INVALID_FIELD | NVME_DNR; 5954 case NVME_ERROR_RECOVERY: 5955 if (!nvme_nsid_valid(n, nsid)) { 5956 return NVME_INVALID_NSID | NVME_DNR; 5957 } 5958 5959 ns = nvme_ns(n, nsid); 5960 if (unlikely(!ns)) { 5961 return NVME_INVALID_FIELD | NVME_DNR; 5962 } 5963 5964 result = ns->features.err_rec; 5965 goto out; 5966 case NVME_VOLATILE_WRITE_CACHE: 5967 result = 0; 5968 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { 5969 ns = nvme_ns(n, i); 5970 if (!ns) { 5971 continue; 5972 } 5973 5974 result = blk_enable_write_cache(ns->blkconf.blk); 5975 if (result) { 5976 break; 5977 } 5978 } 5979 trace_pci_nvme_getfeat_vwcache(result ? "enabled" : "disabled"); 5980 goto out; 5981 case NVME_ASYNCHRONOUS_EVENT_CONF: 5982 result = n->features.async_config; 5983 goto out; 5984 case NVME_TIMESTAMP: 5985 return nvme_get_feature_timestamp(n, req); 5986 case NVME_HOST_BEHAVIOR_SUPPORT: 5987 return nvme_c2h(n, (uint8_t *)&n->features.hbs, 5988 sizeof(n->features.hbs), req); 5989 case NVME_FDP_MODE: 5990 endgrpid = dw11 & 0xff; 5991 5992 if (endgrpid != 0x1) { 5993 return NVME_INVALID_FIELD | NVME_DNR; 5994 } 5995 5996 ret = nvme_get_feature_fdp(n, endgrpid, &result); 5997 if (ret) { 5998 return ret; 5999 } 6000 goto out; 6001 case NVME_FDP_EVENTS: 6002 if (!nvme_nsid_valid(n, nsid)) { 6003 return NVME_INVALID_NSID | NVME_DNR; 6004 } 6005 6006 ns = nvme_ns(n, nsid); 6007 if (unlikely(!ns)) { 6008 return NVME_INVALID_FIELD | NVME_DNR; 6009 } 6010 6011 ret = nvme_get_feature_fdp_events(n, ns, req, &result); 6012 if (ret) { 6013 return ret; 6014 } 6015 goto out; 6016 default: 6017 break; 6018 } 6019 6020 defaults: 6021 switch (fid) { 6022 case NVME_TEMPERATURE_THRESHOLD: 6023 result = 0; 6024 6025 if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) { 6026 break; 6027 } 6028 6029 if (NVME_TEMP_THSEL(dw11) == NVME_TEMP_THSEL_OVER) { 6030 result = NVME_TEMPERATURE_WARNING; 6031 } 6032 6033 break; 6034 case NVME_NUMBER_OF_QUEUES: 6035 result = (n->conf_ioqpairs - 1) | ((n->conf_ioqpairs - 1) << 16); 6036 trace_pci_nvme_getfeat_numq(result); 6037 break; 6038 case NVME_INTERRUPT_VECTOR_CONF: 6039 iv = dw11 & 0xffff; 6040 if (iv >= n->conf_ioqpairs + 1) { 6041 return NVME_INVALID_FIELD | NVME_DNR; 6042 } 6043 6044 result = iv; 6045 if (iv == n->admin_cq.vector) { 6046 result |= NVME_INTVC_NOCOALESCING; 6047 } 6048 break; 6049 case NVME_FDP_MODE: 6050 endgrpid = dw11 & 0xff; 6051 6052 if (endgrpid != 0x1) { 6053 return NVME_INVALID_FIELD | NVME_DNR; 6054 } 6055 6056 ret = nvme_get_feature_fdp(n, endgrpid, &result); 6057 if (ret) { 6058 return ret; 6059 } 6060 goto out; 6061 6062 break; 6063 default: 6064 result = nvme_feature_default[fid]; 6065 break; 6066 } 6067 6068 out: 6069 req->cqe.result = cpu_to_le32(result); 6070 return ret; 6071 } 6072 6073 static uint16_t nvme_set_feature_timestamp(NvmeCtrl *n, NvmeRequest *req) 6074 { 6075 uint16_t ret; 6076 uint64_t timestamp; 6077 6078 ret = nvme_h2c(n, (uint8_t *)×tamp, sizeof(timestamp), req); 6079 if (ret) { 6080 return ret; 6081 } 6082 6083 nvme_set_timestamp(n, timestamp); 6084 6085 return NVME_SUCCESS; 6086 } 6087 6088 static uint16_t nvme_set_feature_fdp_events(NvmeCtrl *n, NvmeNamespace *ns, 6089 NvmeRequest *req) 6090 { 6091 NvmeCmd *cmd = &req->cmd; 6092 uint32_t cdw11 = le32_to_cpu(cmd->cdw11); 6093 uint16_t ph = cdw11 & 0xffff; 6094 uint8_t noet = (cdw11 >> 16) & 0xff; 6095 uint16_t ret, ruhid; 6096 uint8_t enable = le32_to_cpu(cmd->cdw12) & 0x1; 6097 uint8_t event_mask = 0; 6098 unsigned int i; 6099 g_autofree uint8_t *events = g_malloc0(noet); 6100 NvmeRuHandle *ruh = NULL; 6101 6102 assert(ns); 6103 6104 if (!n->subsys || !n->subsys->endgrp.fdp.enabled) { 6105 return NVME_FDP_DISABLED | NVME_DNR; 6106 } 6107 6108 if (!nvme_ph_valid(ns, ph)) { 6109 return NVME_INVALID_FIELD | NVME_DNR; 6110 } 6111 6112 ruhid = ns->fdp.phs[ph]; 6113 ruh = &n->subsys->endgrp.fdp.ruhs[ruhid]; 6114 6115 ret = nvme_h2c(n, events, noet, req); 6116 if (ret) { 6117 return ret; 6118 } 6119 6120 for (i = 0; i < noet; i++) { 6121 event_mask |= (1 << nvme_fdp_evf_shifts[events[i]]); 6122 } 6123 6124 if (enable) { 6125 ruh->event_filter |= event_mask; 6126 } else { 6127 ruh->event_filter = ruh->event_filter & ~event_mask; 6128 } 6129 6130 return NVME_SUCCESS; 6131 } 6132 6133 static uint16_t nvme_set_feature(NvmeCtrl *n, NvmeRequest *req) 6134 { 6135 NvmeNamespace *ns = NULL; 6136 6137 NvmeCmd *cmd = &req->cmd; 6138 uint32_t dw10 = le32_to_cpu(cmd->cdw10); 6139 uint32_t dw11 = le32_to_cpu(cmd->cdw11); 6140 uint32_t nsid = le32_to_cpu(cmd->nsid); 6141 uint8_t fid = NVME_GETSETFEAT_FID(dw10); 6142 uint8_t save = NVME_SETFEAT_SAVE(dw10); 6143 uint16_t status; 6144 int i; 6145 6146 trace_pci_nvme_setfeat(nvme_cid(req), nsid, fid, save, dw11); 6147 6148 if (save && !(nvme_feature_cap[fid] & NVME_FEAT_CAP_SAVE)) { 6149 return NVME_FID_NOT_SAVEABLE | NVME_DNR; 6150 } 6151 6152 if (!nvme_feature_support[fid]) { 6153 return NVME_INVALID_FIELD | NVME_DNR; 6154 } 6155 6156 if (nvme_feature_cap[fid] & NVME_FEAT_CAP_NS) { 6157 if (nsid != NVME_NSID_BROADCAST) { 6158 if (!nvme_nsid_valid(n, nsid)) { 6159 return NVME_INVALID_NSID | NVME_DNR; 6160 } 6161 6162 ns = nvme_ns(n, nsid); 6163 if (unlikely(!ns)) { 6164 return NVME_INVALID_FIELD | NVME_DNR; 6165 } 6166 } 6167 } else if (nsid && nsid != NVME_NSID_BROADCAST) { 6168 if (!nvme_nsid_valid(n, nsid)) { 6169 return NVME_INVALID_NSID | NVME_DNR; 6170 } 6171 6172 return NVME_FEAT_NOT_NS_SPEC | NVME_DNR; 6173 } 6174 6175 if (!(nvme_feature_cap[fid] & NVME_FEAT_CAP_CHANGE)) { 6176 return NVME_FEAT_NOT_CHANGEABLE | NVME_DNR; 6177 } 6178 6179 switch (fid) { 6180 case NVME_TEMPERATURE_THRESHOLD: 6181 if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) { 6182 break; 6183 } 6184 6185 switch (NVME_TEMP_THSEL(dw11)) { 6186 case NVME_TEMP_THSEL_OVER: 6187 n->features.temp_thresh_hi = NVME_TEMP_TMPTH(dw11); 6188 break; 6189 case NVME_TEMP_THSEL_UNDER: 6190 n->features.temp_thresh_low = NVME_TEMP_TMPTH(dw11); 6191 break; 6192 default: 6193 return NVME_INVALID_FIELD | NVME_DNR; 6194 } 6195 6196 if ((n->temperature >= n->features.temp_thresh_hi) || 6197 (n->temperature <= n->features.temp_thresh_low)) { 6198 nvme_smart_event(n, NVME_SMART_TEMPERATURE); 6199 } 6200 6201 break; 6202 case NVME_ERROR_RECOVERY: 6203 if (nsid == NVME_NSID_BROADCAST) { 6204 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { 6205 ns = nvme_ns(n, i); 6206 6207 if (!ns) { 6208 continue; 6209 } 6210 6211 if (NVME_ID_NS_NSFEAT_DULBE(ns->id_ns.nsfeat)) { 6212 ns->features.err_rec = dw11; 6213 } 6214 } 6215 6216 break; 6217 } 6218 6219 assert(ns); 6220 if (NVME_ID_NS_NSFEAT_DULBE(ns->id_ns.nsfeat)) { 6221 ns->features.err_rec = dw11; 6222 } 6223 break; 6224 case NVME_VOLATILE_WRITE_CACHE: 6225 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { 6226 ns = nvme_ns(n, i); 6227 if (!ns) { 6228 continue; 6229 } 6230 6231 if (!(dw11 & 0x1) && blk_enable_write_cache(ns->blkconf.blk)) { 6232 blk_flush(ns->blkconf.blk); 6233 } 6234 6235 blk_set_enable_write_cache(ns->blkconf.blk, dw11 & 1); 6236 } 6237 6238 break; 6239 6240 case NVME_NUMBER_OF_QUEUES: 6241 if (n->qs_created) { 6242 return NVME_CMD_SEQ_ERROR | NVME_DNR; 6243 } 6244 6245 /* 6246 * NVMe v1.3, Section 5.21.1.7: FFFFh is not an allowed value for NCQR 6247 * and NSQR. 6248 */ 6249 if ((dw11 & 0xffff) == 0xffff || ((dw11 >> 16) & 0xffff) == 0xffff) { 6250 return NVME_INVALID_FIELD | NVME_DNR; 6251 } 6252 6253 trace_pci_nvme_setfeat_numq((dw11 & 0xffff) + 1, 6254 ((dw11 >> 16) & 0xffff) + 1, 6255 n->conf_ioqpairs, 6256 n->conf_ioqpairs); 6257 req->cqe.result = cpu_to_le32((n->conf_ioqpairs - 1) | 6258 ((n->conf_ioqpairs - 1) << 16)); 6259 break; 6260 case NVME_ASYNCHRONOUS_EVENT_CONF: 6261 n->features.async_config = dw11; 6262 break; 6263 case NVME_TIMESTAMP: 6264 return nvme_set_feature_timestamp(n, req); 6265 case NVME_HOST_BEHAVIOR_SUPPORT: 6266 status = nvme_h2c(n, (uint8_t *)&n->features.hbs, 6267 sizeof(n->features.hbs), req); 6268 if (status) { 6269 return status; 6270 } 6271 6272 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { 6273 ns = nvme_ns(n, i); 6274 6275 if (!ns) { 6276 continue; 6277 } 6278 6279 ns->id_ns.nlbaf = ns->nlbaf - 1; 6280 if (!n->features.hbs.lbafee) { 6281 ns->id_ns.nlbaf = MIN(ns->id_ns.nlbaf, 15); 6282 } 6283 } 6284 6285 return status; 6286 case NVME_COMMAND_SET_PROFILE: 6287 if (dw11 & 0x1ff) { 6288 trace_pci_nvme_err_invalid_iocsci(dw11 & 0x1ff); 6289 return NVME_CMD_SET_CMB_REJECTED | NVME_DNR; 6290 } 6291 break; 6292 case NVME_FDP_MODE: 6293 /* spec: abort with cmd seq err if there's one or more NS' in endgrp */ 6294 return NVME_CMD_SEQ_ERROR | NVME_DNR; 6295 case NVME_FDP_EVENTS: 6296 return nvme_set_feature_fdp_events(n, ns, req); 6297 default: 6298 return NVME_FEAT_NOT_CHANGEABLE | NVME_DNR; 6299 } 6300 return NVME_SUCCESS; 6301 } 6302 6303 static uint16_t nvme_aer(NvmeCtrl *n, NvmeRequest *req) 6304 { 6305 trace_pci_nvme_aer(nvme_cid(req)); 6306 6307 if (n->outstanding_aers > n->params.aerl) { 6308 trace_pci_nvme_aer_aerl_exceeded(); 6309 return NVME_AER_LIMIT_EXCEEDED; 6310 } 6311 6312 n->aer_reqs[n->outstanding_aers] = req; 6313 n->outstanding_aers++; 6314 6315 if (!QTAILQ_EMPTY(&n->aer_queue)) { 6316 nvme_process_aers(n); 6317 } 6318 6319 return NVME_NO_COMPLETE; 6320 } 6321 6322 static void nvme_update_dmrsl(NvmeCtrl *n) 6323 { 6324 int nsid; 