1 /* 2 * QEMU NVM Express Controller 3 * 4 * Copyright (c) 2012, Intel Corporation 5 * 6 * Written by Keith Busch <keith.busch@intel.com> 7 * 8 * This code is licensed under the GNU GPL v2 or later. 9 */ 10 11 /** 12 * Reference Specs: http://www.nvmexpress.org, 1.4, 1.3, 1.2, 1.1, 1.0e 13 * 14 * https://nvmexpress.org/developers/nvme-specification/ 15 * 16 * 17 * Notes on coding style 18 * --------------------- 19 * While QEMU coding style prefers lowercase hexadecimals in constants, the 20 * NVMe subsystem use this format from the NVMe specifications in the comments 21 * (i.e. 'h' suffix instead of '0x' prefix). 22 * 23 * Usage 24 * ----- 25 * See docs/system/nvme.rst for extensive documentation. 26 * 27 * Add options: 28 * -drive file=<file>,if=none,id=<drive_id> 29 * -device nvme-subsys,id=<subsys_id>,nqn=<nqn_id> 30 * -device nvme,serial=<serial>,id=<bus_name>, \ 31 * cmb_size_mb=<cmb_size_mb[optional]>, \ 32 * [pmrdev=<mem_backend_file_id>,] \ 33 * max_ioqpairs=<N[optional]>, \ 34 * aerl=<N[optional]>,aer_max_queued=<N[optional]>, \ 35 * mdts=<N[optional]>,vsl=<N[optional]>, \ 36 * zoned.zasl=<N[optional]>, \ 37 * zoned.auto_transition=<on|off[optional]>, \ 38 * sriov_max_vfs=<N[optional]> \ 39 * sriov_vq_flexible=<N[optional]> \ 40 * sriov_vi_flexible=<N[optional]> \ 41 * sriov_max_vi_per_vf=<N[optional]> \ 42 * sriov_max_vq_per_vf=<N[optional]> \ 43 * atomic.dn=<on|off[optional]>, \ 44 * atomic.awun<N[optional]>, \ 45 * atomic.awupf<N[optional]>, \ 46 * subsys=<subsys_id> 47 * -device nvme-ns,drive=<drive_id>,bus=<bus_name>,nsid=<nsid>,\ 48 * zoned=<true|false[optional]>, \ 49 * subsys=<subsys_id>,shared=<true|false[optional]>, \ 50 * detached=<true|false[optional]>, \ 51 * zoned.zone_size=<N[optional]>, \ 52 * zoned.zone_capacity=<N[optional]>, \ 53 * zoned.descr_ext_size=<N[optional]>, \ 54 * zoned.max_active=<N[optional]>, \ 55 * zoned.max_open=<N[optional]>, \ 56 * zoned.cross_read=<true|false[optional]> 57 * 58 * Note cmb_size_mb denotes size of CMB in MB. CMB is assumed to be at 59 * offset 0 in BAR2 and supports only WDS, RDS and SQS for now. By default, the 60 * device will use the "v1.4 CMB scheme" - use the `legacy-cmb` parameter to 61 * always enable the CMBLOC and CMBSZ registers (v1.3 behavior). 62 * 63 * Enabling pmr emulation can be achieved by pointing to memory-backend-file. 64 * For example: 65 * -object memory-backend-file,id=<mem_id>,share=on,mem-path=<file_path>, \ 66 * size=<size> .... -device nvme,...,pmrdev=<mem_id> 67 * 68 * The PMR will use BAR 4/5 exclusively. 69 * 70 * To place controller(s) and namespace(s) to a subsystem, then provide 71 * nvme-subsys device as above. 72 * 73 * nvme subsystem device parameters 74 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 75 * - `nqn` 76 * This parameter provides the `<nqn_id>` part of the string 77 * `nqn.2019-08.org.qemu:<nqn_id>` which will be reported in the SUBNQN field 78 * of subsystem controllers. Note that `<nqn_id>` should be unique per 79 * subsystem, but this is not enforced by QEMU. If not specified, it will 80 * default to the value of the `id` parameter (`<subsys_id>`). 81 * 82 * nvme device parameters 83 * ~~~~~~~~~~~~~~~~~~~~~~ 84 * - `subsys` 85 * Specifying this parameter attaches the controller to the subsystem and 86 * the SUBNQN field in the controller will report the NQN of the subsystem 87 * device. This also enables multi controller capability represented in 88 * Identify Controller data structure in CMIC (Controller Multi-path I/O and 89 * Namespace Sharing Capabilities). 90 * 91 * - `aerl` 92 * The Asynchronous Event Request Limit (AERL). Indicates the maximum number 93 * of concurrently outstanding Asynchronous Event Request commands support 94 * by the controller. This is a 0's based value. 95 * 96 * - `aer_max_queued` 97 * This is the maximum number of events that the device will enqueue for 98 * completion when there are no outstanding AERs. When the maximum number of 99 * enqueued events are reached, subsequent events will be dropped. 100 * 101 * - `mdts` 102 * Indicates the maximum data transfer size for a command that transfers data 103 * between host-accessible memory and the controller. The value is specified 104 * as a power of two (2^n) and is in units of the minimum memory page size 105 * (CAP.MPSMIN). The default value is 7 (i.e. 512 KiB). 106 * 107 * - `vsl` 108 * Indicates the maximum data size limit for the Verify command. Like `mdts`, 109 * this value is specified as a power of two (2^n) and is in units of the 110 * minimum memory page size (CAP.MPSMIN). The default value is 7 (i.e. 512 111 * KiB). 112 * 113 * - `zoned.zasl` 114 * Indicates the maximum data transfer size for the Zone Append command. Like 115 * `mdts`, the value is specified as a power of two (2^n) and is in units of 116 * the minimum memory page size (CAP.MPSMIN). The default value is 0 (i.e. 117 * defaulting to the value of `mdts`). 118 * 119 * - `zoned.auto_transition` 120 * Indicates if zones in zone state implicitly opened can be automatically 121 * transitioned to zone state closed for resource management purposes. 122 * Defaults to 'on'. 123 * 124 * - `sriov_max_vfs` 125 * Indicates the maximum number of PCIe virtual functions supported 126 * by the controller. The default value is 0. Specifying a non-zero value 127 * enables reporting of both SR-IOV and ARI capabilities by the NVMe device. 128 * Virtual function controllers will not report SR-IOV capability. 129 * 130 * NOTE: Single Root I/O Virtualization support is experimental. 131 * All the related parameters may be subject to change. 132 * 133 * - `sriov_vq_flexible` 134 * Indicates the total number of flexible queue resources assignable to all 135 * the secondary controllers. Implicitly sets the number of primary 136 * controller's private resources to `(max_ioqpairs - sriov_vq_flexible)`. 137 * 138 * - `sriov_vi_flexible` 139 * Indicates the total number of flexible interrupt resources assignable to 140 * all the secondary controllers. Implicitly sets the number of primary 141 * controller's private resources to `(msix_qsize - sriov_vi_flexible)`. 142 * 143 * - `sriov_max_vi_per_vf` 144 * Indicates the maximum number of virtual interrupt resources assignable 145 * to a secondary controller. The default 0 resolves to 146 * `(sriov_vi_flexible / sriov_max_vfs)`. 147 * 148 * - `sriov_max_vq_per_vf` 149 * Indicates the maximum number of virtual queue resources assignable to 150 * a secondary controller. The default 0 resolves to 151 * `(sriov_vq_flexible / sriov_max_vfs)`. 152 * 153 * nvme namespace device parameters 154 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 155 * - `shared` 156 * When the parent nvme device (as defined explicitly by the 'bus' parameter 157 * or implicitly by the most recently defined NvmeBus) is linked to an 158 * nvme-subsys device, the namespace will be attached to all controllers in 159 * the subsystem. If set to 'off' (the default), the namespace will remain a 160 * private namespace and may only be attached to a single controller at a 161 * time. 162 * 163 * - `detached` 164 * This parameter is only valid together with the `subsys` parameter. If left 165 * at the default value (`false/off`), the namespace will be attached to all 166 * controllers in the NVMe subsystem at boot-up. If set to `true/on`, the 167 * namespace will be available in the subsystem but not attached to any 168 * controllers. 169 * 170 * Setting `zoned` to true selects Zoned Command Set at the namespace. 171 * In this case, the following namespace properties are available to configure 172 * zoned operation: 173 * zoned.zone_size=<zone size in bytes, default: 128MiB> 174 * The number may be followed by K, M, G as in kilo-, mega- or giga-. 175 * 176 * zoned.zone_capacity=<zone capacity in bytes, default: zone size> 177 * The value 0 (default) forces zone capacity to be the same as zone 178 * size. The value of this property may not exceed zone size. 179 * 180 * zoned.descr_ext_size=<zone descriptor extension size, default 0> 181 * This value needs to be specified in 64B units. If it is zero, 182 * namespace(s) will not support zone descriptor extensions. 183 * 184 * zoned.max_active=<Maximum Active Resources (zones), default: 0> 185 * The default value means there is no limit to the number of 186 * concurrently active zones. 187 * 188 * zoned.max_open=<Maximum Open Resources (zones), default: 0> 189 * The default value means there is no limit to the number of 190 * concurrently open zones. 191 * 192 * zoned.cross_read=<enable RAZB, default: false> 193 * Setting this property to true enables Read Across Zone Boundaries. 194 */ 195 196 #include "qemu/osdep.h" 197 #include "qemu/cutils.h" 198 #include "qemu/error-report.h" 199 #include "qemu/log.h" 200 #include "qemu/units.h" 201 #include "qemu/range.h" 202 #include "qapi/error.h" 203 #include "qapi/visitor.h" 204 #include "sysemu/sysemu.h" 205 #include "sysemu/block-backend.h" 206 #include "sysemu/hostmem.h" 207 #include "hw/pci/msix.h" 208 #include "hw/pci/pcie_sriov.h" 209 #include "sysemu/spdm-socket.h" 210 #include "migration/vmstate.h" 211 212 #include "nvme.h" 213 #include "dif.h" 214 #include "trace.h" 215 216 #define NVME_MAX_IOQPAIRS 0xffff 217 #define NVME_DB_SIZE 4 218 #define NVME_SPEC_VER 0x00010400 219 #define NVME_CMB_BIR 2 220 #define NVME_PMR_BIR 4 221 #define NVME_TEMPERATURE 0x143 222 #define NVME_TEMPERATURE_WARNING 0x157 223 #define NVME_TEMPERATURE_CRITICAL 0x175 224 #define NVME_NUM_FW_SLOTS 1 225 #define NVME_DEFAULT_MAX_ZA_SIZE (128 * KiB) 226 #define NVME_VF_RES_GRANULARITY 1 227 #define NVME_VF_OFFSET 0x1 228 #define NVME_VF_STRIDE 1 229 230 #define NVME_GUEST_ERR(trace, fmt, ...) \ 231 do { \ 232 (trace_##trace)(__VA_ARGS__); \ 233 qemu_log_mask(LOG_GUEST_ERROR, #trace \ 234 " in %s: " fmt "\n", __func__, ## __VA_ARGS__); \ 235 } while (0) 236 237 static const bool nvme_feature_support[NVME_FID_MAX] = { 238 [NVME_ARBITRATION] = true, 239 [NVME_POWER_MANAGEMENT] = true, 240 [NVME_TEMPERATURE_THRESHOLD] = true, 241 [NVME_ERROR_RECOVERY] = true, 242 [NVME_VOLATILE_WRITE_CACHE] = true, 243 [NVME_NUMBER_OF_QUEUES] = true, 244 [NVME_INTERRUPT_COALESCING] = true, 245 [NVME_INTERRUPT_VECTOR_CONF] = true, 246 [NVME_WRITE_ATOMICITY] = true, 247 [NVME_ASYNCHRONOUS_EVENT_CONF] = true, 248 [NVME_TIMESTAMP] = true, 249 [NVME_HOST_BEHAVIOR_SUPPORT] = true, 250 [NVME_COMMAND_SET_PROFILE] = true, 251 [NVME_FDP_MODE] = true, 252 [NVME_FDP_EVENTS] = true, 253 }; 254 255 static const uint32_t nvme_feature_cap[NVME_FID_MAX] = { 256 [NVME_TEMPERATURE_THRESHOLD] = NVME_FEAT_CAP_CHANGE, 257 [NVME_ERROR_RECOVERY] = NVME_FEAT_CAP_CHANGE | NVME_FEAT_CAP_NS, 258 [NVME_VOLATILE_WRITE_CACHE] = NVME_FEAT_CAP_CHANGE, 259 [NVME_NUMBER_OF_QUEUES] = NVME_FEAT_CAP_CHANGE, 260 [NVME_WRITE_ATOMICITY] = NVME_FEAT_CAP_CHANGE, 261 [NVME_ASYNCHRONOUS_EVENT_CONF] = NVME_FEAT_CAP_CHANGE, 262 [NVME_TIMESTAMP] = NVME_FEAT_CAP_CHANGE, 263 [NVME_HOST_BEHAVIOR_SUPPORT] = NVME_FEAT_CAP_CHANGE, 264 [NVME_COMMAND_SET_PROFILE] = NVME_FEAT_CAP_CHANGE, 265 [NVME_FDP_MODE] = NVME_FEAT_CAP_CHANGE, 266 [NVME_FDP_EVENTS] = NVME_FEAT_CAP_CHANGE | NVME_FEAT_CAP_NS, 267 }; 268 269 static const uint32_t nvme_cse_acs[256] = { 270 [NVME_ADM_CMD_DELETE_SQ] = NVME_CMD_EFF_CSUPP, 271 [NVME_ADM_CMD_CREATE_SQ] = NVME_CMD_EFF_CSUPP, 272 [NVME_ADM_CMD_GET_LOG_PAGE] = NVME_CMD_EFF_CSUPP, 273 [NVME_ADM_CMD_DELETE_CQ] = NVME_CMD_EFF_CSUPP, 274 [NVME_ADM_CMD_CREATE_CQ] = NVME_CMD_EFF_CSUPP, 275 [NVME_ADM_CMD_IDENTIFY] = NVME_CMD_EFF_CSUPP, 276 [NVME_ADM_CMD_ABORT] = NVME_CMD_EFF_CSUPP, 277 [NVME_ADM_CMD_SET_FEATURES] = NVME_CMD_EFF_CSUPP, 278 [NVME_ADM_CMD_GET_FEATURES] = NVME_CMD_EFF_CSUPP, 279 [NVME_ADM_CMD_ASYNC_EV_REQ] = NVME_CMD_EFF_CSUPP, 280 [NVME_ADM_CMD_NS_ATTACHMENT] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_NIC, 281 [NVME_ADM_CMD_VIRT_MNGMT] = NVME_CMD_EFF_CSUPP, 282 [NVME_ADM_CMD_DBBUF_CONFIG] = NVME_CMD_EFF_CSUPP, 283 [NVME_ADM_CMD_FORMAT_NVM] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, 284 [NVME_ADM_CMD_DIRECTIVE_RECV] = NVME_CMD_EFF_CSUPP, 285 [NVME_ADM_CMD_DIRECTIVE_SEND] = NVME_CMD_EFF_CSUPP, 286 }; 287 288 static const uint32_t nvme_cse_iocs_none[256]; 289 290 static const uint32_t nvme_cse_iocs_nvm[256] = { 291 [NVME_CMD_FLUSH] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, 292 [NVME_CMD_WRITE_ZEROES] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, 293 [NVME_CMD_WRITE] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, 294 [NVME_CMD_READ] = NVME_CMD_EFF_CSUPP, 295 [NVME_CMD_DSM] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, 296 [NVME_CMD_VERIFY] = NVME_CMD_EFF_CSUPP, 297 [NVME_CMD_COPY] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, 298 [NVME_CMD_COMPARE] = NVME_CMD_EFF_CSUPP, 299 [NVME_CMD_IO_MGMT_RECV] = NVME_CMD_EFF_CSUPP, 300 [NVME_CMD_IO_MGMT_SEND] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, 301 }; 302 303 static const uint32_t nvme_cse_iocs_zoned[256] = { 304 [NVME_CMD_FLUSH] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, 305 [NVME_CMD_WRITE_ZEROES] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, 306 [NVME_CMD_WRITE] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, 307 [NVME_CMD_READ] = NVME_CMD_EFF_CSUPP, 308 [NVME_CMD_DSM] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, 309 [NVME_CMD_VERIFY] = NVME_CMD_EFF_CSUPP, 310 [NVME_CMD_COPY] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, 311 [NVME_CMD_COMPARE] = NVME_CMD_EFF_CSUPP, 312 [NVME_CMD_ZONE_APPEND] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, 313 [NVME_CMD_ZONE_MGMT_SEND] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, 314 [NVME_CMD_ZONE_MGMT_RECV] = NVME_CMD_EFF_CSUPP, 315 }; 316 317 static void nvme_process_sq(void *opaque); 318 static void nvme_ctrl_reset(NvmeCtrl *n, NvmeResetType rst); 319 static inline uint64_t nvme_get_timestamp(const NvmeCtrl *n); 320 321 static uint16_t nvme_sqid(NvmeRequest *req) 322 { 323 return le16_to_cpu(req->sq->sqid); 324 } 325 326 static inline uint16_t nvme_make_pid(NvmeNamespace *ns, uint16_t rg, 327 uint16_t ph) 328 { 329 uint16_t rgif = ns->endgrp->fdp.rgif; 330 331 if (!rgif) { 332 return ph; 333 } 334 335 return (rg << (16 - rgif)) | ph; 336 } 337 338 static inline bool nvme_ph_valid(NvmeNamespace *ns, uint16_t ph) 339 { 340 return ph < ns->fdp.nphs; 341 } 342 343 static inline bool nvme_rg_valid(NvmeEnduranceGroup *endgrp, uint16_t rg) 344 { 345 return rg < endgrp->fdp.nrg; 346 } 347 348 static inline uint16_t nvme_pid2ph(NvmeNamespace *ns, uint16_t pid) 349 { 350 uint16_t rgif = ns->endgrp->fdp.rgif; 351 352 if (!rgif) { 353 return pid; 354 } 355 356 return pid & ((1 << (15 - rgif)) - 1); 357 } 358 359 static inline uint16_t nvme_pid2rg(NvmeNamespace *ns, uint16_t pid) 360 { 361 uint16_t rgif = ns->endgrp->fdp.rgif; 362 363 if (!rgif) { 364 return 0; 365 } 366 367 return pid >> (16 - rgif); 368 } 369 370 static inline bool nvme_parse_pid(NvmeNamespace *ns, uint16_t pid, 371 uint16_t *ph, uint16_t *rg) 372 { 373 *rg = nvme_pid2rg(ns, pid); 374 *ph = nvme_pid2ph(ns, pid); 375 376 return nvme_ph_valid(ns, *ph) && nvme_rg_valid(ns->endgrp, *rg); 377 } 378 379 static void nvme_assign_zone_state(NvmeNamespace *ns, NvmeZone *zone, 380 NvmeZoneState state) 381 { 382 if (QTAILQ_IN_USE(zone, entry)) { 383 switch (nvme_get_zone_state(zone)) { 384 case NVME_ZONE_STATE_EXPLICITLY_OPEN: 385 QTAILQ_REMOVE(&ns->exp_open_zones, zone, entry); 386 break; 387 case NVME_ZONE_STATE_IMPLICITLY_OPEN: 388 QTAILQ_REMOVE(&ns->imp_open_zones, zone, entry); 389 break; 390 case NVME_ZONE_STATE_CLOSED: 391 QTAILQ_REMOVE(&ns->closed_zones, zone, entry); 392 break; 393 case NVME_ZONE_STATE_FULL: 394 QTAILQ_REMOVE(&ns->full_zones, zone, entry); 395 default: 396 ; 397 } 398 } 399 400 nvme_set_zone_state(zone, state); 401 402 switch (state) { 403 case NVME_ZONE_STATE_EXPLICITLY_OPEN: 404 QTAILQ_INSERT_TAIL(&ns->exp_open_zones, zone, entry); 405 break; 406 case NVME_ZONE_STATE_IMPLICITLY_OPEN: 407 QTAILQ_INSERT_TAIL(&ns->imp_open_zones, zone, entry); 408 break; 409 case NVME_ZONE_STATE_CLOSED: 410 QTAILQ_INSERT_TAIL(&ns->closed_zones, zone, entry); 411 break; 412 case NVME_ZONE_STATE_FULL: 413 QTAILQ_INSERT_TAIL(&ns->full_zones, zone, entry); 414 case NVME_ZONE_STATE_READ_ONLY: 415 break; 416 default: 417 zone->d.za = 0; 418 } 419 } 420 421 static uint16_t nvme_zns_check_resources(NvmeNamespace *ns, uint32_t act, 422 uint32_t opn, uint32_t zrwa) 423 { 424 if (ns->params.max_active_zones != 0 && 425 ns->nr_active_zones + act > ns->params.max_active_zones) { 426 trace_pci_nvme_err_insuff_active_res(ns->params.max_active_zones); 427 return NVME_ZONE_TOO_MANY_ACTIVE | NVME_DNR; 428 } 429 430 if (ns->params.max_open_zones != 0 && 431 ns->nr_open_zones + opn > ns->params.max_open_zones) { 432 trace_pci_nvme_err_insuff_open_res(ns->params.max_open_zones); 433 return NVME_ZONE_TOO_MANY_OPEN | NVME_DNR; 434 } 435 436 if (zrwa > ns->zns.numzrwa) { 437 return NVME_NOZRWA | NVME_DNR; 438 } 439 440 return NVME_SUCCESS; 441 } 442 443 /* 444 * Check if we can open a zone without exceeding open/active limits. 445 * AOR stands for "Active and Open Resources" (see TP 4053 section 2.5). 446 */ 447 static uint16_t nvme_aor_check(NvmeNamespace *ns, uint32_t act, uint32_t opn) 448 { 449 return nvme_zns_check_resources(ns, act, opn, 0); 450 } 451 452 static NvmeFdpEvent *nvme_fdp_alloc_event(NvmeCtrl *n, NvmeFdpEventBuffer *ebuf) 453 { 454 NvmeFdpEvent *ret = NULL; 455 bool is_full = ebuf->next == ebuf->start && ebuf->nelems; 456 457 ret = &ebuf->events[ebuf->next++]; 458 if (unlikely(ebuf->next == NVME_FDP_MAX_EVENTS)) { 459 ebuf->next = 0; 460 } 461 if (is_full) { 462 ebuf->start = ebuf->next; 463 } else { 464 ebuf->nelems++; 465 } 466 467 memset(ret, 0, sizeof(NvmeFdpEvent)); 468 ret->timestamp = nvme_get_timestamp(n); 469 470 return ret; 471 } 472 473 static inline int log_event(NvmeRuHandle *ruh, uint8_t event_type) 474 { 475 return (ruh->event_filter >> nvme_fdp_evf_shifts[event_type]) & 0x1; 476 } 477 478 static bool nvme_update_ruh(NvmeCtrl *n, NvmeNamespace *ns, uint16_t pid) 479 { 480 NvmeEnduranceGroup *endgrp = ns->endgrp; 481 NvmeRuHandle *ruh; 482 NvmeReclaimUnit *ru; 483 NvmeFdpEvent *e = NULL; 484 uint16_t ph, rg, ruhid; 485 486 if (!nvme_parse_pid(ns, pid, &ph, &rg)) { 487 return false; 488 } 489 490 ruhid = ns->fdp.phs[ph]; 491 492 ruh = &endgrp->fdp.ruhs[ruhid]; 493 ru = &ruh->rus[rg]; 494 495 if (ru->ruamw) { 496 if (log_event(ruh, FDP_EVT_RU_NOT_FULLY_WRITTEN)) { 497 e = nvme_fdp_alloc_event(n, &endgrp->fdp.host_events); 498 e->type = FDP_EVT_RU_NOT_FULLY_WRITTEN; 499 e->flags = FDPEF_PIV | FDPEF_NSIDV | FDPEF_LV; 500 e->pid = cpu_to_le16(pid); 501 e->nsid = cpu_to_le32(ns->params.nsid); 502 e->rgid = cpu_to_le16(rg); 503 e->ruhid = cpu_to_le16(ruhid); 504 } 505 506 /* log (eventual) GC overhead of prematurely swapping the RU */ 507 nvme_fdp_stat_inc(&endgrp->fdp.mbmw, nvme_l2b(ns, ru->ruamw)); 508 } 509 510 ru->ruamw = ruh->ruamw; 511 512 return true; 513 } 514 515 static bool nvme_addr_is_cmb(NvmeCtrl *n, hwaddr addr) 516 { 517 hwaddr hi, lo; 518 519 if (!n->cmb.cmse) { 520 return false; 521 } 522 523 lo = n->params.legacy_cmb ? n->cmb.mem.addr : n->cmb.cba; 524 hi = lo + int128_get64(n->cmb.mem.size); 525 526 return addr >= lo && addr < hi; 527 } 528 529 static inline void *nvme_addr_to_cmb(NvmeCtrl *n, hwaddr addr) 530 { 531 hwaddr base = n->params.legacy_cmb ? n->cmb.mem.addr : n->cmb.cba; 532 return &n->cmb.buf[addr - base]; 533 } 534 535 static bool nvme_addr_is_pmr(NvmeCtrl *n, hwaddr addr) 536 { 537 hwaddr hi; 538 539 if (!n->pmr.cmse) { 540 return false; 541 } 542 543 hi = n->pmr.cba + int128_get64(n->pmr.dev->mr.size); 544 545 return addr >= n->pmr.cba && addr < hi; 546 } 547 548 static inline void *nvme_addr_to_pmr(NvmeCtrl *n, hwaddr addr) 549 { 550 return memory_region_get_ram_ptr(&n->pmr.dev->mr) + (addr - n->pmr.cba); 551 } 552 553 static inline bool nvme_addr_is_iomem(NvmeCtrl *n, hwaddr addr) 554 { 555 hwaddr hi, lo; 556 557 /* 558 * The purpose of this check is to guard against invalid "local" access to 559 * the iomem (i.e. controller registers). Thus, we check against the range 560 * covered by the 'bar0' MemoryRegion since that is currently composed of 561 * two subregions (the NVMe "MBAR" and the MSI-X table/pba). Note, however, 562 * that if the device model is ever changed to allow the CMB to be located 563 * in BAR0 as well, then this must be changed. 564 */ 565 lo = n->bar0.addr; 566 hi = lo + int128_get64(n->bar0.size); 567 568 return addr >= lo && addr < hi; 569 } 570 571 static int nvme_addr_read(NvmeCtrl *n, hwaddr addr, void *buf, int size) 572 { 573 hwaddr hi = addr + size - 1; 574 if (hi < addr) { 575 return 1; 576 } 577 578 if (n->bar.cmbsz && nvme_addr_is_cmb(n, addr) && nvme_addr_is_cmb(n, hi)) { 579 memcpy(buf, nvme_addr_to_cmb(n, addr), size); 580 return 0; 581 } 582 583 if (nvme_addr_is_pmr(n, addr) && nvme_addr_is_pmr(n, hi)) { 584 memcpy(buf, nvme_addr_to_pmr(n, addr), size); 585 return 0; 586 } 587 588 return pci_dma_read(PCI_DEVICE(n), addr, buf, size); 589 } 590 591 static int nvme_addr_write(NvmeCtrl *n, hwaddr addr, const void *buf, int size) 592 { 593 hwaddr hi = addr + size - 1; 594 if (hi < addr) { 595 return 1; 596 } 597 598 if (n->bar.cmbsz && nvme_addr_is_cmb(n, addr) && nvme_addr_is_cmb(n, hi)) { 599 memcpy(nvme_addr_to_cmb(n, addr), buf, size); 600 return 0; 601 } 602 603 if (nvme_addr_is_pmr(n, addr) && nvme_addr_is_pmr(n, hi)) { 604 memcpy(nvme_addr_to_pmr(n, addr), buf, size); 605 return 0; 606 } 607 608 return pci_dma_write(PCI_DEVICE(n), addr, buf, size); 609 } 610 611 static bool nvme_nsid_valid(NvmeCtrl *n, uint32_t nsid) 612 { 613 return nsid && 614 (nsid == NVME_NSID_BROADCAST || nsid <= NVME_MAX_NAMESPACES); 615 } 616 617 static int nvme_check_sqid(NvmeCtrl *n, uint16_t sqid) 618 { 619 return sqid < n->conf_ioqpairs + 1 && n->sq[sqid] != NULL ? 0 : -1; 620 } 621 622 static int nvme_check_cqid(NvmeCtrl *n, uint16_t cqid) 623 { 624 return cqid < n->conf_ioqpairs + 1 && n->cq[cqid] != NULL ? 0 : -1; 625 } 626 627 static void nvme_inc_cq_tail(NvmeCQueue *cq) 628 { 629 cq->tail++; 630 if (cq->tail >= cq->size) { 631 cq->tail = 0; 632 cq->phase = !cq->phase; 633 } 634 } 635 636 static void nvme_inc_sq_head(NvmeSQueue *sq) 637 { 638 sq->head = (sq->head + 1) % sq->size; 639 } 640 641 static uint8_t nvme_cq_full(NvmeCQueue *cq) 642 { 643 return (cq->tail + 1) % cq->size == cq->head; 644 } 645 646 static uint8_t nvme_sq_empty(NvmeSQueue *sq) 647 { 648 return sq->head == sq->tail; 649 } 650 651 static void nvme_irq_check(NvmeCtrl *n) 652 { 653 PCIDevice *pci = PCI_DEVICE(n); 654 uint32_t intms = ldl_le_p(&n->bar.intms); 655 656 if (msix_enabled(pci)) { 657 return; 658 } 659 if (~intms & n->irq_status) { 660 pci_irq_assert(pci); 661 } else { 662 pci_irq_deassert(pci); 663 } 664 } 665 666 static void nvme_irq_assert(NvmeCtrl *n, NvmeCQueue *cq) 667 { 668 PCIDevice *pci = PCI_DEVICE(n); 669 670 if (cq->irq_enabled) { 671 if (msix_enabled(pci)) { 672 trace_pci_nvme_irq_msix(cq->vector); 673 msix_notify(pci, cq->vector); 674 } else { 675 trace_pci_nvme_irq_pin(); 676 assert(cq->vector < 32); 677 n->irq_status |= 1 << cq->vector; 678 nvme_irq_check(n); 679 } 680 } else { 681 trace_pci_nvme_irq_masked(); 682 } 683 } 684 685 static void nvme_irq_deassert(NvmeCtrl *n, NvmeCQueue *cq) 686 { 687 if (cq->irq_enabled) { 688 if (msix_enabled(PCI_DEVICE(n))) { 689 return; 690 } else { 691 assert(cq->vector < 32); 692 if (!n->cq_pending) { 693 n->irq_status &= ~(1 << cq->vector); 694 } 695 nvme_irq_check(n); 696 } 697 } 698 } 699 700 static void nvme_req_clear(NvmeRequest *req) 701 { 702 req->ns = NULL; 703 req->opaque = NULL; 704 req->aiocb = NULL; 705 memset(&req->cqe, 0x0, sizeof(req->cqe)); 706 req->status = NVME_SUCCESS; 707 } 708 709 static inline void nvme_sg_init(NvmeCtrl *n, NvmeSg *sg, bool dma) 710 { 711 if (dma) { 712 pci_dma_sglist_init(&sg->qsg, PCI_DEVICE(n), 0); 713 sg->flags = NVME_SG_DMA; 714 } else { 715 qemu_iovec_init(&sg->iov, 0); 716 } 717 718 sg->flags |= NVME_SG_ALLOC; 719 } 720 721 static inline void nvme_sg_unmap(NvmeSg *sg) 722 { 723 if (!(sg->flags & NVME_SG_ALLOC)) { 724 return; 725 } 726 727 if (sg->flags & NVME_SG_DMA) { 728 qemu_sglist_destroy(&sg->qsg); 729 } else { 730 qemu_iovec_destroy(&sg->iov); 731 } 732 733 memset(sg, 0x0, sizeof(*sg)); 734 } 735 736 /* 737 * When metadata is transferred as extended LBAs, the DPTR mapped into `sg` 738 * holds both data and metadata. This function splits the data and metadata 739 * into two separate QSG/IOVs. 740 */ 741 static void nvme_sg_split(NvmeSg *sg, NvmeNamespace *ns, NvmeSg *data, 742 NvmeSg *mdata) 743 { 744 NvmeSg *dst = data; 745 uint32_t trans_len, count = ns->lbasz; 746 uint64_t offset = 0; 747 bool dma = sg->flags & NVME_SG_DMA; 748 size_t sge_len; 749 size_t sg_len = dma ? sg->qsg.size : sg->iov.size; 750 int sg_idx = 0; 751 752 assert(sg->flags & NVME_SG_ALLOC); 753 754 while (sg_len) { 755 sge_len = dma ? sg->qsg.sg[sg_idx].len : sg->iov.iov[sg_idx].iov_len; 756 757 trans_len = MIN(sg_len, count); 758 trans_len = MIN(trans_len, sge_len - offset); 759 760 if (dst) { 761 if (dma) { 762 qemu_sglist_add(&dst->qsg, sg->qsg.sg[sg_idx].base + offset, 763 trans_len); 764 } else { 765 qemu_iovec_add(&dst->iov, 766 sg->iov.iov[sg_idx].iov_base + offset, 767 trans_len); 768 } 769 } 770 771 sg_len -= trans_len; 772 count -= trans_len; 773 offset += trans_len; 774 775 if (count == 0) { 776 dst = (dst == data) ? mdata : data; 777 count = (dst == data) ? ns->lbasz : ns->lbaf.ms; 778 } 779 780 if (sge_len == offset) { 781 offset = 0; 782 sg_idx++; 783 } 784 } 785 } 786 787 static uint16_t nvme_map_addr_cmb(NvmeCtrl *n, QEMUIOVector *iov, hwaddr addr, 788 size_t len) 789 { 790 if (!len) { 791 return NVME_SUCCESS; 792 } 793 794 trace_pci_nvme_map_addr_cmb(addr, len); 795 796 if (!nvme_addr_is_cmb(n, addr) || !nvme_addr_is_cmb(n, addr + len - 1)) { 797 return NVME_DATA_TRAS_ERROR; 798 } 799 800 qemu_iovec_add(iov, nvme_addr_to_cmb(n, addr), len); 801 802 return NVME_SUCCESS; 803 } 804 805 static uint16_t nvme_map_addr_pmr(NvmeCtrl *n, QEMUIOVector *iov, hwaddr addr, 806 size_t len) 807 { 808 if (!len) { 809 return NVME_SUCCESS; 810 } 811 812 if (!nvme_addr_is_pmr(n, addr) || !nvme_addr_is_pmr(n, addr + len - 1)) { 813 return NVME_DATA_TRAS_ERROR; 814 } 815 816 qemu_iovec_add(iov, nvme_addr_to_pmr(n, addr), len); 817 818 return NVME_SUCCESS; 819 } 820 821 static uint16_t nvme_map_addr(NvmeCtrl *n, NvmeSg *sg, hwaddr addr, size_t len) 822 { 823 bool cmb = false, pmr = false; 824 825 if (!len) { 826 return NVME_SUCCESS; 827 } 828 829 trace_pci_nvme_map_addr(addr, len); 830 831 if (nvme_addr_is_iomem(n, addr)) { 832 return NVME_DATA_TRAS_ERROR; 833 } 834 835 if (nvme_addr_is_cmb(n, addr)) { 836 cmb = true; 837 } else if (nvme_addr_is_pmr(n, addr)) { 838 pmr = true; 839 } 840 841 if (cmb || pmr) { 842 if (sg->flags & NVME_SG_DMA) { 843 return NVME_INVALID_USE_OF_CMB | NVME_DNR; 844 } 845 846 if (sg->iov.niov + 1 > IOV_MAX) { 847 goto max_mappings_exceeded; 848 } 849 850 if (cmb) { 851 return nvme_map_addr_cmb(n, &sg->iov, addr, len); 852 } else { 853 return nvme_map_addr_pmr(n, &sg->iov, addr, len); 854 } 855 } 856 857 if (!(sg->flags & NVME_SG_DMA)) { 858 return NVME_INVALID_USE_OF_CMB | NVME_DNR; 859 } 860 861 if (sg->qsg.nsg + 1 > IOV_MAX) { 862 goto max_mappings_exceeded; 863 } 864 865 qemu_sglist_add(&sg->qsg, addr, len); 866 867 return NVME_SUCCESS; 868 869 max_mappings_exceeded: 870 NVME_GUEST_ERR(pci_nvme_ub_too_many_mappings, 871 "number of mappings exceed 1024"); 872 return NVME_INTERNAL_DEV_ERROR | NVME_DNR; 873 } 874 875 static inline bool nvme_addr_is_dma(NvmeCtrl *n, hwaddr addr) 876 { 877 return !(nvme_addr_is_cmb(n, addr) || nvme_addr_is_pmr(n, addr)); 878 } 879 880 static uint16_t nvme_map_prp(NvmeCtrl *n, NvmeSg *sg, uint64_t prp1, 881 uint64_t prp2, uint32_t len) 882 { 883 hwaddr trans_len = n->page_size - (prp1 % n->page_size); 884 trans_len = MIN(len, trans_len); 885 int num_prps = (len >> n->page_bits) + 1; 886 uint16_t status; 887 int ret; 888 889 trace_pci_nvme_map_prp(trans_len, len, prp1, prp2, num_prps); 890 891 nvme_sg_init(n, sg, nvme_addr_is_dma(n, prp1)); 892 893 status = nvme_map_addr(n, sg, prp1, trans_len); 894 if (status) { 895 goto unmap; 896 } 897 898 len -= trans_len; 899 if (len) { 900 if (len > n->page_size) { 901 g_autofree uint64_t *prp_list = g_new(uint64_t, n->max_prp_ents); 902 uint32_t nents, prp_trans; 903 int i = 0; 904 905 /* 906 * The first PRP list entry, pointed to by PRP2 may contain offset. 907 * Hence, we need to calculate the number of entries in based on 908 * that offset. 