1 /* 2 * QEMU NVM Express Controller 3 * 4 * Copyright (c) 2012, Intel Corporation 5 * 6 * Written by Keith Busch <keith.busch@intel.com> 7 * 8 * This code is licensed under the GNU GPL v2 or later. 9 */ 10 11 /** 12 * Reference Specs: http://www.nvmexpress.org, 1.4, 1.3, 1.2, 1.1, 1.0e 13 * 14 * https://nvmexpress.org/developers/nvme-specification/ 15 * 16 * 17 * Notes on coding style 18 * --------------------- 19 * While QEMU coding style prefers lowercase hexadecimals in constants, the 20 * NVMe subsystem use this format from the NVMe specifications in the comments 21 * (i.e. 'h' suffix instead of '0x' prefix). 22 * 23 * Usage 24 * ----- 25 * See docs/system/nvme.rst for extensive documentation. 26 * 27 * Add options: 28 * -drive file=<file>,if=none,id=<drive_id> 29 * -device nvme-subsys,id=<subsys_id>,nqn=<nqn_id> 30 * -device nvme,serial=<serial>,id=<bus_name>, \ 31 * cmb_size_mb=<cmb_size_mb[optional]>, \ 32 * [pmrdev=<mem_backend_file_id>,] \ 33 * max_ioqpairs=<N[optional]>, \ 34 * aerl=<N[optional]>,aer_max_queued=<N[optional]>, \ 35 * mdts=<N[optional]>,vsl=<N[optional]>, \ 36 * zoned.zasl=<N[optional]>, \ 37 * zoned.auto_transition=<on|off[optional]>, \ 38 * sriov_max_vfs=<N[optional]> \ 39 * sriov_vq_flexible=<N[optional]> \ 40 * sriov_vi_flexible=<N[optional]> \ 41 * sriov_max_vi_per_vf=<N[optional]> \ 42 * sriov_max_vq_per_vf=<N[optional]> \ 43 * subsys=<subsys_id> 44 * -device nvme-ns,drive=<drive_id>,bus=<bus_name>,nsid=<nsid>,\ 45 * zoned=<true|false[optional]>, \ 46 * subsys=<subsys_id>,shared=<true|false[optional]>, \ 47 * detached=<true|false[optional]>, \ 48 * zoned.zone_size=<N[optional]>, \ 49 * zoned.zone_capacity=<N[optional]>, \ 50 * zoned.descr_ext_size=<N[optional]>, \ 51 * zoned.max_active=<N[optional]>, \ 52 * zoned.max_open=<N[optional]>, \ 53 * zoned.cross_read=<true|false[optional]> 54 * 55 * Note cmb_size_mb denotes size of CMB in MB. CMB is assumed to be at 56 * offset 0 in BAR2 and supports only WDS, RDS and SQS for now. By default, the 57 * device will use the "v1.4 CMB scheme" - use the `legacy-cmb` parameter to 58 * always enable the CMBLOC and CMBSZ registers (v1.3 behavior). 59 * 60 * Enabling pmr emulation can be achieved by pointing to memory-backend-file. 61 * For example: 62 * -object memory-backend-file,id=<mem_id>,share=on,mem-path=<file_path>, \ 63 * size=<size> .... -device nvme,...,pmrdev=<mem_id> 64 * 65 * The PMR will use BAR 4/5 exclusively. 66 * 67 * To place controller(s) and namespace(s) to a subsystem, then provide 68 * nvme-subsys device as above. 69 * 70 * nvme subsystem device parameters 71 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 72 * - `nqn` 73 * This parameter provides the `<nqn_id>` part of the string 74 * `nqn.2019-08.org.qemu:<nqn_id>` which will be reported in the SUBNQN field 75 * of subsystem controllers. Note that `<nqn_id>` should be unique per 76 * subsystem, but this is not enforced by QEMU. If not specified, it will 77 * default to the value of the `id` parameter (`<subsys_id>`). 78 * 79 * nvme device parameters 80 * ~~~~~~~~~~~~~~~~~~~~~~ 81 * - `subsys` 82 * Specifying this parameter attaches the controller to the subsystem and 83 * the SUBNQN field in the controller will report the NQN of the subsystem 84 * device. This also enables multi controller capability represented in 85 * Identify Controller data structure in CMIC (Controller Multi-path I/O and 86 * Namespace Sharing Capabilities). 87 * 88 * - `aerl` 89 * The Asynchronous Event Request Limit (AERL). Indicates the maximum number 90 * of concurrently outstanding Asynchronous Event Request commands support 91 * by the controller. This is a 0's based value. 92 * 93 * - `aer_max_queued` 94 * This is the maximum number of events that the device will enqueue for 95 * completion when there are no outstanding AERs. When the maximum number of 96 * enqueued events are reached, subsequent events will be dropped. 97 * 98 * - `mdts` 99 * Indicates the maximum data transfer size for a command that transfers data 100 * between host-accessible memory and the controller. The value is specified 101 * as a power of two (2^n) and is in units of the minimum memory page size 102 * (CAP.MPSMIN). The default value is 7 (i.e. 512 KiB). 103 * 104 * - `vsl` 105 * Indicates the maximum data size limit for the Verify command. Like `mdts`, 106 * this value is specified as a power of two (2^n) and is in units of the 107 * minimum memory page size (CAP.MPSMIN). The default value is 7 (i.e. 512 108 * KiB). 109 * 110 * - `zoned.zasl` 111 * Indicates the maximum data transfer size for the Zone Append command. Like 112 * `mdts`, the value is specified as a power of two (2^n) and is in units of 113 * the minimum memory page size (CAP.MPSMIN). The default value is 0 (i.e. 114 * defaulting to the value of `mdts`). 115 * 116 * - `zoned.auto_transition` 117 * Indicates if zones in zone state implicitly opened can be automatically 118 * transitioned to zone state closed for resource management purposes. 119 * Defaults to 'on'. 120 * 121 * - `sriov_max_vfs` 122 * Indicates the maximum number of PCIe virtual functions supported 123 * by the controller. The default value is 0. Specifying a non-zero value 124 * enables reporting of both SR-IOV and ARI capabilities by the NVMe device. 125 * Virtual function controllers will not report SR-IOV capability. 126 * 127 * NOTE: Single Root I/O Virtualization support is experimental. 128 * All the related parameters may be subject to change. 129 * 130 * - `sriov_vq_flexible` 131 * Indicates the total number of flexible queue resources assignable to all 132 * the secondary controllers. Implicitly sets the number of primary 133 * controller's private resources to `(max_ioqpairs - sriov_vq_flexible)`. 134 * 135 * - `sriov_vi_flexible` 136 * Indicates the total number of flexible interrupt resources assignable to 137 * all the secondary controllers. Implicitly sets the number of primary 138 * controller's private resources to `(msix_qsize - sriov_vi_flexible)`. 139 * 140 * - `sriov_max_vi_per_vf` 141 * Indicates the maximum number of virtual interrupt resources assignable 142 * to a secondary controller. The default 0 resolves to 143 * `(sriov_vi_flexible / sriov_max_vfs)`. 144 * 145 * - `sriov_max_vq_per_vf` 146 * Indicates the maximum number of virtual queue resources assignable to 147 * a secondary controller. The default 0 resolves to 148 * `(sriov_vq_flexible / sriov_max_vfs)`. 149 * 150 * nvme namespace device parameters 151 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 152 * - `shared` 153 * When the parent nvme device (as defined explicitly by the 'bus' parameter 154 * or implicitly by the most recently defined NvmeBus) is linked to an 155 * nvme-subsys device, the namespace will be attached to all controllers in 156 * the subsystem. If set to 'off' (the default), the namespace will remain a 157 * private namespace and may only be attached to a single controller at a 158 * time. 159 * 160 * - `detached` 161 * This parameter is only valid together with the `subsys` parameter. If left 162 * at the default value (`false/off`), the namespace will be attached to all 163 * controllers in the NVMe subsystem at boot-up. If set to `true/on`, the 164 * namespace will be available in the subsystem but not attached to any 165 * controllers. 166 * 167 * Setting `zoned` to true selects Zoned Command Set at the namespace. 168 * In this case, the following namespace properties are available to configure 169 * zoned operation: 170 * zoned.zone_size=<zone size in bytes, default: 128MiB> 171 * The number may be followed by K, M, G as in kilo-, mega- or giga-. 172 * 173 * zoned.zone_capacity=<zone capacity in bytes, default: zone size> 174 * The value 0 (default) forces zone capacity to be the same as zone 175 * size. The value of this property may not exceed zone size. 176 * 177 * zoned.descr_ext_size=<zone descriptor extension size, default 0> 178 * This value needs to be specified in 64B units. If it is zero, 179 * namespace(s) will not support zone descriptor extensions. 180 * 181 * zoned.max_active=<Maximum Active Resources (zones), default: 0> 182 * The default value means there is no limit to the number of 183 * concurrently active zones. 184 * 185 * zoned.max_open=<Maximum Open Resources (zones), default: 0> 186 * The default value means there is no limit to the number of 187 * concurrently open zones. 188 * 189 * zoned.cross_read=<enable RAZB, default: false> 190 * Setting this property to true enables Read Across Zone Boundaries. 191 */ 192 193 #include "qemu/osdep.h" 194 #include "qemu/cutils.h" 195 #include "qemu/error-report.h" 196 #include "qemu/log.h" 197 #include "qemu/units.h" 198 #include "qemu/range.h" 199 #include "qapi/error.h" 200 #include "qapi/visitor.h" 201 #include "sysemu/sysemu.h" 202 #include "sysemu/block-backend.h" 203 #include "sysemu/hostmem.h" 204 #include "hw/pci/msix.h" 205 #include "hw/pci/pcie_sriov.h" 206 #include "sysemu/spdm-socket.h" 207 #include "migration/vmstate.h" 208 209 #include "nvme.h" 210 #include "dif.h" 211 #include "trace.h" 212 213 #define NVME_MAX_IOQPAIRS 0xffff 214 #define NVME_DB_SIZE 4 215 #define NVME_SPEC_VER 0x00010400 216 #define NVME_CMB_BIR 2 217 #define NVME_PMR_BIR 4 218 #define NVME_TEMPERATURE 0x143 219 #define NVME_TEMPERATURE_WARNING 0x157 220 #define NVME_TEMPERATURE_CRITICAL 0x175 221 #define NVME_NUM_FW_SLOTS 1 222 #define NVME_DEFAULT_MAX_ZA_SIZE (128 * KiB) 223 #define NVME_VF_RES_GRANULARITY 1 224 #define NVME_VF_OFFSET 0x1 225 #define NVME_VF_STRIDE 1 226 227 #define NVME_GUEST_ERR(trace, fmt, ...) \ 228 do { \ 229 (trace_##trace)(__VA_ARGS__); \ 230 qemu_log_mask(LOG_GUEST_ERROR, #trace \ 231 " in %s: " fmt "\n", __func__, ## __VA_ARGS__); \ 232 } while (0) 233 234 static const bool nvme_feature_support[NVME_FID_MAX] = { 235 [NVME_ARBITRATION] = true, 236 [NVME_POWER_MANAGEMENT] = true, 237 [NVME_TEMPERATURE_THRESHOLD] = true, 238 [NVME_ERROR_RECOVERY] = true, 239 [NVME_VOLATILE_WRITE_CACHE] = true, 240 [NVME_NUMBER_OF_QUEUES] = true, 241 [NVME_INTERRUPT_COALESCING] = true, 242 [NVME_INTERRUPT_VECTOR_CONF] = true, 243 [NVME_WRITE_ATOMICITY] = true, 244 [NVME_ASYNCHRONOUS_EVENT_CONF] = true, 245 [NVME_TIMESTAMP] = true, 246 [NVME_HOST_BEHAVIOR_SUPPORT] = true, 247 [NVME_COMMAND_SET_PROFILE] = true, 248 [NVME_FDP_MODE] = true, 249 [NVME_FDP_EVENTS] = true, 250 }; 251 252 static const uint32_t nvme_feature_cap[NVME_FID_MAX] = { 253 [NVME_TEMPERATURE_THRESHOLD] = NVME_FEAT_CAP_CHANGE, 254 [NVME_ERROR_RECOVERY] = NVME_FEAT_CAP_CHANGE | NVME_FEAT_CAP_NS, 255 [NVME_VOLATILE_WRITE_CACHE] = NVME_FEAT_CAP_CHANGE, 256 [NVME_NUMBER_OF_QUEUES] = NVME_FEAT_CAP_CHANGE, 257 [NVME_ASYNCHRONOUS_EVENT_CONF] = NVME_FEAT_CAP_CHANGE, 258 [NVME_TIMESTAMP] = NVME_FEAT_CAP_CHANGE, 259 [NVME_HOST_BEHAVIOR_SUPPORT] = NVME_FEAT_CAP_CHANGE, 260 [NVME_COMMAND_SET_PROFILE] = NVME_FEAT_CAP_CHANGE, 261 [NVME_FDP_MODE] = NVME_FEAT_CAP_CHANGE, 262 [NVME_FDP_EVENTS] = NVME_FEAT_CAP_CHANGE | NVME_FEAT_CAP_NS, 263 }; 264 265 static const uint32_t nvme_cse_acs[256] = { 266 [NVME_ADM_CMD_DELETE_SQ] = NVME_CMD_EFF_CSUPP, 267 [NVME_ADM_CMD_CREATE_SQ] = NVME_CMD_EFF_CSUPP, 268 [NVME_ADM_CMD_GET_LOG_PAGE] = NVME_CMD_EFF_CSUPP, 269 [NVME_ADM_CMD_DELETE_CQ] = NVME_CMD_EFF_CSUPP, 270 [NVME_ADM_CMD_CREATE_CQ] = NVME_CMD_EFF_CSUPP, 271 [NVME_ADM_CMD_IDENTIFY] = NVME_CMD_EFF_CSUPP, 272 [NVME_ADM_CMD_ABORT] = NVME_CMD_EFF_CSUPP, 273 [NVME_ADM_CMD_SET_FEATURES] = NVME_CMD_EFF_CSUPP, 274 [NVME_ADM_CMD_GET_FEATURES] = NVME_CMD_EFF_CSUPP, 275 [NVME_ADM_CMD_ASYNC_EV_REQ] = NVME_CMD_EFF_CSUPP, 276 [NVME_ADM_CMD_NS_ATTACHMENT] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_NIC, 277 [NVME_ADM_CMD_VIRT_MNGMT] = NVME_CMD_EFF_CSUPP, 278 [NVME_ADM_CMD_DBBUF_CONFIG] = NVME_CMD_EFF_CSUPP, 279 [NVME_ADM_CMD_FORMAT_NVM] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, 280 [NVME_ADM_CMD_DIRECTIVE_RECV] = NVME_CMD_EFF_CSUPP, 281 [NVME_ADM_CMD_DIRECTIVE_SEND] = NVME_CMD_EFF_CSUPP, 282 }; 283 284 static const uint32_t nvme_cse_iocs_none[256]; 285 286 static const uint32_t nvme_cse_iocs_nvm[256] = { 287 [NVME_CMD_FLUSH] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, 288 [NVME_CMD_WRITE_ZEROES] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, 289 [NVME_CMD_WRITE] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, 290 [NVME_CMD_READ] = NVME_CMD_EFF_CSUPP, 291 [NVME_CMD_DSM] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, 292 [NVME_CMD_VERIFY] = NVME_CMD_EFF_CSUPP, 293 [NVME_CMD_COPY] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, 294 [NVME_CMD_COMPARE] = NVME_CMD_EFF_CSUPP, 295 [NVME_CMD_IO_MGMT_RECV] = NVME_CMD_EFF_CSUPP, 296 [NVME_CMD_IO_MGMT_SEND] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, 297 }; 298 299 static const uint32_t nvme_cse_iocs_zoned[256] = { 300 [NVME_CMD_FLUSH] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, 301 [NVME_CMD_WRITE_ZEROES] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, 302 [NVME_CMD_WRITE] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, 303 [NVME_CMD_READ] = NVME_CMD_EFF_CSUPP, 304 [NVME_CMD_DSM] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, 305 [NVME_CMD_VERIFY] = NVME_CMD_EFF_CSUPP, 306 [NVME_CMD_COPY] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, 307 [NVME_CMD_COMPARE] = NVME_CMD_EFF_CSUPP, 308 [NVME_CMD_ZONE_APPEND] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, 309 [NVME_CMD_ZONE_MGMT_SEND] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, 310 [NVME_CMD_ZONE_MGMT_RECV] = NVME_CMD_EFF_CSUPP, 311 }; 312 313 static void nvme_process_sq(void *opaque); 314 static void nvme_ctrl_reset(NvmeCtrl *n, NvmeResetType rst); 315 static inline uint64_t nvme_get_timestamp(const NvmeCtrl *n); 316 317 static uint16_t nvme_sqid(NvmeRequest *req) 318 { 319 return le16_to_cpu(req->sq->sqid); 320 } 321 322 static inline uint16_t nvme_make_pid(NvmeNamespace *ns, uint16_t rg, 323 uint16_t ph) 324 { 325 uint16_t rgif = ns->endgrp->fdp.rgif; 326 327 if (!rgif) { 328 return ph; 329 } 330 331 return (rg << (16 - rgif)) | ph; 332 } 333 334 static inline bool nvme_ph_valid(NvmeNamespace *ns, uint16_t ph) 335 { 336 return ph < ns->fdp.nphs; 337 } 338 339 static inline bool nvme_rg_valid(NvmeEnduranceGroup *endgrp, uint16_t rg) 340 { 341 return rg < endgrp->fdp.nrg; 342 } 343 344 static inline uint16_t nvme_pid2ph(NvmeNamespace *ns, uint16_t pid) 345 { 346 uint16_t rgif = ns->endgrp->fdp.rgif; 347 348 if (!rgif) { 349 return pid; 350 } 351 352 return pid & ((1 << (15 - rgif)) - 1); 353 } 354 355 static inline uint16_t nvme_pid2rg(NvmeNamespace *ns, uint16_t pid) 356 { 357 uint16_t rgif = ns->endgrp->fdp.rgif; 358 359 if (!rgif) { 360 return 0; 361 } 362 363 return pid >> (16 - rgif); 364 } 365 366 static inline bool nvme_parse_pid(NvmeNamespace *ns, uint16_t pid, 367 uint16_t *ph, uint16_t *rg) 368 { 369 *rg = nvme_pid2rg(ns, pid); 370 *ph = nvme_pid2ph(ns, pid); 371 372 return nvme_ph_valid(ns, *ph) && nvme_rg_valid(ns->endgrp, *rg); 373 } 374 375 static void nvme_assign_zone_state(NvmeNamespace *ns, NvmeZone *zone, 376 NvmeZoneState state) 377 { 378 if (QTAILQ_IN_USE(zone, entry)) { 379 switch (nvme_get_zone_state(zone)) { 380 case NVME_ZONE_STATE_EXPLICITLY_OPEN: 381 QTAILQ_REMOVE(&ns->exp_open_zones, zone, entry); 382 break; 383 case NVME_ZONE_STATE_IMPLICITLY_OPEN: 384 QTAILQ_REMOVE(&ns->imp_open_zones, zone, entry); 385 break; 386 case NVME_ZONE_STATE_CLOSED: 387 QTAILQ_REMOVE(&ns->closed_zones, zone, entry); 388 break; 389 case NVME_ZONE_STATE_FULL: 390 QTAILQ_REMOVE(&ns->full_zones, zone, entry); 391 default: 392 ; 393 } 394 } 395 396 nvme_set_zone_state(zone, state); 397 398 switch (state) { 399 case NVME_ZONE_STATE_EXPLICITLY_OPEN: 400 QTAILQ_INSERT_TAIL(&ns->exp_open_zones, zone, entry); 401 break; 402 case NVME_ZONE_STATE_IMPLICITLY_OPEN: 403 QTAILQ_INSERT_TAIL(&ns->imp_open_zones, zone, entry); 404 break; 405 case NVME_ZONE_STATE_CLOSED: 406 QTAILQ_INSERT_TAIL(&ns->closed_zones, zone, entry); 407 break; 408 case NVME_ZONE_STATE_FULL: 409 QTAILQ_INSERT_TAIL(&ns->full_zones, zone, entry); 410 case NVME_ZONE_STATE_READ_ONLY: 411 break; 412 default: 413 zone->d.za = 0; 414 } 415 } 416 417 static uint16_t nvme_zns_check_resources(NvmeNamespace *ns, uint32_t act, 418 uint32_t opn, uint32_t zrwa) 419 { 420 if (ns->params.max_active_zones != 0 && 421 ns->nr_active_zones + act > ns->params.max_active_zones) { 422 trace_pci_nvme_err_insuff_active_res(ns->params.max_active_zones); 423 return NVME_ZONE_TOO_MANY_ACTIVE | NVME_DNR; 424 } 425 426 if (ns->params.max_open_zones != 0 && 427 ns->nr_open_zones + opn > ns->params.max_open_zones) { 428 trace_pci_nvme_err_insuff_open_res(ns->params.max_open_zones); 429 return NVME_ZONE_TOO_MANY_OPEN | NVME_DNR; 430 } 431 432 if (zrwa > ns->zns.numzrwa) { 433 return NVME_NOZRWA | NVME_DNR; 434 } 435 436 return NVME_SUCCESS; 437 } 438 439 /* 440 * Check if we can open a zone without exceeding open/active limits. 441 * AOR stands for "Active and Open Resources" (see TP 4053 section 2.5). 442 */ 443 static uint16_t nvme_aor_check(NvmeNamespace *ns, uint32_t act, uint32_t opn) 444 { 445 return nvme_zns_check_resources(ns, act, opn, 0); 446 } 447 448 static NvmeFdpEvent *nvme_fdp_alloc_event(NvmeCtrl *n, NvmeFdpEventBuffer *ebuf) 449 { 450 NvmeFdpEvent *ret = NULL; 451 bool is_full = ebuf->next == ebuf->start && ebuf->nelems; 452 453 ret = &ebuf->events[ebuf->next++]; 454 if (unlikely(ebuf->next == NVME_FDP_MAX_EVENTS)) { 455 ebuf->next = 0; 456 } 457 if (is_full) { 458 ebuf->start = ebuf->next; 459 } else { 460 ebuf->nelems++; 461 } 462 463 memset(ret, 0, sizeof(NvmeFdpEvent)); 464 ret->timestamp = nvme_get_timestamp(n); 465 466 return ret; 467 } 468 469 static inline int log_event(NvmeRuHandle *ruh, uint8_t event_type) 470 { 471 return (ruh->event_filter >> nvme_fdp_evf_shifts[event_type]) & 0x1; 472 } 473 474 static bool nvme_update_ruh(NvmeCtrl *n, NvmeNamespace *ns, uint16_t pid) 475 { 476 NvmeEnduranceGroup *endgrp = ns->endgrp; 477 NvmeRuHandle *ruh; 478 NvmeReclaimUnit *ru; 479 NvmeFdpEvent *e = NULL; 480 uint16_t ph, rg, ruhid; 481 482 if (!nvme_parse_pid(ns, pid, &ph, &rg)) { 483 return false; 484 } 485 486 ruhid = ns->fdp.phs[ph]; 487 488 ruh = &endgrp->fdp.ruhs[ruhid]; 489 ru = &ruh->rus[rg]; 490 491 if (ru->ruamw) { 492 if (log_event(ruh, FDP_EVT_RU_NOT_FULLY_WRITTEN)) { 493 e = nvme_fdp_alloc_event(n, &endgrp->fdp.host_events); 494 e->type = FDP_EVT_RU_NOT_FULLY_WRITTEN; 495 e->flags = FDPEF_PIV | FDPEF_NSIDV | FDPEF_LV; 496 e->pid = cpu_to_le16(pid); 497 e->nsid = cpu_to_le32(ns->params.nsid); 498 e->rgid = cpu_to_le16(rg); 499 e->ruhid = cpu_to_le16(ruhid); 500 } 501 502 /* log (eventual) GC overhead of prematurely swapping the RU */ 503 nvme_fdp_stat_inc(&endgrp->fdp.mbmw, nvme_l2b(ns, ru->ruamw)); 504 } 505 506 ru->ruamw = ruh->ruamw; 507 508 return true; 509 } 510 511 static bool nvme_addr_is_cmb(NvmeCtrl *n, hwaddr addr) 512 { 513 hwaddr hi, lo; 514 515 if (!n->cmb.cmse) { 516 return false; 517 } 518 519 lo = n->params.legacy_cmb ? n->cmb.mem.addr : n->cmb.cba; 520 hi = lo + int128_get64(n->cmb.mem.size); 521 522 return addr >= lo && addr < hi; 523 } 524 525 static inline void *nvme_addr_to_cmb(NvmeCtrl *n, hwaddr addr) 526 { 527 hwaddr base = n->params.legacy_cmb ? n->cmb.mem.addr : n->cmb.cba; 528 return &n->cmb.buf[addr - base]; 529 } 530 531 static bool nvme_addr_is_pmr(NvmeCtrl *n, hwaddr addr) 532 { 533 hwaddr hi; 534 535 if (!n->pmr.cmse) { 536 return false; 537 } 538 539 hi = n->pmr.cba + int128_get64(n->pmr.dev->mr.size); 540 541 return addr >= n->pmr.cba && addr < hi; 542 } 543 544 static inline void *nvme_addr_to_pmr(NvmeCtrl *n, hwaddr addr) 545 { 546 return memory_region_get_ram_ptr(&n->pmr.dev->mr) + (addr - n->pmr.cba); 547 } 548 549 static inline bool nvme_addr_is_iomem(NvmeCtrl *n, hwaddr addr) 550 { 551 hwaddr hi, lo; 552 553 /* 554 * The purpose of this check is to guard against invalid "local" access to 555 * the iomem (i.e. controller registers). Thus, we check against the range 556 * covered by the 'bar0' MemoryRegion since that is currently composed of 557 * two subregions (the NVMe "MBAR" and the MSI-X table/pba). Note, however, 558 * that if the device model is ever changed to allow the CMB to be located 559 * in BAR0 as well, then this must be changed. 560 */ 561 lo = n->bar0.addr; 562 hi = lo + int128_get64(n->bar0.size); 563 564 return addr >= lo && addr < hi; 565 } 566 567 static int nvme_addr_read(NvmeCtrl *n, hwaddr addr, void *buf, int size) 568 { 569 hwaddr hi = addr + size - 1; 570 if (hi < addr) { 571 return 1; 572 } 573 574 if (n->bar.cmbsz && nvme_addr_is_cmb(n, addr) && nvme_addr_is_cmb(n, hi)) { 575 memcpy(buf, nvme_addr_to_cmb(n, addr), size); 576 return 0; 577 } 578 579 if (nvme_addr_is_pmr(n, addr) && nvme_addr_is_pmr(n, hi)) { 580 memcpy(buf, nvme_addr_to_pmr(n, addr), size); 581 return 0; 582 } 583 584 return pci_dma_read(PCI_DEVICE(n), addr, buf, size); 585 } 586 587 static int nvme_addr_write(NvmeCtrl *n, hwaddr addr, const void *buf, int size) 588 { 589 hwaddr hi = addr + size - 1; 590 if (hi < addr) { 591 return 1; 592 } 593 594 if (n->bar.cmbsz && nvme_addr_is_cmb(n, addr) && nvme_addr_is_cmb(n, hi)) { 595 memcpy(nvme_addr_to_cmb(n, addr), buf, size); 596 return 0; 597 } 598 599 if (nvme_addr_is_pmr(n, addr) && nvme_addr_is_pmr(n, hi)) { 600 memcpy(nvme_addr_to_pmr(n, addr), buf, size); 601 return 0; 602 } 603 604 return pci_dma_write(PCI_DEVICE(n), addr, buf, size); 605 } 606 607 static bool nvme_nsid_valid(NvmeCtrl *n, uint32_t nsid) 608 { 609 return nsid && 610 (nsid == NVME_NSID_BROADCAST || nsid <= NVME_MAX_NAMESPACES); 611 } 612 613 static int nvme_check_sqid(NvmeCtrl *n, uint16_t sqid) 614 { 615 return sqid < n->conf_ioqpairs + 1 && n->sq[sqid] != NULL ? 0 : -1; 616 } 617 618 static int nvme_check_cqid(NvmeCtrl *n, uint16_t cqid) 619 { 620 return cqid < n->conf_ioqpairs + 1 && n->cq[cqid] != NULL ? 0 : -1; 621 } 622 623 static void nvme_inc_cq_tail(NvmeCQueue *cq) 624 { 625 cq->tail++; 626 if (cq->tail >= cq->size) { 627 cq->tail = 0; 628 cq->phase = !cq->phase; 629 } 630 } 631 632 static void nvme_inc_sq_head(NvmeSQueue *sq) 633 { 634 sq->head = (sq->head + 1) % sq->size; 635 } 636 637 static uint8_t nvme_cq_full(NvmeCQueue *cq) 638 { 639 return (cq->tail + 1) % cq->size == cq->head; 640 } 641 642 static uint8_t nvme_sq_empty(NvmeSQueue *sq) 643 { 644 return sq->head == sq->tail; 645 } 646 647 static void nvme_irq_check(NvmeCtrl *n) 648 { 649 PCIDevice *pci = PCI_DEVICE(n); 650 uint32_t intms = ldl_le_p(&n->bar.intms); 651 652 if (msix_enabled(pci)) { 653 return; 654 } 655 if (~intms & n->irq_status) { 656 pci_irq_assert(pci); 657 } else { 658 pci_irq_deassert(pci); 659 } 660 } 661 662 static void nvme_irq_assert(NvmeCtrl *n, NvmeCQueue *cq) 663 { 664 PCIDevice *pci = PCI_DEVICE(n); 665 666 if (cq->irq_enabled) { 667 if (msix_enabled(pci)) { 668 trace_pci_nvme_irq_msix(cq->vector); 669 msix_notify(pci, cq->vector); 670 } else { 671 trace_pci_nvme_irq_pin(); 672 assert(cq->vector < 32); 673 n->irq_status |= 1 << cq->vector; 674 nvme_irq_check(n); 675 } 676 } else { 677 trace_pci_nvme_irq_masked(); 678 } 679 } 680 681 static void nvme_irq_deassert(NvmeCtrl *n, NvmeCQueue *cq) 682 { 683 if (cq->irq_enabled) { 684 if (msix_enabled(PCI_DEVICE(n))) { 685 return; 686 } else { 687 assert(cq->vector < 32); 688 if (!n->cq_pending) { 689 n->irq_status &= ~(1 << cq->vector); 690 } 691 nvme_irq_check(n); 692 } 693 } 694 } 695 696 static void nvme_req_clear(NvmeRequest *req) 697 { 698 req->ns = NULL; 699 req->opaque = NULL; 700 req->aiocb = NULL; 701 memset(&req->cqe, 0x0, sizeof(req->cqe)); 702 req->status = NVME_SUCCESS; 703 } 704 705 static inline void nvme_sg_init(NvmeCtrl *n, NvmeSg *sg, bool dma) 706 { 707 if (dma) { 708 pci_dma_sglist_init(&sg->qsg, PCI_DEVICE(n), 0); 709 sg->flags = NVME_SG_DMA; 710 } else { 711 qemu_iovec_init(&sg->iov, 0); 712 } 713 714 sg->flags |= NVME_SG_ALLOC; 715 } 716 717 static inline void nvme_sg_unmap(NvmeSg *sg) 718 { 719 if (!(sg->flags & NVME_SG_ALLOC)) { 720 return; 721 } 722 723 if (sg->flags & NVME_SG_DMA) { 724 qemu_sglist_destroy(&sg->qsg); 725 } else { 726 qemu_iovec_destroy(&sg->iov); 727 } 728 729 memset(sg, 0x0, sizeof(*sg)); 730 } 731 732 /* 733 * When metadata is transferred as extended LBAs, the DPTR mapped into `sg` 734 * holds both data and metadata. This function splits the data and metadata 735 * into two separate QSG/IOVs. 736 */ 737 static void nvme_sg_split(NvmeSg *sg, NvmeNamespace *ns, NvmeSg *data, 738 NvmeSg *mdata) 739 { 740 NvmeSg *dst = data; 741 uint32_t trans_len, count = ns->lbasz; 742 uint64_t offset = 0; 743 bool dma = sg->flags & NVME_SG_DMA; 744 size_t sge_len; 745 size_t sg_len = dma ? sg->qsg.size : sg->iov.size; 746 int sg_idx = 0; 747 748 assert(sg->flags & NVME_SG_ALLOC); 749 750 while (sg_len) { 751 sge_len = dma ? sg->qsg.sg[sg_idx].len : sg->iov.iov[sg_idx].iov_len; 752 753 trans_len = MIN(sg_len, count); 754 trans_len = MIN(trans_len, sge_len - offset); 755 756 if (dst) { 757 if (dma) { 758 qemu_sglist_add(&dst->qsg, sg->qsg.sg[sg_idx].base + offset, 759 trans_len); 760 } else { 761 qemu_iovec_add(&dst->iov, 762 sg->iov.iov[sg_idx].iov_base + offset, 763 trans_len); 764 } 765 } 766 767 sg_len -= trans_len; 768 count -= trans_len; 769 offset += trans_len; 770 771 if (count == 0) { 772 dst = (dst == data) ? mdata : data; 773 count = (dst == data) ? ns->lbasz : ns->lbaf.ms; 774 } 775 776 if (sge_len == offset) { 777 offset = 0; 778 sg_idx++; 779 } 780 } 781 } 782 783 static uint16_t nvme_map_addr_cmb(NvmeCtrl *n, QEMUIOVector *iov, hwaddr addr, 784 size_t len) 785 { 786 if (!len) { 787 return NVME_SUCCESS; 788 } 789 790 trace_pci_nvme_map_addr_cmb(addr, len); 791 792 if (!nvme_addr_is_cmb(n, addr) || !nvme_addr_is_cmb(n, addr + len - 1)) { 793 return NVME_DATA_TRAS_ERROR; 794 } 795 796 qemu_iovec_add(iov, nvme_addr_to_cmb(n, addr), len); 797 798 return NVME_SUCCESS; 799 } 800 801 static uint16_t nvme_map_addr_pmr(NvmeCtrl *n, QEMUIOVector *iov, hwaddr addr, 802 size_t len) 803 { 804 if (!len) { 805 return NVME_SUCCESS; 806 } 807 808 if (!nvme_addr_is_pmr(n, addr) || !nvme_addr_is_pmr(n, addr + len - 1)) { 809 return NVME_DATA_TRAS_ERROR; 810 } 811 812 qemu_iovec_add(iov, nvme_addr_to_pmr(n, addr), len); 813 814 return NVME_SUCCESS; 815 } 816 817 static uint16_t nvme_map_addr(NvmeCtrl *n, NvmeSg *sg, hwaddr addr, size_t len) 818 { 819 bool cmb = false, pmr = false; 820 821 if (!len) { 822 return NVME_SUCCESS; 823 } 824 825 trace_pci_nvme_map_addr(addr, len); 826 827 if (nvme_addr_is_iomem(n, addr)) { 828 return NVME_DATA_TRAS_ERROR; 829 } 830 831 if (nvme_addr_is_cmb(n, addr)) { 832 cmb = true; 833 } else if (nvme_addr_is_pmr(n, addr)) { 834 pmr = true; 835 } 836 837 if (cmb || pmr) { 838 if (sg->flags & NVME_SG_DMA) { 839 return NVME_INVALID_USE_OF_CMB | NVME_DNR; 840 } 841 842 if (sg->iov.niov + 1 > IOV_MAX) { 843 goto max_mappings_exceeded; 844 } 845 846 if (cmb) { 847 return nvme_map_addr_cmb(n, &sg->iov, addr, len); 848 } else { 849 return nvme_map_addr_pmr(n, &sg->iov, addr, len); 850 } 851 } 852 853 if (!(sg->flags & NVME_SG_DMA)) { 854 return NVME_INVALID_USE_OF_CMB | NVME_DNR; 855 } 856 857 if (sg->qsg.nsg + 1 > IOV_MAX) { 858 goto max_mappings_exceeded; 859 } 860 861 qemu_sglist_add(&sg->qsg, addr, len); 862 863 return NVME_SUCCESS; 864 865 max_mappings_exceeded: 866 NVME_GUEST_ERR(pci_nvme_ub_too_many_mappings, 867 "number of mappings exceed 1024"); 868 return NVME_INTERNAL_DEV_ERROR | NVME_DNR; 869 } 870 871 static inline bool nvme_addr_is_dma(NvmeCtrl *n, hwaddr addr) 872 { 873 return !(nvme_addr_is_cmb(n, addr) || nvme_addr_is_pmr(n, addr)); 874 } 875 876 static uint16_t nvme_map_prp(NvmeCtrl *n, NvmeSg *sg, uint64_t prp1, 877 uint64_t prp2, uint32_t len) 878 { 879 hwaddr trans_len = n->page_size - (prp1 % n->page_size); 880 trans_len = MIN(len, trans_len); 881 int num_prps = (len >> n->page_bits) + 1; 882 uint16_t status; 883 int ret; 884 885 trace_pci_nvme_map_prp(trans_len, len, prp1, prp2, num_prps); 886 887 nvme_sg_init(n, sg, nvme_addr_is_dma(n, prp1)); 888 889 status = nvme_map_addr(n, sg, prp1, trans_len); 890 if (status) { 891 goto unmap; 892 } 893 894 len -= trans_len; 895 if (len) { 896 if (len > n->page_size) { 897 g_autofree uint64_t *prp_list = g_new(uint64_t, n->max_prp_ents); 898 uint32_t nents, prp_trans; 899 int i = 0; 900 901 /* 902 * The first PRP list entry, pointed to by PRP2 may contain offset. 903 * Hence, we need to calculate the number of entries in based on 904 * that offset. 905 */ 906 nents = (n->page_size - (prp2 & (n->page_size - 1))) >> 3; 907 prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t); 908 ret = nvme_addr_read(n, prp2, (void *)prp_list, prp_trans); 909 if (ret) { 910 trace_pci_nvme_err_addr_read(prp2); 911 status = NVME_DATA_TRAS_ERROR; 912 goto unmap; 913 } 914 while (len != 0) { 915 uint64_t prp_ent = le64_to_cpu(prp_list[i]); 916 917 if (i == nents - 1 && len > n->page_size) { 918 if (unlikely(prp_ent & (n->page_size - 1))) { 919 trace_pci_nvme_err_invalid_prplist_ent(prp_ent); 920 status = NVME_INVALID_PRP_OFFSET | NVME_DNR; 921 goto unmap; 922 } 923 924 i = 0; 925 nents = (len + n->page_size - 1) >> n->page_bits; 926 nents = MIN(nents, n->max_prp_ents); 927 prp_trans = nents * sizeof(uint64_t); 928 ret = nvme_addr_read(n, prp_ent, (void *)prp_list, 929 prp_trans); 930 if (ret) { 931 trace_pci_nvme_err_addr_read(prp_ent); 932 status = NVME_DATA_TRAS_ERROR; 933 goto unmap; 934 } 935 prp_ent = le64_to_cpu(prp_list[i]); 936 } 937 938 if (unlikely(prp_ent & (n->page_size - 1))) { 939 trace_pci_nvme_err_invalid_prplist_ent(prp_ent); 940 status = NVME_INVALID_PRP_OFFSET | NVME_DNR; 941 goto unmap; 942 } 943 944 trans_len = MIN(len, n->page_size); 945 status = nvme_map_addr(n, sg, prp_ent, trans_len); 946 if (status) { 947 goto unmap; 948 } 949 950 len -= trans_len; 951 i++; 952 } 953 } else { 954 if (unlikely(prp2 & (n->page_size - 1))) { 955 trace_pci_nvme_err_invalid_prp2_align(prp2); 956 status = NVME_INVALID_PRP_OFFSET | NVME_DNR; 957 goto unmap; 958 } 959 status = nvme_map_addr(n, sg, prp2, len); 960 if (status) { 961 goto unmap; 962 } 963 } 964 } 965 966 return NVME_SUCCESS; 967 968 unmap: 969 nvme_sg_unmap(sg); 970 return status; 971 } 972 973 /* 974 * Map 'nsgld' data descriptors from 'segment'. The function will subtract the 975 * number of bytes mapped in len. 976 */ 977 static uint16_t nvme_map_sgl_data(NvmeCtrl *n, NvmeSg *sg, 978 NvmeSglDescriptor *segment, uint64_t nsgld, 979 size_t *len, NvmeCmd *cmd) 980 { 981 dma_addr_t addr, trans_len; 982 uint32_t dlen; 983 uint16_t status; 984 985 for (int i = 0; i < nsgld; i++) { 986 uint8_t type = NVME_SGL_TYPE(segment[i].type); 987 988 switch (type) { 989 case NVME_SGL_DESCR_TYPE_DATA_BLOCK: 990 break; 991 case NVME_SGL_DESCR_TYPE_SEGMENT: 992 case NVME_SGL_DESCR_TYPE_LAST_SEGMENT: 993 return NVME_INVALID_NUM_SGL_DESCRS | NVME_DNR; 994 default: 995 return NVME_SGL_DESCR_TYPE_INVALID | NVME_DNR; 996 } 997 998 dlen = le32_to_cpu(segment[i].len); 999 1000 if (!dlen) { 1001 continue; 1002 } 1003 1004 if (*len == 0) { 1005 /* 1006 * All data has been mapped, but the SGL contains additional 1007 * segments and/or descriptors. The controller might accept 1008 * ignoring the rest of the SGL. 1009 */ 1010 uint32_t sgls = le32_to_cpu(n->id_ctrl.sgls); 1011 if (sgls & NVME_CTRL_SGLS_EXCESS_LENGTH) { 1012 break; 1013 } 1014 1015 trace_pci_nvme_err_invalid_sgl_excess_length(dlen); 1016 return NVME_DATA_SGL_LEN_INVALID | NVME_DNR; 1017 } 1018 1019 trans_len = MIN(*len, dlen); 1020 1021 addr = le64_to_cpu(segment[i].addr); 1022 1023 if (UINT64_MAX - addr < dlen) { 1024 return NVME_DATA_SGL_LEN_INVALID | NVME_DNR; 1025 } 1026 1027 status = nvme_map_addr(n, sg, addr, trans_len); 1028 if (status) { 1029 return status; 1030 } 1031 1032 *len -= trans_len; 1033 } 1034 1035 return NVME_SUCCESS; 1036 } 1037 1038 static uint16_t nvme_map_sgl(NvmeCtrl *n, NvmeSg *sg, NvmeSglDescriptor sgl, 1039 size_t len, NvmeCmd *cmd) 1040 { 1041 /* 1042 * Read the segment in chunks of 256 descriptors (one 4k page) to avoid 1043 * dynamically allocating a potentially huge SGL. The spec allows the SGL 1044 * to be larger (as in number of bytes required to describe the SGL 1045 * descriptors and segment chain) than the command transfer size, so it is 1046 * not bounded by MDTS. 1047 */ 1048 #define SEG_CHUNK_SIZE 256 1049 1050 NvmeSglDescriptor segment[SEG_CHUNK_SIZE], *sgld, *last_sgld; 1051 uint64_t nsgld; 1052 uint32_t seg_len; 1053 uint16_t status; 1054 hwaddr addr; 1055 int ret; 1056 1057 sgld = &sgl; 1058 addr = le64_to_cpu(sgl.addr); 1059 1060 trace_pci_nvme_map_sgl(NVME_SGL_TYPE(sgl.type), len); 1061 1062 nvme_sg_init(n, sg, nvme_addr_is_dma(n, addr)); 1063 1064 /* 1065 * If the entire transfer can be described with a single data block it can 1066 * be mapped directly. 