6325 6326 for (nsid = 1; nsid <= NVME_MAX_NAMESPACES; nsid++) { 6327 NvmeNamespace *ns = nvme_ns(n, nsid); 6328 if (!ns) { 6329 continue; 6330 } 6331 6332 n->dmrsl = MIN_NON_ZERO(n->dmrsl, 6333 BDRV_REQUEST_MAX_BYTES / nvme_l2b(ns, 1)); 6334 } 6335 } 6336 6337 static void nvme_select_iocs_ns(NvmeCtrl *n, NvmeNamespace *ns) 6338 { 6339 uint32_t cc = ldl_le_p(&n->bar.cc); 6340 6341 ns->iocs = nvme_cse_iocs_none; 6342 switch (ns->csi) { 6343 case NVME_CSI_NVM: 6344 if (NVME_CC_CSS(cc) != NVME_CC_CSS_ADMIN_ONLY) { 6345 ns->iocs = nvme_cse_iocs_nvm; 6346 } 6347 break; 6348 case NVME_CSI_ZONED: 6349 if (NVME_CC_CSS(cc) == NVME_CC_CSS_CSI) { 6350 ns->iocs = nvme_cse_iocs_zoned; 6351 } else if (NVME_CC_CSS(cc) == NVME_CC_CSS_NVM) { 6352 ns->iocs = nvme_cse_iocs_nvm; 6353 } 6354 break; 6355 } 6356 } 6357 6358 static uint16_t nvme_ns_attachment(NvmeCtrl *n, NvmeRequest *req) 6359 { 6360 NvmeNamespace *ns; 6361 NvmeCtrl *ctrl; 6362 uint16_t list[NVME_CONTROLLER_LIST_SIZE] = {}; 6363 uint32_t nsid = le32_to_cpu(req->cmd.nsid); 6364 uint32_t dw10 = le32_to_cpu(req->cmd.cdw10); 6365 uint8_t sel = dw10 & 0xf; 6366 uint16_t *nr_ids = &list[0]; 6367 uint16_t *ids = &list[1]; 6368 uint16_t ret; 6369 int i; 6370 6371 trace_pci_nvme_ns_attachment(nvme_cid(req), dw10 & 0xf); 6372 6373 if (!nvme_nsid_valid(n, nsid)) { 6374 return NVME_INVALID_NSID | NVME_DNR; 6375 } 6376 6377 ns = nvme_subsys_ns(n->subsys, nsid); 6378 if (!ns) { 6379 return NVME_INVALID_FIELD | NVME_DNR; 6380 } 6381 6382 ret = nvme_h2c(n, (uint8_t *)list, 4096, req); 6383 if (ret) { 6384 return ret; 6385 } 6386 6387 if (!*nr_ids) { 6388 return NVME_NS_CTRL_LIST_INVALID | NVME_DNR; 6389 } 6390 6391 *nr_ids = MIN(*nr_ids, NVME_CONTROLLER_LIST_SIZE - 1); 6392 for (i = 0; i < *nr_ids; i++) { 6393 ctrl = nvme_subsys_ctrl(n->subsys, ids[i]); 6394 if (!ctrl) { 6395 return NVME_NS_CTRL_LIST_INVALID | NVME_DNR; 6396 } 6397 6398 switch (sel) { 6399 case NVME_NS_ATTACHMENT_ATTACH: 6400 if (nvme_ns(ctrl, nsid)) { 6401 return NVME_NS_ALREADY_ATTACHED | NVME_DNR; 6402 } 6403 6404 if (ns->attached && !ns->params.shared) { 6405 return NVME_NS_PRIVATE | NVME_DNR; 6406 } 6407 6408 nvme_attach_ns(ctrl, ns); 6409 nvme_select_iocs_ns(ctrl, ns); 6410 6411 break; 6412 6413 case NVME_NS_ATTACHMENT_DETACH: 6414 if (!nvme_ns(ctrl, nsid)) { 6415 return NVME_NS_NOT_ATTACHED | NVME_DNR; 6416 } 6417 6418 ctrl->namespaces[nsid] = NULL; 6419 ns->attached--; 6420 6421 nvme_update_dmrsl(ctrl); 6422 6423 break; 6424 6425 default: 6426 return NVME_INVALID_FIELD | NVME_DNR; 6427 } 6428 6429 /* 6430 * Add namespace id to the changed namespace id list for event clearing 6431 * via Get Log Page command. 6432 */ 6433 if (!test_and_set_bit(nsid, ctrl->changed_nsids)) { 6434 nvme_enqueue_event(ctrl, NVME_AER_TYPE_NOTICE, 6435 NVME_AER_INFO_NOTICE_NS_ATTR_CHANGED, 6436 NVME_LOG_CHANGED_NSLIST); 6437 } 6438 } 6439 6440 return NVME_SUCCESS; 6441 } 6442 6443 typedef struct NvmeFormatAIOCB { 6444 BlockAIOCB common; 6445 BlockAIOCB *aiocb; 6446 NvmeRequest *req; 6447 int ret; 6448 6449 NvmeNamespace *ns; 6450 uint32_t nsid; 6451 bool broadcast; 6452 int64_t offset; 6453 6454 uint8_t lbaf; 6455 uint8_t mset; 6456 uint8_t pi; 6457 uint8_t pil; 6458 } NvmeFormatAIOCB; 6459 6460 static void nvme_format_cancel(BlockAIOCB *aiocb) 6461 { 6462 NvmeFormatAIOCB *iocb = container_of(aiocb, NvmeFormatAIOCB, common); 6463 6464 iocb->ret = -ECANCELED; 6465 6466 if (iocb->aiocb) { 6467 blk_aio_cancel_async(iocb->aiocb); 6468 iocb->aiocb = NULL; 6469 } 6470 } 6471 6472 static const AIOCBInfo nvme_format_aiocb_info = { 6473 .aiocb_size = sizeof(NvmeFormatAIOCB), 6474 .cancel_async = nvme_format_cancel, 6475 }; 6476 6477 static void nvme_format_set(NvmeNamespace *ns, uint8_t lbaf, uint8_t mset, 6478 uint8_t pi, uint8_t pil) 6479 { 6480 uint8_t lbafl = lbaf & 0xf; 6481 uint8_t lbafu = lbaf >> 4; 6482 6483 trace_pci_nvme_format_set(ns->params.nsid, lbaf, mset, pi, pil); 6484 6485 ns->id_ns.dps = (pil << 3) | pi; 6486 ns->id_ns.flbas = (lbafu << 5) | (mset << 4) | lbafl; 6487 6488 nvme_ns_init_format(ns); 6489 } 6490 6491 static void nvme_do_format(NvmeFormatAIOCB *iocb); 6492 6493 static void nvme_format_ns_cb(void *opaque, int ret) 6494 { 6495 NvmeFormatAIOCB *iocb = opaque; 6496 NvmeNamespace *ns = iocb->ns; 6497 int bytes; 6498 6499 if (iocb->ret < 0) { 6500 goto done; 6501 } else if (ret < 0) { 6502 iocb->ret = ret; 6503 goto done; 6504 } 6505 6506 assert(ns); 6507 6508 if (iocb->offset < ns->size) { 6509 bytes = MIN(BDRV_REQUEST_MAX_BYTES, ns->size - iocb->offset); 6510 6511 iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk, iocb->offset, 6512 bytes, BDRV_REQ_MAY_UNMAP, 6513 nvme_format_ns_cb, iocb); 6514 6515 iocb->offset += bytes; 6516 return; 6517 } 6518 6519 nvme_format_set(ns, iocb->lbaf, iocb->mset, iocb->pi, iocb->pil); 6520 ns->status = 0x0; 6521 iocb->ns = NULL; 6522 iocb->offset = 0; 6523 6524 done: 6525 nvme_do_format(iocb); 6526 } 6527 6528 static uint16_t nvme_format_check(NvmeNamespace *ns, uint8_t lbaf, uint8_t pi) 6529 { 6530 if (ns->params.zoned) { 6531 return NVME_INVALID_FORMAT | NVME_DNR; 6532 } 6533 6534 if (lbaf > ns->id_ns.nlbaf) { 6535 return NVME_INVALID_FORMAT | NVME_DNR; 6536 } 6537 6538 if (pi && (ns->id_ns.lbaf[lbaf].ms < nvme_pi_tuple_size(ns))) { 6539 return NVME_INVALID_FORMAT | NVME_DNR; 6540 } 6541 6542 if (pi && pi > NVME_ID_NS_DPS_TYPE_3) { 6543 return NVME_INVALID_FIELD | NVME_DNR; 6544 } 6545 6546 return NVME_SUCCESS; 6547 } 6548 6549 static void nvme_do_format(NvmeFormatAIOCB *iocb) 6550 { 6551 NvmeRequest *req = iocb->req; 6552 NvmeCtrl *n = nvme_ctrl(req); 6553 uint32_t dw10 = le32_to_cpu(req->cmd.cdw10); 6554 uint8_t lbaf = dw10 & 0xf; 6555 uint8_t pi = (dw10 >> 5) & 0x7; 6556 uint16_t status; 6557 int i; 6558 6559 if (iocb->ret < 0) { 6560 goto done; 6561 } 6562 6563 if (iocb->broadcast) { 6564 for (i = iocb->nsid + 1; i <= NVME_MAX_NAMESPACES; i++) { 6565 iocb->ns = nvme_ns(n, i); 6566 if (iocb->ns) { 6567 iocb->nsid = i; 6568 break; 6569 } 6570 } 6571 } 6572 6573 if (!iocb->ns) { 6574 goto done; 6575 } 6576 6577 status = nvme_format_check(iocb->ns, lbaf, pi); 6578 if (status) { 6579 req->status = status; 6580 goto done; 6581 } 6582 6583 iocb->ns->status = NVME_FORMAT_IN_PROGRESS; 6584 nvme_format_ns_cb(iocb, 0); 6585 return; 6586 6587 done: 6588 iocb->common.cb(iocb->common.opaque, iocb->ret); 6589 qemu_aio_unref(iocb); 6590 } 6591 6592 static uint16_t nvme_format(NvmeCtrl *n, NvmeRequest *req) 6593 { 6594 NvmeFormatAIOCB *iocb; 6595 uint32_t nsid = le32_to_cpu(req->cmd.nsid); 6596 uint32_t dw10 = le32_to_cpu(req->cmd.cdw10); 6597 uint8_t lbaf = dw10 & 0xf; 6598 uint8_t mset = (dw10 >> 4) & 0x1; 6599 uint8_t pi = (dw10 >> 5) & 0x7; 6600 uint8_t pil = (dw10 >> 8) & 0x1; 6601 uint8_t lbafu = (dw10 >> 12) & 0x3; 6602 uint16_t status; 6603 6604 iocb = qemu_aio_get(&nvme_format_aiocb_info, NULL, nvme_misc_cb, req); 6605 6606 iocb->req = req; 6607 iocb->ret = 0; 6608 iocb->ns = NULL; 6609 iocb->nsid = 0; 6610 iocb->lbaf = lbaf; 6611 iocb->mset = mset; 6612 iocb->pi = pi; 6613 iocb->pil = pil; 6614 iocb->broadcast = (nsid == NVME_NSID_BROADCAST); 6615 iocb->offset = 0; 6616 6617 if (n->features.hbs.lbafee) { 6618 iocb->lbaf |= lbafu << 4; 6619 } 6620 6621 if (!iocb->broadcast) { 6622 if (!nvme_nsid_valid(n, nsid)) { 6623 status = NVME_INVALID_NSID | NVME_DNR; 6624 goto out; 6625 } 6626 6627 iocb->ns = nvme_ns(n, nsid); 6628 if (!iocb->ns) { 6629 status = NVME_INVALID_FIELD | NVME_DNR; 6630 goto out; 6631 } 6632 } 6633 6634 req->aiocb = &iocb->common; 6635 nvme_do_format(iocb); 6636 6637 return NVME_NO_COMPLETE; 6638 6639 out: 6640 qemu_aio_unref(iocb); 6641 6642 return status; 6643 } 6644 6645 static void nvme_get_virt_res_num(NvmeCtrl *n, uint8_t rt, int *num_total, 6646 int *num_prim, int *num_sec) 6647 { 6648 *num_total = le32_to_cpu(rt ? 6649 n->pri_ctrl_cap.vifrt : n->pri_ctrl_cap.vqfrt); 6650 *num_prim = le16_to_cpu(rt ? 6651 n->pri_ctrl_cap.virfap : n->pri_ctrl_cap.vqrfap); 6652 *num_sec = le16_to_cpu(rt ? n->pri_ctrl_cap.virfa : n->pri_ctrl_cap.vqrfa); 6653 } 6654 6655 static uint16_t nvme_assign_virt_res_to_prim(NvmeCtrl *n, NvmeRequest *req, 6656 uint16_t cntlid, uint8_t rt, 6657 int nr) 6658 { 6659 int num_total, num_prim, num_sec; 6660 6661 if (cntlid != n->cntlid) { 6662 return NVME_INVALID_CTRL_ID | NVME_DNR; 6663 } 6664 6665 nvme_get_virt_res_num(n, rt, &num_total, &num_prim, &num_sec); 6666 6667 if (nr > num_total) { 6668 return NVME_INVALID_NUM_RESOURCES | NVME_DNR; 6669 } 6670 6671 if (nr > num_total - num_sec) { 6672 return NVME_INVALID_RESOURCE_ID | NVME_DNR; 6673 } 6674 6675 if (rt) { 6676 n->next_pri_ctrl_cap.virfap = cpu_to_le16(nr); 6677 } else { 6678 n->next_pri_ctrl_cap.vqrfap = cpu_to_le16(nr); 6679 } 6680 6681 req->cqe.result = cpu_to_le32(nr); 6682 return req->status; 6683 } 6684 6685 static void nvme_update_virt_res(NvmeCtrl *n, NvmeSecCtrlEntry *sctrl, 6686 uint8_t rt, int nr) 6687 { 6688 int prev_nr, prev_total; 6689 6690 if (rt) { 6691 prev_nr = le16_to_cpu(sctrl->nvi); 6692 prev_total = le32_to_cpu(n->pri_ctrl_cap.virfa); 6693 sctrl->nvi = cpu_to_le16(nr); 6694 n->pri_ctrl_cap.virfa = cpu_to_le32(prev_total + nr - prev_nr); 6695 } else { 6696 prev_nr = le16_to_cpu(sctrl->nvq); 6697 prev_total = le32_to_cpu(n->pri_ctrl_cap.vqrfa); 6698 sctrl->nvq = cpu_to_le16(nr); 6699 n->pri_ctrl_cap.vqrfa = cpu_to_le32(prev_total + nr - prev_nr); 6700 } 6701 } 6702 6703 static uint16_t nvme_assign_virt_res_to_sec(NvmeCtrl *n, NvmeRequest *req, 6704 uint16_t cntlid, uint8_t rt, int nr) 6705 { 6706 int num_total, num_prim, num_sec, num_free, diff, limit; 6707 NvmeSecCtrlEntry *sctrl; 6708 6709 sctrl = nvme_sctrl_for_cntlid(n, cntlid); 6710 if (!sctrl) { 6711 return NVME_INVALID_CTRL_ID | NVME_DNR; 6712 } 6713 6714 if (sctrl->scs) { 6715 return NVME_INVALID_SEC_CTRL_STATE | NVME_DNR; 6716 } 6717 6718 limit = le16_to_cpu(rt ? n->pri_ctrl_cap.vifrsm : n->pri_ctrl_cap.vqfrsm); 6719 if (nr > limit) { 6720 return NVME_INVALID_NUM_RESOURCES | NVME_DNR; 6721 } 6722 6723 nvme_get_virt_res_num(n, rt, &num_total, &num_prim, &num_sec); 6724 num_free = num_total - num_prim - num_sec; 6725 diff = nr - le16_to_cpu(rt ? sctrl->nvi : sctrl->nvq); 6726 6727 if (diff > num_free) { 6728 return NVME_INVALID_RESOURCE_ID | NVME_DNR; 6729 } 6730 6731 nvme_update_virt_res(n, sctrl, rt, nr); 6732 req->cqe.result = cpu_to_le32(nr); 6733 6734 return req->status; 6735 } 6736 6737 static uint16_t nvme_virt_set_state(NvmeCtrl *n, uint16_t cntlid, bool online) 6738 { 6739 PCIDevice *pci = PCI_DEVICE(n); 6740 NvmeCtrl *sn = NULL; 6741 NvmeSecCtrlEntry *sctrl; 6742 int vf_index; 6743 6744 sctrl = nvme_sctrl_for_cntlid(n, cntlid); 6745 if (!sctrl) { 6746 return NVME_INVALID_CTRL_ID | NVME_DNR; 6747 } 6748 6749 if (!pci_is_vf(pci)) { 6750 vf_index = le16_to_cpu(sctrl->vfn) - 1; 6751 sn = NVME(pcie_sriov_get_vf_at_index(pci, vf_index)); 6752 } 6753 6754 if (online) { 6755 if (!sctrl->nvi || (le16_to_cpu(sctrl->nvq) < 2) || !sn) { 6756 return NVME_INVALID_SEC_CTRL_STATE | NVME_DNR; 6757 } 6758 6759 if (!sctrl->scs) { 6760 sctrl->scs = 0x1; 6761 nvme_ctrl_reset(sn, NVME_RESET_FUNCTION); 6762 } 6763 } else { 6764 nvme_update_virt_res(n, sctrl, NVME_VIRT_RES_INTERRUPT, 0); 6765 nvme_update_virt_res(n, sctrl, NVME_VIRT_RES_QUEUE, 0); 6766 6767 if (sctrl->scs) { 6768 sctrl->scs = 0x0; 6769 if (sn) { 6770 nvme_ctrl_reset(sn, NVME_RESET_FUNCTION); 6771 } 6772 } 6773 } 6774 6775 return NVME_SUCCESS; 6776 } 6777 6778 static uint16_t nvme_virt_mngmt(NvmeCtrl *n, NvmeRequest *req) 6779 { 6780 uint32_t dw10 = le32_to_cpu(req->cmd.cdw10); 6781 uint32_t dw11 = le32_to_cpu(req->cmd.cdw11); 6782 uint8_t act = dw10 & 0xf; 6783 uint8_t rt = (dw10 >> 8) & 0x7; 6784 uint16_t cntlid = (dw10 >> 16) & 0xffff; 6785 int nr = dw11 & 0xffff; 6786 6787 trace_pci_nvme_virt_mngmt(nvme_cid(req), act, cntlid, rt ? "VI" : "VQ", nr); 6788 6789 if (rt != NVME_VIRT_RES_QUEUE && rt != NVME_VIRT_RES_INTERRUPT) { 6790 return NVME_INVALID_RESOURCE_ID | NVME_DNR; 6791 } 6792 6793 switch (act) { 6794 case NVME_VIRT_MNGMT_ACTION_SEC_ASSIGN: 6795 return nvme_assign_virt_res_to_sec(n, req, cntlid, rt, nr); 6796 case NVME_VIRT_MNGMT_ACTION_PRM_ALLOC: 6797 return nvme_assign_virt_res_to_prim(n, req, cntlid, rt, nr); 6798 case NVME_VIRT_MNGMT_ACTION_SEC_ONLINE: 6799 return nvme_virt_set_state(n, cntlid, true); 6800 case NVME_VIRT_MNGMT_ACTION_SEC_OFFLINE: 6801 return nvme_virt_set_state(n, cntlid, false); 6802 default: 6803 return NVME_INVALID_FIELD | NVME_DNR; 6804 } 6805 } 6806 6807 static uint16_t nvme_dbbuf_config(NvmeCtrl *n, const NvmeRequest *req) 6808 { 6809 PCIDevice *pci = PCI_DEVICE(n); 6810 uint64_t dbs_addr = le64_to_cpu(req->cmd.dptr.prp1); 6811 uint64_t eis_addr = le64_to_cpu(req->cmd.dptr.prp2); 6812 int i; 6813 6814 /* Address should be page aligned */ 6815 if (dbs_addr & (n->page_size - 1) || eis_addr & (n->page_size - 1)) { 6816 return NVME_INVALID_FIELD | NVME_DNR; 6817 } 6818 6819 /* Save shadow buffer base addr for use during queue creation */ 6820 n->dbbuf_dbs = dbs_addr; 6821 n->dbbuf_eis = eis_addr; 6822 n->dbbuf_enabled = true; 6823 6824 for (i = 0; i < n->params.max_ioqpairs + 1; i++) { 6825 NvmeSQueue *sq = n->sq[i]; 6826 NvmeCQueue *cq = n->cq[i]; 6827 6828 if (sq) { 6829 /* 6830 * CAP.DSTRD is 0, so offset of ith sq db_addr is (i<<3) 6831 * nvme_process_db() uses this hard-coded way to calculate 6832 * doorbell offsets. Be consistent with that here. 6833 */ 6834 sq->db_addr = dbs_addr + (i << 3); 6835 sq->ei_addr = eis_addr + (i << 3); 6836 stl_le_pci_dma(pci, sq->db_addr, sq->tail, MEMTXATTRS_UNSPECIFIED); 6837 6838 if (n->params.ioeventfd && sq->sqid != 0) { 6839 if (!nvme_init_sq_ioeventfd(sq)) { 6840 sq->ioeventfd_enabled = true; 6841 } 6842 } 6843 } 6844 6845 if (cq) { 6846 /* CAP.DSTRD is 0, so offset of ith cq db_addr is (i<<3)+(1<<2) */ 6847 cq->db_addr = dbs_addr + (i << 3) + (1 << 2); 6848 cq->ei_addr = eis_addr + (i << 3) + (1 << 2); 6849 stl_le_pci_dma(pci, cq->db_addr, cq->head, MEMTXATTRS_UNSPECIFIED); 6850 6851 if (n->params.ioeventfd && cq->cqid != 0) { 6852 if (!nvme_init_cq_ioeventfd(cq)) { 6853 cq->ioeventfd_enabled = true; 6854 } 6855 } 6856 } 6857 } 6858 6859 trace_pci_nvme_dbbuf_config(dbs_addr, eis_addr); 6860 6861 return NVME_SUCCESS; 6862 } 6863 6864 static uint16_t nvme_directive_send(NvmeCtrl *n, NvmeRequest *req) 6865 { 6866 return NVME_INVALID_FIELD | NVME_DNR; 6867 } 6868 6869 static uint16_t nvme_directive_receive(NvmeCtrl *n, NvmeRequest *req) 6870 { 6871 NvmeNamespace *ns; 6872 uint32_t dw10 = le32_to_cpu(req->cmd.cdw10); 6873 uint32_t dw11 = le32_to_cpu(req->cmd.cdw11); 6874 uint32_t nsid = le32_to_cpu(req->cmd.nsid); 6875 uint8_t doper, dtype; 6876 uint32_t numd, trans_len; 6877 NvmeDirectiveIdentify id = { 6878 .supported = 1 << NVME_DIRECTIVE_IDENTIFY, 6879 .enabled = 1 << NVME_DIRECTIVE_IDENTIFY, 6880 }; 6881 6882 numd = dw10 + 1; 6883 doper = dw11 & 0xff; 6884 dtype = (dw11 >> 8) & 0xff; 6885 6886 trans_len = MIN(sizeof(NvmeDirectiveIdentify), numd << 2); 6887 6888 if (nsid == NVME_NSID_BROADCAST || dtype != NVME_DIRECTIVE_IDENTIFY || 6889 doper != NVME_DIRECTIVE_RETURN_PARAMS) { 6890 return NVME_INVALID_FIELD | NVME_DNR; 6891 } 6892 6893 ns = nvme_ns(n, nsid); 6894 if (!ns) { 6895 return NVME_INVALID_FIELD | NVME_DNR; 6896 } 6897 6898 switch (dtype) { 6899 case NVME_DIRECTIVE_IDENTIFY: 6900 switch (doper) { 6901 case NVME_DIRECTIVE_RETURN_PARAMS: 6902 if (ns->endgrp && ns->endgrp->fdp.enabled) { 6903 id.supported |= 1 << NVME_DIRECTIVE_DATA_PLACEMENT; 6904 id.enabled |= 1 << NVME_DIRECTIVE_DATA_PLACEMENT; 6905 id.persistent |= 1 << NVME_DIRECTIVE_DATA_PLACEMENT; 6906 } 6907 6908 return nvme_c2h(n, (uint8_t *)&id, trans_len, req); 6909 6910 default: 6911 return NVME_INVALID_FIELD | NVME_DNR; 6912 } 6913 6914 default: 6915 return NVME_INVALID_FIELD; 6916 } 6917 } 6918 6919 static uint16_t nvme_admin_cmd(NvmeCtrl *n, NvmeRequest *req) 6920 { 6921 trace_pci_nvme_admin_cmd(nvme_cid(req), nvme_sqid(req), req->cmd.opcode, 6922 nvme_adm_opc_str(req->cmd.opcode)); 6923 6924 if (!(nvme_cse_acs[req->cmd.opcode] & NVME_CMD_EFF_CSUPP)) { 6925 trace_pci_nvme_err_invalid_admin_opc(req->cmd.opcode); 6926 return NVME_INVALID_OPCODE | NVME_DNR; 6927 } 6928 6929 /* SGLs shall not be used for Admin commands in NVMe over PCIe */ 6930 if (NVME_CMD_FLAGS_PSDT(req->cmd.flags) != NVME_PSDT_PRP) { 6931 return NVME_INVALID_FIELD | NVME_DNR; 6932 } 6933 6934 if (NVME_CMD_FLAGS_FUSE(req->cmd.flags)) { 6935 return NVME_INVALID_FIELD; 6936 } 6937 6938 switch (req->cmd.opcode) { 6939 case NVME_ADM_CMD_DELETE_SQ: 6940 return nvme_del_sq(n, req); 6941 case NVME_ADM_CMD_CREATE_SQ: 6942 return nvme_create_sq(n, req); 6943 case NVME_ADM_CMD_GET_LOG_PAGE: 6944 return nvme_get_log(n, req); 6945 case NVME_ADM_CMD_DELETE_CQ: 6946 return nvme_del_cq(n, req); 6947 case NVME_ADM_CMD_CREATE_CQ: 6948 return nvme_create_cq(n, req); 6949 case NVME_ADM_CMD_IDENTIFY: 6950 return nvme_identify(n, req); 6951 case NVME_ADM_CMD_ABORT: 6952 return nvme_abort(n, req); 6953 case NVME_ADM_CMD_SET_FEATURES: 6954 return nvme_set_feature(n, req); 6955 case NVME_ADM_CMD_GET_FEATURES: 6956 return nvme_get_feature(n, req); 6957 case NVME_ADM_CMD_ASYNC_EV_REQ: 6958 return nvme_aer(n, req); 6959 case NVME_ADM_CMD_NS_ATTACHMENT: 6960 return nvme_ns_attachment(n, req); 6961 case NVME_ADM_CMD_VIRT_MNGMT: 6962 return nvme_virt_mngmt(n, req); 6963 case NVME_ADM_CMD_DBBUF_CONFIG: 6964 return nvme_dbbuf_config(n, req); 6965 case NVME_ADM_CMD_FORMAT_NVM: 6966 return nvme_format(n, req); 6967 case NVME_ADM_CMD_DIRECTIVE_SEND: 6968 return nvme_directive_send(n, req); 6969 case NVME_ADM_CMD_DIRECTIVE_RECV: 6970 return nvme_directive_receive(n, req); 6971 default: 6972 assert(false); 6973 } 6974 6975 return NVME_INVALID_OPCODE | NVME_DNR; 6976 } 6977 6978 static void nvme_update_sq_eventidx(const NvmeSQueue *sq) 6979 { 6980 trace_pci_nvme_update_sq_eventidx(sq->sqid, sq->tail); 6981 6982 stl_le_pci_dma(PCI_DEVICE(sq->ctrl), sq->ei_addr, sq->tail, 6983 MEMTXATTRS_UNSPECIFIED); 6984 } 6985 6986 static void nvme_update_sq_tail(NvmeSQueue *sq) 6987 { 6988 ldl_le_pci_dma(PCI_DEVICE(sq->ctrl), sq->db_addr, &sq->tail, 6989 MEMTXATTRS_UNSPECIFIED); 6990 6991 trace_pci_nvme_update_sq_tail(sq->sqid, sq->tail); 6992 } 6993 6994 static void nvme_process_sq(void *opaque) 6995 { 6996 NvmeSQueue *sq = opaque; 6997 NvmeCtrl *n = sq->ctrl; 6998 NvmeCQueue *cq = n->cq[sq->cqid]; 6999 7000 uint16_t status; 7001 hwaddr addr; 7002 NvmeCmd cmd; 7003 NvmeRequest *req; 7004 7005 if (n->dbbuf_enabled) { 7006 nvme_update_sq_tail(sq); 7007 } 7008 7009 while (!