909 */ 910 nents = (n->page_size - (prp2 & (n->page_size - 1))) >> 3; 911 prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t); 912 ret = nvme_addr_read(n, prp2, (void *)prp_list, prp_trans); 913 if (ret) { 914 trace_pci_nvme_err_addr_read(prp2); 915 status = NVME_DATA_TRAS_ERROR; 916 goto unmap; 917 } 918 while (len != 0) { 919 uint64_t prp_ent = le64_to_cpu(prp_list[i]); 920 921 if (i == nents - 1 && len > n->page_size) { 922 if (unlikely(prp_ent & (n->page_size - 1))) { 923 trace_pci_nvme_err_invalid_prplist_ent(prp_ent); 924 status = NVME_INVALID_PRP_OFFSET | NVME_DNR; 925 goto unmap; 926 } 927 928 i = 0; 929 nents = (len + n->page_size - 1) >> n->page_bits; 930 nents = MIN(nents, n->max_prp_ents); 931 prp_trans = nents * sizeof(uint64_t); 932 ret = nvme_addr_read(n, prp_ent, (void *)prp_list, 933 prp_trans); 934 if (ret) { 935 trace_pci_nvme_err_addr_read(prp_ent); 936 status = NVME_DATA_TRAS_ERROR; 937 goto unmap; 938 } 939 prp_ent = le64_to_cpu(prp_list[i]); 940 } 941 942 if (unlikely(prp_ent & (n->page_size - 1))) { 943 trace_pci_nvme_err_invalid_prplist_ent(prp_ent); 944 status = NVME_INVALID_PRP_OFFSET | NVME_DNR; 945 goto unmap; 946 } 947 948 trans_len = MIN(len, n->page_size); 949 status = nvme_map_addr(n, sg, prp_ent, trans_len); 950 if (status) { 951 goto unmap; 952 } 953 954 len -= trans_len; 955 i++; 956 } 957 } else { 958 if (unlikely(prp2 & (n->page_size - 1))) { 959 trace_pci_nvme_err_invalid_prp2_align(prp2); 960 status = NVME_INVALID_PRP_OFFSET | NVME_DNR; 961 goto unmap; 962 } 963 status = nvme_map_addr(n, sg, prp2, len); 964 if (status) { 965 goto unmap; 966 } 967 } 968 } 969 970 return NVME_SUCCESS; 971 972 unmap: 973 nvme_sg_unmap(sg); 974 return status; 975 } 976 977 /* 978 * Map 'nsgld' data descriptors from 'segment'. The function will subtract the 979 * number of bytes mapped in len. 980 */ 981 static uint16_t nvme_map_sgl_data(NvmeCtrl *n, NvmeSg *sg, 982 NvmeSglDescriptor *segment, uint64_t nsgld, 983 size_t *len, NvmeCmd *cmd) 984 { 985 dma_addr_t addr, trans_len; 986 uint32_t dlen; 987 uint16_t status; 988 989 for (int i = 0; i < nsgld; i++) { 990 uint8_t type = NVME_SGL_TYPE(segment[i].type); 991 992 switch (type) { 993 case NVME_SGL_DESCR_TYPE_DATA_BLOCK: 994 break; 995 case NVME_SGL_DESCR_TYPE_SEGMENT: 996 case NVME_SGL_DESCR_TYPE_LAST_SEGMENT: 997 return NVME_INVALID_NUM_SGL_DESCRS | NVME_DNR; 998 default: 999 return NVME_SGL_DESCR_TYPE_INVALID | NVME_DNR; 1000 } 1001 1002 dlen = le32_to_cpu(segment[i].len); 1003 1004 if (!dlen) { 1005 continue; 1006 } 1007 1008 if (*len == 0) { 1009 /* 1010 * All data has been mapped, but the SGL contains additional 1011 * segments and/or descriptors. The controller might accept 1012 * ignoring the rest of the SGL. 1013 */ 1014 uint32_t sgls = le32_to_cpu(n->id_ctrl.sgls); 1015 if (sgls & NVME_CTRL_SGLS_EXCESS_LENGTH) { 1016 break; 1017 } 1018 1019 trace_pci_nvme_err_invalid_sgl_excess_length(dlen); 1020 return NVME_DATA_SGL_LEN_INVALID | NVME_DNR; 1021 } 1022 1023 trans_len = MIN(*len, dlen); 1024 1025 addr = le64_to_cpu(segment[i].addr); 1026 1027 if (UINT64_MAX - addr < dlen) { 1028 return NVME_DATA_SGL_LEN_INVALID | NVME_DNR; 1029 } 1030 1031 status = nvme_map_addr(n, sg, addr, trans_len); 1032 if (status) { 1033 return status; 1034 } 1035 1036 *len -= trans_len; 1037 } 1038 1039 return NVME_SUCCESS; 1040 } 1041 1042 static uint16_t nvme_map_sgl(NvmeCtrl *n, NvmeSg *sg, NvmeSglDescriptor sgl, 1043 size_t len, NvmeCmd *cmd) 1044 { 1045 /* 1046 * Read the segment in chunks of 256 descriptors (one 4k page) to avoid 1047 * dynamically allocating a potentially huge SGL. The spec allows the SGL 1048 * to be larger (as in number of bytes required to describe the SGL 1049 * descriptors and segment chain) than the command transfer size, so it is 1050 * not bounded by MDTS. 1051 */ 1052 #define SEG_CHUNK_SIZE 256 1053 1054 NvmeSglDescriptor segment[SEG_CHUNK_SIZE], *sgld, *last_sgld; 1055 uint64_t nsgld; 1056 uint32_t seg_len; 1057 uint16_t status; 1058 hwaddr addr; 1059 int ret; 1060 1061 sgld = &sgl; 1062 addr = le64_to_cpu(sgl.addr); 1063 1064 trace_pci_nvme_map_sgl(NVME_SGL_TYPE(sgl.type), len); 1065 1066 nvme_sg_init(n, sg, nvme_addr_is_dma(n, addr)); 1067 1068 /* 1069 * If the entire transfer can be described with a single data block it can 1070 * be mapped directly. 1071 */ 1072 if (NVME_SGL_TYPE(sgl.type) == NVME_SGL_DESCR_TYPE_DATA_BLOCK) { 1073 status = nvme_map_sgl_data(n, sg, sgld, 1, &len, cmd); 1074 if (status) { 1075 goto unmap; 1076 } 1077 1078 goto out; 1079 } 1080 1081 for (;;) { 1082 switch (NVME_SGL_TYPE(sgld->type)) { 1083 case NVME_SGL_DESCR_TYPE_SEGMENT: 1084 case NVME_SGL_DESCR_TYPE_LAST_SEGMENT: 1085 break; 1086 default: 1087 return NVME_INVALID_SGL_SEG_DESCR | NVME_DNR; 1088 } 1089 1090 seg_len = le32_to_cpu(sgld->len); 1091 1092 /* check the length of the (Last) Segment descriptor */ 1093 if (!seg_len || seg_len & 0xf) { 1094 return NVME_INVALID_SGL_SEG_DESCR | NVME_DNR; 1095 } 1096 1097 if (UINT64_MAX - addr < seg_len) { 1098 return NVME_DATA_SGL_LEN_INVALID | NVME_DNR; 1099 } 1100 1101 nsgld = seg_len / sizeof(NvmeSglDescriptor); 1102 1103 while (nsgld > SEG_CHUNK_SIZE) { 1104 if (nvme_addr_read(n, addr, segment, sizeof(segment))) { 1105 trace_pci_nvme_err_addr_read(addr); 1106 status = NVME_DATA_TRAS_ERROR; 1107 goto unmap; 1108 } 1109 1110 status = nvme_map_sgl_data(n, sg, segment, SEG_CHUNK_SIZE, 1111 &len, cmd); 1112 if (status) { 1113 goto unmap; 1114 } 1115 1116 nsgld -= SEG_CHUNK_SIZE; 1117 addr += SEG_CHUNK_SIZE * sizeof(NvmeSglDescriptor); 1118 } 1119 1120 ret = nvme_addr_read(n, addr, segment, nsgld * 1121 sizeof(NvmeSglDescriptor)); 1122 if (ret) { 1123 trace_pci_nvme_err_addr_read(addr); 1124 status = NVME_DATA_TRAS_ERROR; 1125 goto unmap; 1126 } 1127 1128 last_sgld = &segment[nsgld - 1]; 1129 1130 /* 1131 * If the segment ends with a Data Block, then we are done. 1132 */ 1133 if (NVME_SGL_TYPE(last_sgld->type) == NVME_SGL_DESCR_TYPE_DATA_BLOCK) { 1134 status = nvme_map_sgl_data(n, sg, segment, nsgld, &len, cmd); 1135 if (status) { 1136 goto unmap; 1137 } 1138 1139 goto out; 1140 } 1141 1142 /* 1143 * If the last descriptor was not a Data Block, then the current 1144 * segment must not be a Last Segment. 1145 */ 1146 if (NVME_SGL_TYPE(sgld->type) == NVME_SGL_DESCR_TYPE_LAST_SEGMENT) { 1147 status = NVME_INVALID_SGL_SEG_DESCR | NVME_DNR; 1148 goto unmap; 1149 } 1150 1151 sgld = last_sgld; 1152 addr = le64_to_cpu(sgld->addr); 1153 1154 /* 1155 * Do not map the last descriptor; it will be a Segment or Last Segment 1156 * descriptor and is handled by the next iteration. 1157 */ 1158 status = nvme_map_sgl_data(n, sg, segment, nsgld - 1, &len, cmd); 1159 if (status) { 1160 goto unmap; 1161 } 1162 } 1163 1164 out: 1165 /* if there is any residual left in len, the SGL was too short */ 1166 if (len) { 1167 status = NVME_DATA_SGL_LEN_INVALID | NVME_DNR; 1168 goto unmap; 1169 } 1170 1171 return NVME_SUCCESS; 1172 1173 unmap: 1174 nvme_sg_unmap(sg); 1175 return status; 1176 } 1177 1178 uint16_t nvme_map_dptr(NvmeCtrl *n, NvmeSg *sg, size_t len, 1179 NvmeCmd *cmd) 1180 { 1181 uint64_t prp1, prp2; 1182 1183 switch (NVME_CMD_FLAGS_PSDT(cmd->flags)) { 1184 case NVME_PSDT_PRP: 1185 prp1 = le64_to_cpu(cmd->dptr.prp1); 1186 prp2 = le64_to_cpu(cmd->dptr.prp2); 1187 1188 return nvme_map_prp(n, sg, prp1, prp2, len); 1189 case NVME_PSDT_SGL_MPTR_CONTIGUOUS: 1190 case NVME_PSDT_SGL_MPTR_SGL: 1191 return nvme_map_sgl(n, sg, cmd->dptr.sgl, len, cmd); 1192 default: 1193 return NVME_INVALID_FIELD; 1194 } 1195 } 1196 1197 static uint16_t nvme_map_mptr(NvmeCtrl *n, NvmeSg *sg, size_t len, 1198 NvmeCmd *cmd) 1199 { 1200 int psdt = NVME_CMD_FLAGS_PSDT(cmd->flags); 1201 hwaddr mptr = le64_to_cpu(cmd->mptr); 1202 uint16_t status; 1203 1204 if (psdt == NVME_PSDT_SGL_MPTR_SGL) { 1205 NvmeSglDescriptor sgl; 1206 1207 if (nvme_addr_read(n, mptr, &sgl, sizeof(sgl))) { 1208 return NVME_DATA_TRAS_ERROR; 1209 } 1210 1211 status = nvme_map_sgl(n, sg, sgl, len, cmd); 1212 if (status && (status & 0x7ff) == NVME_DATA_SGL_LEN_INVALID) { 1213 status = NVME_MD_SGL_LEN_INVALID | NVME_DNR; 1214 } 1215 1216 return status; 1217 } 1218 1219 nvme_sg_init(n, sg, nvme_addr_is_dma(n, mptr)); 1220 status = nvme_map_addr(n, sg, mptr, len); 1221 if (status) { 1222 nvme_sg_unmap(sg); 1223 } 1224 1225 return status; 1226 } 1227 1228 static uint16_t nvme_map_data(NvmeCtrl *n, uint32_t nlb, NvmeRequest *req) 1229 { 1230 NvmeNamespace *ns = req->ns; 1231 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; 1232 bool pi = !!NVME_ID_NS_DPS_TYPE(ns->id_ns.dps); 1233 bool pract = !!(le16_to_cpu(rw->control) & NVME_RW_PRINFO_PRACT); 1234 size_t len = nvme_l2b(ns, nlb); 1235 uint16_t status; 1236 1237 if (nvme_ns_ext(ns) && 1238 !(pi && pract && ns->lbaf.ms == nvme_pi_tuple_size(ns))) { 1239 NvmeSg sg; 1240 1241 len += nvme_m2b(ns, nlb); 1242 1243 status = nvme_map_dptr(n, &sg, len, &req->cmd); 1244 if (status) { 1245 return status; 1246 } 1247 1248 nvme_sg_init(n, &req->sg, sg.flags & NVME_SG_DMA); 1249 nvme_sg_split(&sg, ns, &req->sg, NULL); 1250 nvme_sg_unmap(&sg); 1251 1252 return NVME_SUCCESS; 1253 } 1254 1255 return nvme_map_dptr(n, &req->sg, len, &req->cmd); 1256 } 1257 1258 static uint16_t nvme_map_mdata(NvmeCtrl *n, uint32_t nlb, NvmeRequest *req) 1259 { 1260 NvmeNamespace *ns = req->ns; 1261 size_t len = nvme_m2b(ns, nlb); 1262 uint16_t status; 1263 1264 if (nvme_ns_ext(ns)) { 1265 NvmeSg sg; 1266 1267 len += nvme_l2b(ns, nlb); 1268 1269 status = nvme_map_dptr(n, &sg, len, &req->cmd); 1270 if (status) { 1271 return status; 1272 } 1273 1274 nvme_sg_init(n, &req->sg, sg.flags & NVME_SG_DMA); 1275 nvme_sg_split(&sg, ns, NULL, &req->sg); 1276 nvme_sg_unmap(&sg); 1277 1278 return NVME_SUCCESS; 1279 } 1280 1281 return nvme_map_mptr(n, &req->sg, len, &req->cmd); 1282 } 1283 1284 static uint16_t nvme_tx_interleaved(NvmeCtrl *n, NvmeSg *sg, uint8_t *ptr, 1285 uint32_t len, uint32_t bytes, 1286 int32_t skip_bytes, int64_t offset, 1287 NvmeTxDirection dir) 1288 { 1289 hwaddr addr; 1290 uint32_t trans_len, count = bytes; 1291 bool dma = sg->flags & NVME_SG_DMA; 1292 int64_t sge_len; 1293 int sg_idx = 0; 1294 int ret; 1295 1296 assert(sg->flags & NVME_SG_ALLOC); 1297 1298 while (len) { 1299 sge_len = dma ? sg->qsg.sg[sg_idx].len : sg->iov.iov[sg_idx].iov_len; 1300 1301 if (sge_len - offset < 0) { 1302 offset -= sge_len; 1303 sg_idx++; 1304 continue; 1305 } 1306 1307 if (sge_len == offset) { 1308 offset = 0; 1309 sg_idx++; 1310 continue; 1311 } 1312 1313 trans_len = MIN(len, count); 1314 trans_len = MIN(trans_len, sge_len - offset); 1315 1316 if (dma) { 1317 addr = sg->qsg.sg[sg_idx].base + offset; 1318 } else { 1319 addr = (hwaddr)(uintptr_t)sg->iov.iov[sg_idx].iov_base + offset; 1320 } 1321 1322 if (dir == NVME_TX_DIRECTION_TO_DEVICE) { 1323 ret = nvme_addr_read(n, addr, ptr, trans_len); 1324 } else { 1325 ret = nvme_addr_write(n, addr, ptr, trans_len); 1326 } 1327 1328 if (ret) { 1329 return NVME_DATA_TRAS_ERROR; 1330 } 1331 1332 ptr += trans_len; 1333 len -= trans_len; 1334 count -= trans_len; 1335 offset += trans_len; 1336 1337 if (count == 0) { 1338 count = bytes; 1339 offset += skip_bytes; 1340 } 1341 } 1342 1343 return NVME_SUCCESS; 1344 } 1345 1346 static uint16_t nvme_tx(NvmeCtrl *n, NvmeSg *sg, void *ptr, uint32_t len, 1347 NvmeTxDirection dir) 1348 { 1349 assert(sg->flags & NVME_SG_ALLOC); 1350 1351 if (sg->flags & NVME_SG_DMA) { 1352 const MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED; 1353 dma_addr_t residual; 1354 1355 if (dir == NVME_TX_DIRECTION_TO_DEVICE) { 1356 dma_buf_write(ptr, len, &residual, &sg->qsg, attrs); 1357 } else { 1358 dma_buf_read(ptr, len, &residual, &sg->qsg, attrs); 1359 } 1360 1361 if (unlikely(residual)) { 1362 trace_pci_nvme_err_invalid_dma(); 1363 return NVME_INVALID_FIELD | NVME_DNR; 1364 } 1365 } else { 1366 size_t bytes; 1367 1368 if (dir == NVME_TX_DIRECTION_TO_DEVICE) { 1369 bytes = qemu_iovec_to_buf(&sg->iov, 0, ptr, len); 1370 } else { 1371 bytes = qemu_iovec_from_buf(&sg->iov, 0, ptr, len); 1372 } 1373 1374 if (unlikely(bytes != len)) { 1375 trace_pci_nvme_err_invalid_dma(); 1376 return NVME_INVALID_FIELD | NVME_DNR; 1377 } 1378 } 1379 1380 return NVME_SUCCESS; 1381 } 1382 1383 static inline uint16_t nvme_c2h(NvmeCtrl *n, void *ptr, uint32_t len, 1384 NvmeRequest *req) 1385 { 1386 uint16_t status; 1387 1388 status = nvme_map_dptr(n, &req->sg, len, &req->cmd); 1389 if (status) { 1390 return status; 1391 } 1392 1393 return nvme_tx(n, &req->sg, ptr, len, NVME_TX_DIRECTION_FROM_DEVICE); 1394 } 1395 1396 static inline uint16_t nvme_h2c(NvmeCtrl *n, void *ptr, uint32_t len, 1397 NvmeRequest *req) 1398 { 1399 uint16_t status; 1400 1401 status = nvme_map_dptr(n, &req->sg, len, &req->cmd); 1402 if (status) { 1403 return status; 1404 } 1405 1406 return nvme_tx(n, &req->sg, ptr, len, NVME_TX_DIRECTION_TO_DEVICE); 1407 } 1408 1409 uint16_t nvme_bounce_data(NvmeCtrl *n, void *ptr, uint32_t len, 1410 NvmeTxDirection dir, NvmeRequest *req) 1411 { 1412 NvmeNamespace *ns = req->ns; 1413 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; 1414 bool pi = !!NVME_ID_NS_DPS_TYPE(ns->id_ns.dps); 1415 bool pract = !!(le16_to_cpu(rw->control) & NVME_RW_PRINFO_PRACT); 1416 1417 if (nvme_ns_ext(ns) && 1418 !(pi && pract && ns->lbaf.ms == nvme_pi_tuple_size(ns))) { 1419 return nvme_tx_interleaved(n, &req->sg, ptr, len, ns->lbasz, 1420 ns->lbaf.ms, 0, dir); 1421 } 1422 1423 return nvme_tx(n, &req->sg, ptr, len, dir); 1424 } 1425 1426 uint16_t nvme_bounce_mdata(NvmeCtrl *n, void *ptr, uint32_t len, 1427 NvmeTxDirection dir, NvmeRequest *req) 1428 { 1429 NvmeNamespace *ns = req->ns; 1430 uint16_t status; 1431 1432 if (nvme_ns_ext(ns)) { 1433 return nvme_tx_interleaved(n, &req->sg, ptr, len, ns->lbaf.ms, 1434 ns->lbasz, ns->lbasz, dir); 1435 } 1436 1437 nvme_sg_unmap(&req->sg); 1438 1439 status = nvme_map_mptr(n, &req->sg, len, &req->cmd); 1440 if (status) { 1441 return status; 1442 } 1443 1444 return nvme_tx(n, &req->sg, ptr, len, dir); 1445 } 1446 1447 static inline void nvme_blk_read(BlockBackend *blk, int64_t offset, 1448 uint32_t align, BlockCompletionFunc *cb, 1449 NvmeRequest *req) 1450 { 1451 assert(req->sg.flags & NVME_SG_ALLOC); 1452 1453 if (req->sg.flags & NVME_SG_DMA) { 1454 req->aiocb = dma_blk_read(blk, &req->sg.qsg, offset, align, cb, req); 1455 } else { 1456 req->aiocb = blk_aio_preadv(blk, offset, &req->sg.iov, 0, cb, req); 1457 } 1458 } 1459 1460 static inline void nvme_blk_write(BlockBackend *blk, int64_t offset, 1461 uint32_t align, BlockCompletionFunc *cb, 1462 NvmeRequest *req) 1463 { 1464 assert(req->sg.flags & NVME_SG_ALLOC); 1465 1466 if (req->sg.flags & NVME_SG_DMA) { 1467 req->aiocb = dma_blk_write(blk, &req->sg.qsg, offset, align, cb, req); 1468 } else { 1469 req->aiocb = blk_aio_pwritev(blk, offset, &req->sg.iov, 0, cb, req); 1470 } 1471 } 1472 1473 static void nvme_update_cq_eventidx(const NvmeCQueue *cq) 1474 { 1475 trace_pci_nvme_update_cq_eventidx(cq->cqid, cq->head); 1476 1477 stl_le_pci_dma(PCI_DEVICE(cq->ctrl), cq->ei_addr, cq->head, 1478 MEMTXATTRS_UNSPECIFIED); 1479 } 1480 1481 static void nvme_update_cq_head(NvmeCQueue *cq) 1482 { 1483 ldl_le_pci_dma(PCI_DEVICE(cq->ctrl), cq->db_addr, &cq->head, 1484 MEMTXATTRS_UNSPECIFIED); 1485 1486 trace_pci_nvme_update_cq_head(cq->cqid, cq->head); 1487 } 1488 1489 static void nvme_post_cqes(void *opaque) 1490 { 1491 NvmeCQueue *cq = opaque; 1492 NvmeCtrl *n = cq->ctrl; 1493 NvmeRequest *req, *next; 1494 bool pending = cq->head != cq->tail; 1495 int ret; 1496 1497 QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) { 1498 NvmeSQueue *sq; 1499 hwaddr addr; 1500 1501 if (n->dbbuf_enabled) { 1502 nvme_update_cq_eventidx(cq); 1503 nvme_update_cq_head(cq); 1504 } 1505 1506 if (nvme_cq_full(cq)) { 1507 break; 1508 } 1509 1510 sq = req->sq; 1511 req->cqe.status = cpu_to_le16((req->status << 1) | cq->phase); 1512 req->cqe.sq_id = cpu_to_le16(sq->sqid); 1513 req->cqe.sq_head = cpu_to_le16(sq->head); 1514 addr = cq->dma_addr + (cq->tail << NVME_CQES); 1515 ret = pci_dma_write(PCI_DEVICE(n), addr, (void *)&req->cqe, 1516 sizeof(req->cqe)); 1517 if (ret) { 1518 trace_pci_nvme_err_addr_write(addr); 1519 trace_pci_nvme_err_cfs(); 1520 stl_le_p(&n->bar.csts, NVME_CSTS_FAILED); 1521 break; 1522 } 1523 1524 QTAILQ_REMOVE(&cq->req_list, req, entry); 1525 1526 nvme_inc_cq_tail(cq); 1527 nvme_sg_unmap(&req->sg); 1528 1529 if (QTAILQ_EMPTY(&sq->req_list) && !nvme_sq_empty(sq)) { 1530 qemu_bh_schedule(sq->bh); 1531 } 1532 1533 QTAILQ_INSERT_TAIL(&sq->req_list, req, entry); 1534 } 1535 if (cq->tail != cq->head) { 1536 if (cq->irq_enabled && !pending) { 1537 n->cq_pending++; 1538 } 1539 1540 nvme_irq_assert(n, cq); 1541 } 1542 } 1543 1544 static void nvme_enqueue_req_completion(NvmeCQueue *cq, NvmeRequest *req) 1545 { 1546 assert(cq->cqid == req->sq->cqid); 1547 trace_pci_nvme_enqueue_req_completion(nvme_cid(req), cq->cqid, 1548 le32_to_cpu(req->cqe.result), 1549 le32_to_cpu(req->cqe.dw1), 1550 req->status); 1551 1552 if (req->status) { 1553 trace_pci_nvme_err_req_status(nvme_cid(req), nvme_nsid(req->ns), 1554 req->status, req->cmd.opcode); 1555 } 1556 1557 QTAILQ_REMOVE(&req->sq->out_req_list, req, entry); 1558 QTAILQ_INSERT_TAIL(&cq->req_list, req, entry); 1559 1560 qemu_bh_schedule(cq->bh); 1561 } 1562 1563 static void nvme_process_aers(void *opaque) 1564 { 1565 NvmeCtrl *n = opaque; 1566 NvmeAsyncEvent *event, *next; 1567 1568 trace_pci_nvme_process_aers(n->aer_queued); 1569 1570 QTAILQ_FOREACH_SAFE(event, &n->aer_queue, entry, next) { 1571 NvmeRequest *req; 1572 NvmeAerResult *result; 1573 1574 /* can't post cqe if there is nothing to complete */ 1575 if (!n->outstanding_aers) { 1576 trace_pci_nvme_no_outstanding_aers(); 1577 break; 1578 } 1579 1580 /* ignore if masked (cqe posted, but event not cleared) */ 1581 if (n->aer_mask & (1 << event->result.event_type)) { 1582 trace_pci_nvme_aer_masked(event->result.event_type, n->aer_mask); 1583 continue; 1584 } 1585 1586 QTAILQ_REMOVE(&n->aer_queue, event, entry); 1587 n->aer_queued--; 1588 1589 n->aer_mask |= 1 << event->result.event_type; 1590 n->outstanding_aers--; 1591 1592 req = n->aer_reqs[n->outstanding_aers]; 1593 1594 result = (NvmeAerResult *) &req->cqe.result; 1595 result->event_type = event->result.event_type; 1596 result->event_info = event->result.event_info; 1597 result->log_page = event->result.log_page; 1598 g_free(event); 1599 1600 trace_pci_nvme_aer_post_cqe(result->event_type, result->event_info, 1601 result->log_page); 1602 1603 nvme_enqueue_req_completion(&n->admin_cq, req); 1604 } 1605 } 1606 1607 static void nvme_enqueue_event(NvmeCtrl *n, uint8_t event_type, 1608 uint8_t event_info, uint8_t log_page) 1609 { 1610 NvmeAsyncEvent *event; 1611 1612 trace_pci_nvme_enqueue_event(event_type, event_info, log_page); 1613 1614 if (n->aer_queued == n->params.aer_max_queued) { 1615 trace_pci_nvme_enqueue_event_noqueue(n->aer_queued); 1616 return; 1617 } 1618 1619 event = g_new(NvmeAsyncEvent, 1); 1620 event->result = (NvmeAerResult) { 1621 .event_type = event_type, 1622 .event_info = event_info, 1623 .log_page = log_page, 1624 }; 1625 1626 QTAILQ_INSERT_TAIL(&n->aer_queue, event, entry); 1627 n->aer_queued++; 1628 1629 nvme_process_aers(n); 1630 } 1631 1632 static void nvme_smart_event(NvmeCtrl *n, uint8_t event) 1633 { 1634 uint8_t aer_info; 1635 1636 /* Ref SPEC <Asynchronous Event Information 0x2013 SMART / Health Status> */ 1637 if (!(NVME_AEC_SMART(n->features.async_config) & event)) { 1638 return; 1639 } 1640 1641 switch (event) { 1642 case NVME_SMART_SPARE: 1643 aer_info = NVME_AER_INFO_SMART_SPARE_THRESH; 1644 break; 1645 case NVME_SMART_TEMPERATURE: 1646 aer_info = NVME_AER_INFO_SMART_TEMP_THRESH; 1647 break; 1648 case NVME_SMART_RELIABILITY: 1649 case NVME_SMART_MEDIA_READ_ONLY: 1650 case NVME_SMART_FAILED_VOLATILE_MEDIA: 1651 case NVME_SMART_PMR_UNRELIABLE: 1652 aer_info = NVME_AER_INFO_SMART_RELIABILITY; 1653 break; 1654 default: 1655 return; 1656 } 1657 1658 nvme_enqueue_event(n, NVME_AER_TYPE_SMART, aer_info, NVME_LOG_SMART_INFO); 1659 } 1660 1661 static void nvme_clear_events(NvmeCtrl *n, uint8_t event_type) 1662 { 1663 NvmeAsyncEvent *event, *next; 1664 1665 n->aer_mask &= ~(1 << event_type); 1666 1667 QTAILQ_FOREACH_SAFE(event, &n->aer_queue, entry, next) { 1668 if (event->result.event_type == event_type) { 1669 QTAILQ_REMOVE(&n->aer_queue, event, entry); 1670 n->aer_queued--; 1671 g_free(event); 1672 } 1673 } 1674 } 1675 1676 static inline uint16_t nvme_check_mdts(NvmeCtrl *n, size_t len) 1677 { 1678 uint8_t mdts = n->params.mdts; 1679 1680 if (mdts && len > n->page_size << mdts) { 1681 trace_pci_nvme_err_mdts(len); 1682 return NVME_INVALID_FIELD | NVME_DNR; 1683 } 1684 1685 return NVME_SUCCESS; 1686 } 1687 1688 static inline uint16_t nvme_check_bounds(NvmeNamespace *ns, uint64_t slba, 1689 uint32_t nlb) 1690 { 1691 uint64_t nsze = le64_to_cpu(ns->id_ns.nsze); 1692 1693 if (unlikely(UINT64_MAX - slba < nlb || slba + nlb > nsze)) { 1694 trace_pci_nvme_err_invalid_lba_range(slba, nlb, nsze); 1695 return NVME_LBA_RANGE | NVME_DNR; 1696 } 1697 1698 return NVME_SUCCESS; 1699 } 1700 1701 static int nvme_block_status_all(NvmeNamespace *ns, uint64_t slba, 1702 uint32_t nlb, int flags) 1703 { 1704 BlockDriverState *bs = blk_bs(ns->blkconf.blk); 1705 1706 int64_t pnum = 0, bytes = nvme_l2b(ns, nlb); 1707 int64_t offset = nvme_l2b(ns, slba); 1708 int ret; 1709 1710 /* 1711 * `pnum` holds the number of bytes after offset that shares the same 1712 * allocation status as the byte at offset. If `pnum` is different from 1713 * `bytes`, we should check the allocation status of the next range and 1714 * continue this until all bytes have been checked. 1715 */ 1716 do { 1717 bytes -= pnum; 1718 1719 ret = bdrv_block_status(bs, offset, bytes, &pnum, NULL, NULL); 1720 if (ret < 0) { 1721 return ret; 1722 } 1723 1724 1725 trace_pci_nvme_block_status(offset, bytes, pnum, ret, 1726 !!(ret & BDRV_BLOCK_ZERO)); 1727 1728 if (!(ret & flags)) { 1729 return 1; 1730 } 1731 1732 offset += pnum; 1733 } while (pnum != bytes); 1734 1735 return 0; 1736 } 1737 1738 static uint16_t nvme_check_dulbe(NvmeNamespace *ns, uint64_t slba, 1739 uint32_t nlb) 1740 { 1741 int ret; 1742 Error *err = NULL; 1743 1744 ret = nvme_block_status_all(ns, slba, nlb, BDRV_BLOCK_DATA); 1745 if (ret) { 1746 if (ret < 0) { 1747 error_setg_errno(&err, -ret, "unable to get block status"); 1748 error_report_err(err); 1749 1750 return NVME_INTERNAL_DEV_ERROR; 1751 } 1752 1753 return NVME_DULB; 1754 } 1755 1756 return NVME_SUCCESS; 1757 } 1758 1759 static void nvme_aio_err(NvmeRequest *req, int ret) 1760 { 1761 uint16_t status = NVME_SUCCESS; 1762 Error *local_err = NULL; 1763 1764 switch (req->cmd.opcode) { 1765 case NVME_CMD_READ: 1766 status = NVME_UNRECOVERED_READ; 1767 break; 1768 case NVME_CMD_FLUSH: 1769 case NVME_CMD_WRITE: 1770 case NVME_CMD_WRITE_ZEROES: 1771 case NVME_CMD_ZONE_APPEND: 1772 case NVME_CMD_COPY: 1773 status = NVME_WRITE_FAULT; 1774 break; 1775 default: 1776 status = NVME_INTERNAL_DEV_ERROR; 1777 break; 1778 } 1779 1780 if (ret == -ECANCELED) { 1781 status = NVME_CMD_ABORT_REQ; 1782 } 1783 1784 trace_pci_nvme_err_aio(nvme_cid(req), strerror(-ret), status); 1785 1786 error_setg_errno(&local_err, -ret, "aio failed"); 1787 error_report_err(local_err); 1788 1789 /* 1790 * Set the command status code to the first encountered error but allow a 1791 * subsequent Internal Device Error to trump it. 1792 */ 1793 if (req->status && status != NVME_INTERNAL_DEV_ERROR) { 1794 return; 1795 } 1796 1797 req->status = status; 1798 } 1799 1800 static inline uint32_t nvme_zone_idx(NvmeNamespace *ns, uint64_t slba) 1801 { 1802 return ns->zone_size_log2 > 0 ? slba >> ns->zone_size_log2 : 1803 slba / ns->zone_size; 1804 } 1805 1806 static inline NvmeZone *nvme_get_zone_by_slba(NvmeNamespace *ns, uint64_t slba) 1807 { 1808 uint32_t zone_idx = nvme_zone_idx(ns, slba); 1809 1810 if (zone_idx >= ns->num_zones) { 1811 return NULL; 1812 } 1813 1814 return &ns->zone_array[zone_idx]; 1815 } 1816 1817 static uint16_t nvme_check_zone_state_for_write(NvmeZone *zone) 1818 { 1819 uint64_t zslba = zone->d.zslba; 1820 1821 switch (nvme_get_zone_state(zone)) { 1822 case NVME_ZONE_STATE_EMPTY: 1823 case NVME_ZONE_STATE_IMPLICITLY_OPEN: 1824 case NVME_ZONE_STATE_EXPLICITLY_OPEN: 1825 case NVME_ZONE_STATE_CLOSED: 1826 return NVME_SUCCESS; 1827 case NVME_ZONE_STATE_FULL: 1828 trace_pci_nvme_err_zone_is_full(zslba); 1829 return NVME_ZONE_FULL; 1830 case NVME_ZONE_STATE_OFFLINE: 1831 trace_pci_nvme_err_zone_is_offline(zslba); 1832 return NVME_ZONE_OFFLINE; 1833 case NVME_ZONE_STATE_READ_ONLY: 1834 trace_pci_nvme_err_zone_is_read_only(zslba); 1835 return NVME_ZONE_READ_ONLY; 1836 default: 1837 g_assert_not_reached(); 1838 } 1839 1840 return NVME_INTERNAL_DEV_ERROR; 1841 } 1842 1843 static uint16_t nvme_check_zone_write(NvmeNamespace *ns, NvmeZone *zone, 1844 uint64_t slba, uint32_t nlb) 1845 { 1846 uint64_t zcap = nvme_zone_wr_boundary(zone); 1847 uint16_t status; 1848 1849 status = nvme_check_zone_state_for_write(zone); 1850 if (status) { 1851 return status; 1852 } 1853 1854 if (zone->d.za & NVME_ZA_ZRWA_VALID) { 1855 uint64_t ezrwa = zone->w_ptr + 2 * ns->zns.zrwas; 1856 1857 if (slba < zone->w_ptr || slba + nlb > ezrwa) { 1858 trace_pci_nvme_err_zone_invalid_write(slba, zone->w_ptr); 1859 return NVME_ZONE_INVALID_WRITE; 1860 } 1861 } else { 1862 if (unlikely(slba != zone->w_ptr)) { 1863 trace_pci_nvme_err_write_not_at_wp(slba, zone->d.zslba, 1864 zone->w_ptr); 1865 return NVME_ZONE_INVALID_WRITE; 1866 } 1867 } 1868 1869 if (unlikely((slba + nlb) > zcap)) { 1870 trace_pci_nvme_err_zone_boundary(slba, nlb, zcap); 1871 return NVME_ZONE_BOUNDARY_ERROR; 1872 } 1873 1874 return NVME_SUCCESS; 1875 } 1876 1877 static uint16_t nvme_check_zone_state_for_read(NvmeZone *zone) 1878 { 1879 switch (nvme_get_zone_state(zone)) { 1880 case NVME_ZONE_STATE_EMPTY: 1881 case NVME_ZONE_STATE_IMPLICITLY_OPEN: 1882 case NVME_ZONE_STATE_EXPLICITLY_OPEN: 1883 case NVME_ZONE_STATE_FULL: 1884 case NVME_ZONE_STATE_CLOSED: 1885 case NVME_ZONE_STATE_READ_ONLY: 1886 return NVME_SUCCESS; 1887 case NVME_ZONE_STATE_OFFLINE: 1888 trace_pci_nvme_err_zone_is_offline(zone->d.zslba); 1889 return NVME_ZONE_OFFLINE; 1890 default: 1891 g_assert_not_reached(); 1892 } 1893 1894 return NVME_INTERNAL_DEV_ERROR; 1895 } 1896 1897 static uint16_t nvme_check_zone_read(NvmeNamespace *ns, uint64_t slba, 1898 uint32_t nlb) 1899 { 1900 NvmeZone *zone; 1901 uint64_t bndry, end; 1902 uint16_t status; 1903 1904 zone = nvme_get_zone_by_slba(ns, slba); 1905 assert(zone); 1906 1907 bndry = nvme_zone_rd_boundary(ns, zone); 1908 end = slba + nlb; 1909 1910 status = nvme_check_zone_state_for_read(zone); 1911 if (status) { 1912 ; 1913 } else if (unlikely(end > bndry)) { 1914 if (!ns->params.cross_zone_read) { 1915 status = NVME_ZONE_BOUNDARY_ERROR; 1916 } else { 1917 /* 1918 * Read across zone boundary - check that all subsequent 1919 * zones that are being read have an appropriate state. 1920 */ 1921 do { 1922 zone++; 1923 status = nvme_check_zone_state_for_read(zone); 1924 if (status) { 1925 break; 1926 } 1927 } while (end > nvme_zone_rd_boundary(ns, zone)); 1928 } 1929 } 1930 1931 return status; 1932 } 1933 1934 static uint16_t nvme_zrm_finish(NvmeNamespace *ns, NvmeZone *zone) 1935 { 1936 switch (nvme_get_zone_state(zone)) { 1937 case NVME_ZONE_STATE_FULL: 1938 return NVME_SUCCESS; 1939 1940 case NVME_ZONE_STATE_IMPLICITLY_OPEN: 1941 case NVME_ZONE_STATE_EXPLICITLY_OPEN: 1942 nvme_aor_dec_open(ns); 1943 /* fallthrough */ 1944 case NVME_ZONE_STATE_CLOSED: 1945 nvme_aor_dec_active(ns); 1946 1947 if (zone->d.za & NVME_ZA_ZRWA_VALID) { 1948 zone->d.za &= ~NVME_ZA_ZRWA_VALID; 1949 if (ns->params.numzrwa) { 1950 ns->zns.numzrwa++; 1951 } 1952 } 1953 1954 /* fallthrough */ 1955 case NVME_ZONE_STATE_EMPTY: 1956 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_FULL); 1957 return NVME_SUCCESS; 1958 1959 default: 1960 return NVME_ZONE_INVAL_TRANSITION; 1961 } 1962 } 1963 1964 static uint16_t nvme_zrm_close(NvmeNamespace *ns, NvmeZone *zone) 1965 { 1966 switch (nvme_get_zone_state(zone)) { 1967 case NVME_ZONE_STATE_EXPLICITLY_OPEN: 1968 case NVME_ZONE_STATE_IMPLICITLY_OPEN: 1969 nvme_aor_dec_open(ns); 1970 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_CLOSED); 1971 /* fall through */ 1972 case NVME_ZONE_STATE_CLOSED: 1973 return NVME_SUCCESS; 1974 1975 default: 1976 return NVME_ZONE_INVAL_TRANSITION; 1977 } 1978 } 1979 1980 static uint16_t nvme_zrm_reset(NvmeNamespace *ns, NvmeZone *zone) 1981 { 1982 switch (nvme_get_zone_state(zone)) { 1983 case NVME_ZONE_STATE_EXPLICITLY_OPEN: 1984 case NVME_ZONE_STATE_IMPLICITLY_OPEN: 1985 nvme_aor_dec_open(ns); 1986 /* fallthrough */ 1987 case NVME_ZONE_STATE_CLOSED: 1988 nvme_aor_dec_active(ns); 1989 1990 if (zone->d.za & NVME_ZA_ZRWA_VALID) { 1991 if (ns->params.numzrwa) { 1992 ns->zns.numzrwa++; 1993 } 1994 } 1995 1996 /* fallthrough */ 1997 case NVME_ZONE_STATE_FULL: 1998 zone->w_ptr = zone->d.zslba; 1999 zone->d.wp = zone->w_ptr; 2000 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_EMPTY); 2001 /* fallthrough */ 2002 case NVME_ZONE_STATE_EMPTY: 2003 return NVME_SUCCESS; 2004 2005 default: 2006 return NVME_ZONE_INVAL_TRANSITION; 2007 } 2008 } 2009 2010 static void nvme_zrm_auto_transition_zone(NvmeNamespace *ns) 2011 { 2012 NvmeZone *zone; 2013 2014 if (ns->params.max_open_zones && 2015 ns->nr_open_zones == ns->params.max_open_zones) { 2016 zone = QTAILQ_FIRST(&ns->imp_open_zones); 2017 if (zone) { 2018 /* 2019 * Automatically close this implicitly open zone. 2020 */ 2021 QTAILQ_REMOVE(&ns->imp_open_zones, zone, entry); 2022 nvme_zrm_close(ns, zone); 2023 } 2024 } 2025 } 2026 2027 enum { 2028 NVME_ZRM_AUTO = 1 << 0, 2029 NVME_ZRM_ZRWA = 1 << 1, 2030 }; 2031 2032 static uint16_t nvme_zrm_open_flags(NvmeCtrl *n, NvmeNamespace *ns, 2033 NvmeZone *zone, int flags) 2034 { 2035 int act = 0; 2036 uint16_t status; 2037 2038 switch (nvme_get_zone_state(zone)) { 2039 case NVME_ZONE_STATE_EMPTY: 2040 act = 1; 2041 2042 /* fallthrough */ 2043 2044 case NVME_ZONE_STATE_CLOSED: 2045 if (n->params.auto_transition_zones) { 2046 nvme_zrm_auto_transition_zone(ns); 2047 } 2048 status = nvme_zns_check_resources(ns, act, 1, 2049 (flags & NVME_ZRM_ZRWA) ? 