1067 */ 1068 if (NVME_SGL_TYPE(sgl.type) == NVME_SGL_DESCR_TYPE_DATA_BLOCK) { 1069 status = nvme_map_sgl_data(n, sg, sgld, 1, &len, cmd); 1070 if (status) { 1071 goto unmap; 1072 } 1073 1074 goto out; 1075 } 1076 1077 for (;;) { 1078 switch (NVME_SGL_TYPE(sgld->type)) { 1079 case NVME_SGL_DESCR_TYPE_SEGMENT: 1080 case NVME_SGL_DESCR_TYPE_LAST_SEGMENT: 1081 break; 1082 default: 1083 return NVME_INVALID_SGL_SEG_DESCR | NVME_DNR; 1084 } 1085 1086 seg_len = le32_to_cpu(sgld->len); 1087 1088 /* check the length of the (Last) Segment descriptor */ 1089 if (!seg_len || seg_len & 0xf) { 1090 return NVME_INVALID_SGL_SEG_DESCR | NVME_DNR; 1091 } 1092 1093 if (UINT64_MAX - addr < seg_len) { 1094 return NVME_DATA_SGL_LEN_INVALID | NVME_DNR; 1095 } 1096 1097 nsgld = seg_len / sizeof(NvmeSglDescriptor); 1098 1099 while (nsgld > SEG_CHUNK_SIZE) { 1100 if (nvme_addr_read(n, addr, segment, sizeof(segment))) { 1101 trace_pci_nvme_err_addr_read(addr); 1102 status = NVME_DATA_TRAS_ERROR; 1103 goto unmap; 1104 } 1105 1106 status = nvme_map_sgl_data(n, sg, segment, SEG_CHUNK_SIZE, 1107 &len, cmd); 1108 if (status) { 1109 goto unmap; 1110 } 1111 1112 nsgld -= SEG_CHUNK_SIZE; 1113 addr += SEG_CHUNK_SIZE * sizeof(NvmeSglDescriptor); 1114 } 1115 1116 ret = nvme_addr_read(n, addr, segment, nsgld * 1117 sizeof(NvmeSglDescriptor)); 1118 if (ret) { 1119 trace_pci_nvme_err_addr_read(addr); 1120 status = NVME_DATA_TRAS_ERROR; 1121 goto unmap; 1122 } 1123 1124 last_sgld = &segment[nsgld - 1]; 1125 1126 /* 1127 * If the segment ends with a Data Block, then we are done. 1128 */ 1129 if (NVME_SGL_TYPE(last_sgld->type) == NVME_SGL_DESCR_TYPE_DATA_BLOCK) { 1130 status = nvme_map_sgl_data(n, sg, segment, nsgld, &len, cmd); 1131 if (status) { 1132 goto unmap; 1133 } 1134 1135 goto out; 1136 } 1137 1138 /* 1139 * If the last descriptor was not a Data Block, then the current 1140 * segment must not be a Last Segment. 1141 */ 1142 if (NVME_SGL_TYPE(sgld->type) == NVME_SGL_DESCR_TYPE_LAST_SEGMENT) { 1143 status = NVME_INVALID_SGL_SEG_DESCR | NVME_DNR; 1144 goto unmap; 1145 } 1146 1147 sgld = last_sgld; 1148 addr = le64_to_cpu(sgld->addr); 1149 1150 /* 1151 * Do not map the last descriptor; it will be a Segment or Last Segment 1152 * descriptor and is handled by the next iteration. 1153 */ 1154 status = nvme_map_sgl_data(n, sg, segment, nsgld - 1, &len, cmd); 1155 if (status) { 1156 goto unmap; 1157 } 1158 } 1159 1160 out: 1161 /* if there is any residual left in len, the SGL was too short */ 1162 if (len) { 1163 status = NVME_DATA_SGL_LEN_INVALID | NVME_DNR; 1164 goto unmap; 1165 } 1166 1167 return NVME_SUCCESS; 1168 1169 unmap: 1170 nvme_sg_unmap(sg); 1171 return status; 1172 } 1173 1174 uint16_t nvme_map_dptr(NvmeCtrl *n, NvmeSg *sg, size_t len, 1175 NvmeCmd *cmd) 1176 { 1177 uint64_t prp1, prp2; 1178 1179 switch (NVME_CMD_FLAGS_PSDT(cmd->flags)) { 1180 case NVME_PSDT_PRP: 1181 prp1 = le64_to_cpu(cmd->dptr.prp1); 1182 prp2 = le64_to_cpu(cmd->dptr.prp2); 1183 1184 return nvme_map_prp(n, sg, prp1, prp2, len); 1185 case NVME_PSDT_SGL_MPTR_CONTIGUOUS: 1186 case NVME_PSDT_SGL_MPTR_SGL: 1187 return nvme_map_sgl(n, sg, cmd->dptr.sgl, len, cmd); 1188 default: 1189 return NVME_INVALID_FIELD; 1190 } 1191 } 1192 1193 static uint16_t nvme_map_mptr(NvmeCtrl *n, NvmeSg *sg, size_t len, 1194 NvmeCmd *cmd) 1195 { 1196 int psdt = NVME_CMD_FLAGS_PSDT(cmd->flags); 1197 hwaddr mptr = le64_to_cpu(cmd->mptr); 1198 uint16_t status; 1199 1200 if (psdt == NVME_PSDT_SGL_MPTR_SGL) { 1201 NvmeSglDescriptor sgl; 1202 1203 if (nvme_addr_read(n, mptr, &sgl, sizeof(sgl))) { 1204 return NVME_DATA_TRAS_ERROR; 1205 } 1206 1207 status = nvme_map_sgl(n, sg, sgl, len, cmd); 1208 if (status && (status & 0x7ff) == NVME_DATA_SGL_LEN_INVALID) { 1209 status = NVME_MD_SGL_LEN_INVALID | NVME_DNR; 1210 } 1211 1212 return status; 1213 } 1214 1215 nvme_sg_init(n, sg, nvme_addr_is_dma(n, mptr)); 1216 status = nvme_map_addr(n, sg, mptr, len); 1217 if (status) { 1218 nvme_sg_unmap(sg); 1219 } 1220 1221 return status; 1222 } 1223 1224 static uint16_t nvme_map_data(NvmeCtrl *n, uint32_t nlb, NvmeRequest *req) 1225 { 1226 NvmeNamespace *ns = req->ns; 1227 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; 1228 bool pi = !!NVME_ID_NS_DPS_TYPE(ns->id_ns.dps); 1229 bool pract = !!(le16_to_cpu(rw->control) & NVME_RW_PRINFO_PRACT); 1230 size_t len = nvme_l2b(ns, nlb); 1231 uint16_t status; 1232 1233 if (nvme_ns_ext(ns) && 1234 !(pi && pract && ns->lbaf.ms == nvme_pi_tuple_size(ns))) { 1235 NvmeSg sg; 1236 1237 len += nvme_m2b(ns, nlb); 1238 1239 status = nvme_map_dptr(n, &sg, len, &req->cmd); 1240 if (status) { 1241 return status; 1242 } 1243 1244 nvme_sg_init(n, &req->sg, sg.flags & NVME_SG_DMA); 1245 nvme_sg_split(&sg, ns, &req->sg, NULL); 1246 nvme_sg_unmap(&sg); 1247 1248 return NVME_SUCCESS; 1249 } 1250 1251 return nvme_map_dptr(n, &req->sg, len, &req->cmd); 1252 } 1253 1254 static uint16_t nvme_map_mdata(NvmeCtrl *n, uint32_t nlb, NvmeRequest *req) 1255 { 1256 NvmeNamespace *ns = req->ns; 1257 size_t len = nvme_m2b(ns, nlb); 1258 uint16_t status; 1259 1260 if (nvme_ns_ext(ns)) { 1261 NvmeSg sg; 1262 1263 len += nvme_l2b(ns, nlb); 1264 1265 status = nvme_map_dptr(n, &sg, len, &req->cmd); 1266 if (status) { 1267 return status; 1268 } 1269 1270 nvme_sg_init(n, &req->sg, sg.flags & NVME_SG_DMA); 1271 nvme_sg_split(&sg, ns, NULL, &req->sg); 1272 nvme_sg_unmap(&sg); 1273 1274 return NVME_SUCCESS; 1275 } 1276 1277 return nvme_map_mptr(n, &req->sg, len, &req->cmd); 1278 } 1279 1280 static uint16_t nvme_tx_interleaved(NvmeCtrl *n, NvmeSg *sg, uint8_t *ptr, 1281 uint32_t len, uint32_t bytes, 1282 int32_t skip_bytes, int64_t offset, 1283 NvmeTxDirection dir) 1284 { 1285 hwaddr addr; 1286 uint32_t trans_len, count = bytes; 1287 bool dma = sg->flags & NVME_SG_DMA; 1288 int64_t sge_len; 1289 int sg_idx = 0; 1290 int ret; 1291 1292 assert(sg->flags & NVME_SG_ALLOC); 1293 1294 while (len) { 1295 sge_len = dma ? sg->qsg.sg[sg_idx].len : sg->iov.iov[sg_idx].iov_len; 1296 1297 if (sge_len - offset < 0) { 1298 offset -= sge_len; 1299 sg_idx++; 1300 continue; 1301 } 1302 1303 if (sge_len == offset) { 1304 offset = 0; 1305 sg_idx++; 1306 continue; 1307 } 1308 1309 trans_len = MIN(len, count); 1310 trans_len = MIN(trans_len, sge_len - offset); 1311 1312 if (dma) { 1313 addr = sg->qsg.sg[sg_idx].base + offset; 1314 } else { 1315 addr = (hwaddr)(uintptr_t)sg->iov.iov[sg_idx].iov_base + offset; 1316 } 1317 1318 if (dir == NVME_TX_DIRECTION_TO_DEVICE) { 1319 ret = nvme_addr_read(n, addr, ptr, trans_len); 1320 } else { 1321 ret = nvme_addr_write(n, addr, ptr, trans_len); 1322 } 1323 1324 if (ret) { 1325 return NVME_DATA_TRAS_ERROR; 1326 } 1327 1328 ptr += trans_len; 1329 len -= trans_len; 1330 count -= trans_len; 1331 offset += trans_len; 1332 1333 if (count == 0) { 1334 count = bytes; 1335 offset += skip_bytes; 1336 } 1337 } 1338 1339 return NVME_SUCCESS; 1340 } 1341 1342 static uint16_t nvme_tx(NvmeCtrl *n, NvmeSg *sg, void *ptr, uint32_t len, 1343 NvmeTxDirection dir) 1344 { 1345 assert(sg->flags & NVME_SG_ALLOC); 1346 1347 if (sg->flags & NVME_SG_DMA) { 1348 const MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED; 1349 dma_addr_t residual; 1350 1351 if (dir == NVME_TX_DIRECTION_TO_DEVICE) { 1352 dma_buf_write(ptr, len, &residual, &sg->qsg, attrs); 1353 } else { 1354 dma_buf_read(ptr, len, &residual, &sg->qsg, attrs); 1355 } 1356 1357 if (unlikely(residual)) { 1358 trace_pci_nvme_err_invalid_dma(); 1359 return NVME_INVALID_FIELD | NVME_DNR; 1360 } 1361 } else { 1362 size_t bytes; 1363 1364 if (dir == NVME_TX_DIRECTION_TO_DEVICE) { 1365 bytes = qemu_iovec_to_buf(&sg->iov, 0, ptr, len); 1366 } else { 1367 bytes = qemu_iovec_from_buf(&sg->iov, 0, ptr, len); 1368 } 1369 1370 if (unlikely(bytes != len)) { 1371 trace_pci_nvme_err_invalid_dma(); 1372 return NVME_INVALID_FIELD | NVME_DNR; 1373 } 1374 } 1375 1376 return NVME_SUCCESS; 1377 } 1378 1379 static inline uint16_t nvme_c2h(NvmeCtrl *n, void *ptr, uint32_t len, 1380 NvmeRequest *req) 1381 { 1382 uint16_t status; 1383 1384 status = nvme_map_dptr(n, &req->sg, len, &req->cmd); 1385 if (status) { 1386 return status; 1387 } 1388 1389 return nvme_tx(n, &req->sg, ptr, len, NVME_TX_DIRECTION_FROM_DEVICE); 1390 } 1391 1392 static inline uint16_t nvme_h2c(NvmeCtrl *n, void *ptr, uint32_t len, 1393 NvmeRequest *req) 1394 { 1395 uint16_t status; 1396 1397 status = nvme_map_dptr(n, &req->sg, len, &req->cmd); 1398 if (status) { 1399 return status; 1400 } 1401 1402 return nvme_tx(n, &req->sg, ptr, len, NVME_TX_DIRECTION_TO_DEVICE); 1403 } 1404 1405 uint16_t nvme_bounce_data(NvmeCtrl *n, void *ptr, uint32_t len, 1406 NvmeTxDirection dir, NvmeRequest *req) 1407 { 1408 NvmeNamespace *ns = req->ns; 1409 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; 1410 bool pi = !!NVME_ID_NS_DPS_TYPE(ns->id_ns.dps); 1411 bool pract = !!(le16_to_cpu(rw->control) & NVME_RW_PRINFO_PRACT); 1412 1413 if (nvme_ns_ext(ns) && 1414 !(pi && pract && ns->lbaf.ms == nvme_pi_tuple_size(ns))) { 1415 return nvme_tx_interleaved(n, &req->sg, ptr, len, ns->lbasz, 1416 ns->lbaf.ms, 0, dir); 1417 } 1418 1419 return nvme_tx(n, &req->sg, ptr, len, dir); 1420 } 1421 1422 uint16_t nvme_bounce_mdata(NvmeCtrl *n, void *ptr, uint32_t len, 1423 NvmeTxDirection dir, NvmeRequest *req) 1424 { 1425 NvmeNamespace *ns = req->ns; 1426 uint16_t status; 1427 1428 if (nvme_ns_ext(ns)) { 1429 return nvme_tx_interleaved(n, &req->sg, ptr, len, ns->lbaf.ms, 1430 ns->lbasz, ns->lbasz, dir); 1431 } 1432 1433 nvme_sg_unmap(&req->sg); 1434 1435 status = nvme_map_mptr(n, &req->sg, len, &req->cmd); 1436 if (status) { 1437 return status; 1438 } 1439 1440 return nvme_tx(n, &req->sg, ptr, len, dir); 1441 } 1442 1443 static inline void nvme_blk_read(BlockBackend *blk, int64_t offset, 1444 uint32_t align, BlockCompletionFunc *cb, 1445 NvmeRequest *req) 1446 { 1447 assert(req->sg.flags & NVME_SG_ALLOC); 1448 1449 if (req->sg.flags & NVME_SG_DMA) { 1450 req->aiocb = dma_blk_read(blk, &req->sg.qsg, offset, align, cb, req); 1451 } else { 1452 req->aiocb = blk_aio_preadv(blk, offset, &req->sg.iov, 0, cb, req); 1453 } 1454 } 1455 1456 static inline void nvme_blk_write(BlockBackend *blk, int64_t offset, 1457 uint32_t align, BlockCompletionFunc *cb, 1458 NvmeRequest *req) 1459 { 1460 assert(req->sg.flags & NVME_SG_ALLOC); 1461 1462 if (req->sg.flags & NVME_SG_DMA) { 1463 req->aiocb = dma_blk_write(blk, &req->sg.qsg, offset, align, cb, req); 1464 } else { 1465 req->aiocb = blk_aio_pwritev(blk, offset, &req->sg.iov, 0, cb, req); 1466 } 1467 } 1468 1469 static void nvme_update_cq_eventidx(const NvmeCQueue *cq) 1470 { 1471 trace_pci_nvme_update_cq_eventidx(cq->cqid, cq->head); 1472 1473 stl_le_pci_dma(PCI_DEVICE(cq->ctrl), cq->ei_addr, cq->head, 1474 MEMTXATTRS_UNSPECIFIED); 1475 } 1476 1477 static void nvme_update_cq_head(NvmeCQueue *cq) 1478 { 1479 ldl_le_pci_dma(PCI_DEVICE(cq->ctrl), cq->db_addr, &cq->head, 1480 MEMTXATTRS_UNSPECIFIED); 1481 1482 trace_pci_nvme_update_cq_head(cq->cqid, cq->head); 1483 } 1484 1485 static void nvme_post_cqes(void *opaque) 1486 { 1487 NvmeCQueue *cq = opaque; 1488 NvmeCtrl *n = cq->ctrl; 1489 NvmeRequest *req, *next; 1490 bool pending = cq->head != cq->tail; 1491 int ret; 1492 1493 QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) { 1494 NvmeSQueue *sq; 1495 hwaddr addr; 1496 1497 if (n->dbbuf_enabled) { 1498 nvme_update_cq_eventidx(cq); 1499 nvme_update_cq_head(cq); 1500 } 1501 1502 if (nvme_cq_full(cq)) { 1503 break; 1504 } 1505 1506 sq = req->sq; 1507 req->cqe.status = cpu_to_le16((req->status << 1) | cq->phase); 1508 req->cqe.sq_id = cpu_to_le16(sq->sqid); 1509 req->cqe.sq_head = cpu_to_le16(sq->head); 1510 addr = cq->dma_addr + (cq->tail << NVME_CQES); 1511 ret = pci_dma_write(PCI_DEVICE(n), addr, (void *)&req->cqe, 1512 sizeof(req->cqe)); 1513 if (ret) { 1514 trace_pci_nvme_err_addr_write(addr); 1515 trace_pci_nvme_err_cfs(); 1516 stl_le_p(&n->bar.csts, NVME_CSTS_FAILED); 1517 break; 1518 } 1519 QTAILQ_REMOVE(&cq->req_list, req, entry); 1520 nvme_inc_cq_tail(cq); 1521 nvme_sg_unmap(&req->sg); 1522 QTAILQ_INSERT_TAIL(&sq->req_list, req, entry); 1523 } 1524 if (cq->tail != cq->head) { 1525 if (cq->irq_enabled && !pending) { 1526 n->cq_pending++; 1527 } 1528 1529 nvme_irq_assert(n, cq); 1530 } 1531 } 1532 1533 static void nvme_enqueue_req_completion(NvmeCQueue *cq, NvmeRequest *req) 1534 { 1535 assert(cq->cqid == req->sq->cqid); 1536 trace_pci_nvme_enqueue_req_completion(nvme_cid(req), cq->cqid, 1537 le32_to_cpu(req->cqe.result), 1538 le32_to_cpu(req->cqe.dw1), 1539 req->status); 1540 1541 if (req->status) { 1542 trace_pci_nvme_err_req_status(nvme_cid(req), nvme_nsid(req->ns), 1543 req->status, req->cmd.opcode); 1544 } 1545 1546 QTAILQ_REMOVE(&req->sq->out_req_list, req, entry); 1547 QTAILQ_INSERT_TAIL(&cq->req_list, req, entry); 1548 1549 qemu_bh_schedule(cq->bh); 1550 } 1551 1552 static void nvme_process_aers(void *opaque) 1553 { 1554 NvmeCtrl *n = opaque; 1555 NvmeAsyncEvent *event, *next; 1556 1557 trace_pci_nvme_process_aers(n->aer_queued); 1558 1559 QTAILQ_FOREACH_SAFE(event, &n->aer_queue, entry, next) { 1560 NvmeRequest *req; 1561 NvmeAerResult *result; 1562 1563 /* can't post cqe if there is nothing to complete */ 1564 if (!n->outstanding_aers) { 1565 trace_pci_nvme_no_outstanding_aers(); 1566 break; 1567 } 1568 1569 /* ignore if masked (cqe posted, but event not cleared) */ 1570 if (n->aer_mask & (1 << event->result.event_type)) { 1571 trace_pci_nvme_aer_masked(event->result.event_type, n->aer_mask); 1572 continue; 1573 } 1574 1575 QTAILQ_REMOVE(&n->aer_queue, event, entry); 1576 n->aer_queued--; 1577 1578 n->aer_mask |= 1 << event->result.event_type; 1579 n->outstanding_aers--; 1580 1581 req = n->aer_reqs[n->outstanding_aers]; 1582 1583 result = (NvmeAerResult *) &req->cqe.result; 1584 result->event_type = event->result.event_type; 1585 result->event_info = event->result.event_info; 1586 result->log_page = event->result.log_page; 1587 g_free(event); 1588 1589 trace_pci_nvme_aer_post_cqe(result->event_type, result->event_info, 1590 result->log_page); 1591 1592 nvme_enqueue_req_completion(&n->admin_cq, req); 1593 } 1594 } 1595 1596 static void nvme_enqueue_event(NvmeCtrl *n, uint8_t event_type, 1597 uint8_t event_info, uint8_t log_page) 1598 { 1599 NvmeAsyncEvent *event; 1600 1601 trace_pci_nvme_enqueue_event(event_type, event_info, log_page); 1602 1603 if (n->aer_queued == n->params.aer_max_queued) { 1604 trace_pci_nvme_enqueue_event_noqueue(n->aer_queued); 1605 return; 1606 } 1607 1608 event = g_new(NvmeAsyncEvent, 1); 1609 event->result = (NvmeAerResult) { 1610 .event_type = event_type, 1611 .event_info = event_info, 1612 .log_page = log_page, 1613 }; 1614 1615 QTAILQ_INSERT_TAIL(&n->aer_queue, event, entry); 1616 n->aer_queued++; 1617 1618 nvme_process_aers(n); 1619 } 1620 1621 static void nvme_smart_event(NvmeCtrl *n, uint8_t event) 1622 { 1623 uint8_t aer_info; 1624 1625 /* Ref SPEC <Asynchronous Event Information 0x2013 SMART / Health Status> */ 1626 if (!(NVME_AEC_SMART(n->features.async_config) & event)) { 1627 return; 1628 } 1629 1630 switch (event) { 1631 case NVME_SMART_SPARE: 1632 aer_info = NVME_AER_INFO_SMART_SPARE_THRESH; 1633 break; 1634 case NVME_SMART_TEMPERATURE: 1635 aer_info = NVME_AER_INFO_SMART_TEMP_THRESH; 1636 break; 1637 case NVME_SMART_RELIABILITY: 1638 case NVME_SMART_MEDIA_READ_ONLY: 1639 case NVME_SMART_FAILED_VOLATILE_MEDIA: 1640 case NVME_SMART_PMR_UNRELIABLE: 1641 aer_info = NVME_AER_INFO_SMART_RELIABILITY; 1642 break; 1643 default: 1644 return; 1645 } 1646 1647 nvme_enqueue_event(n, NVME_AER_TYPE_SMART, aer_info, NVME_LOG_SMART_INFO); 1648 } 1649 1650 static void nvme_clear_events(NvmeCtrl *n, uint8_t event_type) 1651 { 1652 n->aer_mask &= ~(1 << event_type); 1653 if (!QTAILQ_EMPTY(&n->aer_queue)) { 1654 nvme_process_aers(n); 1655 } 1656 } 1657 1658 static inline uint16_t nvme_check_mdts(NvmeCtrl *n, size_t len) 1659 { 1660 uint8_t mdts = n->params.mdts; 1661 1662 if (mdts && len > n->page_size << mdts) { 1663 trace_pci_nvme_err_mdts(len); 1664 return NVME_INVALID_FIELD | NVME_DNR; 1665 } 1666 1667 return NVME_SUCCESS; 1668 } 1669 1670 static inline uint16_t nvme_check_bounds(NvmeNamespace *ns, uint64_t slba, 1671 uint32_t nlb) 1672 { 1673 uint64_t nsze = le64_to_cpu(ns->id_ns.nsze); 1674 1675 if (unlikely(UINT64_MAX - slba < nlb || slba + nlb > nsze)) { 1676 trace_pci_nvme_err_invalid_lba_range(slba, nlb, nsze); 1677 return NVME_LBA_RANGE | NVME_DNR; 1678 } 1679 1680 return NVME_SUCCESS; 1681 } 1682 1683 static int nvme_block_status_all(NvmeNamespace *ns, uint64_t slba, 1684 uint32_t nlb, int flags) 1685 { 1686 BlockDriverState *bs = blk_bs(ns->blkconf.blk); 1687 1688 int64_t pnum = 0, bytes = nvme_l2b(ns, nlb); 1689 int64_t offset = nvme_l2b(ns, slba); 1690 int ret; 1691 1692 /* 1693 * `pnum` holds the number of bytes after offset that shares the same 1694 * allocation status as the byte at offset. If `pnum` is different from 1695 * `bytes`, we should check the allocation status of the next range and 1696 * continue this until all bytes have been checked. 1697 */ 1698 do { 1699 bytes -= pnum; 1700 1701 ret = bdrv_block_status(bs, offset, bytes, &pnum, NULL, NULL); 1702 if (ret < 0) { 1703 return ret; 1704 } 1705 1706 1707 trace_pci_nvme_block_status(offset, bytes, pnum, ret, 1708 !!(ret & BDRV_BLOCK_ZERO)); 1709 1710 if (!(ret & flags)) { 1711 return 1; 1712 } 1713 1714 offset += pnum; 1715 } while (pnum != bytes); 1716 1717 return 0; 1718 } 1719 1720 static uint16_t nvme_check_dulbe(NvmeNamespace *ns, uint64_t slba, 1721 uint32_t nlb) 1722 { 1723 int ret; 1724 Error *err = NULL; 1725 1726 ret = nvme_block_status_all(ns, slba, nlb, BDRV_BLOCK_DATA); 1727 if (ret) { 1728 if (ret < 0) { 1729 error_setg_errno(&err, -ret, "unable to get block status"); 1730 error_report_err(err); 1731 1732 return NVME_INTERNAL_DEV_ERROR; 1733 } 1734 1735 return NVME_DULB; 1736 } 1737 1738 return NVME_SUCCESS; 1739 } 1740 1741 static void nvme_aio_err(NvmeRequest *req, int ret) 1742 { 1743 uint16_t status = NVME_SUCCESS; 1744 Error *local_err = NULL; 1745 1746 switch (req->cmd.opcode) { 1747 case NVME_CMD_READ: 1748 status = NVME_UNRECOVERED_READ; 1749 break; 1750 case NVME_CMD_FLUSH: 1751 case NVME_CMD_WRITE: 1752 case NVME_CMD_WRITE_ZEROES: 1753 case NVME_CMD_ZONE_APPEND: 1754 case NVME_CMD_COPY: 1755 status = NVME_WRITE_FAULT; 1756 break; 1757 default: 1758 status = NVME_INTERNAL_DEV_ERROR; 1759 break; 1760 } 1761 1762 if (ret == -ECANCELED) { 1763 status = NVME_CMD_ABORT_REQ; 1764 } 1765 1766 trace_pci_nvme_err_aio(nvme_cid(req), strerror(-ret), status); 1767 1768 error_setg_errno(&local_err, -ret, "aio failed"); 1769 error_report_err(local_err); 1770 1771 /* 1772 * Set the command status code to the first encountered error but allow a 1773 * subsequent Internal Device Error to trump it. 1774 */ 1775 if (req->status && status != NVME_INTERNAL_DEV_ERROR) { 1776 return; 1777 } 1778 1779 req->status = status; 1780 } 1781 1782 static inline uint32_t nvme_zone_idx(NvmeNamespace *ns, uint64_t slba) 1783 { 1784 return ns->zone_size_log2 > 0 ? slba >> ns->zone_size_log2 : 1785 slba / ns->zone_size; 1786 } 1787 1788 static inline NvmeZone *nvme_get_zone_by_slba(NvmeNamespace *ns, uint64_t slba) 1789 { 1790 uint32_t zone_idx = nvme_zone_idx(ns, slba); 1791 1792 if (zone_idx >= ns->num_zones) { 1793 return NULL; 1794 } 1795 1796 return &ns->zone_array[zone_idx]; 1797 } 1798 1799 static uint16_t nvme_check_zone_state_for_write(NvmeZone *zone) 1800 { 1801 uint64_t zslba = zone->d.zslba; 1802 1803 switch (nvme_get_zone_state(zone)) { 1804 case NVME_ZONE_STATE_EMPTY: 1805 case NVME_ZONE_STATE_IMPLICITLY_OPEN: 1806 case NVME_ZONE_STATE_EXPLICITLY_OPEN: 1807 case NVME_ZONE_STATE_CLOSED: 1808 return NVME_SUCCESS; 1809 case NVME_ZONE_STATE_FULL: 1810 trace_pci_nvme_err_zone_is_full(zslba); 1811 return NVME_ZONE_FULL; 1812 case NVME_ZONE_STATE_OFFLINE: 1813 trace_pci_nvme_err_zone_is_offline(zslba); 1814 return NVME_ZONE_OFFLINE; 1815 case NVME_ZONE_STATE_READ_ONLY: 1816 trace_pci_nvme_err_zone_is_read_only(zslba); 1817 return NVME_ZONE_READ_ONLY; 1818 default: 1819 g_assert_not_reached(); 1820 } 1821 1822 return NVME_INTERNAL_DEV_ERROR; 1823 } 1824 1825 static uint16_t nvme_check_zone_write(NvmeNamespace *ns, NvmeZone *zone, 1826 uint64_t slba, uint32_t nlb) 1827 { 1828 uint64_t zcap = nvme_zone_wr_boundary(zone); 1829 uint16_t status; 1830 1831 status = nvme_check_zone_state_for_write(zone); 1832 if (status) { 1833 return status; 1834 } 1835 1836 if (zone->d.za & NVME_ZA_ZRWA_VALID) { 1837 uint64_t ezrwa = zone->w_ptr + 2 * ns->zns.zrwas; 1838 1839 if (slba < zone->w_ptr || slba + nlb > ezrwa) { 1840 trace_pci_nvme_err_zone_invalid_write(slba, zone->w_ptr); 1841 return NVME_ZONE_INVALID_WRITE; 1842 } 1843 } else { 1844 if (unlikely(slba != zone->w_ptr)) { 1845 trace_pci_nvme_err_write_not_at_wp(slba, zone->d.zslba, 1846 zone->w_ptr); 1847 return NVME_ZONE_INVALID_WRITE; 1848 } 1849 } 1850 1851 if (unlikely((slba + nlb) > zcap)) { 1852 trace_pci_nvme_err_zone_boundary(slba, nlb, zcap); 1853 return NVME_ZONE_BOUNDARY_ERROR; 1854 } 1855 1856 return NVME_SUCCESS; 1857 } 1858 1859 static uint16_t nvme_check_zone_state_for_read(NvmeZone *zone) 1860 { 1861 switch (nvme_get_zone_state(zone)) { 1862 case NVME_ZONE_STATE_EMPTY: 1863 case NVME_ZONE_STATE_IMPLICITLY_OPEN: 1864 case NVME_ZONE_STATE_EXPLICITLY_OPEN: 1865 case NVME_ZONE_STATE_FULL: 1866 case NVME_ZONE_STATE_CLOSED: 1867 case NVME_ZONE_STATE_READ_ONLY: 1868 return NVME_SUCCESS; 1869 case NVME_ZONE_STATE_OFFLINE: 1870 trace_pci_nvme_err_zone_is_offline(zone->d.zslba); 1871 return NVME_ZONE_OFFLINE; 1872 default: 1873 g_assert_not_reached(); 1874 } 1875 1876 return NVME_INTERNAL_DEV_ERROR; 1877 } 1878 1879 static uint16_t nvme_check_zone_read(NvmeNamespace *ns, uint64_t slba, 1880 uint32_t nlb) 1881 { 1882 NvmeZone *zone; 1883 uint64_t bndry, end; 1884 uint16_t status; 1885 1886 zone = nvme_get_zone_by_slba(ns, slba); 1887 assert(zone); 1888 1889 bndry = nvme_zone_rd_boundary(ns, zone); 1890 end = slba + nlb; 1891 1892 status = nvme_check_zone_state_for_read(zone); 1893 if (status) { 1894 ; 1895 } else if (unlikely(end > bndry)) { 1896 if (!ns->params.cross_zone_read) { 1897 status = NVME_ZONE_BOUNDARY_ERROR; 1898 } else { 1899 /* 1900 * Read across zone boundary - check that all subsequent 1901 * zones that are being read have an appropriate state. 1902 */ 1903 do { 1904 zone++; 1905 status = nvme_check_zone_state_for_read(zone); 1906 if (status) { 1907 break; 1908 } 1909 } while (end > nvme_zone_rd_boundary(ns, zone)); 1910 } 1911 } 1912 1913 return status; 1914 } 1915 1916 static uint16_t nvme_zrm_finish(NvmeNamespace *ns, NvmeZone *zone) 1917 { 1918 switch (nvme_get_zone_state(zone)) { 1919 case NVME_ZONE_STATE_FULL: 1920 return NVME_SUCCESS; 1921 1922 case NVME_ZONE_STATE_IMPLICITLY_OPEN: 1923 case NVME_ZONE_STATE_EXPLICITLY_OPEN: 1924 nvme_aor_dec_open(ns); 1925 /* fallthrough */ 1926 case NVME_ZONE_STATE_CLOSED: 1927 nvme_aor_dec_active(ns); 1928 1929 if (zone->d.za & NVME_ZA_ZRWA_VALID) { 1930 zone->d.za &= ~NVME_ZA_ZRWA_VALID; 1931 if (ns->params.numzrwa) { 1932 ns->zns.numzrwa++; 1933 } 1934 } 1935 1936 /* fallthrough */ 1937 case NVME_ZONE_STATE_EMPTY: 1938 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_FULL); 1939 return NVME_SUCCESS; 1940 1941 default: 1942 return NVME_ZONE_INVAL_TRANSITION; 1943 } 1944 } 1945 1946 static uint16_t nvme_zrm_close(NvmeNamespace *ns, NvmeZone *zone) 1947 { 1948 switch (nvme_get_zone_state(zone)) { 1949 case NVME_ZONE_STATE_EXPLICITLY_OPEN: 1950 case NVME_ZONE_STATE_IMPLICITLY_OPEN: 1951 nvme_aor_dec_open(ns); 1952 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_CLOSED); 1953 /* fall through */ 1954 case NVME_ZONE_STATE_CLOSED: 1955 return NVME_SUCCESS; 1956 1957 default: 1958 return NVME_ZONE_INVAL_TRANSITION; 1959 } 1960 } 1961 1962 static uint16_t nvme_zrm_reset(NvmeNamespace *ns, NvmeZone *zone) 1963 { 1964 switch (nvme_get_zone_state(zone)) { 1965 case NVME_ZONE_STATE_EXPLICITLY_OPEN: 1966 case NVME_ZONE_STATE_IMPLICITLY_OPEN: 1967 nvme_aor_dec_open(ns); 1968 /* fallthrough */ 1969 case NVME_ZONE_STATE_CLOSED: 1970 nvme_aor_dec_active(ns); 1971 1972 if (zone->d.za & NVME_ZA_ZRWA_VALID) { 1973 if (ns->params.numzrwa) { 1974 ns->zns.numzrwa++; 1975 } 1976 } 1977 1978 /* fallthrough */ 1979 case NVME_ZONE_STATE_FULL: 1980 zone->w_ptr = zone->d.zslba; 1981 zone->d.wp = zone->w_ptr; 1982 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_EMPTY); 1983 /* fallthrough */ 1984 case NVME_ZONE_STATE_EMPTY: 1985 return NVME_SUCCESS; 1986 1987 default: 1988 return NVME_ZONE_INVAL_TRANSITION; 1989 } 1990 } 1991 1992 static void nvme_zrm_auto_transition_zone(NvmeNamespace *ns) 1993 { 1994 NvmeZone *zone; 1995 1996 if (ns->params.max_open_zones && 1997 ns->nr_open_zones == ns->params.max_open_zones) { 1998 zone = QTAILQ_FIRST(&ns->imp_open_zones); 1999 if (zone) { 2000 /* 2001 * Automatically close this implicitly open zone. 2002 */ 2003 QTAILQ_REMOVE(&ns->imp_open_zones, zone, entry); 2004 nvme_zrm_close(ns, zone); 2005 } 2006 } 2007 } 2008 2009 enum { 2010 NVME_ZRM_AUTO = 1 << 0, 2011 NVME_ZRM_ZRWA = 1 << 1, 2012 }; 2013 2014 static uint16_t nvme_zrm_open_flags(NvmeCtrl *n, NvmeNamespace *ns, 2015 NvmeZone *zone, int flags) 2016 { 2017 int act = 0; 2018 uint16_t status; 2019 2020 switch (nvme_get_zone_state(zone)) { 2021 case NVME_ZONE_STATE_EMPTY: 2022 act = 1; 2023 2024 /* fallthrough */ 2025 2026 case NVME_ZONE_STATE_CLOSED: 2027 if (n->params.auto_transition_zones) { 2028 nvme_zrm_auto_transition_zone(ns); 2029 } 2030 status = nvme_zns_check_resources(ns, act, 1, 2031 (flags & NVME_ZRM_ZRWA) ? 