(nvme_sq_empty(sq) || QTAILQ_EMPTY(&sq->req_list))) { 7010 addr = sq->dma_addr + (sq->head << NVME_SQES); 7011 if (nvme_addr_read(n, addr, (void *)&cmd, sizeof(cmd))) { 7012 trace_pci_nvme_err_addr_read(addr); 7013 trace_pci_nvme_err_cfs(); 7014 stl_le_p(&n->bar.csts, NVME_CSTS_FAILED); 7015 break; 7016 } 7017 nvme_inc_sq_head(sq); 7018 7019 req = QTAILQ_FIRST(&sq->req_list); 7020 QTAILQ_REMOVE(&sq->req_list, req, entry); 7021 QTAILQ_INSERT_TAIL(&sq->out_req_list, req, entry); 7022 nvme_req_clear(req); 7023 req->cqe.cid = cmd.cid; 7024 memcpy(&req->cmd, &cmd, sizeof(NvmeCmd)); 7025 7026 status = sq->sqid ? nvme_io_cmd(n, req) : 7027 nvme_admin_cmd(n, req); 7028 if (status != NVME_NO_COMPLETE) { 7029 req->status = status; 7030 nvme_enqueue_req_completion(cq, req); 7031 } 7032 7033 if (n->dbbuf_enabled) { 7034 nvme_update_sq_eventidx(sq); 7035 nvme_update_sq_tail(sq); 7036 } 7037 } 7038 } 7039 7040 static void nvme_update_msixcap_ts(PCIDevice *pci_dev, uint32_t table_size) 7041 { 7042 uint8_t *config; 7043 7044 if (!msix_present(pci_dev)) { 7045 return; 7046 } 7047 7048 assert(table_size > 0 && table_size <= pci_dev->msix_entries_nr); 7049 7050 config = pci_dev->config + pci_dev->msix_cap; 7051 pci_set_word_by_mask(config + PCI_MSIX_FLAGS, PCI_MSIX_FLAGS_QSIZE, 7052 table_size - 1); 7053 } 7054 7055 static void nvme_activate_virt_res(NvmeCtrl *n) 7056 { 7057 PCIDevice *pci_dev = PCI_DEVICE(n); 7058 NvmePriCtrlCap *cap = &n->pri_ctrl_cap; 7059 NvmeSecCtrlEntry *sctrl; 7060 7061 /* -1 to account for the admin queue */ 7062 if (pci_is_vf(pci_dev)) { 7063 sctrl = nvme_sctrl(n); 7064 cap->vqprt = sctrl->nvq; 7065 cap->viprt = sctrl->nvi; 7066 n->conf_ioqpairs = sctrl->nvq ? le16_to_cpu(sctrl->nvq) - 1 : 0; 7067 n->conf_msix_qsize = sctrl->nvi ? le16_to_cpu(sctrl->nvi) : 1; 7068 } else { 7069 cap->vqrfap = n->next_pri_ctrl_cap.vqrfap; 7070 cap->virfap = n->next_pri_ctrl_cap.virfap; 7071 n->conf_ioqpairs = le16_to_cpu(cap->vqprt) + 7072 le16_to_cpu(cap->vqrfap) - 1; 7073 n->conf_msix_qsize = le16_to_cpu(cap->viprt) + 7074 le16_to_cpu(cap->virfap); 7075 } 7076 } 7077 7078 static void nvme_ctrl_reset(NvmeCtrl *n, NvmeResetType rst) 7079 { 7080 PCIDevice *pci_dev = PCI_DEVICE(n); 7081 NvmeSecCtrlEntry *sctrl; 7082 NvmeNamespace *ns; 7083 int i; 7084 7085 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { 7086 ns = nvme_ns(n, i); 7087 if (!ns) { 7088 continue; 7089 } 7090 7091 nvme_ns_drain(ns); 7092 } 7093 7094 for (i = 0; i < n->params.max_ioqpairs + 1; i++) { 7095 if (n->sq[i] != NULL) { 7096 nvme_free_sq(n->sq[i], n); 7097 } 7098 } 7099 for (i = 0; i < n->params.max_ioqpairs + 1; i++) { 7100 if (n->cq[i] != NULL) { 7101 nvme_free_cq(n->cq[i], n); 7102 } 7103 } 7104 7105 while (!QTAILQ_EMPTY(&n->aer_queue)) { 7106 NvmeAsyncEvent *event = QTAILQ_FIRST(&n->aer_queue); 7107 QTAILQ_REMOVE(&n->aer_queue, event, entry); 7108 g_free(event); 7109 } 7110 7111 if (n->params.sriov_max_vfs) { 7112 if (!pci_is_vf(pci_dev)) { 7113 for (i = 0; i < n->sec_ctrl_list.numcntl; i++) { 7114 sctrl = &n->sec_ctrl_list.sec[i]; 7115 nvme_virt_set_state(n, le16_to_cpu(sctrl->scid), false); 7116 } 7117 7118 if (rst != NVME_RESET_CONTROLLER) { 7119 pcie_sriov_pf_disable_vfs(pci_dev); 7120 } 7121 } 7122 7123 if (rst != NVME_RESET_CONTROLLER) { 7124 nvme_activate_virt_res(n); 7125 } 7126 } 7127 7128 n->aer_queued = 0; 7129 n->aer_mask = 0; 7130 n->outstanding_aers = 0; 7131 n->qs_created = false; 7132 7133 nvme_update_msixcap_ts(pci_dev, n->conf_msix_qsize); 7134 7135 if (pci_is_vf(pci_dev)) { 7136 sctrl = nvme_sctrl(n); 7137 7138 stl_le_p(&n->bar.csts, sctrl->scs ? 0 : NVME_CSTS_FAILED); 7139 } else { 7140 stl_le_p(&n->bar.csts, 0); 7141 } 7142 7143 stl_le_p(&n->bar.intms, 0); 7144 stl_le_p(&n->bar.intmc, 0); 7145 stl_le_p(&n->bar.cc, 0); 7146 7147 n->dbbuf_dbs = 0; 7148 n->dbbuf_eis = 0; 7149 n->dbbuf_enabled = false; 7150 } 7151 7152 static void nvme_ctrl_shutdown(NvmeCtrl *n) 7153 { 7154 NvmeNamespace *ns; 7155 int i; 7156 7157 if (n->pmr.dev) { 7158 memory_region_msync(&n->pmr.dev->mr, 0, n->pmr.dev->size); 7159 } 7160 7161 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { 7162 ns = nvme_ns(n, i); 7163 if (!ns) { 7164 continue; 7165 } 7166 7167 nvme_ns_shutdown(ns); 7168 } 7169 } 7170 7171 static void nvme_select_iocs(NvmeCtrl *n) 7172 { 7173 NvmeNamespace *ns; 7174 int i; 7175 7176 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { 7177 ns = nvme_ns(n, i); 7178 if (!ns) { 7179 continue; 7180 } 7181 7182 nvme_select_iocs_ns(n, ns); 7183 } 7184 } 7185 7186 static int nvme_start_ctrl(NvmeCtrl *n) 7187 { 7188 uint64_t cap = ldq_le_p(&n->bar.cap); 7189 uint32_t cc = ldl_le_p(&n->bar.cc); 7190 uint32_t aqa = ldl_le_p(&n->bar.aqa); 7191 uint64_t asq = ldq_le_p(&n->bar.asq); 7192 uint64_t acq = ldq_le_p(&n->bar.acq); 7193 uint32_t page_bits = NVME_CC_MPS(cc) + 12; 7194 uint32_t page_size = 1 << page_bits; 7195 NvmeSecCtrlEntry *sctrl = nvme_sctrl(n); 7196 7197 if (pci_is_vf(PCI_DEVICE(n)) && !sctrl->scs) { 7198 trace_pci_nvme_err_startfail_virt_state(le16_to_cpu(sctrl->nvi), 7199 le16_to_cpu(sctrl->nvq)); 7200 return -1; 7201 } 7202 if (unlikely(n->cq[0])) { 7203 trace_pci_nvme_err_startfail_cq(); 7204 return -1; 7205 } 7206 if (unlikely(n->sq[0])) { 7207 trace_pci_nvme_err_startfail_sq(); 7208 return -1; 7209 } 7210 if (unlikely(asq & (page_size - 1))) { 7211 trace_pci_nvme_err_startfail_asq_misaligned(asq); 7212 return -1; 7213 } 7214 if (unlikely(acq & (page_size - 1))) { 7215 trace_pci_nvme_err_startfail_acq_misaligned(acq); 7216 return -1; 7217 } 7218 if (unlikely(!(NVME_CAP_CSS(cap) & (1 << NVME_CC_CSS(cc))))) { 7219 trace_pci_nvme_err_startfail_css(NVME_CC_CSS(cc)); 7220 return -1; 7221 } 7222 if (unlikely(NVME_CC_MPS(cc) < NVME_CAP_MPSMIN(cap))) { 7223 trace_pci_nvme_err_startfail_page_too_small( 7224 NVME_CC_MPS(cc), 7225 NVME_CAP_MPSMIN(cap)); 7226 return -1; 7227 } 7228 if (unlikely(NVME_CC_MPS(cc) > 7229 NVME_CAP_MPSMAX(cap))) { 7230 trace_pci_nvme_err_startfail_page_too_large( 7231 NVME_CC_MPS(cc), 7232 NVME_CAP_MPSMAX(cap)); 7233 return -1; 7234 } 7235 if (unlikely(!NVME_AQA_ASQS(aqa))) { 7236 trace_pci_nvme_err_startfail_asqent_sz_zero(); 7237 return -1; 7238 } 7239 if (unlikely(!NVME_AQA_ACQS(aqa))) { 7240 trace_pci_nvme_err_startfail_acqent_sz_zero(); 7241 return -1; 7242 } 7243 7244 n->page_bits = page_bits; 7245 n->page_size = page_size; 7246 n->max_prp_ents = n->page_size / sizeof(uint64_t); 7247 nvme_init_cq(&n->admin_cq, n, acq, 0, 0, NVME_AQA_ACQS(aqa) + 1, 1); 7248 nvme_init_sq(&n->admin_sq, n, asq, 0, 0, NVME_AQA_ASQS(aqa) + 1); 7249 7250 nvme_set_timestamp(n, 0ULL); 7251 7252 nvme_select_iocs(n); 7253 7254 return 0; 7255 } 7256 7257 static void nvme_cmb_enable_regs(NvmeCtrl *n) 7258 { 7259 uint32_t cmbloc = ldl_le_p(&n->bar.cmbloc); 7260 uint32_t cmbsz = ldl_le_p(&n->bar.cmbsz); 7261 7262 NVME_CMBLOC_SET_CDPCILS(cmbloc, 1); 7263 NVME_CMBLOC_SET_CDPMLS(cmbloc, 1); 7264 NVME_CMBLOC_SET_BIR(cmbloc, NVME_CMB_BIR); 7265 stl_le_p(&n->bar.cmbloc, cmbloc); 7266 7267 NVME_CMBSZ_SET_SQS(cmbsz, 1); 7268 NVME_CMBSZ_SET_CQS(cmbsz, 0); 7269 NVME_CMBSZ_SET_LISTS(cmbsz, 1); 7270 NVME_CMBSZ_SET_RDS(cmbsz, 1); 7271 NVME_CMBSZ_SET_WDS(cmbsz, 1); 7272 NVME_CMBSZ_SET_SZU(cmbsz, 2); /* MBs */ 7273 NVME_CMBSZ_SET_SZ(cmbsz, n->params.cmb_size_mb); 7274 stl_le_p(&n->bar.cmbsz, cmbsz); 7275 } 7276 7277 static void nvme_write_bar(NvmeCtrl *n, hwaddr offset, uint64_t data, 7278 unsigned size) 7279 { 7280 PCIDevice *pci = PCI_DEVICE(n); 7281 uint64_t cap = ldq_le_p(&n->bar.cap); 7282 uint32_t cc = ldl_le_p(&n->bar.cc); 7283 uint32_t intms = ldl_le_p(&n->bar.intms); 7284 uint32_t csts = ldl_le_p(&n->bar.csts); 7285 uint32_t pmrsts = ldl_le_p(&n->bar.pmrsts); 7286 7287 if (unlikely(offset & (sizeof(uint32_t) - 1))) { 7288 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_misaligned32, 7289 "MMIO write not 32-bit aligned," 7290 " offset=0x%"PRIx64"", offset); 7291 /* should be ignored, fall through for now */ 7292 } 7293 7294 if (unlikely(size < sizeof(uint32_t))) { 7295 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_toosmall, 7296 "MMIO write smaller than 32-bits," 7297 " offset=0x%"PRIx64", size=%u", 7298 offset, size); 7299 /* should be ignored, fall through for now */ 7300 } 7301 7302 switch (offset) { 7303 case NVME_REG_INTMS: 7304 if (unlikely(msix_enabled(pci))) { 7305 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix, 7306 "undefined access to interrupt mask set" 7307 " when MSI-X is enabled"); 7308 /* should be ignored, fall through for now */ 7309 } 7310 intms |= data; 7311 stl_le_p(&n->bar.intms, intms); 7312 n->bar.intmc = n->bar.intms; 7313 trace_pci_nvme_mmio_intm_set(data & 0xffffffff, intms); 7314 nvme_irq_check(n); 7315 break; 7316 case NVME_REG_INTMC: 7317 if (unlikely(msix_enabled(pci))) { 7318 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix, 7319 "undefined access to interrupt mask clr" 7320 " when MSI-X is enabled"); 7321 /* should be ignored, fall through for now */ 7322 } 7323 intms &= ~data; 7324 stl_le_p(&n->bar.intms, intms); 7325 n->bar.intmc = n->bar.intms; 7326 trace_pci_nvme_mmio_intm_clr(data & 0xffffffff, intms); 7327 nvme_irq_check(n); 7328 break; 7329 case NVME_REG_CC: 7330 stl_le_p(&n->bar.cc, data); 7331 7332 trace_pci_nvme_mmio_cfg(data & 0xffffffff); 7333 7334 if (NVME_CC_SHN(data) && !