1 : 0); 2050 if (status) { 2051 return status; 2052 } 2053 2054 if (act) { 2055 nvme_aor_inc_active(ns); 2056 } 2057 2058 nvme_aor_inc_open(ns); 2059 2060 if (flags & NVME_ZRM_AUTO) { 2061 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_IMPLICITLY_OPEN); 2062 return NVME_SUCCESS; 2063 } 2064 2065 /* fallthrough */ 2066 2067 case NVME_ZONE_STATE_IMPLICITLY_OPEN: 2068 if (flags & NVME_ZRM_AUTO) { 2069 return NVME_SUCCESS; 2070 } 2071 2072 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_EXPLICITLY_OPEN); 2073 2074 /* fallthrough */ 2075 2076 case NVME_ZONE_STATE_EXPLICITLY_OPEN: 2077 if (flags & NVME_ZRM_ZRWA) { 2078 ns->zns.numzrwa--; 2079 2080 zone->d.za |= NVME_ZA_ZRWA_VALID; 2081 } 2082 2083 return NVME_SUCCESS; 2084 2085 default: 2086 return NVME_ZONE_INVAL_TRANSITION; 2087 } 2088 } 2089 2090 static inline uint16_t nvme_zrm_auto(NvmeCtrl *n, NvmeNamespace *ns, 2091 NvmeZone *zone) 2092 { 2093 return nvme_zrm_open_flags(n, ns, zone, NVME_ZRM_AUTO); 2094 } 2095 2096 static void nvme_advance_zone_wp(NvmeNamespace *ns, NvmeZone *zone, 2097 uint32_t nlb) 2098 { 2099 zone->d.wp += nlb; 2100 2101 if (zone->d.wp == nvme_zone_wr_boundary(zone)) { 2102 nvme_zrm_finish(ns, zone); 2103 } 2104 } 2105 2106 static void nvme_zoned_zrwa_implicit_flush(NvmeNamespace *ns, NvmeZone *zone, 2107 uint32_t nlbc) 2108 { 2109 uint16_t nzrwafgs = DIV_ROUND_UP(nlbc, ns->zns.zrwafg); 2110 2111 nlbc = nzrwafgs * ns->zns.zrwafg; 2112 2113 trace_pci_nvme_zoned_zrwa_implicit_flush(zone->d.zslba, nlbc); 2114 2115 zone->w_ptr += nlbc; 2116 2117 nvme_advance_zone_wp(ns, zone, nlbc); 2118 } 2119 2120 static void nvme_finalize_zoned_write(NvmeNamespace *ns, NvmeRequest *req) 2121 { 2122 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; 2123 NvmeZone *zone; 2124 uint64_t slba; 2125 uint32_t nlb; 2126 2127 slba = le64_to_cpu(rw->slba); 2128 nlb = le16_to_cpu(rw->nlb) + 1; 2129 zone = nvme_get_zone_by_slba(ns, slba); 2130 assert(zone); 2131 2132 if (zone->d.za & NVME_ZA_ZRWA_VALID) { 2133 uint64_t ezrwa = zone->w_ptr + ns->zns.zrwas - 1; 2134 uint64_t elba = slba + nlb - 1; 2135 2136 if (elba > ezrwa) { 2137 nvme_zoned_zrwa_implicit_flush(ns, zone, elba - ezrwa); 2138 } 2139 2140 return; 2141 } 2142 2143 nvme_advance_zone_wp(ns, zone, nlb); 2144 } 2145 2146 static inline bool nvme_is_write(NvmeRequest *req) 2147 { 2148 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; 2149 2150 return rw->opcode == NVME_CMD_WRITE || 2151 rw->opcode == NVME_CMD_ZONE_APPEND || 2152 rw->opcode == NVME_CMD_WRITE_ZEROES; 2153 } 2154 2155 static void nvme_misc_cb(void *opaque, int ret) 2156 { 2157 NvmeRequest *req = opaque; 2158 2159 trace_pci_nvme_misc_cb(nvme_cid(req)); 2160 2161 if (ret) { 2162 nvme_aio_err(req, ret); 2163 } 2164 2165 nvme_enqueue_req_completion(nvme_cq(req), req); 2166 } 2167 2168 void nvme_rw_complete_cb(void *opaque, int ret) 2169 { 2170 NvmeRequest *req = opaque; 2171 NvmeNamespace *ns = req->ns; 2172 BlockBackend *blk = ns->blkconf.blk; 2173 BlockAcctCookie *acct = &req->acct; 2174 BlockAcctStats *stats = blk_get_stats(blk); 2175 2176 trace_pci_nvme_rw_complete_cb(nvme_cid(req), blk_name(blk)); 2177 2178 if (ret) { 2179 block_acct_failed(stats, acct); 2180 nvme_aio_err(req, ret); 2181 } else { 2182 block_acct_done(stats, acct); 2183 } 2184 2185 if (ns->params.zoned && nvme_is_write(req)) { 2186 nvme_finalize_zoned_write(ns, req); 2187 } 2188 2189 nvme_enqueue_req_completion(nvme_cq(req), req); 2190 } 2191 2192 static void nvme_rw_cb(void *opaque, int ret) 2193 { 2194 NvmeRequest *req = opaque; 2195 NvmeNamespace *ns = req->ns; 2196 2197 BlockBackend *blk = ns->blkconf.blk; 2198 2199 trace_pci_nvme_rw_cb(nvme_cid(req), blk_name(blk)); 2200 2201 if (ret) { 2202 goto out; 2203 } 2204 2205 if (ns->lbaf.ms) { 2206 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; 2207 uint64_t slba = le64_to_cpu(rw->slba); 2208 uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1; 2209 uint64_t offset = nvme_moff(ns, slba); 2210 2211 if (req->cmd.opcode == NVME_CMD_WRITE_ZEROES) { 2212 size_t mlen = nvme_m2b(ns, nlb); 2213 2214 req->aiocb = blk_aio_pwrite_zeroes(blk, offset, mlen, 2215 BDRV_REQ_MAY_UNMAP, 2216 nvme_rw_complete_cb, req); 2217 return; 2218 } 2219 2220 if (nvme_ns_ext(ns) || req->cmd.mptr) { 2221 uint16_t status; 2222 2223 nvme_sg_unmap(&req->sg); 2224 status = nvme_map_mdata(nvme_ctrl(req), nlb, req); 2225 if (status) { 2226 ret = -EFAULT; 2227 goto out; 2228 } 2229 2230 if (req->cmd.opcode == NVME_CMD_READ) { 2231 return nvme_blk_read(blk, offset, 1, nvme_rw_complete_cb, req); 2232 } 2233 2234 return nvme_blk_write(blk, offset, 1, nvme_rw_complete_cb, req); 2235 } 2236 } 2237 2238 out: 2239 nvme_rw_complete_cb(req, ret); 2240 } 2241 2242 static void nvme_verify_cb(void *opaque, int ret) 2243 { 2244 NvmeBounceContext *ctx = opaque; 2245 NvmeRequest *req = ctx->req; 2246 NvmeNamespace *ns = req->ns; 2247 BlockBackend *blk = ns->blkconf.blk; 2248 BlockAcctCookie *acct = &req->acct; 2249 BlockAcctStats *stats = blk_get_stats(blk); 2250 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; 2251 uint64_t slba = le64_to_cpu(rw->slba); 2252 uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control)); 2253 uint16_t apptag = le16_to_cpu(rw->apptag); 2254 uint16_t appmask = le16_to_cpu(rw->appmask); 2255 uint64_t reftag = le32_to_cpu(rw->reftag); 2256 uint64_t cdw3 = le32_to_cpu(rw->cdw3); 2257 uint16_t status; 2258 2259 reftag |= cdw3 << 32; 2260 2261 trace_pci_nvme_verify_cb(nvme_cid(req), prinfo, apptag, appmask, reftag); 2262 2263 if (ret) { 2264 block_acct_failed(stats, acct); 2265 nvme_aio_err(req, ret); 2266 goto out; 2267 } 2268 2269 block_acct_done(stats, acct); 2270 2271 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) { 2272 status = nvme_dif_mangle_mdata(ns, ctx->mdata.bounce, 2273 ctx->mdata.iov.size, slba); 2274 if (status) { 2275 req->status = status; 2276 goto out; 2277 } 2278 2279 req->status = nvme_dif_check(ns, ctx->data.bounce, ctx->data.iov.size, 2280 ctx->mdata.bounce, ctx->mdata.iov.size, 2281 prinfo, slba, apptag, appmask, &reftag); 2282 } 2283 2284 out: 2285 qemu_iovec_destroy(&ctx->data.iov); 2286 g_free(ctx->data.bounce); 2287 2288 qemu_iovec_destroy(&ctx->mdata.iov); 2289 g_free(ctx->mdata.bounce); 2290 2291 g_free(ctx); 2292 2293 nvme_enqueue_req_completion(nvme_cq(req), req); 2294 } 2295 2296 2297 static void nvme_verify_mdata_in_cb(void *opaque, int ret) 2298 { 2299 NvmeBounceContext *ctx = opaque; 2300 NvmeRequest *req = ctx->req; 2301 NvmeNamespace *ns = req->ns; 2302 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; 2303 uint64_t slba = le64_to_cpu(rw->slba); 2304 uint32_t nlb = le16_to_cpu(rw->nlb) + 1; 2305 size_t mlen = nvme_m2b(ns, nlb); 2306 uint64_t offset = nvme_moff(ns, slba); 2307 BlockBackend *blk = ns->blkconf.blk; 2308 2309 trace_pci_nvme_verify_mdata_in_cb(nvme_cid(req), blk_name(blk)); 2310 2311 if (ret) { 2312 goto out; 2313 } 2314 2315 ctx->mdata.bounce = g_malloc(mlen); 2316 2317 qemu_iovec_reset(&ctx->mdata.iov); 2318 qemu_iovec_add(&ctx->mdata.iov, ctx->mdata.bounce, mlen); 2319 2320 req->aiocb = blk_aio_preadv(blk, offset, &ctx->mdata.iov, 0, 2321 nvme_verify_cb, ctx); 2322 return; 2323 2324 out: 2325 nvme_verify_cb(ctx, ret); 2326 } 2327 2328 struct nvme_compare_ctx { 2329 struct { 2330 QEMUIOVector iov; 2331 uint8_t *bounce; 2332 } data; 2333 2334 struct { 2335 QEMUIOVector iov; 2336 uint8_t *bounce; 2337 } mdata; 2338 }; 2339 2340 static void nvme_compare_mdata_cb(void *opaque, int ret) 2341 { 2342 NvmeRequest *req = opaque; 2343 NvmeNamespace *ns = req->ns; 2344 NvmeCtrl *n = nvme_ctrl(req); 2345 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; 2346 uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control)); 2347 uint16_t apptag = le16_to_cpu(rw->apptag); 2348 uint16_t appmask = le16_to_cpu(rw->appmask); 2349 uint64_t reftag = le32_to_cpu(rw->reftag); 2350 uint64_t cdw3 = le32_to_cpu(rw->cdw3); 2351 struct nvme_compare_ctx *ctx = req->opaque; 2352 g_autofree uint8_t *buf = NULL; 2353 BlockBackend *blk = ns->blkconf.blk; 2354 BlockAcctCookie *acct = &req->acct; 2355 BlockAcctStats *stats = blk_get_stats(blk); 2356 uint16_t status = NVME_SUCCESS; 2357 2358 reftag |= cdw3 << 32; 2359 2360 trace_pci_nvme_compare_mdata_cb(nvme_cid(req)); 2361 2362 if (ret) { 2363 block_acct_failed(stats, acct); 2364 nvme_aio_err(req, ret); 2365 goto out; 2366 } 2367 2368 buf = g_malloc(ctx->mdata.iov.size); 2369 2370 status = nvme_bounce_mdata(n, buf, ctx->mdata.iov.size, 2371 NVME_TX_DIRECTION_TO_DEVICE, req); 2372 if (status) { 2373 req->status = status; 2374 goto out; 2375 } 2376 2377 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) { 2378 uint64_t slba = le64_to_cpu(rw->slba); 2379 uint8_t *bufp; 2380 uint8_t *mbufp = ctx->mdata.bounce; 2381 uint8_t *end = mbufp + ctx->mdata.iov.size; 2382 int16_t pil = 0; 2383 2384 status = nvme_dif_check(ns, ctx->data.bounce, ctx->data.iov.size, 2385 ctx->mdata.bounce, ctx->mdata.iov.size, prinfo, 2386 slba, apptag, appmask, &reftag); 2387 if (status) { 2388 req->status = status; 2389 goto out; 2390 } 2391 2392 /* 2393 * When formatted with protection information, do not compare the DIF 2394 * tuple. 2395 */ 2396 if (!(ns->id_ns.dps & NVME_ID_NS_DPS_FIRST_EIGHT)) { 2397 pil = ns->lbaf.ms - nvme_pi_tuple_size(ns); 2398 } 2399 2400 for (bufp = buf; mbufp < end; bufp += ns->lbaf.ms, mbufp += ns->lbaf.ms) { 2401 if (memcmp(bufp + pil, mbufp + pil, ns->lbaf.ms - pil)) { 2402 req->status = NVME_CMP_FAILURE | NVME_DNR; 2403 goto out; 2404 } 2405 } 2406 2407 goto out; 2408 } 2409 2410 if (memcmp(buf, ctx->mdata.bounce, ctx->mdata.iov.size)) { 2411 req->status = NVME_CMP_FAILURE | NVME_DNR; 2412 goto out; 2413 } 2414 2415 block_acct_done(stats, acct); 2416 2417 out: 2418 qemu_iovec_destroy(&ctx->data.iov); 2419 g_free(ctx->data.bounce); 2420 2421 qemu_iovec_destroy(&ctx->mdata.iov); 2422 g_free(ctx->mdata.bounce); 2423 2424 g_free(ctx); 2425 2426 nvme_enqueue_req_completion(nvme_cq(req), req); 2427 } 2428 2429 static void nvme_compare_data_cb(void *opaque, int ret) 2430 { 2431 NvmeRequest *req = opaque; 2432 NvmeCtrl *n = nvme_ctrl(req); 2433 NvmeNamespace *ns = req->ns; 2434 BlockBackend *blk = ns->blkconf.blk; 2435 BlockAcctCookie *acct = &req->acct; 2436 BlockAcctStats *stats = blk_get_stats(blk); 2437 2438 struct nvme_compare_ctx *ctx = req->opaque; 2439 g_autofree uint8_t *buf = NULL; 2440 uint16_t status; 2441 2442 trace_pci_nvme_compare_data_cb(nvme_cid(req)); 2443 2444 if (ret) { 2445 block_acct_failed(stats, acct); 2446 nvme_aio_err(req, ret); 2447 goto out; 2448 } 2449 2450 buf = g_malloc(ctx->data.iov.size); 2451 2452 status = nvme_bounce_data(n, buf, ctx->data.iov.size, 2453 NVME_TX_DIRECTION_TO_DEVICE, req); 2454 if (status) { 2455 req->status = status; 2456 goto out; 2457 } 2458 2459 if (memcmp(buf, ctx->data.bounce, ctx->data.iov.size)) { 2460 req->status = NVME_CMP_FAILURE | NVME_DNR; 2461 goto out; 2462 } 2463 2464 if (ns->lbaf.ms) { 2465 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; 2466 uint64_t slba = le64_to_cpu(rw->slba); 2467 uint32_t nlb = le16_to_cpu(rw->nlb) + 1; 2468 size_t mlen = nvme_m2b(ns, nlb); 2469 uint64_t offset = nvme_moff(ns, slba); 2470 2471 ctx->mdata.bounce = g_malloc(mlen); 2472 2473 qemu_iovec_init(&ctx->mdata.iov, 1); 2474 qemu_iovec_add(&ctx->mdata.iov, ctx->mdata.bounce, mlen); 2475 2476 req->aiocb = blk_aio_preadv(blk, offset, &ctx->mdata.iov, 0, 2477 nvme_compare_mdata_cb, req); 2478 return; 2479 } 2480 2481 block_acct_done(stats, acct); 2482 2483 out: 2484 qemu_iovec_destroy(&ctx->data.iov); 2485 g_free(ctx->data.bounce); 2486 g_free(ctx); 2487 2488 nvme_enqueue_req_completion(nvme_cq(req), req); 2489 } 2490 2491 typedef struct NvmeDSMAIOCB { 2492 BlockAIOCB common; 2493 BlockAIOCB *aiocb; 2494 NvmeRequest *req; 2495 int ret; 2496 2497 NvmeDsmRange *range; 2498 unsigned int nr; 2499 unsigned int idx; 2500 } NvmeDSMAIOCB; 2501 2502 static void nvme_dsm_cancel(BlockAIOCB *aiocb) 2503 { 2504 NvmeDSMAIOCB *iocb = container_of(aiocb, NvmeDSMAIOCB, common); 2505 2506 /* break nvme_dsm_cb loop */ 2507 iocb->idx = iocb->nr; 2508 iocb->ret = -ECANCELED; 2509 2510 if (iocb->aiocb) { 2511 blk_aio_cancel_async(iocb->aiocb); 2512 iocb->aiocb = NULL; 2513 } else { 2514 /* 2515 * We only reach this if nvme_dsm_cancel() has already been called or 2516 * the command ran to completion. 2517 */ 2518 assert(iocb->idx == iocb->nr); 2519 } 2520 } 2521 2522 static const AIOCBInfo nvme_dsm_aiocb_info = { 2523 .aiocb_size = sizeof(NvmeDSMAIOCB), 2524 .cancel_async = nvme_dsm_cancel, 2525 }; 2526 2527 static void nvme_dsm_cb(void *opaque, int ret); 2528 2529 static void nvme_dsm_md_cb(void *opaque, int ret) 2530 { 2531 NvmeDSMAIOCB *iocb = opaque; 2532 NvmeRequest *req = iocb->req; 2533 NvmeNamespace *ns = req->ns; 2534 NvmeDsmRange *range; 2535 uint64_t slba; 2536 uint32_t nlb; 2537 2538 if (ret < 0 || iocb->ret < 0 || !ns->lbaf.ms) { 2539 goto done; 2540 } 2541 2542 range = &iocb->range[iocb->idx - 1]; 2543 slba = le64_to_cpu(range->slba); 2544 nlb = le32_to_cpu(range->nlb); 2545 2546 /* 2547 * Check that all block were discarded (zeroed); otherwise we do not zero 2548 * the metadata. 2549 */ 2550 2551 ret = nvme_block_status_all(ns, slba, nlb, BDRV_BLOCK_ZERO); 2552 if (ret) { 2553 if (ret < 0) { 2554 goto done; 2555 } 2556 2557 nvme_dsm_cb(iocb, 0); 2558 return; 2559 } 2560 2561 iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk, nvme_moff(ns, slba), 2562 nvme_m2b(ns, nlb), BDRV_REQ_MAY_UNMAP, 2563 nvme_dsm_cb, iocb); 2564 return; 2565 2566 done: 2567 nvme_dsm_cb(iocb, ret); 2568 } 2569 2570 static void nvme_dsm_cb(void *opaque, int ret) 2571 { 2572 NvmeDSMAIOCB *iocb = opaque; 2573 NvmeRequest *req = iocb->req; 2574 NvmeCtrl *n = nvme_ctrl(req); 2575 NvmeNamespace *ns = req->ns; 2576 NvmeDsmRange *range; 2577 uint64_t slba; 2578 uint32_t nlb; 2579 2580 if (iocb->ret < 0) { 2581 goto done; 2582 } else if (ret < 0) { 2583 iocb->ret = ret; 2584 goto done; 2585 } 2586 2587 next: 2588 if (iocb->idx == iocb->nr) { 2589 goto done; 2590 } 2591 2592 range = &iocb->range[iocb->idx++]; 2593 slba = le64_to_cpu(range->slba); 2594 nlb = le32_to_cpu(range->nlb); 2595 2596 trace_pci_nvme_dsm_deallocate(slba, nlb); 2597 2598 if (nlb > n->dmrsl) { 2599 trace_pci_nvme_dsm_single_range_limit_exceeded(nlb, n->dmrsl); 2600 goto next; 2601 } 2602 2603 if (nvme_check_bounds(ns, slba, nlb)) { 2604 trace_pci_nvme_err_invalid_lba_range(slba, nlb, 2605 ns->id_ns.nsze); 2606 goto next; 2607 } 2608 2609 iocb->aiocb = blk_aio_pdiscard(ns->blkconf.blk, nvme_l2b(ns, slba), 2610 nvme_l2b(ns, nlb), 2611 nvme_dsm_md_cb, iocb); 2612 return; 2613 2614 done: 2615 iocb->aiocb = NULL; 2616 iocb->common.cb(iocb->common.opaque, iocb->ret); 2617 g_free(iocb->range); 2618 qemu_aio_unref(iocb); 2619 } 2620 2621 static uint16_t nvme_dsm(NvmeCtrl *n, NvmeRequest *req) 2622 { 2623 NvmeNamespace *ns = req->ns; 2624 NvmeDsmCmd *dsm = (NvmeDsmCmd *) &req->cmd; 2625 uint32_t attr = le32_to_cpu(dsm->attributes); 2626 uint32_t nr = (le32_to_cpu(dsm->nr) & 0xff) + 1; 2627 uint16_t status = NVME_SUCCESS; 2628 2629 trace_pci_nvme_dsm(nr, attr); 2630 2631 if (attr & NVME_DSMGMT_AD) { 2632 NvmeDSMAIOCB *iocb = blk_aio_get(&nvme_dsm_aiocb_info, ns->blkconf.blk, 2633 nvme_misc_cb, req); 2634 2635 iocb->req = req; 2636 iocb->ret = 0; 2637 iocb->range = g_new(NvmeDsmRange, nr); 2638 iocb->nr = nr; 2639 iocb->idx = 0; 2640 2641 status = nvme_h2c(n, (uint8_t *)iocb->range, sizeof(NvmeDsmRange) * nr, 2642 req); 2643 if (status) { 2644 g_free(iocb->range); 2645 qemu_aio_unref(iocb); 2646 2647 return status; 2648 } 2649 2650 req->aiocb = &iocb->common; 2651 nvme_dsm_cb(iocb, 0); 2652 2653 return NVME_NO_COMPLETE; 2654 } 2655 2656 return status; 2657 } 2658 2659 static uint16_t nvme_verify(NvmeCtrl *n, NvmeRequest *req) 2660 { 2661 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; 2662 NvmeNamespace *ns = req->ns; 2663 BlockBackend *blk = ns->blkconf.blk; 2664 uint64_t slba = le64_to_cpu(rw->slba); 2665 uint32_t nlb = le16_to_cpu(rw->nlb) + 1; 2666 size_t len = nvme_l2b(ns, nlb); 2667 size_t data_len = len; 2668 int64_t offset = nvme_l2b(ns, slba); 2669 uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control)); 2670 uint32_t reftag = le32_to_cpu(rw->reftag); 2671 NvmeBounceContext *ctx = NULL; 2672 uint16_t status; 2673 2674 trace_pci_nvme_verify(nvme_cid(req), nvme_nsid(ns), slba, nlb); 2675 2676 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) { 2677 status = nvme_check_prinfo(ns, prinfo, slba, reftag); 2678 if (status) { 2679 return status; 2680 } 2681 2682 if (prinfo & NVME_PRINFO_PRACT) { 2683 return NVME_INVALID_PROT_INFO | NVME_DNR; 2684 } 2685 } 2686 2687 if (nvme_ns_ext(ns) && !(NVME_ID_CTRL_CTRATT_MEM(n->id_ctrl.ctratt))) { 2688 data_len += nvme_m2b(ns, nlb); 2689 } 2690 2691 if (data_len > (n->page_size << n->params.vsl)) { 2692 return NVME_INVALID_FIELD | NVME_DNR; 2693 } 2694 2695 status = nvme_check_bounds(ns, slba, nlb); 2696 if (status) { 2697 return status; 2698 } 2699 2700 if (NVME_ERR_REC_DULBE(ns->features.err_rec)) { 2701 status = nvme_check_dulbe(ns, slba, nlb); 2702 if (status) { 2703 return status; 2704 } 2705 } 2706 2707 ctx = g_new0(NvmeBounceContext, 1); 2708 ctx->req = req; 2709 2710 ctx->data.bounce = g_malloc(len); 2711 2712 qemu_iovec_init(&ctx->data.iov, 1); 2713 qemu_iovec_add(&ctx->data.iov, ctx->data.bounce, len); 2714 2715 block_acct_start(blk_get_stats(blk), &req->acct, ctx->data.iov.size, 2716 BLOCK_ACCT_READ); 2717 2718 req->aiocb = blk_aio_preadv(ns->blkconf.blk, offset, &ctx->data.iov, 0, 2719 nvme_verify_mdata_in_cb, ctx); 2720 return NVME_NO_COMPLETE; 2721 } 2722 2723 typedef struct NvmeCopyAIOCB { 2724 BlockAIOCB common; 2725 BlockAIOCB *aiocb; 2726 NvmeRequest *req; 2727 NvmeCtrl *n; 2728 int ret; 2729 2730 void *ranges; 2731 unsigned int format; 2732 int nr; 2733 int idx; 2734 2735 uint8_t *bounce; 2736 QEMUIOVector iov; 2737 struct { 2738 BlockAcctCookie read; 2739 BlockAcctCookie write; 2740 } acct; 2741 2742 uint64_t reftag; 2743 uint64_t slba; 2744 2745 NvmeZone *zone; 2746 NvmeNamespace *sns; 2747 uint32_t tcl; 2748 } NvmeCopyAIOCB; 2749 2750 static void nvme_copy_cancel(BlockAIOCB *aiocb) 2751 { 2752 NvmeCopyAIOCB *iocb = container_of(aiocb, NvmeCopyAIOCB, common); 2753 2754 iocb->ret = -ECANCELED; 2755 2756 if (iocb->aiocb) { 2757 blk_aio_cancel_async(iocb->aiocb); 2758 iocb->aiocb = NULL; 2759 } 2760 } 2761 2762 static const AIOCBInfo nvme_copy_aiocb_info = { 2763 .aiocb_size = sizeof(NvmeCopyAIOCB), 2764 .cancel_async = nvme_copy_cancel, 2765 }; 2766 2767 static void nvme_copy_done(NvmeCopyAIOCB *iocb) 2768 { 2769 NvmeRequest *req = iocb->req; 2770 NvmeNamespace *ns = req->ns; 2771 BlockAcctStats *stats = blk_get_stats(ns->blkconf.blk); 2772 2773 if (iocb->idx != iocb->nr) { 2774 req->cqe.result = cpu_to_le32(iocb->idx); 2775 } 2776 2777 qemu_iovec_destroy(&iocb->iov); 2778 g_free(iocb->bounce); 2779 2780 if (iocb->ret < 0) { 2781 block_acct_failed(stats, &iocb->acct.read); 2782 block_acct_failed(stats, &iocb->acct.write); 2783 } else { 2784 block_acct_done(stats, &iocb->acct.read); 2785 block_acct_done(stats, &iocb->acct.write); 2786 } 2787 2788 iocb->common.cb(iocb->common.opaque, iocb->ret); 2789 qemu_aio_unref(iocb); 2790 } 2791 2792 static void nvme_do_copy(NvmeCopyAIOCB *iocb); 2793 2794 static void nvme_copy_source_range_parse_format0_2(void *ranges, 2795 int idx, uint64_t *slba, 2796 uint32_t *nlb, 2797 uint32_t *snsid, 2798 uint16_t *apptag, 2799 uint16_t *appmask, 2800 uint64_t *reftag) 2801 { 2802 NvmeCopySourceRangeFormat0_2 *_ranges = ranges; 2803 2804 if (snsid) { 2805 *snsid = le32_to_cpu(_ranges[idx].sparams); 2806 } 2807 2808 if (slba) { 2809 *slba = le64_to_cpu(_ranges[idx].slba); 2810 } 2811 2812 if (nlb) { 2813 *nlb = le16_to_cpu(_ranges[idx].nlb) + 1; 2814 } 2815 2816 if (apptag) { 2817 *apptag = le16_to_cpu(_ranges[idx].apptag); 2818 } 2819 2820 if (appmask) { 2821 *appmask = le16_to_cpu(_ranges[idx].appmask); 2822 } 2823 2824 if (reftag) { 2825 *reftag = le32_to_cpu(_ranges[idx].reftag); 2826 } 2827 } 2828 2829 static void nvme_copy_source_range_parse_format1_3(void *ranges, int idx, 2830 uint64_t *slba, 2831 uint32_t *nlb, 2832 uint32_t *snsid, 2833 uint16_t *apptag, 2834 uint16_t *appmask, 2835 uint64_t *reftag) 2836 { 2837 NvmeCopySourceRangeFormat1_3 *_ranges = ranges; 2838 2839 if (snsid) { 2840 *snsid = le32_to_cpu(_ranges[idx].sparams); 2841 } 2842 2843 if (slba) { 2844 *slba = le64_to_cpu(_ranges[idx].slba); 2845 } 2846 2847 if (nlb) { 2848 *nlb = le16_to_cpu(_ranges[idx].nlb) + 1; 2849 } 2850 2851 if (apptag) { 2852 *apptag = le16_to_cpu(_ranges[idx].apptag); 2853 } 2854 2855 if (appmask) { 2856 *appmask = le16_to_cpu(_ranges[idx].appmask); 2857 } 2858 2859 if (reftag) { 2860 *reftag = 0; 2861 2862 *reftag |= (uint64_t)_ranges[idx].sr[4] << 40; 2863 *reftag |= (uint64_t)_ranges[idx].sr[5] << 32; 2864 *reftag |= (uint64_t)_ranges[idx].sr[6] << 24; 2865 *reftag |= (uint64_t)_ranges[idx].sr[7] << 16; 2866 *reftag |= (uint64_t)_ranges[idx].sr[8] << 8; 2867 *reftag |= (uint64_t)_ranges[idx].sr[9]; 2868 } 2869 } 2870 2871 static void nvme_copy_source_range_parse(void *ranges, int idx, uint8_t format, 2872 uint64_t *slba, uint32_t *nlb, 2873 uint32_t *snsid, uint16_t *apptag, 2874 uint16_t *appmask, uint64_t *reftag) 2875 { 2876 switch (format) { 2877 case NVME_COPY_FORMAT_0: 2878 case NVME_COPY_FORMAT_2: 2879 nvme_copy_source_range_parse_format0_2(ranges, idx, slba, nlb, snsid, 2880 apptag, appmask, reftag); 2881 break; 2882 2883 case NVME_COPY_FORMAT_1: 2884 case NVME_COPY_FORMAT_3: 2885 nvme_copy_source_range_parse_format1_3(ranges, idx, slba, nlb, snsid, 2886 apptag, appmask, reftag); 2887 break; 2888 2889 default: 2890 abort(); 2891 } 2892 } 2893 2894 static inline uint16_t nvme_check_copy_mcl(NvmeNamespace *ns, 2895 NvmeCopyAIOCB *iocb, uint16_t nr) 2896 { 2897 uint32_t copy_len = 0; 2898 2899 for (int idx = 0; idx < nr; idx++) { 2900 uint32_t nlb; 2901 nvme_copy_source_range_parse(iocb->ranges, idx, iocb->format, NULL, 2902 &nlb, NULL, NULL, NULL, NULL); 2903 copy_len += nlb; 2904 } 2905 iocb->tcl = copy_len; 2906 if (copy_len > ns->id_ns.mcl) { 2907 return NVME_CMD_SIZE_LIMIT | NVME_DNR; 2908 } 2909 2910 return NVME_SUCCESS; 2911 } 2912 2913 static void nvme_copy_out_completed_cb(void *opaque, int ret) 2914 { 2915 NvmeCopyAIOCB *iocb = opaque; 2916 NvmeRequest *req = iocb->req; 2917 NvmeNamespace *dns = req->ns; 2918 uint32_t nlb; 2919 2920 nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, NULL, 2921 &nlb, NULL, NULL, NULL, NULL); 2922 2923 if (ret < 0) { 2924 iocb->ret = ret; 2925 goto out; 2926 } else if (iocb->ret < 0) { 2927 goto out; 2928 } 2929 2930 if (dns->params.zoned) { 2931 nvme_advance_zone_wp(dns, iocb->zone, nlb); 2932 } 2933 2934 iocb->idx++; 2935 iocb->slba += nlb; 2936 out: 2937 nvme_do_copy(iocb); 2938 } 2939 2940 static void nvme_copy_out_cb(void *opaque, int ret) 2941 { 2942 NvmeCopyAIOCB *iocb = opaque; 2943 NvmeRequest *req = iocb->req; 2944 NvmeNamespace *dns = req->ns; 2945 uint32_t nlb; 2946 size_t mlen; 2947 uint8_t *mbounce; 2948 2949 if (ret < 0 || iocb->ret < 0 || !dns->lbaf.ms) { 2950 goto out; 2951 } 2952 2953 nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, NULL, 2954 &nlb, NULL, NULL, NULL, NULL); 2955 2956 mlen = nvme_m2b(dns, nlb); 2957 mbounce = iocb->bounce + nvme_l2b(dns, nlb); 2958 2959 qemu_iovec_reset(&iocb->iov); 2960 qemu_iovec_add(&iocb->iov, mbounce, mlen); 2961 2962 iocb->aiocb = blk_aio_pwritev(dns->blkconf.blk, nvme_moff(dns, iocb->slba), 2963 &iocb->iov, 0, nvme_copy_out_completed_cb, 2964 iocb); 2965 2966 return; 2967 2968 out: 2969 nvme_copy_out_completed_cb(iocb, ret); 2970 } 2971 2972 static void nvme_copy_in_completed_cb(void *opaque, int ret) 2973 { 2974 NvmeCopyAIOCB *iocb = opaque; 2975 NvmeRequest *req = iocb->req; 2976 NvmeNamespace *sns = iocb->sns; 2977 NvmeNamespace *dns = req->ns; 2978 NvmeCopyCmd *copy = NULL; 2979 uint8_t *mbounce = NULL; 2980 uint32_t nlb; 2981 uint64_t slba; 2982 uint16_t apptag, appmask; 2983 uint64_t reftag; 2984 size_t len, mlen; 2985 uint16_t status; 2986 2987 if (ret < 0) { 2988 iocb->ret = ret; 2989 goto out; 2990 } else if (iocb->ret < 0) { 2991 goto out; 2992 } 2993 2994 nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, &slba, 2995 &nlb, NULL, &apptag, &appmask, &reftag); 2996 2997 trace_pci_nvme_copy_out(iocb->slba, nlb); 2998 2999 len = nvme_l2b(sns, nlb); 3000 3001 if (NVME_ID_NS_DPS_TYPE(sns->id_ns.dps)) { 3002 copy = (NvmeCopyCmd *)&req->cmd; 3003 3004 uint16_t prinfor = ((copy->control[0] >> 4) & 0xf); 3005 3006 mlen = nvme_m2b(sns, nlb); 3007 mbounce = iocb->bounce + nvme_l2b(sns, nlb); 3008 3009 status = nvme_dif_mangle_mdata(sns, mbounce, mlen, slba); 3010 if (status) { 3011 goto invalid; 3012 } 3013 status = nvme_dif_check(sns, iocb->bounce, len, mbounce, mlen, prinfor, 3014 slba, apptag, appmask, &reftag); 3015 if (status) { 3016 goto invalid; 3017 } 3018 } 3019 3020 if (NVME_ID_NS_DPS_TYPE(dns->id_ns.dps)) { 3021 copy = (NvmeCopyCmd *)&req->cmd; 3022 uint16_t prinfow = ((copy->control[2] >> 2) & 0xf); 3023 3024 mlen = nvme_m2b(dns, nlb); 3025 mbounce = iocb->bounce + nvme_l2b(dns, nlb); 3026 3027 apptag = le16_to_cpu(copy->apptag); 3028 appmask = le16_to_cpu(copy->appmask); 3029 3030 if (prinfow & NVME_PRINFO_PRACT) { 3031 status = nvme_check_prinfo(dns, prinfow, iocb->slba, iocb->reftag); 3032 if (status) { 3033 goto invalid; 3034 } 3035 3036 nvme_dif_pract_generate_dif(dns, iocb->bounce, len, mbounce, mlen, 3037 apptag, &iocb->reftag); 3038 } else { 3039 status = nvme_dif_check(dns, iocb->bounce, len, mbounce, mlen, 3040 prinfow, iocb->slba, apptag, appmask, 3041 &iocb->reftag); 3042 if (status) { 3043 goto invalid; 3044 } 3045 } 3046 } 3047 3048 status = nvme_check_bounds(dns, iocb->slba, nlb); 3049 if (status) { 3050 goto invalid; 3051 } 3052 3053 if (dns->params.zoned) { 3054 status = nvme_check_zone_write(dns, iocb->zone, iocb->slba, nlb); 3055 if (status) { 3056 goto invalid; 3057 } 3058 3059 if (!(iocb->zone->d.za & NVME_ZA_ZRWA_VALID)) { 3060 iocb->zone->w_ptr += nlb; 3061 } 3062 } 3063 3064 qemu_iovec_reset(&iocb->iov); 3065 qemu_iovec_add(&iocb->iov, iocb->bounce, len); 3066 3067 block_acct_start(blk_get_stats(dns->blkconf.blk), &iocb->acct.write, 0, 3068 BLOCK_ACCT_WRITE); 3069 3070 iocb->aiocb = blk_aio_pwritev(dns->blkconf.blk, nvme_l2b(dns, iocb->slba), 3071 &iocb->iov, 0, nvme_copy_out_cb, iocb); 3072 3073 return; 3074 3075 invalid: 3076 req->status = status; 3077 iocb->ret = -1; 3078 out: 3079 nvme_do_copy(iocb); 3080 } 3081 3082 static void nvme_copy_in_cb(void *opaque, int ret) 3083 { 3084 NvmeCopyAIOCB *iocb = opaque; 3085 NvmeNamespace *sns = iocb->sns; 3086 uint64_t slba; 3087 uint32_t nlb; 3088 3089 if (ret < 0 || iocb->ret < 0 || !sns->lbaf.ms) { 3090 goto out; 3091 } 3092 3093 nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, &slba, 3094 &nlb, NULL, NULL, NULL, NULL); 3095 3096 qemu_iovec_reset(&iocb->iov); 3097 qemu_iovec_add(&iocb->iov, iocb->bounce + nvme_l2b(sns, nlb), 3098 nvme_m2b(sns, nlb)); 3099 3100 iocb->aiocb = blk_aio_preadv(sns->blkconf.blk, nvme_moff(sns, slba), 3101 &iocb->iov, 0, nvme_copy_in_completed_cb, 3102 iocb); 3103 return; 3104 3105 out: 3106 nvme_copy_in_completed_cb(iocb, ret); 3107 } 3108 3109 static inline bool nvme_csi_supports_copy(uint8_t csi) 3110 { 3111 return csi == NVME_CSI_NVM || csi == NVME_CSI_ZONED; 3112 } 3113 3114 static inline bool nvme_copy_ns_format_match(NvmeNamespace *sns, 3115 NvmeNamespace *dns) 3116 { 3117 return sns->lbaf.ds == dns->lbaf.ds && sns->lbaf.ms == dns->lbaf.ms; 3118 } 3119 3120 static bool nvme_copy_matching_ns_format(NvmeNamespace *sns, NvmeNamespace *dns, 3121 bool pi_enable) 3122 { 3123 if (!nvme_csi_supports_copy(sns->csi) || 3124 !nvme_csi_supports_copy(dns->csi)) { 3125 return false; 3126 } 3127 3128 if (!pi_enable && !nvme_copy_ns_format_match(sns, dns)) { 3129 return false; 3130 } 3131 3132 if (pi_enable && (!nvme_copy_ns_format_match(sns, dns) || 3133 sns->id_ns.dps != dns->id_ns.dps)) { 3134 return false; 3135 } 3136 3137 return true; 3138 } 3139 3140 static inline bool nvme_copy_corresp_pi_match(NvmeNamespace *sns, 3141 NvmeNamespace *dns) 3142 { 3143 return sns->lbaf.ms == 0 && 3144 ((dns->lbaf.ms == 8 && dns->pif == 0) || 3145 (dns->lbaf.ms == 16 && dns->pif == 1)); 3146 } 3147 3148 static bool nvme_copy_corresp_pi_format(NvmeNamespace *sns, NvmeNamespace *dns, 3149 bool sns_pi_en) 3150 { 3151 if (!nvme_csi_supports_copy(sns->csi) || 3152 !nvme_csi_supports_copy(dns->csi)) { 3153 return false; 3154 } 3155 3156 if (!sns_pi_en && !nvme_copy_corresp_pi_match(sns, dns)) { 3157 return false; 3158 } 3159 3160 if (sns_pi_en && !nvme_copy_corresp_pi_match(dns, sns)) { 3161 return false; 3162 } 3163 3164 return true; 3165 } 3166 3167 static void nvme_do_copy(NvmeCopyAIOCB *iocb) 3168 { 3169 NvmeRequest *req = iocb->req; 3170 NvmeNamespace *sns; 3171 NvmeNamespace *dns = req->ns; 3172 NvmeCopyCmd *copy = (NvmeCopyCmd *)&req->cmd; 3173 uint16_t prinfor = ((copy->control[0] >> 4) & 0xf); 3174 uint16_t prinfow = ((copy->control[2] >> 2) & 0xf); 3175 uint64_t slba; 3176 uint32_t nlb; 3177 size_t len; 3178 uint16_t status; 3179 uint32_t dnsid = le32_to_cpu(req->cmd.nsid); 3180 uint32_t snsid = dnsid; 3181 3182 if (iocb->ret < 0) { 3183 goto done; 3184 } 3185 3186 if (iocb->idx == iocb->nr) { 3187 goto done; 3188 } 3189 3190 if (iocb->format == 2 || iocb->format == 3) { 3191 nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, 3192 &slba, &nlb, &snsid, NULL, NULL, NULL); 3193 if (snsid != dnsid) { 3194 if (snsid == NVME_NSID_BROADCAST || 3195 !nvme_nsid_valid(iocb->n, snsid)) { 3196 status = NVME_INVALID_NSID | NVME_DNR; 3197 goto invalid; 3198 } 3199 iocb->sns = nvme_ns(iocb->n, snsid); 3200 if (unlikely(!iocb->sns)) { 3201 status = NVME_INVALID_FIELD | NVME_DNR; 3202 goto invalid; 3203 } 3204 } else { 3205 if (((slba + nlb) > iocb->slba) && 3206 ((slba + nlb) < (iocb->slba + iocb->tcl))) { 3207 status = NVME_CMD_OVERLAP_IO_RANGE | NVME_DNR; 3208 goto invalid; 3209 } 3210 } 3211 } else { 3212 nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, 3213 &slba, &nlb, NULL, NULL, NULL, NULL); 3214 } 3215 3216 sns = iocb->sns; 3217 if ((snsid == dnsid) && NVME_ID_NS_DPS_TYPE(sns->id_ns.dps) && 3218 ((prinfor & NVME_PRINFO_PRACT) != (prinfow & NVME_PRINFO_PRACT))) { 3219 status = NVME_INVALID_FIELD | NVME_DNR; 3220 goto invalid; 3221 } else if (snsid != dnsid) { 3222 if (!NVME_ID_NS_DPS_TYPE(sns->id_ns.dps) && 3223 !NVME_ID_NS_DPS_TYPE(dns->id_ns.dps)) { 3224 if (!nvme_copy_matching_ns_format(sns, dns, false)) { 3225 status = NVME_CMD_INCOMP_NS_OR_FMT | NVME_DNR; 3226 goto invalid; 3227 } 3228 } 3229 if (NVME_ID_NS_DPS_TYPE(sns->id_ns.dps) && 3230 NVME_ID_NS_DPS_TYPE(dns->id_ns.dps)) { 3231 if ((prinfor & NVME_PRINFO_PRACT) != 3232 (prinfow & NVME_PRINFO_PRACT)) { 3233 status = NVME_CMD_INCOMP_NS_OR_FMT | NVME_DNR; 3234 goto invalid; 3235 } else { 3236 if (!nvme_copy_matching_ns_format(sns, dns, true)) { 3237 status = NVME_CMD_INCOMP_NS_OR_FMT | NVME_DNR; 3238 goto invalid; 3239 } 3240 } 3241 } 3242 3243 if (!NVME_ID_NS_DPS_TYPE(sns->id_ns.dps) && 3244 NVME_ID_NS_DPS_TYPE(dns->id_ns.dps)) { 3245 if (!(prinfow & NVME_PRINFO_PRACT)) { 3246 status = NVME_CMD_INCOMP_NS_OR_FMT | NVME_DNR; 3247 goto invalid; 3248 } else { 3249 if (!nvme_copy_corresp_pi_format(sns, dns, false)) { 3250 status = NVME_CMD_INCOMP_NS_OR_FMT | NVME_DNR; 3251 goto invalid; 3252 } 3253 } 3254 } 3255 3256 if (NVME_ID_NS_DPS_TYPE(sns->id_ns.dps) && 3257 !NVME_ID_NS_DPS_TYPE(dns->id_ns.dps)) { 3258 if (!(prinfor & NVME_PRINFO_PRACT)) { 3259 status = NVME_CMD_INCOMP_NS_OR_FMT | NVME_DNR; 3260 goto invalid; 3261 } else { 3262 if (!nvme_copy_corresp_pi_format(sns, dns, true)) { 3263 status = NVME_CMD_INCOMP_NS_OR_FMT | NVME_DNR; 3264 goto invalid; 3265 } 3266 } 3267 } 3268 } 3269 len = nvme_l2b(sns, nlb); 3270 3271 trace_pci_nvme_copy_source_range(slba, nlb); 3272 3273 if (nlb > le16_to_cpu(sns->id_ns.mssrl)) { 3274 status = NVME_CMD_SIZE_LIMIT | NVME_DNR; 3275 goto invalid; 3276 } 3277 3278 status = nvme_check_bounds(sns, slba, nlb); 3279 if (status) { 3280 goto invalid; 3281 } 3282 3283 if (NVME_ERR_REC_DULBE(sns->features.err_rec)) { 3284 status = nvme_check_dulbe(sns, slba, nlb); 3285 if (status) { 3286 goto invalid; 3287 } 3288 } 3289 3290 if (sns->params.zoned) { 3291 status = nvme_check_zone_read(sns, slba, nlb); 3292 if (status) { 3293 goto invalid; 3294 } 3295 } 3296 3297 g_free(iocb->bounce); 3298 iocb->bounce = g_malloc_n(le16_to_cpu(sns->id_ns.mssrl), 3299 sns->lbasz + sns->lbaf.ms); 3300 3301 qemu_iovec_reset(&iocb->iov); 3302 qemu_iovec_add(&iocb->iov, iocb->bounce, len); 3303 3304 block_acct_start(blk_get_stats(sns->blkconf.blk), &iocb->acct.read, 0, 3305 BLOCK_ACCT_READ); 3306 3307 iocb->aiocb = blk_aio_preadv(sns->blkconf.blk, nvme_l2b(sns, slba), 3308 &iocb->iov, 0, nvme_copy_in_cb, iocb); 3309 return; 3310 3311 invalid: 3312 req->status = status; 3313 iocb->ret = -1; 3314 done: 3315 nvme_copy_done(iocb); 3316 } 3317 3318 static uint16_t nvme_copy(NvmeCtrl *n, NvmeRequest *req) 3319 { 3320 NvmeNamespace *ns = req->ns; 3321 NvmeCopyCmd *copy = (NvmeCopyCmd *)&req->cmd; 3322 NvmeCopyAIOCB *iocb = blk_aio_get(&nvme_copy_aiocb_info, ns->blkconf.blk, 3323 nvme_misc_cb, req); 3324 uint16_t nr = copy->nr + 1; 3325 uint8_t format = copy->control[0] & 0xf; 3326 size_t len = sizeof(NvmeCopySourceRangeFormat0_2); 3327 3328 uint16_t status; 3329 3330 trace_pci_nvme_copy(nvme_cid(req), nvme_nsid(ns), nr, format); 3331 3332 iocb->ranges = NULL; 3333 iocb->zone = NULL; 3334 3335 if (!