1 : 0); 2032 if (status) { 2033 return status; 2034 } 2035 2036 if (act) { 2037 nvme_aor_inc_active(ns); 2038 } 2039 2040 nvme_aor_inc_open(ns); 2041 2042 if (flags & NVME_ZRM_AUTO) { 2043 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_IMPLICITLY_OPEN); 2044 return NVME_SUCCESS; 2045 } 2046 2047 /* fallthrough */ 2048 2049 case NVME_ZONE_STATE_IMPLICITLY_OPEN: 2050 if (flags & NVME_ZRM_AUTO) { 2051 return NVME_SUCCESS; 2052 } 2053 2054 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_EXPLICITLY_OPEN); 2055 2056 /* fallthrough */ 2057 2058 case NVME_ZONE_STATE_EXPLICITLY_OPEN: 2059 if (flags & NVME_ZRM_ZRWA) { 2060 ns->zns.numzrwa--; 2061 2062 zone->d.za |= NVME_ZA_ZRWA_VALID; 2063 } 2064 2065 return NVME_SUCCESS; 2066 2067 default: 2068 return NVME_ZONE_INVAL_TRANSITION; 2069 } 2070 } 2071 2072 static inline uint16_t nvme_zrm_auto(NvmeCtrl *n, NvmeNamespace *ns, 2073 NvmeZone *zone) 2074 { 2075 return nvme_zrm_open_flags(n, ns, zone, NVME_ZRM_AUTO); 2076 } 2077 2078 static void nvme_advance_zone_wp(NvmeNamespace *ns, NvmeZone *zone, 2079 uint32_t nlb) 2080 { 2081 zone->d.wp += nlb; 2082 2083 if (zone->d.wp == nvme_zone_wr_boundary(zone)) { 2084 nvme_zrm_finish(ns, zone); 2085 } 2086 } 2087 2088 static void nvme_zoned_zrwa_implicit_flush(NvmeNamespace *ns, NvmeZone *zone, 2089 uint32_t nlbc) 2090 { 2091 uint16_t nzrwafgs = DIV_ROUND_UP(nlbc, ns->zns.zrwafg); 2092 2093 nlbc = nzrwafgs * ns->zns.zrwafg; 2094 2095 trace_pci_nvme_zoned_zrwa_implicit_flush(zone->d.zslba, nlbc); 2096 2097 zone->w_ptr += nlbc; 2098 2099 nvme_advance_zone_wp(ns, zone, nlbc); 2100 } 2101 2102 static void nvme_finalize_zoned_write(NvmeNamespace *ns, NvmeRequest *req) 2103 { 2104 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; 2105 NvmeZone *zone; 2106 uint64_t slba; 2107 uint32_t nlb; 2108 2109 slba = le64_to_cpu(rw->slba); 2110 nlb = le16_to_cpu(rw->nlb) + 1; 2111 zone = nvme_get_zone_by_slba(ns, slba); 2112 assert(zone); 2113 2114 if (zone->d.za & NVME_ZA_ZRWA_VALID) { 2115 uint64_t ezrwa = zone->w_ptr + ns->zns.zrwas - 1; 2116 uint64_t elba = slba + nlb - 1; 2117 2118 if (elba > ezrwa) { 2119 nvme_zoned_zrwa_implicit_flush(ns, zone, elba - ezrwa); 2120 } 2121 2122 return; 2123 } 2124 2125 nvme_advance_zone_wp(ns, zone, nlb); 2126 } 2127 2128 static inline bool nvme_is_write(NvmeRequest *req) 2129 { 2130 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; 2131 2132 return rw->opcode == NVME_CMD_WRITE || 2133 rw->opcode == NVME_CMD_ZONE_APPEND || 2134 rw->opcode == NVME_CMD_WRITE_ZEROES; 2135 } 2136 2137 static void nvme_misc_cb(void *opaque, int ret) 2138 { 2139 NvmeRequest *req = opaque; 2140 2141 trace_pci_nvme_misc_cb(nvme_cid(req)); 2142 2143 if (ret) { 2144 nvme_aio_err(req, ret); 2145 } 2146 2147 nvme_enqueue_req_completion(nvme_cq(req), req); 2148 } 2149 2150 void nvme_rw_complete_cb(void *opaque, int ret) 2151 { 2152 NvmeRequest *req = opaque; 2153 NvmeNamespace *ns = req->ns; 2154 BlockBackend *blk = ns->blkconf.blk; 2155 BlockAcctCookie *acct = &req->acct; 2156 BlockAcctStats *stats = blk_get_stats(blk); 2157 2158 trace_pci_nvme_rw_complete_cb(nvme_cid(req), blk_name(blk)); 2159 2160 if (ret) { 2161 block_acct_failed(stats, acct); 2162 nvme_aio_err(req, ret); 2163 } else { 2164 block_acct_done(stats, acct); 2165 } 2166 2167 if (ns->params.zoned && nvme_is_write(req)) { 2168 nvme_finalize_zoned_write(ns, req); 2169 } 2170 2171 nvme_enqueue_req_completion(nvme_cq(req), req); 2172 } 2173 2174 static void nvme_rw_cb(void *opaque, int ret) 2175 { 2176 NvmeRequest *req = opaque; 2177 NvmeNamespace *ns = req->ns; 2178 2179 BlockBackend *blk = ns->blkconf.blk; 2180 2181 trace_pci_nvme_rw_cb(nvme_cid(req), blk_name(blk)); 2182 2183 if (ret) { 2184 goto out; 2185 } 2186 2187 if (ns->lbaf.ms) { 2188 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; 2189 uint64_t slba = le64_to_cpu(rw->slba); 2190 uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1; 2191 uint64_t offset = nvme_moff(ns, slba); 2192 2193 if (req->cmd.opcode == NVME_CMD_WRITE_ZEROES) { 2194 size_t mlen = nvme_m2b(ns, nlb); 2195 2196 req->aiocb = blk_aio_pwrite_zeroes(blk, offset, mlen, 2197 BDRV_REQ_MAY_UNMAP, 2198 nvme_rw_complete_cb, req); 2199 return; 2200 } 2201 2202 if (nvme_ns_ext(ns) || req->cmd.mptr) { 2203 uint16_t status; 2204 2205 nvme_sg_unmap(&req->sg); 2206 status = nvme_map_mdata(nvme_ctrl(req), nlb, req); 2207 if (status) { 2208 ret = -EFAULT; 2209 goto out; 2210 } 2211 2212 if (req->cmd.opcode == NVME_CMD_READ) { 2213 return nvme_blk_read(blk, offset, 1, nvme_rw_complete_cb, req); 2214 } 2215 2216 return nvme_blk_write(blk, offset, 1, nvme_rw_complete_cb, req); 2217 } 2218 } 2219 2220 out: 2221 nvme_rw_complete_cb(req, ret); 2222 } 2223 2224 static void nvme_verify_cb(void *opaque, int ret) 2225 { 2226 NvmeBounceContext *ctx = opaque; 2227 NvmeRequest *req = ctx->req; 2228 NvmeNamespace *ns = req->ns; 2229 BlockBackend *blk = ns->blkconf.blk; 2230 BlockAcctCookie *acct = &req->acct; 2231 BlockAcctStats *stats = blk_get_stats(blk); 2232 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; 2233 uint64_t slba = le64_to_cpu(rw->slba); 2234 uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control)); 2235 uint16_t apptag = le16_to_cpu(rw->apptag); 2236 uint16_t appmask = le16_to_cpu(rw->appmask); 2237 uint64_t reftag = le32_to_cpu(rw->reftag); 2238 uint64_t cdw3 = le32_to_cpu(rw->cdw3); 2239 uint16_t status; 2240 2241 reftag |= cdw3 << 32; 2242 2243 trace_pci_nvme_verify_cb(nvme_cid(req), prinfo, apptag, appmask, reftag); 2244 2245 if (ret) { 2246 block_acct_failed(stats, acct); 2247 nvme_aio_err(req, ret); 2248 goto out; 2249 } 2250 2251 block_acct_done(stats, acct); 2252 2253 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) { 2254 status = nvme_dif_mangle_mdata(ns, ctx->mdata.bounce, 2255 ctx->mdata.iov.size, slba); 2256 if (status) { 2257 req->status = status; 2258 goto out; 2259 } 2260 2261 req->status = nvme_dif_check(ns, ctx->data.bounce, ctx->data.iov.size, 2262 ctx->mdata.bounce, ctx->mdata.iov.size, 2263 prinfo, slba, apptag, appmask, &reftag); 2264 } 2265 2266 out: 2267 qemu_iovec_destroy(&ctx->data.iov); 2268 g_free(ctx->data.bounce); 2269 2270 qemu_iovec_destroy(&ctx->mdata.iov); 2271 g_free(ctx->mdata.bounce); 2272 2273 g_free(ctx); 2274 2275 nvme_enqueue_req_completion(nvme_cq(req), req); 2276 } 2277 2278 2279 static void nvme_verify_mdata_in_cb(void *opaque, int ret) 2280 { 2281 NvmeBounceContext *ctx = opaque; 2282 NvmeRequest *req = ctx->req; 2283 NvmeNamespace *ns = req->ns; 2284 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; 2285 uint64_t slba = le64_to_cpu(rw->slba); 2286 uint32_t nlb = le16_to_cpu(rw->nlb) + 1; 2287 size_t mlen = nvme_m2b(ns, nlb); 2288 uint64_t offset = nvme_moff(ns, slba); 2289 BlockBackend *blk = ns->blkconf.blk; 2290 2291 trace_pci_nvme_verify_mdata_in_cb(nvme_cid(req), blk_name(blk)); 2292 2293 if (ret) { 2294 goto out; 2295 } 2296 2297 ctx->mdata.bounce = g_malloc(mlen); 2298 2299 qemu_iovec_reset(&ctx->mdata.iov); 2300 qemu_iovec_add(&ctx->mdata.iov, ctx->mdata.bounce, mlen); 2301 2302 req->aiocb = blk_aio_preadv(blk, offset, &ctx->mdata.iov, 0, 2303 nvme_verify_cb, ctx); 2304 return; 2305 2306 out: 2307 nvme_verify_cb(ctx, ret); 2308 } 2309 2310 struct nvme_compare_ctx { 2311 struct { 2312 QEMUIOVector iov; 2313 uint8_t *bounce; 2314 } data; 2315 2316 struct { 2317 QEMUIOVector iov; 2318 uint8_t *bounce; 2319 } mdata; 2320 }; 2321 2322 static void nvme_compare_mdata_cb(void *opaque, int ret) 2323 { 2324 NvmeRequest *req = opaque; 2325 NvmeNamespace *ns = req->ns; 2326 NvmeCtrl *n = nvme_ctrl(req); 2327 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; 2328 uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control)); 2329 uint16_t apptag = le16_to_cpu(rw->apptag); 2330 uint16_t appmask = le16_to_cpu(rw->appmask); 2331 uint64_t reftag = le32_to_cpu(rw->reftag); 2332 uint64_t cdw3 = le32_to_cpu(rw->cdw3); 2333 struct nvme_compare_ctx *ctx = req->opaque; 2334 g_autofree uint8_t *buf = NULL; 2335 BlockBackend *blk = ns->blkconf.blk; 2336 BlockAcctCookie *acct = &req->acct; 2337 BlockAcctStats *stats = blk_get_stats(blk); 2338 uint16_t status = NVME_SUCCESS; 2339 2340 reftag |= cdw3 << 32; 2341 2342 trace_pci_nvme_compare_mdata_cb(nvme_cid(req)); 2343 2344 if (ret) { 2345 block_acct_failed(stats, acct); 2346 nvme_aio_err(req, ret); 2347 goto out; 2348 } 2349 2350 buf = g_malloc(ctx->mdata.iov.size); 2351 2352 status = nvme_bounce_mdata(n, buf, ctx->mdata.iov.size, 2353 NVME_TX_DIRECTION_TO_DEVICE, req); 2354 if (status) { 2355 req->status = status; 2356 goto out; 2357 } 2358 2359 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) { 2360 uint64_t slba = le64_to_cpu(rw->slba); 2361 uint8_t *bufp; 2362 uint8_t *mbufp = ctx->mdata.bounce; 2363 uint8_t *end = mbufp + ctx->mdata.iov.size; 2364 int16_t pil = 0; 2365 2366 status = nvme_dif_check(ns, ctx->data.bounce, ctx->data.iov.size, 2367 ctx->mdata.bounce, ctx->mdata.iov.size, prinfo, 2368 slba, apptag, appmask, &reftag); 2369 if (status) { 2370 req->status = status; 2371 goto out; 2372 } 2373 2374 /* 2375 * When formatted with protection information, do not compare the DIF 2376 * tuple. 2377 */ 2378 if (!(ns->id_ns.dps & NVME_ID_NS_DPS_FIRST_EIGHT)) { 2379 pil = ns->lbaf.ms - nvme_pi_tuple_size(ns); 2380 } 2381 2382 for (bufp = buf; mbufp < end; bufp += ns->lbaf.ms, mbufp += ns->lbaf.ms) { 2383 if (memcmp(bufp + pil, mbufp + pil, ns->lbaf.ms - pil)) { 2384 req->status = NVME_CMP_FAILURE | NVME_DNR; 2385 goto out; 2386 } 2387 } 2388 2389 goto out; 2390 } 2391 2392 if (memcmp(buf, ctx->mdata.bounce, ctx->mdata.iov.size)) { 2393 req->status = NVME_CMP_FAILURE | NVME_DNR; 2394 goto out; 2395 } 2396 2397 block_acct_done(stats, acct); 2398 2399 out: 2400 qemu_iovec_destroy(&ctx->data.iov); 2401 g_free(ctx->data.bounce); 2402 2403 qemu_iovec_destroy(&ctx->mdata.iov); 2404 g_free(ctx->mdata.bounce); 2405 2406 g_free(ctx); 2407 2408 nvme_enqueue_req_completion(nvme_cq(req), req); 2409 } 2410 2411 static void nvme_compare_data_cb(void *opaque, int ret) 2412 { 2413 NvmeRequest *req = opaque; 2414 NvmeCtrl *n = nvme_ctrl(req); 2415 NvmeNamespace *ns = req->ns; 2416 BlockBackend *blk = ns->blkconf.blk; 2417 BlockAcctCookie *acct = &req->acct; 2418 BlockAcctStats *stats = blk_get_stats(blk); 2419 2420 struct nvme_compare_ctx *ctx = req->opaque; 2421 g_autofree uint8_t *buf = NULL; 2422 uint16_t status; 2423 2424 trace_pci_nvme_compare_data_cb(nvme_cid(req)); 2425 2426 if (ret) { 2427 block_acct_failed(stats, acct); 2428 nvme_aio_err(req, ret); 2429 goto out; 2430 } 2431 2432 buf = g_malloc(ctx->data.iov.size); 2433 2434 status = nvme_bounce_data(n, buf, ctx->data.iov.size, 2435 NVME_TX_DIRECTION_TO_DEVICE, req); 2436 if (status) { 2437 req->status = status; 2438 goto out; 2439 } 2440 2441 if (memcmp(buf, ctx->data.bounce, ctx->data.iov.size)) { 2442 req->status = NVME_CMP_FAILURE | NVME_DNR; 2443 goto out; 2444 } 2445 2446 if (ns->lbaf.ms) { 2447 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; 2448 uint64_t slba = le64_to_cpu(rw->slba); 2449 uint32_t nlb = le16_to_cpu(rw->nlb) + 1; 2450 size_t mlen = nvme_m2b(ns, nlb); 2451 uint64_t offset = nvme_moff(ns, slba); 2452 2453 ctx->mdata.bounce = g_malloc(mlen); 2454 2455 qemu_iovec_init(&ctx->mdata.iov, 1); 2456 qemu_iovec_add(&ctx->mdata.iov, ctx->mdata.bounce, mlen); 2457 2458 req->aiocb = blk_aio_preadv(blk, offset, &ctx->mdata.iov, 0, 2459 nvme_compare_mdata_cb, req); 2460 return; 2461 } 2462 2463 block_acct_done(stats, acct); 2464 2465 out: 2466 qemu_iovec_destroy(&ctx->data.iov); 2467 g_free(ctx->data.bounce); 2468 g_free(ctx); 2469 2470 nvme_enqueue_req_completion(nvme_cq(req), req); 2471 } 2472 2473 typedef struct NvmeDSMAIOCB { 2474 BlockAIOCB common; 2475 BlockAIOCB *aiocb; 2476 NvmeRequest *req; 2477 int ret; 2478 2479 NvmeDsmRange *range; 2480 unsigned int nr; 2481 unsigned int idx; 2482 } NvmeDSMAIOCB; 2483 2484 static void nvme_dsm_cancel(BlockAIOCB *aiocb) 2485 { 2486 NvmeDSMAIOCB *iocb = container_of(aiocb, NvmeDSMAIOCB, common); 2487 2488 /* break nvme_dsm_cb loop */ 2489 iocb->idx = iocb->nr; 2490 iocb->ret = -ECANCELED; 2491 2492 if (iocb->aiocb) { 2493 blk_aio_cancel_async(iocb->aiocb); 2494 iocb->aiocb = NULL; 2495 } else { 2496 /* 2497 * We only reach this if nvme_dsm_cancel() has already been called or 2498 * the command ran to completion. 2499 */ 2500 assert(iocb->idx == iocb->nr); 2501 } 2502 } 2503 2504 static const AIOCBInfo nvme_dsm_aiocb_info = { 2505 .aiocb_size = sizeof(NvmeDSMAIOCB), 2506 .cancel_async = nvme_dsm_cancel, 2507 }; 2508 2509 static void nvme_dsm_cb(void *opaque, int ret); 2510 2511 static void nvme_dsm_md_cb(void *opaque, int ret) 2512 { 2513 NvmeDSMAIOCB *iocb = opaque; 2514 NvmeRequest *req = iocb->req; 2515 NvmeNamespace *ns = req->ns; 2516 NvmeDsmRange *range; 2517 uint64_t slba; 2518 uint32_t nlb; 2519 2520 if (ret < 0 || iocb->ret < 0 || !ns->lbaf.ms) { 2521 goto done; 2522 } 2523 2524 range = &iocb->range[iocb->idx - 1]; 2525 slba = le64_to_cpu(range->slba); 2526 nlb = le32_to_cpu(range->nlb); 2527 2528 /* 2529 * Check that all block were discarded (zeroed); otherwise we do not zero 2530 * the metadata. 2531 */ 2532 2533 ret = nvme_block_status_all(ns, slba, nlb, BDRV_BLOCK_ZERO); 2534 if (ret) { 2535 if (ret < 0) { 2536 goto done; 2537 } 2538 2539 nvme_dsm_cb(iocb, 0); 2540 return; 2541 } 2542 2543 iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk, nvme_moff(ns, slba), 2544 nvme_m2b(ns, nlb), BDRV_REQ_MAY_UNMAP, 2545 nvme_dsm_cb, iocb); 2546 return; 2547 2548 done: 2549 nvme_dsm_cb(iocb, ret); 2550 } 2551 2552 static void nvme_dsm_cb(void *opaque, int ret) 2553 { 2554 NvmeDSMAIOCB *iocb = opaque; 2555 NvmeRequest *req = iocb->req; 2556 NvmeCtrl *n = nvme_ctrl(req); 2557 NvmeNamespace *ns = req->ns; 2558 NvmeDsmRange *range; 2559 uint64_t slba; 2560 uint32_t nlb; 2561 2562 if (iocb->ret < 0) { 2563 goto done; 2564 } else if (ret < 0) { 2565 iocb->ret = ret; 2566 goto done; 2567 } 2568 2569 next: 2570 if (iocb->idx == iocb->nr) { 2571 goto done; 2572 } 2573 2574 range = &iocb->range[iocb->idx++]; 2575 slba = le64_to_cpu(range->slba); 2576 nlb = le32_to_cpu(range->nlb); 2577 2578 trace_pci_nvme_dsm_deallocate(slba, nlb); 2579 2580 if (nlb > n->dmrsl) { 2581 trace_pci_nvme_dsm_single_range_limit_exceeded(nlb, n->dmrsl); 2582 goto next; 2583 } 2584 2585 if (nvme_check_bounds(ns, slba, nlb)) { 2586 trace_pci_nvme_err_invalid_lba_range(slba, nlb, 2587 ns->id_ns.nsze); 2588 goto next; 2589 } 2590 2591 iocb->aiocb = blk_aio_pdiscard(ns->blkconf.blk, nvme_l2b(ns, slba), 2592 nvme_l2b(ns, nlb), 2593 nvme_dsm_md_cb, iocb); 2594 return; 2595 2596 done: 2597 iocb->aiocb = NULL; 2598 iocb->common.cb(iocb->common.opaque, iocb->ret); 2599 g_free(iocb->range); 2600 qemu_aio_unref(iocb); 2601 } 2602 2603 static uint16_t nvme_dsm(NvmeCtrl *n, NvmeRequest *req) 2604 { 2605 NvmeNamespace *ns = req->ns; 2606 NvmeDsmCmd *dsm = (NvmeDsmCmd *) &req->cmd; 2607 uint32_t attr = le32_to_cpu(dsm->attributes); 2608 uint32_t nr = (le32_to_cpu(dsm->nr) & 0xff) + 1; 2609 uint16_t status = NVME_SUCCESS; 2610 2611 trace_pci_nvme_dsm(nr, attr); 2612 2613 if (attr & NVME_DSMGMT_AD) { 2614 NvmeDSMAIOCB *iocb = blk_aio_get(&nvme_dsm_aiocb_info, ns->blkconf.blk, 2615 nvme_misc_cb, req); 2616 2617 iocb->req = req; 2618 iocb->ret = 0; 2619 iocb->range = g_new(NvmeDsmRange, nr); 2620 iocb->nr = nr; 2621 iocb->idx = 0; 2622 2623 status = nvme_h2c(n, (uint8_t *)iocb->range, sizeof(NvmeDsmRange) * nr, 2624 req); 2625 if (status) { 2626 g_free(iocb->range); 2627 qemu_aio_unref(iocb); 2628 2629 return status; 2630 } 2631 2632 req->aiocb = &iocb->common; 2633 nvme_dsm_cb(iocb, 0); 2634 2635 return NVME_NO_COMPLETE; 2636 } 2637 2638 return status; 2639 } 2640 2641 static uint16_t nvme_verify(NvmeCtrl *n, NvmeRequest *req) 2642 { 2643 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; 2644 NvmeNamespace *ns = req->ns; 2645 BlockBackend *blk = ns->blkconf.blk; 2646 uint64_t slba = le64_to_cpu(rw->slba); 2647 uint32_t nlb = le16_to_cpu(rw->nlb) + 1; 2648 size_t len = nvme_l2b(ns, nlb); 2649 int64_t offset = nvme_l2b(ns, slba); 2650 uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control)); 2651 uint32_t reftag = le32_to_cpu(rw->reftag); 2652 NvmeBounceContext *ctx = NULL; 2653 uint16_t status; 2654 2655 trace_pci_nvme_verify(nvme_cid(req), nvme_nsid(ns), slba, nlb); 2656 2657 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) { 2658 status = nvme_check_prinfo(ns, prinfo, slba, reftag); 2659 if (status) { 2660 return status; 2661 } 2662 2663 if (prinfo & NVME_PRINFO_PRACT) { 2664 return NVME_INVALID_PROT_INFO | NVME_DNR; 2665 } 2666 } 2667 2668 if (len > n->page_size << n->params.vsl) { 2669 return NVME_INVALID_FIELD | NVME_DNR; 2670 } 2671 2672 status = nvme_check_bounds(ns, slba, nlb); 2673 if (status) { 2674 return status; 2675 } 2676 2677 if (NVME_ERR_REC_DULBE(ns->features.err_rec)) { 2678 status = nvme_check_dulbe(ns, slba, nlb); 2679 if (status) { 2680 return status; 2681 } 2682 } 2683 2684 ctx = g_new0(NvmeBounceContext, 1); 2685 ctx->req = req; 2686 2687 ctx->data.bounce = g_malloc(len); 2688 2689 qemu_iovec_init(&ctx->data.iov, 1); 2690 qemu_iovec_add(&ctx->data.iov, ctx->data.bounce, len); 2691 2692 block_acct_start(blk_get_stats(blk), &req->acct, ctx->data.iov.size, 2693 BLOCK_ACCT_READ); 2694 2695 req->aiocb = blk_aio_preadv(ns->blkconf.blk, offset, &ctx->data.iov, 0, 2696 nvme_verify_mdata_in_cb, ctx); 2697 return NVME_NO_COMPLETE; 2698 } 2699 2700 typedef struct NvmeCopyAIOCB { 2701 BlockAIOCB common; 2702 BlockAIOCB *aiocb; 2703 NvmeRequest *req; 2704 NvmeCtrl *n; 2705 int ret; 2706 2707 void *ranges; 2708 unsigned int format; 2709 int nr; 2710 int idx; 2711 2712 uint8_t *bounce; 2713 QEMUIOVector iov; 2714 struct { 2715 BlockAcctCookie read; 2716 BlockAcctCookie write; 2717 } acct; 2718 2719 uint64_t reftag; 2720 uint64_t slba; 2721 2722 NvmeZone *zone; 2723 NvmeNamespace *sns; 2724 uint32_t tcl; 2725 } NvmeCopyAIOCB; 2726 2727 static void nvme_copy_cancel(BlockAIOCB *aiocb) 2728 { 2729 NvmeCopyAIOCB *iocb = container_of(aiocb, NvmeCopyAIOCB, common); 2730 2731 iocb->ret = -ECANCELED; 2732 2733 if (iocb->aiocb) { 2734 blk_aio_cancel_async(iocb->aiocb); 2735 iocb->aiocb = NULL; 2736 } 2737 } 2738 2739 static const AIOCBInfo nvme_copy_aiocb_info = { 2740 .aiocb_size = sizeof(NvmeCopyAIOCB), 2741 .cancel_async = nvme_copy_cancel, 2742 }; 2743 2744 static void nvme_copy_done(NvmeCopyAIOCB *iocb) 2745 { 2746 NvmeRequest *req = iocb->req; 2747 NvmeNamespace *ns = req->ns; 2748 BlockAcctStats *stats = blk_get_stats(ns->blkconf.blk); 2749 2750 if (iocb->idx != iocb->nr) { 2751 req->cqe.result = cpu_to_le32(iocb->idx); 2752 } 2753 2754 qemu_iovec_destroy(&iocb->iov); 2755 g_free(iocb->bounce); 2756 2757 if (iocb->ret < 0) { 2758 block_acct_failed(stats, &iocb->acct.read); 2759 block_acct_failed(stats, &iocb->acct.write); 2760 } else { 2761 block_acct_done(stats, &iocb->acct.read); 2762 block_acct_done(stats, &iocb->acct.write); 2763 } 2764 2765 iocb->common.cb(iocb->common.opaque, iocb->ret); 2766 qemu_aio_unref(iocb); 2767 } 2768 2769 static void nvme_do_copy(NvmeCopyAIOCB *iocb); 2770 2771 static void nvme_copy_source_range_parse_format0_2(void *ranges, 2772 int idx, uint64_t *slba, 2773 uint32_t *nlb, 2774 uint32_t *snsid, 2775 uint16_t *apptag, 2776 uint16_t *appmask, 2777 uint64_t *reftag) 2778 { 2779 NvmeCopySourceRangeFormat0_2 *_ranges = ranges; 2780 2781 if (snsid) { 2782 *snsid = le32_to_cpu(_ranges[idx].sparams); 2783 } 2784 2785 if (slba) { 2786 *slba = le64_to_cpu(_ranges[idx].slba); 2787 } 2788 2789 if (nlb) { 2790 *nlb = le16_to_cpu(_ranges[idx].nlb) + 1; 2791 } 2792 2793 if (apptag) { 2794 *apptag = le16_to_cpu(_ranges[idx].apptag); 2795 } 2796 2797 if (appmask) { 2798 *appmask = le16_to_cpu(_ranges[idx].appmask); 2799 } 2800 2801 if (reftag) { 2802 *reftag = le32_to_cpu(_ranges[idx].reftag); 2803 } 2804 } 2805 2806 static void nvme_copy_source_range_parse_format1_3(void *ranges, int idx, 2807 uint64_t *slba, 2808 uint32_t *nlb, 2809 uint32_t *snsid, 2810 uint16_t *apptag, 2811 uint16_t *appmask, 2812 uint64_t *reftag) 2813 { 2814 NvmeCopySourceRangeFormat1_3 *_ranges = ranges; 2815 2816 if (snsid) { 2817 *snsid = le32_to_cpu(_ranges[idx].sparams); 2818 } 2819 2820 if (slba) { 2821 *slba = le64_to_cpu(_ranges[idx].slba); 2822 } 2823 2824 if (nlb) { 2825 *nlb = le16_to_cpu(_ranges[idx].nlb) + 1; 2826 } 2827 2828 if (apptag) { 2829 *apptag = le16_to_cpu(_ranges[idx].apptag); 2830 } 2831 2832 if (appmask) { 2833 *appmask = le16_to_cpu(_ranges[idx].appmask); 2834 } 2835 2836 if (reftag) { 2837 *reftag = 0; 2838 2839 *reftag |= (uint64_t)_ranges[idx].sr[4] << 40; 2840 *reftag |= (uint64_t)_ranges[idx].sr[5] << 32; 2841 *reftag |= (uint64_t)_ranges[idx].sr[6] << 24; 2842 *reftag |= (uint64_t)_ranges[idx].sr[7] << 16; 2843 *reftag |= (uint64_t)_ranges[idx].sr[8] << 8; 2844 *reftag |= (uint64_t)_ranges[idx].sr[9]; 2845 } 2846 } 2847 2848 static void nvme_copy_source_range_parse(void *ranges, int idx, uint8_t format, 2849 uint64_t *slba, uint32_t *nlb, 2850 uint32_t *snsid, uint16_t *apptag, 2851 uint16_t *appmask, uint64_t *reftag) 2852 { 2853 switch (format) { 2854 case NVME_COPY_FORMAT_0: 2855 case NVME_COPY_FORMAT_2: 2856 nvme_copy_source_range_parse_format0_2(ranges, idx, slba, nlb, snsid, 2857 apptag, appmask, reftag); 2858 break; 2859 2860 case NVME_COPY_FORMAT_1: 2861 case NVME_COPY_FORMAT_3: 2862 nvme_copy_source_range_parse_format1_3(ranges, idx, slba, nlb, snsid, 2863 apptag, appmask, reftag); 2864 break; 2865 2866 default: 2867 abort(); 2868 } 2869 } 2870 2871 static inline uint16_t nvme_check_copy_mcl(NvmeNamespace *ns, 2872 NvmeCopyAIOCB *iocb, uint16_t nr) 2873 { 2874 uint32_t copy_len = 0; 2875 2876 for (int idx = 0; idx < nr; idx++) { 2877 uint32_t nlb; 2878 nvme_copy_source_range_parse(iocb->ranges, idx, iocb->format, NULL, 2879 &nlb, NULL, NULL, NULL, NULL); 2880 copy_len += nlb; 2881 } 2882 iocb->tcl = copy_len; 2883 if (copy_len > ns->id_ns.mcl) { 2884 return NVME_CMD_SIZE_LIMIT | NVME_DNR; 2885 } 2886 2887 return NVME_SUCCESS; 2888 } 2889 2890 static void nvme_copy_out_completed_cb(void *opaque, int ret) 2891 { 2892 NvmeCopyAIOCB *iocb = opaque; 2893 NvmeRequest *req = iocb->req; 2894 NvmeNamespace *dns = req->ns; 2895 uint32_t nlb; 2896 2897 nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, NULL, 2898 &nlb, NULL, NULL, NULL, NULL); 2899 2900 if (ret < 0) { 2901 iocb->ret = ret; 2902 goto out; 2903 } else if (iocb->ret < 0) { 2904 goto out; 2905 } 2906 2907 if (dns->params.zoned) { 2908 nvme_advance_zone_wp(dns, iocb->zone, nlb); 2909 } 2910 2911 iocb->idx++; 2912 iocb->slba += nlb; 2913 out: 2914 nvme_do_copy(iocb); 2915 } 2916 2917 static void nvme_copy_out_cb(void *opaque, int ret) 2918 { 2919 NvmeCopyAIOCB *iocb = opaque; 2920 NvmeRequest *req = iocb->req; 2921 NvmeNamespace *dns = req->ns; 2922 uint32_t nlb; 2923 size_t mlen; 2924 uint8_t *mbounce; 2925 2926 if (ret < 0 || iocb->ret < 0 || !dns->lbaf.ms) { 2927 goto out; 2928 } 2929 2930 nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, NULL, 2931 &nlb, NULL, NULL, NULL, NULL); 2932 2933 mlen = nvme_m2b(dns, nlb); 2934 mbounce = iocb->bounce + nvme_l2b(dns, nlb); 2935 2936 qemu_iovec_reset(&iocb->iov); 2937 qemu_iovec_add(&iocb->iov, mbounce, mlen); 2938 2939 iocb->aiocb = blk_aio_pwritev(dns->blkconf.blk, nvme_moff(dns, iocb->slba), 2940 &iocb->iov, 0, nvme_copy_out_completed_cb, 2941 iocb); 2942 2943 return; 2944 2945 out: 2946 nvme_copy_out_completed_cb(iocb, ret); 2947 } 2948 2949 static void nvme_copy_in_completed_cb(void *opaque, int ret) 2950 { 2951 NvmeCopyAIOCB *iocb = opaque; 2952 NvmeRequest *req = iocb->req; 2953 NvmeNamespace *sns = iocb->sns; 2954 NvmeNamespace *dns = req->ns; 2955 NvmeCopyCmd *copy = NULL; 2956 uint8_t *mbounce = NULL; 2957 uint32_t nlb; 2958 uint64_t slba; 2959 uint16_t apptag, appmask; 2960 uint64_t reftag; 2961 size_t len, mlen; 2962 uint16_t status; 2963 2964 if (ret < 0) { 2965 iocb->ret = ret; 2966 goto out; 2967 } else if (iocb->ret < 0) { 2968 goto out; 2969 } 2970 2971 nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, &slba, 2972 &nlb, NULL, &apptag, &appmask, &reftag); 2973 2974 trace_pci_nvme_copy_out(iocb->slba, nlb); 2975 2976 len = nvme_l2b(sns, nlb); 2977 2978 if (NVME_ID_NS_DPS_TYPE(sns->id_ns.dps)) { 2979 copy = (NvmeCopyCmd *)&req->cmd; 2980 2981 uint16_t prinfor = ((copy->control[0] >> 4) & 0xf); 2982 2983 mlen = nvme_m2b(sns, nlb); 2984 mbounce = iocb->bounce + nvme_l2b(sns, nlb); 2985 2986 status = nvme_dif_mangle_mdata(sns, mbounce, mlen, slba); 2987 if (status) { 2988 goto invalid; 2989 } 2990 status = nvme_dif_check(sns, iocb->bounce, len, mbounce, mlen, prinfor, 2991 slba, apptag, appmask, &reftag); 2992 if (status) { 2993 goto invalid; 2994 } 2995 } 2996 2997 if (NVME_ID_NS_DPS_TYPE(dns->id_ns.dps)) { 2998 copy = (NvmeCopyCmd *)&req->cmd; 2999 uint16_t prinfow = ((copy->control[2] >> 2) & 0xf); 3000 3001 mlen = nvme_m2b(dns, nlb); 3002 mbounce = iocb->bounce + nvme_l2b(dns, nlb); 3003 3004 apptag = le16_to_cpu(copy->apptag); 3005 appmask = le16_to_cpu(copy->appmask); 3006 3007 if (prinfow & NVME_PRINFO_PRACT) { 3008 status = nvme_check_prinfo(dns, prinfow, iocb->slba, iocb->reftag); 3009 if (status) { 3010 goto invalid; 3011 } 3012 3013 nvme_dif_pract_generate_dif(dns, iocb->bounce, len, mbounce, mlen, 3014 apptag, &iocb->reftag); 3015 } else { 3016 status = nvme_dif_check(dns, iocb->bounce, len, mbounce, mlen, 3017 prinfow, iocb->slba, apptag, appmask, 3018 &iocb->reftag); 3019 if (status) { 3020 goto invalid; 3021 } 3022 } 3023 } 3024 3025 status = nvme_check_bounds(dns, iocb->slba, nlb); 3026 if (status) { 3027 goto invalid; 3028 } 3029 3030 if (dns->params.zoned) { 3031 status = nvme_check_zone_write(dns, iocb->zone, iocb->slba, nlb); 3032 if (status) { 3033 goto invalid; 3034 } 3035 3036 if (!(iocb->zone->d.za & NVME_ZA_ZRWA_VALID)) { 3037 iocb->zone->w_ptr += nlb; 3038 } 3039 } 3040 3041 qemu_iovec_reset(&iocb->iov); 3042 qemu_iovec_add(&iocb->iov, iocb->bounce, len); 3043 3044 block_acct_start(blk_get_stats(dns->blkconf.blk), &iocb->acct.write, 0, 3045 BLOCK_ACCT_WRITE); 3046 3047 iocb->aiocb = blk_aio_pwritev(dns->blkconf.blk, nvme_l2b(dns, iocb->slba), 3048 &iocb->iov, 0, nvme_copy_out_cb, iocb); 3049 3050 return; 3051 3052 invalid: 3053 req->status = status; 3054 iocb->ret = -1; 3055 out: 3056 nvme_do_copy(iocb); 3057 } 3058 3059 static void nvme_copy_in_cb(void *opaque, int ret) 3060 { 3061 NvmeCopyAIOCB *iocb = opaque; 3062 NvmeNamespace *sns = iocb->sns; 3063 uint64_t slba; 3064 uint32_t nlb; 3065 3066 if (ret < 0 || iocb->ret < 0 || !sns->lbaf.ms) { 3067 goto out; 3068 } 3069 3070 nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, &slba, 3071 &nlb, NULL, NULL, NULL, NULL); 3072 3073 qemu_iovec_reset(&iocb->iov); 3074 qemu_iovec_add(&iocb->iov, iocb->bounce + nvme_l2b(sns, nlb), 3075 nvme_m2b(sns, nlb)); 3076 3077 iocb->aiocb = blk_aio_preadv(sns->blkconf.blk, nvme_moff(sns, slba), 3078 &iocb->iov, 0, nvme_copy_in_completed_cb, 3079 iocb); 3080 return; 3081 3082 out: 3083 nvme_copy_in_completed_cb(iocb, ret); 3084 } 3085 3086 static inline bool nvme_csi_supports_copy(uint8_t csi) 3087 { 3088 return csi == NVME_CSI_NVM || csi == NVME_CSI_ZONED; 3089 } 3090 3091 static inline bool nvme_copy_ns_format_match(NvmeNamespace *sns, 3092 NvmeNamespace *dns) 3093 { 3094 return sns->lbaf.ds == dns->lbaf.ds && sns->lbaf.ms == dns->lbaf.ms; 3095 } 3096 3097 static bool nvme_copy_matching_ns_format(NvmeNamespace *sns, NvmeNamespace *dns, 3098 bool pi_enable) 3099 { 3100 if (!nvme_csi_supports_copy(sns->csi) || 3101 !nvme_csi_supports_copy(dns->csi)) { 3102 return false; 3103 } 3104 3105 if (!pi_enable && !nvme_copy_ns_format_match(sns, dns)) { 3106 return false; 3107 } 3108 3109 if (pi_enable && (!nvme_copy_ns_format_match(sns, dns) || 3110 sns->id_ns.dps != dns->id_ns.dps)) { 3111 return false; 3112 } 3113 3114 return true; 3115 } 3116 3117 static inline bool nvme_copy_corresp_pi_match(NvmeNamespace *sns, 3118 NvmeNamespace *dns) 3119 { 3120 return sns->lbaf.ms == 0 && 3121 ((dns->lbaf.ms == 8 && dns->pif == 0) || 3122 (dns->lbaf.ms == 16 && dns->pif == 1)); 3123 } 3124 3125 static bool nvme_copy_corresp_pi_format(NvmeNamespace *sns, NvmeNamespace *dns, 3126 bool sns_pi_en) 3127 { 3128 if (!nvme_csi_supports_copy(sns->csi) || 3129 !nvme_csi_supports_copy(dns->csi)) { 3130 return false; 3131 } 3132 3133 if (!sns_pi_en && !nvme_copy_corresp_pi_match(sns, dns)) { 3134 return false; 3135 } 3136 3137 if (sns_pi_en && !nvme_copy_corresp_pi_match(dns, sns)) { 3138 return false; 3139 } 3140 3141 return true; 3142 } 3143 3144 static void nvme_do_copy(NvmeCopyAIOCB *iocb) 3145 { 3146 NvmeRequest *req = iocb->req; 3147 NvmeNamespace *sns; 3148 NvmeNamespace *dns = req->ns; 3149 NvmeCopyCmd *copy = (NvmeCopyCmd *)&req->cmd; 3150 uint16_t prinfor = ((copy->control[0] >> 4) & 0xf); 3151 uint16_t prinfow = ((copy->control[2] >> 2) & 0xf); 3152 uint64_t slba; 3153 uint32_t nlb; 3154 size_t len; 3155 uint16_t status; 3156 uint32_t dnsid = le32_to_cpu(req->cmd.nsid); 3157 uint32_t snsid = dnsid; 3158 3159 if (iocb->ret < 0) { 3160 goto done; 3161 } 3162 3163 if (iocb->idx == iocb->nr) { 3164 goto done; 3165 } 3166 3167 if (iocb->format == 2 || iocb->format == 3) { 3168 nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, 3169 &slba, &nlb, &snsid, NULL, NULL, NULL); 3170 if (snsid != dnsid) { 3171 if (snsid == NVME_NSID_BROADCAST || 3172 !nvme_nsid_valid(iocb->n, snsid)) { 3173 status = NVME_INVALID_NSID | NVME_DNR; 3174 goto invalid; 3175 } 3176 iocb->sns = nvme_ns(iocb->n, snsid); 3177 if (unlikely(!iocb->sns)) { 3178 status = NVME_INVALID_FIELD | NVME_DNR; 3179 goto invalid; 3180 } 3181 } else { 3182 if (((slba + nlb) > iocb->slba) && 3183 ((slba + nlb) < (iocb->slba + iocb->tcl))) { 3184 status = NVME_CMD_OVERLAP_IO_RANGE | NVME_DNR; 3185 goto invalid; 3186 } 3187 } 3188 } else { 3189 nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, 3190 &slba, &nlb, NULL, NULL, NULL, NULL); 3191 } 3192 3193 sns = iocb->sns; 3194 if ((snsid == dnsid) && NVME_ID_NS_DPS_TYPE(sns->id_ns.dps) && 3195 ((prinfor & NVME_PRINFO_PRACT) != (prinfow & NVME_PRINFO_PRACT))) { 3196 status = NVME_INVALID_FIELD | NVME_DNR; 3197 goto invalid; 3198 } else if (snsid != dnsid) { 3199 if (!NVME_ID_NS_DPS_TYPE(sns->id_ns.dps) && 3200 !NVME_ID_NS_DPS_TYPE(dns->id_ns.dps)) { 3201 if (!nvme_copy_matching_ns_format(sns, dns, false)) { 3202 status = NVME_CMD_INCOMP_NS_OR_FMT | NVME_DNR; 3203 goto invalid; 3204 } 3205 } 3206 if (NVME_ID_NS_DPS_TYPE(sns->id_ns.dps) && 3207 NVME_ID_NS_DPS_TYPE(dns->id_ns.dps)) { 3208 if ((prinfor & NVME_PRINFO_PRACT) != 3209 (prinfow & NVME_PRINFO_PRACT)) { 3210 status = NVME_CMD_INCOMP_NS_OR_FMT | NVME_DNR; 3211 goto invalid; 3212 } else { 3213 if (!nvme_copy_matching_ns_format(sns, dns, true)) { 3214 status = NVME_CMD_INCOMP_NS_OR_FMT | NVME_DNR; 3215 goto invalid; 3216 } 3217 } 3218 } 3219 3220 if (!NVME_ID_NS_DPS_TYPE(sns->id_ns.dps) && 3221 NVME_ID_NS_DPS_TYPE(dns->id_ns.dps)) { 3222 if (!(prinfow & NVME_PRINFO_PRACT)) { 3223 status = NVME_CMD_INCOMP_NS_OR_FMT | NVME_DNR; 3224 goto invalid; 3225 } else { 3226 if (!nvme_copy_corresp_pi_format(sns, dns, false)) { 3227 status = NVME_CMD_INCOMP_NS_OR_FMT | NVME_DNR; 3228 goto invalid; 3229 } 3230 } 3231 } 3232 3233 if (NVME_ID_NS_DPS_TYPE(sns->id_ns.dps) && 3234 !NVME_ID_NS_DPS_TYPE(dns->id_ns.dps)) { 3235 if (!(prinfor & NVME_PRINFO_PRACT)) { 3236 status = NVME_CMD_INCOMP_NS_OR_FMT | NVME_DNR; 3237 goto invalid; 3238 } else { 3239 if (!nvme_copy_corresp_pi_format(sns, dns, true)) { 3240 status = NVME_CMD_INCOMP_NS_OR_FMT | NVME_DNR; 3241 goto invalid; 3242 } 3243 } 3244 } 3245 } 3246 len = nvme_l2b(sns, nlb); 3247 3248 trace_pci_nvme_copy_source_range(slba, nlb); 3249 3250 if (nlb > le16_to_cpu(sns->id_ns.mssrl)) { 3251 status = NVME_CMD_SIZE_LIMIT | NVME_DNR; 3252 goto invalid; 3253 } 3254 3255 status = nvme_check_bounds(sns, slba, nlb); 3256 if (status) { 3257 goto invalid; 3258 } 3259 3260 if (NVME_ERR_REC_DULBE(sns->features.err_rec)) { 3261 status = nvme_check_dulbe(sns, slba, nlb); 3262 if (status) { 3263 goto invalid; 3264 } 3265 } 3266 3267 if (sns->params.zoned) { 3268 status = nvme_check_zone_read(sns, slba, nlb); 3269 if (status) { 3270 goto invalid; 3271 } 3272 } 3273 3274 g_free(iocb->bounce); 3275 iocb->bounce = g_malloc_n(le16_to_cpu(sns->id_ns.mssrl), 3276 sns->lbasz + sns->lbaf.ms); 3277 3278 qemu_iovec_reset(&iocb->iov); 3279 qemu_iovec_add(&iocb->iov, iocb->bounce, len); 3280 3281 block_acct_start(blk_get_stats(sns->blkconf.blk), &iocb->acct.read, 0, 3282 BLOCK_ACCT_READ); 3283 3284 iocb->aiocb = blk_aio_preadv(sns->blkconf.blk, nvme_l2b(sns, slba), 3285 &iocb->iov, 0, nvme_copy_in_cb, iocb); 3286 return; 3287 3288 invalid: 3289 req->status = status; 3290 iocb->ret = -1; 3291 done: 3292 nvme_copy_done(iocb); 3293 } 3294 3295 static uint16_t nvme_copy(NvmeCtrl *n, NvmeRequest *req) 3296 { 3297 NvmeNamespace *ns = req->ns; 3298 NvmeCopyCmd *copy = (NvmeCopyCmd *)&req->cmd; 3299 NvmeCopyAIOCB *iocb = blk_aio_get(&nvme_copy_aiocb_info, ns->blkconf.blk, 3300 nvme_misc_cb, req); 3301 uint16_t nr = copy->nr + 1; 3302 uint8_t format = copy->control[0] & 0xf; 3303 size_t len = sizeof(NvmeCopySourceRangeFormat0_2); 3304 3305 uint16_t status; 3306 3307 trace_pci_nvme_copy(nvme_cid(req), nvme_nsid(ns), nr, format); 3308 3309 iocb->ranges = NULL; 3310 iocb->zone = NULL; 3311 3312 if (!(n->id_ctrl.ocfs & (1 << format)) || 3313 ((format == 2 || format == 3) && 3314 !