(NVME_CC_SHN(cc))) { 7335 trace_pci_nvme_mmio_shutdown_set(); 7336 nvme_ctrl_shutdown(n); 7337 csts &= ~(CSTS_SHST_MASK << CSTS_SHST_SHIFT); 7338 csts |= NVME_CSTS_SHST_COMPLETE; 7339 } else if (!NVME_CC_SHN(data) && NVME_CC_SHN(cc)) { 7340 trace_pci_nvme_mmio_shutdown_cleared(); 7341 csts &= ~(CSTS_SHST_MASK << CSTS_SHST_SHIFT); 7342 } 7343 7344 if (NVME_CC_EN(data) && !NVME_CC_EN(cc)) { 7345 if (unlikely(nvme_start_ctrl(n))) { 7346 trace_pci_nvme_err_startfail(); 7347 csts = NVME_CSTS_FAILED; 7348 } else { 7349 trace_pci_nvme_mmio_start_success(); 7350 csts = NVME_CSTS_READY; 7351 } 7352 } else if (!NVME_CC_EN(data) && NVME_CC_EN(cc)) { 7353 trace_pci_nvme_mmio_stopped(); 7354 nvme_ctrl_reset(n, NVME_RESET_CONTROLLER); 7355 7356 break; 7357 } 7358 7359 stl_le_p(&n->bar.csts, csts); 7360 7361 break; 7362 case NVME_REG_CSTS: 7363 if (data & (1 << 4)) { 7364 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ssreset_w1c_unsupported, 7365 "attempted to W1C CSTS.NSSRO" 7366 " but CAP.NSSRS is zero (not supported)"); 7367 } else if (data != 0) { 7368 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ro_csts, 7369 "attempted to set a read only bit" 7370 " of controller status"); 7371 } 7372 break; 7373 case NVME_REG_NSSR: 7374 if (data == 0x4e564d65) { 7375 trace_pci_nvme_ub_mmiowr_ssreset_unsupported(); 7376 } else { 7377 /* The spec says that writes of other values have no effect */ 7378 return; 7379 } 7380 break; 7381 case NVME_REG_AQA: 7382 stl_le_p(&n->bar.aqa, data); 7383 trace_pci_nvme_mmio_aqattr(data & 0xffffffff); 7384 break; 7385 case NVME_REG_ASQ: 7386 stn_le_p(&n->bar.asq, size, data); 7387 trace_pci_nvme_mmio_asqaddr(data); 7388 break; 7389 case NVME_REG_ASQ + 4: 7390 stl_le_p((uint8_t *)&n->bar.asq + 4, data); 7391 trace_pci_nvme_mmio_asqaddr_hi(data, ldq_le_p(&n->bar.asq)); 7392 break; 7393 case NVME_REG_ACQ: 7394 trace_pci_nvme_mmio_acqaddr(data); 7395 stn_le_p(&n->bar.acq, size, data); 7396 break; 7397 case NVME_REG_ACQ + 4: 7398 stl_le_p((uint8_t *)&n->bar.acq + 4, data); 7399 trace_pci_nvme_mmio_acqaddr_hi(data, ldq_le_p(&n->bar.acq)); 7400 break; 7401 case NVME_REG_CMBLOC: 7402 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbloc_reserved, 7403 "invalid write to reserved CMBLOC" 7404 " when CMBSZ is zero, ignored"); 7405 return; 7406 case NVME_REG_CMBSZ: 7407 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbsz_readonly, 7408 "invalid write to read only CMBSZ, ignored"); 7409 return; 7410 case NVME_REG_CMBMSC: 7411 if (!NVME_CAP_CMBS(cap)) { 7412 return; 7413 } 7414 7415 stn_le_p(&n->bar.cmbmsc, size, data); 7416 n->cmb.cmse = false; 7417 7418 if (NVME_CMBMSC_CRE(data)) { 7419 nvme_cmb_enable_regs(n); 7420 7421 if (NVME_CMBMSC_CMSE(data)) { 7422 uint64_t cmbmsc = ldq_le_p(&n->bar.cmbmsc); 7423 hwaddr cba = NVME_CMBMSC_CBA(cmbmsc) << CMBMSC_CBA_SHIFT; 7424 if (cba + int128_get64(n->cmb.mem.size) < cba) { 7425 uint32_t cmbsts = ldl_le_p(&n->bar.cmbsts); 7426 NVME_CMBSTS_SET_CBAI(cmbsts, 1); 7427 stl_le_p(&n->bar.cmbsts, cmbsts); 7428 return; 7429 } 7430 7431 n->cmb.cba = cba; 7432 n->cmb.cmse = true; 7433 } 7434 } else { 7435 n->bar.cmbsz = 0; 7436 n->bar.cmbloc = 0; 7437 } 7438 7439 return; 7440 case NVME_REG_CMBMSC + 4: 7441 stl_le_p((uint8_t *)&n->bar.cmbmsc + 4, data); 7442 return; 7443 7444 case NVME_REG_PMRCAP: 7445 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrcap_readonly, 7446 "invalid write to PMRCAP register, ignored"); 7447 return; 7448 case NVME_REG_PMRCTL: 7449 if (!NVME_CAP_PMRS(cap)) { 7450 return; 7451 } 7452 7453 stl_le_p(&n->bar.pmrctl, data); 7454 if (NVME_PMRCTL_EN(data)) { 7455 memory_region_set_enabled(&n->pmr.dev->mr, true); 7456 pmrsts = 0; 7457 } else { 7458 memory_region_set_enabled(&n->pmr.dev->mr, false); 7459 NVME_PMRSTS_SET_NRDY(pmrsts, 1); 7460 n->pmr.cmse = false; 7461 } 7462 stl_le_p(&n->bar.pmrsts, pmrsts); 7463 return; 7464 case NVME_REG_PMRSTS: 7465 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrsts_readonly, 7466 "invalid write to PMRSTS register, ignored"); 7467 return; 7468 case NVME_REG_PMREBS: 7469 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrebs_readonly, 7470 "invalid write to PMREBS register, ignored"); 7471 return; 7472 case NVME_REG_PMRSWTP: 7473 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrswtp_readonly, 7474 "invalid write to PMRSWTP register, ignored"); 7475 return; 7476 case NVME_REG_PMRMSCL: 7477 if (!NVME_CAP_PMRS(cap)) { 7478 return; 7479 } 7480 7481 stl_le_p(&n->bar.pmrmscl, data); 7482 n->pmr.cmse = false; 7483 7484 if (NVME_PMRMSCL_CMSE(data)) { 7485 uint64_t pmrmscu = ldl_le_p(&n->bar.pmrmscu); 7486 hwaddr cba = pmrmscu << 32 | 7487 (NVME_PMRMSCL_CBA(data) << PMRMSCL_CBA_SHIFT); 7488 if (cba + int128_get64(n->pmr.dev->mr.size) < cba) { 7489 NVME_PMRSTS_SET_CBAI(pmrsts, 1); 7490 stl_le_p(&n->bar.pmrsts, pmrsts); 7491 return; 7492 } 7493 7494 n->pmr.cmse = true; 7495 n->pmr.cba = cba; 7496 } 7497 7498 return; 7499 case NVME_REG_PMRMSCU: 7500 if (!NVME_CAP_PMRS(cap)) { 7501 return; 7502 } 7503 7504 stl_le_p(&n->bar.pmrmscu, data); 7505 return; 7506 default: 7507 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_invalid, 7508 "invalid MMIO write," 7509 " offset=0x%"PRIx64", data=%"PRIx64"", 7510 offset, data); 7511 break; 7512 } 7513 } 7514 7515 static uint64_t nvme_mmio_read(void *opaque, hwaddr addr, unsigned size) 7516 { 7517 NvmeCtrl *n = (NvmeCtrl *)opaque; 7518 uint8_t *ptr = (uint8_t *)&n->bar; 7519 7520 trace_pci_nvme_mmio_read(addr, size); 7521 7522 if (unlikely(addr & (sizeof(uint32_t) - 1))) { 7523 NVME_GUEST_ERR(pci_nvme_ub_mmiord_misaligned32, 7524 "MMIO read not 32-bit aligned," 7525 " offset=0x%"PRIx64"", addr); 7526 /* should RAZ, fall through for now */ 7527 } else if (unlikely(size < sizeof(uint32_t))) { 7528 NVME_GUEST_ERR(pci_nvme_ub_mmiord_toosmall, 7529 "MMIO read smaller than 32-bits," 7530 " offset=0x%"PRIx64"", addr); 7531 /* should RAZ, fall through for now */ 7532 } 7533 7534 if (addr > sizeof(n->bar) - size) { 7535 NVME_GUEST_ERR(pci_nvme_ub_mmiord_invalid_ofs, 7536 "MMIO read beyond last register," 7537 " offset=0x%"PRIx64", returning 0", addr); 7538 7539 return 0; 7540 } 7541 7542 if (pci_is_vf(PCI_DEVICE(n)) && !nvme_sctrl(n)->scs && 7543 addr != NVME_REG_CSTS) { 7544 trace_pci_nvme_err_ignored_mmio_vf_offline(addr, size); 7545 return 0; 7546 } 7547 7548 /* 7549 * When PMRWBM bit 1 is set then read from 7550 * from PMRSTS should ensure prior writes 7551 * made it to persistent media 7552 */ 7553 if (addr == NVME_REG_PMRSTS && 7554 (NVME_PMRCAP_PMRWBM(ldl_le_p(&n->bar.pmrcap)) & 0x02)) { 7555 memory_region_msync(&n->pmr.dev->mr, 0, n->pmr.dev->size); 7556 } 7557 7558 return ldn_le_p(ptr + addr, size); 7559 } 7560 7561 static void nvme_process_db(NvmeCtrl *n, hwaddr addr, int val) 7562 { 7563 PCIDevice *pci = PCI_DEVICE(n); 7564 uint32_t qid; 7565 7566 if (unlikely(addr & ((1 << 2) - 1))) { 7567 NVME_GUEST_ERR(pci_nvme_ub_db_wr_misaligned, 7568 "doorbell write not 32-bit aligned," 7569 " offset=0x%"PRIx64", ignoring", addr); 7570 return; 7571 } 7572 7573 if (((addr - 0x1000) >> 2) & 1) { 7574 /* Completion queue doorbell write */ 7575 7576 uint16_t new_head = val & 0xffff; 7577 int start_sqs; 7578 NvmeCQueue *cq; 7579 7580 qid = (addr - (0x1000 + (1 << 2))) >> 3; 7581 if (unlikely(nvme_check_cqid(n, qid))) { 7582 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cq, 7583 "completion queue doorbell write" 7584 " for nonexistent queue," 7585 " sqid=%"PRIu32", ignoring", qid); 7586 7587 /* 7588 * NVM Express v1.3d, Section 4.1 state: "If host software writes 7589 * an invalid value to the Submission Queue Tail Doorbell or 7590 * Completion Queue Head Doorbell register and an Asynchronous Event 7591 * Request command is outstanding, then an asynchronous event is 7592 * posted to the Admin Completion Queue with a status code of 7593 * Invalid Doorbell Write Value." 7594 * 7595 * Also note that the spec includes the "Invalid Doorbell Register" 7596 * status code, but nowhere does it specify when to use it. 7597 * However, it seems reasonable to use it here in a similar 7598 * fashion. 7599 */ 7600 if (n->outstanding_aers) { 7601 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR, 7602 NVME_AER_INFO_ERR_INVALID_DB_REGISTER, 7603 NVME_LOG_ERROR_INFO); 7604 } 7605 7606 return; 7607 } 7608 7609 cq = n->cq[qid]; 7610 if (unlikely(new_head >= cq->size)) { 7611 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cqhead, 7612 "completion queue doorbell write value" 7613 " beyond queue size, sqid=%"PRIu32"," 7614 " new_head=%"PRIu16", ignoring", 7615 qid, new_head); 7616 7617 if (n->outstanding_aers) { 7618 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR, 7619 NVME_AER_INFO_ERR_INVALID_DB_VALUE, 7620 NVME_LOG_ERROR_INFO); 7621 } 7622 7623 return; 7624 } 7625 7626 trace_pci_nvme_mmio_doorbell_cq(cq->cqid, new_head); 7627 7628 start_sqs = nvme_cq_full(cq) ? 