(n->id_ctrl.ocfs & (1 << format)) || 3336 ((format == 2 || format == 3) && 3337 !(n->features.hbs.cdfe & (1 << format)))) { 3338 trace_pci_nvme_err_copy_invalid_format(format); 3339 status = NVME_INVALID_FIELD | NVME_DNR; 3340 goto invalid; 3341 } 3342 3343 if (nr > ns->id_ns.msrc + 1) { 3344 status = NVME_CMD_SIZE_LIMIT | NVME_DNR; 3345 goto invalid; 3346 } 3347 3348 if ((ns->pif == 0x0 && (format != 0x0 && format != 0x2)) || 3349 (ns->pif != 0x0 && (format != 0x1 && format != 0x3))) { 3350 status = NVME_INVALID_FORMAT | NVME_DNR; 3351 goto invalid; 3352 } 3353 3354 if (ns->pif) { 3355 len = sizeof(NvmeCopySourceRangeFormat1_3); 3356 } 3357 3358 iocb->format = format; 3359 iocb->ranges = g_malloc_n(nr, len); 3360 status = nvme_h2c(n, (uint8_t *)iocb->ranges, len * nr, req); 3361 if (status) { 3362 goto invalid; 3363 } 3364 3365 iocb->slba = le64_to_cpu(copy->sdlba); 3366 3367 if (ns->params.zoned) { 3368 iocb->zone = nvme_get_zone_by_slba(ns, iocb->slba); 3369 if (!iocb->zone) { 3370 status = NVME_LBA_RANGE | NVME_DNR; 3371 goto invalid; 3372 } 3373 3374 status = nvme_zrm_auto(n, ns, iocb->zone); 3375 if (status) { 3376 goto invalid; 3377 } 3378 } 3379 3380 status = nvme_check_copy_mcl(ns, iocb, nr); 3381 if (status) { 3382 goto invalid; 3383 } 3384 3385 iocb->req = req; 3386 iocb->ret = 0; 3387 iocb->nr = nr; 3388 iocb->idx = 0; 3389 iocb->reftag = le32_to_cpu(copy->reftag); 3390 iocb->reftag |= (uint64_t)le32_to_cpu(copy->cdw3) << 32; 3391 3392 qemu_iovec_init(&iocb->iov, 1); 3393 3394 req->aiocb = &iocb->common; 3395 iocb->sns = req->ns; 3396 iocb->n = n; 3397 iocb->bounce = NULL; 3398 nvme_do_copy(iocb); 3399 3400 return NVME_NO_COMPLETE; 3401 3402 invalid: 3403 g_free(iocb->ranges); 3404 qemu_aio_unref(iocb); 3405 return status; 3406 } 3407 3408 static uint16_t nvme_compare(NvmeCtrl *n, NvmeRequest *req) 3409 { 3410 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; 3411 NvmeNamespace *ns = req->ns; 3412 BlockBackend *blk = ns->blkconf.blk; 3413 uint64_t slba = le64_to_cpu(rw->slba); 3414 uint32_t nlb = le16_to_cpu(rw->nlb) + 1; 3415 uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control)); 3416 size_t data_len = nvme_l2b(ns, nlb); 3417 size_t len = data_len; 3418 int64_t offset = nvme_l2b(ns, slba); 3419 struct nvme_compare_ctx *ctx = NULL; 3420 uint16_t status; 3421 3422 trace_pci_nvme_compare(nvme_cid(req), nvme_nsid(ns), slba, nlb); 3423 3424 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps) && (prinfo & NVME_PRINFO_PRACT)) { 3425 return NVME_INVALID_PROT_INFO | NVME_DNR; 3426 } 3427 3428 if (nvme_ns_ext(ns)) { 3429 len += nvme_m2b(ns, nlb); 3430 } 3431 3432 if (NVME_ID_CTRL_CTRATT_MEM(n->id_ctrl.ctratt)) { 3433 status = nvme_check_mdts(n, data_len); 3434 } else { 3435 status = nvme_check_mdts(n, len); 3436 } 3437 if (status) { 3438 return status; 3439 } 3440 3441 status = nvme_check_bounds(ns, slba, nlb); 3442 if (status) { 3443 return status; 3444 } 3445 3446 if (NVME_ERR_REC_DULBE(ns->features.err_rec)) { 3447 status = nvme_check_dulbe(ns, slba, nlb); 3448 if (status) { 3449 return status; 3450 } 3451 } 3452 3453 status = nvme_map_dptr(n, &req->sg, len, &req->cmd); 3454 if (status) { 3455 return status; 3456 } 3457 3458 ctx = g_new(struct nvme_compare_ctx, 1); 3459 ctx->data.bounce = g_malloc(data_len); 3460 3461 req->opaque = ctx; 3462 3463 qemu_iovec_init(&ctx->data.iov, 1); 3464 qemu_iovec_add(&ctx->data.iov, ctx->data.bounce, data_len); 3465 3466 block_acct_start(blk_get_stats(blk), &req->acct, data_len, 3467 BLOCK_ACCT_READ); 3468 req->aiocb = blk_aio_preadv(blk, offset, &ctx->data.iov, 0, 3469 nvme_compare_data_cb, req); 3470 3471 return NVME_NO_COMPLETE; 3472 } 3473 3474 typedef struct NvmeFlushAIOCB { 3475 BlockAIOCB common; 3476 BlockAIOCB *aiocb; 3477 NvmeRequest *req; 3478 int ret; 3479 3480 NvmeNamespace *ns; 3481 uint32_t nsid; 3482 bool broadcast; 3483 } NvmeFlushAIOCB; 3484 3485 static void nvme_flush_cancel(BlockAIOCB *acb) 3486 { 3487 NvmeFlushAIOCB *iocb = container_of(acb, NvmeFlushAIOCB, common); 3488 3489 iocb->ret = -ECANCELED; 3490 3491 if (iocb->aiocb) { 3492 blk_aio_cancel_async(iocb->aiocb); 3493 iocb->aiocb = NULL; 3494 } 3495 } 3496 3497 static const AIOCBInfo nvme_flush_aiocb_info = { 3498 .aiocb_size = sizeof(NvmeFlushAIOCB), 3499 .cancel_async = nvme_flush_cancel, 3500 }; 3501 3502 static void nvme_do_flush(NvmeFlushAIOCB *iocb); 3503 3504 static void nvme_flush_ns_cb(void *opaque, int ret) 3505 { 3506 NvmeFlushAIOCB *iocb = opaque; 3507 NvmeNamespace *ns = iocb->ns; 3508 3509 if (ret < 0) { 3510 iocb->ret = ret; 3511 goto out; 3512 } else if (iocb->ret < 0) { 3513 goto out; 3514 } 3515 3516 if (ns) { 3517 trace_pci_nvme_flush_ns(iocb->nsid); 3518 3519 iocb->ns = NULL; 3520 iocb->aiocb = blk_aio_flush(ns->blkconf.blk, nvme_flush_ns_cb, iocb); 3521 return; 3522 } 3523 3524 out: 3525 nvme_do_flush(iocb); 3526 } 3527 3528 static void nvme_do_flush(NvmeFlushAIOCB *iocb) 3529 { 3530 NvmeRequest *req = iocb->req; 3531 NvmeCtrl *n = nvme_ctrl(req); 3532 int i; 3533 3534 if (iocb->ret < 0) { 3535 goto done; 3536 } 3537 3538 if (iocb->broadcast) { 3539 for (i = iocb->nsid + 1; i <= NVME_MAX_NAMESPACES; i++) { 3540 iocb->ns = nvme_ns(n, i); 3541 if (iocb->ns) { 3542 iocb->nsid = i; 3543 break; 3544 } 3545 } 3546 } 3547 3548 if (!iocb->ns) { 3549 goto done; 3550 } 3551 3552 nvme_flush_ns_cb(iocb, 0); 3553 return; 3554 3555 done: 3556 iocb->common.cb(iocb->common.opaque, iocb->ret); 3557 qemu_aio_unref(iocb); 3558 } 3559 3560 static uint16_t nvme_flush(NvmeCtrl *n, NvmeRequest *req) 3561 { 3562 NvmeFlushAIOCB *iocb; 3563 uint32_t nsid = le32_to_cpu(req->cmd.nsid); 3564 uint16_t status; 3565 3566 iocb = qemu_aio_get(&nvme_flush_aiocb_info, NULL, nvme_misc_cb, req); 3567 3568 iocb->req = req; 3569 iocb->ret = 0; 3570 iocb->ns = NULL; 3571 iocb->nsid = 0; 3572 iocb->broadcast = (nsid == NVME_NSID_BROADCAST); 3573 3574 if (!iocb->broadcast) { 3575 if (!nvme_nsid_valid(n, nsid)) { 3576 status = NVME_INVALID_NSID | NVME_DNR; 3577 goto out; 3578 } 3579 3580 iocb->ns = nvme_ns(n, nsid); 3581 if (!iocb->ns) { 3582 status = NVME_INVALID_FIELD | NVME_DNR; 3583 goto out; 3584 } 3585 3586 iocb->nsid = nsid; 3587 } 3588 3589 req->aiocb = &iocb->common; 3590 nvme_do_flush(iocb); 3591 3592 return NVME_NO_COMPLETE; 3593 3594 out: 3595 qemu_aio_unref(iocb); 3596 3597 return status; 3598 } 3599 3600 static uint16_t nvme_read(NvmeCtrl *n, NvmeRequest *req) 3601 { 3602 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; 3603 NvmeNamespace *ns = req->ns; 3604 uint64_t slba = le64_to_cpu(rw->slba); 3605 uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1; 3606 uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control)); 3607 uint64_t data_size = nvme_l2b(ns, nlb); 3608 uint64_t mapped_size = data_size; 3609 uint64_t data_offset; 3610 BlockBackend *blk = ns->blkconf.blk; 3611 uint16_t status; 3612 3613 if (nvme_ns_ext(ns) && !(NVME_ID_CTRL_CTRATT_MEM(n->id_ctrl.ctratt))) { 3614 mapped_size += nvme_m2b(ns, nlb); 3615 3616 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) { 3617 bool pract = prinfo & NVME_PRINFO_PRACT; 3618 3619 if (pract && ns->lbaf.ms == nvme_pi_tuple_size(ns)) { 3620 mapped_size = data_size; 3621 } 3622 } 3623 } 3624 3625 trace_pci_nvme_read(nvme_cid(req), nvme_nsid(ns), nlb, mapped_size, slba); 3626 3627 status = nvme_check_mdts(n, mapped_size); 3628 if (status) { 3629 goto invalid; 3630 } 3631 3632 status = nvme_check_bounds(ns, slba, nlb); 3633 if (status) { 3634 goto invalid; 3635 } 3636 3637 if (ns->params.zoned) { 3638 status = nvme_check_zone_read(ns, slba, nlb); 3639 if (status) { 3640 trace_pci_nvme_err_zone_read_not_ok(slba, nlb, status); 3641 goto invalid; 3642 } 3643 } 3644 3645 if (NVME_ERR_REC_DULBE(ns->features.err_rec)) { 3646 status = nvme_check_dulbe(ns, slba, nlb); 3647 if (status) { 3648 goto invalid; 3649 } 3650 } 3651 3652 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) { 3653 return nvme_dif_rw(n, req); 3654 } 3655 3656 status = nvme_map_data(n, nlb, req); 3657 if (status) { 3658 goto invalid; 3659 } 3660 3661 data_offset = nvme_l2b(ns, slba); 3662 3663 block_acct_start(blk_get_stats(blk), &req->acct, data_size, 3664 BLOCK_ACCT_READ); 3665 nvme_blk_read(blk, data_offset, BDRV_SECTOR_SIZE, nvme_rw_cb, req); 3666 return NVME_NO_COMPLETE; 3667 3668 invalid: 3669 block_acct_invalid(blk_get_stats(blk), BLOCK_ACCT_READ); 3670 return status | NVME_DNR; 3671 } 3672 3673 static void nvme_do_write_fdp(NvmeCtrl *n, NvmeRequest *req, uint64_t slba, 3674 uint32_t nlb) 3675 { 3676 NvmeNamespace *ns = req->ns; 3677 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; 3678 uint64_t data_size = nvme_l2b(ns, nlb); 3679 uint32_t dw12 = le32_to_cpu(req->cmd.cdw12); 3680 uint8_t dtype = (dw12 >> 20) & 0xf; 3681 uint16_t pid = le16_to_cpu(rw->dspec); 3682 uint16_t ph, rg, ruhid; 3683 NvmeReclaimUnit *ru; 3684 3685 if (dtype != NVME_DIRECTIVE_DATA_PLACEMENT || 3686 !nvme_parse_pid(ns, pid, &ph, &rg)) { 3687 ph = 0; 3688 rg = 0; 3689 } 3690 3691 ruhid = ns->fdp.phs[ph]; 3692 ru = &ns->endgrp->fdp.ruhs[ruhid].rus[rg]; 3693 3694 nvme_fdp_stat_inc(&ns->endgrp->fdp.hbmw, data_size); 3695 nvme_fdp_stat_inc(&ns->endgrp->fdp.mbmw, data_size); 3696 3697 while (nlb) { 3698 if (nlb < ru->ruamw) { 3699 ru->ruamw -= nlb; 3700 break; 3701 } 3702 3703 nlb -= ru->ruamw; 3704 nvme_update_ruh(n, ns, pid); 3705 } 3706 } 3707 3708 static uint16_t nvme_do_write(NvmeCtrl *n, NvmeRequest *req, bool append, 3709 bool wrz) 3710 { 3711 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; 3712 NvmeNamespace *ns = req->ns; 3713 uint64_t slba = le64_to_cpu(rw->slba); 3714 uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1; 3715 uint16_t ctrl = le16_to_cpu(rw->control); 3716 uint8_t prinfo = NVME_RW_PRINFO(ctrl); 3717 uint64_t data_size = nvme_l2b(ns, nlb); 3718 uint64_t mapped_size = data_size; 3719 uint64_t data_offset; 3720 NvmeZone *zone; 3721 NvmeZonedResult *res = (NvmeZonedResult *)&req->cqe; 3722 BlockBackend *blk = ns->blkconf.blk; 3723 uint16_t status; 3724 3725 if (nvme_ns_ext(ns) && !(NVME_ID_CTRL_CTRATT_MEM(n->id_ctrl.ctratt))) { 3726 mapped_size += nvme_m2b(ns, nlb); 3727 3728 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) { 3729 bool pract = prinfo & NVME_PRINFO_PRACT; 3730 3731 if (pract && ns->lbaf.ms == nvme_pi_tuple_size(ns)) { 3732 mapped_size -= nvme_m2b(ns, nlb); 3733 } 3734 } 3735 } 3736 3737 trace_pci_nvme_write(nvme_cid(req), nvme_io_opc_str(rw->opcode), 3738 nvme_nsid(ns), nlb, mapped_size, slba); 3739 3740 if (!wrz) { 3741 status = nvme_check_mdts(n, mapped_size); 3742 if (status) { 3743 goto invalid; 3744 } 3745 } 3746 3747 status = nvme_check_bounds(ns, slba, nlb); 3748 if (status) { 3749 goto invalid; 3750 } 3751 3752 if (ns->params.zoned) { 3753 zone = nvme_get_zone_by_slba(ns, slba); 3754 assert(zone); 3755 3756 if (append) { 3757 bool piremap = !!(ctrl & NVME_RW_PIREMAP); 3758 3759 if (unlikely(zone->d.za & NVME_ZA_ZRWA_VALID)) { 3760 return NVME_INVALID_ZONE_OP | NVME_DNR; 3761 } 3762 3763 if (unlikely(slba != zone->d.zslba)) { 3764 trace_pci_nvme_err_append_not_at_start(slba, zone->d.zslba); 3765 status = NVME_INVALID_FIELD; 3766 goto invalid; 3767 } 3768 3769 if (n->params.zasl && 3770 data_size > (uint64_t)n->page_size << n->params.zasl) { 3771 trace_pci_nvme_err_zasl(data_size); 3772 return NVME_INVALID_FIELD | NVME_DNR; 3773 } 3774 3775 slba = zone->w_ptr; 3776 rw->slba = cpu_to_le64(slba); 3777 res->slba = cpu_to_le64(slba); 3778 3779 switch (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) { 3780 case NVME_ID_NS_DPS_TYPE_1: 3781 if (!piremap) { 3782 return NVME_INVALID_PROT_INFO | NVME_DNR; 3783 } 3784 3785 /* fallthrough */ 3786 3787 case NVME_ID_NS_DPS_TYPE_2: 3788 if (piremap) { 3789 uint32_t reftag = le32_to_cpu(rw->reftag); 3790 rw->reftag = cpu_to_le32(reftag + (slba - zone->d.zslba)); 3791 } 3792 3793 break; 3794 3795 case NVME_ID_NS_DPS_TYPE_3: 3796 if (piremap) { 3797 return NVME_INVALID_PROT_INFO | NVME_DNR; 3798 } 3799 3800 break; 3801 } 3802 } 3803 3804 status = nvme_check_zone_write(ns, zone, slba, nlb); 3805 if (status) { 3806 goto invalid; 3807 } 3808 3809 status = nvme_zrm_auto(n, ns, zone); 3810 if (status) { 3811 goto invalid; 3812 } 3813 3814 if (!(zone->d.za & NVME_ZA_ZRWA_VALID)) { 3815 zone->w_ptr += nlb; 3816 } 3817 } else if (ns->endgrp && ns->endgrp->fdp.enabled) { 3818 nvme_do_write_fdp(n, req, slba, nlb); 3819 } 3820 3821 data_offset = nvme_l2b(ns, slba); 3822 3823 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) { 3824 return nvme_dif_rw(n, req); 3825 } 3826 3827 if (!wrz) { 3828 status = nvme_map_data(n, nlb, req); 3829 if (status) { 3830 goto invalid; 3831 } 3832 3833 block_acct_start(blk_get_stats(blk), &req->acct, data_size, 3834 BLOCK_ACCT_WRITE); 3835 nvme_blk_write(blk, data_offset, BDRV_SECTOR_SIZE, nvme_rw_cb, req); 3836 } else { 3837 req->aiocb = blk_aio_pwrite_zeroes(blk, data_offset, data_size, 3838 BDRV_REQ_MAY_UNMAP, nvme_rw_cb, 3839 req); 3840 } 3841 3842 return NVME_NO_COMPLETE; 3843 3844 invalid: 3845 block_acct_invalid(blk_get_stats(blk), BLOCK_ACCT_WRITE); 3846 return status | NVME_DNR; 3847 } 3848 3849 static inline uint16_t nvme_write(NvmeCtrl *n, NvmeRequest *req) 3850 { 3851 return nvme_do_write(n, req, false, false); 3852 } 3853 3854 static inline uint16_t nvme_write_zeroes(NvmeCtrl *n, NvmeRequest *req) 3855 { 3856 return nvme_do_write(n, req, false, true); 3857 } 3858 3859 static inline uint16_t nvme_zone_append(NvmeCtrl *n, NvmeRequest *req) 3860 { 3861 return nvme_do_write(n, req, true, false); 3862 } 3863 3864 static uint16_t nvme_get_mgmt_zone_slba_idx(NvmeNamespace *ns, NvmeCmd *c, 3865 uint64_t *slba, uint32_t *zone_idx) 3866 { 3867 uint32_t dw10 = le32_to_cpu(c->cdw10); 3868 uint32_t dw11 = le32_to_cpu(c->cdw11); 3869 3870 if (!ns->params.zoned) { 3871 trace_pci_nvme_err_invalid_opc(c->opcode); 3872 return NVME_INVALID_OPCODE | NVME_DNR; 3873 } 3874 3875 *slba = ((uint64_t)dw11) << 32 | dw10; 3876 if (unlikely(*slba >= ns->id_ns.nsze)) { 3877 trace_pci_nvme_err_invalid_lba_range(*slba, 0, ns->id_ns.nsze); 3878 *slba = 0; 3879 return NVME_LBA_RANGE | NVME_DNR; 3880 } 3881 3882 *zone_idx = nvme_zone_idx(ns, *slba); 3883 assert(*zone_idx < ns->num_zones); 3884 3885 return NVME_SUCCESS; 3886 } 3887 3888 typedef uint16_t (*op_handler_t)(NvmeNamespace *, NvmeZone *, NvmeZoneState, 3889 NvmeRequest *); 3890 3891 enum NvmeZoneProcessingMask { 3892 NVME_PROC_CURRENT_ZONE = 0, 3893 NVME_PROC_OPENED_ZONES = 1 << 0, 3894 NVME_PROC_CLOSED_ZONES = 1 << 1, 3895 NVME_PROC_READ_ONLY_ZONES = 1 << 2, 3896 NVME_PROC_FULL_ZONES = 1 << 3, 3897 }; 3898 3899 static uint16_t nvme_open_zone(NvmeNamespace *ns, NvmeZone *zone, 3900 NvmeZoneState state, NvmeRequest *req) 3901 { 3902 NvmeZoneSendCmd *cmd = (NvmeZoneSendCmd *)&req->cmd; 3903 int flags = 0; 3904 3905 if (cmd->zsflags & NVME_ZSFLAG_ZRWA_ALLOC) { 3906 uint16_t ozcs = le16_to_cpu(ns->id_ns_zoned->ozcs); 3907 3908 if (!(ozcs & NVME_ID_NS_ZONED_OZCS_ZRWASUP)) { 3909 return NVME_INVALID_ZONE_OP | NVME_DNR; 3910 } 3911 3912 if (zone->w_ptr % ns->zns.zrwafg) { 3913 return NVME_NOZRWA | NVME_DNR; 3914 } 3915 3916 flags = NVME_ZRM_ZRWA; 3917 } 3918 3919 return nvme_zrm_open_flags(nvme_ctrl(req), ns, zone, flags); 3920 } 3921 3922 static uint16_t nvme_close_zone(NvmeNamespace *ns, NvmeZone *zone, 3923 NvmeZoneState state, NvmeRequest *req) 3924 { 3925 return nvme_zrm_close(ns, zone); 3926 } 3927 3928 static uint16_t nvme_finish_zone(NvmeNamespace *ns, NvmeZone *zone, 3929 NvmeZoneState state, NvmeRequest *req) 3930 { 3931 return nvme_zrm_finish(ns, zone); 3932 } 3933 3934 static uint16_t nvme_offline_zone(NvmeNamespace *ns, NvmeZone *zone, 3935 NvmeZoneState state, NvmeRequest *req) 3936 { 3937 switch (state) { 3938 case NVME_ZONE_STATE_READ_ONLY: 3939 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_OFFLINE); 3940 /* fall through */ 3941 case NVME_ZONE_STATE_OFFLINE: 3942 return NVME_SUCCESS; 3943 default: 3944 return NVME_ZONE_INVAL_TRANSITION; 3945 } 3946 } 3947 3948 static uint16_t nvme_set_zd_ext(NvmeNamespace *ns, NvmeZone *zone) 3949 { 3950 uint16_t status; 3951 uint8_t state = nvme_get_zone_state(zone); 3952 3953 if (state == NVME_ZONE_STATE_EMPTY) { 3954 status = nvme_aor_check(ns, 1, 0); 3955 if (status) { 3956 return status; 3957 } 3958 nvme_aor_inc_active(ns); 3959 zone->d.za |= NVME_ZA_ZD_EXT_VALID; 3960 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_CLOSED); 3961 return NVME_SUCCESS; 3962 } 3963 3964 return NVME_ZONE_INVAL_TRANSITION; 3965 } 3966 3967 static uint16_t nvme_bulk_proc_zone(NvmeNamespace *ns, NvmeZone *zone, 3968 enum NvmeZoneProcessingMask proc_mask, 3969 op_handler_t op_hndlr, NvmeRequest *req) 3970 { 3971 uint16_t status = NVME_SUCCESS; 3972 NvmeZoneState zs = nvme_get_zone_state(zone); 3973 bool proc_zone; 3974 3975 switch (zs) { 3976 case NVME_ZONE_STATE_IMPLICITLY_OPEN: 3977 case NVME_ZONE_STATE_EXPLICITLY_OPEN: 3978 proc_zone = proc_mask & NVME_PROC_OPENED_ZONES; 3979 break; 3980 case NVME_ZONE_STATE_CLOSED: 3981 proc_zone = proc_mask & NVME_PROC_CLOSED_ZONES; 3982 break; 3983 case NVME_ZONE_STATE_READ_ONLY: 3984 proc_zone = proc_mask & NVME_PROC_READ_ONLY_ZONES; 3985 break; 3986 case NVME_ZONE_STATE_FULL: 3987 proc_zone = proc_mask & NVME_PROC_FULL_ZONES; 3988 break; 3989 default: 3990 proc_zone = false; 3991 } 3992 3993 if (proc_zone) { 3994 status = op_hndlr(ns, zone, zs, req); 3995 } 3996 3997 return status; 3998 } 3999 4000 static uint16_t nvme_do_zone_op(NvmeNamespace *ns, NvmeZone *zone, 4001 enum NvmeZoneProcessingMask proc_mask, 4002 op_handler_t op_hndlr, NvmeRequest *req) 4003 { 4004 NvmeZone *next; 4005 uint16_t status = NVME_SUCCESS; 4006 int i; 4007 4008 if (!proc_mask) { 4009 status = op_hndlr(ns, zone, nvme_get_zone_state(zone), req); 4010 } else { 4011 if (proc_mask & NVME_PROC_CLOSED_ZONES) { 4012 QTAILQ_FOREACH_SAFE(zone, &ns->closed_zones, entry, next) { 4013 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr, 4014 req); 4015 if (status && status != NVME_NO_COMPLETE) { 4016 goto out; 4017 } 4018 } 4019 } 4020 if (proc_mask & NVME_PROC_OPENED_ZONES) { 4021 QTAILQ_FOREACH_SAFE(zone, &ns->imp_open_zones, entry, next) { 4022 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr, 4023 req); 4024 if (status && status != NVME_NO_COMPLETE) { 4025 goto out; 4026 } 4027 } 4028 4029 QTAILQ_FOREACH_SAFE(zone, &ns->exp_open_zones, entry, next) { 4030 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr, 4031 req); 4032 if (status && status != NVME_NO_COMPLETE) { 4033 goto out; 4034 } 4035 } 4036 } 4037 if (proc_mask & NVME_PROC_FULL_ZONES) { 4038 QTAILQ_FOREACH_SAFE(zone, &ns->full_zones, entry, next) { 4039 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr, 4040 req); 4041 if (status && status != NVME_NO_COMPLETE) { 4042 goto out; 4043 } 4044 } 4045 } 4046 4047 if (proc_mask & NVME_PROC_READ_ONLY_ZONES) { 4048 for (i = 0; i < ns->num_zones; i++, zone++) { 4049 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr, 4050 req); 4051 if (status && status != NVME_NO_COMPLETE) { 4052 goto out; 4053 } 4054 } 4055 } 4056 } 4057 4058 out: 4059 return status; 4060 } 4061 4062 typedef struct NvmeZoneResetAIOCB { 4063 BlockAIOCB common; 4064 BlockAIOCB *aiocb; 4065 NvmeRequest *req; 4066 int ret; 4067 4068 bool all; 4069 int idx; 4070 NvmeZone *zone; 4071 } NvmeZoneResetAIOCB; 4072 4073 static void nvme_zone_reset_cancel(BlockAIOCB *aiocb) 4074 { 4075 NvmeZoneResetAIOCB *iocb = container_of(aiocb, NvmeZoneResetAIOCB, common); 4076 NvmeRequest *req = iocb->req; 4077 NvmeNamespace *ns = req->ns; 4078 4079 iocb->idx = ns->num_zones; 4080 4081 iocb->ret = -ECANCELED; 4082 4083 if (iocb->aiocb) { 4084 blk_aio_cancel_async(iocb->aiocb); 4085 iocb->aiocb = NULL; 4086 } 4087 } 4088 4089 static const AIOCBInfo nvme_zone_reset_aiocb_info = { 4090 .aiocb_size = sizeof(NvmeZoneResetAIOCB), 4091 .cancel_async = nvme_zone_reset_cancel, 4092 }; 4093 4094 static void nvme_zone_reset_cb(void *opaque, int ret); 4095 4096 static void nvme_zone_reset_epilogue_cb(void *opaque, int ret) 4097 { 4098 NvmeZoneResetAIOCB *iocb = opaque; 4099 NvmeRequest *req = iocb->req; 4100 NvmeNamespace *ns = req->ns; 4101 int64_t moff; 4102 int count; 4103 4104 if (ret < 0 || iocb->ret < 0 || !ns->lbaf.ms) { 4105 goto out; 4106 } 4107 4108 moff = nvme_moff(ns, iocb->zone->d.zslba); 4109 count = nvme_m2b(ns, ns->zone_size); 4110 4111 iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk, moff, count, 4112 BDRV_REQ_MAY_UNMAP, 4113 nvme_zone_reset_cb, iocb); 4114 return; 4115 4116 out: 4117 nvme_zone_reset_cb(iocb, ret); 4118 } 4119 4120 static void nvme_zone_reset_cb(void *opaque, int ret) 4121 { 4122 NvmeZoneResetAIOCB *iocb = opaque; 4123 NvmeRequest *req = iocb->req; 4124 NvmeNamespace *ns = req->ns; 4125 4126 if (iocb->ret < 0) { 4127 goto done; 4128 } else if (ret < 0) { 4129 iocb->ret = ret; 4130 goto done; 4131 } 4132 4133 if (iocb->zone) { 4134 nvme_zrm_reset(ns, iocb->zone); 4135 4136 if (!iocb->all) { 4137 goto done; 4138 } 4139 } 4140 4141 while (iocb->idx < ns->num_zones) { 4142 NvmeZone *zone = &ns->zone_array[iocb->idx++]; 4143 4144 switch (nvme_get_zone_state(zone)) { 4145 case NVME_ZONE_STATE_EMPTY: 4146 if (!iocb->all) { 4147 goto done; 4148 } 4149 4150 continue; 4151 4152 case NVME_ZONE_STATE_EXPLICITLY_OPEN: 4153 case NVME_ZONE_STATE_IMPLICITLY_OPEN: 4154 case NVME_ZONE_STATE_CLOSED: 4155 case NVME_ZONE_STATE_FULL: 4156 iocb->zone = zone; 4157 break; 4158 4159 default: 4160 continue; 4161 } 4162 4163 trace_pci_nvme_zns_zone_reset(zone->d.zslba); 4164 4165 iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk, 4166 nvme_l2b(ns, zone->d.zslba), 4167 nvme_l2b(ns, ns->zone_size), 4168 BDRV_REQ_MAY_UNMAP, 4169 nvme_zone_reset_epilogue_cb, 4170 iocb); 4171 return; 4172 } 4173 4174 done: 4175 iocb->aiocb = NULL; 4176 4177 iocb->common.cb(iocb->common.opaque, iocb->ret); 4178 qemu_aio_unref(iocb); 4179 } 4180 4181 static uint16_t nvme_zone_mgmt_send_zrwa_flush(NvmeCtrl *n, NvmeZone *zone, 4182 uint64_t elba, NvmeRequest *req) 4183 { 4184 NvmeNamespace *ns = req->ns; 4185 uint16_t ozcs = le16_to_cpu(ns->id_ns_zoned->ozcs); 4186 uint64_t wp = zone->d.wp; 4187 uint32_t nlb = elba - wp + 1; 4188 uint16_t status; 4189 4190 4191 if (!(ozcs & NVME_ID_NS_ZONED_OZCS_ZRWASUP)) { 4192 return NVME_INVALID_ZONE_OP | NVME_DNR; 4193 } 4194 4195 if (!(zone->d.za & NVME_ZA_ZRWA_VALID)) { 4196 return NVME_INVALID_FIELD | NVME_DNR; 4197 } 4198 4199 if (elba < wp || elba > wp + ns->zns.zrwas) { 4200 return NVME_ZONE_BOUNDARY_ERROR | NVME_DNR; 4201 } 4202 4203 if (nlb % ns->zns.zrwafg) { 4204 return NVME_INVALID_FIELD | NVME_DNR; 4205 } 4206 4207 status = nvme_zrm_auto(n, ns, zone); 4208 if (status) { 4209 return status; 4210 } 4211 4212 zone->w_ptr += nlb; 4213 4214 nvme_advance_zone_wp(ns, zone, nlb); 4215 4216 return NVME_SUCCESS; 4217 } 4218 4219 static uint16_t nvme_zone_mgmt_send(NvmeCtrl *n, NvmeRequest *req) 4220 { 4221 NvmeZoneSendCmd *cmd = (NvmeZoneSendCmd *)&req->cmd; 4222 NvmeNamespace *ns = req->ns; 4223 NvmeZone *zone; 4224 NvmeZoneResetAIOCB *iocb; 4225 uint8_t *zd_ext; 4226 uint64_t slba = 0; 4227 uint32_t zone_idx = 0; 4228 uint16_t status; 4229 uint8_t action = cmd->zsa; 4230 bool all; 4231 enum NvmeZoneProcessingMask proc_mask = NVME_PROC_CURRENT_ZONE; 4232 4233 all = cmd->zsflags & NVME_ZSFLAG_SELECT_ALL; 4234 4235 req->status = NVME_SUCCESS; 4236 4237 if (!all) { 4238 status = nvme_get_mgmt_zone_slba_idx(ns, &req->cmd, &slba, &zone_idx); 4239 if (status) { 4240 return status; 4241 } 4242 } 4243 4244 zone = &ns->zone_array[zone_idx]; 4245 if (slba != zone->d.zslba && action != NVME_ZONE_ACTION_ZRWA_FLUSH) { 4246 trace_pci_nvme_err_unaligned_zone_cmd(action, slba, zone->d.zslba); 4247 return NVME_INVALID_FIELD | NVME_DNR; 4248 } 4249 4250 switch (action) { 4251 4252 case NVME_ZONE_ACTION_OPEN: 4253 if (all) { 4254 proc_mask = NVME_PROC_CLOSED_ZONES; 4255 } 4256 trace_pci_nvme_open_zone(slba, zone_idx, all); 4257 status = nvme_do_zone_op(ns, zone, proc_mask, nvme_open_zone, req); 4258 break; 4259 4260 case NVME_ZONE_ACTION_CLOSE: 4261 if (all) { 4262 proc_mask = NVME_PROC_OPENED_ZONES; 4263 } 4264 trace_pci_nvme_close_zone(slba, zone_idx, all); 4265 status = nvme_do_zone_op(ns, zone, proc_mask, nvme_close_zone, req); 4266 break; 4267 4268 case NVME_ZONE_ACTION_FINISH: 4269 if (all) { 4270 proc_mask = NVME_PROC_OPENED_ZONES | NVME_PROC_CLOSED_ZONES; 4271 } 4272 trace_pci_nvme_finish_zone(slba, zone_idx, all); 4273 status = nvme_do_zone_op(ns, zone, proc_mask, nvme_finish_zone, req); 4274 break; 4275 4276 case NVME_ZONE_ACTION_RESET: 4277 trace_pci_nvme_reset_zone(slba, zone_idx, all); 4278 4279 iocb = blk_aio_get(&nvme_zone_reset_aiocb_info, ns->blkconf.blk, 4280 nvme_misc_cb, req); 4281 4282 iocb->req = req; 4283 iocb->ret = 0; 4284 iocb->all = all; 4285 iocb->idx = zone_idx; 4286 iocb->zone = NULL; 4287 4288 req->aiocb = &iocb->common; 4289 nvme_zone_reset_cb(iocb, 0); 4290 4291 return NVME_NO_COMPLETE; 4292 4293 case NVME_ZONE_ACTION_OFFLINE: 4294 if (all) { 4295 proc_mask = NVME_PROC_READ_ONLY_ZONES; 4296 } 4297 trace_pci_nvme_offline_zone(slba, zone_idx, all); 4298 status = nvme_do_zone_op(ns, zone, proc_mask, nvme_offline_zone, req); 4299 break; 4300 4301 case NVME_ZONE_ACTION_SET_ZD_EXT: 4302 trace_pci_nvme_set_descriptor_extension(slba, zone_idx); 4303 if (all || !ns->params.zd_extension_size) { 4304 return NVME_INVALID_FIELD | NVME_DNR; 4305 } 4306 zd_ext = nvme_get_zd_extension(ns, zone_idx); 4307 status = nvme_h2c(n, zd_ext, ns->params.zd_extension_size, req); 4308 if (status) { 4309 trace_pci_nvme_err_zd_extension_map_error(zone_idx); 4310 return status; 4311 } 4312 4313 status = nvme_set_zd_ext(ns, zone); 4314 if (status == NVME_SUCCESS) { 4315 trace_pci_nvme_zd_extension_set(zone_idx); 4316 return status; 4317 } 4318 break; 4319 4320 case NVME_ZONE_ACTION_ZRWA_FLUSH: 4321 if (all) { 4322 return NVME_INVALID_FIELD | NVME_DNR; 4323 } 4324 4325 return nvme_zone_mgmt_send_zrwa_flush(n, zone, slba, req); 4326 4327 default: 4328 trace_pci_nvme_err_invalid_mgmt_action(action); 4329 status = NVME_INVALID_FIELD; 4330 } 4331 4332 if (status == NVME_ZONE_INVAL_TRANSITION) { 4333 trace_pci_nvme_err_invalid_zone_state_transition(action, slba, 4334 zone->d.za); 4335 } 4336 if (status) { 4337 status |= NVME_DNR; 4338 } 4339 4340 return status; 4341 } 4342 4343 static bool nvme_zone_matches_filter(uint32_t zafs, NvmeZone *zl) 4344 { 4345 NvmeZoneState zs = nvme_get_zone_state(zl); 4346 4347 switch (zafs) { 4348 case NVME_ZONE_REPORT_ALL: 4349 return true; 4350 case NVME_ZONE_REPORT_EMPTY: 4351 return zs == NVME_ZONE_STATE_EMPTY; 4352 case NVME_ZONE_REPORT_IMPLICITLY_OPEN: 4353 return zs == NVME_ZONE_STATE_IMPLICITLY_OPEN; 4354 case NVME_ZONE_REPORT_EXPLICITLY_OPEN: 4355 return zs == NVME_ZONE_STATE_EXPLICITLY_OPEN; 4356 case NVME_ZONE_REPORT_CLOSED: 4357 return zs == NVME_ZONE_STATE_CLOSED; 4358 case NVME_ZONE_REPORT_FULL: 4359 return zs == NVME_ZONE_STATE_FULL; 4360 case NVME_ZONE_REPORT_READ_ONLY: 4361 return zs == NVME_ZONE_STATE_READ_ONLY; 4362 case NVME_ZONE_REPORT_OFFLINE: 4363 return zs == NVME_ZONE_STATE_OFFLINE; 4364 default: 4365 return false; 4366 } 4367 } 4368 4369 static uint16_t nvme_zone_mgmt_recv(NvmeCtrl *n, NvmeRequest *req) 4370 { 4371 NvmeCmd *cmd = &req->cmd; 4372 NvmeNamespace *ns = req->ns; 4373 /* cdw12 is zero-based number of dwords to return. Convert to bytes */ 4374 uint32_t data_size = (le32_to_cpu(cmd->cdw12) + 1) << 2; 4375 uint32_t dw13 = le32_to_cpu(cmd->cdw13); 4376 uint32_t zone_idx, zra, zrasf, partial; 4377 uint64_t max_zones, nr_zones = 0; 4378 uint16_t status; 4379 uint64_t slba; 4380 NvmeZoneDescr *z; 4381 NvmeZone *zone; 4382 NvmeZoneReportHeader *header; 4383 void *buf, *buf_p; 4384 size_t zone_entry_sz; 4385 int i; 4386 4387 req->status = NVME_SUCCESS; 4388 4389 status = nvme_get_mgmt_zone_slba_idx(ns, cmd, &slba, &zone_idx); 4390 if (status) { 4391 return status; 4392 } 4393 4394 zra = dw13 & 0xff; 4395 if (zra != NVME_ZONE_REPORT && zra != NVME_ZONE_REPORT_EXTENDED) { 4396 return NVME_INVALID_FIELD | NVME_DNR; 4397 } 4398 if (zra == NVME_ZONE_REPORT_EXTENDED && !ns->params.zd_extension_size) { 4399 return NVME_INVALID_FIELD | NVME_DNR; 4400 } 4401 4402 zrasf = (dw13 >> 8) & 0xff; 4403 if (zrasf > NVME_ZONE_REPORT_OFFLINE) { 4404 return NVME_INVALID_FIELD | NVME_DNR; 4405 } 4406 4407 if (data_size < sizeof(NvmeZoneReportHeader)) { 4408 return NVME_INVALID_FIELD | NVME_DNR; 4409 } 4410 4411 status = nvme_check_mdts(n, data_size); 4412 if (status) { 4413 return status; 4414 } 4415 4416 partial = (dw13 >> 16) & 0x01; 4417 4418 zone_entry_sz = sizeof(NvmeZoneDescr); 4419 if (zra == NVME_ZONE_REPORT_EXTENDED) { 4420 zone_entry_sz += ns->params.zd_extension_size; 4421 } 4422 4423 max_zones = (data_size - sizeof(NvmeZoneReportHeader)) / zone_entry_sz; 4424 buf = g_malloc0(data_size); 4425 4426 zone = &ns->zone_array[zone_idx]; 4427 for (i = zone_idx; i < ns->num_zones; i++) { 4428 if (partial && nr_zones >= max_zones) { 4429 break; 4430 } 4431 if (nvme_zone_matches_filter(zrasf, zone++)) { 4432 nr_zones++; 4433 } 4434 } 4435 header = buf; 4436 header->nr_zones = cpu_to_le64(nr_zones); 4437 4438 buf_p = buf + sizeof(NvmeZoneReportHeader); 4439 for (; zone_idx < ns->num_zones && max_zones > 0; zone_idx++) { 4440 zone = &ns->zone_array[zone_idx]; 4441 if (nvme_zone_matches_filter(zrasf, zone)) { 4442 z = buf_p; 4443 buf_p += sizeof(NvmeZoneDescr); 4444 4445 z->zt = zone->d.zt; 4446 z->zs = zone->d.zs; 4447 z->zcap = cpu_to_le64(zone->d.zcap); 4448 z->zslba = cpu_to_le64(zone->d.zslba); 4449 z->za = zone->d.za; 4450 4451 if (nvme_wp_is_valid(zone)) { 4452 z->wp = cpu_to_le64(zone->d.wp); 4453 } else { 4454 z->wp = cpu_to_le64(~0ULL); 4455 } 4456 4457 if (zra == NVME_ZONE_REPORT_EXTENDED) { 4458 if (zone->d.za & NVME_ZA_ZD_EXT_VALID) { 4459 memcpy(buf_p, nvme_get_zd_extension(ns, zone_idx), 4460 ns->params.zd_extension_size); 4461 } 4462 buf_p += ns->params.zd_extension_size; 4463 } 4464 4465 max_zones--; 4466 } 4467 } 4468 4469 status = nvme_c2h(n, (uint8_t *)buf, data_size, req); 4470 4471 g_free(buf); 4472 4473 return status; 4474 } 4475 4476 static uint16_t nvme_io_mgmt_recv_ruhs(NvmeCtrl *n, NvmeRequest *req, 4477 size_t len) 4478 { 4479 NvmeNamespace *ns = req->ns; 4480 NvmeEnduranceGroup *endgrp; 4481 NvmeRuhStatus *hdr; 4482 NvmeRuhStatusDescr *ruhsd; 4483 unsigned int nruhsd; 4484 uint16_t rg, ph, *ruhid; 4485 size_t trans_len; 4486 g_autofree uint8_t *buf = NULL; 4487 4488 if (!n->subsys) { 4489 return NVME_INVALID_FIELD | NVME_DNR; 4490 } 4491 4492 if (ns->params.nsid == 0 || ns->params.nsid == 0xffffffff) { 4493 return NVME_INVALID_NSID | NVME_DNR; 4494 } 4495 4496 if (!n->subsys->endgrp.fdp.enabled) { 4497 return NVME_FDP_DISABLED | NVME_DNR; 4498 } 4499 4500 endgrp = ns->endgrp; 4501 4502 nruhsd = ns->fdp.nphs * endgrp->fdp.nrg; 4503 trans_len = sizeof(NvmeRuhStatus) + nruhsd * sizeof(NvmeRuhStatusDescr); 4504 buf = g_malloc0(trans_len); 4505 4506 trans_len = MIN(trans_len, len); 4507 4508 hdr = (NvmeRuhStatus *)buf; 4509 ruhsd = (NvmeRuhStatusDescr *)(buf + sizeof(NvmeRuhStatus)); 4510 4511 hdr->nruhsd = cpu_to_le16(nruhsd); 4512 4513 ruhid = ns->fdp.phs; 4514 4515 for (ph = 0; ph < ns->fdp.nphs; ph++, ruhid++) { 4516 NvmeRuHandle *ruh = &endgrp->fdp.ruhs[*ruhid]; 4517 4518 for (rg = 0; rg < endgrp->fdp.nrg; rg++, ruhsd++) { 4519 uint16_t pid = nvme_make_pid(ns, rg, ph); 4520 4521 ruhsd->pid = cpu_to_le16(pid); 4522 ruhsd->ruhid = *ruhid; 4523 ruhsd->earutr = 0; 4524 ruhsd->ruamw = cpu_to_le64(ruh->rus[rg].ruamw); 4525 } 4526 } 4527 4528 return nvme_c2h(n, buf, trans_len, req); 4529 } 4530 4531 static uint16_t nvme_io_mgmt_recv(NvmeCtrl *n, NvmeRequest *req) 4532 { 4533 NvmeCmd *cmd = &req->cmd; 4534 uint32_t cdw10 = le32_to_cpu(cmd->cdw10); 4535 uint32_t numd = le32_to_cpu(cmd->cdw11); 4536 uint8_t mo = (cdw10 & 0xff); 4537 size_t len = (numd + 1) << 2; 4538 4539 switch (mo) { 4540 case NVME_IOMR_MO_NOP: 4541 return 0; 4542 case NVME_IOMR_MO_RUH_STATUS: 4543 return nvme_io_mgmt_recv_ruhs(n, req, len); 4544 default: 4545 return NVME_INVALID_FIELD | NVME_DNR; 4546 }; 4547 } 4548 4549 static uint16_t nvme_io_mgmt_send_ruh_update(NvmeCtrl *n, NvmeRequest *req) 4550 { 4551 NvmeCmd *cmd = &req->cmd; 4552 NvmeNamespace *ns = req->ns; 4553 uint32_t cdw10 = le32_to_cpu(cmd->cdw10); 4554 uint16_t ret = NVME_SUCCESS; 4555 uint32_t npid = (cdw10 >> 16) + 1; 4556 unsigned int i = 0; 4557 g_autofree uint16_t *pids = NULL; 4558 uint32_t maxnpid; 4559 4560 if (!ns->endgrp || !ns->endgrp->fdp.enabled) { 4561 return NVME_FDP_DISABLED | NVME_DNR; 4562 } 4563 4564 maxnpid = n->subsys->endgrp.fdp.nrg * n->subsys->endgrp.fdp.nruh; 4565 4566 if (unlikely(npid >= MIN(NVME_FDP_MAXPIDS, maxnpid))) { 4567 return NVME_INVALID_FIELD | NVME_DNR; 4568 } 4569 4570 pids = g_new(uint16_t, npid); 4571 4572 ret = nvme_h2c(n, pids, npid * sizeof(uint16_t), req); 4573 if (ret) { 4574 return ret; 4575 } 4576 4577 for (; i < npid; i++) { 4578 if (!nvme_update_ruh(n, ns, pids[i])) { 4579 return NVME_INVALID_FIELD | NVME_DNR; 4580 } 4581 } 4582 4583 return ret; 4584 } 4585 4586 static uint16_t nvme_io_mgmt_send(NvmeCtrl *n, NvmeRequest *req) 4587 { 4588 NvmeCmd *cmd = &req->cmd; 4589 uint32_t cdw10 = le32_to_cpu(cmd->cdw10); 4590 uint8_t mo = (cdw10 & 0xff); 4591 4592 switch (mo) { 4593 case NVME_IOMS_MO_NOP: 4594 return 0; 4595 case NVME_IOMS_MO_RUH_UPDATE: 4596 return nvme_io_mgmt_send_ruh_update(n, req); 4597 default: 4598 return NVME_INVALID_FIELD | NVME_DNR; 4599 }; 4600 } 4601 4602 static uint16_t nvme_io_cmd(NvmeCtrl *n, NvmeRequest *req) 4603 { 4604 NvmeNamespace *ns; 4605 uint32_t nsid = le32_to_cpu(req->cmd.nsid); 4606 4607 trace_pci_nvme_io_cmd(nvme_cid(req), nsid, nvme_sqid(req), 4608 req->cmd.opcode, nvme_io_opc_str(req->cmd.opcode)); 4609 4610 /* 4611 * In the base NVM command set, Flush may apply to all namespaces 4612 * (indicated by NSID being set to FFFFFFFFh). But if that feature is used 4613 * along with TP 4056 (Namespace Types), it may be pretty screwed up. 4614 * 4615 * If NSID is indeed set to FFFFFFFFh, we simply cannot associate the 4616 * opcode with a specific command since we cannot determine a unique I/O 4617 * command set. Opcode 0h could have any other meaning than something 4618 * equivalent to flushing and say it DOES have completely different 4619 * semantics in some other command set - does an NSID of FFFFFFFFh then 4620 * mean "for all namespaces, apply whatever command set specific command 4621 * that uses the 0h opcode?" Or does it mean "for all namespaces, apply 4622 * whatever command that uses the 0h opcode if, and only if, it allows NSID 4623 * to be FFFFFFFFh"? 