(n->features.hbs.cdfe & (1 << format)))) { 3315 trace_pci_nvme_err_copy_invalid_format(format); 3316 status = NVME_INVALID_FIELD | NVME_DNR; 3317 goto invalid; 3318 } 3319 3320 if (nr > ns->id_ns.msrc + 1) { 3321 status = NVME_CMD_SIZE_LIMIT | NVME_DNR; 3322 goto invalid; 3323 } 3324 3325 if ((ns->pif == 0x0 && (format != 0x0 && format != 0x2)) || 3326 (ns->pif != 0x0 && (format != 0x1 && format != 0x3))) { 3327 status = NVME_INVALID_FORMAT | NVME_DNR; 3328 goto invalid; 3329 } 3330 3331 if (ns->pif) { 3332 len = sizeof(NvmeCopySourceRangeFormat1_3); 3333 } 3334 3335 iocb->format = format; 3336 iocb->ranges = g_malloc_n(nr, len); 3337 status = nvme_h2c(n, (uint8_t *)iocb->ranges, len * nr, req); 3338 if (status) { 3339 goto invalid; 3340 } 3341 3342 iocb->slba = le64_to_cpu(copy->sdlba); 3343 3344 if (ns->params.zoned) { 3345 iocb->zone = nvme_get_zone_by_slba(ns, iocb->slba); 3346 if (!iocb->zone) { 3347 status = NVME_LBA_RANGE | NVME_DNR; 3348 goto invalid; 3349 } 3350 3351 status = nvme_zrm_auto(n, ns, iocb->zone); 3352 if (status) { 3353 goto invalid; 3354 } 3355 } 3356 3357 status = nvme_check_copy_mcl(ns, iocb, nr); 3358 if (status) { 3359 goto invalid; 3360 } 3361 3362 iocb->req = req; 3363 iocb->ret = 0; 3364 iocb->nr = nr; 3365 iocb->idx = 0; 3366 iocb->reftag = le32_to_cpu(copy->reftag); 3367 iocb->reftag |= (uint64_t)le32_to_cpu(copy->cdw3) << 32; 3368 3369 qemu_iovec_init(&iocb->iov, 1); 3370 3371 req->aiocb = &iocb->common; 3372 iocb->sns = req->ns; 3373 iocb->n = n; 3374 iocb->bounce = NULL; 3375 nvme_do_copy(iocb); 3376 3377 return NVME_NO_COMPLETE; 3378 3379 invalid: 3380 g_free(iocb->ranges); 3381 qemu_aio_unref(iocb); 3382 return status; 3383 } 3384 3385 static uint16_t nvme_compare(NvmeCtrl *n, NvmeRequest *req) 3386 { 3387 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; 3388 NvmeNamespace *ns = req->ns; 3389 BlockBackend *blk = ns->blkconf.blk; 3390 uint64_t slba = le64_to_cpu(rw->slba); 3391 uint32_t nlb = le16_to_cpu(rw->nlb) + 1; 3392 uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control)); 3393 size_t data_len = nvme_l2b(ns, nlb); 3394 size_t len = data_len; 3395 int64_t offset = nvme_l2b(ns, slba); 3396 struct nvme_compare_ctx *ctx = NULL; 3397 uint16_t status; 3398 3399 trace_pci_nvme_compare(nvme_cid(req), nvme_nsid(ns), slba, nlb); 3400 3401 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps) && (prinfo & NVME_PRINFO_PRACT)) { 3402 return NVME_INVALID_PROT_INFO | NVME_DNR; 3403 } 3404 3405 if (nvme_ns_ext(ns)) { 3406 len += nvme_m2b(ns, nlb); 3407 } 3408 3409 status = nvme_check_mdts(n, len); 3410 if (status) { 3411 return status; 3412 } 3413 3414 status = nvme_check_bounds(ns, slba, nlb); 3415 if (status) { 3416 return status; 3417 } 3418 3419 if (NVME_ERR_REC_DULBE(ns->features.err_rec)) { 3420 status = nvme_check_dulbe(ns, slba, nlb); 3421 if (status) { 3422 return status; 3423 } 3424 } 3425 3426 status = nvme_map_dptr(n, &req->sg, len, &req->cmd); 3427 if (status) { 3428 return status; 3429 } 3430 3431 ctx = g_new(struct nvme_compare_ctx, 1); 3432 ctx->data.bounce = g_malloc(data_len); 3433 3434 req->opaque = ctx; 3435 3436 qemu_iovec_init(&ctx->data.iov, 1); 3437 qemu_iovec_add(&ctx->data.iov, ctx->data.bounce, data_len); 3438 3439 block_acct_start(blk_get_stats(blk), &req->acct, data_len, 3440 BLOCK_ACCT_READ); 3441 req->aiocb = blk_aio_preadv(blk, offset, &ctx->data.iov, 0, 3442 nvme_compare_data_cb, req); 3443 3444 return NVME_NO_COMPLETE; 3445 } 3446 3447 typedef struct NvmeFlushAIOCB { 3448 BlockAIOCB common; 3449 BlockAIOCB *aiocb; 3450 NvmeRequest *req; 3451 int ret; 3452 3453 NvmeNamespace *ns; 3454 uint32_t nsid; 3455 bool broadcast; 3456 } NvmeFlushAIOCB; 3457 3458 static void nvme_flush_cancel(BlockAIOCB *acb) 3459 { 3460 NvmeFlushAIOCB *iocb = container_of(acb, NvmeFlushAIOCB, common); 3461 3462 iocb->ret = -ECANCELED; 3463 3464 if (iocb->aiocb) { 3465 blk_aio_cancel_async(iocb->aiocb); 3466 iocb->aiocb = NULL; 3467 } 3468 } 3469 3470 static const AIOCBInfo nvme_flush_aiocb_info = { 3471 .aiocb_size = sizeof(NvmeFlushAIOCB), 3472 .cancel_async = nvme_flush_cancel, 3473 }; 3474 3475 static void nvme_do_flush(NvmeFlushAIOCB *iocb); 3476 3477 static void nvme_flush_ns_cb(void *opaque, int ret) 3478 { 3479 NvmeFlushAIOCB *iocb = opaque; 3480 NvmeNamespace *ns = iocb->ns; 3481 3482 if (ret < 0) { 3483 iocb->ret = ret; 3484 goto out; 3485 } else if (iocb->ret < 0) { 3486 goto out; 3487 } 3488 3489 if (ns) { 3490 trace_pci_nvme_flush_ns(iocb->nsid); 3491 3492 iocb->ns = NULL; 3493 iocb->aiocb = blk_aio_flush(ns->blkconf.blk, nvme_flush_ns_cb, iocb); 3494 return; 3495 } 3496 3497 out: 3498 nvme_do_flush(iocb); 3499 } 3500 3501 static void nvme_do_flush(NvmeFlushAIOCB *iocb) 3502 { 3503 NvmeRequest *req = iocb->req; 3504 NvmeCtrl *n = nvme_ctrl(req); 3505 int i; 3506 3507 if (iocb->ret < 0) { 3508 goto done; 3509 } 3510 3511 if (iocb->broadcast) { 3512 for (i = iocb->nsid + 1; i <= NVME_MAX_NAMESPACES; i++) { 3513 iocb->ns = nvme_ns(n, i); 3514 if (iocb->ns) { 3515 iocb->nsid = i; 3516 break; 3517 } 3518 } 3519 } 3520 3521 if (!iocb->ns) { 3522 goto done; 3523 } 3524 3525 nvme_flush_ns_cb(iocb, 0); 3526 return; 3527 3528 done: 3529 iocb->common.cb(iocb->common.opaque, iocb->ret); 3530 qemu_aio_unref(iocb); 3531 } 3532 3533 static uint16_t nvme_flush(NvmeCtrl *n, NvmeRequest *req) 3534 { 3535 NvmeFlushAIOCB *iocb; 3536 uint32_t nsid = le32_to_cpu(req->cmd.nsid); 3537 uint16_t status; 3538 3539 iocb = qemu_aio_get(&nvme_flush_aiocb_info, NULL, nvme_misc_cb, req); 3540 3541 iocb->req = req; 3542 iocb->ret = 0; 3543 iocb->ns = NULL; 3544 iocb->nsid = 0; 3545 iocb->broadcast = (nsid == NVME_NSID_BROADCAST); 3546 3547 if (!iocb->broadcast) { 3548 if (!nvme_nsid_valid(n, nsid)) { 3549 status = NVME_INVALID_NSID | NVME_DNR; 3550 goto out; 3551 } 3552 3553 iocb->ns = nvme_ns(n, nsid); 3554 if (!iocb->ns) { 3555 status = NVME_INVALID_FIELD | NVME_DNR; 3556 goto out; 3557 } 3558 3559 iocb->nsid = nsid; 3560 } 3561 3562 req->aiocb = &iocb->common; 3563 nvme_do_flush(iocb); 3564 3565 return NVME_NO_COMPLETE; 3566 3567 out: 3568 qemu_aio_unref(iocb); 3569 3570 return status; 3571 } 3572 3573 static uint16_t nvme_read(NvmeCtrl *n, NvmeRequest *req) 3574 { 3575 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; 3576 NvmeNamespace *ns = req->ns; 3577 uint64_t slba = le64_to_cpu(rw->slba); 3578 uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1; 3579 uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control)); 3580 uint64_t data_size = nvme_l2b(ns, nlb); 3581 uint64_t mapped_size = data_size; 3582 uint64_t data_offset; 3583 BlockBackend *blk = ns->blkconf.blk; 3584 uint16_t status; 3585 3586 if (nvme_ns_ext(ns)) { 3587 mapped_size += nvme_m2b(ns, nlb); 3588 3589 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) { 3590 bool pract = prinfo & NVME_PRINFO_PRACT; 3591 3592 if (pract && ns->lbaf.ms == nvme_pi_tuple_size(ns)) { 3593 mapped_size = data_size; 3594 } 3595 } 3596 } 3597 3598 trace_pci_nvme_read(nvme_cid(req), nvme_nsid(ns), nlb, mapped_size, slba); 3599 3600 status = nvme_check_mdts(n, mapped_size); 3601 if (status) { 3602 goto invalid; 3603 } 3604 3605 status = nvme_check_bounds(ns, slba, nlb); 3606 if (status) { 3607 goto invalid; 3608 } 3609 3610 if (ns->params.zoned) { 3611 status = nvme_check_zone_read(ns, slba, nlb); 3612 if (status) { 3613 trace_pci_nvme_err_zone_read_not_ok(slba, nlb, status); 3614 goto invalid; 3615 } 3616 } 3617 3618 if (NVME_ERR_REC_DULBE(ns->features.err_rec)) { 3619 status = nvme_check_dulbe(ns, slba, nlb); 3620 if (status) { 3621 goto invalid; 3622 } 3623 } 3624 3625 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) { 3626 return nvme_dif_rw(n, req); 3627 } 3628 3629 status = nvme_map_data(n, nlb, req); 3630 if (status) { 3631 goto invalid; 3632 } 3633 3634 data_offset = nvme_l2b(ns, slba); 3635 3636 block_acct_start(blk_get_stats(blk), &req->acct, data_size, 3637 BLOCK_ACCT_READ); 3638 nvme_blk_read(blk, data_offset, BDRV_SECTOR_SIZE, nvme_rw_cb, req); 3639 return NVME_NO_COMPLETE; 3640 3641 invalid: 3642 block_acct_invalid(blk_get_stats(blk), BLOCK_ACCT_READ); 3643 return status | NVME_DNR; 3644 } 3645 3646 static void nvme_do_write_fdp(NvmeCtrl *n, NvmeRequest *req, uint64_t slba, 3647 uint32_t nlb) 3648 { 3649 NvmeNamespace *ns = req->ns; 3650 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; 3651 uint64_t data_size = nvme_l2b(ns, nlb); 3652 uint32_t dw12 = le32_to_cpu(req->cmd.cdw12); 3653 uint8_t dtype = (dw12 >> 20) & 0xf; 3654 uint16_t pid = le16_to_cpu(rw->dspec); 3655 uint16_t ph, rg, ruhid; 3656 NvmeReclaimUnit *ru; 3657 3658 if (dtype != NVME_DIRECTIVE_DATA_PLACEMENT || 3659 !nvme_parse_pid(ns, pid, &ph, &rg)) { 3660 ph = 0; 3661 rg = 0; 3662 } 3663 3664 ruhid = ns->fdp.phs[ph]; 3665 ru = &ns->endgrp->fdp.ruhs[ruhid].rus[rg]; 3666 3667 nvme_fdp_stat_inc(&ns->endgrp->fdp.hbmw, data_size); 3668 nvme_fdp_stat_inc(&ns->endgrp->fdp.mbmw, data_size); 3669 3670 while (nlb) { 3671 if (nlb < ru->ruamw) { 3672 ru->ruamw -= nlb; 3673 break; 3674 } 3675 3676 nlb -= ru->ruamw; 3677 nvme_update_ruh(n, ns, pid); 3678 } 3679 } 3680 3681 static uint16_t nvme_do_write(NvmeCtrl *n, NvmeRequest *req, bool append, 3682 bool wrz) 3683 { 3684 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; 3685 NvmeNamespace *ns = req->ns; 3686 uint64_t slba = le64_to_cpu(rw->slba); 3687 uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1; 3688 uint16_t ctrl = le16_to_cpu(rw->control); 3689 uint8_t prinfo = NVME_RW_PRINFO(ctrl); 3690 uint64_t data_size = nvme_l2b(ns, nlb); 3691 uint64_t mapped_size = data_size; 3692 uint64_t data_offset; 3693 NvmeZone *zone; 3694 NvmeZonedResult *res = (NvmeZonedResult *)&req->cqe; 3695 BlockBackend *blk = ns->blkconf.blk; 3696 uint16_t status; 3697 3698 if (nvme_ns_ext(ns)) { 3699 mapped_size += nvme_m2b(ns, nlb); 3700 3701 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) { 3702 bool pract = prinfo & NVME_PRINFO_PRACT; 3703 3704 if (pract && ns->lbaf.ms == nvme_pi_tuple_size(ns)) { 3705 mapped_size -= nvme_m2b(ns, nlb); 3706 } 3707 } 3708 } 3709 3710 trace_pci_nvme_write(nvme_cid(req), nvme_io_opc_str(rw->opcode), 3711 nvme_nsid(ns), nlb, mapped_size, slba); 3712 3713 if (!wrz) { 3714 status = nvme_check_mdts(n, mapped_size); 3715 if (status) { 3716 goto invalid; 3717 } 3718 } 3719 3720 status = nvme_check_bounds(ns, slba, nlb); 3721 if (status) { 3722 goto invalid; 3723 } 3724 3725 if (ns->params.zoned) { 3726 zone = nvme_get_zone_by_slba(ns, slba); 3727 assert(zone); 3728 3729 if (append) { 3730 bool piremap = !!(ctrl & NVME_RW_PIREMAP); 3731 3732 if (unlikely(zone->d.za & NVME_ZA_ZRWA_VALID)) { 3733 return NVME_INVALID_ZONE_OP | NVME_DNR; 3734 } 3735 3736 if (unlikely(slba != zone->d.zslba)) { 3737 trace_pci_nvme_err_append_not_at_start(slba, zone->d.zslba); 3738 status = NVME_INVALID_FIELD; 3739 goto invalid; 3740 } 3741 3742 if (n->params.zasl && 3743 data_size > (uint64_t)n->page_size << n->params.zasl) { 3744 trace_pci_nvme_err_zasl(data_size); 3745 return NVME_INVALID_FIELD | NVME_DNR; 3746 } 3747 3748 slba = zone->w_ptr; 3749 rw->slba = cpu_to_le64(slba); 3750 res->slba = cpu_to_le64(slba); 3751 3752 switch (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) { 3753 case NVME_ID_NS_DPS_TYPE_1: 3754 if (!piremap) { 3755 return NVME_INVALID_PROT_INFO | NVME_DNR; 3756 } 3757 3758 /* fallthrough */ 3759 3760 case NVME_ID_NS_DPS_TYPE_2: 3761 if (piremap) { 3762 uint32_t reftag = le32_to_cpu(rw->reftag); 3763 rw->reftag = cpu_to_le32(reftag + (slba - zone->d.zslba)); 3764 } 3765 3766 break; 3767 3768 case NVME_ID_NS_DPS_TYPE_3: 3769 if (piremap) { 3770 return NVME_INVALID_PROT_INFO | NVME_DNR; 3771 } 3772 3773 break; 3774 } 3775 } 3776 3777 status = nvme_check_zone_write(ns, zone, slba, nlb); 3778 if (status) { 3779 goto invalid; 3780 } 3781 3782 status = nvme_zrm_auto(n, ns, zone); 3783 if (status) { 3784 goto invalid; 3785 } 3786 3787 if (!(zone->d.za & NVME_ZA_ZRWA_VALID)) { 3788 zone->w_ptr += nlb; 3789 } 3790 } else if (ns->endgrp && ns->endgrp->fdp.enabled) { 3791 nvme_do_write_fdp(n, req, slba, nlb); 3792 } 3793 3794 data_offset = nvme_l2b(ns, slba); 3795 3796 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) { 3797 return nvme_dif_rw(n, req); 3798 } 3799 3800 if (!wrz) { 3801 status = nvme_map_data(n, nlb, req); 3802 if (status) { 3803 goto invalid; 3804 } 3805 3806 block_acct_start(blk_get_stats(blk), &req->acct, data_size, 3807 BLOCK_ACCT_WRITE); 3808 nvme_blk_write(blk, data_offset, BDRV_SECTOR_SIZE, nvme_rw_cb, req); 3809 } else { 3810 req->aiocb = blk_aio_pwrite_zeroes(blk, data_offset, data_size, 3811 BDRV_REQ_MAY_UNMAP, nvme_rw_cb, 3812 req); 3813 } 3814 3815 return NVME_NO_COMPLETE; 3816 3817 invalid: 3818 block_acct_invalid(blk_get_stats(blk), BLOCK_ACCT_WRITE); 3819 return status | NVME_DNR; 3820 } 3821 3822 static inline uint16_t nvme_write(NvmeCtrl *n, NvmeRequest *req) 3823 { 3824 return nvme_do_write(n, req, false, false); 3825 } 3826 3827 static inline uint16_t nvme_write_zeroes(NvmeCtrl *n, NvmeRequest *req) 3828 { 3829 return nvme_do_write(n, req, false, true); 3830 } 3831 3832 static inline uint16_t nvme_zone_append(NvmeCtrl *n, NvmeRequest *req) 3833 { 3834 return nvme_do_write(n, req, true, false); 3835 } 3836 3837 static uint16_t nvme_get_mgmt_zone_slba_idx(NvmeNamespace *ns, NvmeCmd *c, 3838 uint64_t *slba, uint32_t *zone_idx) 3839 { 3840 uint32_t dw10 = le32_to_cpu(c->cdw10); 3841 uint32_t dw11 = le32_to_cpu(c->cdw11); 3842 3843 if (!ns->params.zoned) { 3844 trace_pci_nvme_err_invalid_opc(c->opcode); 3845 return NVME_INVALID_OPCODE | NVME_DNR; 3846 } 3847 3848 *slba = ((uint64_t)dw11) << 32 | dw10; 3849 if (unlikely(*slba >= ns->id_ns.nsze)) { 3850 trace_pci_nvme_err_invalid_lba_range(*slba, 0, ns->id_ns.nsze); 3851 *slba = 0; 3852 return NVME_LBA_RANGE | NVME_DNR; 3853 } 3854 3855 *zone_idx = nvme_zone_idx(ns, *slba); 3856 assert(*zone_idx < ns->num_zones); 3857 3858 return NVME_SUCCESS; 3859 } 3860 3861 typedef uint16_t (*op_handler_t)(NvmeNamespace *, NvmeZone *, NvmeZoneState, 3862 NvmeRequest *); 3863 3864 enum NvmeZoneProcessingMask { 3865 NVME_PROC_CURRENT_ZONE = 0, 3866 NVME_PROC_OPENED_ZONES = 1 << 0, 3867 NVME_PROC_CLOSED_ZONES = 1 << 1, 3868 NVME_PROC_READ_ONLY_ZONES = 1 << 2, 3869 NVME_PROC_FULL_ZONES = 1 << 3, 3870 }; 3871 3872 static uint16_t nvme_open_zone(NvmeNamespace *ns, NvmeZone *zone, 3873 NvmeZoneState state, NvmeRequest *req) 3874 { 3875 NvmeZoneSendCmd *cmd = (NvmeZoneSendCmd *)&req->cmd; 3876 int flags = 0; 3877 3878 if (cmd->zsflags & NVME_ZSFLAG_ZRWA_ALLOC) { 3879 uint16_t ozcs = le16_to_cpu(ns->id_ns_zoned->ozcs); 3880 3881 if (!(ozcs & NVME_ID_NS_ZONED_OZCS_ZRWASUP)) { 3882 return NVME_INVALID_ZONE_OP | NVME_DNR; 3883 } 3884 3885 if (zone->w_ptr % ns->zns.zrwafg) { 3886 return NVME_NOZRWA | NVME_DNR; 3887 } 3888 3889 flags = NVME_ZRM_ZRWA; 3890 } 3891 3892 return nvme_zrm_open_flags(nvme_ctrl(req), ns, zone, flags); 3893 } 3894 3895 static uint16_t nvme_close_zone(NvmeNamespace *ns, NvmeZone *zone, 3896 NvmeZoneState state, NvmeRequest *req) 3897 { 3898 return nvme_zrm_close(ns, zone); 3899 } 3900 3901 static uint16_t nvme_finish_zone(NvmeNamespace *ns, NvmeZone *zone, 3902 NvmeZoneState state, NvmeRequest *req) 3903 { 3904 return nvme_zrm_finish(ns, zone); 3905 } 3906 3907 static uint16_t nvme_offline_zone(NvmeNamespace *ns, NvmeZone *zone, 3908 NvmeZoneState state, NvmeRequest *req) 3909 { 3910 switch (state) { 3911 case NVME_ZONE_STATE_READ_ONLY: 3912 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_OFFLINE); 3913 /* fall through */ 3914 case NVME_ZONE_STATE_OFFLINE: 3915 return NVME_SUCCESS; 3916 default: 3917 return NVME_ZONE_INVAL_TRANSITION; 3918 } 3919 } 3920 3921 static uint16_t nvme_set_zd_ext(NvmeNamespace *ns, NvmeZone *zone) 3922 { 3923 uint16_t status; 3924 uint8_t state = nvme_get_zone_state(zone); 3925 3926 if (state == NVME_ZONE_STATE_EMPTY) { 3927 status = nvme_aor_check(ns, 1, 0); 3928 if (status) { 3929 return status; 3930 } 3931 nvme_aor_inc_active(ns); 3932 zone->d.za |= NVME_ZA_ZD_EXT_VALID; 3933 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_CLOSED); 3934 return NVME_SUCCESS; 3935 } 3936 3937 return NVME_ZONE_INVAL_TRANSITION; 3938 } 3939 3940 static uint16_t nvme_bulk_proc_zone(NvmeNamespace *ns, NvmeZone *zone, 3941 enum NvmeZoneProcessingMask proc_mask, 3942 op_handler_t op_hndlr, NvmeRequest *req) 3943 { 3944 uint16_t status = NVME_SUCCESS; 3945 NvmeZoneState zs = nvme_get_zone_state(zone); 3946 bool proc_zone; 3947 3948 switch (zs) { 3949 case NVME_ZONE_STATE_IMPLICITLY_OPEN: 3950 case NVME_ZONE_STATE_EXPLICITLY_OPEN: 3951 proc_zone = proc_mask & NVME_PROC_OPENED_ZONES; 3952 break; 3953 case NVME_ZONE_STATE_CLOSED: 3954 proc_zone = proc_mask & NVME_PROC_CLOSED_ZONES; 3955 break; 3956 case NVME_ZONE_STATE_READ_ONLY: 3957 proc_zone = proc_mask & NVME_PROC_READ_ONLY_ZONES; 3958 break; 3959 case NVME_ZONE_STATE_FULL: 3960 proc_zone = proc_mask & NVME_PROC_FULL_ZONES; 3961 break; 3962 default: 3963 proc_zone = false; 3964 } 3965 3966 if (proc_zone) { 3967 status = op_hndlr(ns, zone, zs, req); 3968 } 3969 3970 return status; 3971 } 3972 3973 static uint16_t nvme_do_zone_op(NvmeNamespace *ns, NvmeZone *zone, 3974 enum NvmeZoneProcessingMask proc_mask, 3975 op_handler_t op_hndlr, NvmeRequest *req) 3976 { 3977 NvmeZone *next; 3978 uint16_t status = NVME_SUCCESS; 3979 int i; 3980 3981 if (!proc_mask) { 3982 status = op_hndlr(ns, zone, nvme_get_zone_state(zone), req); 3983 } else { 3984 if (proc_mask & NVME_PROC_CLOSED_ZONES) { 3985 QTAILQ_FOREACH_SAFE(zone, &ns->closed_zones, entry, next) { 3986 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr, 3987 req); 3988 if (status && status != NVME_NO_COMPLETE) { 3989 goto out; 3990 } 3991 } 3992 } 3993 if (proc_mask & NVME_PROC_OPENED_ZONES) { 3994 QTAILQ_FOREACH_SAFE(zone, &ns->imp_open_zones, entry, next) { 3995 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr, 3996 req); 3997 if (status && status != NVME_NO_COMPLETE) { 3998 goto out; 3999 } 4000 } 4001 4002 QTAILQ_FOREACH_SAFE(zone, &ns->exp_open_zones, entry, next) { 4003 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr, 4004 req); 4005 if (status && status != NVME_NO_COMPLETE) { 4006 goto out; 4007 } 4008 } 4009 } 4010 if (proc_mask & NVME_PROC_FULL_ZONES) { 4011 QTAILQ_FOREACH_SAFE(zone, &ns->full_zones, entry, next) { 4012 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr, 4013 req); 4014 if (status && status != NVME_NO_COMPLETE) { 4015 goto out; 4016 } 4017 } 4018 } 4019 4020 if (proc_mask & NVME_PROC_READ_ONLY_ZONES) { 4021 for (i = 0; i < ns->num_zones; i++, zone++) { 4022 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr, 4023 req); 4024 if (status && status != NVME_NO_COMPLETE) { 4025 goto out; 4026 } 4027 } 4028 } 4029 } 4030 4031 out: 4032 return status; 4033 } 4034 4035 typedef struct NvmeZoneResetAIOCB { 4036 BlockAIOCB common; 4037 BlockAIOCB *aiocb; 4038 NvmeRequest *req; 4039 int ret; 4040 4041 bool all; 4042 int idx; 4043 NvmeZone *zone; 4044 } NvmeZoneResetAIOCB; 4045 4046 static void nvme_zone_reset_cancel(BlockAIOCB *aiocb) 4047 { 4048 NvmeZoneResetAIOCB *iocb = container_of(aiocb, NvmeZoneResetAIOCB, common); 4049 NvmeRequest *req = iocb->req; 4050 NvmeNamespace *ns = req->ns; 4051 4052 iocb->idx = ns->num_zones; 4053 4054 iocb->ret = -ECANCELED; 4055 4056 if (iocb->aiocb) { 4057 blk_aio_cancel_async(iocb->aiocb); 4058 iocb->aiocb = NULL; 4059 } 4060 } 4061 4062 static const AIOCBInfo nvme_zone_reset_aiocb_info = { 4063 .aiocb_size = sizeof(NvmeZoneResetAIOCB), 4064 .cancel_async = nvme_zone_reset_cancel, 4065 }; 4066 4067 static void nvme_zone_reset_cb(void *opaque, int ret); 4068 4069 static void nvme_zone_reset_epilogue_cb(void *opaque, int ret) 4070 { 4071 NvmeZoneResetAIOCB *iocb = opaque; 4072 NvmeRequest *req = iocb->req; 4073 NvmeNamespace *ns = req->ns; 4074 int64_t moff; 4075 int count; 4076 4077 if (ret < 0 || iocb->ret < 0 || !ns->lbaf.ms) { 4078 goto out; 4079 } 4080 4081 moff = nvme_moff(ns, iocb->zone->d.zslba); 4082 count = nvme_m2b(ns, ns->zone_size); 4083 4084 iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk, moff, count, 4085 BDRV_REQ_MAY_UNMAP, 4086 nvme_zone_reset_cb, iocb); 4087 return; 4088 4089 out: 4090 nvme_zone_reset_cb(iocb, ret); 4091 } 4092 4093 static void nvme_zone_reset_cb(void *opaque, int ret) 4094 { 4095 NvmeZoneResetAIOCB *iocb = opaque; 4096 NvmeRequest *req = iocb->req; 4097 NvmeNamespace *ns = req->ns; 4098 4099 if (iocb->ret < 0) { 4100 goto done; 4101 } else if (ret < 0) { 4102 iocb->ret = ret; 4103 goto done; 4104 } 4105 4106 if (iocb->zone) { 4107 nvme_zrm_reset(ns, iocb->zone); 4108 4109 if (!iocb->all) { 4110 goto done; 4111 } 4112 } 4113 4114 while (iocb->idx < ns->num_zones) { 4115 NvmeZone *zone = &ns->zone_array[iocb->idx++]; 4116 4117 switch (nvme_get_zone_state(zone)) { 4118 case NVME_ZONE_STATE_EMPTY: 4119 if (!iocb->all) { 4120 goto done; 4121 } 4122 4123 continue; 4124 4125 case NVME_ZONE_STATE_EXPLICITLY_OPEN: 4126 case NVME_ZONE_STATE_IMPLICITLY_OPEN: 4127 case NVME_ZONE_STATE_CLOSED: 4128 case NVME_ZONE_STATE_FULL: 4129 iocb->zone = zone; 4130 break; 4131 4132 default: 4133 continue; 4134 } 4135 4136 trace_pci_nvme_zns_zone_reset(zone->d.zslba); 4137 4138 iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk, 4139 nvme_l2b(ns, zone->d.zslba), 4140 nvme_l2b(ns, ns->zone_size), 4141 BDRV_REQ_MAY_UNMAP, 4142 nvme_zone_reset_epilogue_cb, 4143 iocb); 4144 return; 4145 } 4146 4147 done: 4148 iocb->aiocb = NULL; 4149 4150 iocb->common.cb(iocb->common.opaque, iocb->ret); 4151 qemu_aio_unref(iocb); 4152 } 4153 4154 static uint16_t nvme_zone_mgmt_send_zrwa_flush(NvmeCtrl *n, NvmeZone *zone, 4155 uint64_t elba, NvmeRequest *req) 4156 { 4157 NvmeNamespace *ns = req->ns; 4158 uint16_t ozcs = le16_to_cpu(ns->id_ns_zoned->ozcs); 4159 uint64_t wp = zone->d.wp; 4160 uint32_t nlb = elba - wp + 1; 4161 uint16_t status; 4162 4163 4164 if (!(ozcs & NVME_ID_NS_ZONED_OZCS_ZRWASUP)) { 4165 return NVME_INVALID_ZONE_OP | NVME_DNR; 4166 } 4167 4168 if (!(zone->d.za & NVME_ZA_ZRWA_VALID)) { 4169 return NVME_INVALID_FIELD | NVME_DNR; 4170 } 4171 4172 if (elba < wp || elba > wp + ns->zns.zrwas) { 4173 return NVME_ZONE_BOUNDARY_ERROR | NVME_DNR; 4174 } 4175 4176 if (nlb % ns->zns.zrwafg) { 4177 return NVME_INVALID_FIELD | NVME_DNR; 4178 } 4179 4180 status = nvme_zrm_auto(n, ns, zone); 4181 if (status) { 4182 return status; 4183 } 4184 4185 zone->w_ptr += nlb; 4186 4187 nvme_advance_zone_wp(ns, zone, nlb); 4188 4189 return NVME_SUCCESS; 4190 } 4191 4192 static uint16_t nvme_zone_mgmt_send(NvmeCtrl *n, NvmeRequest *req) 4193 { 4194 NvmeZoneSendCmd *cmd = (NvmeZoneSendCmd *)&req->cmd; 4195 NvmeNamespace *ns = req->ns; 4196 NvmeZone *zone; 4197 NvmeZoneResetAIOCB *iocb; 4198 uint8_t *zd_ext; 4199 uint64_t slba = 0; 4200 uint32_t zone_idx = 0; 4201 uint16_t status; 4202 uint8_t action = cmd->zsa; 4203 bool all; 4204 enum NvmeZoneProcessingMask proc_mask = NVME_PROC_CURRENT_ZONE; 4205 4206 all = cmd->zsflags & NVME_ZSFLAG_SELECT_ALL; 4207 4208 req->status = NVME_SUCCESS; 4209 4210 if (!all) { 4211 status = nvme_get_mgmt_zone_slba_idx(ns, &req->cmd, &slba, &zone_idx); 4212 if (status) { 4213 return status; 4214 } 4215 } 4216 4217 zone = &ns->zone_array[zone_idx]; 4218 if (slba != zone->d.zslba && action != NVME_ZONE_ACTION_ZRWA_FLUSH) { 4219 trace_pci_nvme_err_unaligned_zone_cmd(action, slba, zone->d.zslba); 4220 return NVME_INVALID_FIELD | NVME_DNR; 4221 } 4222 4223 switch (action) { 4224 4225 case NVME_ZONE_ACTION_OPEN: 4226 if (all) { 4227 proc_mask = NVME_PROC_CLOSED_ZONES; 4228 } 4229 trace_pci_nvme_open_zone(slba, zone_idx, all); 4230 status = nvme_do_zone_op(ns, zone, proc_mask, nvme_open_zone, req); 4231 break; 4232 4233 case NVME_ZONE_ACTION_CLOSE: 4234 if (all) { 4235 proc_mask = NVME_PROC_OPENED_ZONES; 4236 } 4237 trace_pci_nvme_close_zone(slba, zone_idx, all); 4238 status = nvme_do_zone_op(ns, zone, proc_mask, nvme_close_zone, req); 4239 break; 4240 4241 case NVME_ZONE_ACTION_FINISH: 4242 if (all) { 4243 proc_mask = NVME_PROC_OPENED_ZONES | NVME_PROC_CLOSED_ZONES; 4244 } 4245 trace_pci_nvme_finish_zone(slba, zone_idx, all); 4246 status = nvme_do_zone_op(ns, zone, proc_mask, nvme_finish_zone, req); 4247 break; 4248 4249 case NVME_ZONE_ACTION_RESET: 4250 trace_pci_nvme_reset_zone(slba, zone_idx, all); 4251 4252 iocb = blk_aio_get(&nvme_zone_reset_aiocb_info, ns->blkconf.blk, 4253 nvme_misc_cb, req); 4254 4255 iocb->req = req; 4256 iocb->ret = 0; 4257 iocb->all = all; 4258 iocb->idx = zone_idx; 4259 iocb->zone = NULL; 4260 4261 req->aiocb = &iocb->common; 4262 nvme_zone_reset_cb(iocb, 0); 4263 4264 return NVME_NO_COMPLETE; 4265 4266 case NVME_ZONE_ACTION_OFFLINE: 4267 if (all) { 4268 proc_mask = NVME_PROC_READ_ONLY_ZONES; 4269 } 4270 trace_pci_nvme_offline_zone(slba, zone_idx, all); 4271 status = nvme_do_zone_op(ns, zone, proc_mask, nvme_offline_zone, req); 4272 break; 4273 4274 case NVME_ZONE_ACTION_SET_ZD_EXT: 4275 trace_pci_nvme_set_descriptor_extension(slba, zone_idx); 4276 if (all || !ns->params.zd_extension_size) { 4277 return NVME_INVALID_FIELD | NVME_DNR; 4278 } 4279 zd_ext = nvme_get_zd_extension(ns, zone_idx); 4280 status = nvme_h2c(n, zd_ext, ns->params.zd_extension_size, req); 4281 if (status) { 4282 trace_pci_nvme_err_zd_extension_map_error(zone_idx); 4283 return status; 4284 } 4285 4286 status = nvme_set_zd_ext(ns, zone); 4287 if (status == NVME_SUCCESS) { 4288 trace_pci_nvme_zd_extension_set(zone_idx); 4289 return status; 4290 } 4291 break; 4292 4293 case NVME_ZONE_ACTION_ZRWA_FLUSH: 4294 if (all) { 4295 return NVME_INVALID_FIELD | NVME_DNR; 4296 } 4297 4298 return nvme_zone_mgmt_send_zrwa_flush(n, zone, slba, req); 4299 4300 default: 4301 trace_pci_nvme_err_invalid_mgmt_action(action); 4302 status = NVME_INVALID_FIELD; 4303 } 4304 4305 if (status == NVME_ZONE_INVAL_TRANSITION) { 4306 trace_pci_nvme_err_invalid_zone_state_transition(action, slba, 4307 zone->d.za); 4308 } 4309 if (status) { 4310 status |= NVME_DNR; 4311 } 4312 4313 return status; 4314 } 4315 4316 static bool nvme_zone_matches_filter(uint32_t zafs, NvmeZone *zl) 4317 { 4318 NvmeZoneState zs = nvme_get_zone_state(zl); 4319 4320 switch (zafs) { 4321 case NVME_ZONE_REPORT_ALL: 4322 return true; 4323 case NVME_ZONE_REPORT_EMPTY: 4324 return zs == NVME_ZONE_STATE_EMPTY; 4325 case NVME_ZONE_REPORT_IMPLICITLY_OPEN: 4326 return zs == NVME_ZONE_STATE_IMPLICITLY_OPEN; 4327 case NVME_ZONE_REPORT_EXPLICITLY_OPEN: 4328 return zs == NVME_ZONE_STATE_EXPLICITLY_OPEN; 4329 case NVME_ZONE_REPORT_CLOSED: 4330 return zs == NVME_ZONE_STATE_CLOSED; 4331 case NVME_ZONE_REPORT_FULL: 4332 return zs == NVME_ZONE_STATE_FULL; 4333 case NVME_ZONE_REPORT_READ_ONLY: 4334 return zs == NVME_ZONE_STATE_READ_ONLY; 4335 case NVME_ZONE_REPORT_OFFLINE: 4336 return zs == NVME_ZONE_STATE_OFFLINE; 4337 default: 4338 return false; 4339 } 4340 } 4341 4342 static uint16_t nvme_zone_mgmt_recv(NvmeCtrl *n, NvmeRequest *req) 4343 { 4344 NvmeCmd *cmd = &req->cmd; 4345 NvmeNamespace *ns = req->ns; 4346 /* cdw12 is zero-based number of dwords to return. Convert to bytes */ 4347 uint32_t data_size = (le32_to_cpu(cmd->cdw12) + 1) << 2; 4348 uint32_t dw13 = le32_to_cpu(cmd->cdw13); 4349 uint32_t zone_idx, zra, zrasf, partial; 4350 uint64_t max_zones, nr_zones = 0; 4351 uint16_t status; 4352 uint64_t slba; 4353 NvmeZoneDescr *z; 4354 NvmeZone *zone; 4355 NvmeZoneReportHeader *header; 4356 void *buf, *buf_p; 4357 size_t zone_entry_sz; 4358 int i; 4359 4360 req->status = NVME_SUCCESS; 4361 4362 status = nvme_get_mgmt_zone_slba_idx(ns, cmd, &slba, &zone_idx); 4363 if (status) { 4364 return status; 4365 } 4366 4367 zra = dw13 & 0xff; 4368 if (zra != NVME_ZONE_REPORT && zra != NVME_ZONE_REPORT_EXTENDED) { 4369 return NVME_INVALID_FIELD | NVME_DNR; 4370 } 4371 if (zra == NVME_ZONE_REPORT_EXTENDED && !ns->params.zd_extension_size) { 4372 return NVME_INVALID_FIELD | NVME_DNR; 4373 } 4374 4375 zrasf = (dw13 >> 8) & 0xff; 4376 if (zrasf > NVME_ZONE_REPORT_OFFLINE) { 4377 return NVME_INVALID_FIELD | NVME_DNR; 4378 } 4379 4380 if (data_size < sizeof(NvmeZoneReportHeader)) { 4381 return NVME_INVALID_FIELD | NVME_DNR; 4382 } 4383 4384 status = nvme_check_mdts(n, data_size); 4385 if (status) { 4386 return status; 4387 } 4388 4389 partial = (dw13 >> 16) & 0x01; 4390 4391 zone_entry_sz = sizeof(NvmeZoneDescr); 4392 if (zra == NVME_ZONE_REPORT_EXTENDED) { 4393 zone_entry_sz += ns->params.zd_extension_size; 4394 } 4395 4396 max_zones = (data_size - sizeof(NvmeZoneReportHeader)) / zone_entry_sz; 4397 buf = g_malloc0(data_size); 4398 4399 zone = &ns->zone_array[zone_idx]; 4400 for (i = zone_idx; i < ns->num_zones; i++) { 4401 if (partial && nr_zones >= max_zones) { 4402 break; 4403 } 4404 if (nvme_zone_matches_filter(zrasf, zone++)) { 4405 nr_zones++; 4406 } 4407 } 4408 header = buf; 4409 header->nr_zones = cpu_to_le64(nr_zones); 4410 4411 buf_p = buf + sizeof(NvmeZoneReportHeader); 4412 for (; zone_idx < ns->num_zones && max_zones > 0; zone_idx++) { 4413 zone = &ns->zone_array[zone_idx]; 4414 if (nvme_zone_matches_filter(zrasf, zone)) { 4415 z = buf_p; 4416 buf_p += sizeof(NvmeZoneDescr); 4417 4418 z->zt = zone->d.zt; 4419 z->zs = zone->d.zs; 4420 z->zcap = cpu_to_le64(zone->d.zcap); 4421 z->zslba = cpu_to_le64(zone->d.zslba); 4422 z->za = zone->d.za; 4423 4424 if (nvme_wp_is_valid(zone)) { 4425 z->wp = cpu_to_le64(zone->d.wp); 4426 } else { 4427 z->wp = cpu_to_le64(~0ULL); 4428 } 4429 4430 if (zra == NVME_ZONE_REPORT_EXTENDED) { 4431 if (zone->d.za & NVME_ZA_ZD_EXT_VALID) { 4432 memcpy(buf_p, nvme_get_zd_extension(ns, zone_idx), 4433 ns->params.zd_extension_size); 4434 } 4435 buf_p += ns->params.zd_extension_size; 4436 } 4437 4438 max_zones--; 4439 } 4440 } 4441 4442 status = nvme_c2h(n, (uint8_t *)buf, data_size, req); 4443 4444 g_free(buf); 4445 4446 return status; 4447 } 4448 4449 static uint16_t nvme_io_mgmt_recv_ruhs(NvmeCtrl *n, NvmeRequest *req, 4450 size_t len) 4451 { 4452 NvmeNamespace *ns = req->ns; 4453 NvmeEnduranceGroup *endgrp; 4454 NvmeRuhStatus *hdr; 4455 NvmeRuhStatusDescr *ruhsd; 4456 unsigned int nruhsd; 4457 uint16_t rg, ph, *ruhid; 4458 size_t trans_len; 4459 g_autofree uint8_t *buf = NULL; 4460 4461 if (!n->subsys) { 4462 return NVME_INVALID_FIELD | NVME_DNR; 4463 } 4464 4465 if (ns->params.nsid == 0 || ns->params.nsid == 0xffffffff) { 4466 return NVME_INVALID_NSID | NVME_DNR; 4467 } 4468 4469 if (!n->subsys->endgrp.fdp.enabled) { 4470 return NVME_FDP_DISABLED | NVME_DNR; 4471 } 4472 4473 endgrp = ns->endgrp; 4474 4475 nruhsd = ns->fdp.nphs * endgrp->fdp.nrg; 4476 trans_len = sizeof(NvmeRuhStatus) + nruhsd * sizeof(NvmeRuhStatusDescr); 4477 buf = g_malloc0(trans_len); 4478 4479 trans_len = MIN(trans_len, len); 4480 4481 hdr = (NvmeRuhStatus *)buf; 4482 ruhsd = (NvmeRuhStatusDescr *)(buf + sizeof(NvmeRuhStatus)); 4483 4484 hdr->nruhsd = cpu_to_le16(nruhsd); 4485 4486 ruhid = ns->fdp.phs; 4487 4488 for (ph = 0; ph < ns->fdp.nphs; ph++, ruhid++) { 4489 NvmeRuHandle *ruh = &endgrp->fdp.ruhs[*ruhid]; 4490 4491 for (rg = 0; rg < endgrp->fdp.nrg; rg++, ruhsd++) { 4492 uint16_t pid = nvme_make_pid(ns, rg, ph); 4493 4494 ruhsd->pid = cpu_to_le16(pid); 4495 ruhsd->ruhid = *ruhid; 4496 ruhsd->earutr = 0; 4497 ruhsd->ruamw = cpu_to_le64(ruh->rus[rg].ruamw); 4498 } 4499 } 4500 4501 return nvme_c2h(n, buf, trans_len, req); 4502 } 4503 4504 static uint16_t nvme_io_mgmt_recv(NvmeCtrl *n, NvmeRequest *req) 4505 { 4506 NvmeCmd *cmd = &req->cmd; 4507 uint32_t cdw10 = le32_to_cpu(cmd->cdw10); 4508 uint32_t numd = le32_to_cpu(cmd->cdw11); 4509 uint8_t mo = (cdw10 & 0xff); 4510 size_t len = (numd + 1) << 2; 4511 4512 switch (mo) { 4513 case NVME_IOMR_MO_NOP: 4514 return 0; 4515 case NVME_IOMR_MO_RUH_STATUS: 4516 return nvme_io_mgmt_recv_ruhs(n, req, len); 4517 default: 4518 return NVME_INVALID_FIELD | NVME_DNR; 4519 }; 4520 } 4521 4522 static uint16_t nvme_io_mgmt_send_ruh_update(NvmeCtrl *n, NvmeRequest *req) 4523 { 4524 NvmeCmd *cmd = &req->cmd; 4525 NvmeNamespace *ns = req->ns; 4526 uint32_t cdw10 = le32_to_cpu(cmd->cdw10); 4527 uint16_t ret = NVME_SUCCESS; 4528 uint32_t npid = (cdw10 >> 16) + 1; 4529 unsigned int i = 0; 4530 g_autofree uint16_t *pids = NULL; 4531 uint32_t maxnpid; 4532 4533 if (!ns->endgrp || !ns->endgrp->fdp.enabled) { 4534 return NVME_FDP_DISABLED | NVME_DNR; 4535 } 4536 4537 maxnpid = n->subsys->endgrp.fdp.nrg * n->subsys->endgrp.fdp.nruh; 4538 4539 if (unlikely(npid >= MIN(NVME_FDP_MAXPIDS, maxnpid))) { 4540 return NVME_INVALID_FIELD | NVME_DNR; 4541 } 4542 4543 pids = g_new(uint16_t, npid); 4544 4545 ret = nvme_h2c(n, pids, npid * sizeof(uint16_t), req); 4546 if (ret) { 4547 return ret; 4548 } 4549 4550 for (; i < npid; i++) { 4551 if (!nvme_update_ruh(n, ns, pids[i])) { 4552 return NVME_INVALID_FIELD | NVME_DNR; 4553 } 4554 } 4555 4556 return ret; 4557 } 4558 4559 static uint16_t nvme_io_mgmt_send(NvmeCtrl *n, NvmeRequest *req) 4560 { 4561 NvmeCmd *cmd = &req->cmd; 4562 uint32_t cdw10 = le32_to_cpu(cmd->cdw10); 4563 uint8_t mo = (cdw10 & 0xff); 4564 4565 switch (mo) { 4566 case NVME_IOMS_MO_NOP: 4567 return 0; 4568 case NVME_IOMS_MO_RUH_UPDATE: 4569 return nvme_io_mgmt_send_ruh_update(n, req); 4570 default: 4571 return NVME_INVALID_FIELD | NVME_DNR; 4572 }; 4573 } 4574 4575 static uint16_t nvme_io_cmd(NvmeCtrl *n, NvmeRequest *req) 4576 { 4577 NvmeNamespace *ns; 4578 uint32_t nsid = le32_to_cpu(req->cmd.nsid); 4579 4580 trace_pci_nvme_io_cmd(nvme_cid(req), nsid, nvme_sqid(req), 4581 req->cmd.opcode, nvme_io_opc_str(req->cmd.opcode)); 4582 4583 /* 4584 * In the base NVM command set, Flush may apply to all namespaces 4585 * (indicated by NSID being set to FFFFFFFFh). But if that feature is used 4586 * along with TP 4056 (Namespace Types), it may be pretty screwed up. 4587 * 4588 * If NSID is indeed set to FFFFFFFFh, we simply cannot associate the 4589 * opcode with a specific command since we cannot determine a unique I/O 4590 * command set. Opcode 0h could have any other meaning than something 4591 * equivalent to flushing and say it DOES have completely different 4592 * semantics in some other command set - does an NSID of FFFFFFFFh then 4593 * mean "for all namespaces, apply whatever command set specific command 4594 * that uses the 0h opcode?" Or does it mean "for all namespaces, apply 4595 * whatever command that uses the 0h opcode if, and only if, it allows NSID 4596 * to be FFFFFFFFh"? 