1 : 0; 7629 cq->head = new_head; 7630 if (!qid && n->dbbuf_enabled) { 7631 stl_le_pci_dma(pci, cq->db_addr, cq->head, MEMTXATTRS_UNSPECIFIED); 7632 } 7633 if (start_sqs) { 7634 NvmeSQueue *sq; 7635 QTAILQ_FOREACH(sq, &cq->sq_list, entry) { 7636 qemu_bh_schedule(sq->bh); 7637 } 7638 qemu_bh_schedule(cq->bh); 7639 } 7640 7641 if (cq->tail == cq->head) { 7642 if (cq->irq_enabled) { 7643 n->cq_pending--; 7644 } 7645 7646 nvme_irq_deassert(n, cq); 7647 } 7648 } else { 7649 /* Submission queue doorbell write */ 7650 7651 uint16_t new_tail = val & 0xffff; 7652 NvmeSQueue *sq; 7653 7654 qid = (addr - 0x1000) >> 3; 7655 if (unlikely(nvme_check_sqid(n, qid))) { 7656 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sq, 7657 "submission queue doorbell write" 7658 " for nonexistent queue," 7659 " sqid=%"PRIu32", ignoring", qid); 7660 7661 if (n->outstanding_aers) { 7662 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR, 7663 NVME_AER_INFO_ERR_INVALID_DB_REGISTER, 7664 NVME_LOG_ERROR_INFO); 7665 } 7666 7667 return; 7668 } 7669 7670 sq = n->sq[qid]; 7671 if (unlikely(new_tail >= sq->size)) { 7672 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sqtail, 7673 "submission queue doorbell write value" 7674 " beyond queue size, sqid=%"PRIu32"," 7675 " new_tail=%"PRIu16", ignoring", 7676 qid, new_tail); 7677 7678 if (n->outstanding_aers) { 7679 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR, 7680 NVME_AER_INFO_ERR_INVALID_DB_VALUE, 7681 NVME_LOG_ERROR_INFO); 7682 } 7683 7684 return; 7685 } 7686 7687 trace_pci_nvme_mmio_doorbell_sq(sq->sqid, new_tail); 7688 7689 sq->tail = new_tail; 7690 if (!qid && n->dbbuf_enabled) { 7691 /* 7692 * The spec states "the host shall also update the controller's 7693 * corresponding doorbell property to match the value of that entry 7694 * in the Shadow Doorbell buffer." 7695 * 7696 * Since this context is currently a VM trap, we can safely enforce 7697 * the requirement from the device side in case the host is 7698 * misbehaving. 7699 * 7700 * Note, we shouldn't have to do this, but various drivers 7701 * including ones that run on Linux, are not updating Admin Queues, 7702 * so we can't trust reading it for an appropriate sq tail. 7703 */ 7704 stl_le_pci_dma(pci, sq->db_addr, sq->tail, MEMTXATTRS_UNSPECIFIED); 7705 } 7706 7707 qemu_bh_schedule(sq->bh); 7708 } 7709 } 7710 7711 static void nvme_mmio_write(void *opaque, hwaddr addr, uint64_t data, 7712 unsigned size) 7713 { 7714 NvmeCtrl *n = (NvmeCtrl *)opaque; 7715 7716 trace_pci_nvme_mmio_write(addr, data, size); 7717 7718 if (pci_is_vf(PCI_DEVICE(n)) && !nvme_sctrl(n)->scs && 7719 addr != NVME_REG_CSTS) { 7720 trace_pci_nvme_err_ignored_mmio_vf_offline(addr, size); 7721 return; 7722 } 7723 7724 if (addr < sizeof(n->bar)) { 7725 nvme_write_bar(n, addr, data, size); 7726 } else { 7727 nvme_process_db(n, addr, data); 7728 } 7729 } 7730 7731 static const MemoryRegionOps nvme_mmio_ops = { 7732 .read = nvme_mmio_read, 7733 .write = nvme_mmio_write, 7734 .endianness = DEVICE_LITTLE_ENDIAN, 7735 .impl = { 7736 .min_access_size = 2, 7737 .max_access_size = 8, 7738 }, 7739 }; 7740 7741 static void nvme_cmb_write(void *opaque, hwaddr addr, uint64_t data, 7742 unsigned size) 7743 { 7744 NvmeCtrl *n = (NvmeCtrl *)opaque; 7745 stn_le_p(&n->cmb.buf[addr], size, data); 7746 } 7747 7748 static uint64_t nvme_cmb_read(void *opaque, hwaddr addr, unsigned size) 7749 { 7750 NvmeCtrl *n = (NvmeCtrl *)opaque; 7751 return ldn_le_p(&n->cmb.buf[addr], size); 7752 } 7753 7754 static const MemoryRegionOps nvme_cmb_ops = { 7755 .read = nvme_cmb_read, 7756 .write = nvme_cmb_write, 7757 .endianness = DEVICE_LITTLE_ENDIAN, 7758 .impl = { 7759 .min_access_size = 1, 7760 .max_access_size = 8, 7761 }, 7762 }; 7763 7764 static bool nvme_check_params(NvmeCtrl *n, Error **errp) 7765 { 7766 NvmeParams *params = &n->params; 7767 7768 if (params->num_queues) { 7769 warn_report("num_queues is deprecated; please use max_ioqpairs " 7770 "instead"); 7771 7772 params->max_ioqpairs = params->num_queues - 1; 7773 } 7774 7775 if (n->namespace.blkconf.blk && n->subsys) { 7776 error_setg(errp, "subsystem support is unavailable with legacy " 7777 "namespace ('drive' property)"); 7778 return false; 7779 } 7780 7781 if (params->max_ioqpairs < 1 || 7782 params->max_ioqpairs > NVME_MAX_IOQPAIRS) { 7783 error_setg(errp, "max_ioqpairs must be between 1 and %d", 7784 NVME_MAX_IOQPAIRS); 7785 return false; 7786 } 7787 7788 if (params->msix_qsize < 1 || 7789 params->msix_qsize > PCI_MSIX_FLAGS_QSIZE + 1) { 7790 error_setg(errp, "msix_qsize must be between 1 and %d", 7791 PCI_MSIX_FLAGS_QSIZE + 1); 7792 return false; 7793 } 7794 7795 if (!params->serial) { 7796 error_setg(errp, "serial property not set"); 7797 return false; 7798 } 7799 7800 if (n->pmr.dev) { 7801 if (host_memory_backend_is_mapped(n->pmr.dev)) { 7802 error_setg(errp, "can't use already busy memdev: %s", 7803 object_get_canonical_path_component(OBJECT(n->pmr.dev))); 7804 return false; 7805 } 7806 7807 if (!is_power_of_2(n->pmr.dev->size)) { 7808 error_setg(errp, "pmr backend size needs to be power of 2 in size"); 7809 return false; 7810 } 7811 7812 host_memory_backend_set_mapped(n->pmr.dev, true); 7813 } 7814 7815 if (n->params.zasl > n->params.mdts) { 7816 error_setg(errp, "zoned.zasl (Zone Append Size Limit) must be less " 7817 "than or equal to mdts (Maximum Data Transfer Size)"); 7818 return false; 7819 } 7820 7821 if (!n->params.vsl) { 7822 error_setg(errp, "vsl must be non-zero"); 7823 return false; 7824 } 7825 7826 if (params->sriov_max_vfs) { 7827 if (!n->subsys) { 7828 error_setg(errp, "subsystem is required for the use of SR-IOV"); 7829 return false; 7830 } 7831 7832 if (params->sriov_max_vfs > NVME_MAX_VFS) { 7833 error_setg(errp, "sriov_max_vfs must be between 0 and %d", 7834 NVME_MAX_VFS); 7835 return false; 7836 } 7837 7838 if (params->cmb_size_mb) { 7839 error_setg(errp, "CMB is not supported with SR-IOV"); 7840 return false; 7841 } 7842 7843 if (n->pmr.dev) { 7844 error_setg(errp, "PMR is not supported with SR-IOV"); 7845 return false; 7846 } 7847 7848 if (!params->sriov_vq_flexible || !params->sriov_vi_flexible) { 7849 error_setg(errp, "both sriov_vq_flexible and sriov_vi_flexible" 7850 " must be set for the use of SR-IOV"); 7851 return false; 7852 } 7853 7854 if (params->sriov_vq_flexible < params->sriov_max_vfs * 2) { 7855 error_setg(errp, "sriov_vq_flexible must be greater than or equal" 7856 " to %d (sriov_max_vfs * 2)", params->sriov_max_vfs * 2); 7857 return false; 7858 } 7859 7860 if (params->max_ioqpairs < params->sriov_vq_flexible + 2) { 7861 error_setg(errp, "(max_ioqpairs - sriov_vq_flexible) must be" 7862 " greater than or equal to 2"); 7863 return false; 7864 } 7865 7866 if (params->sriov_vi_flexible < params->sriov_max_vfs) { 7867 error_setg(errp, "sriov_vi_flexible must be greater than or equal" 7868 " to %d (sriov_max_vfs)", params->sriov_max_vfs); 7869 return false; 7870 } 7871 7872 if (params->msix_qsize < params->sriov_vi_flexible + 1) { 7873 error_setg(errp, "(msix_qsize - sriov_vi_flexible) must be" 7874 " greater than or equal to 1"); 7875 return false; 7876 } 7877 7878 if (params->sriov_max_vi_per_vf && 7879 (params->sriov_max_vi_per_vf - 1) % NVME_VF_RES_GRANULARITY) { 7880 error_setg(errp, "sriov_max_vi_per_vf must meet:" 7881 " (sriov_max_vi_per_vf - 1) %% %d == 0 and" 7882 " sriov_max_vi_per_vf >= 1", NVME_VF_RES_GRANULARITY); 7883 return false; 7884 } 7885 7886 if (params->sriov_max_vq_per_vf && 7887 (params->sriov_max_vq_per_vf < 2 || 7888 (params->sriov_max_vq_per_vf - 1) % NVME_VF_RES_GRANULARITY)) { 7889 error_setg(errp, "sriov_max_vq_per_vf must meet:" 7890 " (sriov_max_vq_per_vf - 1) %% %d == 0 and" 7891 " sriov_max_vq_per_vf >= 2", NVME_VF_RES_GRANULARITY); 7892 return false; 7893 } 7894 } 7895 7896 return true; 7897 } 7898 7899 static void nvme_init_state(NvmeCtrl *n) 7900 { 7901 NvmePriCtrlCap *cap = &n->pri_ctrl_cap; 7902 NvmeSecCtrlList *list = &n->sec_ctrl_list; 7903 NvmeSecCtrlEntry *sctrl; 7904 PCIDevice *pci = PCI_DEVICE(n); 7905 uint8_t max_vfs; 7906 int i; 7907 7908 if (pci_is_vf(pci)) { 7909 sctrl = nvme_sctrl(n); 7910 max_vfs = 0; 7911 n->conf_ioqpairs = sctrl->nvq ? le16_to_cpu(sctrl->nvq) - 1 : 0; 7912 n->conf_msix_qsize = sctrl->nvi ? le16_to_cpu(sctrl->nvi) : 1; 7913 } else { 7914 max_vfs = n->params.sriov_max_vfs; 7915 n->conf_ioqpairs = n->params.max_ioqpairs; 7916 n->conf_msix_qsize = n->params.msix_qsize; 7917 } 7918 7919 n->sq = g_new0(NvmeSQueue *, n->params.max_ioqpairs + 1); 7920 n->cq = g_new0(NvmeCQueue *, n->params.max_ioqpairs + 1); 7921 n->temperature = NVME_TEMPERATURE; 7922 n->features.temp_thresh_hi = NVME_TEMPERATURE_WARNING; 7923 n->starttime_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL); 7924 n->aer_reqs = g_new0(NvmeRequest *, n->params.aerl + 1); 7925 QTAILQ_INIT(&n->aer_queue); 7926 7927 list->numcntl = cpu_to_le16(max_vfs); 7928 for (i = 0; i < max_vfs; i++) { 7929 sctrl = &list->sec[i]; 7930 sctrl->pcid = cpu_to_le16(n->cntlid); 7931 sctrl->vfn = cpu_to_le16(i + 1); 7932 } 7933 7934 cap->cntlid = cpu_to_le16(n->cntlid); 7935 cap->crt = NVME_CRT_VQ | NVME_CRT_VI; 7936 7937 if (pci_is_vf(pci)) { 7938 cap->vqprt = cpu_to_le16(1 + n->conf_ioqpairs); 7939 } else { 7940 cap->vqprt = cpu_to_le16(1 + n->params.max_ioqpairs - 7941 n->params.sriov_vq_flexible); 7942 cap->vqfrt = cpu_to_le32(n->params.sriov_vq_flexible); 7943 cap->vqrfap = cap->vqfrt; 7944 cap->vqgran = cpu_to_le16(NVME_VF_RES_GRANULARITY); 7945 cap->vqfrsm = n->params.sriov_max_vq_per_vf ? 7946 cpu_to_le16(n->params.sriov_max_vq_per_vf) : 7947 cap->vqfrt / MAX(max_vfs, 1); 7948 } 7949 7950 if (pci_is_vf(pci)) { 7951 cap->viprt = cpu_to_le16(n->conf_msix_qsize); 7952 } else { 7953 cap->viprt = cpu_to_le16(n->params.msix_qsize - 7954 n->params.sriov_vi_flexible); 7955 cap->vifrt = cpu_to_le32(n->params.sriov_vi_flexible); 7956 cap->virfap = cap->vifrt; 7957 cap->vigran = cpu_to_le16(NVME_VF_RES_GRANULARITY); 7958 cap->vifrsm = n->params.sriov_max_vi_per_vf ? 