4624 * 4625 * Anyway (and luckily), for now, we do not care about this since the 4626 * device only supports namespace types that includes the NVM Flush command 4627 * (NVM and Zoned), so always do an NVM Flush. 4628 */ 4629 4630 if (req->cmd.opcode == NVME_CMD_FLUSH) { 4631 return nvme_flush(n, req); 4632 } 4633 4634 if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) { 4635 return NVME_INVALID_NSID | NVME_DNR; 4636 } 4637 4638 ns = nvme_ns(n, nsid); 4639 if (unlikely(!ns)) { 4640 return NVME_INVALID_FIELD | NVME_DNR; 4641 } 4642 4643 if (!(ns->iocs[req->cmd.opcode] & NVME_CMD_EFF_CSUPP)) { 4644 trace_pci_nvme_err_invalid_opc(req->cmd.opcode); 4645 return NVME_INVALID_OPCODE | NVME_DNR; 4646 } 4647 4648 if (ns->status) { 4649 return ns->status; 4650 } 4651 4652 if (NVME_CMD_FLAGS_FUSE(req->cmd.flags)) { 4653 return NVME_INVALID_FIELD; 4654 } 4655 4656 req->ns = ns; 4657 4658 switch (req->cmd.opcode) { 4659 case NVME_CMD_WRITE_ZEROES: 4660 return nvme_write_zeroes(n, req); 4661 case NVME_CMD_ZONE_APPEND: 4662 return nvme_zone_append(n, req); 4663 case NVME_CMD_WRITE: 4664 return nvme_write(n, req); 4665 case NVME_CMD_READ: 4666 return nvme_read(n, req); 4667 case NVME_CMD_COMPARE: 4668 return nvme_compare(n, req); 4669 case NVME_CMD_DSM: 4670 return nvme_dsm(n, req); 4671 case NVME_CMD_VERIFY: 4672 return nvme_verify(n, req); 4673 case NVME_CMD_COPY: 4674 return nvme_copy(n, req); 4675 case NVME_CMD_ZONE_MGMT_SEND: 4676 return nvme_zone_mgmt_send(n, req); 4677 case NVME_CMD_ZONE_MGMT_RECV: 4678 return nvme_zone_mgmt_recv(n, req); 4679 case NVME_CMD_IO_MGMT_RECV: 4680 return nvme_io_mgmt_recv(n, req); 4681 case NVME_CMD_IO_MGMT_SEND: 4682 return nvme_io_mgmt_send(n, req); 4683 default: 4684 g_assert_not_reached(); 4685 } 4686 4687 return NVME_INVALID_OPCODE | NVME_DNR; 4688 } 4689 4690 static void nvme_cq_notifier(EventNotifier *e) 4691 { 4692 NvmeCQueue *cq = container_of(e, NvmeCQueue, notifier); 4693 NvmeCtrl *n = cq->ctrl; 4694 4695 if (!event_notifier_test_and_clear(e)) { 4696 return; 4697 } 4698 4699 nvme_update_cq_head(cq); 4700 4701 if (cq->tail == cq->head) { 4702 if (cq->irq_enabled) { 4703 n->cq_pending--; 4704 } 4705 4706 nvme_irq_deassert(n, cq); 4707 } 4708 4709 qemu_bh_schedule(cq->bh); 4710 } 4711 4712 static int nvme_init_cq_ioeventfd(NvmeCQueue *cq) 4713 { 4714 NvmeCtrl *n = cq->ctrl; 4715 uint16_t offset = (cq->cqid << 3) + (1 << 2); 4716 int ret; 4717 4718 ret = event_notifier_init(&cq->notifier, 0); 4719 if (ret < 0) { 4720 return ret; 4721 } 4722 4723 event_notifier_set_handler(&cq->notifier, nvme_cq_notifier); 4724 memory_region_add_eventfd(&n->iomem, 4725 0x1000 + offset, 4, false, 0, &cq->notifier); 4726 4727 return 0; 4728 } 4729 4730 static void nvme_sq_notifier(EventNotifier *e) 4731 { 4732 NvmeSQueue *sq = container_of(e, NvmeSQueue, notifier); 4733 4734 if (!event_notifier_test_and_clear(e)) { 4735 return; 4736 } 4737 4738 nvme_process_sq(sq); 4739 } 4740 4741 static int nvme_init_sq_ioeventfd(NvmeSQueue *sq) 4742 { 4743 NvmeCtrl *n = sq->ctrl; 4744 uint16_t offset = sq->sqid << 3; 4745 int ret; 4746 4747 ret = event_notifier_init(&sq->notifier, 0); 4748 if (ret < 0) { 4749 return ret; 4750 } 4751 4752 event_notifier_set_handler(&sq->notifier, nvme_sq_notifier); 4753 memory_region_add_eventfd(&n->iomem, 4754 0x1000 + offset, 4, false, 0, &sq->notifier); 4755 4756 return 0; 4757 } 4758 4759 static void nvme_free_sq(NvmeSQueue *sq, NvmeCtrl *n) 4760 { 4761 uint16_t offset = sq->sqid << 3; 4762 4763 n->sq[sq->sqid] = NULL; 4764 qemu_bh_delete(sq->bh); 4765 if (sq->ioeventfd_enabled) { 4766 memory_region_del_eventfd(&n->iomem, 4767 0x1000 + offset, 4, false, 0, &sq->notifier); 4768 event_notifier_set_handler(&sq->notifier, NULL); 4769 event_notifier_cleanup(&sq->notifier); 4770 } 4771 g_free(sq->io_req); 4772 if (sq->sqid) { 4773 g_free(sq); 4774 } 4775 } 4776 4777 static uint16_t nvme_del_sq(NvmeCtrl *n, NvmeRequest *req) 4778 { 4779 NvmeDeleteQ *c = (NvmeDeleteQ *)&req->cmd; 4780 NvmeRequest *r, *next; 4781 NvmeSQueue *sq; 4782 NvmeCQueue *cq; 4783 uint16_t qid = le16_to_cpu(c->qid); 4784 4785 if (unlikely(!qid || nvme_check_sqid(n, qid))) { 4786 trace_pci_nvme_err_invalid_del_sq(qid); 4787 return NVME_INVALID_QID | NVME_DNR; 4788 } 4789 4790 trace_pci_nvme_del_sq(qid); 4791 4792 sq = n->sq[qid]; 4793 while (!QTAILQ_EMPTY(&sq->out_req_list)) { 4794 r = QTAILQ_FIRST(&sq->out_req_list); 4795 assert(r->aiocb); 4796 blk_aio_cancel(r->aiocb); 4797 } 4798 4799 assert(QTAILQ_EMPTY(&sq->out_req_list)); 4800 4801 if (!nvme_check_cqid(n, sq->cqid)) { 4802 cq = n->cq[sq->cqid]; 4803 QTAILQ_REMOVE(&cq->sq_list, sq, entry); 4804 4805 nvme_post_cqes(cq); 4806 QTAILQ_FOREACH_SAFE(r, &cq->req_list, entry, next) { 4807 if (r->sq == sq) { 4808 QTAILQ_REMOVE(&cq->req_list, r, entry); 4809 QTAILQ_INSERT_TAIL(&sq->req_list, r, entry); 4810 } 4811 } 4812 } 4813 4814 nvme_free_sq(sq, n); 4815 return NVME_SUCCESS; 4816 } 4817 4818 static void nvme_init_sq(NvmeSQueue *sq, NvmeCtrl *n, uint64_t dma_addr, 4819 uint16_t sqid, uint16_t cqid, uint16_t size) 4820 { 4821 int i; 4822 NvmeCQueue *cq; 4823 4824 sq->ctrl = n; 4825 sq->dma_addr = dma_addr; 4826 sq->sqid = sqid; 4827 sq->size = size; 4828 sq->cqid = cqid; 4829 sq->head = sq->tail = 0; 4830 sq->io_req = g_new0(NvmeRequest, sq->size); 4831 4832 QTAILQ_INIT(&sq->req_list); 4833 QTAILQ_INIT(&sq->out_req_list); 4834 for (i = 0; i < sq->size; i++) { 4835 sq->io_req[i].sq = sq; 4836 QTAILQ_INSERT_TAIL(&(sq->req_list), &sq->io_req[i], entry); 4837 } 4838 4839 sq->bh = qemu_bh_new_guarded(nvme_process_sq, sq, 4840 &DEVICE(sq->ctrl)->mem_reentrancy_guard); 4841 4842 if (n->dbbuf_enabled) { 4843 sq->db_addr = n->dbbuf_dbs + (sqid << 3); 4844 sq->ei_addr = n->dbbuf_eis + (sqid << 3); 4845 4846 if (n->params.ioeventfd && sq->sqid != 0) { 4847 if (!nvme_init_sq_ioeventfd(sq)) { 4848 sq->ioeventfd_enabled = true; 4849 } 4850 } 4851 } 4852 4853 assert(n->cq[cqid]); 4854 cq = n->cq[cqid]; 4855 QTAILQ_INSERT_TAIL(&(cq->sq_list), sq, entry); 4856 n->sq[sqid] = sq; 4857 } 4858 4859 static uint16_t nvme_create_sq(NvmeCtrl *n, NvmeRequest *req) 4860 { 4861 NvmeSQueue *sq; 4862 NvmeCreateSq *c = (NvmeCreateSq *)&req->cmd; 4863 4864 uint16_t cqid = le16_to_cpu(c->cqid); 4865 uint16_t sqid = le16_to_cpu(c->sqid); 4866 uint16_t qsize = le16_to_cpu(c->qsize); 4867 uint16_t qflags = le16_to_cpu(c->sq_flags); 4868 uint64_t prp1 = le64_to_cpu(c->prp1); 4869 4870 trace_pci_nvme_create_sq(prp1, sqid, cqid, qsize, qflags); 4871 4872 if (unlikely(!cqid || nvme_check_cqid(n, cqid))) { 4873 trace_pci_nvme_err_invalid_create_sq_cqid(cqid); 4874 return NVME_INVALID_CQID | NVME_DNR; 4875 } 4876 if (unlikely(!sqid || sqid > n->conf_ioqpairs || n->sq[sqid] != NULL)) { 4877 trace_pci_nvme_err_invalid_create_sq_sqid(sqid); 4878 return NVME_INVALID_QID | NVME_DNR; 4879 } 4880 if (unlikely(!qsize || qsize > NVME_CAP_MQES(ldq_le_p(&n->bar.cap)))) { 4881 trace_pci_nvme_err_invalid_create_sq_size(qsize); 4882 return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR; 4883 } 4884 if (unlikely(prp1 & (n->page_size - 1))) { 4885 trace_pci_nvme_err_invalid_create_sq_addr(prp1); 4886 return NVME_INVALID_PRP_OFFSET | NVME_DNR; 4887 } 4888 if (unlikely(!(NVME_SQ_FLAGS_PC(qflags)))) { 4889 trace_pci_nvme_err_invalid_create_sq_qflags(NVME_SQ_FLAGS_PC(qflags)); 4890 return NVME_INVALID_FIELD | NVME_DNR; 4891 } 4892 sq = g_malloc0(sizeof(*sq)); 4893 nvme_init_sq(sq, n, prp1, sqid, cqid, qsize + 1); 4894 return NVME_SUCCESS; 4895 } 4896 4897 struct nvme_stats { 4898 uint64_t units_read; 4899 uint64_t units_written; 4900 uint64_t read_commands; 4901 uint64_t write_commands; 4902 }; 4903 4904 static void nvme_set_blk_stats(NvmeNamespace *ns, struct nvme_stats *stats) 4905 { 4906 BlockAcctStats *s = blk_get_stats(ns->blkconf.blk); 4907 4908 stats->units_read += s->nr_bytes[BLOCK_ACCT_READ]; 4909 stats->units_written += s->nr_bytes[BLOCK_ACCT_WRITE]; 4910 stats->read_commands += s->nr_ops[BLOCK_ACCT_READ]; 4911 stats->write_commands += s->nr_ops[BLOCK_ACCT_WRITE]; 4912 } 4913 4914 static uint16_t nvme_smart_info(NvmeCtrl *n, uint8_t rae, uint32_t buf_len, 4915 uint64_t off, NvmeRequest *req) 4916 { 4917 uint32_t nsid = le32_to_cpu(req->cmd.nsid); 4918 struct nvme_stats stats = { 0 }; 4919 NvmeSmartLog smart = { 0 }; 4920 uint32_t trans_len; 4921 NvmeNamespace *ns; 4922 time_t current_ms; 4923 uint64_t u_read, u_written; 4924 4925 if (off >= sizeof(smart)) { 4926 return NVME_INVALID_FIELD | NVME_DNR; 4927 } 4928 4929 if (nsid != 0xffffffff) { 4930 ns = nvme_ns(n, nsid); 4931 if (!ns) { 4932 return NVME_INVALID_NSID | NVME_DNR; 4933 } 4934 nvme_set_blk_stats(ns, &stats); 4935 } else { 4936 int i; 4937 4938 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { 4939 ns = nvme_ns(n, i); 4940 if (!ns) { 4941 continue; 4942 } 4943 nvme_set_blk_stats(ns, &stats); 4944 } 4945 } 4946 4947 trans_len = MIN(sizeof(smart) - off, buf_len); 4948 smart.critical_warning = n->smart_critical_warning; 4949 4950 u_read = DIV_ROUND_UP(stats.units_read >> BDRV_SECTOR_BITS, 1000); 4951 u_written = DIV_ROUND_UP(stats.units_written >> BDRV_SECTOR_BITS, 1000); 4952 4953 smart.data_units_read[0] = cpu_to_le64(u_read); 4954 smart.data_units_written[0] = cpu_to_le64(u_written); 4955 smart.host_read_commands[0] = cpu_to_le64(stats.read_commands); 4956 smart.host_write_commands[0] = cpu_to_le64(stats.write_commands); 4957 4958 smart.temperature = cpu_to_le16(n->temperature); 4959 4960 if ((n->temperature >= n->features.temp_thresh_hi) || 4961 (n->temperature <= n->features.temp_thresh_low)) { 4962 smart.critical_warning |= NVME_SMART_TEMPERATURE; 4963 } 4964 4965 current_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL); 4966 smart.power_on_hours[0] = 4967 cpu_to_le64((((current_ms - n->starttime_ms) / 1000) / 60) / 60); 4968 4969 if (!rae) { 4970 nvme_clear_events(n, NVME_AER_TYPE_SMART); 4971 } 4972 4973 return nvme_c2h(n, (uint8_t *) &smart + off, trans_len, req); 4974 } 4975 4976 static uint16_t nvme_endgrp_info(NvmeCtrl *n, uint8_t rae, uint32_t buf_len, 4977 uint64_t off, NvmeRequest *req) 4978 { 4979 uint32_t dw11 = le32_to_cpu(req->cmd.cdw11); 4980 uint16_t endgrpid = (dw11 >> 16) & 0xffff; 4981 struct nvme_stats stats = {}; 4982 NvmeEndGrpLog info = {}; 4983 int i; 4984 4985 if (!n->subsys || endgrpid != 0x1) { 4986 return NVME_INVALID_FIELD | NVME_DNR; 4987 } 4988 4989 if (off >= sizeof(info)) { 4990 return NVME_INVALID_FIELD | NVME_DNR; 4991 } 4992 4993 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { 4994 NvmeNamespace *ns = nvme_subsys_ns(n->subsys, i); 4995 if (!ns) { 4996 continue; 4997 } 4998 4999 nvme_set_blk_stats(ns, &stats); 5000 } 5001 5002 info.data_units_read[0] = 5003 cpu_to_le64(DIV_ROUND_UP(stats.units_read / 1000000000, 1000000000)); 5004 info.data_units_written[0] = 5005 cpu_to_le64(DIV_ROUND_UP(stats.units_written / 1000000000, 1000000000)); 5006 info.media_units_written[0] = 5007 cpu_to_le64(DIV_ROUND_UP(stats.units_written / 1000000000, 1000000000)); 5008 5009 info.host_read_commands[0] = cpu_to_le64(stats.read_commands); 5010 info.host_write_commands[0] = cpu_to_le64(stats.write_commands); 5011 5012 buf_len = MIN(sizeof(info) - off, buf_len); 5013 5014 return nvme_c2h(n, (uint8_t *)&info + off, buf_len, req); 5015 } 5016 5017 5018 static uint16_t nvme_fw_log_info(NvmeCtrl *n, uint32_t buf_len, uint64_t off, 5019 NvmeRequest *req) 5020 { 5021 uint32_t trans_len; 5022 NvmeFwSlotInfoLog fw_log = { 5023 .afi = 0x1, 5024 }; 5025 5026 if (off >= sizeof(fw_log)) { 5027 return NVME_INVALID_FIELD | NVME_DNR; 5028 } 5029 5030 strpadcpy((char *)&fw_log.frs1, sizeof(fw_log.frs1), "1.0", ' '); 5031 trans_len = MIN(sizeof(fw_log) - off, buf_len); 5032 5033 return nvme_c2h(n, (uint8_t *) &fw_log + off, trans_len, req); 5034 } 5035 5036 static uint16_t nvme_error_info(NvmeCtrl *n, uint8_t rae, uint32_t buf_len, 5037 uint64_t off, NvmeRequest *req) 5038 { 5039 uint32_t trans_len; 5040 NvmeErrorLog errlog; 5041 5042 if (off >= sizeof(errlog)) { 5043 return NVME_INVALID_FIELD | NVME_DNR; 5044 } 5045 5046 if (!rae) { 5047 nvme_clear_events(n, NVME_AER_TYPE_ERROR); 5048 } 5049 5050 memset(&errlog, 0x0, sizeof(errlog)); 5051 trans_len = MIN(sizeof(errlog) - off, buf_len); 5052 5053 return nvme_c2h(n, (uint8_t *)&errlog, trans_len, req); 5054 } 5055 5056 static uint16_t nvme_changed_nslist(NvmeCtrl *n, uint8_t rae, uint32_t buf_len, 5057 uint64_t off, NvmeRequest *req) 5058 { 5059 uint32_t nslist[1024]; 5060 uint32_t trans_len; 5061 int i = 0; 5062 uint32_t nsid; 5063 5064 if (off >= sizeof(nslist)) { 5065 trace_pci_nvme_err_invalid_log_page_offset(off, sizeof(nslist)); 5066 return NVME_INVALID_FIELD | NVME_DNR; 5067 } 5068 5069 memset(nslist, 0x0, sizeof(nslist)); 5070 trans_len = MIN(sizeof(nslist) - off, buf_len); 5071 5072 while ((nsid = find_first_bit(n->changed_nsids, NVME_CHANGED_NSID_SIZE)) != 5073 NVME_CHANGED_NSID_SIZE) { 5074 /* 5075 * If more than 1024 namespaces, the first entry in the log page should 5076 * be set to FFFFFFFFh and the others to 0 as spec. 5077 */ 5078 if (i == ARRAY_SIZE(nslist)) { 5079 memset(nslist, 0x0, sizeof(nslist)); 5080 nslist[0] = 0xffffffff; 5081 break; 5082 } 5083 5084 nslist[i++] = nsid; 5085 clear_bit(nsid, n->changed_nsids); 5086 } 5087 5088 /* 5089 * Remove all the remaining list entries in case returns directly due to 5090 * more than 1024 namespaces. 5091 */ 5092 if (nslist[0] == 0xffffffff) { 5093 bitmap_zero(n->changed_nsids, NVME_CHANGED_NSID_SIZE); 5094 } 5095 5096 if (!rae) { 5097 nvme_clear_events(n, NVME_AER_TYPE_NOTICE); 5098 } 5099 5100 return nvme_c2h(n, ((uint8_t *)nslist) + off, trans_len, req); 5101 } 5102 5103 static uint16_t nvme_cmd_effects(NvmeCtrl *n, uint8_t csi, uint32_t buf_len, 5104 uint64_t off, NvmeRequest *req) 5105 { 5106 NvmeEffectsLog log = {}; 5107 const uint32_t *src_iocs = NULL; 5108 uint32_t trans_len; 5109 5110 if (off >= sizeof(log)) { 5111 trace_pci_nvme_err_invalid_log_page_offset(off, sizeof(log)); 5112 return NVME_INVALID_FIELD | NVME_DNR; 5113 } 5114 5115 switch (NVME_CC_CSS(ldl_le_p(&n->bar.cc))) { 5116 case NVME_CC_CSS_NVM: 5117 src_iocs = nvme_cse_iocs_nvm; 5118 /* fall through */ 5119 case NVME_CC_CSS_ADMIN_ONLY: 5120 break; 5121 case NVME_CC_CSS_CSI: 5122 switch (csi) { 5123 case NVME_CSI_NVM: 5124 src_iocs = nvme_cse_iocs_nvm; 5125 break; 5126 case NVME_CSI_ZONED: 5127 src_iocs = nvme_cse_iocs_zoned; 5128 break; 5129 } 5130 } 5131 5132 memcpy(log.acs, nvme_cse_acs, sizeof(nvme_cse_acs)); 5133 5134 if (src_iocs) { 5135 memcpy(log.iocs, src_iocs, sizeof(log.iocs)); 5136 } 5137 5138 trans_len = MIN(sizeof(log) - off, buf_len); 5139 5140 return nvme_c2h(n, ((uint8_t *)&log) + off, trans_len, req); 5141 } 5142 5143 static size_t sizeof_fdp_conf_descr(size_t nruh, size_t vss) 5144 { 5145 size_t entry_siz = sizeof(NvmeFdpDescrHdr) + nruh * sizeof(NvmeRuhDescr) 5146 + vss; 5147 return ROUND_UP(entry_siz, 8); 5148 } 5149 5150 static uint16_t nvme_fdp_confs(NvmeCtrl *n, uint32_t endgrpid, uint32_t buf_len, 5151 uint64_t off, NvmeRequest *req) 5152 { 5153 uint32_t log_size, trans_len; 5154 g_autofree uint8_t *buf = NULL; 5155 NvmeFdpDescrHdr *hdr; 5156 NvmeRuhDescr *ruhd; 5157 NvmeEnduranceGroup *endgrp; 5158 NvmeFdpConfsHdr *log; 5159 size_t nruh, fdp_descr_size; 5160 int i; 5161 5162 if (endgrpid != 1 || !n->subsys) { 5163 return NVME_INVALID_FIELD | NVME_DNR; 5164 } 5165 5166 endgrp = &n->subsys->endgrp; 5167 5168 if (endgrp->fdp.enabled) { 5169 nruh = endgrp->fdp.nruh; 5170 } else { 5171 nruh = 1; 5172 } 5173 5174 fdp_descr_size = sizeof_fdp_conf_descr(nruh, FDPVSS); 5175 log_size = sizeof(NvmeFdpConfsHdr) + fdp_descr_size; 5176 5177 if (off >= log_size) { 5178 return NVME_INVALID_FIELD | NVME_DNR; 5179 } 5180 5181 trans_len = MIN(log_size - off, buf_len); 5182 5183 buf = g_malloc0(log_size); 5184 log = (NvmeFdpConfsHdr *)buf; 5185 hdr = (NvmeFdpDescrHdr *)(log + 1); 5186 ruhd = (NvmeRuhDescr *)(buf + sizeof(*log) + sizeof(*hdr)); 5187 5188 log->num_confs = cpu_to_le16(0); 5189 log->size = cpu_to_le32(log_size); 5190 5191 hdr->descr_size = cpu_to_le16(fdp_descr_size); 5192 if (endgrp->fdp.enabled) { 5193 hdr->fdpa = FIELD_DP8(hdr->fdpa, FDPA, VALID, 1); 5194 hdr->fdpa = FIELD_DP8(hdr->fdpa, FDPA, RGIF, endgrp->fdp.rgif); 5195 hdr->nrg = cpu_to_le16(endgrp->fdp.nrg); 5196 hdr->nruh = cpu_to_le16(endgrp->fdp.nruh); 5197 hdr->maxpids = cpu_to_le16(NVME_FDP_MAXPIDS - 1); 5198 hdr->nnss = cpu_to_le32(NVME_MAX_NAMESPACES); 5199 hdr->runs = cpu_to_le64(endgrp->fdp.runs); 5200 5201 for (i = 0; i < nruh; i++) { 5202 ruhd->ruht = NVME_RUHT_INITIALLY_ISOLATED; 5203 ruhd++; 5204 } 5205 } else { 5206 /* 1 bit for RUH in PIF -> 2 RUHs max. */ 5207 hdr->nrg = cpu_to_le16(1); 5208 hdr->nruh = cpu_to_le16(1); 5209 hdr->maxpids = cpu_to_le16(NVME_FDP_MAXPIDS - 1); 5210 hdr->nnss = cpu_to_le32(1); 5211 hdr->runs = cpu_to_le64(96 * MiB); 5212 5213 ruhd->ruht = NVME_RUHT_INITIALLY_ISOLATED; 5214 } 5215 5216 return nvme_c2h(n, (uint8_t *)buf + off, trans_len, req); 5217 } 5218 5219 static uint16_t nvme_fdp_ruh_usage(NvmeCtrl *n, uint32_t endgrpid, 5220 uint32_t dw10, uint32_t dw12, 5221 uint32_t buf_len, uint64_t off, 5222 NvmeRequest *req) 5223 { 5224 NvmeRuHandle *ruh; 5225 NvmeRuhuLog *hdr; 5226 NvmeRuhuDescr *ruhud; 5227 NvmeEnduranceGroup *endgrp; 5228 g_autofree uint8_t *buf = NULL; 5229 uint32_t log_size, trans_len; 5230 uint16_t i; 5231 5232 if (endgrpid != 1 || !n->subsys) { 5233 return NVME_INVALID_FIELD | NVME_DNR; 5234 } 5235 5236 endgrp = &n->subsys->endgrp; 5237 5238 if (!endgrp->fdp.enabled) { 5239 return NVME_FDP_DISABLED | NVME_DNR; 5240 } 5241 5242 log_size = sizeof(NvmeRuhuLog) + endgrp->fdp.nruh * sizeof(NvmeRuhuDescr); 5243 5244 if (off >= log_size) { 5245 return NVME_INVALID_FIELD | NVME_DNR; 5246 } 5247 5248 trans_len = MIN(log_size - off, buf_len); 5249 5250 buf = g_malloc0(log_size); 5251 hdr = (NvmeRuhuLog *)buf; 5252 ruhud = (NvmeRuhuDescr *)(hdr + 1); 5253 5254 ruh = endgrp->fdp.ruhs; 5255 hdr->nruh = cpu_to_le16(endgrp->fdp.nruh); 5256 5257 for (i = 0; i < endgrp->fdp.nruh; i++, ruhud++, ruh++) { 5258 ruhud->ruha = ruh->ruha; 5259 } 5260 5261 return nvme_c2h(n, (uint8_t *)buf + off, trans_len, req); 5262 } 5263 5264 static uint16_t nvme_fdp_stats(NvmeCtrl *n, uint32_t endgrpid, uint32_t buf_len, 5265 uint64_t off, NvmeRequest *req) 5266 { 5267 NvmeEnduranceGroup *endgrp; 5268 NvmeFdpStatsLog log = {}; 5269 uint32_t trans_len; 5270 5271 if (off >= sizeof(NvmeFdpStatsLog)) { 5272 return NVME_INVALID_FIELD | NVME_DNR; 5273 } 5274 5275 if (endgrpid != 1 || !n->subsys) { 5276 return NVME_INVALID_FIELD | NVME_DNR; 5277 } 5278 5279 if (!n->subsys->endgrp.fdp.enabled) { 5280 return NVME_FDP_DISABLED | NVME_DNR; 5281 } 5282 5283 endgrp = &n->subsys->endgrp; 5284 5285 trans_len = MIN(sizeof(log) - off, buf_len); 5286 5287 /* spec value is 128 bit, we only use 64 bit */ 5288 log.hbmw[0] = cpu_to_le64(endgrp->fdp.hbmw); 5289 log.mbmw[0] = cpu_to_le64(endgrp->fdp.mbmw); 5290 log.mbe[0] = cpu_to_le64(endgrp->fdp.mbe); 5291 5292 return nvme_c2h(n, (uint8_t *)&log + off, trans_len, req); 5293 } 5294 5295 static uint16_t nvme_fdp_events(NvmeCtrl *n, uint32_t endgrpid, 5296 uint32_t buf_len, uint64_t off, 5297 NvmeRequest *req) 5298 { 5299 NvmeEnduranceGroup *endgrp; 5300 NvmeCmd *cmd = &req->cmd; 5301 bool host_events = (cmd->cdw10 >> 8) & 0x1; 5302 uint32_t log_size, trans_len; 5303 NvmeFdpEventBuffer *ebuf; 5304 g_autofree NvmeFdpEventsLog *elog = NULL; 5305 NvmeFdpEvent *event; 5306 5307 if (endgrpid != 1 || !n->subsys) { 5308 return NVME_INVALID_FIELD | NVME_DNR; 5309 } 5310 5311 endgrp = &n->subsys->endgrp; 5312 5313 if (!endgrp->fdp.enabled) { 5314 return NVME_FDP_DISABLED | NVME_DNR; 5315 } 5316 5317 if (host_events) { 5318 ebuf = &endgrp->fdp.host_events; 5319 } else { 5320 ebuf = &endgrp->fdp.ctrl_events; 5321 } 5322 5323 log_size = sizeof(NvmeFdpEventsLog) + ebuf->nelems * sizeof(NvmeFdpEvent); 5324 5325 if (off >= log_size) { 5326 return NVME_INVALID_FIELD | NVME_DNR; 5327 } 5328 5329 trans_len = MIN(log_size - off, buf_len); 5330 elog = g_malloc0(log_size); 5331 elog->num_events = cpu_to_le32(ebuf->nelems); 5332 event = (NvmeFdpEvent *)(elog + 1); 5333 5334 if (ebuf->nelems && ebuf->start == ebuf->next) { 5335 unsigned int nelems = (NVME_FDP_MAX_EVENTS - ebuf->start); 5336 /* wrap over, copy [start;NVME_FDP_MAX_EVENTS[ and [0; next[ */ 5337 memcpy(event, &ebuf->events[ebuf->start], 5338 sizeof(NvmeFdpEvent) * nelems); 5339 memcpy(event + nelems, ebuf->events, 5340 sizeof(NvmeFdpEvent) * ebuf->next); 5341 } else if (ebuf->start < ebuf->next) { 5342 memcpy(event, &ebuf->events[ebuf->start], 5343 sizeof(NvmeFdpEvent) * (ebuf->next - ebuf->start)); 5344 } 5345 5346 return nvme_c2h(n, (uint8_t *)elog + off, trans_len, req); 5347 } 5348 5349 static uint16_t nvme_get_log(NvmeCtrl *n, NvmeRequest *req) 5350 { 5351 NvmeCmd *cmd = &req->cmd; 5352 5353 uint32_t dw10 = le32_to_cpu(cmd->cdw10); 5354 uint32_t dw11 = le32_to_cpu(cmd->cdw11); 5355 uint32_t dw12 = le32_to_cpu(cmd->cdw12); 5356 uint32_t dw13 = le32_to_cpu(cmd->cdw13); 5357 uint8_t lid = dw10 & 0xff; 5358 uint8_t lsp = (dw10 >> 8) & 0xf; 5359 uint8_t rae = (dw10 >> 15) & 0x1; 5360 uint8_t csi = le32_to_cpu(cmd->cdw14) >> 24; 5361 uint32_t numdl, numdu, lspi; 5362 uint64_t off, lpol, lpou; 5363 size_t len; 5364 uint16_t status; 5365 5366 numdl = (dw10 >> 16); 5367 numdu = (dw11 & 0xffff); 5368 lspi = (dw11 >> 16); 5369 lpol = dw12; 5370 lpou = dw13; 5371 5372 len = (((numdu << 16) | numdl) + 1) << 2; 5373 off = (lpou << 32ULL) | lpol; 5374 5375 if (off & 0x3) { 5376 return NVME_INVALID_FIELD | NVME_DNR; 5377 } 5378 5379 trace_pci_nvme_get_log(nvme_cid(req), lid, lsp, rae, len, off); 5380 5381 status = nvme_check_mdts(n, len); 5382 if (status) { 5383 return status; 5384 } 5385 5386 switch (lid) { 5387 case NVME_LOG_ERROR_INFO: 5388 return nvme_error_info(n, rae, len, off, req); 5389 case NVME_LOG_SMART_INFO: 5390 return nvme_smart_info(n, rae, len, off, req); 5391 case NVME_LOG_FW_SLOT_INFO: 5392 return nvme_fw_log_info(n, len, off, req); 5393 case NVME_LOG_CHANGED_NSLIST: 5394 return nvme_changed_nslist(n, rae, len, off, req); 5395 case NVME_LOG_CMD_EFFECTS: 5396 return nvme_cmd_effects(n, csi, len, off, req); 5397 case NVME_LOG_ENDGRP: 5398 return nvme_endgrp_info(n, rae, len, off, req); 5399 case NVME_LOG_FDP_CONFS: 5400 return nvme_fdp_confs(n, lspi, len, off, req); 5401 case NVME_LOG_FDP_RUH_USAGE: 5402 return nvme_fdp_ruh_usage(n, lspi, dw10, dw12, len, off, req); 5403 case NVME_LOG_FDP_STATS: 5404 return nvme_fdp_stats(n, lspi, len, off, req); 5405 case NVME_LOG_FDP_EVENTS: 5406 return nvme_fdp_events(n, lspi, len, off, req); 5407 default: 5408 trace_pci_nvme_err_invalid_log_page(nvme_cid(req), lid); 5409 return NVME_INVALID_FIELD | NVME_DNR; 5410 } 5411 } 5412 5413 static void nvme_free_cq(NvmeCQueue *cq, NvmeCtrl *n) 5414 { 5415 PCIDevice *pci = PCI_DEVICE(n); 5416 uint16_t offset = (cq->cqid << 3) + (1 << 2); 5417 5418 n->cq[cq->cqid] = NULL; 5419 qemu_bh_delete(cq->bh); 5420 if (cq->ioeventfd_enabled) { 5421 memory_region_del_eventfd(&n->iomem, 5422 0x1000 + offset, 4, false, 0, &cq->notifier); 5423 event_notifier_set_handler(&cq->notifier, NULL); 5424 event_notifier_cleanup(&cq->notifier); 5425 } 5426 if (msix_enabled(pci)) { 5427 msix_vector_unuse(pci, cq->vector); 5428 } 5429 if (cq->cqid) { 5430 g_free(cq); 5431 } 5432 } 5433 5434 static uint16_t nvme_del_cq(NvmeCtrl *n, NvmeRequest *req) 5435 { 5436 NvmeDeleteQ *c = (NvmeDeleteQ *)&req->cmd; 5437 NvmeCQueue *cq; 5438 uint16_t qid = le16_to_cpu(c->qid); 5439 5440 if (unlikely(!qid || nvme_check_cqid(n, qid))) { 5441 trace_pci_nvme_err_invalid_del_cq_cqid(qid); 5442 return NVME_INVALID_CQID | NVME_DNR; 5443 } 5444 5445 cq = n->cq[qid]; 5446 if (unlikely(!QTAILQ_EMPTY(&cq->sq_list))) { 5447 trace_pci_nvme_err_invalid_del_cq_notempty(qid); 5448 return NVME_INVALID_QUEUE_DEL; 5449 } 5450 5451 if (cq->irq_enabled && cq->tail != cq->head) { 5452 n->cq_pending--; 5453 } 5454 5455 nvme_irq_deassert(n, cq); 5456 trace_pci_nvme_del_cq(qid); 5457 nvme_free_cq(cq, n); 5458 return NVME_SUCCESS; 5459 } 5460 5461 static void nvme_init_cq(NvmeCQueue *cq, NvmeCtrl *n, uint64_t dma_addr, 5462 uint16_t cqid, uint16_t vector, uint16_t size, 5463 uint16_t irq_enabled) 5464 { 5465 PCIDevice *pci = PCI_DEVICE(n); 5466 5467 if (msix_enabled(pci)) { 5468 msix_vector_use(pci, vector); 5469 } 5470 cq->ctrl = n; 5471 cq->cqid = cqid; 5472 cq->size = size; 5473 cq->dma_addr = dma_addr; 5474 cq->phase = 1; 5475 cq->irq_enabled = irq_enabled; 5476 cq->vector = vector; 5477 cq->head = cq->tail = 0; 5478 QTAILQ_INIT(&cq->req_list); 5479 QTAILQ_INIT(&cq->sq_list); 5480 if (n->dbbuf_enabled) { 5481 cq->db_addr = n->dbbuf_dbs + (cqid << 3) + (1 << 2); 5482 cq->ei_addr = n->dbbuf_eis + (cqid << 3) + (1 << 2); 5483 5484 if (n->params.ioeventfd && cqid != 0) { 5485 if (!nvme_init_cq_ioeventfd(cq)) { 5486 cq->ioeventfd_enabled = true; 5487 } 5488 } 5489 } 5490 n->cq[cqid] = cq; 5491 cq->bh = qemu_bh_new_guarded(nvme_post_cqes, cq, 5492 &DEVICE(cq->ctrl)->mem_reentrancy_guard); 5493 } 5494 5495 static uint16_t nvme_create_cq(NvmeCtrl *n, NvmeRequest *req) 5496 { 5497 NvmeCQueue *cq; 5498 NvmeCreateCq *c = (NvmeCreateCq *)&req->cmd; 5499 uint16_t cqid = le16_to_cpu(c->cqid); 5500 uint16_t vector = le16_to_cpu(c->irq_vector); 5501 uint16_t qsize = le16_to_cpu(c->qsize); 5502 uint16_t qflags = le16_to_cpu(c->cq_flags); 5503 uint64_t prp1 = le64_to_cpu(c->prp1); 5504 uint32_t cc = ldq_le_p(&n->bar.cc); 5505 uint8_t iocqes = NVME_CC_IOCQES(cc); 5506 uint8_t iosqes = NVME_CC_IOSQES(cc); 5507 5508 trace_pci_nvme_create_cq(prp1, cqid, vector, qsize, qflags, 5509 NVME_CQ_FLAGS_IEN(qflags) != 0); 5510 5511 if (iosqes != NVME_SQES || iocqes != NVME_CQES) { 5512 trace_pci_nvme_err_invalid_create_cq_entry_size(iosqes, iocqes); 5513 return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR; 5514 } 5515 5516 if (unlikely(!cqid || cqid > n->conf_ioqpairs || n->cq[cqid] != NULL)) { 5517 trace_pci_nvme_err_invalid_create_cq_cqid(cqid); 5518 return NVME_INVALID_QID | NVME_DNR; 5519 } 5520 if (unlikely(!qsize || qsize > NVME_CAP_MQES(ldq_le_p(&n->bar.cap)))) { 5521 trace_pci_nvme_err_invalid_create_cq_size(qsize); 5522 return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR; 5523 } 5524 if (unlikely(prp1 & (n->page_size - 1))) { 5525 trace_pci_nvme_err_invalid_create_cq_addr(prp1); 5526 return NVME_INVALID_PRP_OFFSET | NVME_DNR; 5527 } 5528 if (unlikely(!msix_enabled(PCI_DEVICE(n)) && vector)) { 5529 trace_pci_nvme_err_invalid_create_cq_vector(vector); 5530 return NVME_INVALID_IRQ_VECTOR | NVME_DNR; 5531 } 5532 if (unlikely(vector >= n->conf_msix_qsize)) { 5533 trace_pci_nvme_err_invalid_create_cq_vector(vector); 5534 return NVME_INVALID_IRQ_VECTOR | NVME_DNR; 5535 } 5536 if (unlikely(!