4597 * 4598 * Anyway (and luckily), for now, we do not care about this since the 4599 * device only supports namespace types that includes the NVM Flush command 4600 * (NVM and Zoned), so always do an NVM Flush. 4601 */ 4602 4603 if (req->cmd.opcode == NVME_CMD_FLUSH) { 4604 return nvme_flush(n, req); 4605 } 4606 4607 if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) { 4608 return NVME_INVALID_NSID | NVME_DNR; 4609 } 4610 4611 ns = nvme_ns(n, nsid); 4612 if (unlikely(!ns)) { 4613 return NVME_INVALID_FIELD | NVME_DNR; 4614 } 4615 4616 if (!(ns->iocs[req->cmd.opcode] & NVME_CMD_EFF_CSUPP)) { 4617 trace_pci_nvme_err_invalid_opc(req->cmd.opcode); 4618 return NVME_INVALID_OPCODE | NVME_DNR; 4619 } 4620 4621 if (ns->status) { 4622 return ns->status; 4623 } 4624 4625 if (NVME_CMD_FLAGS_FUSE(req->cmd.flags)) { 4626 return NVME_INVALID_FIELD; 4627 } 4628 4629 req->ns = ns; 4630 4631 switch (req->cmd.opcode) { 4632 case NVME_CMD_WRITE_ZEROES: 4633 return nvme_write_zeroes(n, req); 4634 case NVME_CMD_ZONE_APPEND: 4635 return nvme_zone_append(n, req); 4636 case NVME_CMD_WRITE: 4637 return nvme_write(n, req); 4638 case NVME_CMD_READ: 4639 return nvme_read(n, req); 4640 case NVME_CMD_COMPARE: 4641 return nvme_compare(n, req); 4642 case NVME_CMD_DSM: 4643 return nvme_dsm(n, req); 4644 case NVME_CMD_VERIFY: 4645 return nvme_verify(n, req); 4646 case NVME_CMD_COPY: 4647 return nvme_copy(n, req); 4648 case NVME_CMD_ZONE_MGMT_SEND: 4649 return nvme_zone_mgmt_send(n, req); 4650 case NVME_CMD_ZONE_MGMT_RECV: 4651 return nvme_zone_mgmt_recv(n, req); 4652 case NVME_CMD_IO_MGMT_RECV: 4653 return nvme_io_mgmt_recv(n, req); 4654 case NVME_CMD_IO_MGMT_SEND: 4655 return nvme_io_mgmt_send(n, req); 4656 default: 4657 g_assert_not_reached(); 4658 } 4659 4660 return NVME_INVALID_OPCODE | NVME_DNR; 4661 } 4662 4663 static void nvme_cq_notifier(EventNotifier *e) 4664 { 4665 NvmeCQueue *cq = container_of(e, NvmeCQueue, notifier); 4666 NvmeCtrl *n = cq->ctrl; 4667 4668 if (!event_notifier_test_and_clear(e)) { 4669 return; 4670 } 4671 4672 nvme_update_cq_head(cq); 4673 4674 if (cq->tail == cq->head) { 4675 if (cq->irq_enabled) { 4676 n->cq_pending--; 4677 } 4678 4679 nvme_irq_deassert(n, cq); 4680 } 4681 4682 qemu_bh_schedule(cq->bh); 4683 } 4684 4685 static int nvme_init_cq_ioeventfd(NvmeCQueue *cq) 4686 { 4687 NvmeCtrl *n = cq->ctrl; 4688 uint16_t offset = (cq->cqid << 3) + (1 << 2); 4689 int ret; 4690 4691 ret = event_notifier_init(&cq->notifier, 0); 4692 if (ret < 0) { 4693 return ret; 4694 } 4695 4696 event_notifier_set_handler(&cq->notifier, nvme_cq_notifier); 4697 memory_region_add_eventfd(&n->iomem, 4698 0x1000 + offset, 4, false, 0, &cq->notifier); 4699 4700 return 0; 4701 } 4702 4703 static void nvme_sq_notifier(EventNotifier *e) 4704 { 4705 NvmeSQueue *sq = container_of(e, NvmeSQueue, notifier); 4706 4707 if (!event_notifier_test_and_clear(e)) { 4708 return; 4709 } 4710 4711 nvme_process_sq(sq); 4712 } 4713 4714 static int nvme_init_sq_ioeventfd(NvmeSQueue *sq) 4715 { 4716 NvmeCtrl *n = sq->ctrl; 4717 uint16_t offset = sq->sqid << 3; 4718 int ret; 4719 4720 ret = event_notifier_init(&sq->notifier, 0); 4721 if (ret < 0) { 4722 return ret; 4723 } 4724 4725 event_notifier_set_handler(&sq->notifier, nvme_sq_notifier); 4726 memory_region_add_eventfd(&n->iomem, 4727 0x1000 + offset, 4, false, 0, &sq->notifier); 4728 4729 return 0; 4730 } 4731 4732 static void nvme_free_sq(NvmeSQueue *sq, NvmeCtrl *n) 4733 { 4734 uint16_t offset = sq->sqid << 3; 4735 4736 n->sq[sq->sqid] = NULL; 4737 qemu_bh_delete(sq->bh); 4738 if (sq->ioeventfd_enabled) { 4739 memory_region_del_eventfd(&n->iomem, 4740 0x1000 + offset, 4, false, 0, &sq->notifier); 4741 event_notifier_set_handler(&sq->notifier, NULL); 4742 event_notifier_cleanup(&sq->notifier); 4743 } 4744 g_free(sq->io_req); 4745 if (sq->sqid) { 4746 g_free(sq); 4747 } 4748 } 4749 4750 static uint16_t nvme_del_sq(NvmeCtrl *n, NvmeRequest *req) 4751 { 4752 NvmeDeleteQ *c = (NvmeDeleteQ *)&req->cmd; 4753 NvmeRequest *r, *next; 4754 NvmeSQueue *sq; 4755 NvmeCQueue *cq; 4756 uint16_t qid = le16_to_cpu(c->qid); 4757 4758 if (unlikely(!qid || nvme_check_sqid(n, qid))) { 4759 trace_pci_nvme_err_invalid_del_sq(qid); 4760 return NVME_INVALID_QID | NVME_DNR; 4761 } 4762 4763 trace_pci_nvme_del_sq(qid); 4764 4765 sq = n->sq[qid]; 4766 while (!QTAILQ_EMPTY(&sq->out_req_list)) { 4767 r = QTAILQ_FIRST(&sq->out_req_list); 4768 assert(r->aiocb); 4769 blk_aio_cancel(r->aiocb); 4770 } 4771 4772 assert(QTAILQ_EMPTY(&sq->out_req_list)); 4773 4774 if (!nvme_check_cqid(n, sq->cqid)) { 4775 cq = n->cq[sq->cqid]; 4776 QTAILQ_REMOVE(&cq->sq_list, sq, entry); 4777 4778 nvme_post_cqes(cq); 4779 QTAILQ_FOREACH_SAFE(r, &cq->req_list, entry, next) { 4780 if (r->sq == sq) { 4781 QTAILQ_REMOVE(&cq->req_list, r, entry); 4782 QTAILQ_INSERT_TAIL(&sq->req_list, r, entry); 4783 } 4784 } 4785 } 4786 4787 nvme_free_sq(sq, n); 4788 return NVME_SUCCESS; 4789 } 4790 4791 static void nvme_init_sq(NvmeSQueue *sq, NvmeCtrl *n, uint64_t dma_addr, 4792 uint16_t sqid, uint16_t cqid, uint16_t size) 4793 { 4794 int i; 4795 NvmeCQueue *cq; 4796 4797 sq->ctrl = n; 4798 sq->dma_addr = dma_addr; 4799 sq->sqid = sqid; 4800 sq->size = size; 4801 sq->cqid = cqid; 4802 sq->head = sq->tail = 0; 4803 sq->io_req = g_new0(NvmeRequest, sq->size); 4804 4805 QTAILQ_INIT(&sq->req_list); 4806 QTAILQ_INIT(&sq->out_req_list); 4807 for (i = 0; i < sq->size; i++) { 4808 sq->io_req[i].sq = sq; 4809 QTAILQ_INSERT_TAIL(&(sq->req_list), &sq->io_req[i], entry); 4810 } 4811 4812 sq->bh = qemu_bh_new_guarded(nvme_process_sq, sq, 4813 &DEVICE(sq->ctrl)->mem_reentrancy_guard); 4814 4815 if (n->dbbuf_enabled) { 4816 sq->db_addr = n->dbbuf_dbs + (sqid << 3); 4817 sq->ei_addr = n->dbbuf_eis + (sqid << 3); 4818 4819 if (n->params.ioeventfd && sq->sqid != 0) { 4820 if (!nvme_init_sq_ioeventfd(sq)) { 4821 sq->ioeventfd_enabled = true; 4822 } 4823 } 4824 } 4825 4826 assert(n->cq[cqid]); 4827 cq = n->cq[cqid]; 4828 QTAILQ_INSERT_TAIL(&(cq->sq_list), sq, entry); 4829 n->sq[sqid] = sq; 4830 } 4831 4832 static uint16_t nvme_create_sq(NvmeCtrl *n, NvmeRequest *req) 4833 { 4834 NvmeSQueue *sq; 4835 NvmeCreateSq *c = (NvmeCreateSq *)&req->cmd; 4836 4837 uint16_t cqid = le16_to_cpu(c->cqid); 4838 uint16_t sqid = le16_to_cpu(c->sqid); 4839 uint16_t qsize = le16_to_cpu(c->qsize); 4840 uint16_t qflags = le16_to_cpu(c->sq_flags); 4841 uint64_t prp1 = le64_to_cpu(c->prp1); 4842 4843 trace_pci_nvme_create_sq(prp1, sqid, cqid, qsize, qflags); 4844 4845 if (unlikely(!cqid || nvme_check_cqid(n, cqid))) { 4846 trace_pci_nvme_err_invalid_create_sq_cqid(cqid); 4847 return NVME_INVALID_CQID | NVME_DNR; 4848 } 4849 if (unlikely(!sqid || sqid > n->conf_ioqpairs || n->sq[sqid] != NULL)) { 4850 trace_pci_nvme_err_invalid_create_sq_sqid(sqid); 4851 return NVME_INVALID_QID | NVME_DNR; 4852 } 4853 if (unlikely(!qsize || qsize > NVME_CAP_MQES(ldq_le_p(&n->bar.cap)))) { 4854 trace_pci_nvme_err_invalid_create_sq_size(qsize); 4855 return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR; 4856 } 4857 if (unlikely(prp1 & (n->page_size - 1))) { 4858 trace_pci_nvme_err_invalid_create_sq_addr(prp1); 4859 return NVME_INVALID_PRP_OFFSET | NVME_DNR; 4860 } 4861 if (unlikely(!(NVME_SQ_FLAGS_PC(qflags)))) { 4862 trace_pci_nvme_err_invalid_create_sq_qflags(NVME_SQ_FLAGS_PC(qflags)); 4863 return NVME_INVALID_FIELD | NVME_DNR; 4864 } 4865 sq = g_malloc0(sizeof(*sq)); 4866 nvme_init_sq(sq, n, prp1, sqid, cqid, qsize + 1); 4867 return NVME_SUCCESS; 4868 } 4869 4870 struct nvme_stats { 4871 uint64_t units_read; 4872 uint64_t units_written; 4873 uint64_t read_commands; 4874 uint64_t write_commands; 4875 }; 4876 4877 static void nvme_set_blk_stats(NvmeNamespace *ns, struct nvme_stats *stats) 4878 { 4879 BlockAcctStats *s = blk_get_stats(ns->blkconf.blk); 4880 4881 stats->units_read += s->nr_bytes[BLOCK_ACCT_READ]; 4882 stats->units_written += s->nr_bytes[BLOCK_ACCT_WRITE]; 4883 stats->read_commands += s->nr_ops[BLOCK_ACCT_READ]; 4884 stats->write_commands += s->nr_ops[BLOCK_ACCT_WRITE]; 4885 } 4886 4887 static uint16_t nvme_smart_info(NvmeCtrl *n, uint8_t rae, uint32_t buf_len, 4888 uint64_t off, NvmeRequest *req) 4889 { 4890 uint32_t nsid = le32_to_cpu(req->cmd.nsid); 4891 struct nvme_stats stats = { 0 }; 4892 NvmeSmartLog smart = { 0 }; 4893 uint32_t trans_len; 4894 NvmeNamespace *ns; 4895 time_t current_ms; 4896 uint64_t u_read, u_written; 4897 4898 if (off >= sizeof(smart)) { 4899 return NVME_INVALID_FIELD | NVME_DNR; 4900 } 4901 4902 if (nsid != 0xffffffff) { 4903 ns = nvme_ns(n, nsid); 4904 if (!ns) { 4905 return NVME_INVALID_NSID | NVME_DNR; 4906 } 4907 nvme_set_blk_stats(ns, &stats); 4908 } else { 4909 int i; 4910 4911 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { 4912 ns = nvme_ns(n, i); 4913 if (!ns) { 4914 continue; 4915 } 4916 nvme_set_blk_stats(ns, &stats); 4917 } 4918 } 4919 4920 trans_len = MIN(sizeof(smart) - off, buf_len); 4921 smart.critical_warning = n->smart_critical_warning; 4922 4923 u_read = DIV_ROUND_UP(stats.units_read >> BDRV_SECTOR_BITS, 1000); 4924 u_written = DIV_ROUND_UP(stats.units_written >> BDRV_SECTOR_BITS, 1000); 4925 4926 smart.data_units_read[0] = cpu_to_le64(u_read); 4927 smart.data_units_written[0] = cpu_to_le64(u_written); 4928 smart.host_read_commands[0] = cpu_to_le64(stats.read_commands); 4929 smart.host_write_commands[0] = cpu_to_le64(stats.write_commands); 4930 4931 smart.temperature = cpu_to_le16(n->temperature); 4932 4933 if ((n->temperature >= n->features.temp_thresh_hi) || 4934 (n->temperature <= n->features.temp_thresh_low)) { 4935 smart.critical_warning |= NVME_SMART_TEMPERATURE; 4936 } 4937 4938 current_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL); 4939 smart.power_on_hours[0] = 4940 cpu_to_le64((((current_ms - n->starttime_ms) / 1000) / 60) / 60); 4941 4942 if (!rae) { 4943 nvme_clear_events(n, NVME_AER_TYPE_SMART); 4944 } 4945 4946 return nvme_c2h(n, (uint8_t *) &smart + off, trans_len, req); 4947 } 4948 4949 static uint16_t nvme_endgrp_info(NvmeCtrl *n, uint8_t rae, uint32_t buf_len, 4950 uint64_t off, NvmeRequest *req) 4951 { 4952 uint32_t dw11 = le32_to_cpu(req->cmd.cdw11); 4953 uint16_t endgrpid = (dw11 >> 16) & 0xffff; 4954 struct nvme_stats stats = {}; 4955 NvmeEndGrpLog info = {}; 4956 int i; 4957 4958 if (!n->subsys || endgrpid != 0x1) { 4959 return NVME_INVALID_FIELD | NVME_DNR; 4960 } 4961 4962 if (off >= sizeof(info)) { 4963 return NVME_INVALID_FIELD | NVME_DNR; 4964 } 4965 4966 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { 4967 NvmeNamespace *ns = nvme_subsys_ns(n->subsys, i); 4968 if (!ns) { 4969 continue; 4970 } 4971 4972 nvme_set_blk_stats(ns, &stats); 4973 } 4974 4975 info.data_units_read[0] = 4976 cpu_to_le64(DIV_ROUND_UP(stats.units_read / 1000000000, 1000000000)); 4977 info.data_units_written[0] = 4978 cpu_to_le64(DIV_ROUND_UP(stats.units_written / 1000000000, 1000000000)); 4979 info.media_units_written[0] = 4980 cpu_to_le64(DIV_ROUND_UP(stats.units_written / 1000000000, 1000000000)); 4981 4982 info.host_read_commands[0] = cpu_to_le64(stats.read_commands); 4983 info.host_write_commands[0] = cpu_to_le64(stats.write_commands); 4984 4985 buf_len = MIN(sizeof(info) - off, buf_len); 4986 4987 return nvme_c2h(n, (uint8_t *)&info + off, buf_len, req); 4988 } 4989 4990 4991 static uint16_t nvme_fw_log_info(NvmeCtrl *n, uint32_t buf_len, uint64_t off, 4992 NvmeRequest *req) 4993 { 4994 uint32_t trans_len; 4995 NvmeFwSlotInfoLog fw_log = { 4996 .afi = 0x1, 4997 }; 4998 4999 if (off >= sizeof(fw_log)) { 5000 return NVME_INVALID_FIELD | NVME_DNR; 5001 } 5002 5003 strpadcpy((char *)&fw_log.frs1, sizeof(fw_log.frs1), "1.0", ' '); 5004 trans_len = MIN(sizeof(fw_log) - off, buf_len); 5005 5006 return nvme_c2h(n, (uint8_t *) &fw_log + off, trans_len, req); 5007 } 5008 5009 static uint16_t nvme_error_info(NvmeCtrl *n, uint8_t rae, uint32_t buf_len, 5010 uint64_t off, NvmeRequest *req) 5011 { 5012 uint32_t trans_len; 5013 NvmeErrorLog errlog; 5014 5015 if (off >= sizeof(errlog)) { 5016 return NVME_INVALID_FIELD | NVME_DNR; 5017 } 5018 5019 if (!rae) { 5020 nvme_clear_events(n, NVME_AER_TYPE_ERROR); 5021 } 5022 5023 memset(&errlog, 0x0, sizeof(errlog)); 5024 trans_len = MIN(sizeof(errlog) - off, buf_len); 5025 5026 return nvme_c2h(n, (uint8_t *)&errlog, trans_len, req); 5027 } 5028 5029 static uint16_t nvme_changed_nslist(NvmeCtrl *n, uint8_t rae, uint32_t buf_len, 5030 uint64_t off, NvmeRequest *req) 5031 { 5032 uint32_t nslist[1024]; 5033 uint32_t trans_len; 5034 int i = 0; 5035 uint32_t nsid; 5036 5037 if (off >= sizeof(nslist)) { 5038 trace_pci_nvme_err_invalid_log_page_offset(off, sizeof(nslist)); 5039 return NVME_INVALID_FIELD | NVME_DNR; 5040 } 5041 5042 memset(nslist, 0x0, sizeof(nslist)); 5043 trans_len = MIN(sizeof(nslist) - off, buf_len); 5044 5045 while ((nsid = find_first_bit(n->changed_nsids, NVME_CHANGED_NSID_SIZE)) != 5046 NVME_CHANGED_NSID_SIZE) { 5047 /* 5048 * If more than 1024 namespaces, the first entry in the log page should 5049 * be set to FFFFFFFFh and the others to 0 as spec. 5050 */ 5051 if (i == ARRAY_SIZE(nslist)) { 5052 memset(nslist, 0x0, sizeof(nslist)); 5053 nslist[0] = 0xffffffff; 5054 break; 5055 } 5056 5057 nslist[i++] = nsid; 5058 clear_bit(nsid, n->changed_nsids); 5059 } 5060 5061 /* 5062 * Remove all the remaining list entries in case returns directly due to 5063 * more than 1024 namespaces. 5064 */ 5065 if (nslist[0] == 0xffffffff) { 5066 bitmap_zero(n->changed_nsids, NVME_CHANGED_NSID_SIZE); 5067 } 5068 5069 if (!rae) { 5070 nvme_clear_events(n, NVME_AER_TYPE_NOTICE); 5071 } 5072 5073 return nvme_c2h(n, ((uint8_t *)nslist) + off, trans_len, req); 5074 } 5075 5076 static uint16_t nvme_cmd_effects(NvmeCtrl *n, uint8_t csi, uint32_t buf_len, 5077 uint64_t off, NvmeRequest *req) 5078 { 5079 NvmeEffectsLog log = {}; 5080 const uint32_t *src_iocs = NULL; 5081 uint32_t trans_len; 5082 5083 if (off >= sizeof(log)) { 5084 trace_pci_nvme_err_invalid_log_page_offset(off, sizeof(log)); 5085 return NVME_INVALID_FIELD | NVME_DNR; 5086 } 5087 5088 switch (NVME_CC_CSS(ldl_le_p(&n->bar.cc))) { 5089 case NVME_CC_CSS_NVM: 5090 src_iocs = nvme_cse_iocs_nvm; 5091 /* fall through */ 5092 case NVME_CC_CSS_ADMIN_ONLY: 5093 break; 5094 case NVME_CC_CSS_CSI: 5095 switch (csi) { 5096 case NVME_CSI_NVM: 5097 src_iocs = nvme_cse_iocs_nvm; 5098 break; 5099 case NVME_CSI_ZONED: 5100 src_iocs = nvme_cse_iocs_zoned; 5101 break; 5102 } 5103 } 5104 5105 memcpy(log.acs, nvme_cse_acs, sizeof(nvme_cse_acs)); 5106 5107 if (src_iocs) { 5108 memcpy(log.iocs, src_iocs, sizeof(log.iocs)); 5109 } 5110 5111 trans_len = MIN(sizeof(log) - off, buf_len); 5112 5113 return nvme_c2h(n, ((uint8_t *)&log) + off, trans_len, req); 5114 } 5115 5116 static size_t sizeof_fdp_conf_descr(size_t nruh, size_t vss) 5117 { 5118 size_t entry_siz = sizeof(NvmeFdpDescrHdr) + nruh * sizeof(NvmeRuhDescr) 5119 + vss; 5120 return ROUND_UP(entry_siz, 8); 5121 } 5122 5123 static uint16_t nvme_fdp_confs(NvmeCtrl *n, uint32_t endgrpid, uint32_t buf_len, 5124 uint64_t off, NvmeRequest *req) 5125 { 5126 uint32_t log_size, trans_len; 5127 g_autofree uint8_t *buf = NULL; 5128 NvmeFdpDescrHdr *hdr; 5129 NvmeRuhDescr *ruhd; 5130 NvmeEnduranceGroup *endgrp; 5131 NvmeFdpConfsHdr *log; 5132 size_t nruh, fdp_descr_size; 5133 int i; 5134 5135 if (endgrpid != 1 || !n->subsys) { 5136 return NVME_INVALID_FIELD | NVME_DNR; 5137 } 5138 5139 endgrp = &n->subsys->endgrp; 5140 5141 if (endgrp->fdp.enabled) { 5142 nruh = endgrp->fdp.nruh; 5143 } else { 5144 nruh = 1; 5145 } 5146 5147 fdp_descr_size = sizeof_fdp_conf_descr(nruh, FDPVSS); 5148 log_size = sizeof(NvmeFdpConfsHdr) + fdp_descr_size; 5149 5150 if (off >= log_size) { 5151 return NVME_INVALID_FIELD | NVME_DNR; 5152 } 5153 5154 trans_len = MIN(log_size - off, buf_len); 5155 5156 buf = g_malloc0(log_size); 5157 log = (NvmeFdpConfsHdr *)buf; 5158 hdr = (NvmeFdpDescrHdr *)(log + 1); 5159 ruhd = (NvmeRuhDescr *)(buf + sizeof(*log) + sizeof(*hdr)); 5160 5161 log->num_confs = cpu_to_le16(0); 5162 log->size = cpu_to_le32(log_size); 5163 5164 hdr->descr_size = cpu_to_le16(fdp_descr_size); 5165 if (endgrp->fdp.enabled) { 5166 hdr->fdpa = FIELD_DP8(hdr->fdpa, FDPA, VALID, 1); 5167 hdr->fdpa = FIELD_DP8(hdr->fdpa, FDPA, RGIF, endgrp->fdp.rgif); 5168 hdr->nrg = cpu_to_le16(endgrp->fdp.nrg); 5169 hdr->nruh = cpu_to_le16(endgrp->fdp.nruh); 5170 hdr->maxpids = cpu_to_le16(NVME_FDP_MAXPIDS - 1); 5171 hdr->nnss = cpu_to_le32(NVME_MAX_NAMESPACES); 5172 hdr->runs = cpu_to_le64(endgrp->fdp.runs); 5173 5174 for (i = 0; i < nruh; i++) { 5175 ruhd->ruht = NVME_RUHT_INITIALLY_ISOLATED; 5176 ruhd++; 5177 } 5178 } else { 5179 /* 1 bit for RUH in PIF -> 2 RUHs max. */ 5180 hdr->nrg = cpu_to_le16(1); 5181 hdr->nruh = cpu_to_le16(1); 5182 hdr->maxpids = cpu_to_le16(NVME_FDP_MAXPIDS - 1); 5183 hdr->nnss = cpu_to_le32(1); 5184 hdr->runs = cpu_to_le64(96 * MiB); 5185 5186 ruhd->ruht = NVME_RUHT_INITIALLY_ISOLATED; 5187 } 5188 5189 return nvme_c2h(n, (uint8_t *)buf + off, trans_len, req); 5190 } 5191 5192 static uint16_t nvme_fdp_ruh_usage(NvmeCtrl *n, uint32_t endgrpid, 5193 uint32_t dw10, uint32_t dw12, 5194 uint32_t buf_len, uint64_t off, 5195 NvmeRequest *req) 5196 { 5197 NvmeRuHandle *ruh; 5198 NvmeRuhuLog *hdr; 5199 NvmeRuhuDescr *ruhud; 5200 NvmeEnduranceGroup *endgrp; 5201 g_autofree uint8_t *buf = NULL; 5202 uint32_t log_size, trans_len; 5203 uint16_t i; 5204 5205 if (endgrpid != 1 || !n->subsys) { 5206 return NVME_INVALID_FIELD | NVME_DNR; 5207 } 5208 5209 endgrp = &n->subsys->endgrp; 5210 5211 if (!endgrp->fdp.enabled) { 5212 return NVME_FDP_DISABLED | NVME_DNR; 5213 } 5214 5215 log_size = sizeof(NvmeRuhuLog) + endgrp->fdp.nruh * sizeof(NvmeRuhuDescr); 5216 5217 if (off >= log_size) { 5218 return NVME_INVALID_FIELD | NVME_DNR; 5219 } 5220 5221 trans_len = MIN(log_size - off, buf_len); 5222 5223 buf = g_malloc0(log_size); 5224 hdr = (NvmeRuhuLog *)buf; 5225 ruhud = (NvmeRuhuDescr *)(hdr + 1); 5226 5227 ruh = endgrp->fdp.ruhs; 5228 hdr->nruh = cpu_to_le16(endgrp->fdp.nruh); 5229 5230 for (i = 0; i < endgrp->fdp.nruh; i++, ruhud++, ruh++) { 5231 ruhud->ruha = ruh->ruha; 5232 } 5233 5234 return nvme_c2h(n, (uint8_t *)buf + off, trans_len, req); 5235 } 5236 5237 static uint16_t nvme_fdp_stats(NvmeCtrl *n, uint32_t endgrpid, uint32_t buf_len, 5238 uint64_t off, NvmeRequest *req) 5239 { 5240 NvmeEnduranceGroup *endgrp; 5241 NvmeFdpStatsLog log = {}; 5242 uint32_t trans_len; 5243 5244 if (off >= sizeof(NvmeFdpStatsLog)) { 5245 return NVME_INVALID_FIELD | NVME_DNR; 5246 } 5247 5248 if (endgrpid != 1 || !n->subsys) { 5249 return NVME_INVALID_FIELD | NVME_DNR; 5250 } 5251 5252 if (!n->subsys->endgrp.fdp.enabled) { 5253 return NVME_FDP_DISABLED | NVME_DNR; 5254 } 5255 5256 endgrp = &n->subsys->endgrp; 5257 5258 trans_len = MIN(sizeof(log) - off, buf_len); 5259 5260 /* spec value is 128 bit, we only use 64 bit */ 5261 log.hbmw[0] = cpu_to_le64(endgrp->fdp.hbmw); 5262 log.mbmw[0] = cpu_to_le64(endgrp->fdp.mbmw); 5263 log.mbe[0] = cpu_to_le64(endgrp->fdp.mbe); 5264 5265 return nvme_c2h(n, (uint8_t *)&log + off, trans_len, req); 5266 } 5267 5268 static uint16_t nvme_fdp_events(NvmeCtrl *n, uint32_t endgrpid, 5269 uint32_t buf_len, uint64_t off, 5270 NvmeRequest *req) 5271 { 5272 NvmeEnduranceGroup *endgrp; 5273 NvmeCmd *cmd = &req->cmd; 5274 bool host_events = (cmd->cdw10 >> 8) & 0x1; 5275 uint32_t log_size, trans_len; 5276 NvmeFdpEventBuffer *ebuf; 5277 g_autofree NvmeFdpEventsLog *elog = NULL; 5278 NvmeFdpEvent *event; 5279 5280 if (endgrpid != 1 || !n->subsys) { 5281 return NVME_INVALID_FIELD | NVME_DNR; 5282 } 5283 5284 endgrp = &n->subsys->endgrp; 5285 5286 if (!endgrp->fdp.enabled) { 5287 return NVME_FDP_DISABLED | NVME_DNR; 5288 } 5289 5290 if (host_events) { 5291 ebuf = &endgrp->fdp.host_events; 5292 } else { 5293 ebuf = &endgrp->fdp.ctrl_events; 5294 } 5295 5296 log_size = sizeof(NvmeFdpEventsLog) + ebuf->nelems * sizeof(NvmeFdpEvent); 5297 5298 if (off >= log_size) { 5299 return NVME_INVALID_FIELD | NVME_DNR; 5300 } 5301 5302 trans_len = MIN(log_size - off, buf_len); 5303 elog = g_malloc0(log_size); 5304 elog->num_events = cpu_to_le32(ebuf->nelems); 5305 event = (NvmeFdpEvent *)(elog + 1); 5306 5307 if (ebuf->nelems && ebuf->start == ebuf->next) { 5308 unsigned int nelems = (NVME_FDP_MAX_EVENTS - ebuf->start); 5309 /* wrap over, copy [start;NVME_FDP_MAX_EVENTS[ and [0; next[ */ 5310 memcpy(event, &ebuf->events[ebuf->start], 5311 sizeof(NvmeFdpEvent) * nelems); 5312 memcpy(event + nelems, ebuf->events, 5313 sizeof(NvmeFdpEvent) * ebuf->next); 5314 } else if (ebuf->start < ebuf->next) { 5315 memcpy(event, &ebuf->events[ebuf->start], 5316 sizeof(NvmeFdpEvent) * (ebuf->next - ebuf->start)); 5317 } 5318 5319 return nvme_c2h(n, (uint8_t *)elog + off, trans_len, req); 5320 } 5321 5322 static uint16_t nvme_get_log(NvmeCtrl *n, NvmeRequest *req) 5323 { 5324 NvmeCmd *cmd = &req->cmd; 5325 5326 uint32_t dw10 = le32_to_cpu(cmd->cdw10); 5327 uint32_t dw11 = le32_to_cpu(cmd->cdw11); 5328 uint32_t dw12 = le32_to_cpu(cmd->cdw12); 5329 uint32_t dw13 = le32_to_cpu(cmd->cdw13); 5330 uint8_t lid = dw10 & 0xff; 5331 uint8_t lsp = (dw10 >> 8) & 0xf; 5332 uint8_t rae = (dw10 >> 15) & 0x1; 5333 uint8_t csi = le32_to_cpu(cmd->cdw14) >> 24; 5334 uint32_t numdl, numdu, lspi; 5335 uint64_t off, lpol, lpou; 5336 size_t len; 5337 uint16_t status; 5338 5339 numdl = (dw10 >> 16); 5340 numdu = (dw11 & 0xffff); 5341 lspi = (dw11 >> 16); 5342 lpol = dw12; 5343 lpou = dw13; 5344 5345 len = (((numdu << 16) | numdl) + 1) << 2; 5346 off = (lpou << 32ULL) | lpol; 5347 5348 if (off & 0x3) { 5349 return NVME_INVALID_FIELD | NVME_DNR; 5350 } 5351 5352 trace_pci_nvme_get_log(nvme_cid(req), lid, lsp, rae, len, off); 5353 5354 status = nvme_check_mdts(n, len); 5355 if (status) { 5356 return status; 5357 } 5358 5359 switch (lid) { 5360 case NVME_LOG_ERROR_INFO: 5361 return nvme_error_info(n, rae, len, off, req); 5362 case NVME_LOG_SMART_INFO: 5363 return nvme_smart_info(n, rae, len, off, req); 5364 case NVME_LOG_FW_SLOT_INFO: 5365 return nvme_fw_log_info(n, len, off, req); 5366 case NVME_LOG_CHANGED_NSLIST: 5367 return nvme_changed_nslist(n, rae, len, off, req); 5368 case NVME_LOG_CMD_EFFECTS: 5369 return nvme_cmd_effects(n, csi, len, off, req); 5370 case NVME_LOG_ENDGRP: 5371 return nvme_endgrp_info(n, rae, len, off, req); 5372 case NVME_LOG_FDP_CONFS: 5373 return nvme_fdp_confs(n, lspi, len, off, req); 5374 case NVME_LOG_FDP_RUH_USAGE: 5375 return nvme_fdp_ruh_usage(n, lspi, dw10, dw12, len, off, req); 5376 case NVME_LOG_FDP_STATS: 5377 return nvme_fdp_stats(n, lspi, len, off, req); 5378 case NVME_LOG_FDP_EVENTS: 5379 return nvme_fdp_events(n, lspi, len, off, req); 5380 default: 5381 trace_pci_nvme_err_invalid_log_page(nvme_cid(req), lid); 5382 return NVME_INVALID_FIELD | NVME_DNR; 5383 } 5384 } 5385 5386 static void nvme_free_cq(NvmeCQueue *cq, NvmeCtrl *n) 5387 { 5388 PCIDevice *pci = PCI_DEVICE(n); 5389 uint16_t offset = (cq->cqid << 3) + (1 << 2); 5390 5391 n->cq[cq->cqid] = NULL; 5392 qemu_bh_delete(cq->bh); 5393 if (cq->ioeventfd_enabled) { 5394 memory_region_del_eventfd(&n->iomem, 5395 0x1000 + offset, 4, false, 0, &cq->notifier); 5396 event_notifier_set_handler(&cq->notifier, NULL); 5397 event_notifier_cleanup(&cq->notifier); 5398 } 5399 if (msix_enabled(pci)) { 5400 msix_vector_unuse(pci, cq->vector); 5401 } 5402 if (cq->cqid) { 5403 g_free(cq); 5404 } 5405 } 5406 5407 static uint16_t nvme_del_cq(NvmeCtrl *n, NvmeRequest *req) 5408 { 5409 NvmeDeleteQ *c = (NvmeDeleteQ *)&req->cmd; 5410 NvmeCQueue *cq; 5411 uint16_t qid = le16_to_cpu(c->qid); 5412 5413 if (unlikely(!qid || nvme_check_cqid(n, qid))) { 5414 trace_pci_nvme_err_invalid_del_cq_cqid(qid); 5415 return NVME_INVALID_CQID | NVME_DNR; 5416 } 5417 5418 cq = n->cq[qid]; 5419 if (unlikely(!QTAILQ_EMPTY(&cq->sq_list))) { 5420 trace_pci_nvme_err_invalid_del_cq_notempty(qid); 5421 return NVME_INVALID_QUEUE_DEL; 5422 } 5423 5424 if (cq->irq_enabled && cq->tail != cq->head) { 5425 n->cq_pending--; 5426 } 5427 5428 nvme_irq_deassert(n, cq); 5429 trace_pci_nvme_del_cq(qid); 5430 nvme_free_cq(cq, n); 5431 return NVME_SUCCESS; 5432 } 5433 5434 static void nvme_init_cq(NvmeCQueue *cq, NvmeCtrl *n, uint64_t dma_addr, 5435 uint16_t cqid, uint16_t vector, uint16_t size, 5436 uint16_t irq_enabled) 5437 { 5438 PCIDevice *pci = PCI_DEVICE(n); 5439 5440 if (msix_enabled(pci)) { 5441 msix_vector_use(pci, vector); 5442 } 5443 cq->ctrl = n; 5444 cq->cqid = cqid; 5445 cq->size = size; 5446 cq->dma_addr = dma_addr; 5447 cq->phase = 1; 5448 cq->irq_enabled = irq_enabled; 5449 cq->vector = vector; 5450 cq->head = cq->tail = 0; 5451 QTAILQ_INIT(&cq->req_list); 5452 QTAILQ_INIT(&cq->sq_list); 5453 if (n->dbbuf_enabled) { 5454 cq->db_addr = n->dbbuf_dbs + (cqid << 3) + (1 << 2); 5455 cq->ei_addr = n->dbbuf_eis + (cqid << 3) + (1 << 2); 5456 5457 if (n->params.ioeventfd && cqid != 0) { 5458 if (!nvme_init_cq_ioeventfd(cq)) { 5459 cq->ioeventfd_enabled = true; 5460 } 5461 } 5462 } 5463 n->cq[cqid] = cq; 5464 cq->bh = qemu_bh_new_guarded(nvme_post_cqes, cq, 5465 &DEVICE(cq->ctrl)->mem_reentrancy_guard); 5466 } 5467 5468 static uint16_t nvme_create_cq(NvmeCtrl *n, NvmeRequest *req) 5469 { 5470 NvmeCQueue *cq; 5471 NvmeCreateCq *c = (NvmeCreateCq *)&req->cmd; 5472 uint16_t cqid = le16_to_cpu(c->cqid); 5473 uint16_t vector = le16_to_cpu(c->irq_vector); 5474 uint16_t qsize = le16_to_cpu(c->qsize); 5475 uint16_t qflags = le16_to_cpu(c->cq_flags); 5476 uint64_t prp1 = le64_to_cpu(c->prp1); 5477 uint32_t cc = ldq_le_p(&n->bar.cc); 5478 uint8_t iocqes = NVME_CC_IOCQES(cc); 5479 uint8_t iosqes = NVME_CC_IOSQES(cc); 5480 5481 trace_pci_nvme_create_cq(prp1, cqid, vector, qsize, qflags, 5482 NVME_CQ_FLAGS_IEN(qflags) != 0); 5483 5484 if (iosqes != NVME_SQES || iocqes != NVME_CQES) { 5485 trace_pci_nvme_err_invalid_create_cq_entry_size(iosqes, iocqes); 5486 return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR; 5487 } 5488 5489 if (unlikely(!cqid || cqid > n->conf_ioqpairs || n->cq[cqid] != NULL)) { 5490 trace_pci_nvme_err_invalid_create_cq_cqid(cqid); 5491 return NVME_INVALID_QID | NVME_DNR; 5492 } 5493 if (unlikely(!qsize || qsize > NVME_CAP_MQES(ldq_le_p(&n->bar.cap)))) { 5494 trace_pci_nvme_err_invalid_create_cq_size(qsize); 5495 return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR; 5496 } 5497 if (unlikely(prp1 & (n->page_size - 1))) { 5498 trace_pci_nvme_err_invalid_create_cq_addr(prp1); 5499 return NVME_INVALID_PRP_OFFSET | NVME_DNR; 5500 } 5501 if (unlikely(!msix_enabled(PCI_DEVICE(n)) && vector)) { 5502 trace_pci_nvme_err_invalid_create_cq_vector(vector); 5503 return NVME_INVALID_IRQ_VECTOR | NVME_DNR; 5504 } 5505 if (unlikely(vector >= n->conf_msix_qsize)) { 5506 trace_pci_nvme_err_invalid_create_cq_vector(vector); 5507 return NVME_INVALID_IRQ_VECTOR | NVME_DNR; 5508 } 5509 if (unlikely(!(NVME_CQ_FLAGS_PC(qflags)))) { 5510 trace_pci_nvme_err_invalid_create_cq_qflags(NVME_CQ_FLAGS_PC(qflags)); 5511 return NVME_INVALID_FIELD | NVME_DNR; 5512 } 5513 5514 cq = g_malloc0(sizeof(*cq)); 5515 nvme_init_cq(cq, n, prp1, cqid, vector, qsize + 1, 5516 NVME_CQ_FLAGS_IEN(qflags)); 5517 5518 /* 5519 * It is only required to set qs_created when creating a completion queue; 5520 * creating a submission queue without a matching completion queue will 5521 * fail. 5522 */ 5523 n->qs_created = true; 5524 return NVME_SUCCESS; 5525 } 5526 5527 static uint16_t nvme_rpt_empty_id_struct(NvmeCtrl *n, NvmeRequest *req) 5528 { 5529 uint8_t id[NVME_IDENTIFY_DATA_SIZE] = {}; 5530 5531 return nvme_c2h(n, id, sizeof(id), req); 5532 } 5533 5534 static uint16_t nvme_identify_ctrl(NvmeCtrl *n, NvmeRequest *req) 5535 { 5536 trace_pci_nvme_identify_ctrl(); 5537 5538 return nvme_c2h(n, (uint8_t *)&n->id_ctrl, sizeof(n->id_ctrl), req); 5539 } 5540 5541 static uint16_t nvme_identify_ctrl_csi(NvmeCtrl *n, NvmeRequest *req) 5542 { 5543 NvmeIdentify *c = (NvmeIdentify *)&req->cmd; 5544 uint8_t id[NVME_IDENTIFY_DATA_SIZE] = {}; 5545 NvmeIdCtrlNvm *id_nvm = (NvmeIdCtrlNvm *)&id; 5546 5547 trace_pci_nvme_identify_ctrl_csi(c->csi); 5548 5549 switch (c->csi) { 5550 case NVME_CSI_NVM: 5551 id_nvm->vsl = n->params.vsl; 5552 id_nvm->dmrsl = cpu_to_le32(n->dmrsl); 5553 break; 5554 5555 case NVME_CSI_ZONED: 5556 ((NvmeIdCtrlZoned *)&id)->zasl = n->params.zasl; 5557 break; 5558 5559 default: 5560 return NVME_INVALID_FIELD | NVME_DNR; 5561 } 5562 5563 return nvme_c2h(n, id, sizeof(id), req); 5564 } 5565 5566 static uint16_t nvme_identify_ns(NvmeCtrl *n, NvmeRequest *req, bool active) 5567 { 5568 NvmeNamespace *ns; 5569 NvmeIdentify *c = (NvmeIdentify *)&req->cmd; 5570 uint32_t nsid = le32_to_cpu(c->nsid); 5571 5572 trace_pci_nvme_identify_ns(nsid); 5573 5574 if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) { 5575 return NVME_INVALID_NSID | NVME_DNR; 5576 } 5577 5578 ns = nvme_ns(n, nsid); 5579 if (unlikely(!ns)) { 5580 if (!active) { 5581 ns = nvme_subsys_ns(n->subsys, nsid); 5582 if (!ns) { 5583 return nvme_rpt_empty_id_struct(n, req); 5584 } 5585 } else { 5586 return nvme_rpt_empty_id_struct(n, req); 5587 } 5588 } 5589 5590 if (active || ns->csi == NVME_CSI_NVM) { 5591 return nvme_c2h(n, (uint8_t *)&ns->id_ns, sizeof(NvmeIdNs), req); 5592 } 5593 5594 return NVME_INVALID_CMD_SET | NVME_DNR; 5595 } 5596 5597 static uint16_t nvme_identify_ctrl_list(NvmeCtrl *n, NvmeRequest *req, 5598 bool attached) 5599 { 5600 NvmeIdentify *c = (NvmeIdentify *)&req->cmd; 5601 uint32_t nsid = le32_to_cpu(c->nsid); 5602 uint16_t min_id = le16_to_cpu(c->ctrlid); 5603 uint16_t list[NVME_CONTROLLER_LIST_SIZE] = {}; 5604 uint16_t *ids = &list[1]; 5605 NvmeNamespace *ns; 5606 NvmeCtrl *ctrl; 5607 int cntlid, nr_ids = 0; 5608 5609 trace_pci_nvme_identify_ctrl_list(c->cns, min_id); 5610 5611 if (!n->subsys) { 5612 return NVME_INVALID_FIELD | NVME_DNR; 5613 } 5614 5615 if (attached) { 5616 if (nsid == NVME_NSID_BROADCAST) { 5617 return NVME_INVALID_FIELD | NVME_DNR; 5618 } 5619 5620 ns = nvme_subsys_ns(n->subsys, nsid); 5621 if (!ns) { 5622 return NVME_INVALID_FIELD | NVME_DNR; 5623 } 5624 } 5625 5626 for (cntlid = min_id; cntlid < ARRAY_SIZE(n->subsys->ctrls); cntlid++) { 5627 ctrl = nvme_subsys_ctrl(n->subsys, cntlid); 5628 if (!ctrl) { 5629 continue; 5630 } 5631 5632 if (attached && !nvme_ns(ctrl, nsid)) { 5633 continue; 5634 } 5635 5636 ids[nr_ids++] = cntlid; 5637 } 5638 5639 list[0] = nr_ids; 5640 5641 return nvme_c2h(n, (uint8_t *)list, sizeof(list), req); 5642 } 5643 5644 static uint16_t nvme_identify_pri_ctrl_cap(NvmeCtrl *n, NvmeRequest *req) 5645 { 5646 trace_pci_nvme_identify_pri_ctrl_cap(le16_to_cpu(n->pri_ctrl_cap.cntlid)); 5647 5648 return nvme_c2h(n, (uint8_t *)&n->pri_ctrl_cap, 5649 sizeof(NvmePriCtrlCap), req); 5650 } 5651 5652 static uint16_t nvme_identify_sec_ctrl_list(NvmeCtrl *n, NvmeRequest *req) 5653 { 5654 NvmeIdentify *c = (NvmeIdentify *)&req->cmd; 5655 uint16_t pri_ctrl_id = le16_to_cpu(n->pri_ctrl_cap.cntlid); 5656 uint16_t min_id = le16_to_cpu(c->ctrlid); 5657 uint8_t num_sec_ctrl = n->nr_sec_ctrls; 5658 NvmeSecCtrlList list = {0}; 5659 uint8_t i; 5660 5661 for (i = 0; i < num_sec_ctrl; i++) { 5662 if (n->sec_ctrl_list[i].scid >= min_id) { 5663 list.numcntl = MIN(num_sec_ctrl - i, 127); 5664 memcpy(&list.sec, n->sec_ctrl_list + i, 5665 list.numcntl * sizeof(NvmeSecCtrlEntry)); 5666 break; 5667 } 5668 } 5669 5670 trace_pci_nvme_identify_sec_ctrl_list(pri_ctrl_id, list.numcntl); 5671 5672 return nvme_c2h(n, (uint8_t *)&list, sizeof(list), req); 5673 } 5674 5675 static uint16_t nvme_identify_ns_csi(NvmeCtrl *n, NvmeRequest *req, 5676 bool active) 5677 { 5678 NvmeNamespace *ns; 5679 NvmeIdentify *c = (NvmeIdentify *)&req->cmd; 5680 uint32_t nsid = le32_to_cpu(c->nsid); 5681 5682 trace_pci_nvme_identify_ns_csi(nsid, c->csi); 5683 5684 if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) { 5685 return NVME_INVALID_NSID | NVME_DNR; 5686 } 5687 5688 ns = nvme_ns(n, nsid); 5689 if (unlikely(!ns)) { 5690 if (!active) { 5691 ns = nvme_subsys_ns(n->subsys, nsid); 5692 if (!ns) { 5693 return nvme_rpt_empty_id_struct(n, req); 5694 } 5695 } else { 5696 return nvme_rpt_empty_id_struct(n, req); 5697 } 5698 } 5699 5700 if (c->csi == NVME_CSI_NVM) { 5701 return nvme_c2h(n, (uint8_t *)&ns->id_ns_nvm, sizeof(NvmeIdNsNvm), 5702 req); 5703 } else if (c->csi == NVME_CSI_ZONED && ns->csi == NVME_CSI_ZONED) { 5704 return nvme_c2h(n, (uint8_t *)ns->id_ns_zoned, sizeof(NvmeIdNsZoned), 5705 req); 5706 } 5707 5708 return NVME_INVALID_FIELD | NVME_DNR; 5709 } 5710 5711 static uint16_t nvme_identify_nslist(NvmeCtrl *n, NvmeRequest *req, 5712 bool active) 5713 { 5714 NvmeNamespace *ns; 5715 NvmeIdentify *c = (NvmeIdentify *)&req->cmd; 5716 uint32_t min_nsid = le32_to_cpu(c->nsid); 5717 uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {}; 5718 static const int data_len = sizeof(list); 5719 uint32_t *list_ptr = (uint32_t *)list; 5720 int i, j = 0; 5721 5722 trace_pci_nvme_identify_nslist(min_nsid); 5723 5724 /* 5725 * Both FFFFFFFFh (NVME_NSID_BROADCAST) and FFFFFFFFEh are invalid values 5726 * since the Active Namespace ID List should return namespaces with ids 5727 * *higher* than the NSID specified in the command. This is also specified 5728 * in the spec (NVM Express v1.3d, Section 5.15.4). 