7959 cpu_to_le16(n->params.sriov_max_vi_per_vf) : 7960 cap->vifrt / MAX(max_vfs, 1); 7961 } 7962 } 7963 7964 static void nvme_init_cmb(NvmeCtrl *n, PCIDevice *pci_dev) 7965 { 7966 uint64_t cmb_size = n->params.cmb_size_mb * MiB; 7967 uint64_t cap = ldq_le_p(&n->bar.cap); 7968 7969 n->cmb.buf = g_malloc0(cmb_size); 7970 memory_region_init_io(&n->cmb.mem, OBJECT(n), &nvme_cmb_ops, n, 7971 "nvme-cmb", cmb_size); 7972 pci_register_bar(pci_dev, NVME_CMB_BIR, 7973 PCI_BASE_ADDRESS_SPACE_MEMORY | 7974 PCI_BASE_ADDRESS_MEM_TYPE_64 | 7975 PCI_BASE_ADDRESS_MEM_PREFETCH, &n->cmb.mem); 7976 7977 NVME_CAP_SET_CMBS(cap, 1); 7978 stq_le_p(&n->bar.cap, cap); 7979 7980 if (n->params.legacy_cmb) { 7981 nvme_cmb_enable_regs(n); 7982 n->cmb.cmse = true; 7983 } 7984 } 7985 7986 static void nvme_init_pmr(NvmeCtrl *n, PCIDevice *pci_dev) 7987 { 7988 uint32_t pmrcap = ldl_le_p(&n->bar.pmrcap); 7989 7990 NVME_PMRCAP_SET_RDS(pmrcap, 1); 7991 NVME_PMRCAP_SET_WDS(pmrcap, 1); 7992 NVME_PMRCAP_SET_BIR(pmrcap, NVME_PMR_BIR); 7993 /* Turn on bit 1 support */ 7994 NVME_PMRCAP_SET_PMRWBM(pmrcap, 0x02); 7995 NVME_PMRCAP_SET_CMSS(pmrcap, 1); 7996 stl_le_p(&n->bar.pmrcap, pmrcap); 7997 7998 pci_register_bar(pci_dev, NVME_PMR_BIR, 7999 PCI_BASE_ADDRESS_SPACE_MEMORY | 8000 PCI_BASE_ADDRESS_MEM_TYPE_64 | 8001 PCI_BASE_ADDRESS_MEM_PREFETCH, &n->pmr.dev->mr); 8002 8003 memory_region_set_enabled(&n->pmr.dev->mr, false); 8004 } 8005 8006 static uint64_t nvme_bar_size(unsigned total_queues, unsigned total_irqs, 8007 unsigned *msix_table_offset, 8008 unsigned *msix_pba_offset) 8009 { 8010 uint64_t bar_size, msix_table_size, msix_pba_size; 8011 8012 bar_size = sizeof(NvmeBar) + 2 * total_queues * NVME_DB_SIZE; 8013 bar_size = QEMU_ALIGN_UP(bar_size, 4 * KiB); 8014 8015 if (msix_table_offset) { 8016 *msix_table_offset = bar_size; 8017 } 8018 8019 msix_table_size = PCI_MSIX_ENTRY_SIZE * total_irqs; 8020 bar_size += msix_table_size; 8021 bar_size = QEMU_ALIGN_UP(bar_size, 4 * KiB); 8022 8023 if (msix_pba_offset) { 8024 *msix_pba_offset = bar_size; 8025 } 8026 8027 msix_pba_size = QEMU_ALIGN_UP(total_irqs, 64) / 8; 8028 bar_size += msix_pba_size; 8029 8030 bar_size = pow2ceil(bar_size); 8031 return bar_size; 8032 } 8033 8034 static void nvme_init_sriov(NvmeCtrl *n, PCIDevice *pci_dev, uint16_t offset) 8035 { 8036 uint16_t vf_dev_id = n->params.use_intel_id ? 8037 PCI_DEVICE_ID_INTEL_NVME : PCI_DEVICE_ID_REDHAT_NVME; 8038 NvmePriCtrlCap *cap = &n->pri_ctrl_cap; 8039 uint64_t bar_size = nvme_bar_size(le16_to_cpu(cap->vqfrsm), 8040 le16_to_cpu(cap->vifrsm), 8041 NULL, NULL); 8042 8043 pcie_sriov_pf_init(pci_dev, offset, "nvme", vf_dev_id, 8044 n->params.sriov_max_vfs, n->params.sriov_max_vfs, 8045 NVME_VF_OFFSET, NVME_VF_STRIDE); 8046 8047 pcie_sriov_pf_init_vf_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY | 8048 PCI_BASE_ADDRESS_MEM_TYPE_64, bar_size); 8049 } 8050 8051 static int nvme_add_pm_capability(PCIDevice *pci_dev, uint8_t offset) 8052 { 8053 Error *err = NULL; 8054 int ret; 8055 8056 ret = pci_add_capability(pci_dev, PCI_CAP_ID_PM, offset, 8057 PCI_PM_SIZEOF, &err); 8058 if (err) { 8059 error_report_err(err); 8060 return ret; 8061 } 8062 8063 pci_set_word(pci_dev->config + offset + PCI_PM_PMC, 8064 PCI_PM_CAP_VER_1_2); 8065 pci_set_word(pci_dev->config + offset + PCI_PM_CTRL, 8066 PCI_PM_CTRL_NO_SOFT_RESET); 8067 pci_set_word(pci_dev->wmask + offset + PCI_PM_CTRL, 8068 PCI_PM_CTRL_STATE_MASK); 8069 8070 return 0; 8071 } 8072 8073 static bool nvme_init_pci(NvmeCtrl *n, PCIDevice *pci_dev, Error **errp) 8074 { 8075 ERRP_GUARD(); 8076 uint8_t *pci_conf = pci_dev->config; 8077 uint64_t bar_size; 8078 unsigned msix_table_offset, msix_pba_offset; 8079 int ret; 8080 8081 pci_conf[PCI_INTERRUPT_PIN] = 1; 8082 pci_config_set_prog_interface(pci_conf, 0x2); 8083 8084 if (n->params.use_intel_id) { 8085 pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_INTEL); 8086 pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_NVME); 8087 } else { 8088 pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_REDHAT); 8089 pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_REDHAT_NVME); 8090 } 8091 8092 pci_config_set_class(pci_conf, PCI_CLASS_STORAGE_EXPRESS); 8093 nvme_add_pm_capability(pci_dev, 0x60); 8094 pcie_endpoint_cap_init(pci_dev, 0x80); 8095 pcie_cap_flr_init(pci_dev); 8096 if (n->params.sriov_max_vfs) { 8097 pcie_ari_init(pci_dev, 0x100); 8098 } 8099 8100 /* add one to max_ioqpairs to account for the admin queue pair */ 8101 bar_size = nvme_bar_size(n->params.max_ioqpairs + 1, n->params.msix_qsize, 8102 &msix_table_offset, &msix_pba_offset); 8103 8104 memory_region_init(&n->bar0, OBJECT(n), "nvme-bar0", bar_size); 8105 memory_region_init_io(&n->iomem, OBJECT(n), &nvme_mmio_ops, n, "nvme", 8106 msix_table_offset); 8107 memory_region_add_subregion(&n->bar0, 0, &n->iomem); 8108 8109 if (pci_is_vf(pci_dev)) { 8110 pcie_sriov_vf_register_bar(pci_dev, 0, &n->bar0); 8111 } else { 8112 pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY | 8113 PCI_BASE_ADDRESS_MEM_TYPE_64, &n->bar0); 8114 } 8115 ret = msix_init(pci_dev, n->params.msix_qsize, 8116 &n->bar0, 0, msix_table_offset, 8117 &n->bar0, 0, msix_pba_offset, 0, errp); 8118 if (ret == -ENOTSUP) { 8119 /* report that msix is not supported, but do not error out */ 8120 warn_report_err(*errp); 8121 *errp = NULL; 8122 } else if (ret < 0) { 8123 /* propagate error to caller */ 8124 return false; 8125 } 8126 8127 nvme_update_msixcap_ts(pci_dev, n->conf_msix_qsize); 8128 8129 if (n->params.cmb_size_mb) { 8130 nvme_init_cmb(n, pci_dev); 8131 } 8132 8133 if (n->pmr.dev) { 8134 nvme_init_pmr(n, pci_dev); 8135 } 8136 8137 if (!pci_is_vf(pci_dev) && n->params.sriov_max_vfs) { 8138 nvme_init_sriov(n, pci_dev, 0x120); 8139 } 8140 8141 return true; 8142 } 8143 8144 static void nvme_init_subnqn(NvmeCtrl *n) 8145 { 8146 NvmeSubsystem *subsys = n->subsys; 8147 NvmeIdCtrl *id = &n->id_ctrl; 8148 8149 if (!subsys) { 8150 snprintf((char *)id->subnqn, sizeof(id->subnqn), 8151 "nqn.2019-08.org.qemu:%s", n->params.serial); 8152 } else { 8153 pstrcpy((char *)id->subnqn, sizeof(id->subnqn), (char*)subsys->subnqn); 8154 } 8155 } 8156 8157 static void nvme_init_ctrl(NvmeCtrl *n, PCIDevice *pci_dev) 8158 { 8159 NvmeIdCtrl *id = &n->id_ctrl; 8160 uint8_t *pci_conf = pci_dev->config; 8161 uint64_t cap = ldq_le_p(&n->bar.cap); 8162 NvmeSecCtrlEntry *sctrl = nvme_sctrl(n); 8163 uint32_t ctratt; 8164 8165 id->vid = cpu_to_le16(pci_get_word(pci_conf + PCI_VENDOR_ID)); 8166 id->ssvid = cpu_to_le16(pci_get_word(pci_conf + PCI_SUBSYSTEM_VENDOR_ID)); 8167 strpadcpy((char *)id->mn, sizeof(id->mn), "QEMU NVMe Ctrl", ' '); 8168 strpadcpy((char *)id->fr, sizeof(id->fr), QEMU_VERSION, ' '); 8169 strpadcpy((char *)id->sn, sizeof(id->sn), n->params.serial, ' '); 8170 8171 id->cntlid = cpu_to_le16(n->cntlid); 8172 8173 id->oaes = cpu_to_le32(NVME_OAES_NS_ATTR); 8174 ctratt = NVME_CTRATT_ELBAS; 8175 8176 id->rab = 6; 8177 8178 if (n->params.use_intel_id) { 8179 id->ieee[0] = 0xb3; 8180 id->ieee[1] = 0x02; 8181 id->ieee[2] = 0x00; 8182 } else { 8183 id->ieee[0] = 0x00; 8184 id->ieee[1] = 0x54; 8185 id->ieee[2] = 0x52; 8186 } 8187 8188 id->mdts = n->params.mdts; 8189 id->ver = cpu_to_le32(NVME_SPEC_VER); 8190 id->oacs = 8191 cpu_to_le16(NVME_OACS_NS_MGMT | NVME_OACS_FORMAT | NVME_OACS_DBBUF | 8192 NVME_OACS_DIRECTIVES); 8193 id->cntrltype = 0x1; 8194 8195 /* 8196 * Because the controller always completes the Abort command immediately, 8197 * there can never be more than one concurrently executing Abort command, 8198 * so this value is never used for anything. Note that there can easily be 8199 * many Abort commands in the queues, but they are not considered 8200 * "executing" until processed by nvme_abort. 8201 * 8202 * The specification recommends a value of 3 for Abort Command Limit (four 8203 * concurrently outstanding Abort commands), so lets use that though it is 8204 * inconsequential. 8205 */ 8206 id->acl = 3; 8207 id->aerl = n->params.aerl; 8208 id->frmw = (NVME_NUM_FW_SLOTS << 1) | NVME_FRMW_SLOT1_RO; 8209 id->lpa = NVME_LPA_NS_SMART | NVME_LPA_CSE | NVME_LPA_EXTENDED; 8210 8211 /* recommended default value (~70 C) */ 8212 id->wctemp = cpu_to_le16(NVME_TEMPERATURE_WARNING); 8213 id->cctemp = cpu_to_le16(NVME_TEMPERATURE_CRITICAL); 8214 8215 id->sqes = (NVME_SQES << 4) | NVME_SQES; 8216 id->cqes = (NVME_CQES << 4) | NVME_CQES; 8217 id->nn = cpu_to_le32(NVME_MAX_NAMESPACES); 8218 id->oncs = cpu_to_le16(NVME_ONCS_WRITE_ZEROES | NVME_ONCS_TIMESTAMP | 8219 NVME_ONCS_FEATURES | NVME_ONCS_DSM | 8220 NVME_ONCS_COMPARE | NVME_ONCS_COPY); 8221 8222 /* 8223 * NOTE: If this device ever supports a command set that does NOT use 0x0 8224 * as a Flush-equivalent operation, support for the broadcast NSID in Flush 8225 * should probably be removed. 