(NVME_CQ_FLAGS_PC(qflags)))) { 5537 trace_pci_nvme_err_invalid_create_cq_qflags(NVME_CQ_FLAGS_PC(qflags)); 5538 return NVME_INVALID_FIELD | NVME_DNR; 5539 } 5540 5541 cq = g_malloc0(sizeof(*cq)); 5542 nvme_init_cq(cq, n, prp1, cqid, vector, qsize + 1, 5543 NVME_CQ_FLAGS_IEN(qflags)); 5544 5545 /* 5546 * It is only required to set qs_created when creating a completion queue; 5547 * creating a submission queue without a matching completion queue will 5548 * fail. 5549 */ 5550 n->qs_created = true; 5551 return NVME_SUCCESS; 5552 } 5553 5554 static uint16_t nvme_rpt_empty_id_struct(NvmeCtrl *n, NvmeRequest *req) 5555 { 5556 uint8_t id[NVME_IDENTIFY_DATA_SIZE] = {}; 5557 5558 return nvme_c2h(n, id, sizeof(id), req); 5559 } 5560 5561 static uint16_t nvme_identify_ctrl(NvmeCtrl *n, NvmeRequest *req) 5562 { 5563 trace_pci_nvme_identify_ctrl(); 5564 5565 return nvme_c2h(n, (uint8_t *)&n->id_ctrl, sizeof(n->id_ctrl), req); 5566 } 5567 5568 static uint16_t nvme_identify_ctrl_csi(NvmeCtrl *n, NvmeRequest *req) 5569 { 5570 NvmeIdentify *c = (NvmeIdentify *)&req->cmd; 5571 uint8_t id[NVME_IDENTIFY_DATA_SIZE] = {}; 5572 NvmeIdCtrlNvm *id_nvm = (NvmeIdCtrlNvm *)&id; 5573 5574 trace_pci_nvme_identify_ctrl_csi(c->csi); 5575 5576 switch (c->csi) { 5577 case NVME_CSI_NVM: 5578 id_nvm->vsl = n->params.vsl; 5579 id_nvm->dmrsl = cpu_to_le32(n->dmrsl); 5580 break; 5581 5582 case NVME_CSI_ZONED: 5583 ((NvmeIdCtrlZoned *)&id)->zasl = n->params.zasl; 5584 break; 5585 5586 default: 5587 return NVME_INVALID_FIELD | NVME_DNR; 5588 } 5589 5590 return nvme_c2h(n, id, sizeof(id), req); 5591 } 5592 5593 static uint16_t nvme_identify_ns(NvmeCtrl *n, NvmeRequest *req, bool active) 5594 { 5595 NvmeNamespace *ns; 5596 NvmeIdentify *c = (NvmeIdentify *)&req->cmd; 5597 uint32_t nsid = le32_to_cpu(c->nsid); 5598 5599 trace_pci_nvme_identify_ns(nsid); 5600 5601 if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) { 5602 return NVME_INVALID_NSID | NVME_DNR; 5603 } 5604 5605 ns = nvme_ns(n, nsid); 5606 if (unlikely(!ns)) { 5607 if (!active) { 5608 ns = nvme_subsys_ns(n->subsys, nsid); 5609 if (!ns) { 5610 return nvme_rpt_empty_id_struct(n, req); 5611 } 5612 } else { 5613 return nvme_rpt_empty_id_struct(n, req); 5614 } 5615 } 5616 5617 if (active || ns->csi == NVME_CSI_NVM) { 5618 return nvme_c2h(n, (uint8_t *)&ns->id_ns, sizeof(NvmeIdNs), req); 5619 } 5620 5621 return NVME_INVALID_CMD_SET | NVME_DNR; 5622 } 5623 5624 static uint16_t nvme_identify_ctrl_list(NvmeCtrl *n, NvmeRequest *req, 5625 bool attached) 5626 { 5627 NvmeIdentify *c = (NvmeIdentify *)&req->cmd; 5628 uint32_t nsid = le32_to_cpu(c->nsid); 5629 uint16_t min_id = le16_to_cpu(c->ctrlid); 5630 uint16_t list[NVME_CONTROLLER_LIST_SIZE] = {}; 5631 uint16_t *ids = &list[1]; 5632 NvmeNamespace *ns; 5633 NvmeCtrl *ctrl; 5634 int cntlid, nr_ids = 0; 5635 5636 trace_pci_nvme_identify_ctrl_list(c->cns, min_id); 5637 5638 if (!n->subsys) { 5639 return NVME_INVALID_FIELD | NVME_DNR; 5640 } 5641 5642 if (attached) { 5643 if (nsid == NVME_NSID_BROADCAST) { 5644 return NVME_INVALID_FIELD | NVME_DNR; 5645 } 5646 5647 ns = nvme_subsys_ns(n->subsys, nsid); 5648 if (!ns) { 5649 return NVME_INVALID_FIELD | NVME_DNR; 5650 } 5651 } 5652 5653 for (cntlid = min_id; cntlid < ARRAY_SIZE(n->subsys->ctrls); cntlid++) { 5654 ctrl = nvme_subsys_ctrl(n->subsys, cntlid); 5655 if (!ctrl) { 5656 continue; 5657 } 5658 5659 if (attached && !nvme_ns(ctrl, nsid)) { 5660 continue; 5661 } 5662 5663 ids[nr_ids++] = cntlid; 5664 } 5665 5666 list[0] = nr_ids; 5667 5668 return nvme_c2h(n, (uint8_t *)list, sizeof(list), req); 5669 } 5670 5671 static uint16_t nvme_identify_pri_ctrl_cap(NvmeCtrl *n, NvmeRequest *req) 5672 { 5673 trace_pci_nvme_identify_pri_ctrl_cap(le16_to_cpu(n->pri_ctrl_cap.cntlid)); 5674 5675 return nvme_c2h(n, (uint8_t *)&n->pri_ctrl_cap, 5676 sizeof(NvmePriCtrlCap), req); 5677 } 5678 5679 static uint16_t nvme_identify_sec_ctrl_list(NvmeCtrl *n, NvmeRequest *req) 5680 { 5681 NvmeIdentify *c = (NvmeIdentify *)&req->cmd; 5682 uint16_t pri_ctrl_id = le16_to_cpu(n->pri_ctrl_cap.cntlid); 5683 uint16_t min_id = le16_to_cpu(c->ctrlid); 5684 uint8_t num_sec_ctrl = n->nr_sec_ctrls; 5685 NvmeSecCtrlList list = {0}; 5686 uint8_t i; 5687 5688 for (i = 0; i < num_sec_ctrl; i++) { 5689 if (n->sec_ctrl_list[i].scid >= min_id) { 5690 list.numcntl = MIN(num_sec_ctrl - i, 127); 5691 memcpy(&list.sec, n->sec_ctrl_list + i, 5692 list.numcntl * sizeof(NvmeSecCtrlEntry)); 5693 break; 5694 } 5695 } 5696 5697 trace_pci_nvme_identify_sec_ctrl_list(pri_ctrl_id, list.numcntl); 5698 5699 return nvme_c2h(n, (uint8_t *)&list, sizeof(list), req); 5700 } 5701 5702 static uint16_t nvme_identify_ns_ind(NvmeCtrl *n, NvmeRequest *req, bool alloc) 5703 { 5704 NvmeNamespace *ns; 5705 NvmeIdentify *c = (NvmeIdentify *)&req->cmd; 5706 uint32_t nsid = le32_to_cpu(c->nsid); 5707 5708 trace_pci_nvme_identify_ns_ind(nsid); 5709 5710 if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) { 5711 return NVME_INVALID_NSID | NVME_DNR; 5712 } 5713 5714 ns = nvme_ns(n, nsid); 5715 if (unlikely(!ns)) { 5716 if (alloc) { 5717 ns = nvme_subsys_ns(n->subsys, nsid); 5718 if (!ns) { 5719 return nvme_rpt_empty_id_struct(n, req); 5720 } 5721 } else { 5722 return nvme_rpt_empty_id_struct(n, req); 5723 } 5724 } 5725 5726 return nvme_c2h(n, (uint8_t *)&ns->id_ns_ind, sizeof(NvmeIdNsInd), req); 5727 } 5728 5729 static uint16_t nvme_identify_ns_csi(NvmeCtrl *n, NvmeRequest *req, 5730 bool active) 5731 { 5732 NvmeNamespace *ns; 5733 NvmeIdentify *c = (NvmeIdentify *)&req->cmd; 5734 uint32_t nsid = le32_to_cpu(c->nsid); 5735 5736 trace_pci_nvme_identify_ns_csi(nsid, c->csi); 5737 5738 if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) { 5739 return NVME_INVALID_NSID | NVME_DNR; 5740 } 5741 5742 ns = nvme_ns(n, nsid); 5743 if (unlikely(!ns)) { 5744 if (!active) { 5745 ns = nvme_subsys_ns(n->subsys, nsid); 5746 if (!ns) { 5747 return nvme_rpt_empty_id_struct(n, req); 5748 } 5749 } else { 5750 return nvme_rpt_empty_id_struct(n, req); 5751 } 5752 } 5753 5754 if (c->csi == NVME_CSI_NVM) { 5755 return nvme_c2h(n, (uint8_t *)&ns->id_ns_nvm, sizeof(NvmeIdNsNvm), 5756 req); 5757 } else if (c->csi == NVME_CSI_ZONED && ns->csi == NVME_CSI_ZONED) { 5758 return nvme_c2h(n, (uint8_t *)ns->id_ns_zoned, sizeof(NvmeIdNsZoned), 5759 req); 5760 } 5761 5762 return NVME_INVALID_FIELD | NVME_DNR; 5763 } 5764 5765 static uint16_t nvme_identify_nslist(NvmeCtrl *n, NvmeRequest *req, 5766 bool active) 5767 { 5768 NvmeNamespace *ns; 5769 NvmeIdentify *c = (NvmeIdentify *)&req->cmd; 5770 uint32_t min_nsid = le32_to_cpu(c->nsid); 5771 uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {}; 5772 static const int data_len = sizeof(list); 5773 uint32_t *list_ptr = (uint32_t *)list; 5774 int i, j = 0; 5775 5776 trace_pci_nvme_identify_nslist(min_nsid); 5777 5778 /* 5779 * Both FFFFFFFFh (NVME_NSID_BROADCAST) and FFFFFFFFEh are invalid values 5780 * since the Active Namespace ID List should return namespaces with ids 5781 * *higher* than the NSID specified in the command. This is also specified 5782 * in the spec (NVM Express v1.3d, Section 5.15.4). 5783 */ 5784 if (min_nsid >= NVME_NSID_BROADCAST - 1) { 5785 return NVME_INVALID_NSID | NVME_DNR; 5786 } 5787 5788 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { 5789 ns = nvme_ns(n, i); 5790 if (!ns) { 5791 if (!active) { 5792 ns = nvme_subsys_ns(n->subsys, i); 5793 if (!ns) { 5794 continue; 5795 } 5796 } else { 5797 continue; 5798 } 5799 } 5800 if (ns->params.nsid <= min_nsid) { 5801 continue; 5802 } 5803 list_ptr[j++] = cpu_to_le32(ns->params.nsid); 5804 if (j == data_len / sizeof(uint32_t)) { 5805 break; 5806 } 5807 } 5808 5809 return nvme_c2h(n, list, data_len, req); 5810 } 5811 5812 static uint16_t nvme_identify_nslist_csi(NvmeCtrl *n, NvmeRequest *req, 5813 bool active) 5814 { 5815 NvmeNamespace *ns; 5816 NvmeIdentify *c = (NvmeIdentify *)&req->cmd; 5817 uint32_t min_nsid = le32_to_cpu(c->nsid); 5818 uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {}; 5819 static const int data_len = sizeof(list); 5820 uint32_t *list_ptr = (uint32_t *)list; 5821 int i, j = 0; 5822 5823 trace_pci_nvme_identify_nslist_csi(min_nsid, c->csi); 5824 5825 /* 5826 * Same as in nvme_identify_nslist(), FFFFFFFFh/FFFFFFFFEh are invalid. 5827 */ 5828 if (min_nsid >= NVME_NSID_BROADCAST - 1) { 5829 return NVME_INVALID_NSID | NVME_DNR; 5830 } 5831 5832 if (c->csi != NVME_CSI_NVM && c->csi != NVME_CSI_ZONED) { 5833 return NVME_INVALID_FIELD | NVME_DNR; 5834 } 5835 5836 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { 5837 ns = nvme_ns(n, i); 5838 if (!ns) { 5839 if (!active) { 5840 ns = nvme_subsys_ns(n->subsys, i); 5841 if (!ns) { 5842 continue; 5843 } 5844 } else { 5845 continue; 5846 } 5847 } 5848 if (ns->params.nsid <= min_nsid || c->csi != ns->csi) { 5849 continue; 5850 } 5851 list_ptr[j++] = cpu_to_le32(ns->params.nsid); 5852 if (j == data_len / sizeof(uint32_t)) { 5853 break; 5854 } 5855 } 5856 5857 return nvme_c2h(n, list, data_len, req); 5858 } 5859 5860 static uint16_t nvme_endurance_group_list(NvmeCtrl *n, NvmeRequest *req) 5861 { 5862 uint16_t list[NVME_CONTROLLER_LIST_SIZE] = {}; 5863 uint16_t *nr_ids = &list[0]; 5864 uint16_t *ids = &list[1]; 5865 uint16_t endgid = le32_to_cpu(req->cmd.cdw11) & 0xffff; 5866 5867 /* 5868 * The current nvme-subsys only supports Endurance Group #1. 5869 */ 5870 if (!endgid) { 5871 *nr_ids = 1; 5872 ids[0] = 1; 5873 } else { 5874 *nr_ids = 0; 5875 } 5876 5877 return nvme_c2h(n, list, sizeof(list), req); 5878 } 5879 5880 static uint16_t nvme_identify_ns_descr_list(NvmeCtrl *n, NvmeRequest *req) 5881 { 5882 NvmeNamespace *ns; 5883 NvmeIdentify *c = (NvmeIdentify *)&req->cmd; 5884 uint32_t nsid = le32_to_cpu(c->nsid); 5885 uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {}; 5886 uint8_t *pos = list; 5887 struct { 5888 NvmeIdNsDescr hdr; 5889 uint8_t v[NVME_NIDL_UUID]; 5890 } QEMU_PACKED uuid = {}; 5891 struct { 5892 NvmeIdNsDescr hdr; 5893 uint8_t v[NVME_NIDL_NGUID]; 5894 } QEMU_PACKED nguid = {}; 5895 struct { 5896 NvmeIdNsDescr hdr; 5897 uint64_t v; 5898 } QEMU_PACKED eui64 = {}; 5899 struct { 5900 NvmeIdNsDescr hdr; 5901 uint8_t v; 5902 } QEMU_PACKED csi = {}; 5903 5904 trace_pci_nvme_identify_ns_descr_list(nsid); 5905 5906 if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) { 5907 return NVME_INVALID_NSID | NVME_DNR; 5908 } 5909 5910 ns = nvme_ns(n, nsid); 5911 if (unlikely(!ns)) { 5912 return NVME_INVALID_FIELD | NVME_DNR; 5913 } 5914 5915 if (!qemu_uuid_is_null(&ns->params.uuid)) { 5916 uuid.hdr.nidt = NVME_NIDT_UUID; 5917 uuid.hdr.nidl = NVME_NIDL_UUID; 5918 memcpy(uuid.v, ns->params.uuid.data, NVME_NIDL_UUID); 5919 memcpy(pos, &uuid, sizeof(uuid)); 5920 pos += sizeof(uuid); 5921 } 5922 5923 if (!nvme_nguid_is_null(&ns->params.nguid)) { 5924 nguid.hdr.nidt = NVME_NIDT_NGUID; 5925 nguid.hdr.nidl = NVME_NIDL_NGUID; 5926 memcpy(nguid.v, ns->params.nguid.data, NVME_NIDL_NGUID); 5927 memcpy(pos, &nguid, sizeof(nguid)); 5928 pos += sizeof(nguid); 5929 } 5930 5931 if (ns->params.eui64) { 5932 eui64.hdr.nidt = NVME_NIDT_EUI64; 5933 eui64.hdr.nidl = NVME_NIDL_EUI64; 5934 eui64.v = cpu_to_be64(ns->params.eui64); 5935 memcpy(pos, &eui64, sizeof(eui64)); 5936 pos += sizeof(eui64); 5937 } 5938 5939 csi.hdr.nidt = NVME_NIDT_CSI; 5940 csi.hdr.nidl = NVME_NIDL_CSI; 5941 csi.v = ns->csi; 5942 memcpy(pos, &csi, sizeof(csi)); 5943 pos += sizeof(csi); 5944 5945 return nvme_c2h(n, list, sizeof(list), req); 5946 } 5947 5948 static uint16_t nvme_identify_cmd_set(NvmeCtrl *n, NvmeRequest *req) 5949 { 5950 uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {}; 5951 static const int data_len = sizeof(list); 5952 5953 trace_pci_nvme_identify_cmd_set(); 5954 5955 NVME_SET_CSI(*list, NVME_CSI_NVM); 5956 NVME_SET_CSI(*list, NVME_CSI_ZONED); 5957 5958 return nvme_c2h(n, list, data_len, req); 5959 } 5960 5961 static uint16_t nvme_identify(NvmeCtrl *n, NvmeRequest *req) 5962 { 5963 NvmeIdentify *c = (NvmeIdentify *)&req->cmd; 5964 5965 trace_pci_nvme_identify(nvme_cid(req), c->cns, le16_to_cpu(c->ctrlid), 5966 c->csi); 5967 5968 switch (c->cns) { 5969 case NVME_ID_CNS_NS: 5970 return nvme_identify_ns(n, req, true); 5971 case NVME_ID_CNS_NS_PRESENT: 5972 return nvme_identify_ns(n, req, false); 5973 case NVME_ID_CNS_NS_ATTACHED_CTRL_LIST: 5974 return nvme_identify_ctrl_list(n, req, true); 5975 case NVME_ID_CNS_CTRL_LIST: 5976 return nvme_identify_ctrl_list(n, req, false); 5977 case NVME_ID_CNS_PRIMARY_CTRL_CAP: 5978 return nvme_identify_pri_ctrl_cap(n, req); 5979 case NVME_ID_CNS_SECONDARY_CTRL_LIST: 5980 return nvme_identify_sec_ctrl_list(n, req); 5981 case NVME_ID_CNS_CS_NS: 5982 return nvme_identify_ns_csi(n, req, true); 5983 case NVME_ID_CNS_CS_IND_NS: 5984 return nvme_identify_ns_ind(n, req, false); 5985 case NVME_ID_CNS_CS_IND_NS_ALLOCATED: 5986 return nvme_identify_ns_ind(n, req, true); 5987 case NVME_ID_CNS_CS_NS_PRESENT: 5988 return nvme_identify_ns_csi(n, req, false); 5989 case NVME_ID_CNS_CTRL: 5990 return nvme_identify_ctrl(n, req); 5991 case NVME_ID_CNS_CS_CTRL: 5992 return nvme_identify_ctrl_csi(n, req); 5993 case NVME_ID_CNS_NS_ACTIVE_LIST: 5994 return nvme_identify_nslist(n, req, true); 5995 case NVME_ID_CNS_NS_PRESENT_LIST: 5996 return nvme_identify_nslist(n, req, false); 5997 case NVME_ID_CNS_CS_NS_ACTIVE_LIST: 5998 return nvme_identify_nslist_csi(n, req, true); 5999 case NVME_ID_CNS_ENDURANCE_GROUP_LIST: 6000 return nvme_endurance_group_list(n, req); 6001 case NVME_ID_CNS_CS_NS_PRESENT_LIST: 6002 return nvme_identify_nslist_csi(n, req, false); 6003 case NVME_ID_CNS_NS_DESCR_LIST: 6004 return nvme_identify_ns_descr_list(n, req); 6005 case NVME_ID_CNS_IO_COMMAND_SET: 6006 return nvme_identify_cmd_set(n, req); 6007 default: 6008 trace_pci_nvme_err_invalid_identify_cns(le32_to_cpu(c->cns)); 6009 return NVME_INVALID_FIELD | NVME_DNR; 6010 } 6011 } 6012 6013 static uint16_t nvme_abort(NvmeCtrl *n, NvmeRequest *req) 6014 { 6015 uint16_t sqid = le32_to_cpu(req->cmd.cdw10) & 0xffff; 6016 uint16_t cid = (le32_to_cpu(req->cmd.cdw10) >> 16) & 0xffff; 6017 NvmeSQueue *sq = n->sq[sqid]; 6018 NvmeRequest *r, *next; 6019 int i; 6020 6021 req->cqe.result = 1; 6022 if (nvme_check_sqid(n, sqid)) { 6023 return NVME_INVALID_FIELD | NVME_DNR; 6024 } 6025 6026 if (sqid == 0) { 6027 for (i = 0; i < n->outstanding_aers; i++) { 6028 NvmeRequest *re = n->aer_reqs[i]; 6029 if (re->cqe.cid == cid) { 6030 memmove(n->aer_reqs + i, n->aer_reqs + i + 1, 6031 (n->outstanding_aers - i - 1) * sizeof(NvmeRequest *)); 6032 n->outstanding_aers--; 6033 re->status = NVME_CMD_ABORT_REQ; 6034 req->cqe.result = 0; 6035 nvme_enqueue_req_completion(&n->admin_cq, re); 6036 return NVME_SUCCESS; 6037 } 6038 } 6039 } 6040 6041 QTAILQ_FOREACH_SAFE(r, &sq->out_req_list, entry, next) { 6042 if (r->cqe.cid == cid) { 6043 if (r->aiocb) { 6044 blk_aio_cancel_async(r->aiocb); 6045 } 6046 break; 6047 } 6048 } 6049 6050 return NVME_SUCCESS; 6051 } 6052 6053 static inline void nvme_set_timestamp(NvmeCtrl *n, uint64_t ts) 6054 { 6055 trace_pci_nvme_setfeat_timestamp(ts); 6056 6057 n->host_timestamp = le64_to_cpu(ts); 6058 n->timestamp_set_qemu_clock_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL); 6059 } 6060 6061 static inline uint64_t nvme_get_timestamp(const NvmeCtrl *n) 6062 { 6063 uint64_t current_time = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL); 6064 uint64_t elapsed_time = current_time - n->timestamp_set_qemu_clock_ms; 6065 6066 union nvme_timestamp { 6067 struct { 6068 uint64_t timestamp:48; 6069 uint64_t sync:1; 6070 uint64_t origin:3; 6071 uint64_t rsvd1:12; 6072 }; 6073 uint64_t all; 6074 }; 6075 6076 union nvme_timestamp ts; 6077 ts.all = 0; 6078 ts.timestamp = n->host_timestamp + elapsed_time; 6079 6080 /* If the host timestamp is non-zero, set the timestamp origin */ 6081 ts.origin = n->host_timestamp ? 0x01 : 0x00; 6082 6083 trace_pci_nvme_getfeat_timestamp(ts.all); 6084 6085 return cpu_to_le64(ts.all); 6086 } 6087 6088 static uint16_t nvme_get_feature_timestamp(NvmeCtrl *n, NvmeRequest *req) 6089 { 6090 uint64_t timestamp = nvme_get_timestamp(n); 6091 6092 return nvme_c2h(n, (uint8_t *)×tamp, sizeof(timestamp), req); 6093 } 6094 6095 static int nvme_get_feature_fdp(NvmeCtrl *n, uint32_t endgrpid, 6096 uint32_t *result) 6097 { 6098 *result = 0; 6099 6100 if (!n->subsys || !n->subsys->endgrp.fdp.enabled) { 6101 return NVME_INVALID_FIELD | NVME_DNR; 6102 } 6103 6104 *result = FIELD_DP16(0, FEAT_FDP, FDPE, 1); 6105 *result = FIELD_DP16(*result, FEAT_FDP, CONF_NDX, 0); 6106 6107 return NVME_SUCCESS; 6108 } 6109 6110 static uint16_t nvme_get_feature_fdp_events(NvmeCtrl *n, NvmeNamespace *ns, 6111 NvmeRequest *req, uint32_t *result) 6112 { 6113 NvmeCmd *cmd = &req->cmd; 6114 uint32_t cdw11 = le32_to_cpu(cmd->cdw11); 6115 uint16_t ph = cdw11 & 0xffff; 6116 uint8_t noet = (cdw11 >> 16) & 0xff; 6117 uint16_t ruhid, ret; 6118 uint32_t nentries = 0; 6119 uint8_t s_events_ndx = 0; 6120 size_t s_events_siz = sizeof(NvmeFdpEventDescr) * noet; 6121 g_autofree NvmeFdpEventDescr *s_events = g_malloc0(s_events_siz); 6122 NvmeRuHandle *ruh; 6123 NvmeFdpEventDescr *s_event; 6124 6125 if (!n->subsys || !n->subsys->endgrp.fdp.enabled) { 6126 return NVME_FDP_DISABLED | NVME_DNR; 6127 } 6128 6129 if (!nvme_ph_valid(ns, ph)) { 6130 return NVME_INVALID_FIELD | NVME_DNR; 6131 } 6132 6133 ruhid = ns->fdp.phs[ph]; 6134 ruh = &n->subsys->endgrp.fdp.ruhs[ruhid]; 6135 6136 assert(ruh); 6137 6138 if (unlikely(noet == 0)) { 6139 return NVME_INVALID_FIELD | NVME_DNR; 6140 } 6141 6142 for (uint8_t event_type = 0; event_type < FDP_EVT_MAX; event_type++) { 6143 uint8_t shift = nvme_fdp_evf_shifts[event_type]; 6144 if (!shift && event_type) { 6145 /* 6146 * only first entry (event_type == 0) has a shift value of 0 6147 * other entries are simply unpopulated. 6148 */ 6149 continue; 6150 } 6151 6152 nentries++; 6153 6154 s_event = &s_events[s_events_ndx]; 6155 s_event->evt = event_type; 6156 s_event->evta = (ruh->event_filter >> shift) & 0x1; 6157 6158 /* break if all `noet` entries are filled */ 6159 if ((++s_events_ndx) == noet) { 6160 break; 6161 } 6162 } 6163 6164 ret = nvme_c2h(n, s_events, s_events_siz, req); 6165 if (ret) { 6166 return ret; 6167 } 6168 6169 *result = nentries; 6170 return NVME_SUCCESS; 6171 } 6172 6173 static uint16_t nvme_get_feature(NvmeCtrl *n, NvmeRequest *req) 6174 { 6175 NvmeCmd *cmd = &req->cmd; 6176 uint32_t dw10 = le32_to_cpu(cmd->cdw10); 6177 uint32_t dw11 = le32_to_cpu(cmd->cdw11); 6178 uint32_t nsid = le32_to_cpu(cmd->nsid); 6179 uint32_t result = 0; 6180 uint8_t fid = NVME_GETSETFEAT_FID(dw10); 6181 NvmeGetFeatureSelect sel = NVME_GETFEAT_SELECT(dw10); 6182 uint16_t iv; 6183 NvmeNamespace *ns; 6184 int i; 6185 uint16_t endgrpid = 0, ret = NVME_SUCCESS; 6186 6187 static const uint32_t nvme_feature_default[NVME_FID_MAX] = { 6188 [NVME_ARBITRATION] = NVME_ARB_AB_NOLIMIT, 6189 }; 6190 6191 trace_pci_nvme_getfeat(nvme_cid(req), nsid, fid, sel, dw11); 6192 6193 if (!nvme_feature_support[fid]) { 6194 return NVME_INVALID_FIELD | NVME_DNR; 6195 } 6196 6197 if (nvme_feature_cap[fid] & NVME_FEAT_CAP_NS) { 6198 if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) { 6199 /* 6200 * The Reservation Notification Mask and Reservation Persistence 6201 * features require a status code of Invalid Field in Command when 6202 * NSID is FFFFFFFFh. Since the device does not support those 6203 * features we can always return Invalid Namespace or Format as we 6204 * should do for all other features. 6205 */ 6206 return NVME_INVALID_NSID | NVME_DNR; 6207 } 6208 6209 if (!nvme_ns(n, nsid)) { 6210 return NVME_INVALID_FIELD | NVME_DNR; 6211 } 6212 } 6213 6214 switch (sel) { 6215 case NVME_GETFEAT_SELECT_CURRENT: 6216 break; 6217 case NVME_GETFEAT_SELECT_SAVED: 6218 /* no features are saveable by the controller; fallthrough */ 6219 case NVME_GETFEAT_SELECT_DEFAULT: 6220 goto defaults; 6221 case NVME_GETFEAT_SELECT_CAP: 6222 result = nvme_feature_cap[fid]; 6223 goto out; 6224 } 6225 6226 switch (fid) { 6227 case NVME_TEMPERATURE_THRESHOLD: 6228 result = 0; 6229 6230 /* 6231 * The controller only implements the Composite Temperature sensor, so 6232 * return 0 for all other sensors. 6233 */ 6234 if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) { 6235 goto out; 6236 } 6237 6238 switch (NVME_TEMP_THSEL(dw11)) { 6239 case NVME_TEMP_THSEL_OVER: 6240 result = n->features.temp_thresh_hi; 6241 goto out; 6242 case NVME_TEMP_THSEL_UNDER: 6243 result = n->features.temp_thresh_low; 6244 goto out; 6245 } 6246 6247 return NVME_INVALID_FIELD | NVME_DNR; 6248 case NVME_ERROR_RECOVERY: 6249 if (!nvme_nsid_valid(n, nsid)) { 6250 return NVME_INVALID_NSID | NVME_DNR; 6251 } 6252 6253 ns = nvme_ns(n, nsid); 6254 if (unlikely(!ns)) { 6255 return NVME_INVALID_FIELD | NVME_DNR; 6256 } 6257 6258 result = ns->features.err_rec; 6259 goto out; 6260 case NVME_VOLATILE_WRITE_CACHE: 6261 result = 0; 6262 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { 6263 ns = nvme_ns(n, i); 6264 if (!ns) { 6265 continue; 6266 } 6267 6268 result = blk_enable_write_cache(ns->blkconf.blk); 6269 if (result) { 6270 break; 6271 } 6272 } 6273 trace_pci_nvme_getfeat_vwcache(result ? "enabled" : "disabled"); 6274 goto out; 6275 case NVME_ASYNCHRONOUS_EVENT_CONF: 6276 result = n->features.async_config; 6277 goto out; 6278 case NVME_TIMESTAMP: 6279 return nvme_get_feature_timestamp(n, req); 6280 case NVME_HOST_BEHAVIOR_SUPPORT: 6281 return nvme_c2h(n, (uint8_t *)&n->features.hbs, 6282 sizeof(n->features.hbs), req); 6283 case NVME_FDP_MODE: 6284 endgrpid = dw11 & 0xff; 6285 6286 if (endgrpid != 0x1) { 6287 return NVME_INVALID_FIELD | NVME_DNR; 6288 } 6289 6290 ret = nvme_get_feature_fdp(n, endgrpid, &result); 6291 if (ret) { 6292 return ret; 6293 } 6294 goto out; 6295 case NVME_FDP_EVENTS: 6296 if (!nvme_nsid_valid(n, nsid)) { 6297 return NVME_INVALID_NSID | NVME_DNR; 6298 } 6299 6300 ns = nvme_ns(n, nsid); 6301 if (unlikely(!ns)) { 6302 return NVME_INVALID_FIELD | NVME_DNR; 6303 } 6304 6305 ret = nvme_get_feature_fdp_events(n, ns, req, &result); 6306 if (ret) { 6307 return ret; 6308 } 6309 goto out; 6310 default: 6311 break; 6312 } 6313 6314 defaults: 6315 switch (fid) { 6316 case NVME_TEMPERATURE_THRESHOLD: 6317 result = 0; 6318 6319 if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) { 6320 break; 6321 } 6322 6323 if (NVME_TEMP_THSEL(dw11) == NVME_TEMP_THSEL_OVER) { 6324 result = NVME_TEMPERATURE_WARNING; 6325 } 6326 6327 break; 6328 case NVME_NUMBER_OF_QUEUES: 6329 result = (n->conf_ioqpairs - 1) | ((n->conf_ioqpairs - 1) << 16); 6330 trace_pci_nvme_getfeat_numq(result); 6331 break; 6332 case NVME_INTERRUPT_VECTOR_CONF: 6333 iv = dw11 & 0xffff; 6334 if (iv >= n->conf_ioqpairs + 1) { 6335 return NVME_INVALID_FIELD | NVME_DNR; 6336 } 6337 6338 result = iv; 6339 if (iv == n->admin_cq.vector) { 6340 result |= NVME_INTVC_NOCOALESCING; 6341 } 6342 break; 6343 case NVME_FDP_MODE: 6344 endgrpid = dw11 & 0xff; 6345 6346 if (endgrpid != 0x1) { 6347 return NVME_INVALID_FIELD | NVME_DNR; 6348 } 6349 6350 ret = nvme_get_feature_fdp(n, endgrpid, &result); 6351 if (ret) { 6352 return ret; 6353 } 6354 break; 6355 6356 case NVME_WRITE_ATOMICITY: 6357 result = n->dn; 6358 break; 6359 default: 6360 result = nvme_feature_default[fid]; 6361 break; 6362 } 6363 6364 out: 6365 req->cqe.result = cpu_to_le32(result); 6366 return ret; 6367 } 6368 6369 static uint16_t nvme_set_feature_timestamp(NvmeCtrl *n, NvmeRequest *req) 6370 { 6371 uint16_t ret; 6372 uint64_t timestamp; 6373 6374 ret = nvme_h2c(n, (uint8_t *)×tamp, sizeof(timestamp), req); 6375 if (ret) { 6376 return ret; 6377 } 6378 6379 nvme_set_timestamp(n, timestamp); 6380 6381 return NVME_SUCCESS; 6382 } 6383 6384 static uint16_t nvme_set_feature_fdp_events(NvmeCtrl *n, NvmeNamespace *ns, 6385 NvmeRequest *req) 6386 { 6387 NvmeCmd *cmd = &req->cmd; 6388 uint32_t cdw11 = le32_to_cpu(cmd->cdw11); 6389 uint16_t ph = cdw11 & 0xffff; 6390 uint8_t noet = (cdw11 >> 16) & 0xff; 6391 uint16_t ret, ruhid; 6392 uint8_t enable = le32_to_cpu(cmd->cdw12) & 0x1; 6393 uint8_t event_mask = 0; 6394 unsigned int i; 6395 g_autofree uint8_t *events = g_malloc0(noet); 6396 NvmeRuHandle *ruh = NULL; 6397 6398 assert(ns); 6399 6400 if (!n->subsys || !n->subsys->endgrp.fdp.enabled) { 6401 return NVME_FDP_DISABLED | NVME_DNR; 6402 } 6403 6404 if (!nvme_ph_valid(ns, ph)) { 6405 return NVME_INVALID_FIELD | NVME_DNR; 6406 } 6407 6408 ruhid = ns->fdp.phs[ph]; 6409 ruh = &n->subsys->endgrp.fdp.ruhs[ruhid]; 6410 6411 ret = nvme_h2c(n, events, noet, req); 6412 if (ret) { 6413 return ret; 6414 } 6415 6416 for (i = 0; i < noet; i++) { 6417 event_mask |= (1 << nvme_fdp_evf_shifts[events[i]]); 6418 } 6419 6420 if (enable) { 6421 ruh->event_filter |= event_mask; 6422 } else { 6423 ruh->event_filter = ruh->event_filter & ~event_mask; 6424 } 6425 6426 return NVME_SUCCESS; 6427 } 6428 6429 static uint16_t nvme_set_feature(NvmeCtrl *n, NvmeRequest *req) 6430 { 6431 NvmeNamespace *ns = NULL; 6432 6433 NvmeCmd *cmd = &req->cmd; 6434 uint32_t dw10 = le32_to_cpu(cmd->cdw10); 6435 uint32_t dw11 = le32_to_cpu(cmd->cdw11); 6436 uint32_t nsid = le32_to_cpu(cmd->nsid); 6437 uint8_t fid = NVME_GETSETFEAT_FID(dw10); 6438 uint8_t save = NVME_SETFEAT_SAVE(dw10); 6439 uint16_t status; 6440 int i; 6441 NvmeIdCtrl *id = &n->id_ctrl; 6442 NvmeAtomic *atomic = &n->atomic; 6443 6444 trace_pci_nvme_setfeat(nvme_cid(req), nsid, fid, save, dw11); 6445 6446 if (save && !(nvme_feature_cap[fid] & NVME_FEAT_CAP_SAVE)) { 6447 return NVME_FID_NOT_SAVEABLE | NVME_DNR; 6448 } 6449 6450 if (!nvme_feature_support[fid]) { 6451 return NVME_INVALID_FIELD | NVME_DNR; 6452 } 6453 6454 if (nvme_feature_cap[fid] & NVME_FEAT_CAP_NS) { 6455 if (nsid != NVME_NSID_BROADCAST) { 6456 if (!nvme_nsid_valid(n, nsid)) { 6457 return NVME_INVALID_NSID | NVME_DNR; 6458 } 6459 6460 ns = nvme_ns(n, nsid); 6461 if (unlikely(!ns)) { 6462 return NVME_INVALID_FIELD | NVME_DNR; 6463 } 6464 } 6465 } else if (nsid && nsid != NVME_NSID_BROADCAST) { 6466 if (!nvme_nsid_valid(n, nsid)) { 6467 return NVME_INVALID_NSID | NVME_DNR; 6468 } 6469 6470 return NVME_FEAT_NOT_NS_SPEC | NVME_DNR; 6471 } 6472 6473 if (!(nvme_feature_cap[fid] & NVME_FEAT_CAP_CHANGE)) { 6474 return NVME_FEAT_NOT_CHANGEABLE | NVME_DNR; 6475 } 6476 6477 switch (fid) { 6478 case NVME_TEMPERATURE_THRESHOLD: 6479 if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) { 6480 break; 6481 } 6482 6483 switch (NVME_TEMP_THSEL(dw11)) { 6484 case NVME_TEMP_THSEL_OVER: 6485 n->features.temp_thresh_hi = NVME_TEMP_TMPTH(dw11); 6486 break; 6487 case NVME_TEMP_THSEL_UNDER: 6488 n->features.temp_thresh_low = NVME_TEMP_TMPTH(dw11); 6489 break; 6490 default: 6491 return NVME_INVALID_FIELD | NVME_DNR; 6492 } 6493 6494 if ((n->temperature >= n->features.temp_thresh_hi) || 6495 (n->temperature <= n->features.temp_thresh_low)) { 6496 nvme_smart_event(n, NVME_SMART_TEMPERATURE); 6497 } 6498 6499 break; 6500 case NVME_ERROR_RECOVERY: 6501 if (nsid == NVME_NSID_BROADCAST) { 6502 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { 6503 ns = nvme_ns(n, i); 6504 6505 if (!ns) { 6506 continue; 6507 } 6508 6509 if (NVME_ID_NS_NSFEAT_DULBE(ns->id_ns.nsfeat)) { 6510 ns->features.err_rec = dw11; 6511 } 6512 } 6513 6514 break; 6515 } 6516 6517 assert(ns); 6518 if (NVME_ID_NS_NSFEAT_DULBE(ns->id_ns.nsfeat)) { 6519 ns->features.err_rec = dw11; 6520 } 6521 break; 6522 case NVME_VOLATILE_WRITE_CACHE: 6523 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { 6524 ns = nvme_ns(n, i); 6525 if (!ns) { 6526 continue; 6527 } 6528 6529 if (!(dw11 & 0x1) && blk_enable_write_cache(ns->blkconf.blk)) { 6530 blk_flush(ns->blkconf.blk); 6531 } 6532 6533 blk_set_enable_write_cache(ns->blkconf.blk, dw11 & 1); 6534 } 6535 6536 break; 6537 6538 case NVME_NUMBER_OF_QUEUES: 6539 if (n->qs_created) { 6540 return NVME_CMD_SEQ_ERROR | NVME_DNR; 6541 } 6542 6543 /* 6544 * NVMe v1.3, Section 5.21.1.7: FFFFh is not an allowed value for NCQR 6545 * and NSQR. 6546 */ 6547 if ((dw11 & 0xffff) == 0xffff || ((dw11 >> 16) & 0xffff) == 0xffff) { 6548 return NVME_INVALID_FIELD | NVME_DNR; 6549 } 6550 6551 trace_pci_nvme_setfeat_numq((dw11 & 0xffff) + 1, 6552 ((dw11 >> 16) & 0xffff) + 1, 6553 n->conf_ioqpairs, 6554 n->conf_ioqpairs); 6555 req->cqe.result = cpu_to_le32((n->conf_ioqpairs - 1) | 6556 ((n->conf_ioqpairs - 1) << 16)); 6557 break; 6558 case NVME_ASYNCHRONOUS_EVENT_CONF: 6559 n->features.async_config = dw11; 6560 break; 6561 case NVME_TIMESTAMP: 6562 return nvme_set_feature_timestamp(n, req); 6563 case NVME_HOST_BEHAVIOR_SUPPORT: 6564 status = nvme_h2c(n, (uint8_t *)&n->features.hbs, 6565 sizeof(n->features.hbs), req); 6566 if (status) { 6567 return status; 6568 } 6569 6570 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { 6571 ns = nvme_ns(n, i); 6572 6573 if (!ns) { 6574 continue; 6575 } 6576 6577 ns->id_ns.nlbaf = ns->nlbaf - 1; 6578 if (!n->features.hbs.lbafee) { 6579 ns->id_ns.nlbaf = MIN(ns->id_ns.nlbaf, 15); 6580 } 6581 } 6582 6583 return status; 6584 case NVME_COMMAND_SET_PROFILE: 6585 if (dw11 & 0x1ff) { 6586 trace_pci_nvme_err_invalid_iocsci(dw11 & 0x1ff); 6587 return NVME_CMD_SET_CMB_REJECTED | NVME_DNR; 6588 } 6589 break; 6590 case NVME_FDP_MODE: 6591 /* spec: abort with cmd seq err if there's one or more NS' in endgrp */ 6592 return NVME_CMD_SEQ_ERROR | NVME_DNR; 6593 case NVME_FDP_EVENTS: 6594 return nvme_set_feature_fdp_events(n, ns, req); 6595 case NVME_WRITE_ATOMICITY: 6596 6597 n->dn = 0x1 & dw11; 6598 6599 if (n->dn) { 6600 atomic->atomic_max_write_size = le16_to_cpu(id->awupf) + 1; 6601 } else { 6602 atomic->atomic_max_write_size = le16_to_cpu(id->awun) + 1; 6603 } 6604 6605 if (atomic->atomic_max_write_size == 1) { 6606 atomic->atomic_writes = 0; 6607 } else { 6608 atomic->atomic_writes = 1; 6609 } 6610 break; 6611 default: 6612 return NVME_FEAT_NOT_CHANGEABLE | NVME_DNR; 6613 } 6614 return NVME_SUCCESS; 6615 } 6616 6617 static uint16_t nvme_aer(NvmeCtrl *n, NvmeRequest *req) 6618 { 6619 trace_pci_nvme_aer(nvme_cid(req)); 6620 6621 if (n->outstanding_aers > n->params.aerl) { 6622 trace_pci_nvme_aer_aerl_exceeded(); 6623 return NVME_AER_LIMIT_EXCEEDED; 6624 } 6625 6626 n->aer_reqs[n->outstanding_aers] = req; 6627 n->outstanding_aers++; 6628 6629 if (!QTAILQ_EMPTY(&n->aer_queue)) { 6630 nvme_process_aers(n); 6631 } 6632 6633 return NVME_NO_COMPLETE; 6634 } 6635 6636 static void nvme_update_dmrsl(NvmeCtrl *n) 6637 { 6638 int nsid; 6639 6640 for (nsid = 1; nsid <= NVME_MAX_NAMESPACES; nsid++) { 6641 NvmeNamespace *ns = nvme_ns(n, nsid); 6642 if (!ns) { 6643 continue; 6644 } 6645 6646 n->dmrsl = MIN_NON_ZERO(n->dmrsl, 6647 BDRV_REQUEST_MAX_BYTES / nvme_l2b(ns, 1)); 6648 } 6649 } 6650 6651 static void nvme_select_iocs_ns(NvmeCtrl *n, NvmeNamespace *ns) 6652 { 6653 uint32_t cc = ldl_le_p(&n->bar.cc); 6654 6655 ns->iocs = nvme_cse_iocs_none; 6656 switch (ns->csi) { 6657 case NVME_CSI_NVM: 6658 if (NVME_CC_CSS(cc) != NVME_CC_CSS_ADMIN_ONLY) { 6659 ns->iocs = nvme_cse_iocs_nvm; 6660 } 6661 break; 6662 case NVME_CSI_ZONED: 6663 if (NVME_CC_CSS(cc) == NVME_CC_CSS_CSI) { 6664 ns->iocs = nvme_cse_iocs_zoned; 6665 } else if (NVME_CC_CSS(cc) == NVME_CC_CSS_NVM) { 6666 ns->iocs = nvme_cse_iocs_nvm; 6667 } 6668 break; 6669 } 6670 } 6671 6672 static uint16_t nvme_ns_attachment(NvmeCtrl *n, NvmeRequest *req) 6673 { 6674 NvmeNamespace *ns; 6675 NvmeCtrl *ctrl; 6676 uint16_t list[NVME_CONTROLLER_LIST_SIZE] = {}; 6677 uint32_t nsid = le32_to_cpu(req->cmd.nsid); 6678 uint32_t dw10 = le32_to_cpu(req->cmd.cdw10); 6679 uint8_t sel = dw10 & 0xf; 6680 uint16_t *nr_ids = &list[0]; 6681 uint16_t *ids = &list[1]; 6682 uint16_t ret; 6683 int i; 6684 6685 trace_pci_nvme_ns_attachment(nvme_cid(req), dw10 & 0xf); 6686 6687 if (!nvme_nsid_valid(n, nsid)) { 6688 return NVME_INVALID_NSID | NVME_DNR; 6689 } 6690 6691 ns = nvme_subsys_ns(n->subsys, nsid); 6692 if (!ns) { 6693 return NVME_INVALID_FIELD | NVME_DNR; 6694 } 6695 6696 ret = nvme_h2c(n, (uint8_t *)list, 4096, req); 6697 if (ret) { 6698 return ret; 6699 } 6700 6701 if (!