5729 */ 5730 if (min_nsid >= NVME_NSID_BROADCAST - 1) { 5731 return NVME_INVALID_NSID | NVME_DNR; 5732 } 5733 5734 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { 5735 ns = nvme_ns(n, i); 5736 if (!ns) { 5737 if (!active) { 5738 ns = nvme_subsys_ns(n->subsys, i); 5739 if (!ns) { 5740 continue; 5741 } 5742 } else { 5743 continue; 5744 } 5745 } 5746 if (ns->params.nsid <= min_nsid) { 5747 continue; 5748 } 5749 list_ptr[j++] = cpu_to_le32(ns->params.nsid); 5750 if (j == data_len / sizeof(uint32_t)) { 5751 break; 5752 } 5753 } 5754 5755 return nvme_c2h(n, list, data_len, req); 5756 } 5757 5758 static uint16_t nvme_identify_nslist_csi(NvmeCtrl *n, NvmeRequest *req, 5759 bool active) 5760 { 5761 NvmeNamespace *ns; 5762 NvmeIdentify *c = (NvmeIdentify *)&req->cmd; 5763 uint32_t min_nsid = le32_to_cpu(c->nsid); 5764 uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {}; 5765 static const int data_len = sizeof(list); 5766 uint32_t *list_ptr = (uint32_t *)list; 5767 int i, j = 0; 5768 5769 trace_pci_nvme_identify_nslist_csi(min_nsid, c->csi); 5770 5771 /* 5772 * Same as in nvme_identify_nslist(), FFFFFFFFh/FFFFFFFFEh are invalid. 5773 */ 5774 if (min_nsid >= NVME_NSID_BROADCAST - 1) { 5775 return NVME_INVALID_NSID | NVME_DNR; 5776 } 5777 5778 if (c->csi != NVME_CSI_NVM && c->csi != NVME_CSI_ZONED) { 5779 return NVME_INVALID_FIELD | NVME_DNR; 5780 } 5781 5782 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { 5783 ns = nvme_ns(n, i); 5784 if (!ns) { 5785 if (!active) { 5786 ns = nvme_subsys_ns(n->subsys, i); 5787 if (!ns) { 5788 continue; 5789 } 5790 } else { 5791 continue; 5792 } 5793 } 5794 if (ns->params.nsid <= min_nsid || c->csi != ns->csi) { 5795 continue; 5796 } 5797 list_ptr[j++] = cpu_to_le32(ns->params.nsid); 5798 if (j == data_len / sizeof(uint32_t)) { 5799 break; 5800 } 5801 } 5802 5803 return nvme_c2h(n, list, data_len, req); 5804 } 5805 5806 static uint16_t nvme_endurance_group_list(NvmeCtrl *n, NvmeRequest *req) 5807 { 5808 uint16_t list[NVME_CONTROLLER_LIST_SIZE] = {}; 5809 uint16_t *nr_ids = &list[0]; 5810 uint16_t *ids = &list[1]; 5811 uint16_t endgid = le32_to_cpu(req->cmd.cdw11) & 0xffff; 5812 5813 /* 5814 * The current nvme-subsys only supports Endurance Group #1. 5815 */ 5816 if (!endgid) { 5817 *nr_ids = 1; 5818 ids[0] = 1; 5819 } else { 5820 *nr_ids = 0; 5821 } 5822 5823 return nvme_c2h(n, list, sizeof(list), req); 5824 } 5825 5826 static uint16_t nvme_identify_ns_descr_list(NvmeCtrl *n, NvmeRequest *req) 5827 { 5828 NvmeNamespace *ns; 5829 NvmeIdentify *c = (NvmeIdentify *)&req->cmd; 5830 uint32_t nsid = le32_to_cpu(c->nsid); 5831 uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {}; 5832 uint8_t *pos = list; 5833 struct { 5834 NvmeIdNsDescr hdr; 5835 uint8_t v[NVME_NIDL_UUID]; 5836 } QEMU_PACKED uuid = {}; 5837 struct { 5838 NvmeIdNsDescr hdr; 5839 uint8_t v[NVME_NIDL_NGUID]; 5840 } QEMU_PACKED nguid = {}; 5841 struct { 5842 NvmeIdNsDescr hdr; 5843 uint64_t v; 5844 } QEMU_PACKED eui64 = {}; 5845 struct { 5846 NvmeIdNsDescr hdr; 5847 uint8_t v; 5848 } QEMU_PACKED csi = {}; 5849 5850 trace_pci_nvme_identify_ns_descr_list(nsid); 5851 5852 if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) { 5853 return NVME_INVALID_NSID | NVME_DNR; 5854 } 5855 5856 ns = nvme_ns(n, nsid); 5857 if (unlikely(!ns)) { 5858 return NVME_INVALID_FIELD | NVME_DNR; 5859 } 5860 5861 if (!qemu_uuid_is_null(&ns->params.uuid)) { 5862 uuid.hdr.nidt = NVME_NIDT_UUID; 5863 uuid.hdr.nidl = NVME_NIDL_UUID; 5864 memcpy(uuid.v, ns->params.uuid.data, NVME_NIDL_UUID); 5865 memcpy(pos, &uuid, sizeof(uuid)); 5866 pos += sizeof(uuid); 5867 } 5868 5869 if (!nvme_nguid_is_null(&ns->params.nguid)) { 5870 nguid.hdr.nidt = NVME_NIDT_NGUID; 5871 nguid.hdr.nidl = NVME_NIDL_NGUID; 5872 memcpy(nguid.v, ns->params.nguid.data, NVME_NIDL_NGUID); 5873 memcpy(pos, &nguid, sizeof(nguid)); 5874 pos += sizeof(nguid); 5875 } 5876 5877 if (ns->params.eui64) { 5878 eui64.hdr.nidt = NVME_NIDT_EUI64; 5879 eui64.hdr.nidl = NVME_NIDL_EUI64; 5880 eui64.v = cpu_to_be64(ns->params.eui64); 5881 memcpy(pos, &eui64, sizeof(eui64)); 5882 pos += sizeof(eui64); 5883 } 5884 5885 csi.hdr.nidt = NVME_NIDT_CSI; 5886 csi.hdr.nidl = NVME_NIDL_CSI; 5887 csi.v = ns->csi; 5888 memcpy(pos, &csi, sizeof(csi)); 5889 pos += sizeof(csi); 5890 5891 return nvme_c2h(n, list, sizeof(list), req); 5892 } 5893 5894 static uint16_t nvme_identify_cmd_set(NvmeCtrl *n, NvmeRequest *req) 5895 { 5896 uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {}; 5897 static const int data_len = sizeof(list); 5898 5899 trace_pci_nvme_identify_cmd_set(); 5900 5901 NVME_SET_CSI(*list, NVME_CSI_NVM); 5902 NVME_SET_CSI(*list, NVME_CSI_ZONED); 5903 5904 return nvme_c2h(n, list, data_len, req); 5905 } 5906 5907 static uint16_t nvme_identify(NvmeCtrl *n, NvmeRequest *req) 5908 { 5909 NvmeIdentify *c = (NvmeIdentify *)&req->cmd; 5910 5911 trace_pci_nvme_identify(nvme_cid(req), c->cns, le16_to_cpu(c->ctrlid), 5912 c->csi); 5913 5914 switch (c->cns) { 5915 case NVME_ID_CNS_NS: 5916 return nvme_identify_ns(n, req, true); 5917 case NVME_ID_CNS_NS_PRESENT: 5918 return nvme_identify_ns(n, req, false); 5919 case NVME_ID_CNS_NS_ATTACHED_CTRL_LIST: 5920 return nvme_identify_ctrl_list(n, req, true); 5921 case NVME_ID_CNS_CTRL_LIST: 5922 return nvme_identify_ctrl_list(n, req, false); 5923 case NVME_ID_CNS_PRIMARY_CTRL_CAP: 5924 return nvme_identify_pri_ctrl_cap(n, req); 5925 case NVME_ID_CNS_SECONDARY_CTRL_LIST: 5926 return nvme_identify_sec_ctrl_list(n, req); 5927 case NVME_ID_CNS_CS_NS: 5928 return nvme_identify_ns_csi(n, req, true); 5929 case NVME_ID_CNS_CS_NS_PRESENT: 5930 return nvme_identify_ns_csi(n, req, false); 5931 case NVME_ID_CNS_CTRL: 5932 return nvme_identify_ctrl(n, req); 5933 case NVME_ID_CNS_CS_CTRL: 5934 return nvme_identify_ctrl_csi(n, req); 5935 case NVME_ID_CNS_NS_ACTIVE_LIST: 5936 return nvme_identify_nslist(n, req, true); 5937 case NVME_ID_CNS_NS_PRESENT_LIST: 5938 return nvme_identify_nslist(n, req, false); 5939 case NVME_ID_CNS_CS_NS_ACTIVE_LIST: 5940 return nvme_identify_nslist_csi(n, req, true); 5941 case NVME_ID_CNS_ENDURANCE_GROUP_LIST: 5942 return nvme_endurance_group_list(n, req); 5943 case NVME_ID_CNS_CS_NS_PRESENT_LIST: 5944 return nvme_identify_nslist_csi(n, req, false); 5945 case NVME_ID_CNS_NS_DESCR_LIST: 5946 return nvme_identify_ns_descr_list(n, req); 5947 case NVME_ID_CNS_IO_COMMAND_SET: 5948 return nvme_identify_cmd_set(n, req); 5949 default: 5950 trace_pci_nvme_err_invalid_identify_cns(le32_to_cpu(c->cns)); 5951 return NVME_INVALID_FIELD | NVME_DNR; 5952 } 5953 } 5954 5955 static uint16_t nvme_abort(NvmeCtrl *n, NvmeRequest *req) 5956 { 5957 uint16_t sqid = le32_to_cpu(req->cmd.cdw10) & 0xffff; 5958 uint16_t cid = (le32_to_cpu(req->cmd.cdw10) >> 16) & 0xffff; 5959 NvmeSQueue *sq = n->sq[sqid]; 5960 NvmeRequest *r, *next; 5961 int i; 5962 5963 req->cqe.result = 1; 5964 if (nvme_check_sqid(n, sqid)) { 5965 return NVME_INVALID_FIELD | NVME_DNR; 5966 } 5967 5968 if (sqid == 0) { 5969 for (i = 0; i < n->outstanding_aers; i++) { 5970 NvmeRequest *re = n->aer_reqs[i]; 5971 if (re->cqe.cid == cid) { 5972 memmove(n->aer_reqs + i, n->aer_reqs + i + 1, 5973 (n->outstanding_aers - i - 1) * sizeof(NvmeRequest *)); 5974 n->outstanding_aers--; 5975 re->status = NVME_CMD_ABORT_REQ; 5976 req->cqe.result = 0; 5977 nvme_enqueue_req_completion(&n->admin_cq, re); 5978 return NVME_SUCCESS; 5979 } 5980 } 5981 } 5982 5983 QTAILQ_FOREACH_SAFE(r, &sq->out_req_list, entry, next) { 5984 if (r->cqe.cid == cid) { 5985 if (r->aiocb) { 5986 blk_aio_cancel_async(r->aiocb); 5987 } 5988 break; 5989 } 5990 } 5991 5992 return NVME_SUCCESS; 5993 } 5994 5995 static inline void nvme_set_timestamp(NvmeCtrl *n, uint64_t ts) 5996 { 5997 trace_pci_nvme_setfeat_timestamp(ts); 5998 5999 n->host_timestamp = le64_to_cpu(ts); 6000 n->timestamp_set_qemu_clock_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL); 6001 } 6002 6003 static inline uint64_t nvme_get_timestamp(const NvmeCtrl *n) 6004 { 6005 uint64_t current_time = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL); 6006 uint64_t elapsed_time = current_time - n->timestamp_set_qemu_clock_ms; 6007 6008 union nvme_timestamp { 6009 struct { 6010 uint64_t timestamp:48; 6011 uint64_t sync:1; 6012 uint64_t origin:3; 6013 uint64_t rsvd1:12; 6014 }; 6015 uint64_t all; 6016 }; 6017 6018 union nvme_timestamp ts; 6019 ts.all = 0; 6020 ts.timestamp = n->host_timestamp + elapsed_time; 6021 6022 /* If the host timestamp is non-zero, set the timestamp origin */ 6023 ts.origin = n->host_timestamp ? 0x01 : 0x00; 6024 6025 trace_pci_nvme_getfeat_timestamp(ts.all); 6026 6027 return cpu_to_le64(ts.all); 6028 } 6029 6030 static uint16_t nvme_get_feature_timestamp(NvmeCtrl *n, NvmeRequest *req) 6031 { 6032 uint64_t timestamp = nvme_get_timestamp(n); 6033 6034 return nvme_c2h(n, (uint8_t *)×tamp, sizeof(timestamp), req); 6035 } 6036 6037 static int nvme_get_feature_fdp(NvmeCtrl *n, uint32_t endgrpid, 6038 uint32_t *result) 6039 { 6040 *result = 0; 6041 6042 if (!n->subsys || !n->subsys->endgrp.fdp.enabled) { 6043 return NVME_INVALID_FIELD | NVME_DNR; 6044 } 6045 6046 *result = FIELD_DP16(0, FEAT_FDP, FDPE, 1); 6047 *result = FIELD_DP16(*result, FEAT_FDP, CONF_NDX, 0); 6048 6049 return NVME_SUCCESS; 6050 } 6051 6052 static uint16_t nvme_get_feature_fdp_events(NvmeCtrl *n, NvmeNamespace *ns, 6053 NvmeRequest *req, uint32_t *result) 6054 { 6055 NvmeCmd *cmd = &req->cmd; 6056 uint32_t cdw11 = le32_to_cpu(cmd->cdw11); 6057 uint16_t ph = cdw11 & 0xffff; 6058 uint8_t noet = (cdw11 >> 16) & 0xff; 6059 uint16_t ruhid, ret; 6060 uint32_t nentries = 0; 6061 uint8_t s_events_ndx = 0; 6062 size_t s_events_siz = sizeof(NvmeFdpEventDescr) * noet; 6063 g_autofree NvmeFdpEventDescr *s_events = g_malloc0(s_events_siz); 6064 NvmeRuHandle *ruh; 6065 NvmeFdpEventDescr *s_event; 6066 6067 if (!n->subsys || !n->subsys->endgrp.fdp.enabled) { 6068 return NVME_FDP_DISABLED | NVME_DNR; 6069 } 6070 6071 if (!nvme_ph_valid(ns, ph)) { 6072 return NVME_INVALID_FIELD | NVME_DNR; 6073 } 6074 6075 ruhid = ns->fdp.phs[ph]; 6076 ruh = &n->subsys->endgrp.fdp.ruhs[ruhid]; 6077 6078 assert(ruh); 6079 6080 if (unlikely(noet == 0)) { 6081 return NVME_INVALID_FIELD | NVME_DNR; 6082 } 6083 6084 for (uint8_t event_type = 0; event_type < FDP_EVT_MAX; event_type++) { 6085 uint8_t shift = nvme_fdp_evf_shifts[event_type]; 6086 if (!shift && event_type) { 6087 /* 6088 * only first entry (event_type == 0) has a shift value of 0 6089 * other entries are simply unpopulated. 6090 */ 6091 continue; 6092 } 6093 6094 nentries++; 6095 6096 s_event = &s_events[s_events_ndx]; 6097 s_event->evt = event_type; 6098 s_event->evta = (ruh->event_filter >> shift) & 0x1; 6099 6100 /* break if all `noet` entries are filled */ 6101 if ((++s_events_ndx) == noet) { 6102 break; 6103 } 6104 } 6105 6106 ret = nvme_c2h(n, s_events, s_events_siz, req); 6107 if (ret) { 6108 return ret; 6109 } 6110 6111 *result = nentries; 6112 return NVME_SUCCESS; 6113 } 6114 6115 static uint16_t nvme_get_feature(NvmeCtrl *n, NvmeRequest *req) 6116 { 6117 NvmeCmd *cmd = &req->cmd; 6118 uint32_t dw10 = le32_to_cpu(cmd->cdw10); 6119 uint32_t dw11 = le32_to_cpu(cmd->cdw11); 6120 uint32_t nsid = le32_to_cpu(cmd->nsid); 6121 uint32_t result = 0; 6122 uint8_t fid = NVME_GETSETFEAT_FID(dw10); 6123 NvmeGetFeatureSelect sel = NVME_GETFEAT_SELECT(dw10); 6124 uint16_t iv; 6125 NvmeNamespace *ns; 6126 int i; 6127 uint16_t endgrpid = 0, ret = NVME_SUCCESS; 6128 6129 static const uint32_t nvme_feature_default[NVME_FID_MAX] = { 6130 [NVME_ARBITRATION] = NVME_ARB_AB_NOLIMIT, 6131 }; 6132 6133 trace_pci_nvme_getfeat(nvme_cid(req), nsid, fid, sel, dw11); 6134 6135 if (!nvme_feature_support[fid]) { 6136 return NVME_INVALID_FIELD | NVME_DNR; 6137 } 6138 6139 if (nvme_feature_cap[fid] & NVME_FEAT_CAP_NS) { 6140 if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) { 6141 /* 6142 * The Reservation Notification Mask and Reservation Persistence 6143 * features require a status code of Invalid Field in Command when 6144 * NSID is FFFFFFFFh. Since the device does not support those 6145 * features we can always return Invalid Namespace or Format as we 6146 * should do for all other features. 6147 */ 6148 return NVME_INVALID_NSID | NVME_DNR; 6149 } 6150 6151 if (!nvme_ns(n, nsid)) { 6152 return NVME_INVALID_FIELD | NVME_DNR; 6153 } 6154 } 6155 6156 switch (sel) { 6157 case NVME_GETFEAT_SELECT_CURRENT: 6158 break; 6159 case NVME_GETFEAT_SELECT_SAVED: 6160 /* no features are saveable by the controller; fallthrough */ 6161 case NVME_GETFEAT_SELECT_DEFAULT: 6162 goto defaults; 6163 case NVME_GETFEAT_SELECT_CAP: 6164 result = nvme_feature_cap[fid]; 6165 goto out; 6166 } 6167 6168 switch (fid) { 6169 case NVME_TEMPERATURE_THRESHOLD: 6170 result = 0; 6171 6172 /* 6173 * The controller only implements the Composite Temperature sensor, so 6174 * return 0 for all other sensors. 6175 */ 6176 if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) { 6177 goto out; 6178 } 6179 6180 switch (NVME_TEMP_THSEL(dw11)) { 6181 case NVME_TEMP_THSEL_OVER: 6182 result = n->features.temp_thresh_hi; 6183 goto out; 6184 case NVME_TEMP_THSEL_UNDER: 6185 result = n->features.temp_thresh_low; 6186 goto out; 6187 } 6188 6189 return NVME_INVALID_FIELD | NVME_DNR; 6190 case NVME_ERROR_RECOVERY: 6191 if (!nvme_nsid_valid(n, nsid)) { 6192 return NVME_INVALID_NSID | NVME_DNR; 6193 } 6194 6195 ns = nvme_ns(n, nsid); 6196 if (unlikely(!ns)) { 6197 return NVME_INVALID_FIELD | NVME_DNR; 6198 } 6199 6200 result = ns->features.err_rec; 6201 goto out; 6202 case NVME_VOLATILE_WRITE_CACHE: 6203 result = 0; 6204 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { 6205 ns = nvme_ns(n, i); 6206 if (!ns) { 6207 continue; 6208 } 6209 6210 result = blk_enable_write_cache(ns->blkconf.blk); 6211 if (result) { 6212 break; 6213 } 6214 } 6215 trace_pci_nvme_getfeat_vwcache(result ? "enabled" : "disabled"); 6216 goto out; 6217 case NVME_ASYNCHRONOUS_EVENT_CONF: 6218 result = n->features.async_config; 6219 goto out; 6220 case NVME_TIMESTAMP: 6221 return nvme_get_feature_timestamp(n, req); 6222 case NVME_HOST_BEHAVIOR_SUPPORT: 6223 return nvme_c2h(n, (uint8_t *)&n->features.hbs, 6224 sizeof(n->features.hbs), req); 6225 case NVME_FDP_MODE: 6226 endgrpid = dw11 & 0xff; 6227 6228 if (endgrpid != 0x1) { 6229 return NVME_INVALID_FIELD | NVME_DNR; 6230 } 6231 6232 ret = nvme_get_feature_fdp(n, endgrpid, &result); 6233 if (ret) { 6234 return ret; 6235 } 6236 goto out; 6237 case NVME_FDP_EVENTS: 6238 if (!nvme_nsid_valid(n, nsid)) { 6239 return NVME_INVALID_NSID | NVME_DNR; 6240 } 6241 6242 ns = nvme_ns(n, nsid); 6243 if (unlikely(!ns)) { 6244 return NVME_INVALID_FIELD | NVME_DNR; 6245 } 6246 6247 ret = nvme_get_feature_fdp_events(n, ns, req, &result); 6248 if (ret) { 6249 return ret; 6250 } 6251 goto out; 6252 default: 6253 break; 6254 } 6255 6256 defaults: 6257 switch (fid) { 6258 case NVME_TEMPERATURE_THRESHOLD: 6259 result = 0; 6260 6261 if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) { 6262 break; 6263 } 6264 6265 if (NVME_TEMP_THSEL(dw11) == NVME_TEMP_THSEL_OVER) { 6266 result = NVME_TEMPERATURE_WARNING; 6267 } 6268 6269 break; 6270 case NVME_NUMBER_OF_QUEUES: 6271 result = (n->conf_ioqpairs - 1) | ((n->conf_ioqpairs - 1) << 16); 6272 trace_pci_nvme_getfeat_numq(result); 6273 break; 6274 case NVME_INTERRUPT_VECTOR_CONF: 6275 iv = dw11 & 0xffff; 6276 if (iv >= n->conf_ioqpairs + 1) { 6277 return NVME_INVALID_FIELD | NVME_DNR; 6278 } 6279 6280 result = iv; 6281 if (iv == n->admin_cq.vector) { 6282 result |= NVME_INTVC_NOCOALESCING; 6283 } 6284 break; 6285 case NVME_FDP_MODE: 6286 endgrpid = dw11 & 0xff; 6287 6288 if (endgrpid != 0x1) { 6289 return NVME_INVALID_FIELD | NVME_DNR; 6290 } 6291 6292 ret = nvme_get_feature_fdp(n, endgrpid, &result); 6293 if (ret) { 6294 return ret; 6295 } 6296 goto out; 6297 6298 break; 6299 default: 6300 result = nvme_feature_default[fid]; 6301 break; 6302 } 6303 6304 out: 6305 req->cqe.result = cpu_to_le32(result); 6306 return ret; 6307 } 6308 6309 static uint16_t nvme_set_feature_timestamp(NvmeCtrl *n, NvmeRequest *req) 6310 { 6311 uint16_t ret; 6312 uint64_t timestamp; 6313 6314 ret = nvme_h2c(n, (uint8_t *)×tamp, sizeof(timestamp), req); 6315 if (ret) { 6316 return ret; 6317 } 6318 6319 nvme_set_timestamp(n, timestamp); 6320 6321 return NVME_SUCCESS; 6322 } 6323 6324 static uint16_t nvme_set_feature_fdp_events(NvmeCtrl *n, NvmeNamespace *ns, 6325 NvmeRequest *req) 6326 { 6327 NvmeCmd *cmd = &req->cmd; 6328 uint32_t cdw11 = le32_to_cpu(cmd->cdw11); 6329 uint16_t ph = cdw11 & 0xffff; 6330 uint8_t noet = (cdw11 >> 16) & 0xff; 6331 uint16_t ret, ruhid; 6332 uint8_t enable = le32_to_cpu(cmd->cdw12) & 0x1; 6333 uint8_t event_mask = 0; 6334 unsigned int i; 6335 g_autofree uint8_t *events = g_malloc0(noet); 6336 NvmeRuHandle *ruh = NULL; 6337 6338 assert(ns); 6339 6340 if (!n->subsys || !n->subsys->endgrp.fdp.enabled) { 6341 return NVME_FDP_DISABLED | NVME_DNR; 6342 } 6343 6344 if (!nvme_ph_valid(ns, ph)) { 6345 return NVME_INVALID_FIELD | NVME_DNR; 6346 } 6347 6348 ruhid = ns->fdp.phs[ph]; 6349 ruh = &n->subsys->endgrp.fdp.ruhs[ruhid]; 6350 6351 ret = nvme_h2c(n, events, noet, req); 6352 if (ret) { 6353 return ret; 6354 } 6355 6356 for (i = 0; i < noet; i++) { 6357 event_mask |= (1 << nvme_fdp_evf_shifts[events[i]]); 6358 } 6359 6360 if (enable) { 6361 ruh->event_filter |= event_mask; 6362 } else { 6363 ruh->event_filter = ruh->event_filter & ~event_mask; 6364 } 6365 6366 return NVME_SUCCESS; 6367 } 6368 6369 static uint16_t nvme_set_feature(NvmeCtrl *n, NvmeRequest *req) 6370 { 6371 NvmeNamespace *ns = NULL; 6372 6373 NvmeCmd *cmd = &req->cmd; 6374 uint32_t dw10 = le32_to_cpu(cmd->cdw10); 6375 uint32_t dw11 = le32_to_cpu(cmd->cdw11); 6376 uint32_t nsid = le32_to_cpu(cmd->nsid); 6377 uint8_t fid = NVME_GETSETFEAT_FID(dw10); 6378 uint8_t save = NVME_SETFEAT_SAVE(dw10); 6379 uint16_t status; 6380 int i; 6381 6382 trace_pci_nvme_setfeat(nvme_cid(req), nsid, fid, save, dw11); 6383 6384 if (save && !(nvme_feature_cap[fid] & NVME_FEAT_CAP_SAVE)) { 6385 return NVME_FID_NOT_SAVEABLE | NVME_DNR; 6386 } 6387 6388 if (!nvme_feature_support[fid]) { 6389 return NVME_INVALID_FIELD | NVME_DNR; 6390 } 6391 6392 if (nvme_feature_cap[fid] & NVME_FEAT_CAP_NS) { 6393 if (nsid != NVME_NSID_BROADCAST) { 6394 if (!nvme_nsid_valid(n, nsid)) { 6395 return NVME_INVALID_NSID | NVME_DNR; 6396 } 6397 6398 ns = nvme_ns(n, nsid); 6399 if (unlikely(!ns)) { 6400 return NVME_INVALID_FIELD | NVME_DNR; 6401 } 6402 } 6403 } else if (nsid && nsid != NVME_NSID_BROADCAST) { 6404 if (!nvme_nsid_valid(n, nsid)) { 6405 return NVME_INVALID_NSID | NVME_DNR; 6406 } 6407 6408 return NVME_FEAT_NOT_NS_SPEC | NVME_DNR; 6409 } 6410 6411 if (!(nvme_feature_cap[fid] & NVME_FEAT_CAP_CHANGE)) { 6412 return NVME_FEAT_NOT_CHANGEABLE | NVME_DNR; 6413 } 6414 6415 switch (fid) { 6416 case NVME_TEMPERATURE_THRESHOLD: 6417 if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) { 6418 break; 6419 } 6420 6421 switch (NVME_TEMP_THSEL(dw11)) { 6422 case NVME_TEMP_THSEL_OVER: 6423 n->features.temp_thresh_hi = NVME_TEMP_TMPTH(dw11); 6424 break; 6425 case NVME_TEMP_THSEL_UNDER: 6426 n->features.temp_thresh_low = NVME_TEMP_TMPTH(dw11); 6427 break; 6428 default: 6429 return NVME_INVALID_FIELD | NVME_DNR; 6430 } 6431 6432 if ((n->temperature >= n->features.temp_thresh_hi) || 6433 (n->temperature <= n->features.temp_thresh_low)) { 6434 nvme_smart_event(n, NVME_SMART_TEMPERATURE); 6435 } 6436 6437 break; 6438 case NVME_ERROR_RECOVERY: 6439 if (nsid == NVME_NSID_BROADCAST) { 6440 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { 6441 ns = nvme_ns(n, i); 6442 6443 if (!ns) { 6444 continue; 6445 } 6446 6447 if (NVME_ID_NS_NSFEAT_DULBE(ns->id_ns.nsfeat)) { 6448 ns->features.err_rec = dw11; 6449 } 6450 } 6451 6452 break; 6453 } 6454 6455 assert(ns); 6456 if (NVME_ID_NS_NSFEAT_DULBE(ns->id_ns.nsfeat)) { 6457 ns->features.err_rec = dw11; 6458 } 6459 break; 6460 case NVME_VOLATILE_WRITE_CACHE: 6461 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { 6462 ns = nvme_ns(n, i); 6463 if (!ns) { 6464 continue; 6465 } 6466 6467 if (!(dw11 & 0x1) && blk_enable_write_cache(ns->blkconf.blk)) { 6468 blk_flush(ns->blkconf.blk); 6469 } 6470 6471 blk_set_enable_write_cache(ns->blkconf.blk, dw11 & 1); 6472 } 6473 6474 break; 6475 6476 case NVME_NUMBER_OF_QUEUES: 6477 if (n->qs_created) { 6478 return NVME_CMD_SEQ_ERROR | NVME_DNR; 6479 } 6480 6481 /* 6482 * NVMe v1.3, Section 5.21.1.7: FFFFh is not an allowed value for NCQR 6483 * and NSQR. 6484 */ 6485 if ((dw11 & 0xffff) == 0xffff || ((dw11 >> 16) & 0xffff) == 0xffff) { 6486 return NVME_INVALID_FIELD | NVME_DNR; 6487 } 6488 6489 trace_pci_nvme_setfeat_numq((dw11 & 0xffff) + 1, 6490 ((dw11 >> 16) & 0xffff) + 1, 6491 n->conf_ioqpairs, 6492 n->conf_ioqpairs); 6493 req->cqe.result = cpu_to_le32((n->conf_ioqpairs - 1) | 6494 ((n->conf_ioqpairs - 1) << 16)); 6495 break; 6496 case NVME_ASYNCHRONOUS_EVENT_CONF: 6497 n->features.async_config = dw11; 6498 break; 6499 case NVME_TIMESTAMP: 6500 return nvme_set_feature_timestamp(n, req); 6501 case NVME_HOST_BEHAVIOR_SUPPORT: 6502 status = nvme_h2c(n, (uint8_t *)&n->features.hbs, 6503 sizeof(n->features.hbs), req); 6504 if (status) { 6505 return status; 6506 } 6507 6508 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { 6509 ns = nvme_ns(n, i); 6510 6511 if (!ns) { 6512 continue; 6513 } 6514 6515 ns->id_ns.nlbaf = ns->nlbaf - 1; 6516 if (!n->features.hbs.lbafee) { 6517 ns->id_ns.nlbaf = MIN(ns->id_ns.nlbaf, 15); 6518 } 6519 } 6520 6521 return status; 6522 case NVME_COMMAND_SET_PROFILE: 6523 if (dw11 & 0x1ff) { 6524 trace_pci_nvme_err_invalid_iocsci(dw11 & 0x1ff); 6525 return NVME_CMD_SET_CMB_REJECTED | NVME_DNR; 6526 } 6527 break; 6528 case NVME_FDP_MODE: 6529 /* spec: abort with cmd seq err if there's one or more NS' in endgrp */ 6530 return NVME_CMD_SEQ_ERROR | NVME_DNR; 6531 case NVME_FDP_EVENTS: 6532 return nvme_set_feature_fdp_events(n, ns, req); 6533 default: 6534 return NVME_FEAT_NOT_CHANGEABLE | NVME_DNR; 6535 } 6536 return NVME_SUCCESS; 6537 } 6538 6539 static uint16_t nvme_aer(NvmeCtrl *n, NvmeRequest *req) 6540 { 6541 trace_pci_nvme_aer(nvme_cid(req)); 6542 6543 if (n->outstanding_aers > n->params.aerl) { 6544 trace_pci_nvme_aer_aerl_exceeded(); 6545 return NVME_AER_LIMIT_EXCEEDED; 6546 } 6547 6548 n->aer_reqs[n->outstanding_aers] = req; 6549 n->outstanding_aers++; 6550 6551 if (!QTAILQ_EMPTY(&n->aer_queue)) { 6552 nvme_process_aers(n); 6553 } 6554 6555 return NVME_NO_COMPLETE; 6556 } 6557 6558 static void nvme_update_dmrsl(NvmeCtrl *n) 6559 { 6560 int nsid; 6561 6562 for (nsid = 1; nsid <= NVME_MAX_NAMESPACES; nsid++) { 6563 NvmeNamespace *ns = nvme_ns(n, nsid); 6564 if (!ns) { 6565 continue; 6566 } 6567 6568 n->dmrsl = MIN_NON_ZERO(n->dmrsl, 6569 BDRV_REQUEST_MAX_BYTES / nvme_l2b(ns, 1)); 6570 } 6571 } 6572 6573 static void nvme_select_iocs_ns(NvmeCtrl *n, NvmeNamespace *ns) 6574 { 6575 uint32_t cc = ldl_le_p(&n->bar.cc); 6576 6577 ns->iocs = nvme_cse_iocs_none; 6578 switch (ns->csi) { 6579 case NVME_CSI_NVM: 6580 if (NVME_CC_CSS(cc) != NVME_CC_CSS_ADMIN_ONLY) { 6581 ns->iocs = nvme_cse_iocs_nvm; 6582 } 6583 break; 6584 case NVME_CSI_ZONED: 6585 if (NVME_CC_CSS(cc) == NVME_CC_CSS_CSI) { 6586 ns->iocs = nvme_cse_iocs_zoned; 6587 } else if (NVME_CC_CSS(cc) == NVME_CC_CSS_NVM) { 6588 ns->iocs = nvme_cse_iocs_nvm; 6589 } 6590 break; 6591 } 6592 } 6593 6594 static uint16_t nvme_ns_attachment(NvmeCtrl *n, NvmeRequest *req) 6595 { 6596 NvmeNamespace *ns; 6597 NvmeCtrl *ctrl; 6598 uint16_t list[NVME_CONTROLLER_LIST_SIZE] = {}; 6599 uint32_t nsid = le32_to_cpu(req->cmd.nsid); 6600 uint32_t dw10 = le32_to_cpu(req->cmd.cdw10); 6601 uint8_t sel = dw10 & 0xf; 6602 uint16_t *nr_ids = &list[0]; 6603 uint16_t *ids = &list[1]; 6604 uint16_t ret; 6605 int i; 6606 6607 trace_pci_nvme_ns_attachment(nvme_cid(req), dw10 & 0xf); 6608 6609 if (!nvme_nsid_valid(n, nsid)) { 6610 return NVME_INVALID_NSID | NVME_DNR; 6611 } 6612 6613 ns = nvme_subsys_ns(n->subsys, nsid); 6614 if (!ns) { 6615 return NVME_INVALID_FIELD | NVME_DNR; 6616 } 6617 6618 ret = nvme_h2c(n, (uint8_t *)list, 4096, req); 6619 if (ret) { 6620 return ret; 6621 } 6622 6623 if (!*nr_ids) { 6624 return NVME_NS_CTRL_LIST_INVALID | NVME_DNR; 6625 } 6626 6627 *nr_ids = MIN(*nr_ids, NVME_CONTROLLER_LIST_SIZE - 1); 6628 for (i = 0; i < *nr_ids; i++) { 6629 ctrl = nvme_subsys_ctrl(n->subsys, ids[i]); 6630 if (!ctrl) { 6631 return NVME_NS_CTRL_LIST_INVALID | NVME_DNR; 6632 } 6633 6634 switch (sel) { 6635 case NVME_NS_ATTACHMENT_ATTACH: 6636 if (nvme_ns(ctrl, nsid)) { 6637 return NVME_NS_ALREADY_ATTACHED | NVME_DNR; 6638 } 6639 6640 if (ns->attached && !ns->params.shared) { 6641 return NVME_NS_PRIVATE | NVME_DNR; 6642 } 6643 6644 nvme_attach_ns(ctrl, ns); 6645 nvme_select_iocs_ns(ctrl, ns); 6646 6647 break; 6648 6649 case NVME_NS_ATTACHMENT_DETACH: 6650 if (!nvme_ns(ctrl, nsid)) { 6651 return NVME_NS_NOT_ATTACHED | NVME_DNR; 6652 } 6653 6654 ctrl->namespaces[nsid] = NULL; 6655 ns->attached--; 6656 6657 nvme_update_dmrsl(ctrl); 6658 6659 break; 6660 6661 default: 6662 return NVME_INVALID_FIELD | NVME_DNR; 6663 } 6664 6665 /* 6666 * Add namespace id to the changed namespace id list for event clearing 6667 * via Get Log Page command. 6668 */ 6669 if (!test_and_set_bit(nsid, ctrl->changed_nsids)) { 6670 nvme_enqueue_event(ctrl, NVME_AER_TYPE_NOTICE, 6671 NVME_AER_INFO_NOTICE_NS_ATTR_CHANGED, 6672 NVME_LOG_CHANGED_NSLIST); 6673 } 6674 } 6675 6676 return NVME_SUCCESS; 6677 } 6678 6679 typedef struct NvmeFormatAIOCB { 6680 BlockAIOCB common; 6681 BlockAIOCB *aiocb; 6682 NvmeRequest *req; 6683 int ret; 6684 6685 NvmeNamespace *ns; 6686 uint32_t nsid; 6687 bool broadcast; 6688 int64_t offset; 6689 6690 uint8_t lbaf; 6691 uint8_t mset; 6692 uint8_t pi; 6693 uint8_t pil; 6694 } NvmeFormatAIOCB; 6695 6696 static void nvme_format_cancel(BlockAIOCB *aiocb) 6697 { 6698 NvmeFormatAIOCB *iocb = container_of(aiocb, NvmeFormatAIOCB, common); 6699 6700 iocb->ret = -ECANCELED; 6701 6702 if (iocb->aiocb) { 6703 blk_aio_cancel_async(iocb->aiocb); 6704 iocb->aiocb = NULL; 6705 } 6706 } 6707 6708 static const AIOCBInfo nvme_format_aiocb_info = { 6709 .aiocb_size = sizeof(NvmeFormatAIOCB), 6710 .cancel_async = nvme_format_cancel, 6711 }; 6712 6713 static void nvme_format_set(NvmeNamespace *ns, uint8_t lbaf, uint8_t mset, 6714 uint8_t pi, uint8_t pil) 6715 { 6716 uint8_t lbafl = lbaf & 0xf; 6717 uint8_t lbafu = lbaf >> 4; 6718 6719 trace_pci_nvme_format_set(ns->params.nsid, lbaf, mset, pi, pil); 6720 6721 ns->id_ns.dps = (pil << 3) | pi; 6722 ns->id_ns.flbas = (lbafu << 5) | (mset << 4) | lbafl; 6723 6724 nvme_ns_init_format(ns); 6725 } 6726 6727 static void nvme_do_format(NvmeFormatAIOCB *iocb); 6728 6729 static void nvme_format_ns_cb(void *opaque, int ret) 6730 { 6731 NvmeFormatAIOCB *iocb = opaque; 6732 NvmeNamespace *ns = iocb->ns; 6733 int bytes; 6734 6735 if (iocb->ret < 0) { 6736 goto done; 6737 } else if (ret < 0) { 6738 iocb->ret = ret; 6739 goto done; 6740 } 6741 6742 assert(ns); 6743 6744 if (iocb->offset < ns->size) { 6745 bytes = MIN(BDRV_REQUEST_MAX_BYTES, ns->size - iocb->offset); 6746 6747 iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk, iocb->offset, 6748 bytes, BDRV_REQ_MAY_UNMAP, 6749 nvme_format_ns_cb, iocb); 6750 6751 iocb->offset += bytes; 6752 return; 6753 } 6754 6755 nvme_format_set(ns, iocb->lbaf, iocb->mset, iocb->pi, iocb->pil); 6756 ns->status = 0x0; 6757 iocb->ns = NULL; 6758 iocb->offset = 0; 6759 6760 done: 6761 nvme_do_format(iocb); 6762 } 6763 6764 static uint16_t nvme_format_check(NvmeNamespace *ns, uint8_t lbaf, uint8_t pi) 6765 { 6766 if (ns->params.zoned) { 6767 return NVME_INVALID_FORMAT | NVME_DNR; 6768 } 6769 6770 if (lbaf > ns->id_ns.nlbaf) { 6771 return NVME_INVALID_FORMAT | NVME_DNR; 6772 } 6773 6774 if (pi && (ns->id_ns.lbaf[lbaf].ms < nvme_pi_tuple_size(ns))) { 6775 return NVME_INVALID_FORMAT | NVME_DNR; 6776 } 6777 6778 if (pi && pi > NVME_ID_NS_DPS_TYPE_3) { 6779 return NVME_INVALID_FIELD | NVME_DNR; 6780 } 6781 6782 return NVME_SUCCESS; 6783 } 6784 6785 static void nvme_do_format(NvmeFormatAIOCB *iocb) 6786 { 6787 NvmeRequest *req = iocb->req; 6788 NvmeCtrl *n = nvme_ctrl(req); 6789 uint32_t dw10 = le32_to_cpu(req->cmd.cdw10); 6790 uint8_t lbaf = dw10 & 0xf; 6791 uint8_t pi = (dw10 >> 5) & 0x7; 6792 uint16_t status; 6793 int i; 6794 6795 if (iocb->ret < 0) { 6796 goto done; 6797 } 6798 6799 if (iocb->broadcast) { 6800 for (i = iocb->nsid + 1; i <= NVME_MAX_NAMESPACES; i++) { 6801 iocb->ns = nvme_ns(n, i); 6802 if (iocb->ns) { 6803 iocb->nsid = i; 6804 break; 6805 } 6806 } 6807 } 6808 6809 if (!iocb->ns) { 6810 goto done; 6811 } 6812 6813 status = nvme_format_check(iocb->ns, lbaf, pi); 6814 if (status) { 6815 req->status = status; 6816 goto done; 6817 } 6818 6819 iocb->ns->status = NVME_FORMAT_IN_PROGRESS; 6820 nvme_format_ns_cb(iocb, 0); 6821 return; 6822 6823 done: 6824 iocb->common.cb(iocb->common.opaque, iocb->ret); 6825 qemu_aio_unref(iocb); 6826 } 6827 6828 static uint16_t nvme_format(NvmeCtrl *n, NvmeRequest *req) 6829 { 6830 NvmeFormatAIOCB *iocb; 6831 uint32_t nsid = le32_to_cpu(req->cmd.nsid); 6832 uint32_t dw10 = le32_to_cpu(req->cmd.cdw10); 6833 uint8_t lbaf = dw10 & 0xf; 6834 uint8_t mset = (dw10 >> 4) & 0x1; 6835 uint8_t pi = (dw10 >> 5) & 0x7; 6836 uint8_t pil = (dw10 >> 8) & 0x1; 6837 uint8_t lbafu = (dw10 >> 12) & 0x3; 6838 uint16_t status; 6839 6840 iocb = qemu_aio_get(&nvme_format_aiocb_info, NULL, nvme_misc_cb, req); 6841 6842 iocb->req = req; 6843 iocb->ret = 0; 6844 iocb->ns = NULL; 6845 iocb->nsid = 0; 6846 iocb->lbaf = lbaf; 6847 iocb->mset = mset; 6848 iocb->pi = pi; 6849 iocb->pil = pil; 6850 iocb->broadcast = (nsid == NVME_NSID_BROADCAST); 6851 iocb->offset = 0; 6852 6853 if (n->features.hbs.lbafee) { 6854 iocb->lbaf |= lbafu << 4; 6855 } 6856 6857 if (!iocb->broadcast) { 6858 if (!nvme_nsid_valid(n, nsid)) { 6859 status = NVME_INVALID_NSID | NVME_DNR; 6860 goto out; 6861 } 6862 6863 iocb->ns = nvme_ns(n, nsid); 6864 if (!iocb->ns) { 6865 status = NVME_INVALID_FIELD | NVME_DNR; 6866 goto out; 6867 } 6868 } 6869 6870 req->aiocb = &iocb->common; 6871 nvme_do_format(iocb); 6872 6873 return NVME_NO_COMPLETE; 6874 6875 out: 6876 qemu_aio_unref(iocb); 6877 6878 return status; 6879 } 6880 6881 static void nvme_get_virt_res_num(NvmeCtrl *n, uint8_t rt, int *num_total, 6882 int *num_prim, int *num_sec) 6883 { 6884 *num_total = le32_to_cpu(rt ? 