8226 * 8227 * See comment in nvme_io_cmd. 8228 */ 8229 id->vwc = NVME_VWC_NSID_BROADCAST_SUPPORT | NVME_VWC_PRESENT; 8230 8231 id->ocfs = cpu_to_le16(NVME_OCFS_COPY_FORMAT_0 | NVME_OCFS_COPY_FORMAT_1); 8232 id->sgls = cpu_to_le32(NVME_CTRL_SGLS_SUPPORT_NO_ALIGN); 8233 8234 nvme_init_subnqn(n); 8235 8236 id->psd[0].mp = cpu_to_le16(0x9c4); 8237 id->psd[0].enlat = cpu_to_le32(0x10); 8238 id->psd[0].exlat = cpu_to_le32(0x4); 8239 8240 if (n->subsys) { 8241 id->cmic |= NVME_CMIC_MULTI_CTRL; 8242 ctratt |= NVME_CTRATT_ENDGRPS; 8243 8244 id->endgidmax = cpu_to_le16(0x1); 8245 8246 if (n->subsys->endgrp.fdp.enabled) { 8247 ctratt |= NVME_CTRATT_FDPS; 8248 } 8249 } 8250 8251 id->ctratt = cpu_to_le32(ctratt); 8252 8253 NVME_CAP_SET_MQES(cap, 0x7ff); 8254 NVME_CAP_SET_CQR(cap, 1); 8255 NVME_CAP_SET_TO(cap, 0xf); 8256 NVME_CAP_SET_CSS(cap, NVME_CAP_CSS_NVM); 8257 NVME_CAP_SET_CSS(cap, NVME_CAP_CSS_CSI_SUPP); 8258 NVME_CAP_SET_CSS(cap, NVME_CAP_CSS_ADMIN_ONLY); 8259 NVME_CAP_SET_MPSMAX(cap, 4); 8260 NVME_CAP_SET_CMBS(cap, n->params.cmb_size_mb ? 1 : 0); 8261 NVME_CAP_SET_PMRS(cap, n->pmr.dev ? 1 : 0); 8262 stq_le_p(&n->bar.cap, cap); 8263 8264 stl_le_p(&n->bar.vs, NVME_SPEC_VER); 8265 n->bar.intmc = n->bar.intms = 0; 8266 8267 if (pci_is_vf(pci_dev) && !sctrl->scs) { 8268 stl_le_p(&n->bar.csts, NVME_CSTS_FAILED); 8269 } 8270 } 8271 8272 static int nvme_init_subsys(NvmeCtrl *n, Error **errp) 8273 { 8274 int cntlid; 8275 8276 if (!n->subsys) { 8277 return 0; 8278 } 8279 8280 cntlid = nvme_subsys_register_ctrl(n, errp); 8281 if (cntlid < 0) { 8282 return -1; 8283 } 8284 8285 n->cntlid = cntlid; 8286 8287 return 0; 8288 } 8289 8290 void nvme_attach_ns(NvmeCtrl *n, NvmeNamespace *ns) 8291 { 8292 uint32_t nsid = ns->params.nsid; 8293 assert(nsid && nsid <= NVME_MAX_NAMESPACES); 8294 8295 n->namespaces[nsid] = ns; 8296 ns->attached++; 8297 8298 n->dmrsl = MIN_NON_ZERO(n->dmrsl, 8299 BDRV_REQUEST_MAX_BYTES / nvme_l2b(ns, 1)); 8300 } 8301 8302 static void nvme_realize(PCIDevice *pci_dev, Error **errp) 8303 { 8304 NvmeCtrl *n = NVME(pci_dev); 8305 DeviceState *dev = DEVICE(pci_dev); 8306 NvmeNamespace *ns; 8307 NvmeCtrl *pn = NVME(pcie_sriov_get_pf(pci_dev)); 8308 8309 if (pci_is_vf(pci_dev)) { 8310 /* 8311 * VFs derive settings from the parent. PF's lifespan exceeds 8312 * that of VF's, so it's safe to share params.serial. 8313 */ 8314 memcpy(&n->params, &pn->params, sizeof(NvmeParams)); 8315 n->subsys = pn->subsys; 8316 } 8317 8318 if (!nvme_check_params(n, errp)) { 8319 return; 8320 } 8321 8322 qbus_init(&n->bus, sizeof(NvmeBus), TYPE_NVME_BUS, dev, dev->id); 8323 8324 if (nvme_init_subsys(n, errp)) { 8325 return; 8326 } 8327 nvme_init_state(n); 8328 if (!nvme_init_pci(n, pci_dev, errp)) { 8329 return; 8330 } 8331 nvme_init_ctrl(n, pci_dev); 8332 8333 /* setup a namespace if the controller drive property was given */ 8334 if (n->namespace.blkconf.blk) { 8335 ns = &n->namespace; 8336 ns->params.nsid = 1; 8337 8338 if (nvme_ns_setup(ns, errp)) { 8339 return; 8340 } 8341 8342 nvme_attach_ns(n, ns); 8343 } 8344 } 8345 8346 static void nvme_exit(PCIDevice *pci_dev) 8347 { 8348 NvmeCtrl *n = NVME(pci_dev); 8349 NvmeNamespace *ns; 8350 int i; 8351 8352 nvme_ctrl_reset(n, NVME_RESET_FUNCTION); 8353 8354 if (n->subsys) { 8355 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { 8356 ns = nvme_ns(n, i); 8357 if (ns) { 8358 ns->attached--; 8359 } 8360 } 8361 8362 nvme_subsys_unregister_ctrl(n->subsys, n); 8363 } 8364 8365 g_free(n->cq); 8366 g_free(n->sq); 8367 g_free(n->aer_reqs); 8368 8369 if (n->params.cmb_size_mb) { 8370 g_free(n->cmb.buf); 8371 } 8372 8373 if (n->pmr.dev) { 8374 host_memory_backend_set_mapped(n->pmr.dev, false); 8375 } 8376 8377 if (!pci_is_vf(pci_dev) && n->params.sriov_max_vfs) { 8378 pcie_sriov_pf_exit(pci_dev); 8379 } 8380 8381 msix_uninit(pci_dev, &n->bar0, &n->bar0); 8382 memory_region_del_subregion(&n->bar0, &n->iomem); 8383 } 8384 8385 static Property nvme_props[] = { 8386 DEFINE_BLOCK_PROPERTIES(NvmeCtrl, namespace.blkconf), 8387 DEFINE_PROP_LINK("pmrdev", NvmeCtrl, pmr.dev, TYPE_MEMORY_BACKEND, 8388 HostMemoryBackend *), 8389 DEFINE_PROP_LINK("subsys", NvmeCtrl, subsys, TYPE_NVME_SUBSYS, 8390 NvmeSubsystem *), 8391 DEFINE_PROP_STRING("serial", NvmeCtrl, params.serial), 8392 DEFINE_PROP_UINT32("cmb_size_mb", NvmeCtrl, params.cmb_size_mb, 0), 8393 DEFINE_PROP_UINT32("num_queues", NvmeCtrl, params.num_queues, 0), 8394 DEFINE_PROP_UINT32("max_ioqpairs", NvmeCtrl, params.max_ioqpairs, 64), 8395 DEFINE_PROP_UINT16("msix_qsize", NvmeCtrl, params.msix_qsize, 65), 8396 DEFINE_PROP_UINT8("aerl", NvmeCtrl, params.aerl, 3), 8397 DEFINE_PROP_UINT32("aer_max_queued", NvmeCtrl, params.aer_max_queued, 64), 8398 DEFINE_PROP_UINT8("mdts", NvmeCtrl, params.mdts, 7), 8399 DEFINE_PROP_UINT8("vsl", NvmeCtrl, params.vsl, 7), 8400 DEFINE_PROP_BOOL("use-intel-id", NvmeCtrl, params.use_intel_id, false), 8401 DEFINE_PROP_BOOL("legacy-cmb", NvmeCtrl, params.legacy_cmb, false), 8402 DEFINE_PROP_BOOL("ioeventfd", NvmeCtrl, params.ioeventfd, false), 8403 DEFINE_PROP_UINT8("zoned.zasl", NvmeCtrl, params.zasl, 0), 8404 DEFINE_PROP_BOOL("zoned.auto_transition", NvmeCtrl, 8405 params.auto_transition_zones, true), 8406 DEFINE_PROP_UINT8("sriov_max_vfs", NvmeCtrl, params.sriov_max_vfs, 0), 8407 DEFINE_PROP_UINT16("sriov_vq_flexible", NvmeCtrl, 8408 params.sriov_vq_flexible, 0), 8409 DEFINE_PROP_UINT16("sriov_vi_flexible", NvmeCtrl, 8410 params.sriov_vi_flexible, 0), 8411 DEFINE_PROP_UINT8("sriov_max_vi_per_vf", NvmeCtrl, 8412 params.sriov_max_vi_per_vf, 0), 8413 DEFINE_PROP_UINT8("sriov_max_vq_per_vf", NvmeCtrl, 8414 params.sriov_max_vq_per_vf, 0), 8415 DEFINE_PROP_END_OF_LIST(), 8416 }; 8417 8418 static void nvme_get_smart_warning(Object *obj, Visitor *v, const char *name, 8419 void *opaque, Error **errp) 8420 { 8421 NvmeCtrl *n = NVME(obj); 8422 uint8_t value = n->smart_critical_warning; 8423 8424 visit_type_uint8(v, name, &value, errp); 8425 } 8426 8427 static void nvme_set_smart_warning(Object *obj, Visitor *v, const char *name, 8428 void *opaque, Error **errp) 8429 { 8430 NvmeCtrl *n = NVME(obj); 8431 uint8_t value, old_value, cap = 0, index, event; 8432 8433 if (!visit_type_uint8(v, name, &value, errp)) { 8434 return; 8435 } 8436 8437 cap = NVME_SMART_SPARE | NVME_SMART_TEMPERATURE | NVME_SMART_RELIABILITY 8438 | NVME_SMART_MEDIA_READ_ONLY | NVME_SMART_FAILED_VOLATILE_MEDIA; 8439 if (NVME_CAP_PMRS(ldq_le_p(&n->bar.cap))) { 8440 cap |= NVME_SMART_PMR_UNRELIABLE; 8441 } 8442 8443 if ((value & cap) != value) { 8444 error_setg(errp, "unsupported smart critical warning bits: 0x%x", 8445 value & ~cap); 8446 return; 8447 } 8448 8449 old_value = n->smart_critical_warning; 8450 n->smart_critical_warning = value; 8451 8452 /* only inject new bits of smart critical warning */ 8453 for (index = 0; index < NVME_SMART_WARN_MAX; index++) { 8454 event = 1 << index; 8455 if (value & ~old_value & event) 8456 nvme_smart_event(n, event); 8457 } 8458 } 8459 8460 static void nvme_pci_reset(DeviceState *qdev) 8461 { 8462 PCIDevice *pci_dev = PCI_DEVICE(qdev); 8463 NvmeCtrl *n = NVME(pci_dev); 8464 8465 trace_pci_nvme_pci_reset(); 8466 nvme_ctrl_reset(n, NVME_RESET_FUNCTION); 8467 } 8468 8469 static void nvme_sriov_pre_write_ctrl(PCIDevice *dev, uint32_t address, 8470 uint32_t val, int len) 8471 { 8472 NvmeCtrl *n = NVME(dev); 8473 NvmeSecCtrlEntry *sctrl; 8474 uint16_t sriov_cap = dev->exp.sriov_cap; 8475 uint32_t off = address - sriov_cap; 8476 int i, num_vfs; 8477 8478 if (!sriov_cap) { 8479 return; 8480 } 8481 8482 if (range_covers_byte(off, len, PCI_SRIOV_CTRL)) { 8483 if (!(val & PCI_SRIOV_CTRL_VFE)) { 8484 num_vfs = pci_get_word(dev->config + sriov_cap + PCI_SRIOV_NUM_VF); 8485 for (i = 0; i < num_vfs; i++) { 8486 sctrl = &n->sec_ctrl_list.sec[i]; 8487 nvme_virt_set_state(n, le16_to_cpu(sctrl->scid), false); 8488 } 8489 } 8490 } 8491 } 8492 8493 static void nvme_pci_write_config(PCIDevice *dev, uint32_t address, 8494 uint32_t val, int len) 8495 { 8496 nvme_sriov_pre_write_ctrl(dev, address, val, len); 8497 pci_default_write_config(dev, address, val, len); 8498 pcie_cap_flr_write_config(dev, address, val, len); 8499 } 8500 8501 static const VMStateDescription nvme_vmstate = { 8502 .name = "nvme", 8503 .unmigratable = 1, 8504 }; 8505 8506 static void nvme_class_init(ObjectClass *oc, void *data) 8507 { 8508 DeviceClass *dc = DEVICE_CLASS(oc); 8509 PCIDeviceClass *pc = PCI_DEVICE_CLASS(oc); 8510 8511 pc->realize = nvme_realize; 8512 pc->config_write = nvme_pci_write_config; 8513 pc->exit = nvme_exit; 8514 pc->class_id = PCI_CLASS_STORAGE_EXPRESS; 8515 pc->revision = 2; 8516 8517 set_bit(DEVICE_CATEGORY_STORAGE, dc->categories); 8518 dc->desc = "Non-Volatile Memory Express"; 8519 device_class_set_props(dc, nvme_props); 8520 dc->vmsd = &nvme_vmstate; 8521 dc->reset = nvme_pci_reset; 8522 } 8523 8524 static void nvme_instance_init(Object *obj) 8525 { 8526 NvmeCtrl *n = NVME(obj); 8527 8528 device_add_bootindex_property(obj, &n->namespace.blkconf.bootindex, 8529 "bootindex", "/namespace@1,0", 8530 DEVICE(obj)); 8531 8532 object_property_add(obj, "smart_critical_warning", "uint8", 8533 nvme_get_smart_warning, 8534 nvme_set_smart_warning, NULL, NULL); 8535 } 8536 8537 static const TypeInfo nvme_info = { 8538 .name = TYPE_NVME, 8539 .parent = TYPE_PCI_DEVICE, 8540 .instance_size = sizeof(NvmeCtrl), 8541 .instance_init = nvme_instance_init, 8542 .class_init = nvme_class_init, 8543 .interfaces = (InterfaceInfo[]) { 8544 { INTERFACE_PCIE_DEVICE }, 8545 { } 8546 }, 8547 }; 8548 8549 static const TypeInfo nvme_bus_info = { 8550 .name = TYPE_NVME_BUS, 8551 .parent = TYPE_BUS, 8552 .instance_size = sizeof(NvmeBus), 8553 }; 8554 8555 static void nvme_register_types(void) 8556 { 8557 type_register_static(&nvme_info); 8558 type_register_static(&nvme_bus_info); 8559 } 8560 8561 type_init(nvme_register_types) 8562