*nr_ids) { 6702 return NVME_NS_CTRL_LIST_INVALID | NVME_DNR; 6703 } 6704 6705 *nr_ids = MIN(*nr_ids, NVME_CONTROLLER_LIST_SIZE - 1); 6706 for (i = 0; i < *nr_ids; i++) { 6707 ctrl = nvme_subsys_ctrl(n->subsys, ids[i]); 6708 if (!ctrl) { 6709 return NVME_NS_CTRL_LIST_INVALID | NVME_DNR; 6710 } 6711 6712 switch (sel) { 6713 case NVME_NS_ATTACHMENT_ATTACH: 6714 if (nvme_ns(ctrl, nsid)) { 6715 return NVME_NS_ALREADY_ATTACHED | NVME_DNR; 6716 } 6717 6718 if (ns->attached && !ns->params.shared) { 6719 return NVME_NS_PRIVATE | NVME_DNR; 6720 } 6721 6722 nvme_attach_ns(ctrl, ns); 6723 nvme_select_iocs_ns(ctrl, ns); 6724 6725 break; 6726 6727 case NVME_NS_ATTACHMENT_DETACH: 6728 if (!nvme_ns(ctrl, nsid)) { 6729 return NVME_NS_NOT_ATTACHED | NVME_DNR; 6730 } 6731 6732 ctrl->namespaces[nsid] = NULL; 6733 ns->attached--; 6734 6735 nvme_update_dmrsl(ctrl); 6736 6737 break; 6738 6739 default: 6740 return NVME_INVALID_FIELD | NVME_DNR; 6741 } 6742 6743 /* 6744 * Add namespace id to the changed namespace id list for event clearing 6745 * via Get Log Page command. 6746 */ 6747 if (!test_and_set_bit(nsid, ctrl->changed_nsids)) { 6748 nvme_enqueue_event(ctrl, NVME_AER_TYPE_NOTICE, 6749 NVME_AER_INFO_NOTICE_NS_ATTR_CHANGED, 6750 NVME_LOG_CHANGED_NSLIST); 6751 } 6752 } 6753 6754 return NVME_SUCCESS; 6755 } 6756 6757 typedef struct NvmeFormatAIOCB { 6758 BlockAIOCB common; 6759 BlockAIOCB *aiocb; 6760 NvmeRequest *req; 6761 int ret; 6762 6763 NvmeNamespace *ns; 6764 uint32_t nsid; 6765 bool broadcast; 6766 int64_t offset; 6767 6768 uint8_t lbaf; 6769 uint8_t mset; 6770 uint8_t pi; 6771 uint8_t pil; 6772 } NvmeFormatAIOCB; 6773 6774 static void nvme_format_cancel(BlockAIOCB *aiocb) 6775 { 6776 NvmeFormatAIOCB *iocb = container_of(aiocb, NvmeFormatAIOCB, common); 6777 6778 iocb->ret = -ECANCELED; 6779 6780 if (iocb->aiocb) { 6781 blk_aio_cancel_async(iocb->aiocb); 6782 iocb->aiocb = NULL; 6783 } 6784 } 6785 6786 static const AIOCBInfo nvme_format_aiocb_info = { 6787 .aiocb_size = sizeof(NvmeFormatAIOCB), 6788 .cancel_async = nvme_format_cancel, 6789 }; 6790 6791 static void nvme_format_set(NvmeNamespace *ns, uint8_t lbaf, uint8_t mset, 6792 uint8_t pi, uint8_t pil) 6793 { 6794 uint8_t lbafl = lbaf & 0xf; 6795 uint8_t lbafu = lbaf >> 4; 6796 6797 trace_pci_nvme_format_set(ns->params.nsid, lbaf, mset, pi, pil); 6798 6799 ns->id_ns.dps = (pil << 3) | pi; 6800 ns->id_ns.flbas = (lbafu << 5) | (mset << 4) | lbafl; 6801 6802 nvme_ns_init_format(ns); 6803 } 6804 6805 static void nvme_do_format(NvmeFormatAIOCB *iocb); 6806 6807 static void nvme_format_ns_cb(void *opaque, int ret) 6808 { 6809 NvmeFormatAIOCB *iocb = opaque; 6810 NvmeNamespace *ns = iocb->ns; 6811 int bytes; 6812 6813 if (iocb->ret < 0) { 6814 goto done; 6815 } else if (ret < 0) { 6816 iocb->ret = ret; 6817 goto done; 6818 } 6819 6820 assert(ns); 6821 6822 if (iocb->offset < ns->size) { 6823 bytes = MIN(BDRV_REQUEST_MAX_BYTES, ns->size - iocb->offset); 6824 6825 iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk, iocb->offset, 6826 bytes, BDRV_REQ_MAY_UNMAP, 6827 nvme_format_ns_cb, iocb); 6828 6829 iocb->offset += bytes; 6830 return; 6831 } 6832 6833 nvme_format_set(ns, iocb->lbaf, iocb->mset, iocb->pi, iocb->pil); 6834 ns->status = 0x0; 6835 iocb->ns = NULL; 6836 iocb->offset = 0; 6837 6838 done: 6839 nvme_do_format(iocb); 6840 } 6841 6842 static uint16_t nvme_format_check(NvmeNamespace *ns, uint8_t lbaf, uint8_t pi) 6843 { 6844 if (ns->params.zoned) { 6845 return NVME_INVALID_FORMAT | NVME_DNR; 6846 } 6847 6848 if (lbaf > ns->id_ns.nlbaf) { 6849 return NVME_INVALID_FORMAT | NVME_DNR; 6850 } 6851 6852 if (pi && (ns->id_ns.lbaf[lbaf].ms < nvme_pi_tuple_size(ns))) { 6853 return NVME_INVALID_FORMAT | NVME_DNR; 6854 } 6855 6856 if (pi && pi > NVME_ID_NS_DPS_TYPE_3) { 6857 return NVME_INVALID_FIELD | NVME_DNR; 6858 } 6859 6860 return NVME_SUCCESS; 6861 } 6862 6863 static void nvme_do_format(NvmeFormatAIOCB *iocb) 6864 { 6865 NvmeRequest *req = iocb->req; 6866 NvmeCtrl *n = nvme_ctrl(req); 6867 uint32_t dw10 = le32_to_cpu(req->cmd.cdw10); 6868 uint8_t lbaf = dw10 & 0xf; 6869 uint8_t pi = (dw10 >> 5) & 0x7; 6870 uint16_t status; 6871 int i; 6872 6873 if (iocb->ret < 0) { 6874 goto done; 6875 } 6876 6877 if (iocb->broadcast) { 6878 for (i = iocb->nsid + 1; i <= NVME_MAX_NAMESPACES; i++) { 6879 iocb->ns = nvme_ns(n, i); 6880 if (iocb->ns) { 6881 iocb->nsid = i; 6882 break; 6883 } 6884 } 6885 } 6886 6887 if (!iocb->ns) { 6888 goto done; 6889 } 6890 6891 status = nvme_format_check(iocb->ns, lbaf, pi); 6892 if (status) { 6893 req->status = status; 6894 goto done; 6895 } 6896 6897 iocb->ns->status = NVME_FORMAT_IN_PROGRESS; 6898 nvme_format_ns_cb(iocb, 0); 6899 return; 6900 6901 done: 6902 iocb->common.cb(iocb->common.opaque, iocb->ret); 6903 qemu_aio_unref(iocb); 6904 } 6905 6906 static uint16_t nvme_format(NvmeCtrl *n, NvmeRequest *req) 6907 { 6908 NvmeFormatAIOCB *iocb; 6909 uint32_t nsid = le32_to_cpu(req->cmd.nsid); 6910 uint32_t dw10 = le32_to_cpu(req->cmd.cdw10); 6911 uint8_t lbaf = dw10 & 0xf; 6912 uint8_t mset = (dw10 >> 4) & 0x1; 6913 uint8_t pi = (dw10 >> 5) & 0x7; 6914 uint8_t pil = (dw10 >> 8) & 0x1; 6915 uint8_t lbafu = (dw10 >> 12) & 0x3; 6916 uint16_t status; 6917 6918 iocb = qemu_aio_get(&nvme_format_aiocb_info, NULL, nvme_misc_cb, req); 6919 6920 iocb->req = req; 6921 iocb->ret = 0; 6922 iocb->ns = NULL; 6923 iocb->nsid = 0; 6924 iocb->lbaf = lbaf; 6925 iocb->mset = mset; 6926 iocb->pi = pi; 6927 iocb->pil = pil; 6928 iocb->broadcast = (nsid == NVME_NSID_BROADCAST); 6929 iocb->offset = 0; 6930 6931 if (n->features.hbs.lbafee) { 6932 iocb->lbaf |= lbafu << 4; 6933 } 6934 6935 if (!iocb->broadcast) { 6936 if (!nvme_nsid_valid(n, nsid)) { 6937 status = NVME_INVALID_NSID | NVME_DNR; 6938 goto out; 6939 } 6940 6941 iocb->ns = nvme_ns(n, nsid); 6942 if (!iocb->ns) { 6943 status = NVME_INVALID_FIELD | NVME_DNR; 6944 goto out; 6945 } 6946 } 6947 6948 req->aiocb = &iocb->common; 6949 nvme_do_format(iocb); 6950 6951 return NVME_NO_COMPLETE; 6952 6953 out: 6954 qemu_aio_unref(iocb); 6955 6956 return status; 6957 } 6958 6959 static void nvme_get_virt_res_num(NvmeCtrl *n, uint8_t rt, int *num_total, 6960 int *num_prim, int *num_sec) 6961 { 6962 *num_total = le32_to_cpu(rt ? 6963 n->pri_ctrl_cap.vifrt : n->pri_ctrl_cap.vqfrt); 6964 *num_prim = le16_to_cpu(rt ? 6965 n->pri_ctrl_cap.virfap : n->pri_ctrl_cap.vqrfap); 6966 *num_sec = le16_to_cpu(rt ? n->pri_ctrl_cap.virfa : n->pri_ctrl_cap.vqrfa); 6967 } 6968 6969 static uint16_t nvme_assign_virt_res_to_prim(NvmeCtrl *n, NvmeRequest *req, 6970 uint16_t cntlid, uint8_t rt, 6971 int nr) 6972 { 6973 int num_total, num_prim, num_sec; 6974 6975 if (cntlid != n->cntlid) { 6976 return NVME_INVALID_CTRL_ID | NVME_DNR; 6977 } 6978 6979 nvme_get_virt_res_num(n, rt, &num_total, &num_prim, &num_sec); 6980 6981 if (nr > num_total) { 6982 return NVME_INVALID_NUM_RESOURCES | NVME_DNR; 6983 } 6984 6985 if (nr > num_total - num_sec) { 6986 return NVME_INVALID_RESOURCE_ID | NVME_DNR; 6987 } 6988 6989 if (rt) { 6990 n->next_pri_ctrl_cap.virfap = cpu_to_le16(nr); 6991 } else { 6992 n->next_pri_ctrl_cap.vqrfap = cpu_to_le16(nr); 6993 } 6994 6995 req->cqe.result = cpu_to_le32(nr); 6996 return req->status; 6997 } 6998 6999 static void nvme_update_virt_res(NvmeCtrl *n, NvmeSecCtrlEntry *sctrl, 7000 uint8_t rt, int nr) 7001 { 7002 int prev_nr, prev_total; 7003 7004 if (rt) { 7005 prev_nr = le16_to_cpu(sctrl->nvi); 7006 prev_total = le32_to_cpu(n->pri_ctrl_cap.virfa); 7007 sctrl->nvi = cpu_to_le16(nr); 7008 n->pri_ctrl_cap.virfa = cpu_to_le32(prev_total + nr - prev_nr); 7009 } else { 7010 prev_nr = le16_to_cpu(sctrl->nvq); 7011 prev_total = le32_to_cpu(n->pri_ctrl_cap.vqrfa); 7012 sctrl->nvq = cpu_to_le16(nr); 7013 n->pri_ctrl_cap.vqrfa = cpu_to_le32(prev_total + nr - prev_nr); 7014 } 7015 } 7016 7017 static uint16_t nvme_assign_virt_res_to_sec(NvmeCtrl *n, NvmeRequest *req, 7018 uint16_t cntlid, uint8_t rt, int nr) 7019 { 7020 int num_total, num_prim, num_sec, num_free, diff, limit; 7021 NvmeSecCtrlEntry *sctrl; 7022 7023 sctrl = nvme_sctrl_for_cntlid(n, cntlid); 7024 if (!sctrl) { 7025 return NVME_INVALID_CTRL_ID | NVME_DNR; 7026 } 7027 7028 if (sctrl->scs) { 7029 return NVME_INVALID_SEC_CTRL_STATE | NVME_DNR; 7030 } 7031 7032 limit = le16_to_cpu(rt ? n->pri_ctrl_cap.vifrsm : n->pri_ctrl_cap.vqfrsm); 7033 if (nr > limit) { 7034 return NVME_INVALID_NUM_RESOURCES | NVME_DNR; 7035 } 7036 7037 nvme_get_virt_res_num(n, rt, &num_total, &num_prim, &num_sec); 7038 num_free = num_total - num_prim - num_sec; 7039 diff = nr - le16_to_cpu(rt ? sctrl->nvi : sctrl->nvq); 7040 7041 if (diff > num_free) { 7042 return NVME_INVALID_RESOURCE_ID | NVME_DNR; 7043 } 7044 7045 nvme_update_virt_res(n, sctrl, rt, nr); 7046 req->cqe.result = cpu_to_le32(nr); 7047 7048 return req->status; 7049 } 7050 7051 static uint16_t nvme_virt_set_state(NvmeCtrl *n, uint16_t cntlid, bool online) 7052 { 7053 PCIDevice *pci = PCI_DEVICE(n); 7054 NvmeCtrl *sn = NULL; 7055 NvmeSecCtrlEntry *sctrl; 7056 int vf_index; 7057 7058 sctrl = nvme_sctrl_for_cntlid(n, cntlid); 7059 if (!sctrl) { 7060 return NVME_INVALID_CTRL_ID | NVME_DNR; 7061 } 7062 7063 if (!pci_is_vf(pci)) { 7064 vf_index = le16_to_cpu(sctrl->vfn) - 1; 7065 sn = NVME(pcie_sriov_get_vf_at_index(pci, vf_index)); 7066 } 7067 7068 if (online) { 7069 if (!sctrl->nvi || (le16_to_cpu(sctrl->nvq) < 2) || !sn) { 7070 return NVME_INVALID_SEC_CTRL_STATE | NVME_DNR; 7071 } 7072 7073 if (!sctrl->scs) { 7074 sctrl->scs = 0x1; 7075 nvme_ctrl_reset(sn, NVME_RESET_FUNCTION); 7076 } 7077 } else { 7078 nvme_update_virt_res(n, sctrl, NVME_VIRT_RES_INTERRUPT, 0); 7079 nvme_update_virt_res(n, sctrl, NVME_VIRT_RES_QUEUE, 0); 7080 7081 if (sctrl->scs) { 7082 sctrl->scs = 0x0; 7083 if (sn) { 7084 nvme_ctrl_reset(sn, NVME_RESET_FUNCTION); 7085 } 7086 } 7087 } 7088 7089 return NVME_SUCCESS; 7090 } 7091 7092 static uint16_t nvme_virt_mngmt(NvmeCtrl *n, NvmeRequest *req) 7093 { 7094 uint32_t dw10 = le32_to_cpu(req->cmd.cdw10); 7095 uint32_t dw11 = le32_to_cpu(req->cmd.cdw11); 7096 uint8_t act = dw10 & 0xf; 7097 uint8_t rt = (dw10 >> 8) & 0x7; 7098 uint16_t cntlid = (dw10 >> 16) & 0xffff; 7099 int nr = dw11 & 0xffff; 7100 7101 trace_pci_nvme_virt_mngmt(nvme_cid(req), act, cntlid, rt ? "VI" : "VQ", nr); 7102 7103 if (rt != NVME_VIRT_RES_QUEUE && rt != NVME_VIRT_RES_INTERRUPT) { 7104 return NVME_INVALID_RESOURCE_ID | NVME_DNR; 7105 } 7106 7107 switch (act) { 7108 case NVME_VIRT_MNGMT_ACTION_SEC_ASSIGN: 7109 return nvme_assign_virt_res_to_sec(n, req, cntlid, rt, nr); 7110 case NVME_VIRT_MNGMT_ACTION_PRM_ALLOC: 7111 return nvme_assign_virt_res_to_prim(n, req, cntlid, rt, nr); 7112 case NVME_VIRT_MNGMT_ACTION_SEC_ONLINE: 7113 return nvme_virt_set_state(n, cntlid, true); 7114 case NVME_VIRT_MNGMT_ACTION_SEC_OFFLINE: 7115 return nvme_virt_set_state(n, cntlid, false); 7116 default: 7117 return NVME_INVALID_FIELD | NVME_DNR; 7118 } 7119 } 7120 7121 static uint16_t nvme_dbbuf_config(NvmeCtrl *n, const NvmeRequest *req) 7122 { 7123 PCIDevice *pci = PCI_DEVICE(n); 7124 uint64_t dbs_addr = le64_to_cpu(req->cmd.dptr.prp1); 7125 uint64_t eis_addr = le64_to_cpu(req->cmd.dptr.prp2); 7126 int i; 7127 7128 /* Address should be page aligned */ 7129 if (dbs_addr & (n->page_size - 1) || eis_addr & (n->page_size - 1)) { 7130 return NVME_INVALID_FIELD | NVME_DNR; 7131 } 7132 7133 /* Save shadow buffer base addr for use during queue creation */ 7134 n->dbbuf_dbs = dbs_addr; 7135 n->dbbuf_eis = eis_addr; 7136 n->dbbuf_enabled = true; 7137 7138 for (i = 0; i < n->params.max_ioqpairs + 1; i++) { 7139 NvmeSQueue *sq = n->sq[i]; 7140 NvmeCQueue *cq = n->cq[i]; 7141 7142 if (sq) { 7143 /* 7144 * CAP.DSTRD is 0, so offset of ith sq db_addr is (i<<3) 7145 * nvme_process_db() uses this hard-coded way to calculate 7146 * doorbell offsets. Be consistent with that here. 7147 */ 7148 sq->db_addr = dbs_addr + (i << 3); 7149 sq->ei_addr = eis_addr + (i << 3); 7150 stl_le_pci_dma(pci, sq->db_addr, sq->tail, MEMTXATTRS_UNSPECIFIED); 7151 7152 if (n->params.ioeventfd && sq->sqid != 0) { 7153 if (!nvme_init_sq_ioeventfd(sq)) { 7154 sq->ioeventfd_enabled = true; 7155 } 7156 } 7157 } 7158 7159 if (cq) { 7160 /* CAP.DSTRD is 0, so offset of ith cq db_addr is (i<<3)+(1<<2) */ 7161 cq->db_addr = dbs_addr + (i << 3) + (1 << 2); 7162 cq->ei_addr = eis_addr + (i << 3) + (1 << 2); 7163 stl_le_pci_dma(pci, cq->db_addr, cq->head, MEMTXATTRS_UNSPECIFIED); 7164 7165 if (n->params.ioeventfd && cq->cqid != 0) { 7166 if (!nvme_init_cq_ioeventfd(cq)) { 7167 cq->ioeventfd_enabled = true; 7168 } 7169 } 7170 } 7171 } 7172 7173 trace_pci_nvme_dbbuf_config(dbs_addr, eis_addr); 7174 7175 return NVME_SUCCESS; 7176 } 7177 7178 static uint16_t nvme_directive_send(NvmeCtrl *n, NvmeRequest *req) 7179 { 7180 return NVME_INVALID_FIELD | NVME_DNR; 7181 } 7182 7183 static uint16_t nvme_directive_receive(NvmeCtrl *n, NvmeRequest *req) 7184 { 7185 NvmeNamespace *ns; 7186 uint32_t dw10 = le32_to_cpu(req->cmd.cdw10); 7187 uint32_t dw11 = le32_to_cpu(req->cmd.cdw11); 7188 uint32_t nsid = le32_to_cpu(req->cmd.nsid); 7189 uint8_t doper, dtype; 7190 uint32_t numd, trans_len; 7191 NvmeDirectiveIdentify id = { 7192 .supported = 1 << NVME_DIRECTIVE_IDENTIFY, 7193 .enabled = 1 << NVME_DIRECTIVE_IDENTIFY, 7194 }; 7195 7196 numd = dw10 + 1; 7197 doper = dw11 & 0xff; 7198 dtype = (dw11 >> 8) & 0xff; 7199 7200 trans_len = MIN(sizeof(NvmeDirectiveIdentify), numd << 2); 7201 7202 if (nsid == NVME_NSID_BROADCAST || dtype != NVME_DIRECTIVE_IDENTIFY || 7203 doper != NVME_DIRECTIVE_RETURN_PARAMS) { 7204 return NVME_INVALID_FIELD | NVME_DNR; 7205 } 7206 7207 ns = nvme_ns(n, nsid); 7208 if (!ns) { 7209 return NVME_INVALID_FIELD | NVME_DNR; 7210 } 7211 7212 switch (dtype) { 7213 case NVME_DIRECTIVE_IDENTIFY: 7214 switch (doper) { 7215 case NVME_DIRECTIVE_RETURN_PARAMS: 7216 if (ns->endgrp && ns->endgrp->fdp.enabled) { 7217 id.supported |= 1 << NVME_DIRECTIVE_DATA_PLACEMENT; 7218 id.enabled |= 1 << NVME_DIRECTIVE_DATA_PLACEMENT; 7219 id.persistent |= 1 << NVME_DIRECTIVE_DATA_PLACEMENT; 7220 } 7221 7222 return nvme_c2h(n, (uint8_t *)&id, trans_len, req); 7223 7224 default: 7225 return NVME_INVALID_FIELD | NVME_DNR; 7226 } 7227 7228 default: 7229 return NVME_INVALID_FIELD; 7230 } 7231 } 7232 7233 static uint16_t nvme_admin_cmd(NvmeCtrl *n, NvmeRequest *req) 7234 { 7235 trace_pci_nvme_admin_cmd(nvme_cid(req), nvme_sqid(req), req->cmd.opcode, 7236 nvme_adm_opc_str(req->cmd.opcode)); 7237 7238 if (!(nvme_cse_acs[req->cmd.opcode] & NVME_CMD_EFF_CSUPP)) { 7239 trace_pci_nvme_err_invalid_admin_opc(req->cmd.opcode); 7240 return NVME_INVALID_OPCODE | NVME_DNR; 7241 } 7242 7243 /* SGLs shall not be used for Admin commands in NVMe over PCIe */ 7244 if (NVME_CMD_FLAGS_PSDT(req->cmd.flags) != NVME_PSDT_PRP) { 7245 return NVME_INVALID_FIELD | NVME_DNR; 7246 } 7247 7248 if (NVME_CMD_FLAGS_FUSE(req->cmd.flags)) { 7249 return NVME_INVALID_FIELD; 7250 } 7251 7252 switch (req->cmd.opcode) { 7253 case NVME_ADM_CMD_DELETE_SQ: 7254 return nvme_del_sq(n, req); 7255 case NVME_ADM_CMD_CREATE_SQ: 7256 return nvme_create_sq(n, req); 7257 case NVME_ADM_CMD_GET_LOG_PAGE: 7258 return nvme_get_log(n, req); 7259 case NVME_ADM_CMD_DELETE_CQ: 7260 return nvme_del_cq(n, req); 7261 case NVME_ADM_CMD_CREATE_CQ: 7262 return nvme_create_cq(n, req); 7263 case NVME_ADM_CMD_IDENTIFY: 7264 return nvme_identify(n, req); 7265 case NVME_ADM_CMD_ABORT: 7266 return nvme_abort(n, req); 7267 case NVME_ADM_CMD_SET_FEATURES: 7268 return nvme_set_feature(n, req); 7269 case NVME_ADM_CMD_GET_FEATURES: 7270 return nvme_get_feature(n, req); 7271 case NVME_ADM_CMD_ASYNC_EV_REQ: 7272 return nvme_aer(n, req); 7273 case NVME_ADM_CMD_NS_ATTACHMENT: 7274 return nvme_ns_attachment(n, req); 7275 case NVME_ADM_CMD_VIRT_MNGMT: 7276 return nvme_virt_mngmt(n, req); 7277 case NVME_ADM_CMD_DBBUF_CONFIG: 7278 return nvme_dbbuf_config(n, req); 7279 case NVME_ADM_CMD_FORMAT_NVM: 7280 return nvme_format(n, req); 7281 case NVME_ADM_CMD_DIRECTIVE_SEND: 7282 return nvme_directive_send(n, req); 7283 case NVME_ADM_CMD_DIRECTIVE_RECV: 7284 return nvme_directive_receive(n, req); 7285 default: 7286 g_assert_not_reached(); 7287 } 7288 7289 return NVME_INVALID_OPCODE | NVME_DNR; 7290 } 7291 7292 static void nvme_update_sq_eventidx(const NvmeSQueue *sq) 7293 { 7294 trace_pci_nvme_update_sq_eventidx(sq->sqid, sq->tail); 7295 7296 stl_le_pci_dma(PCI_DEVICE(sq->ctrl), sq->ei_addr, sq->tail, 7297 MEMTXATTRS_UNSPECIFIED); 7298 } 7299 7300 static void nvme_update_sq_tail(NvmeSQueue *sq) 7301 { 7302 ldl_le_pci_dma(PCI_DEVICE(sq->ctrl), sq->db_addr, &sq->tail, 7303 MEMTXATTRS_UNSPECIFIED); 7304 7305 trace_pci_nvme_update_sq_tail(sq->sqid, sq->tail); 7306 } 7307 7308 #define NVME_ATOMIC_NO_START 0 7309 #define NVME_ATOMIC_START_ATOMIC 1 7310 #define NVME_ATOMIC_START_NONATOMIC 2 7311 7312 static int nvme_atomic_write_check(NvmeCtrl *n, NvmeCmd *cmd, 7313 NvmeAtomic *atomic) 7314 { 7315 NvmeRwCmd *rw = (NvmeRwCmd *)cmd; 7316 uint64_t slba = le64_to_cpu(rw->slba); 7317 uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb); 7318 uint64_t elba = slba + nlb; 7319 bool cmd_atomic_wr = true; 7320 int i; 7321 7322 if ((cmd->opcode == NVME_CMD_READ) || ((cmd->opcode == NVME_CMD_WRITE) && 7323 ((rw->nlb + 1) > atomic->atomic_max_write_size))) { 7324 cmd_atomic_wr = false; 7325 } 7326 7327 /* 7328 * Walk the queues to see if there are any atomic conflicts. 7329 */ 7330 for (i = 1; i < n->params.max_ioqpairs + 1; i++) { 7331 NvmeSQueue *sq; 7332 NvmeRequest *req; 7333 NvmeRwCmd *req_rw; 7334 uint64_t req_slba; 7335 uint32_t req_nlb; 7336 uint64_t req_elba; 7337 7338 sq = n->sq[i]; 7339 if (!sq) { 7340 continue; 7341 } 7342 7343 /* 7344 * Walk all the requests on a given queue. 7345 */ 7346 QTAILQ_FOREACH(req, &sq->out_req_list, entry) { 7347 req_rw = (NvmeRwCmd *)&req->cmd; 7348 7349 if (((req_rw->opcode == NVME_CMD_WRITE) || 7350 (req_rw->opcode == NVME_CMD_READ)) && 7351 (cmd->nsid == req->ns->params.nsid)) { 7352 req_slba = le64_to_cpu(req_rw->slba); 7353 req_nlb = (uint32_t)le16_to_cpu(req_rw->nlb); 7354 req_elba = req_slba + req_nlb; 7355 7356 if (cmd_atomic_wr) { 7357 if ((elba >= req_slba) && (slba <= req_elba)) { 7358 return NVME_ATOMIC_NO_START; 7359 } 7360 } else { 7361 if (req->atomic_write && ((elba >= req_slba) && 7362 (slba <= req_elba))) { 7363 return NVME_ATOMIC_NO_START; 7364 } 7365 } 7366 } 7367 } 7368 } 7369 if (cmd_atomic_wr) { 7370 return NVME_ATOMIC_START_ATOMIC; 7371 } 7372 return NVME_ATOMIC_START_NONATOMIC; 7373 } 7374 7375 static NvmeAtomic *nvme_get_atomic(NvmeCtrl *n, NvmeCmd *cmd) 7376 { 7377 if (n->atomic.atomic_writes) { 7378 return &n->atomic; 7379 } 7380 return NULL; 7381 } 7382 7383 static void nvme_process_sq(void *opaque) 7384 { 7385 NvmeSQueue *sq = opaque; 7386 NvmeCtrl *n = sq->ctrl; 7387 NvmeCQueue *cq = n->cq[sq->cqid]; 7388 7389 uint16_t status; 7390 hwaddr addr; 7391 NvmeCmd cmd; 7392 NvmeRequest *req; 7393 7394 if (n->dbbuf_enabled) { 7395 nvme_update_sq_tail(sq); 7396 } 7397 7398 while (!(nvme_sq_empty(sq) || QTAILQ_EMPTY(&sq->req_list))) { 7399 NvmeAtomic *atomic; 7400 bool cmd_is_atomic; 7401 7402 addr = sq->dma_addr + (sq->head << NVME_SQES); 7403 if (nvme_addr_read(n, addr, (void *)&cmd, sizeof(cmd))) { 7404 trace_pci_nvme_err_addr_read(addr); 7405 trace_pci_nvme_err_cfs(); 7406 stl_le_p(&n->bar.csts, NVME_CSTS_FAILED); 7407 break; 7408 } 7409 7410 atomic = nvme_get_atomic(n, &cmd); 7411 7412 cmd_is_atomic = false; 7413 if (sq->sqid && atomic) { 7414 int ret; 7415 7416 ret = nvme_atomic_write_check(n, &cmd, atomic); 7417 switch (ret) { 7418 case NVME_ATOMIC_NO_START: 7419 qemu_bh_schedule(sq->bh); 7420 return; 7421 case NVME_ATOMIC_START_ATOMIC: 7422 cmd_is_atomic = true; 7423 break; 7424 case NVME_ATOMIC_START_NONATOMIC: 7425 default: 7426 break; 7427 } 7428 } 7429 nvme_inc_sq_head(sq); 7430 7431 req = QTAILQ_FIRST(&sq->req_list); 7432 QTAILQ_REMOVE(&sq->req_list, req, entry); 7433 QTAILQ_INSERT_TAIL(&sq->out_req_list, req, entry); 7434 nvme_req_clear(req); 7435 req->cqe.cid = cmd.cid; 7436 memcpy(&req->cmd, &cmd, sizeof(NvmeCmd)); 7437 7438 if (sq->sqid && atomic) { 7439 req->atomic_write = cmd_is_atomic; 7440 } 7441 7442 status = sq->sqid ? nvme_io_cmd(n, req) : 7443 nvme_admin_cmd(n, req); 7444 if (status != NVME_NO_COMPLETE) { 7445 req->status = status; 7446 nvme_enqueue_req_completion(cq, req); 7447 } 7448 7449 if (n->dbbuf_enabled) { 7450 nvme_update_sq_eventidx(sq); 7451 nvme_update_sq_tail(sq); 7452 } 7453 } 7454 } 7455 7456 static void nvme_update_msixcap_ts(PCIDevice *pci_dev, uint32_t table_size) 7457 { 7458 uint8_t *config; 7459 7460 if (!msix_present(pci_dev)) { 7461 return; 7462 } 7463 7464 assert(table_size > 0 && table_size <= pci_dev->msix_entries_nr); 7465 7466 config = pci_dev->config + pci_dev->msix_cap; 7467 pci_set_word_by_mask(config + PCI_MSIX_FLAGS, PCI_MSIX_FLAGS_QSIZE, 7468 table_size - 1); 7469 } 7470 7471 static void nvme_activate_virt_res(NvmeCtrl *n) 7472 { 7473 PCIDevice *pci_dev = PCI_DEVICE(n); 7474 NvmePriCtrlCap *cap = &n->pri_ctrl_cap; 7475 NvmeSecCtrlEntry *sctrl; 7476 7477 /* -1 to account for the admin queue */ 7478 if (pci_is_vf(pci_dev)) { 7479 sctrl = nvme_sctrl(n); 7480 cap->vqprt = sctrl->nvq; 7481 cap->viprt = sctrl->nvi; 7482 n->conf_ioqpairs = sctrl->nvq ? le16_to_cpu(sctrl->nvq) - 1 : 0; 7483 n->conf_msix_qsize = sctrl->nvi ? le16_to_cpu(sctrl->nvi) : 1; 7484 } else { 7485 cap->vqrfap = n->next_pri_ctrl_cap.vqrfap; 7486 cap->virfap = n->next_pri_ctrl_cap.virfap; 7487 n->conf_ioqpairs = le16_to_cpu(cap->vqprt) + 7488 le16_to_cpu(cap->vqrfap) - 1; 7489 n->conf_msix_qsize = le16_to_cpu(cap->viprt) + 7490 le16_to_cpu(cap->virfap); 7491 } 7492 } 7493 7494 static void nvme_ctrl_reset(NvmeCtrl *n, NvmeResetType rst) 7495 { 7496 PCIDevice *pci_dev = PCI_DEVICE(n); 7497 NvmeSecCtrlEntry *sctrl; 7498 NvmeNamespace *ns; 7499 int i; 7500 7501 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { 7502 ns = nvme_ns(n, i); 7503 if (!ns) { 7504 continue; 7505 } 7506 7507 nvme_ns_drain(ns); 7508 } 7509 7510 for (i = 0; i < n->params.max_ioqpairs + 1; i++) { 7511 if (n->sq[i] != NULL) { 7512 nvme_free_sq(n->sq[i], n); 7513 } 7514 } 7515 for (i = 0; i < n->params.max_ioqpairs + 1; i++) { 7516 if (n->cq[i] != NULL) { 7517 nvme_free_cq(n->cq[i], n); 7518 } 7519 } 7520 7521 while (!QTAILQ_EMPTY(&n->aer_queue)) { 7522 NvmeAsyncEvent *event = QTAILQ_FIRST(&n->aer_queue); 7523 QTAILQ_REMOVE(&n->aer_queue, event, entry); 7524 g_free(event); 7525 } 7526 7527 if (n->params.sriov_max_vfs) { 7528 if (!pci_is_vf(pci_dev)) { 7529 for (i = 0; i < n->nr_sec_ctrls; i++) { 7530 sctrl = &n->sec_ctrl_list[i]; 7531 nvme_virt_set_state(n, le16_to_cpu(sctrl->scid), false); 7532 } 7533 } 7534 7535 if (rst != NVME_RESET_CONTROLLER) { 7536 nvme_activate_virt_res(n); 7537 } 7538 } 7539 7540 n->aer_queued = 0; 7541 n->aer_mask = 0; 7542 n->outstanding_aers = 0; 7543 n->qs_created = false; 7544 7545 n->dn = n->params.atomic_dn; /* Set Disable Normal */ 7546 7547 nvme_update_msixcap_ts(pci_dev, n->conf_msix_qsize); 7548 7549 if (pci_is_vf(pci_dev)) { 7550 sctrl = nvme_sctrl(n); 7551 7552 stl_le_p(&n->bar.csts, sctrl->scs ? 0 : NVME_CSTS_FAILED); 7553 } else { 7554 stl_le_p(&n->bar.csts, 0); 7555 } 7556 7557 stl_le_p(&n->bar.intms, 0); 7558 stl_le_p(&n->bar.intmc, 0); 7559 stl_le_p(&n->bar.cc, 0); 7560 7561 n->dbbuf_dbs = 0; 7562 n->dbbuf_eis = 0; 7563 n->dbbuf_enabled = false; 7564 } 7565 7566 static void nvme_ctrl_shutdown(NvmeCtrl *n) 7567 { 7568 NvmeNamespace *ns; 7569 int i; 7570 7571 if (n->pmr.dev) { 7572 memory_region_msync(&n->pmr.dev->mr, 0, n->pmr.dev->size); 7573 } 7574 7575 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { 7576 ns = nvme_ns(n, i); 7577 if (!ns) { 7578 continue; 7579 } 7580 7581 nvme_ns_shutdown(ns); 7582 } 7583 } 7584 7585 static void nvme_select_iocs(NvmeCtrl *n) 7586 { 7587 NvmeNamespace *ns; 7588 int i; 7589 7590 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { 7591 ns = nvme_ns(n, i); 7592 if (!ns) { 7593 continue; 7594 } 7595 7596 nvme_select_iocs_ns(n, ns); 7597 } 7598 } 7599 7600 static int nvme_start_ctrl(NvmeCtrl *n) 7601 { 7602 uint64_t cap = ldq_le_p(&n->bar.cap); 7603 uint32_t cc = ldl_le_p(&n->bar.cc); 7604 uint32_t aqa = ldl_le_p(&n->bar.aqa); 7605 uint64_t asq = ldq_le_p(&n->bar.asq); 7606 uint64_t acq = ldq_le_p(&n->bar.acq); 7607 uint32_t page_bits = NVME_CC_MPS(cc) + 12; 7608 uint32_t page_size = 1 << page_bits; 7609 NvmeSecCtrlEntry *sctrl = nvme_sctrl(n); 7610 7611 if (pci_is_vf(PCI_DEVICE(n)) && !sctrl->scs) { 7612 trace_pci_nvme_err_startfail_virt_state(le16_to_cpu(sctrl->nvi), 7613 le16_to_cpu(sctrl->nvq)); 7614 return -1; 7615 } 7616 if (unlikely(n->cq[0])) { 7617 trace_pci_nvme_err_startfail_cq(); 7618 return -1; 7619 } 7620 if (unlikely(n->sq[0])) { 7621 trace_pci_nvme_err_startfail_sq(); 7622 return -1; 7623 } 7624 if (unlikely(asq & (page_size - 1))) { 7625 trace_pci_nvme_err_startfail_asq_misaligned(asq); 7626 return -1; 7627 } 7628 if (unlikely(acq & (page_size - 1))) { 7629 trace_pci_nvme_err_startfail_acq_misaligned(acq); 7630 return -1; 7631 } 7632 if (unlikely(!(NVME_CAP_CSS(cap) & (1 << NVME_CC_CSS(cc))))) { 7633 trace_pci_nvme_err_startfail_css(NVME_CC_CSS(cc)); 7634 return -1; 7635 } 7636 if (unlikely(NVME_CC_MPS(cc) < NVME_CAP_MPSMIN(cap))) { 7637 trace_pci_nvme_err_startfail_page_too_small( 7638 NVME_CC_MPS(cc), 7639 NVME_CAP_MPSMIN(cap)); 7640 return -1; 7641 } 7642 if (unlikely(NVME_CC_MPS(cc) > 7643 NVME_CAP_MPSMAX(cap))) { 7644 trace_pci_nvme_err_startfail_page_too_large( 7645 NVME_CC_MPS(cc), 7646 NVME_CAP_MPSMAX(cap)); 7647 return -1; 7648 } 7649 if (unlikely(!NVME_AQA_ASQS(aqa))) { 7650 trace_pci_nvme_err_startfail_asqent_sz_zero(); 7651 return -1; 7652 } 7653 if (unlikely(!NVME_AQA_ACQS(aqa))) { 7654 trace_pci_nvme_err_startfail_acqent_sz_zero(); 7655 return -1; 7656 } 7657 7658 n->page_bits = page_bits; 7659 n->page_size = page_size; 7660 n->max_prp_ents = n->page_size / sizeof(uint64_t); 7661 nvme_init_cq(&n->admin_cq, n, acq, 0, 0, NVME_AQA_ACQS(aqa) + 1, 1); 7662 nvme_init_sq(&n->admin_sq, n, asq, 0, 0, NVME_AQA_ASQS(aqa) + 1); 7663 7664 nvme_set_timestamp(n, 0ULL); 7665 7666 nvme_select_iocs(n); 7667 7668 return 0; 7669 } 7670 7671 static void nvme_cmb_enable_regs(NvmeCtrl *n) 7672 { 7673 uint32_t cmbloc = ldl_le_p(&n->bar.cmbloc); 7674 uint32_t cmbsz = ldl_le_p(&n->bar.cmbsz); 7675 7676 NVME_CMBLOC_SET_CDPCILS(cmbloc, 1); 7677 NVME_CMBLOC_SET_CDPMLS(cmbloc, 1); 7678 NVME_CMBLOC_SET_BIR(cmbloc, NVME_CMB_BIR); 7679 stl_le_p(&n->bar.cmbloc, cmbloc); 7680 7681 NVME_CMBSZ_SET_SQS(cmbsz, 1); 7682 NVME_CMBSZ_SET_CQS(cmbsz, 0); 7683 NVME_CMBSZ_SET_LISTS(cmbsz, 1); 7684 NVME_CMBSZ_SET_RDS(cmbsz, 1); 7685 NVME_CMBSZ_SET_WDS(cmbsz, 1); 7686 NVME_CMBSZ_SET_SZU(cmbsz, 2); /* MBs */ 7687 NVME_CMBSZ_SET_SZ(cmbsz, n->params.cmb_size_mb); 7688 stl_le_p(&n->bar.cmbsz, cmbsz); 7689 } 7690 7691 static void nvme_write_bar(NvmeCtrl *n, hwaddr offset, uint64_t data, 7692 unsigned size) 7693 { 7694 PCIDevice *pci = PCI_DEVICE(n); 7695 uint64_t cap = ldq_le_p(&n->bar.cap); 7696 uint32_t cc = ldl_le_p(&n->bar.cc); 7697 uint32_t intms = ldl_le_p(&n->bar.intms); 7698 uint32_t csts = ldl_le_p(&n->bar.csts); 7699 uint32_t pmrsts = ldl_le_p(&n->bar.pmrsts); 7700 7701 if (unlikely(offset & (sizeof(uint32_t) - 1))) { 7702 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_misaligned32, 7703 "MMIO write not 32-bit aligned," 7704 " offset=0x%"PRIx64"", offset); 7705 /* should be ignored, fall through for now */ 7706 } 7707 7708 if (unlikely(size < sizeof(uint32_t))) { 7709 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_toosmall, 7710 "MMIO write smaller than 32-bits," 7711 " offset=0x%"PRIx64", size=%u", 7712 offset, size); 7713 /* should be ignored, fall through for now */ 7714 } 7715 7716 switch (offset) { 7717 case NVME_REG_INTMS: 7718 if (unlikely(msix_enabled(pci))) { 7719 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix, 7720 "undefined access to interrupt mask set" 7721 " when MSI-X is enabled"); 7722 /* should be ignored, fall through for now */ 7723 } 7724 intms |= data; 7725 stl_le_p(&n->bar.intms, intms); 7726 n->bar.intmc = n->bar.intms; 7727 trace_pci_nvme_mmio_intm_set(data & 0xffffffff, intms); 7728 nvme_irq_check(n); 7729 break; 7730 case NVME_REG_INTMC: 7731 if (unlikely(msix_enabled(pci))) { 7732 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix, 7733 "undefined access to interrupt mask clr" 7734 " when MSI-X is enabled"); 7735 /* should be ignored, fall through for now */ 7736 } 7737 intms &= ~data; 7738 stl_le_p(&n->bar.intms, intms); 7739 n->bar.intmc = n->bar.intms; 7740 trace_pci_nvme_mmio_intm_clr(data & 0xffffffff, intms); 7741 nvme_irq_check(n); 7742 break; 7743 case NVME_REG_CC: 7744 stl_le_p(&n->bar.cc, data); 7745 7746 trace_pci_nvme_mmio_cfg(data & 0xffffffff); 7747 7748 if (NVME_CC_SHN(data) && !