6885 n->pri_ctrl_cap.vifrt : n->pri_ctrl_cap.vqfrt); 6886 *num_prim = le16_to_cpu(rt ? 6887 n->pri_ctrl_cap.virfap : n->pri_ctrl_cap.vqrfap); 6888 *num_sec = le16_to_cpu(rt ? n->pri_ctrl_cap.virfa : n->pri_ctrl_cap.vqrfa); 6889 } 6890 6891 static uint16_t nvme_assign_virt_res_to_prim(NvmeCtrl *n, NvmeRequest *req, 6892 uint16_t cntlid, uint8_t rt, 6893 int nr) 6894 { 6895 int num_total, num_prim, num_sec; 6896 6897 if (cntlid != n->cntlid) { 6898 return NVME_INVALID_CTRL_ID | NVME_DNR; 6899 } 6900 6901 nvme_get_virt_res_num(n, rt, &num_total, &num_prim, &num_sec); 6902 6903 if (nr > num_total) { 6904 return NVME_INVALID_NUM_RESOURCES | NVME_DNR; 6905 } 6906 6907 if (nr > num_total - num_sec) { 6908 return NVME_INVALID_RESOURCE_ID | NVME_DNR; 6909 } 6910 6911 if (rt) { 6912 n->next_pri_ctrl_cap.virfap = cpu_to_le16(nr); 6913 } else { 6914 n->next_pri_ctrl_cap.vqrfap = cpu_to_le16(nr); 6915 } 6916 6917 req->cqe.result = cpu_to_le32(nr); 6918 return req->status; 6919 } 6920 6921 static void nvme_update_virt_res(NvmeCtrl *n, NvmeSecCtrlEntry *sctrl, 6922 uint8_t rt, int nr) 6923 { 6924 int prev_nr, prev_total; 6925 6926 if (rt) { 6927 prev_nr = le16_to_cpu(sctrl->nvi); 6928 prev_total = le32_to_cpu(n->pri_ctrl_cap.virfa); 6929 sctrl->nvi = cpu_to_le16(nr); 6930 n->pri_ctrl_cap.virfa = cpu_to_le32(prev_total + nr - prev_nr); 6931 } else { 6932 prev_nr = le16_to_cpu(sctrl->nvq); 6933 prev_total = le32_to_cpu(n->pri_ctrl_cap.vqrfa); 6934 sctrl->nvq = cpu_to_le16(nr); 6935 n->pri_ctrl_cap.vqrfa = cpu_to_le32(prev_total + nr - prev_nr); 6936 } 6937 } 6938 6939 static uint16_t nvme_assign_virt_res_to_sec(NvmeCtrl *n, NvmeRequest *req, 6940 uint16_t cntlid, uint8_t rt, int nr) 6941 { 6942 int num_total, num_prim, num_sec, num_free, diff, limit; 6943 NvmeSecCtrlEntry *sctrl; 6944 6945 sctrl = nvme_sctrl_for_cntlid(n, cntlid); 6946 if (!sctrl) { 6947 return NVME_INVALID_CTRL_ID | NVME_DNR; 6948 } 6949 6950 if (sctrl->scs) { 6951 return NVME_INVALID_SEC_CTRL_STATE | NVME_DNR; 6952 } 6953 6954 limit = le16_to_cpu(rt ? n->pri_ctrl_cap.vifrsm : n->pri_ctrl_cap.vqfrsm); 6955 if (nr > limit) { 6956 return NVME_INVALID_NUM_RESOURCES | NVME_DNR; 6957 } 6958 6959 nvme_get_virt_res_num(n, rt, &num_total, &num_prim, &num_sec); 6960 num_free = num_total - num_prim - num_sec; 6961 diff = nr - le16_to_cpu(rt ? sctrl->nvi : sctrl->nvq); 6962 6963 if (diff > num_free) { 6964 return NVME_INVALID_RESOURCE_ID | NVME_DNR; 6965 } 6966 6967 nvme_update_virt_res(n, sctrl, rt, nr); 6968 req->cqe.result = cpu_to_le32(nr); 6969 6970 return req->status; 6971 } 6972 6973 static uint16_t nvme_virt_set_state(NvmeCtrl *n, uint16_t cntlid, bool online) 6974 { 6975 PCIDevice *pci = PCI_DEVICE(n); 6976 NvmeCtrl *sn = NULL; 6977 NvmeSecCtrlEntry *sctrl; 6978 int vf_index; 6979 6980 sctrl = nvme_sctrl_for_cntlid(n, cntlid); 6981 if (!sctrl) { 6982 return NVME_INVALID_CTRL_ID | NVME_DNR; 6983 } 6984 6985 if (!pci_is_vf(pci)) { 6986 vf_index = le16_to_cpu(sctrl->vfn) - 1; 6987 sn = NVME(pcie_sriov_get_vf_at_index(pci, vf_index)); 6988 } 6989 6990 if (online) { 6991 if (!sctrl->nvi || (le16_to_cpu(sctrl->nvq) < 2) || !sn) { 6992 return NVME_INVALID_SEC_CTRL_STATE | NVME_DNR; 6993 } 6994 6995 if (!sctrl->scs) { 6996 sctrl->scs = 0x1; 6997 nvme_ctrl_reset(sn, NVME_RESET_FUNCTION); 6998 } 6999 } else { 7000 nvme_update_virt_res(n, sctrl, NVME_VIRT_RES_INTERRUPT, 0); 7001 nvme_update_virt_res(n, sctrl, NVME_VIRT_RES_QUEUE, 0); 7002 7003 if (sctrl->scs) { 7004 sctrl->scs = 0x0; 7005 if (sn) { 7006 nvme_ctrl_reset(sn, NVME_RESET_FUNCTION); 7007 } 7008 } 7009 } 7010 7011 return NVME_SUCCESS; 7012 } 7013 7014 static uint16_t nvme_virt_mngmt(NvmeCtrl *n, NvmeRequest *req) 7015 { 7016 uint32_t dw10 = le32_to_cpu(req->cmd.cdw10); 7017 uint32_t dw11 = le32_to_cpu(req->cmd.cdw11); 7018 uint8_t act = dw10 & 0xf; 7019 uint8_t rt = (dw10 >> 8) & 0x7; 7020 uint16_t cntlid = (dw10 >> 16) & 0xffff; 7021 int nr = dw11 & 0xffff; 7022 7023 trace_pci_nvme_virt_mngmt(nvme_cid(req), act, cntlid, rt ? "VI" : "VQ", nr); 7024 7025 if (rt != NVME_VIRT_RES_QUEUE && rt != NVME_VIRT_RES_INTERRUPT) { 7026 return NVME_INVALID_RESOURCE_ID | NVME_DNR; 7027 } 7028 7029 switch (act) { 7030 case NVME_VIRT_MNGMT_ACTION_SEC_ASSIGN: 7031 return nvme_assign_virt_res_to_sec(n, req, cntlid, rt, nr); 7032 case NVME_VIRT_MNGMT_ACTION_PRM_ALLOC: 7033 return nvme_assign_virt_res_to_prim(n, req, cntlid, rt, nr); 7034 case NVME_VIRT_MNGMT_ACTION_SEC_ONLINE: 7035 return nvme_virt_set_state(n, cntlid, true); 7036 case NVME_VIRT_MNGMT_ACTION_SEC_OFFLINE: 7037 return nvme_virt_set_state(n, cntlid, false); 7038 default: 7039 return NVME_INVALID_FIELD | NVME_DNR; 7040 } 7041 } 7042 7043 static uint16_t nvme_dbbuf_config(NvmeCtrl *n, const NvmeRequest *req) 7044 { 7045 PCIDevice *pci = PCI_DEVICE(n); 7046 uint64_t dbs_addr = le64_to_cpu(req->cmd.dptr.prp1); 7047 uint64_t eis_addr = le64_to_cpu(req->cmd.dptr.prp2); 7048 int i; 7049 7050 /* Address should be page aligned */ 7051 if (dbs_addr & (n->page_size - 1) || eis_addr & (n->page_size - 1)) { 7052 return NVME_INVALID_FIELD | NVME_DNR; 7053 } 7054 7055 /* Save shadow buffer base addr for use during queue creation */ 7056 n->dbbuf_dbs = dbs_addr; 7057 n->dbbuf_eis = eis_addr; 7058 n->dbbuf_enabled = true; 7059 7060 for (i = 0; i < n->params.max_ioqpairs + 1; i++) { 7061 NvmeSQueue *sq = n->sq[i]; 7062 NvmeCQueue *cq = n->cq[i]; 7063 7064 if (sq) { 7065 /* 7066 * CAP.DSTRD is 0, so offset of ith sq db_addr is (i<<3) 7067 * nvme_process_db() uses this hard-coded way to calculate 7068 * doorbell offsets. Be consistent with that here. 7069 */ 7070 sq->db_addr = dbs_addr + (i << 3); 7071 sq->ei_addr = eis_addr + (i << 3); 7072 stl_le_pci_dma(pci, sq->db_addr, sq->tail, MEMTXATTRS_UNSPECIFIED); 7073 7074 if (n->params.ioeventfd && sq->sqid != 0) { 7075 if (!nvme_init_sq_ioeventfd(sq)) { 7076 sq->ioeventfd_enabled = true; 7077 } 7078 } 7079 } 7080 7081 if (cq) { 7082 /* CAP.DSTRD is 0, so offset of ith cq db_addr is (i<<3)+(1<<2) */ 7083 cq->db_addr = dbs_addr + (i << 3) + (1 << 2); 7084 cq->ei_addr = eis_addr + (i << 3) + (1 << 2); 7085 stl_le_pci_dma(pci, cq->db_addr, cq->head, MEMTXATTRS_UNSPECIFIED); 7086 7087 if (n->params.ioeventfd && cq->cqid != 0) { 7088 if (!nvme_init_cq_ioeventfd(cq)) { 7089 cq->ioeventfd_enabled = true; 7090 } 7091 } 7092 } 7093 } 7094 7095 trace_pci_nvme_dbbuf_config(dbs_addr, eis_addr); 7096 7097 return NVME_SUCCESS; 7098 } 7099 7100 static uint16_t nvme_directive_send(NvmeCtrl *n, NvmeRequest *req) 7101 { 7102 return NVME_INVALID_FIELD | NVME_DNR; 7103 } 7104 7105 static uint16_t nvme_directive_receive(NvmeCtrl *n, NvmeRequest *req) 7106 { 7107 NvmeNamespace *ns; 7108 uint32_t dw10 = le32_to_cpu(req->cmd.cdw10); 7109 uint32_t dw11 = le32_to_cpu(req->cmd.cdw11); 7110 uint32_t nsid = le32_to_cpu(req->cmd.nsid); 7111 uint8_t doper, dtype; 7112 uint32_t numd, trans_len; 7113 NvmeDirectiveIdentify id = { 7114 .supported = 1 << NVME_DIRECTIVE_IDENTIFY, 7115 .enabled = 1 << NVME_DIRECTIVE_IDENTIFY, 7116 }; 7117 7118 numd = dw10 + 1; 7119 doper = dw11 & 0xff; 7120 dtype = (dw11 >> 8) & 0xff; 7121 7122 trans_len = MIN(sizeof(NvmeDirectiveIdentify), numd << 2); 7123 7124 if (nsid == NVME_NSID_BROADCAST || dtype != NVME_DIRECTIVE_IDENTIFY || 7125 doper != NVME_DIRECTIVE_RETURN_PARAMS) { 7126 return NVME_INVALID_FIELD | NVME_DNR; 7127 } 7128 7129 ns = nvme_ns(n, nsid); 7130 if (!ns) { 7131 return NVME_INVALID_FIELD | NVME_DNR; 7132 } 7133 7134 switch (dtype) { 7135 case NVME_DIRECTIVE_IDENTIFY: 7136 switch (doper) { 7137 case NVME_DIRECTIVE_RETURN_PARAMS: 7138 if (ns->endgrp && ns->endgrp->fdp.enabled) { 7139 id.supported |= 1 << NVME_DIRECTIVE_DATA_PLACEMENT; 7140 id.enabled |= 1 << NVME_DIRECTIVE_DATA_PLACEMENT; 7141 id.persistent |= 1 << NVME_DIRECTIVE_DATA_PLACEMENT; 7142 } 7143 7144 return nvme_c2h(n, (uint8_t *)&id, trans_len, req); 7145 7146 default: 7147 return NVME_INVALID_FIELD | NVME_DNR; 7148 } 7149 7150 default: 7151 return NVME_INVALID_FIELD; 7152 } 7153 } 7154 7155 static uint16_t nvme_admin_cmd(NvmeCtrl *n, NvmeRequest *req) 7156 { 7157 trace_pci_nvme_admin_cmd(nvme_cid(req), nvme_sqid(req), req->cmd.opcode, 7158 nvme_adm_opc_str(req->cmd.opcode)); 7159 7160 if (!(nvme_cse_acs[req->cmd.opcode] & NVME_CMD_EFF_CSUPP)) { 7161 trace_pci_nvme_err_invalid_admin_opc(req->cmd.opcode); 7162 return NVME_INVALID_OPCODE | NVME_DNR; 7163 } 7164 7165 /* SGLs shall not be used for Admin commands in NVMe over PCIe */ 7166 if (NVME_CMD_FLAGS_PSDT(req->cmd.flags) != NVME_PSDT_PRP) { 7167 return NVME_INVALID_FIELD | NVME_DNR; 7168 } 7169 7170 if (NVME_CMD_FLAGS_FUSE(req->cmd.flags)) { 7171 return NVME_INVALID_FIELD; 7172 } 7173 7174 switch (req->cmd.opcode) { 7175 case NVME_ADM_CMD_DELETE_SQ: 7176 return nvme_del_sq(n, req); 7177 case NVME_ADM_CMD_CREATE_SQ: 7178 return nvme_create_sq(n, req); 7179 case NVME_ADM_CMD_GET_LOG_PAGE: 7180 return nvme_get_log(n, req); 7181 case NVME_ADM_CMD_DELETE_CQ: 7182 return nvme_del_cq(n, req); 7183 case NVME_ADM_CMD_CREATE_CQ: 7184 return nvme_create_cq(n, req); 7185 case NVME_ADM_CMD_IDENTIFY: 7186 return nvme_identify(n, req); 7187 case NVME_ADM_CMD_ABORT: 7188 return nvme_abort(n, req); 7189 case NVME_ADM_CMD_SET_FEATURES: 7190 return nvme_set_feature(n, req); 7191 case NVME_ADM_CMD_GET_FEATURES: 7192 return nvme_get_feature(n, req); 7193 case NVME_ADM_CMD_ASYNC_EV_REQ: 7194 return nvme_aer(n, req); 7195 case NVME_ADM_CMD_NS_ATTACHMENT: 7196 return nvme_ns_attachment(n, req); 7197 case NVME_ADM_CMD_VIRT_MNGMT: 7198 return nvme_virt_mngmt(n, req); 7199 case NVME_ADM_CMD_DBBUF_CONFIG: 7200 return nvme_dbbuf_config(n, req); 7201 case NVME_ADM_CMD_FORMAT_NVM: 7202 return nvme_format(n, req); 7203 case NVME_ADM_CMD_DIRECTIVE_SEND: 7204 return nvme_directive_send(n, req); 7205 case NVME_ADM_CMD_DIRECTIVE_RECV: 7206 return nvme_directive_receive(n, req); 7207 default: 7208 g_assert_not_reached(); 7209 } 7210 7211 return NVME_INVALID_OPCODE | NVME_DNR; 7212 } 7213 7214 static void nvme_update_sq_eventidx(const NvmeSQueue *sq) 7215 { 7216 trace_pci_nvme_update_sq_eventidx(sq->sqid, sq->tail); 7217 7218 stl_le_pci_dma(PCI_DEVICE(sq->ctrl), sq->ei_addr, sq->tail, 7219 MEMTXATTRS_UNSPECIFIED); 7220 } 7221 7222 static void nvme_update_sq_tail(NvmeSQueue *sq) 7223 { 7224 ldl_le_pci_dma(PCI_DEVICE(sq->ctrl), sq->db_addr, &sq->tail, 7225 MEMTXATTRS_UNSPECIFIED); 7226 7227 trace_pci_nvme_update_sq_tail(sq->sqid, sq->tail); 7228 } 7229 7230 static void nvme_process_sq(void *opaque) 7231 { 7232 NvmeSQueue *sq = opaque; 7233 NvmeCtrl *n = sq->ctrl; 7234 NvmeCQueue *cq = n->cq[sq->cqid]; 7235 7236 uint16_t status; 7237 hwaddr addr; 7238 NvmeCmd cmd; 7239 NvmeRequest *req; 7240 7241 if (n->dbbuf_enabled) { 7242 nvme_update_sq_tail(sq); 7243 } 7244 7245 while (!(nvme_sq_empty(sq) || QTAILQ_EMPTY(&sq->req_list))) { 7246 addr = sq->dma_addr + (sq->head << NVME_SQES); 7247 if (nvme_addr_read(n, addr, (void *)&cmd, sizeof(cmd))) { 7248 trace_pci_nvme_err_addr_read(addr); 7249 trace_pci_nvme_err_cfs(); 7250 stl_le_p(&n->bar.csts, NVME_CSTS_FAILED); 7251 break; 7252 } 7253 nvme_inc_sq_head(sq); 7254 7255 req = QTAILQ_FIRST(&sq->req_list); 7256 QTAILQ_REMOVE(&sq->req_list, req, entry); 7257 QTAILQ_INSERT_TAIL(&sq->out_req_list, req, entry); 7258 nvme_req_clear(req); 7259 req->cqe.cid = cmd.cid; 7260 memcpy(&req->cmd, &cmd, sizeof(NvmeCmd)); 7261 7262 status = sq->sqid ? nvme_io_cmd(n, req) : 7263 nvme_admin_cmd(n, req); 7264 if (status != NVME_NO_COMPLETE) { 7265 req->status = status; 7266 nvme_enqueue_req_completion(cq, req); 7267 } 7268 7269 if (n->dbbuf_enabled) { 7270 nvme_update_sq_eventidx(sq); 7271 nvme_update_sq_tail(sq); 7272 } 7273 } 7274 } 7275 7276 static void nvme_update_msixcap_ts(PCIDevice *pci_dev, uint32_t table_size) 7277 { 7278 uint8_t *config; 7279 7280 if (!msix_present(pci_dev)) { 7281 return; 7282 } 7283 7284 assert(table_size > 0 && table_size <= pci_dev->msix_entries_nr); 7285 7286 config = pci_dev->config + pci_dev->msix_cap; 7287 pci_set_word_by_mask(config + PCI_MSIX_FLAGS, PCI_MSIX_FLAGS_QSIZE, 7288 table_size - 1); 7289 } 7290 7291 static void nvme_activate_virt_res(NvmeCtrl *n) 7292 { 7293 PCIDevice *pci_dev = PCI_DEVICE(n); 7294 NvmePriCtrlCap *cap = &n->pri_ctrl_cap; 7295 NvmeSecCtrlEntry *sctrl; 7296 7297 /* -1 to account for the admin queue */ 7298 if (pci_is_vf(pci_dev)) { 7299 sctrl = nvme_sctrl(n); 7300 cap->vqprt = sctrl->nvq; 7301 cap->viprt = sctrl->nvi; 7302 n->conf_ioqpairs = sctrl->nvq ? le16_to_cpu(sctrl->nvq) - 1 : 0; 7303 n->conf_msix_qsize = sctrl->nvi ? le16_to_cpu(sctrl->nvi) : 1; 7304 } else { 7305 cap->vqrfap = n->next_pri_ctrl_cap.vqrfap; 7306 cap->virfap = n->next_pri_ctrl_cap.virfap; 7307 n->conf_ioqpairs = le16_to_cpu(cap->vqprt) + 7308 le16_to_cpu(cap->vqrfap) - 1; 7309 n->conf_msix_qsize = le16_to_cpu(cap->viprt) + 7310 le16_to_cpu(cap->virfap); 7311 } 7312 } 7313 7314 static void nvme_ctrl_reset(NvmeCtrl *n, NvmeResetType rst) 7315 { 7316 PCIDevice *pci_dev = PCI_DEVICE(n); 7317 NvmeSecCtrlEntry *sctrl; 7318 NvmeNamespace *ns; 7319 int i; 7320 7321 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { 7322 ns = nvme_ns(n, i); 7323 if (!ns) { 7324 continue; 7325 } 7326 7327 nvme_ns_drain(ns); 7328 } 7329 7330 for (i = 0; i < n->params.max_ioqpairs + 1; i++) { 7331 if (n->sq[i] != NULL) { 7332 nvme_free_sq(n->sq[i], n); 7333 } 7334 } 7335 for (i = 0; i < n->params.max_ioqpairs + 1; i++) { 7336 if (n->cq[i] != NULL) { 7337 nvme_free_cq(n->cq[i], n); 7338 } 7339 } 7340 7341 while (!QTAILQ_EMPTY(&n->aer_queue)) { 7342 NvmeAsyncEvent *event = QTAILQ_FIRST(&n->aer_queue); 7343 QTAILQ_REMOVE(&n->aer_queue, event, entry); 7344 g_free(event); 7345 } 7346 7347 if (n->params.sriov_max_vfs) { 7348 if (!pci_is_vf(pci_dev)) { 7349 for (i = 0; i < n->nr_sec_ctrls; i++) { 7350 sctrl = &n->sec_ctrl_list[i]; 7351 nvme_virt_set_state(n, le16_to_cpu(sctrl->scid), false); 7352 } 7353 } 7354 7355 if (rst != NVME_RESET_CONTROLLER) { 7356 nvme_activate_virt_res(n); 7357 } 7358 } 7359 7360 n->aer_queued = 0; 7361 n->aer_mask = 0; 7362 n->outstanding_aers = 0; 7363 n->qs_created = false; 7364 7365 nvme_update_msixcap_ts(pci_dev, n->conf_msix_qsize); 7366 7367 if (pci_is_vf(pci_dev)) { 7368 sctrl = nvme_sctrl(n); 7369 7370 stl_le_p(&n->bar.csts, sctrl->scs ? 0 : NVME_CSTS_FAILED); 7371 } else { 7372 stl_le_p(&n->bar.csts, 0); 7373 } 7374 7375 stl_le_p(&n->bar.intms, 0); 7376 stl_le_p(&n->bar.intmc, 0); 7377 stl_le_p(&n->bar.cc, 0); 7378 7379 n->dbbuf_dbs = 0; 7380 n->dbbuf_eis = 0; 7381 n->dbbuf_enabled = false; 7382 } 7383 7384 static void nvme_ctrl_shutdown(NvmeCtrl *n) 7385 { 7386 NvmeNamespace *ns; 7387 int i; 7388 7389 if (n->pmr.dev) { 7390 memory_region_msync(&n->pmr.dev->mr, 0, n->pmr.dev->size); 7391 } 7392 7393 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { 7394 ns = nvme_ns(n, i); 7395 if (!ns) { 7396 continue; 7397 } 7398 7399 nvme_ns_shutdown(ns); 7400 } 7401 } 7402 7403 static void nvme_select_iocs(NvmeCtrl *n) 7404 { 7405 NvmeNamespace *ns; 7406 int i; 7407 7408 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { 7409 ns = nvme_ns(n, i); 7410 if (!ns) { 7411 continue; 7412 } 7413 7414 nvme_select_iocs_ns(n, ns); 7415 } 7416 } 7417 7418 static int nvme_start_ctrl(NvmeCtrl *n) 7419 { 7420 uint64_t cap = ldq_le_p(&n->bar.cap); 7421 uint32_t cc = ldl_le_p(&n->bar.cc); 7422 uint32_t aqa = ldl_le_p(&n->bar.aqa); 7423 uint64_t asq = ldq_le_p(&n->bar.asq); 7424 uint64_t acq = ldq_le_p(&n->bar.acq); 7425 uint32_t page_bits = NVME_CC_MPS(cc) + 12; 7426 uint32_t page_size = 1 << page_bits; 7427 NvmeSecCtrlEntry *sctrl = nvme_sctrl(n); 7428 7429 if (pci_is_vf(PCI_DEVICE(n)) && !sctrl->scs) { 7430 trace_pci_nvme_err_startfail_virt_state(le16_to_cpu(sctrl->nvi), 7431 le16_to_cpu(sctrl->nvq)); 7432 return -1; 7433 } 7434 if (unlikely(n->cq[0])) { 7435 trace_pci_nvme_err_startfail_cq(); 7436 return -1; 7437 } 7438 if (unlikely(n->sq[0])) { 7439 trace_pci_nvme_err_startfail_sq(); 7440 return -1; 7441 } 7442 if (unlikely(asq & (page_size - 1))) { 7443 trace_pci_nvme_err_startfail_asq_misaligned(asq); 7444 return -1; 7445 } 7446 if (unlikely(acq & (page_size - 1))) { 7447 trace_pci_nvme_err_startfail_acq_misaligned(acq); 7448 return -1; 7449 } 7450 if (unlikely(!(NVME_CAP_CSS(cap) & (1 << NVME_CC_CSS(cc))))) { 7451 trace_pci_nvme_err_startfail_css(NVME_CC_CSS(cc)); 7452 return -1; 7453 } 7454 if (unlikely(NVME_CC_MPS(cc) < NVME_CAP_MPSMIN(cap))) { 7455 trace_pci_nvme_err_startfail_page_too_small( 7456 NVME_CC_MPS(cc), 7457 NVME_CAP_MPSMIN(cap)); 7458 return -1; 7459 } 7460 if (unlikely(NVME_CC_MPS(cc) > 7461 NVME_CAP_MPSMAX(cap))) { 7462 trace_pci_nvme_err_startfail_page_too_large( 7463 NVME_CC_MPS(cc), 7464 NVME_CAP_MPSMAX(cap)); 7465 return -1; 7466 } 7467 if (unlikely(!NVME_AQA_ASQS(aqa))) { 7468 trace_pci_nvme_err_startfail_asqent_sz_zero(); 7469 return -1; 7470 } 7471 if (unlikely(!NVME_AQA_ACQS(aqa))) { 7472 trace_pci_nvme_err_startfail_acqent_sz_zero(); 7473 return -1; 7474 } 7475 7476 n->page_bits = page_bits; 7477 n->page_size = page_size; 7478 n->max_prp_ents = n->page_size / sizeof(uint64_t); 7479 nvme_init_cq(&n->admin_cq, n, acq, 0, 0, NVME_AQA_ACQS(aqa) + 1, 1); 7480 nvme_init_sq(&n->admin_sq, n, asq, 0, 0, NVME_AQA_ASQS(aqa) + 1); 7481 7482 nvme_set_timestamp(n, 0ULL); 7483 7484 nvme_select_iocs(n); 7485 7486 return 0; 7487 } 7488 7489 static void nvme_cmb_enable_regs(NvmeCtrl *n) 7490 { 7491 uint32_t cmbloc = ldl_le_p(&n->bar.cmbloc); 7492 uint32_t cmbsz = ldl_le_p(&n->bar.cmbsz); 7493 7494 NVME_CMBLOC_SET_CDPCILS(cmbloc, 1); 7495 NVME_CMBLOC_SET_CDPMLS(cmbloc, 1); 7496 NVME_CMBLOC_SET_BIR(cmbloc, NVME_CMB_BIR); 7497 stl_le_p(&n->bar.cmbloc, cmbloc); 7498 7499 NVME_CMBSZ_SET_SQS(cmbsz, 1); 7500 NVME_CMBSZ_SET_CQS(cmbsz, 0); 7501 NVME_CMBSZ_SET_LISTS(cmbsz, 1); 7502 NVME_CMBSZ_SET_RDS(cmbsz, 1); 7503 NVME_CMBSZ_SET_WDS(cmbsz, 1); 7504 NVME_CMBSZ_SET_SZU(cmbsz, 2); /* MBs */ 7505 NVME_CMBSZ_SET_SZ(cmbsz, n->params.cmb_size_mb); 7506 stl_le_p(&n->bar.cmbsz, cmbsz); 7507 } 7508 7509 static void nvme_write_bar(NvmeCtrl *n, hwaddr offset, uint64_t data, 7510 unsigned size) 7511 { 7512 PCIDevice *pci = PCI_DEVICE(n); 7513 uint64_t cap = ldq_le_p(&n->bar.cap); 7514 uint32_t cc = ldl_le_p(&n->bar.cc); 7515 uint32_t intms = ldl_le_p(&n->bar.intms); 7516 uint32_t csts = ldl_le_p(&n->bar.csts); 7517 uint32_t pmrsts = ldl_le_p(&n->bar.pmrsts); 7518 7519 if (unlikely(offset & (sizeof(uint32_t) - 1))) { 7520 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_misaligned32, 7521 "MMIO write not 32-bit aligned," 7522 " offset=0x%"PRIx64"", offset); 7523 /* should be ignored, fall through for now */ 7524 } 7525 7526 if (unlikely(size < sizeof(uint32_t))) { 7527 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_toosmall, 7528 "MMIO write smaller than 32-bits," 7529 " offset=0x%"PRIx64", size=%u", 7530 offset, size); 7531 /* should be ignored, fall through for now */ 7532 } 7533 7534 switch (offset) { 7535 case NVME_REG_INTMS: 7536 if (unlikely(msix_enabled(pci))) { 7537 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix, 7538 "undefined access to interrupt mask set" 7539 " when MSI-X is enabled"); 7540 /* should be ignored, fall through for now */ 7541 } 7542 intms |= data; 7543 stl_le_p(&n->bar.intms, intms); 7544 n->bar.intmc = n->bar.intms; 7545 trace_pci_nvme_mmio_intm_set(data & 0xffffffff, intms); 7546 nvme_irq_check(n); 7547 break; 7548 case NVME_REG_INTMC: 7549 if (unlikely(msix_enabled(pci))) { 7550 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix, 7551 "undefined access to interrupt mask clr" 7552 " when MSI-X is enabled"); 7553 /* should be ignored, fall through for now */ 7554 } 7555 intms &= ~data; 7556 stl_le_p(&n->bar.intms, intms); 7557 n->bar.intmc = n->bar.intms; 7558 trace_pci_nvme_mmio_intm_clr(data & 0xffffffff, intms); 7559 nvme_irq_check(n); 7560 break; 7561 case NVME_REG_CC: 7562 stl_le_p(&n->bar.cc, data); 7563 7564 trace_pci_nvme_mmio_cfg(data & 0xffffffff); 7565 7566 if (NVME_CC_SHN(data) && !(NVME_CC_SHN(cc))) { 7567 trace_pci_nvme_mmio_shutdown_set(); 7568 nvme_ctrl_shutdown(n); 7569 csts &= ~(CSTS_SHST_MASK << CSTS_SHST_SHIFT); 7570 csts |= NVME_CSTS_SHST_COMPLETE; 7571 } else if (!NVME_CC_SHN(data) && NVME_CC_SHN(cc)) { 7572 trace_pci_nvme_mmio_shutdown_cleared(); 7573 csts &= ~(CSTS_SHST_MASK << CSTS_SHST_SHIFT); 7574 } 7575 7576 if (NVME_CC_EN(data) && !NVME_CC_EN(cc)) { 7577 if (unlikely(nvme_start_ctrl(n))) { 7578 trace_pci_nvme_err_startfail(); 7579 csts = NVME_CSTS_FAILED; 7580 } else { 7581 trace_pci_nvme_mmio_start_success(); 7582 csts = NVME_CSTS_READY; 7583 } 7584 } else if (!NVME_CC_EN(data) && NVME_CC_EN(cc)) { 7585 trace_pci_nvme_mmio_stopped(); 7586 nvme_ctrl_reset(n, NVME_RESET_CONTROLLER); 7587 7588 break; 7589 } 7590 7591 stl_le_p(&n->bar.csts, csts); 7592 7593 break; 7594 case NVME_REG_CSTS: 7595 if (data & (1 << 4)) { 7596 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ssreset_w1c_unsupported, 7597 "attempted to W1C CSTS.NSSRO" 7598 " but CAP.NSSRS is zero (not supported)"); 7599 } else if (data != 0) { 7600 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ro_csts, 7601 "attempted to set a read only bit" 7602 " of controller status"); 7603 } 7604 break; 7605 case NVME_REG_NSSR: 7606 if (data == 0x4e564d65) { 7607 trace_pci_nvme_ub_mmiowr_ssreset_unsupported(); 7608 } else { 7609 /* The spec says that writes of other values have no effect */ 7610 return; 7611 } 7612 break; 7613 case NVME_REG_AQA: 7614 stl_le_p(&n->bar.aqa, data); 7615 trace_pci_nvme_mmio_aqattr(data & 0xffffffff); 7616 break; 7617 case NVME_REG_ASQ: 7618 stn_le_p(&n->bar.asq, size, data); 7619 trace_pci_nvme_mmio_asqaddr(data); 7620 break; 7621 case NVME_REG_ASQ + 4: 7622 stl_le_p((uint8_t *)&n->bar.asq + 4, data); 7623 trace_pci_nvme_mmio_asqaddr_hi(data, ldq_le_p(&n->bar.asq)); 7624 break; 7625 case NVME_REG_ACQ: 7626 trace_pci_nvme_mmio_acqaddr(data); 7627 stn_le_p(&n->bar.acq, size, data); 7628 break; 7629 case NVME_REG_ACQ + 4: 7630 stl_le_p((uint8_t *)&n->bar.acq + 4, data); 7631 trace_pci_nvme_mmio_acqaddr_hi(data, ldq_le_p(&n->bar.acq)); 7632 break; 7633 case NVME_REG_CMBLOC: 7634 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbloc_reserved, 7635 "invalid write to reserved CMBLOC" 7636 " when CMBSZ is zero, ignored"); 7637 return; 7638 case NVME_REG_CMBSZ: 7639 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbsz_readonly, 7640 "invalid write to read only CMBSZ, ignored"); 7641 return; 7642 case NVME_REG_CMBMSC: 7643 if (!NVME_CAP_CMBS(cap)) { 7644 return; 7645 } 7646 7647 stn_le_p(&n->bar.cmbmsc, size, data); 7648 n->cmb.cmse = false; 7649 7650 if (NVME_CMBMSC_CRE(data)) { 7651 nvme_cmb_enable_regs(n); 7652 7653 if (NVME_CMBMSC_CMSE(data)) { 7654 uint64_t cmbmsc = ldq_le_p(&n->bar.cmbmsc); 7655 hwaddr cba = NVME_CMBMSC_CBA(cmbmsc) << CMBMSC_CBA_SHIFT; 7656 if (cba + int128_get64(n->cmb.mem.size) < cba) { 7657 uint32_t cmbsts = ldl_le_p(&n->bar.cmbsts); 7658 NVME_CMBSTS_SET_CBAI(cmbsts, 1); 7659 stl_le_p(&n->bar.cmbsts, cmbsts); 7660 return; 7661 } 7662 7663 n->cmb.cba = cba; 7664 n->cmb.cmse = true; 7665 } 7666 } else { 7667 n->bar.cmbsz = 0; 7668 n->bar.cmbloc = 0; 7669 } 7670 7671 return; 7672 case NVME_REG_CMBMSC + 4: 7673 stl_le_p((uint8_t *)&n->bar.cmbmsc + 4, data); 7674 return; 7675 7676 case NVME_REG_PMRCAP: 7677 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrcap_readonly, 7678 "invalid write to PMRCAP register, ignored"); 7679 return; 7680 case NVME_REG_PMRCTL: 7681 if (!NVME_CAP_PMRS(cap)) { 7682 return; 7683 } 7684 7685 stl_le_p(&n->bar.pmrctl, data); 7686 if (NVME_PMRCTL_EN(data)) { 7687 memory_region_set_enabled(&n->pmr.dev->mr, true); 7688 pmrsts = 0; 7689 } else { 7690 memory_region_set_enabled(&n->pmr.dev->mr, false); 7691 NVME_PMRSTS_SET_NRDY(pmrsts, 1); 7692 n->pmr.cmse = false; 7693 } 7694 stl_le_p(&n->bar.pmrsts, pmrsts); 7695 return; 7696 case NVME_REG_PMRSTS: 7697 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrsts_readonly, 7698 "invalid write to PMRSTS register, ignored"); 7699 return; 7700 case NVME_REG_PMREBS: 7701 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrebs_readonly, 7702 "invalid write to PMREBS register, ignored"); 7703 return; 7704 case NVME_REG_PMRSWTP: 7705 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrswtp_readonly, 7706 "invalid write to PMRSWTP register, ignored"); 7707 return; 7708 case NVME_REG_PMRMSCL: 7709 if (!NVME_CAP_PMRS(cap)) { 7710 return; 7711 } 7712 7713 stl_le_p(&n->bar.pmrmscl, data); 7714 n->pmr.cmse = false; 7715 7716 if (NVME_PMRMSCL_CMSE(data)) { 7717 uint64_t pmrmscu = ldl_le_p(&n->bar.pmrmscu); 7718 hwaddr cba = pmrmscu << 32 | 7719 (NVME_PMRMSCL_CBA(data) << PMRMSCL_CBA_SHIFT); 7720 if (cba + int128_get64(n->pmr.dev->mr.size) < cba) { 7721 NVME_PMRSTS_SET_CBAI(pmrsts, 1); 7722 stl_le_p(&n->bar.pmrsts, pmrsts); 7723 return; 7724 } 7725 7726 n->pmr.cmse = true; 7727 n->pmr.cba = cba; 7728 } 7729 7730 return; 7731 case NVME_REG_PMRMSCU: 7732 if (!NVME_CAP_PMRS(cap)) { 7733 return; 7734 } 7735 7736 stl_le_p(&n->bar.pmrmscu, data); 7737 return; 7738 default: 7739 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_invalid, 7740 "invalid MMIO write," 7741 " offset=0x%"PRIx64", data=%"PRIx64"", 7742 offset, data); 7743 break; 7744 } 7745 } 7746 7747 static uint64_t nvme_mmio_read(void *opaque, hwaddr addr, unsigned size) 7748 { 7749 NvmeCtrl *n = (NvmeCtrl *)opaque; 7750 uint8_t *ptr = (uint8_t *)&n->bar; 7751 7752 trace_pci_nvme_mmio_read(addr, size); 7753 7754 if (unlikely(addr & (sizeof(uint32_t) - 1))) { 7755 NVME_GUEST_ERR(pci_nvme_ub_mmiord_misaligned32, 7756 "MMIO read not 32-bit aligned," 7757 " offset=0x%"PRIx64"", addr); 7758 /* should RAZ, fall through for now */ 7759 } else if (unlikely(size < sizeof(uint32_t))) { 7760 NVME_GUEST_ERR(pci_nvme_ub_mmiord_toosmall, 7761 "MMIO read smaller than 32-bits," 7762 " offset=0x%"PRIx64"", addr); 7763 /* should RAZ, fall through for now */ 7764 } 7765 7766 if (addr > sizeof(n->bar) - size) { 7767 NVME_GUEST_ERR(pci_nvme_ub_mmiord_invalid_ofs, 7768 "MMIO read beyond last register," 7769 " offset=0x%"PRIx64", returning 0", addr); 7770 7771 return 0; 7772 } 7773 7774 if (pci_is_vf(PCI_DEVICE(n)) && !nvme_sctrl(n)->scs && 7775 addr != NVME_REG_CSTS) { 7776 trace_pci_nvme_err_ignored_mmio_vf_offline(addr, size); 7777 return 0; 7778 } 7779 7780 /* 7781 * When PMRWBM bit 1 is set then read from 7782 * from PMRSTS should ensure prior writes 7783 * made it to persistent media 7784 */ 7785 if (addr == NVME_REG_PMRSTS && 7786 (NVME_PMRCAP_PMRWBM(ldl_le_p(&n->bar.pmrcap)) & 0x02)) { 7787 memory_region_msync(&n->pmr.dev->mr, 0, n->pmr.dev->size); 7788 } 7789 7790 return ldn_le_p(ptr + addr, size); 7791 } 7792 7793 static void nvme_process_db(NvmeCtrl *n, hwaddr addr, int val) 7794 { 7795 PCIDevice *pci = PCI_DEVICE(n); 7796 uint32_t qid; 7797 7798 if (unlikely(addr & ((1 << 2) - 1))) { 7799 NVME_GUEST_ERR(pci_nvme_ub_db_wr_misaligned, 7800 "doorbell write not 32-bit aligned," 7801 " offset=0x%"PRIx64", ignoring", addr); 7802 return; 7803 } 7804 7805 if (((addr - 0x1000) >> 2) & 1) { 7806 /* Completion queue doorbell write */ 7807 7808 uint16_t new_head = val & 0xffff; 7809 int start_sqs; 7810 NvmeCQueue *cq; 7811 7812 qid = (addr - (0x1000 + (1 << 2))) >> 3; 7813 if (unlikely(nvme_check_cqid(n, qid))) { 7814 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cq, 7815 "completion queue doorbell write" 7816 " for nonexistent queue," 7817 " sqid=%"PRIu32", ignoring", qid); 7818 7819 /* 7820 * NVM Express v1.3d, Section 4.1 state: "If host software writes 7821 * an invalid value to the Submission Queue Tail Doorbell or 7822 * Completion Queue Head Doorbell register and an Asynchronous Event 7823 * Request command is outstanding, then an asynchronous event is 7824 * posted to the Admin Completion Queue with a status code of 7825 * Invalid Doorbell Write Value." 7826 * 7827 * Also note that the spec includes the "Invalid Doorbell Register" 7828 * status code, but nowhere does it specify when to use it. 7829 * However, it seems reasonable to use it here in a similar 7830 * fashion. 7831 */ 7832 if (n->outstanding_aers) { 7833 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR, 7834 NVME_AER_INFO_ERR_INVALID_DB_REGISTER, 7835 NVME_LOG_ERROR_INFO); 7836 } 7837 7838 return; 7839 } 7840 7841 cq = n->cq[qid]; 7842 if (unlikely(new_head >= cq->size)) { 7843 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cqhead, 7844 "completion queue doorbell write value" 7845 " beyond queue size, sqid=%"PRIu32"," 7846 " new_head=%"PRIu16", ignoring", 7847 qid, new_head); 7848 7849 if (n->outstanding_aers) { 7850 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR, 7851 NVME_AER_INFO_ERR_INVALID_DB_VALUE, 7852 NVME_LOG_ERROR_INFO); 7853 } 7854 7855 return; 7856 } 7857 7858 trace_pci_nvme_mmio_doorbell_cq(cq->cqid, new_head); 7859 7860 start_sqs = nvme_cq_full(cq) ? 1 : 0; 7861 cq->head = new_head; 7862 if (!qid && n->dbbuf_enabled) { 7863 stl_le_pci_dma(pci, cq->db_addr, cq->head, MEMTXATTRS_UNSPECIFIED); 7864 } 7865 if (start_sqs) { 7866 NvmeSQueue *sq; 7867 QTAILQ_FOREACH(sq, &cq->sq_list, entry) { 7868 qemu_bh_schedule(sq->bh); 7869 } 7870 qemu_bh_schedule(cq->bh); 7871 } 7872 7873 if (cq->tail == cq->head) { 7874 if (cq->irq_enabled) { 7875 n->cq_pending--; 7876 } 7877 7878 nvme_irq_deassert(n, cq); 7879 } 7880 } else { 7881 /* Submission queue doorbell write */ 7882 7883 uint16_t new_tail = val & 0xffff; 7884 NvmeSQueue *sq; 7885 7886 qid = (addr - 0x1000) >> 3; 7887 if (unlikely(nvme_check_sqid(n, qid))) { 7888 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sq, 7889 "submission queue doorbell write" 7890 " for nonexistent queue," 7891 " sqid=%"PRIu32", ignoring", qid); 7892 7893 if (n->outstanding_aers) { 7894 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR, 7895 NVME_AER_INFO_ERR_INVALID_DB_REGISTER, 7896 NVME_LOG_ERROR_INFO); 7897 } 7898 7899 return; 7900 } 7901 7902 sq = n->sq[qid]; 7903 if (unlikely(new_tail >= sq->size)) { 7904 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sqtail, 7905 "submission queue doorbell write value" 7906 " beyond queue size, sqid=%"PRIu32"," 7907 " new_tail=%"PRIu16", ignoring", 7908 qid, new_tail); 7909 7910 if (n->outstanding_aers) { 7911 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR, 7912 NVME_AER_INFO_ERR_INVALID_DB_VALUE, 7913 NVME_LOG_ERROR_INFO); 7914 } 7915 7916 return; 7917 } 7918 7919 trace_pci_nvme_mmio_doorbell_sq(sq->sqid, new_tail); 7920 7921 sq->tail = new_tail; 7922 if (!qid && n->dbbuf_enabled) { 7923 /* 7924 * The spec states "the host shall also update the controller's 7925 * corresponding doorbell property to match the value of that entry 7926 * in the Shadow Doorbell buffer." 7927 * 7928 * Since this context is currently a VM trap, we can safely enforce 7929 * the requirement from the device side in case the host is 7930 * misbehaving. 7931 * 7932 * Note, we shouldn't have to do this, but various drivers 7933 * including ones that run on Linux, are not updating Admin Queues, 7934 * so we can't trust reading it for an appropriate sq tail. 7935 */ 7936 stl_le_pci_dma(pci, sq->db_addr, sq->tail, MEMTXATTRS_UNSPECIFIED); 7937 } 7938 7939 qemu_bh_schedule(sq->bh); 7940 } 7941 } 7942 7943 static void nvme_mmio_write(void *opaque, hwaddr addr, uint64_t data, 7944 unsigned size) 7945 { 7946 NvmeCtrl *n = (NvmeCtrl *)opaque; 7947 7948 trace_pci_nvme_mmio_write(addr, data, size); 7949 7950 if (pci_is_vf(PCI_DEVICE(n)) && !nvme_sctrl(n)->scs && 7951 addr != NVME_REG_CSTS) { 7952 trace_pci_nvme_err_ignored_mmio_vf_offline(addr, size); 7953 return; 7954 } 7955 7956 if (addr < sizeof(n->bar)) { 7957 nvme_write_bar(n, addr, data, size); 7958 } else { 7959 nvme_process_db(n, addr, data); 7960 } 7961 } 7962 7963 static const MemoryRegionOps nvme_mmio_ops = { 7964 .read = nvme_mmio_read, 7965 .write = nvme_mmio_write, 7966 .endianness = DEVICE_LITTLE_ENDIAN, 7967 .impl = { 7968 .min_access_size = 2, 7969 .max_access_size = 8, 7970 }, 7971 }; 7972 7973 static void nvme_cmb_write(void *opaque, hwaddr addr, uint64_t data, 7974 unsigned size) 7975 { 7976 NvmeCtrl *n = (NvmeCtrl *)opaque; 7977 stn_le_p(&n->cmb.buf[addr], size, data); 7978 } 7979 7980 static uint64_t nvme_cmb_read(void *opaque, hwaddr addr, unsigned size) 7981 { 7982 NvmeCtrl *n = (NvmeCtrl *)opaque; 7983 return ldn_le_p(&n->cmb.buf[addr], size); 7984 } 7985 7986 static const MemoryRegionOps nvme_cmb_ops = { 7987 .read = nvme_cmb_read, 7988 .write = nvme_cmb_write, 7989 .endianness = DEVICE_LITTLE_ENDIAN, 7990 .impl = { 7991 .min_access_size = 1, 7992 .max_access_size = 8, 7993 }, 7994 }; 7995 7996 static bool nvme_check_params(NvmeCtrl *n, Error **errp) 7997 { 7998 NvmeParams *params = &n->params; 7999 8000 if (params->num_queues) { 8001 warn_report("num_queues is deprecated; please use max_ioqpairs " 8002 "instead"); 8003 8004 params->max_ioqpairs = params->num_queues - 1; 8005 } 8006 8007 if (n->namespace.blkconf.blk && n->subsys) { 8008 error_setg(errp, "subsystem support is unavailable with legacy " 8009 "namespace ('drive' property)"); 8010 return false; 8011 } 8012 8013 if (params->max_ioqpairs < 1 || 8014 params->max_ioqpairs > NVME_MAX_IOQPAIRS) { 8015 error_setg(errp, "max_ioqpairs must be between 1 and %d", 8016 NVME_MAX_IOQPAIRS); 8017 return false; 8018 } 8019 8020 if (params->msix_qsize < 1 || 8021 params->msix_qsize > PCI_MSIX_FLAGS_QSIZE + 1) { 8022 error_setg(errp, "msix_qsize must be between 1 and %d", 8023 PCI_MSIX_FLAGS_QSIZE + 1); 8024 return false; 8025 } 8026 8027 if (!params->serial) { 8028 error_setg(errp, "serial property not set"); 8029 return false; 8030 } 8031 8032 if (params->mqes < 1) { 8033 error_setg(errp, "mqes property cannot be less than 1"); 8034 return false; 8035 } 8036 8037 if (n->pmr.dev) { 8038 if (params->msix_exclusive_bar) { 8039 error_setg(errp, "not enough BARs available to enable PMR"); 8040 return false; 8041 } 8042 8043 if (host_memory_backend_is_mapped(n->pmr.dev)) { 8044 error_setg(errp, "can't use already busy memdev: %s", 8045 object_get_canonical_path_component(OBJECT(n->pmr.dev))); 8046 return false; 8047 } 8048 8049 if (!is_power_of_2(n->pmr.dev->size)) { 8050 error_setg(errp, "pmr backend size needs to be power of 2 in size"); 8051 return false; 8052 } 8053 8054 host_memory_backend_set_mapped(n->pmr.dev, true); 8055 } 8056 8057 if (n->params.zasl > n->params.mdts) { 8058 error_setg(errp, "zoned.zasl (Zone Append Size Limit) must be less " 8059 "than or equal to mdts (Maximum Data Transfer Size)"); 8060 return false; 8061 } 8062 8063 if (!n->params.vsl) { 8064 error_setg(errp, "vsl must be non-zero"); 8065 return false; 8066 } 8067 8068 if (params->sriov_max_vfs) { 8069 if (!n->subsys) { 8070 error_setg(errp, "subsystem is required for the use of SR-IOV"); 8071 return false; 8072 } 8073 8074 if (params->cmb_size_mb) { 8075 error_setg(errp, "CMB is not supported with SR-IOV"); 8076 return false; 8077 } 8078 8079 if (n->pmr.dev) { 8080 error_setg(errp, "PMR is not supported with SR-IOV"); 8081 return false; 8082 } 8083 8084 if (!params->sriov_vq_flexible || !params->sriov_vi_flexible) { 8085 error_setg(errp, "both sriov_vq_flexible and sriov_vi_flexible" 8086 " must be set for the use of SR-IOV"); 8087 return false; 8088 } 8089 8090 if (params->sriov_vq_flexible < params->sriov_max_vfs * 2) { 8091 error_setg(errp, "sriov_vq_flexible must be greater than or equal" 8092 " to %d (sriov_max_vfs * 2)", params->sriov_max_vfs * 2); 8093 return false; 8094 } 8095 8096 if (params->max_ioqpairs < params->sriov_vq_flexible + 2) { 8097 error_setg(errp, "(max_ioqpairs - sriov_vq_flexible) must be" 8098 " greater than or equal to 2"); 8099 return false; 8100 } 8101 8102 if (params->sriov_vi_flexible < params->sriov_max_vfs) { 8103 error_setg(errp, "sriov_vi_flexible must be greater than or equal" 8104 " to %d (sriov_max_vfs)", params->sriov_max_vfs); 8105 return false; 8106 } 8107 8108 if (params->msix_qsize < params->sriov_vi_flexible + 1) { 8109 error_setg(errp, "(msix_qsize - sriov_vi_flexible) must be" 8110 " greater than or equal to 1"); 8111 return false; 8112 } 8113 8114 if (params->sriov_max_vi_per_vf && 8115 (params->sriov_max_vi_per_vf - 1) % NVME_VF_RES_GRANULARITY) { 8116 error_setg(errp, "sriov_max_vi_per_vf must meet:" 8117 " (sriov_max_vi_per_vf - 1) %% %d == 0 and" 8118 " sriov_max_vi_per_vf >= 1", NVME_VF_RES_GRANULARITY); 8119 return false; 8120 } 8121 8122 if (params->sriov_max_vq_per_vf && 8123 (params->sriov_max_vq_per_vf < 2 || 8124 (params->sriov_max_vq_per_vf - 1) % NVME_VF_RES_GRANULARITY)) { 8125 error_setg(errp, "sriov_max_vq_per_vf must meet:" 8126 " (sriov_max_vq_per_vf - 1) %% %d == 0 and" 8127 " sriov_max_vq_per_vf >= 2", NVME_VF_RES_GRANULARITY); 8128 return false; 8129 } 8130 } 8131 8132 return true; 8133 } 8134 8135 static void nvme_init_state(NvmeCtrl *n) 8136 { 8137 NvmePriCtrlCap *cap = &n->pri_ctrl_cap; 8138 NvmeSecCtrlEntry *list = n->sec_ctrl_list; 8139 NvmeSecCtrlEntry *sctrl; 8140 PCIDevice *pci = PCI_DEVICE(n); 8141 uint8_t max_vfs; 8142 int i; 8143 8144 if (pci_is_vf(pci)) { 8145 sctrl = nvme_sctrl(n); 8146 max_vfs = 0; 8147 n->conf_ioqpairs = sctrl->nvq ? le16_to_cpu(sctrl->nvq) - 1 : 0; 8148 n->conf_msix_qsize = sctrl->nvi ? le16_to_cpu(sctrl->nvi) : 1; 8149 } else { 8150 max_vfs = n->params.sriov_max_vfs; 8151 n->conf_ioqpairs = n->params.max_ioqpairs; 8152 n->conf_msix_qsize = n->params.msix_qsize; 8153 } 8154 8155 n->sq = g_new0(NvmeSQueue *, n->params.max_ioqpairs + 1); 8156 n->cq = g_new0(NvmeCQueue *, n->params.max_ioqpairs + 1); 8157 n->temperature = NVME_TEMPERATURE; 8158 n->features.temp_thresh_hi = NVME_TEMPERATURE_WARNING; 8159 n->starttime_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL); 8160 n->aer_reqs = g_new0(NvmeRequest *, n->params.aerl + 1); 8161 QTAILQ_INIT(&n->aer_queue); 8162 8163 n->nr_sec_ctrls = max_vfs; 8164 for (i = 0; i < max_vfs; i++) { 8165 sctrl = &list[i]; 8166 sctrl->pcid = cpu_to_le16(n->cntlid); 8167 sctrl->vfn = cpu_to_le16(i + 1); 8168 } 8169 8170 cap->cntlid = cpu_to_le16(n->cntlid); 8171 cap->crt = NVME_CRT_VQ | NVME_CRT_VI; 8172 8173 if (pci_is_vf(pci)) { 8174 cap->vqprt = cpu_to_le16(1 + n->conf_ioqpairs); 8175 } else { 8176 cap->vqprt = cpu_to_le16(1 + n->params.max_ioqpairs - 8177 n->params.sriov_vq_flexible); 8178 cap->vqfrt = cpu_to_le32(n->params.sriov_vq_flexible); 8179 cap->vqrfap = cap->vqfrt; 8180 cap->vqgran = cpu_to_le16(NVME_VF_RES_GRANULARITY); 8181 cap->vqfrsm = n->params.sriov_max_vq_per_vf ? 8182 cpu_to_le16(n->params.sriov_max_vq_per_vf) : 8183 cap->vqfrt / MAX(max_vfs, 1); 8184 } 8185 8186 if (pci_is_vf(pci)) { 8187 cap->viprt = cpu_to_le16(n->conf_msix_qsize); 8188 } else { 8189 cap->viprt = cpu_to_le16(n->params.msix_qsize - 8190 n->params.sriov_vi_flexible); 8191 cap->vifrt = cpu_to_le32(n->params.sriov_vi_flexible); 8192 cap->virfap = cap->vifrt; 8193 cap->vigran = cpu_to_le16(NVME_VF_RES_GRANULARITY); 8194 cap->vifrsm = n->params.sriov_max_vi_per_vf ? 8195 cpu_to_le16(n->params.sriov_max_vi_per_vf) : 8196 cap->vifrt / MAX(max_vfs, 1); 8197 } 8198 } 8199 8200 static void nvme_init_cmb(NvmeCtrl *n, PCIDevice *pci_dev) 8201 { 8202 uint64_t cmb_size = n->params.cmb_size_mb * MiB; 8203 uint64_t cap = ldq_le_p(&n->bar.cap); 8204 8205 n->cmb.buf = g_malloc0(cmb_size); 8206 memory_region_init_io(&n->cmb.mem, OBJECT(n), &nvme_cmb_ops, n, 8207 "nvme-cmb", cmb_size); 8208 pci_register_bar(pci_dev, NVME_CMB_BIR, 8209 PCI_BASE_ADDRESS_SPACE_MEMORY | 8210 PCI_BASE_ADDRESS_MEM_TYPE_64 | 8211 PCI_BASE_ADDRESS_MEM_PREFETCH, &n->cmb.mem); 8212 8213 NVME_CAP_SET_CMBS(cap, 1); 8214 stq_le_p(&n->bar.cap, cap); 8215 8216 if (n->params.legacy_cmb) { 8217 nvme_cmb_enable_regs(n); 8218 n->cmb.cmse = true; 8219 } 8220 } 8221 8222 static void nvme_init_pmr(NvmeCtrl *n, PCIDevice *pci_dev) 8223 { 8224 uint32_t pmrcap = ldl_le_p(&n->bar.pmrcap); 8225 8226 NVME_PMRCAP_SET_RDS(pmrcap, 1); 8227 NVME_PMRCAP_SET_WDS(pmrcap, 1); 8228 NVME_PMRCAP_SET_BIR(pmrcap, NVME_PMR_BIR); 8229 /* Turn on bit 1 support */ 8230 NVME_PMRCAP_SET_PMRWBM(pmrcap, 0x02); 8231 NVME_PMRCAP_SET_CMSS(pmrcap, 1); 8232 stl_le_p(&n->bar.pmrcap, pmrcap); 8233 8234 pci_register_bar(pci_dev, NVME_PMR_BIR, 8235 PCI_BASE_ADDRESS_SPACE_MEMORY | 8236 PCI_BASE_ADDRESS_MEM_TYPE_64 | 8237 PCI_BASE_ADDRESS_MEM_PREFETCH, &n->pmr.dev->mr); 8238 8239 memory_region_set_enabled(&n->pmr.dev->mr, false); 8240 } 8241 8242 static uint64_t nvme_mbar_size(unsigned total_queues, unsigned total_irqs, 8243 unsigned *msix_table_offset, 8244 unsigned *msix_pba_offset) 8245 { 8246 uint64_t bar_size, msix_table_size; 8247 8248 bar_size = sizeof(NvmeBar) + 2 * total_queues * NVME_DB_SIZE; 8249 8250 if (total_irqs == 0) { 8251 goto out; 8252 } 8253 8254 bar_size = QEMU_ALIGN_UP(bar_size, 4 * KiB); 8255 8256 if (msix_table_offset) { 8257 *msix_table_offset = bar_size; 8258 } 8259 8260 msix_table_size = PCI_MSIX_ENTRY_SIZE * total_irqs; 8261 bar_size += msix_table_size; 8262 bar_size = QEMU_ALIGN_UP(bar_size, 4 * KiB); 8263 8264 if (msix_pba_offset) { 8265 *msix_pba_offset = bar_size; 8266 } 8267 8268 bar_size += QEMU_ALIGN_UP(total_irqs, 64) / 8; 8269 8270 out: 8271 return pow2ceil(bar_size); 8272 } 8273 8274 static void nvme_init_sriov(NvmeCtrl *n, PCIDevice *pci_dev, uint16_t offset) 8275 { 8276 uint16_t vf_dev_id = n->params.use_intel_id ? 8277 PCI_DEVICE_ID_INTEL_NVME : PCI_DEVICE_ID_REDHAT_NVME; 8278 NvmePriCtrlCap *cap = &n->pri_ctrl_cap; 8279 uint64_t bar_size = nvme_mbar_size(le16_to_cpu(cap->vqfrsm), 8280 le16_to_cpu(cap->vifrsm), 8281 NULL, NULL); 8282 8283 pcie_sriov_pf_init(pci_dev, offset, "nvme", vf_dev_id, 8284 n->params.sriov_max_vfs, n->params.sriov_max_vfs, 8285 NVME_VF_OFFSET, NVME_VF_STRIDE); 8286 8287 pcie_sriov_pf_init_vf_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY | 8288 PCI_BASE_ADDRESS_MEM_TYPE_64, bar_size); 8289 } 8290 8291 static int nvme_add_pm_capability(PCIDevice *pci_dev, uint8_t offset) 8292 { 8293 Error *err = NULL; 8294 int ret; 8295 8296 ret = pci_add_capability(pci_dev, PCI_CAP_ID_PM, offset, 8297 PCI_PM_SIZEOF, &err); 8298 if (err) { 8299 error_report_err(err); 8300 return ret; 8301 } 8302 8303 pci_set_word(pci_dev->config + offset + PCI_PM_PMC, 8304 PCI_PM_CAP_VER_1_2); 8305 pci_set_word(pci_dev->config + offset + PCI_PM_CTRL, 8306 PCI_PM_CTRL_NO_SOFT_RESET); 8307 pci_set_word(pci_dev->wmask + offset + PCI_PM_CTRL, 8308 PCI_PM_CTRL_STATE_MASK); 8309 8310 return 0; 8311 } 8312 8313 static bool pcie_doe_spdm_rsp(DOECap *doe_cap) 8314 { 8315 void *req = pcie_doe_get_write_mbox_ptr(doe_cap); 8316 uint32_t req_len = pcie_doe_get_obj_len(req) * 4; 8317 void *rsp = doe_cap->read_mbox; 8318 uint32_t rsp_len = SPDM_SOCKET_MAX_MESSAGE_BUFFER_SIZE; 8319 8320 uint32_t recvd = spdm_socket_rsp(doe_cap->spdm_socket, 8321 SPDM_SOCKET_TRANSPORT_TYPE_PCI_DOE, 8322 req, req_len, rsp, rsp_len); 8323 doe_cap->read_mbox_len += DIV_ROUND_UP(recvd, 4); 8324 8325 return recvd != 0; 8326 } 8327 8328 static DOEProtocol doe_spdm_prot[] = { 8329 { PCI_VENDOR_ID_PCI_SIG, PCI_SIG_DOE_CMA, pcie_doe_spdm_rsp }, 8330 { PCI_VENDOR_ID_PCI_SIG, PCI_SIG_DOE_SECURED_CMA, pcie_doe_spdm_rsp }, 8331 { } 8332 }; 8333 8334 static bool nvme_init_pci(NvmeCtrl *n, PCIDevice *pci_dev, Error **errp) 8335 { 8336 ERRP_GUARD(); 8337 uint8_t *pci_conf = pci_dev->config; 8338 uint64_t bar_size; 8339 unsigned msix_table_offset = 0, msix_pba_offset = 0; 8340 unsigned nr_vectors; 8341 int ret; 8342 8343 pci_conf[PCI_INTERRUPT_PIN] = 1; 8344 pci_config_set_prog_interface(pci_conf, 0x2); 8345 8346 if (n->params.use_intel_id) { 8347 pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_INTEL); 8348 pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_NVME); 8349 } else { 8350 pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_REDHAT); 8351 pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_REDHAT_NVME); 8352 } 8353 8354 pci_config_set_class(pci_conf, PCI_CLASS_STORAGE_EXPRESS); 8355 nvme_add_pm_capability(pci_dev, 0x60); 8356 pcie_endpoint_cap_init(pci_dev, 0x80); 8357 pcie_cap_flr_init(pci_dev); 8358 if (n->params.sriov_max_vfs) { 8359 pcie_ari_init(pci_dev, 0x100); 8360 } 8361 8362 if (n->params.msix_exclusive_bar && !pci_is_vf(pci_dev)) { 8363 bar_size = nvme_mbar_size(n->params.max_ioqpairs + 1, 0, NULL, NULL); 8364 memory_region_init_io(&n->iomem, OBJECT(n), &nvme_mmio_ops, n, "nvme", 8365 bar_size); 8366 pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY | 8367 PCI_BASE_ADDRESS_MEM_TYPE_64, &n->iomem); 8368 ret = msix_init_exclusive_bar(pci_dev, n->params.msix_qsize, 4, errp); 8369 } else { 8370 assert(n->params.msix_qsize >= 1); 8371 8372 /* add one to max_ioqpairs to account for the admin queue pair */ 8373 if (!pci_is_vf(pci_dev)) { 8374 nr_vectors = n->params.msix_qsize; 8375 bar_size = nvme_mbar_size(n->params.max_ioqpairs + 1, 8376 nr_vectors, &msix_table_offset, 8377 &msix_pba_offset); 8378 } else { 8379 NvmeCtrl *pn = NVME(pcie_sriov_get_pf(pci_dev)); 8380 NvmePriCtrlCap *cap = &pn->pri_ctrl_cap; 8381 8382 nr_vectors = le16_to_cpu(cap->vifrsm); 8383 bar_size = nvme_mbar_size(le16_to_cpu(cap->vqfrsm), nr_vectors, 8384 &msix_table_offset, &msix_pba_offset); 8385 } 8386 8387 memory_region_init(&n->bar0, OBJECT(n), "nvme-bar0", bar_size); 8388 memory_region_init_io(&n->iomem, OBJECT(n), &nvme_mmio_ops, n, "nvme", 8389 msix_table_offset); 8390 memory_region_add_subregion(&n->bar0, 0, &n->iomem); 8391 8392 if (pci_is_vf(pci_dev)) { 8393 pcie_sriov_vf_register_bar(pci_dev, 0, &n->bar0); 8394 } else { 8395 pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY | 8396 PCI_BASE_ADDRESS_MEM_TYPE_64, &n->bar0); 8397 } 8398 8399 ret = msix_init(pci_dev, nr_vectors, 8400 &n->bar0, 0, msix_table_offset, 8401 &n->bar0, 0, msix_pba_offset, 0, errp); 8402 } 8403 8404 if (ret == -ENOTSUP) { 8405 /* report that msix is not supported, but do not error out */ 8406 warn_report_err(*errp); 8407 *errp = NULL; 8408 } else if (ret < 0) { 8409 /* propagate error to caller */ 8410 return false; 8411 } 8412 8413 nvme_update_msixcap_ts(pci_dev, n->conf_msix_qsize); 8414 8415 pcie_cap_deverr_init(pci_dev); 8416 8417 /* DOE Initialisation */ 8418 if (pci_dev->spdm_port) { 8419 uint16_t doe_offset = n->params.sriov_max_vfs ? 8420 PCI_CONFIG_SPACE_SIZE + PCI_ARI_SIZEOF 8421 : PCI_CONFIG_SPACE_SIZE; 8422 8423 pcie_doe_init(pci_dev, &pci_dev->doe_spdm, doe_offset, 8424 doe_spdm_prot, true, 0); 8425 8426 pci_dev->doe_spdm.spdm_socket = spdm_socket_connect(pci_dev->spdm_port, 8427 errp); 8428 8429 if (pci_dev->doe_spdm.spdm_socket < 0) { 8430 return false; 8431 } 8432 } 8433 8434 if (n->params.cmb_size_mb) { 8435 nvme_init_cmb(n, pci_dev); 8436 } 8437 8438 if (n->pmr.dev) { 8439 nvme_init_pmr(n, pci_dev); 8440 } 8441 8442 if (!pci_is_vf(pci_dev) && n->params.sriov_max_vfs) { 8443 nvme_init_sriov(n, pci_dev, 0x120); 8444 } 8445 8446 return true; 8447 } 8448 8449 static void nvme_init_subnqn(NvmeCtrl *n) 8450 { 8451 NvmeSubsystem *subsys = n->subsys; 8452 NvmeIdCtrl *id = &n->id_ctrl; 8453 8454 if (!subsys) { 8455 snprintf((char *)id->subnqn, sizeof(id->subnqn), 8456 "nqn.2019-08.org.qemu:%s", n->params.serial); 8457 } else { 8458 pstrcpy((char *)id->subnqn, sizeof(id->subnqn), (char*)subsys->subnqn); 8459 } 8460 } 8461 8462 static void nvme_init_ctrl(NvmeCtrl *n, PCIDevice *pci_dev) 8463 { 8464 NvmeIdCtrl *id = &n->id_ctrl; 8465 uint8_t *pci_conf = pci_dev->config; 8466 uint64_t cap = ldq_le_p(&n->bar.cap); 8467 NvmeSecCtrlEntry *sctrl = nvme_sctrl(n); 8468 uint32_t ctratt; 8469 8470 id->vid = cpu_to_le16(pci_get_word(pci_conf + PCI_VENDOR_ID)); 8471 id->ssvid = cpu_to_le16(pci_get_word(pci_conf + PCI_SUBSYSTEM_VENDOR_ID)); 8472 strpadcpy((char *)id->mn, sizeof(id->mn), "QEMU NVMe Ctrl", ' '); 8473 strpadcpy((char *)id->fr, sizeof(id->fr), QEMU_VERSION, ' '); 8474 strpadcpy((char *)id->sn, sizeof(id->sn), n->params.serial, ' '); 8475 8476 id->cntlid = cpu_to_le16(n->cntlid); 8477 8478 id->oaes = cpu_to_le32(NVME_OAES_NS_ATTR); 8479 ctratt = NVME_CTRATT_ELBAS; 8480 8481 id->rab = 6; 8482 8483 if (n->params.use_intel_id) { 8484 id->ieee[0] = 0xb3; 8485 id->ieee[1] = 0x02; 8486 id->ieee[2] = 0x00; 8487 } else { 8488 id->ieee[0] = 0x00; 8489 id->ieee[1] = 0x54; 8490 id->ieee[2] = 0x52; 8491 } 8492 8493 id->mdts = n->params.mdts; 8494 id->ver = cpu_to_le32(NVME_SPEC_VER); 8495 id->oacs = 8496 cpu_to_le16(NVME_OACS_NS_MGMT | NVME_OACS_FORMAT | NVME_OACS_DBBUF | 8497 NVME_OACS_DIRECTIVES); 8498 id->cntrltype = 0x1; 8499 8500 /* 8501 * Because the controller always completes the Abort command immediately, 8502 * there can never be more than one concurrently executing Abort command, 8503 * so this value is never used for anything. Note that there can easily be 8504 * many Abort commands in the queues, but they are not considered 8505 * "executing" until processed by nvme_abort. 8506 * 8507 * The specification recommends a value of 3 for Abort Command Limit (four 8508 * concurrently outstanding Abort commands), so lets use that though it is 8509 * inconsequential. 8510 */ 8511 id->acl = 3; 8512 id->aerl = n->params.aerl; 8513 id->frmw = (NVME_NUM_FW_SLOTS << 1) | NVME_FRMW_SLOT1_RO; 8514 id->lpa = NVME_LPA_NS_SMART | NVME_LPA_CSE | NVME_LPA_EXTENDED; 8515 8516 /* recommended default value (~70 C) */ 8517 id->wctemp = cpu_to_le16(NVME_TEMPERATURE_WARNING); 8518 id->cctemp = cpu_to_le16(NVME_TEMPERATURE_CRITICAL); 8519 8520 id->sqes = (NVME_SQES << 4) | NVME_SQES; 8521 id->cqes = (NVME_CQES << 4) | NVME_CQES; 8522 id->nn = cpu_to_le32(NVME_MAX_NAMESPACES); 8523 id->oncs = cpu_to_le16(NVME_ONCS_WRITE_ZEROES | NVME_ONCS_TIMESTAMP | 8524 NVME_ONCS_FEATURES | NVME_ONCS_DSM | 8525 NVME_ONCS_COMPARE | NVME_ONCS_COPY | 8526 NVME_ONCS_NVMCSA | NVME_ONCS_NVMAFC); 8527 8528 /* 8529 * NOTE: If this device ever supports a command set that does NOT use 0x0 8530 * as a Flush-equivalent operation, support for the broadcast NSID in Flush 8531 * should probably be removed. 8532 * 8533 * See comment in nvme_io_cmd. 8534 */ 8535 id->vwc = NVME_VWC_NSID_BROADCAST_SUPPORT | NVME_VWC_PRESENT; 8536 8537 id->ocfs = cpu_to_le16(NVME_OCFS_COPY_FORMAT_0 | NVME_OCFS_COPY_FORMAT_1 | 8538 NVME_OCFS_COPY_FORMAT_2 | NVME_OCFS_COPY_FORMAT_3); 8539 id->sgls = cpu_to_le32(NVME_CTRL_SGLS_SUPPORT_NO_ALIGN); 8540 8541 nvme_init_subnqn(n); 8542 8543 id->psd[0].mp = cpu_to_le16(0x9c4); 8544 id->psd[0].enlat = cpu_to_le32(0x10); 8545 id->psd[0].exlat = cpu_to_le32(0x4); 8546 8547 if (n->subsys) { 8548 id->cmic |= NVME_CMIC_MULTI_CTRL; 8549 ctratt |= NVME_CTRATT_ENDGRPS; 8550 8551 id->endgidmax = cpu_to_le16(0x1); 8552 8553 if (n->subsys->endgrp.fdp.enabled) { 8554 ctratt |= NVME_CTRATT_FDPS; 8555 } 8556 } 8557 8558 id->ctratt = cpu_to_le32(ctratt); 8559 8560 NVME_CAP_SET_MQES(cap, n->params.mqes); 8561 NVME_CAP_SET_CQR(cap, 1); 8562 NVME_CAP_SET_TO(cap, 0xf); 8563 NVME_CAP_SET_CSS(cap, NVME_CAP_CSS_NVM); 8564 NVME_CAP_SET_CSS(cap, NVME_CAP_CSS_CSI_SUPP); 8565 NVME_CAP_SET_CSS(cap, NVME_CAP_CSS_ADMIN_ONLY); 8566 NVME_CAP_SET_MPSMAX(cap, 4); 8567 NVME_CAP_SET_CMBS(cap, n->params.cmb_size_mb ? 1 : 0); 8568 NVME_CAP_SET_PMRS(cap, n->pmr.dev ? 1 : 0); 8569 stq_le_p(&n->bar.cap, cap); 8570 8571 stl_le_p(&n->bar.vs, NVME_SPEC_VER); 8572 n->bar.intmc = n->bar.intms = 0; 8573 8574 if (pci_is_vf(pci_dev) && !sctrl->scs) { 8575 stl_le_p(&n->bar.csts, NVME_CSTS_FAILED); 8576 } 8577 } 8578 8579 static int nvme_init_subsys(NvmeCtrl *n, Error **errp) 8580 { 8581 int cntlid; 8582 8583 if (!n->subsys) { 8584 return 0; 8585 } 8586 8587 cntlid = nvme_subsys_register_ctrl(n, errp); 8588 if (cntlid < 0) { 8589 return -1; 8590 } 8591 8592 n->cntlid = cntlid; 8593 8594 return 0; 8595 } 8596 8597 void nvme_attach_ns(NvmeCtrl *n, NvmeNamespace *ns) 8598 { 8599 uint32_t nsid = ns->params.nsid; 8600 assert(nsid && nsid <= NVME_MAX_NAMESPACES); 8601 8602 n->namespaces[nsid] = ns; 8603 ns->attached++; 8604 8605 n->dmrsl = MIN_NON_ZERO(n->dmrsl, 8606 BDRV_REQUEST_MAX_BYTES / nvme_l2b(ns, 1)); 8607 } 8608 8609 static void nvme_realize(PCIDevice *pci_dev, Error **errp) 8610 { 8611 NvmeCtrl *n = NVME(pci_dev); 8612 DeviceState *dev = DEVICE(pci_dev); 8613 NvmeNamespace *ns; 8614 NvmeCtrl *pn = NVME(pcie_sriov_get_pf(pci_dev)); 8615 8616 if (pci_is_vf(pci_dev)) { 8617 /* 8618 * VFs derive settings from the parent. PF's lifespan exceeds 8619 * that of VF's. 8620 */ 8621 memcpy(&n->params, &pn->params, sizeof(NvmeParams)); 8622 8623 /* 8624 * Set PF's serial value to a new string memory to prevent 'serial' 8625 * property object release of PF when a VF is removed from the system. 8626 */ 8627 n->params.serial = g_strdup(pn->params.serial); 8628 n->subsys = pn->subsys; 8629 } 8630 8631 if (!nvme_check_params(n, errp)) { 8632 return; 8633 } 8634 8635 qbus_init(&n->bus, sizeof(NvmeBus), TYPE_NVME_BUS, dev, dev->id); 8636 8637 if (nvme_init_subsys(n, errp)) { 8638 return; 8639 } 8640 nvme_init_state(n); 8641 if (!nvme_init_pci(n, pci_dev, errp)) { 8642 return; 8643 } 8644 nvme_init_ctrl(n, pci_dev); 8645 8646 /* setup a namespace if the controller drive property was given */ 8647 if (n->namespace.blkconf.blk) { 8648 ns = &n->namespace; 8649 ns->params.nsid = 1; 8650 8651 if (nvme_ns_setup(ns, errp)) { 8652 return; 8653 } 8654 8655 nvme_attach_ns(n, ns); 8656 } 8657 } 8658 8659 static void nvme_exit(PCIDevice *pci_dev) 8660 { 8661 NvmeCtrl *n = NVME(pci_dev); 8662 NvmeNamespace *ns; 8663 int i; 8664 8665 nvme_ctrl_reset(n, NVME_RESET_FUNCTION); 8666 8667 if (n->subsys) { 8668 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { 8669 ns = nvme_ns(n, i); 8670 if (ns) { 8671 ns->attached--; 8672 } 8673 } 8674 8675 nvme_subsys_unregister_ctrl(n->subsys, n); 8676 } 8677 8678 g_free(n->cq); 8679 g_free(n->sq); 8680 g_free(n->aer_reqs); 8681 8682 if (n->params.cmb_size_mb) { 8683 g_free(n->cmb.buf); 8684 } 8685 8686 if (pci_dev->doe_spdm.spdm_socket > 0) { 8687 spdm_socket_close(pci_dev->doe_spdm.spdm_socket, 8688 SPDM_SOCKET_TRANSPORT_TYPE_PCI_DOE); 8689 } 8690 8691 if (n->pmr.dev) { 8692 host_memory_backend_set_mapped(n->pmr.dev, false); 8693 } 8694 8695 if (!pci_is_vf(pci_dev) && n->params.sriov_max_vfs) { 8696 pcie_sriov_pf_exit(pci_dev); 8697 } 8698 8699 msix_uninit(pci_dev, &n->bar0, &n->bar0); 8700 memory_region_del_subregion(&n->bar0, &n->iomem); 8701 } 8702 8703 static Property nvme_props[] = { 8704 DEFINE_BLOCK_PROPERTIES(NvmeCtrl, namespace.blkconf), 8705 DEFINE_PROP_LINK("pmrdev", NvmeCtrl, pmr.dev, TYPE_MEMORY_BACKEND, 8706 HostMemoryBackend *), 8707 DEFINE_PROP_LINK("subsys", NvmeCtrl, subsys, TYPE_NVME_SUBSYS, 8708 NvmeSubsystem *), 8709 DEFINE_PROP_STRING("serial", NvmeCtrl, params.serial), 8710 DEFINE_PROP_UINT32("cmb_size_mb", NvmeCtrl, params.cmb_size_mb, 0), 8711 DEFINE_PROP_UINT32("num_queues", NvmeCtrl, params.num_queues, 0), 8712 DEFINE_PROP_UINT32("max_ioqpairs", NvmeCtrl, params.max_ioqpairs, 64), 8713 DEFINE_PROP_UINT16("msix_qsize", NvmeCtrl, params.msix_qsize, 65), 8714 DEFINE_PROP_UINT8("aerl", NvmeCtrl, params.aerl, 3), 8715 DEFINE_PROP_UINT32("aer_max_queued", NvmeCtrl, params.aer_max_queued, 64), 8716 DEFINE_PROP_UINT8("mdts", NvmeCtrl, params.mdts, 7), 8717 DEFINE_PROP_UINT8("vsl", NvmeCtrl, params.vsl, 7), 8718 DEFINE_PROP_BOOL("use-intel-id", NvmeCtrl, params.use_intel_id, false), 8719 DEFINE_PROP_BOOL("legacy-cmb", NvmeCtrl, params.legacy_cmb, false), 8720 DEFINE_PROP_BOOL("ioeventfd", NvmeCtrl, params.ioeventfd, false), 8721 DEFINE_PROP_UINT8("zoned.zasl", NvmeCtrl, params.zasl, 0), 8722 DEFINE_PROP_BOOL("zoned.auto_transition", NvmeCtrl, 8723 params.auto_transition_zones, true), 8724 DEFINE_PROP_UINT16("sriov_max_vfs", NvmeCtrl, params.sriov_max_vfs, 0), 8725 DEFINE_PROP_UINT16("sriov_vq_flexible", NvmeCtrl, 8726 params.sriov_vq_flexible, 0), 8727 DEFINE_PROP_UINT16("sriov_vi_flexible", NvmeCtrl, 8728 params.sriov_vi_flexible, 0), 8729 DEFINE_PROP_UINT32("sriov_max_vi_per_vf", NvmeCtrl, 8730 params.sriov_max_vi_per_vf, 0), 8731 DEFINE_PROP_UINT32("sriov_max_vq_per_vf", NvmeCtrl, 8732 params.sriov_max_vq_per_vf, 0), 8733 DEFINE_PROP_BOOL("msix-exclusive-bar", NvmeCtrl, params.msix_exclusive_bar, 8734 false), 8735 DEFINE_PROP_UINT16("mqes", NvmeCtrl, params.mqes, 0x7ff), 8736 DEFINE_PROP_UINT16("spdm_port", PCIDevice, spdm_port, 0), 8737 DEFINE_PROP_END_OF_LIST(), 8738 }; 8739 8740 static void nvme_get_smart_warning(Object *obj, Visitor *v, const char *name, 8741 void *opaque, Error **errp) 8742 { 8743 NvmeCtrl *n = NVME(obj); 8744 uint8_t value = n->smart_critical_warning; 8745 8746 visit_type_uint8(v, name, &value, errp); 8747 } 8748 8749 static void nvme_set_smart_warning(Object *obj, Visitor *v, const char *name, 8750 void *opaque, Error **errp) 8751 { 8752 NvmeCtrl *n = NVME(obj); 8753 uint8_t value, old_value, cap = 0, index, event; 8754 8755 if (!visit_type_uint8(v, name, &value, errp)) { 8756 return; 8757 } 8758 8759 cap = NVME_SMART_SPARE | NVME_SMART_TEMPERATURE | NVME_SMART_RELIABILITY 8760 | NVME_SMART_MEDIA_READ_ONLY | NVME_SMART_FAILED_VOLATILE_MEDIA; 8761 if (NVME_CAP_PMRS(ldq_le_p(&n->bar.cap))) { 8762 cap |= NVME_SMART_PMR_UNRELIABLE; 8763 } 8764 8765 if ((value & cap) != value) { 8766 error_setg(errp, "unsupported smart critical warning bits: 0x%x", 8767 value & ~cap); 8768 return; 8769 } 8770 8771 old_value = n->smart_critical_warning; 8772 n->smart_critical_warning = value; 8773 8774 /* only inject new bits of smart critical warning */ 8775 for (index = 0; index < NVME_SMART_WARN_MAX; index++) { 8776 event = 1 << index; 8777 if (value & ~old_value & event) 8778 nvme_smart_event(n, event); 8779 } 8780 } 8781 8782 static void nvme_pci_reset(DeviceState *qdev) 8783 { 8784 PCIDevice *pci_dev = PCI_DEVICE(qdev); 8785 NvmeCtrl *n = NVME(pci_dev); 8786 8787 trace_pci_nvme_pci_reset(); 8788 nvme_ctrl_reset(n, NVME_RESET_FUNCTION); 8789 } 8790 8791 static void nvme_sriov_post_write_config(PCIDevice *dev, uint16_t old_num_vfs) 8792 { 8793 NvmeCtrl *n = NVME(dev); 8794 NvmeSecCtrlEntry *sctrl; 8795 int i; 8796 8797 for (i = pcie_sriov_num_vfs(dev); i < old_num_vfs; i++) { 8798 sctrl = &n->sec_ctrl_list[i]; 8799 nvme_virt_set_state(n, le16_to_cpu(sctrl->scid), false); 8800 } 8801 } 8802 8803 static void nvme_pci_write_config(PCIDevice *dev, uint32_t address, 8804 uint32_t val, int len) 8805 { 8806 uint16_t old_num_vfs = pcie_sriov_num_vfs(dev); 8807 8808 if (pcie_find_capability(dev, PCI_EXT_CAP_ID_DOE)) { 8809 pcie_doe_write_config(&dev->doe_spdm, address, val, len); 8810 } 8811 pci_default_write_config(dev, address, val, len); 8812 pcie_cap_flr_write_config(dev, address, val, len); 8813 nvme_sriov_post_write_config(dev, old_num_vfs); 8814 } 8815 8816 static uint32_t nvme_pci_read_config(PCIDevice *dev, uint32_t address, int len) 8817 { 8818 uint32_t val; 8819 if (dev->spdm_port && pcie_find_capability(dev, PCI_EXT_CAP_ID_DOE)) { 8820 if (pcie_doe_read_config(&dev->doe_spdm, address, len, &val)) { 8821 return val; 8822 } 8823 } 8824 return pci_default_read_config(dev, address, len); 8825 } 8826 8827 static const VMStateDescription nvme_vmstate = { 8828 .name = "nvme", 8829 .unmigratable = 1, 8830 }; 8831 8832 static void nvme_class_init(ObjectClass *oc, void *data) 8833 { 8834 DeviceClass *dc = DEVICE_CLASS(oc); 8835 PCIDeviceClass *pc = PCI_DEVICE_CLASS(oc); 8836 8837 pc->realize = nvme_realize; 8838 pc->config_write = nvme_pci_write_config; 8839 pc->config_read = nvme_pci_read_config; 8840 pc->exit = nvme_exit; 8841 pc->class_id = PCI_CLASS_STORAGE_EXPRESS; 8842 pc->revision = 2; 8843 8844 set_bit(DEVICE_CATEGORY_STORAGE, dc->categories); 8845 dc->desc = "Non-Volatile Memory Express"; 8846 device_class_set_props(dc, nvme_props); 8847 dc->vmsd = &nvme_vmstate; 8848 device_class_set_legacy_reset(dc, nvme_pci_reset); 8849 } 8850 8851 static void nvme_instance_init(Object *obj) 8852 { 8853 NvmeCtrl *n = NVME(obj); 8854 8855 device_add_bootindex_property(obj, &n->namespace.blkconf.bootindex, 8856 "bootindex", "/namespace@1,0", 8857 DEVICE(obj)); 8858 8859 object_property_add(obj, "smart_critical_warning", "uint8", 8860 nvme_get_smart_warning, 8861 nvme_set_smart_warning, NULL, NULL); 8862 } 8863 8864 static const TypeInfo nvme_info = { 8865 .name = TYPE_NVME, 8866 .parent = TYPE_PCI_DEVICE, 8867 .instance_size = sizeof(NvmeCtrl), 8868 .instance_init = nvme_instance_init, 8869 .class_init = nvme_class_init, 8870 .interfaces = (InterfaceInfo[]) { 8871 { INTERFACE_PCIE_DEVICE }, 8872 { } 8873 }, 8874 }; 8875 8876 static const TypeInfo nvme_bus_info = { 8877 .name = TYPE_NVME_BUS, 8878 .parent = TYPE_BUS, 8879 .instance_size = sizeof(NvmeBus), 8880 }; 8881 8882 static void nvme_register_types(void) 8883 { 8884 type_register_static(&nvme_info); 8885 type_register_static(&nvme_bus_info); 8886 } 8887 8888 type_init(nvme_register_types) 8889