(NVME_CC_SHN(cc))) { 7749 trace_pci_nvme_mmio_shutdown_set(); 7750 nvme_ctrl_shutdown(n); 7751 csts &= ~(CSTS_SHST_MASK << CSTS_SHST_SHIFT); 7752 csts |= NVME_CSTS_SHST_COMPLETE; 7753 } else if (!NVME_CC_SHN(data) && NVME_CC_SHN(cc)) { 7754 trace_pci_nvme_mmio_shutdown_cleared(); 7755 csts &= ~(CSTS_SHST_MASK << CSTS_SHST_SHIFT); 7756 } 7757 7758 if (NVME_CC_EN(data) && !NVME_CC_EN(cc)) { 7759 if (unlikely(nvme_start_ctrl(n))) { 7760 trace_pci_nvme_err_startfail(); 7761 csts = NVME_CSTS_FAILED; 7762 } else { 7763 trace_pci_nvme_mmio_start_success(); 7764 csts = NVME_CSTS_READY; 7765 } 7766 } else if (!NVME_CC_EN(data) && NVME_CC_EN(cc)) { 7767 trace_pci_nvme_mmio_stopped(); 7768 nvme_ctrl_reset(n, NVME_RESET_CONTROLLER); 7769 7770 break; 7771 } 7772 7773 stl_le_p(&n->bar.csts, csts); 7774 7775 break; 7776 case NVME_REG_CSTS: 7777 if (data & (1 << 4)) { 7778 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ssreset_w1c_unsupported, 7779 "attempted to W1C CSTS.NSSRO" 7780 " but CAP.NSSRS is zero (not supported)"); 7781 } else if (data != 0) { 7782 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ro_csts, 7783 "attempted to set a read only bit" 7784 " of controller status"); 7785 } 7786 break; 7787 case NVME_REG_NSSR: 7788 if (data == 0x4e564d65) { 7789 trace_pci_nvme_ub_mmiowr_ssreset_unsupported(); 7790 } else { 7791 /* The spec says that writes of other values have no effect */ 7792 return; 7793 } 7794 break; 7795 case NVME_REG_AQA: 7796 stl_le_p(&n->bar.aqa, data); 7797 trace_pci_nvme_mmio_aqattr(data & 0xffffffff); 7798 break; 7799 case NVME_REG_ASQ: 7800 stn_le_p(&n->bar.asq, size, data); 7801 trace_pci_nvme_mmio_asqaddr(data); 7802 break; 7803 case NVME_REG_ASQ + 4: 7804 stl_le_p((uint8_t *)&n->bar.asq + 4, data); 7805 trace_pci_nvme_mmio_asqaddr_hi(data, ldq_le_p(&n->bar.asq)); 7806 break; 7807 case NVME_REG_ACQ: 7808 trace_pci_nvme_mmio_acqaddr(data); 7809 stn_le_p(&n->bar.acq, size, data); 7810 break; 7811 case NVME_REG_ACQ + 4: 7812 stl_le_p((uint8_t *)&n->bar.acq + 4, data); 7813 trace_pci_nvme_mmio_acqaddr_hi(data, ldq_le_p(&n->bar.acq)); 7814 break; 7815 case NVME_REG_CMBLOC: 7816 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbloc_reserved, 7817 "invalid write to reserved CMBLOC" 7818 " when CMBSZ is zero, ignored"); 7819 return; 7820 case NVME_REG_CMBSZ: 7821 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbsz_readonly, 7822 "invalid write to read only CMBSZ, ignored"); 7823 return; 7824 case NVME_REG_CMBMSC: 7825 if (!NVME_CAP_CMBS(cap)) { 7826 return; 7827 } 7828 7829 stn_le_p(&n->bar.cmbmsc, size, data); 7830 n->cmb.cmse = false; 7831 7832 if (NVME_CMBMSC_CRE(data)) { 7833 nvme_cmb_enable_regs(n); 7834 7835 if (NVME_CMBMSC_CMSE(data)) { 7836 uint64_t cmbmsc = ldq_le_p(&n->bar.cmbmsc); 7837 hwaddr cba = NVME_CMBMSC_CBA(cmbmsc) << CMBMSC_CBA_SHIFT; 7838 if (cba + int128_get64(n->cmb.mem.size) < cba) { 7839 uint32_t cmbsts = ldl_le_p(&n->bar.cmbsts); 7840 NVME_CMBSTS_SET_CBAI(cmbsts, 1); 7841 stl_le_p(&n->bar.cmbsts, cmbsts); 7842 return; 7843 } 7844 7845 n->cmb.cba = cba; 7846 n->cmb.cmse = true; 7847 } 7848 } else { 7849 n->bar.cmbsz = 0; 7850 n->bar.cmbloc = 0; 7851 } 7852 7853 return; 7854 case NVME_REG_CMBMSC + 4: 7855 stl_le_p((uint8_t *)&n->bar.cmbmsc + 4, data); 7856 return; 7857 7858 case NVME_REG_PMRCAP: 7859 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrcap_readonly, 7860 "invalid write to PMRCAP register, ignored"); 7861 return; 7862 case NVME_REG_PMRCTL: 7863 if (!NVME_CAP_PMRS(cap)) { 7864 return; 7865 } 7866 7867 stl_le_p(&n->bar.pmrctl, data); 7868 if (NVME_PMRCTL_EN(data)) { 7869 memory_region_set_enabled(&n->pmr.dev->mr, true); 7870 pmrsts = 0; 7871 } else { 7872 memory_region_set_enabled(&n->pmr.dev->mr, false); 7873 NVME_PMRSTS_SET_NRDY(pmrsts, 1); 7874 n->pmr.cmse = false; 7875 } 7876 stl_le_p(&n->bar.pmrsts, pmrsts); 7877 return; 7878 case NVME_REG_PMRSTS: 7879 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrsts_readonly, 7880 "invalid write to PMRSTS register, ignored"); 7881 return; 7882 case NVME_REG_PMREBS: 7883 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrebs_readonly, 7884 "invalid write to PMREBS register, ignored"); 7885 return; 7886 case NVME_REG_PMRSWTP: 7887 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrswtp_readonly, 7888 "invalid write to PMRSWTP register, ignored"); 7889 return; 7890 case NVME_REG_PMRMSCL: 7891 if (!NVME_CAP_PMRS(cap)) { 7892 return; 7893 } 7894 7895 stl_le_p(&n->bar.pmrmscl, data); 7896 n->pmr.cmse = false; 7897 7898 if (NVME_PMRMSCL_CMSE(data)) { 7899 uint64_t pmrmscu = ldl_le_p(&n->bar.pmrmscu); 7900 hwaddr cba = pmrmscu << 32 | 7901 (NVME_PMRMSCL_CBA(data) << PMRMSCL_CBA_SHIFT); 7902 if (cba + int128_get64(n->pmr.dev->mr.size) < cba) { 7903 NVME_PMRSTS_SET_CBAI(pmrsts, 1); 7904 stl_le_p(&n->bar.pmrsts, pmrsts); 7905 return; 7906 } 7907 7908 n->pmr.cmse = true; 7909 n->pmr.cba = cba; 7910 } 7911 7912 return; 7913 case NVME_REG_PMRMSCU: 7914 if (!NVME_CAP_PMRS(cap)) { 7915 return; 7916 } 7917 7918 stl_le_p(&n->bar.pmrmscu, data); 7919 return; 7920 default: 7921 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_invalid, 7922 "invalid MMIO write," 7923 " offset=0x%"PRIx64", data=%"PRIx64"", 7924 offset, data); 7925 break; 7926 } 7927 } 7928 7929 static uint64_t nvme_mmio_read(void *opaque, hwaddr addr, unsigned size) 7930 { 7931 NvmeCtrl *n = (NvmeCtrl *)opaque; 7932 uint8_t *ptr = (uint8_t *)&n->bar; 7933 7934 trace_pci_nvme_mmio_read(addr, size); 7935 7936 if (unlikely(addr & (sizeof(uint32_t) - 1))) { 7937 NVME_GUEST_ERR(pci_nvme_ub_mmiord_misaligned32, 7938 "MMIO read not 32-bit aligned," 7939 " offset=0x%"PRIx64"", addr); 7940 /* should RAZ, fall through for now */ 7941 } else if (unlikely(size < sizeof(uint32_t))) { 7942 NVME_GUEST_ERR(pci_nvme_ub_mmiord_toosmall, 7943 "MMIO read smaller than 32-bits," 7944 " offset=0x%"PRIx64"", addr); 7945 /* should RAZ, fall through for now */ 7946 } 7947 7948 if (addr > sizeof(n->bar) - size) { 7949 NVME_GUEST_ERR(pci_nvme_ub_mmiord_invalid_ofs, 7950 "MMIO read beyond last register," 7951 " offset=0x%"PRIx64", returning 0", addr); 7952 7953 return 0; 7954 } 7955 7956 if (pci_is_vf(PCI_DEVICE(n)) && !nvme_sctrl(n)->scs && 7957 addr != NVME_REG_CSTS) { 7958 trace_pci_nvme_err_ignored_mmio_vf_offline(addr, size); 7959 return 0; 7960 } 7961 7962 /* 7963 * When PMRWBM bit 1 is set then read from 7964 * from PMRSTS should ensure prior writes 7965 * made it to persistent media 7966 */ 7967 if (addr == NVME_REG_PMRSTS && 7968 (NVME_PMRCAP_PMRWBM(ldl_le_p(&n->bar.pmrcap)) & 0x02)) { 7969 memory_region_msync(&n->pmr.dev->mr, 0, n->pmr.dev->size); 7970 } 7971 7972 return ldn_le_p(ptr + addr, size); 7973 } 7974 7975 static void nvme_process_db(NvmeCtrl *n, hwaddr addr, int val) 7976 { 7977 PCIDevice *pci = PCI_DEVICE(n); 7978 uint32_t qid; 7979 7980 if (unlikely(addr & ((1 << 2) - 1))) { 7981 NVME_GUEST_ERR(pci_nvme_ub_db_wr_misaligned, 7982 "doorbell write not 32-bit aligned," 7983 " offset=0x%"PRIx64", ignoring", addr); 7984 return; 7985 } 7986 7987 if (((addr - 0x1000) >> 2) & 1) { 7988 /* Completion queue doorbell write */ 7989 7990 uint16_t new_head = val & 0xffff; 7991 NvmeCQueue *cq; 7992 7993 qid = (addr - (0x1000 + (1 << 2))) >> 3; 7994 if (unlikely(nvme_check_cqid(n, qid))) { 7995 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cq, 7996 "completion queue doorbell write" 7997 " for nonexistent queue," 7998 " sqid=%"PRIu32", ignoring", qid); 7999 8000 /* 8001 * NVM Express v1.3d, Section 4.1 state: "If host software writes 8002 * an invalid value to the Submission Queue Tail Doorbell or 8003 * Completion Queue Head Doorbell register and an Asynchronous Event 8004 * Request command is outstanding, then an asynchronous event is 8005 * posted to the Admin Completion Queue with a status code of 8006 * Invalid Doorbell Write Value." 8007 * 8008 * Also note that the spec includes the "Invalid Doorbell Register" 8009 * status code, but nowhere does it specify when to use it. 8010 * However, it seems reasonable to use it here in a similar 8011 * fashion. 8012 */ 8013 if (n->outstanding_aers) { 8014 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR, 8015 NVME_AER_INFO_ERR_INVALID_DB_REGISTER, 8016 NVME_LOG_ERROR_INFO); 8017 } 8018 8019 return; 8020 } 8021 8022 cq = n->cq[qid]; 8023 if (unlikely(new_head >= cq->size)) { 8024 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cqhead, 8025 "completion queue doorbell write value" 8026 " beyond queue size, sqid=%"PRIu32"," 8027 " new_head=%"PRIu16", ignoring", 8028 qid, new_head); 8029 8030 if (n->outstanding_aers) { 8031 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR, 8032 NVME_AER_INFO_ERR_INVALID_DB_VALUE, 8033 NVME_LOG_ERROR_INFO); 8034 } 8035 8036 return; 8037 } 8038 8039 trace_pci_nvme_mmio_doorbell_cq(cq->cqid, new_head); 8040 8041 /* scheduled deferred cqe posting if queue was previously full */ 8042 if (nvme_cq_full(cq)) { 8043 qemu_bh_schedule(cq->bh); 8044 } 8045 8046 cq->head = new_head; 8047 if (!qid && n->dbbuf_enabled) { 8048 stl_le_pci_dma(pci, cq->db_addr, cq->head, MEMTXATTRS_UNSPECIFIED); 8049 } 8050 8051 if (cq->tail == cq->head) { 8052 if (cq->irq_enabled) { 8053 n->cq_pending--; 8054 } 8055 8056 nvme_irq_deassert(n, cq); 8057 } 8058 } else { 8059 /* Submission queue doorbell write */ 8060 8061 uint16_t new_tail = val & 0xffff; 8062 NvmeSQueue *sq; 8063 8064 qid = (addr - 0x1000) >> 3; 8065 if (unlikely(nvme_check_sqid(n, qid))) { 8066 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sq, 8067 "submission queue doorbell write" 8068 " for nonexistent queue," 8069 " sqid=%"PRIu32", ignoring", qid); 8070 8071 if (n->outstanding_aers) { 8072 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR, 8073 NVME_AER_INFO_ERR_INVALID_DB_REGISTER, 8074 NVME_LOG_ERROR_INFO); 8075 } 8076 8077 return; 8078 } 8079 8080 sq = n->sq[qid]; 8081 if (unlikely(new_tail >= sq->size)) { 8082 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sqtail, 8083 "submission queue doorbell write value" 8084 " beyond queue size, sqid=%"PRIu32"," 8085 " new_tail=%"PRIu16", ignoring", 8086 qid, new_tail); 8087 8088 if (n->outstanding_aers) { 8089 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR, 8090 NVME_AER_INFO_ERR_INVALID_DB_VALUE, 8091 NVME_LOG_ERROR_INFO); 8092 } 8093 8094 return; 8095 } 8096 8097 trace_pci_nvme_mmio_doorbell_sq(sq->sqid, new_tail); 8098 8099 sq->tail = new_tail; 8100 if (!qid && n->dbbuf_enabled) { 8101 /* 8102 * The spec states "the host shall also update the controller's 8103 * corresponding doorbell property to match the value of that entry 8104 * in the Shadow Doorbell buffer." 8105 * 8106 * Since this context is currently a VM trap, we can safely enforce 8107 * the requirement from the device side in case the host is 8108 * misbehaving. 8109 * 8110 * Note, we shouldn't have to do this, but various drivers 8111 * including ones that run on Linux, are not updating Admin Queues, 8112 * so we can't trust reading it for an appropriate sq tail. 8113 */ 8114 stl_le_pci_dma(pci, sq->db_addr, sq->tail, MEMTXATTRS_UNSPECIFIED); 8115 } 8116 8117 qemu_bh_schedule(sq->bh); 8118 } 8119 } 8120 8121 static void nvme_mmio_write(void *opaque, hwaddr addr, uint64_t data, 8122 unsigned size) 8123 { 8124 NvmeCtrl *n = (NvmeCtrl *)opaque; 8125 8126 trace_pci_nvme_mmio_write(addr, data, size); 8127 8128 if (pci_is_vf(PCI_DEVICE(n)) && !nvme_sctrl(n)->scs && 8129 addr != NVME_REG_CSTS) { 8130 trace_pci_nvme_err_ignored_mmio_vf_offline(addr, size); 8131 return; 8132 } 8133 8134 if (addr < sizeof(n->bar)) { 8135 nvme_write_bar(n, addr, data, size); 8136 } else { 8137 nvme_process_db(n, addr, data); 8138 } 8139 } 8140 8141 static const MemoryRegionOps nvme_mmio_ops = { 8142 .read = nvme_mmio_read, 8143 .write = nvme_mmio_write, 8144 .endianness = DEVICE_LITTLE_ENDIAN, 8145 .impl = { 8146 .min_access_size = 2, 8147 .max_access_size = 8, 8148 }, 8149 }; 8150 8151 static void nvme_cmb_write(void *opaque, hwaddr addr, uint64_t data, 8152 unsigned size) 8153 { 8154 NvmeCtrl *n = (NvmeCtrl *)opaque; 8155 stn_le_p(&n->cmb.buf[addr], size, data); 8156 } 8157 8158 static uint64_t nvme_cmb_read(void *opaque, hwaddr addr, unsigned size) 8159 { 8160 NvmeCtrl *n = (NvmeCtrl *)opaque; 8161 return ldn_le_p(&n->cmb.buf[addr], size); 8162 } 8163 8164 static const MemoryRegionOps nvme_cmb_ops = { 8165 .read = nvme_cmb_read, 8166 .write = nvme_cmb_write, 8167 .endianness = DEVICE_LITTLE_ENDIAN, 8168 .impl = { 8169 .min_access_size = 1, 8170 .max_access_size = 8, 8171 }, 8172 }; 8173 8174 static bool nvme_check_params(NvmeCtrl *n, Error **errp) 8175 { 8176 NvmeParams *params = &n->params; 8177 8178 if (params->num_queues) { 8179 warn_report("num_queues is deprecated; please use max_ioqpairs " 8180 "instead"); 8181 8182 params->max_ioqpairs = params->num_queues - 1; 8183 } 8184 8185 if (n->namespace.blkconf.blk && n->subsys) { 8186 error_setg(errp, "subsystem support is unavailable with legacy " 8187 "namespace ('drive' property)"); 8188 return false; 8189 } 8190 8191 if (params->max_ioqpairs < 1 || 8192 params->max_ioqpairs > NVME_MAX_IOQPAIRS) { 8193 error_setg(errp, "max_ioqpairs must be between 1 and %d", 8194 NVME_MAX_IOQPAIRS); 8195 return false; 8196 } 8197 8198 if (params->msix_qsize < 1 || 8199 params->msix_qsize > PCI_MSIX_FLAGS_QSIZE + 1) { 8200 error_setg(errp, "msix_qsize must be between 1 and %d", 8201 PCI_MSIX_FLAGS_QSIZE + 1); 8202 return false; 8203 } 8204 8205 if (!params->serial) { 8206 error_setg(errp, "serial property not set"); 8207 return false; 8208 } 8209 8210 if (params->mqes < 1) { 8211 error_setg(errp, "mqes property cannot be less than 1"); 8212 return false; 8213 } 8214 8215 if (n->pmr.dev) { 8216 if (params->msix_exclusive_bar) { 8217 error_setg(errp, "not enough BARs available to enable PMR"); 8218 return false; 8219 } 8220 8221 if (host_memory_backend_is_mapped(n->pmr.dev)) { 8222 error_setg(errp, "can't use already busy memdev: %s", 8223 object_get_canonical_path_component(OBJECT(n->pmr.dev))); 8224 return false; 8225 } 8226 8227 if (!is_power_of_2(n->pmr.dev->size)) { 8228 error_setg(errp, "pmr backend size needs to be power of 2 in size"); 8229 return false; 8230 } 8231 8232 host_memory_backend_set_mapped(n->pmr.dev, true); 8233 } 8234 8235 if (n->params.zasl > n->params.mdts) { 8236 error_setg(errp, "zoned.zasl (Zone Append Size Limit) must be less " 8237 "than or equal to mdts (Maximum Data Transfer Size)"); 8238 return false; 8239 } 8240 8241 if (!n->params.vsl) { 8242 error_setg(errp, "vsl must be non-zero"); 8243 return false; 8244 } 8245 8246 if (params->sriov_max_vfs) { 8247 if (!n->subsys) { 8248 error_setg(errp, "subsystem is required for the use of SR-IOV"); 8249 return false; 8250 } 8251 8252 if (params->cmb_size_mb) { 8253 error_setg(errp, "CMB is not supported with SR-IOV"); 8254 return false; 8255 } 8256 8257 if (n->pmr.dev) { 8258 error_setg(errp, "PMR is not supported with SR-IOV"); 8259 return false; 8260 } 8261 8262 if (!params->sriov_vq_flexible || !params->sriov_vi_flexible) { 8263 error_setg(errp, "both sriov_vq_flexible and sriov_vi_flexible" 8264 " must be set for the use of SR-IOV"); 8265 return false; 8266 } 8267 8268 if (params->sriov_vq_flexible < params->sriov_max_vfs * 2) { 8269 error_setg(errp, "sriov_vq_flexible must be greater than or equal" 8270 " to %d (sriov_max_vfs * 2)", params->sriov_max_vfs * 2); 8271 return false; 8272 } 8273 8274 if (params->max_ioqpairs < params->sriov_vq_flexible + 2) { 8275 error_setg(errp, "(max_ioqpairs - sriov_vq_flexible) must be" 8276 " greater than or equal to 2"); 8277 return false; 8278 } 8279 8280 if (params->sriov_vi_flexible < params->sriov_max_vfs) { 8281 error_setg(errp, "sriov_vi_flexible must be greater than or equal" 8282 " to %d (sriov_max_vfs)", params->sriov_max_vfs); 8283 return false; 8284 } 8285 8286 if (params->msix_qsize < params->sriov_vi_flexible + 1) { 8287 error_setg(errp, "(msix_qsize - sriov_vi_flexible) must be" 8288 " greater than or equal to 1"); 8289 return false; 8290 } 8291 8292 if (params->sriov_max_vi_per_vf && 8293 (params->sriov_max_vi_per_vf - 1) % NVME_VF_RES_GRANULARITY) { 8294 error_setg(errp, "sriov_max_vi_per_vf must meet:" 8295 " (sriov_max_vi_per_vf - 1) %% %d == 0 and" 8296 " sriov_max_vi_per_vf >= 1", NVME_VF_RES_GRANULARITY); 8297 return false; 8298 } 8299 8300 if (params->sriov_max_vq_per_vf && 8301 (params->sriov_max_vq_per_vf < 2 || 8302 (params->sriov_max_vq_per_vf - 1) % NVME_VF_RES_GRANULARITY)) { 8303 error_setg(errp, "sriov_max_vq_per_vf must meet:" 8304 " (sriov_max_vq_per_vf - 1) %% %d == 0 and" 8305 " sriov_max_vq_per_vf >= 2", NVME_VF_RES_GRANULARITY); 8306 return false; 8307 } 8308 } 8309 8310 return true; 8311 } 8312 8313 static void nvme_init_state(NvmeCtrl *n) 8314 { 8315 NvmePriCtrlCap *cap = &n->pri_ctrl_cap; 8316 NvmeSecCtrlEntry *list = n->sec_ctrl_list; 8317 NvmeSecCtrlEntry *sctrl; 8318 PCIDevice *pci = PCI_DEVICE(n); 8319 NvmeAtomic *atomic = &n->atomic; 8320 NvmeIdCtrl *id = &n->id_ctrl; 8321 uint8_t max_vfs; 8322 int i; 8323 8324 if (pci_is_vf(pci)) { 8325 sctrl = nvme_sctrl(n); 8326 max_vfs = 0; 8327 n->conf_ioqpairs = sctrl->nvq ? le16_to_cpu(sctrl->nvq) - 1 : 0; 8328 n->conf_msix_qsize = sctrl->nvi ? le16_to_cpu(sctrl->nvi) : 1; 8329 } else { 8330 max_vfs = n->params.sriov_max_vfs; 8331 n->conf_ioqpairs = n->params.max_ioqpairs; 8332 n->conf_msix_qsize = n->params.msix_qsize; 8333 } 8334 8335 n->sq = g_new0(NvmeSQueue *, n->params.max_ioqpairs + 1); 8336 n->cq = g_new0(NvmeCQueue *, n->params.max_ioqpairs + 1); 8337 n->temperature = NVME_TEMPERATURE; 8338 n->features.temp_thresh_hi = NVME_TEMPERATURE_WARNING; 8339 n->starttime_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL); 8340 n->aer_reqs = g_new0(NvmeRequest *, n->params.aerl + 1); 8341 QTAILQ_INIT(&n->aer_queue); 8342 8343 n->nr_sec_ctrls = max_vfs; 8344 for (i = 0; i < max_vfs; i++) { 8345 sctrl = &list[i]; 8346 sctrl->pcid = cpu_to_le16(n->cntlid); 8347 sctrl->vfn = cpu_to_le16(i + 1); 8348 } 8349 8350 cap->cntlid = cpu_to_le16(n->cntlid); 8351 cap->crt = NVME_CRT_VQ | NVME_CRT_VI; 8352 8353 if (pci_is_vf(pci)) { 8354 cap->vqprt = cpu_to_le16(1 + n->conf_ioqpairs); 8355 } else { 8356 cap->vqprt = cpu_to_le16(1 + n->params.max_ioqpairs - 8357 n->params.sriov_vq_flexible); 8358 cap->vqfrt = cpu_to_le32(n->params.sriov_vq_flexible); 8359 cap->vqrfap = cap->vqfrt; 8360 cap->vqgran = cpu_to_le16(NVME_VF_RES_GRANULARITY); 8361 cap->vqfrsm = n->params.sriov_max_vq_per_vf ? 8362 cpu_to_le16(n->params.sriov_max_vq_per_vf) : 8363 cap->vqfrt / MAX(max_vfs, 1); 8364 } 8365 8366 if (pci_is_vf(pci)) { 8367 cap->viprt = cpu_to_le16(n->conf_msix_qsize); 8368 } else { 8369 cap->viprt = cpu_to_le16(n->params.msix_qsize - 8370 n->params.sriov_vi_flexible); 8371 cap->vifrt = cpu_to_le32(n->params.sriov_vi_flexible); 8372 cap->virfap = cap->vifrt; 8373 cap->vigran = cpu_to_le16(NVME_VF_RES_GRANULARITY); 8374 cap->vifrsm = n->params.sriov_max_vi_per_vf ? 8375 cpu_to_le16(n->params.sriov_max_vi_per_vf) : 8376 cap->vifrt / MAX(max_vfs, 1); 8377 } 8378 8379 /* Atomic Write */ 8380 id->awun = cpu_to_le16(n->params.atomic_awun); 8381 id->awupf = cpu_to_le16(n->params.atomic_awupf); 8382 n->dn = n->params.atomic_dn; 8383 8384 if (id->awun || id->awupf) { 8385 if (id->awupf > id->awun) { 8386 id->awupf = 0; 8387 } 8388 8389 if (n->dn) { 8390 atomic->atomic_max_write_size = id->awupf + 1; 8391 } else { 8392 atomic->atomic_max_write_size = id->awun + 1; 8393 } 8394 8395 if (atomic->atomic_max_write_size == 1) { 8396 atomic->atomic_writes = 0; 8397 } else { 8398 atomic->atomic_writes = 1; 8399 } 8400 } 8401 } 8402 8403 static void nvme_init_cmb(NvmeCtrl *n, PCIDevice *pci_dev) 8404 { 8405 uint64_t cmb_size = n->params.cmb_size_mb * MiB; 8406 uint64_t cap = ldq_le_p(&n->bar.cap); 8407 8408 n->cmb.buf = g_malloc0(cmb_size); 8409 memory_region_init_io(&n->cmb.mem, OBJECT(n), &nvme_cmb_ops, n, 8410 "nvme-cmb", cmb_size); 8411 pci_register_bar(pci_dev, NVME_CMB_BIR, 8412 PCI_BASE_ADDRESS_SPACE_MEMORY | 8413 PCI_BASE_ADDRESS_MEM_TYPE_64 | 8414 PCI_BASE_ADDRESS_MEM_PREFETCH, &n->cmb.mem); 8415 8416 NVME_CAP_SET_CMBS(cap, 1); 8417 stq_le_p(&n->bar.cap, cap); 8418 8419 if (n->params.legacy_cmb) { 8420 nvme_cmb_enable_regs(n); 8421 n->cmb.cmse = true; 8422 } 8423 } 8424 8425 static void nvme_init_pmr(NvmeCtrl *n, PCIDevice *pci_dev) 8426 { 8427 uint32_t pmrcap = ldl_le_p(&n->bar.pmrcap); 8428 8429 NVME_PMRCAP_SET_RDS(pmrcap, 1); 8430 NVME_PMRCAP_SET_WDS(pmrcap, 1); 8431 NVME_PMRCAP_SET_BIR(pmrcap, NVME_PMR_BIR); 8432 /* Turn on bit 1 support */ 8433 NVME_PMRCAP_SET_PMRWBM(pmrcap, 0x02); 8434 NVME_PMRCAP_SET_CMSS(pmrcap, 1); 8435 stl_le_p(&n->bar.pmrcap, pmrcap); 8436 8437 pci_register_bar(pci_dev, NVME_PMR_BIR, 8438 PCI_BASE_ADDRESS_SPACE_MEMORY | 8439 PCI_BASE_ADDRESS_MEM_TYPE_64 | 8440 PCI_BASE_ADDRESS_MEM_PREFETCH, &n->pmr.dev->mr); 8441 8442 memory_region_set_enabled(&n->pmr.dev->mr, false); 8443 } 8444 8445 static uint64_t nvme_mbar_size(unsigned total_queues, unsigned total_irqs, 8446 unsigned *msix_table_offset, 8447 unsigned *msix_pba_offset) 8448 { 8449 uint64_t bar_size, msix_table_size; 8450 8451 bar_size = sizeof(NvmeBar) + 2 * total_queues * NVME_DB_SIZE; 8452 8453 if (total_irqs == 0) { 8454 goto out; 8455 } 8456 8457 bar_size = QEMU_ALIGN_UP(bar_size, 4 * KiB); 8458 8459 if (msix_table_offset) { 8460 *msix_table_offset = bar_size; 8461 } 8462 8463 msix_table_size = PCI_MSIX_ENTRY_SIZE * total_irqs; 8464 bar_size += msix_table_size; 8465 bar_size = QEMU_ALIGN_UP(bar_size, 4 * KiB); 8466 8467 if (msix_pba_offset) { 8468 *msix_pba_offset = bar_size; 8469 } 8470 8471 bar_size += QEMU_ALIGN_UP(total_irqs, 64) / 8; 8472 8473 out: 8474 return pow2ceil(bar_size); 8475 } 8476 8477 static void nvme_init_sriov(NvmeCtrl *n, PCIDevice *pci_dev, uint16_t offset) 8478 { 8479 uint16_t vf_dev_id = n->params.use_intel_id ? 8480 PCI_DEVICE_ID_INTEL_NVME : PCI_DEVICE_ID_REDHAT_NVME; 8481 NvmePriCtrlCap *cap = &n->pri_ctrl_cap; 8482 uint64_t bar_size = nvme_mbar_size(le16_to_cpu(cap->vqfrsm), 8483 le16_to_cpu(cap->vifrsm), 8484 NULL, NULL); 8485 8486 pcie_sriov_pf_init(pci_dev, offset, "nvme", vf_dev_id, 8487 n->params.sriov_max_vfs, n->params.sriov_max_vfs, 8488 NVME_VF_OFFSET, NVME_VF_STRIDE); 8489 8490 pcie_sriov_pf_init_vf_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY | 8491 PCI_BASE_ADDRESS_MEM_TYPE_64, bar_size); 8492 } 8493 8494 static int nvme_add_pm_capability(PCIDevice *pci_dev, uint8_t offset) 8495 { 8496 Error *err = NULL; 8497 int ret; 8498 8499 ret = pci_add_capability(pci_dev, PCI_CAP_ID_PM, offset, 8500 PCI_PM_SIZEOF, &err); 8501 if (err) { 8502 error_report_err(err); 8503 return ret; 8504 } 8505 8506 pci_set_word(pci_dev->config + offset + PCI_PM_PMC, 8507 PCI_PM_CAP_VER_1_2); 8508 pci_set_word(pci_dev->config + offset + PCI_PM_CTRL, 8509 PCI_PM_CTRL_NO_SOFT_RESET); 8510 pci_set_word(pci_dev->wmask + offset + PCI_PM_CTRL, 8511 PCI_PM_CTRL_STATE_MASK); 8512 8513 return 0; 8514 } 8515 8516 static bool pcie_doe_spdm_rsp(DOECap *doe_cap) 8517 { 8518 void *req = pcie_doe_get_write_mbox_ptr(doe_cap); 8519 uint32_t req_len = pcie_doe_get_obj_len(req) * 4; 8520 void *rsp = doe_cap->read_mbox; 8521 uint32_t rsp_len = SPDM_SOCKET_MAX_MESSAGE_BUFFER_SIZE; 8522 8523 uint32_t recvd = spdm_socket_rsp(doe_cap->spdm_socket, 8524 SPDM_SOCKET_TRANSPORT_TYPE_PCI_DOE, 8525 req, req_len, rsp, rsp_len); 8526 doe_cap->read_mbox_len += DIV_ROUND_UP(recvd, 4); 8527 8528 return recvd != 0; 8529 } 8530 8531 static DOEProtocol doe_spdm_prot[] = { 8532 { PCI_VENDOR_ID_PCI_SIG, PCI_SIG_DOE_CMA, pcie_doe_spdm_rsp }, 8533 { PCI_VENDOR_ID_PCI_SIG, PCI_SIG_DOE_SECURED_CMA, pcie_doe_spdm_rsp }, 8534 { } 8535 }; 8536 8537 static bool nvme_init_pci(NvmeCtrl *n, PCIDevice *pci_dev, Error **errp) 8538 { 8539 ERRP_GUARD(); 8540 uint8_t *pci_conf = pci_dev->config; 8541 uint64_t bar_size; 8542 unsigned msix_table_offset = 0, msix_pba_offset = 0; 8543 unsigned nr_vectors; 8544 int ret; 8545 8546 pci_conf[PCI_INTERRUPT_PIN] = 1; 8547 pci_config_set_prog_interface(pci_conf, 0x2); 8548 8549 if (n->params.use_intel_id) { 8550 pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_INTEL); 8551 pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_NVME); 8552 } else { 8553 pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_REDHAT); 8554 pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_REDHAT_NVME); 8555 } 8556 8557 pci_config_set_class(pci_conf, PCI_CLASS_STORAGE_EXPRESS); 8558 nvme_add_pm_capability(pci_dev, 0x60); 8559 pcie_endpoint_cap_init(pci_dev, 0x80); 8560 pcie_cap_flr_init(pci_dev); 8561 if (n->params.sriov_max_vfs) { 8562 pcie_ari_init(pci_dev, 0x100); 8563 } 8564 8565 if (n->params.msix_exclusive_bar && !pci_is_vf(pci_dev)) { 8566 bar_size = nvme_mbar_size(n->params.max_ioqpairs + 1, 0, NULL, NULL); 8567 memory_region_init_io(&n->iomem, OBJECT(n), &nvme_mmio_ops, n, "nvme", 8568 bar_size); 8569 pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY | 8570 PCI_BASE_ADDRESS_MEM_TYPE_64, &n->iomem); 8571 ret = msix_init_exclusive_bar(pci_dev, n->params.msix_qsize, 4, errp); 8572 } else { 8573 assert(n->params.msix_qsize >= 1); 8574 8575 /* add one to max_ioqpairs to account for the admin queue pair */ 8576 if (!pci_is_vf(pci_dev)) { 8577 nr_vectors = n->params.msix_qsize; 8578 bar_size = nvme_mbar_size(n->params.max_ioqpairs + 1, 8579 nr_vectors, &msix_table_offset, 8580 &msix_pba_offset); 8581 } else { 8582 NvmeCtrl *pn = NVME(pcie_sriov_get_pf(pci_dev)); 8583 NvmePriCtrlCap *cap = &pn->pri_ctrl_cap; 8584 8585 nr_vectors = le16_to_cpu(cap->vifrsm); 8586 bar_size = nvme_mbar_size(le16_to_cpu(cap->vqfrsm), nr_vectors, 8587 &msix_table_offset, &msix_pba_offset); 8588 } 8589 8590 memory_region_init(&n->bar0, OBJECT(n), "nvme-bar0", bar_size); 8591 memory_region_init_io(&n->iomem, OBJECT(n), &nvme_mmio_ops, n, "nvme", 8592 msix_table_offset); 8593 memory_region_add_subregion(&n->bar0, 0, &n->iomem); 8594 8595 if (pci_is_vf(pci_dev)) { 8596 pcie_sriov_vf_register_bar(pci_dev, 0, &n->bar0); 8597 } else { 8598 pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY | 8599 PCI_BASE_ADDRESS_MEM_TYPE_64, &n->bar0); 8600 } 8601 8602 ret = msix_init(pci_dev, nr_vectors, 8603 &n->bar0, 0, msix_table_offset, 8604 &n->bar0, 0, msix_pba_offset, 0, errp); 8605 } 8606 8607 if (ret == -ENOTSUP) { 8608 /* report that msix is not supported, but do not error out */ 8609 warn_report_err(*errp); 8610 *errp = NULL; 8611 } else if (ret < 0) { 8612 /* propagate error to caller */ 8613 return false; 8614 } 8615 8616 nvme_update_msixcap_ts(pci_dev, n->conf_msix_qsize); 8617 8618 pcie_cap_deverr_init(pci_dev); 8619 8620 /* DOE Initialisation */ 8621 if (pci_dev->spdm_port) { 8622 uint16_t doe_offset = n->params.sriov_max_vfs ? 8623 PCI_CONFIG_SPACE_SIZE + PCI_ARI_SIZEOF 8624 : PCI_CONFIG_SPACE_SIZE; 8625 8626 pcie_doe_init(pci_dev, &pci_dev->doe_spdm, doe_offset, 8627 doe_spdm_prot, true, 0); 8628 8629 pci_dev->doe_spdm.spdm_socket = spdm_socket_connect(pci_dev->spdm_port, 8630 errp); 8631 8632 if (pci_dev->doe_spdm.spdm_socket < 0) { 8633 return false; 8634 } 8635 } 8636 8637 if (n->params.cmb_size_mb) { 8638 nvme_init_cmb(n, pci_dev); 8639 } 8640 8641 if (n->pmr.dev) { 8642 nvme_init_pmr(n, pci_dev); 8643 } 8644 8645 if (!pci_is_vf(pci_dev) && n->params.sriov_max_vfs) { 8646 nvme_init_sriov(n, pci_dev, 0x120); 8647 } 8648 8649 return true; 8650 } 8651 8652 static void nvme_init_subnqn(NvmeCtrl *n) 8653 { 8654 NvmeSubsystem *subsys = n->subsys; 8655 NvmeIdCtrl *id = &n->id_ctrl; 8656 8657 if (!subsys) { 8658 snprintf((char *)id->subnqn, sizeof(id->subnqn), 8659 "nqn.2019-08.org.qemu:%s", n->params.serial); 8660 } else { 8661 pstrcpy((char *)id->subnqn, sizeof(id->subnqn), (char*)subsys->subnqn); 8662 } 8663 } 8664 8665 static void nvme_init_ctrl(NvmeCtrl *n, PCIDevice *pci_dev) 8666 { 8667 NvmeIdCtrl *id = &n->id_ctrl; 8668 uint8_t *pci_conf = pci_dev->config; 8669 uint64_t cap = ldq_le_p(&n->bar.cap); 8670 NvmeSecCtrlEntry *sctrl = nvme_sctrl(n); 8671 uint32_t ctratt; 8672 8673 id->vid = cpu_to_le16(pci_get_word(pci_conf + PCI_VENDOR_ID)); 8674 id->ssvid = cpu_to_le16(pci_get_word(pci_conf + PCI_SUBSYSTEM_VENDOR_ID)); 8675 strpadcpy((char *)id->mn, sizeof(id->mn), "QEMU NVMe Ctrl", ' '); 8676 strpadcpy((char *)id->fr, sizeof(id->fr), QEMU_VERSION, ' '); 8677 strpadcpy((char *)id->sn, sizeof(id->sn), n->params.serial, ' '); 8678 8679 id->cntlid = cpu_to_le16(n->cntlid); 8680 8681 id->oaes = cpu_to_le32(NVME_OAES_NS_ATTR); 8682 8683 ctratt = NVME_CTRATT_ELBAS; 8684 if (n->params.ctratt.mem) { 8685 ctratt |= NVME_CTRATT_MEM; 8686 } 8687 8688 id->rab = 6; 8689 8690 if (n->params.use_intel_id) { 8691 id->ieee[0] = 0xb3; 8692 id->ieee[1] = 0x02; 8693 id->ieee[2] = 0x00; 8694 } else { 8695 id->ieee[0] = 0x00; 8696 id->ieee[1] = 0x54; 8697 id->ieee[2] = 0x52; 8698 } 8699 8700 id->mdts = n->params.mdts; 8701 id->ver = cpu_to_le32(NVME_SPEC_VER); 8702 id->oacs = 8703 cpu_to_le16(NVME_OACS_NS_MGMT | NVME_OACS_FORMAT | NVME_OACS_DBBUF | 8704 NVME_OACS_DIRECTIVES); 8705 id->cntrltype = 0x1; 8706 8707 /* 8708 * Because the controller always completes the Abort command immediately, 8709 * there can never be more than one concurrently executing Abort command, 8710 * so this value is never used for anything. Note that there can easily be 8711 * many Abort commands in the queues, but they are not considered 8712 * "executing" until processed by nvme_abort. 8713 * 8714 * The specification recommends a value of 3 for Abort Command Limit (four 8715 * concurrently outstanding Abort commands), so lets use that though it is 8716 * inconsequential. 8717 */ 8718 id->acl = 3; 8719 id->aerl = n->params.aerl; 8720 id->frmw = (NVME_NUM_FW_SLOTS << 1) | NVME_FRMW_SLOT1_RO; 8721 id->lpa = NVME_LPA_NS_SMART | NVME_LPA_CSE | NVME_LPA_EXTENDED; 8722 8723 /* recommended default value (~70 C) */ 8724 id->wctemp = cpu_to_le16(NVME_TEMPERATURE_WARNING); 8725 id->cctemp = cpu_to_le16(NVME_TEMPERATURE_CRITICAL); 8726 8727 id->sqes = (NVME_SQES << 4) | NVME_SQES; 8728 id->cqes = (NVME_CQES << 4) | NVME_CQES; 8729 id->nn = cpu_to_le32(NVME_MAX_NAMESPACES); 8730 id->oncs = cpu_to_le16(NVME_ONCS_WRITE_ZEROES | NVME_ONCS_TIMESTAMP | 8731 NVME_ONCS_FEATURES | NVME_ONCS_DSM | 8732 NVME_ONCS_COMPARE | NVME_ONCS_COPY | 8733 NVME_ONCS_NVMCSA | NVME_ONCS_NVMAFC); 8734 8735 /* 8736 * NOTE: If this device ever supports a command set that does NOT use 0x0 8737 * as a Flush-equivalent operation, support for the broadcast NSID in Flush 8738 * should probably be removed. 8739 * 8740 * See comment in nvme_io_cmd. 8741 */ 8742 id->vwc = NVME_VWC_NSID_BROADCAST_SUPPORT | NVME_VWC_PRESENT; 8743 8744 id->ocfs = cpu_to_le16(NVME_OCFS_COPY_FORMAT_0 | NVME_OCFS_COPY_FORMAT_1 | 8745 NVME_OCFS_COPY_FORMAT_2 | NVME_OCFS_COPY_FORMAT_3); 8746 id->sgls = cpu_to_le32(NVME_CTRL_SGLS_SUPPORT_NO_ALIGN | 8747 NVME_CTRL_SGLS_MPTR_SGL); 8748 8749 nvme_init_subnqn(n); 8750 8751 id->psd[0].mp = cpu_to_le16(0x9c4); 8752 id->psd[0].enlat = cpu_to_le32(0x10); 8753 id->psd[0].exlat = cpu_to_le32(0x4); 8754 8755 if (n->subsys) { 8756 id->cmic |= NVME_CMIC_MULTI_CTRL; 8757 ctratt |= NVME_CTRATT_ENDGRPS; 8758 8759 id->endgidmax = cpu_to_le16(0x1); 8760 8761 if (n->subsys->endgrp.fdp.enabled) { 8762 ctratt |= NVME_CTRATT_FDPS; 8763 } 8764 } 8765 8766 id->ctratt = cpu_to_le32(ctratt); 8767 8768 NVME_CAP_SET_MQES(cap, n->params.mqes); 8769 NVME_CAP_SET_CQR(cap, 1); 8770 NVME_CAP_SET_TO(cap, 0xf); 8771 NVME_CAP_SET_CSS(cap, NVME_CAP_CSS_NVM); 8772 NVME_CAP_SET_CSS(cap, NVME_CAP_CSS_CSI_SUPP); 8773 NVME_CAP_SET_CSS(cap, NVME_CAP_CSS_ADMIN_ONLY); 8774 NVME_CAP_SET_MPSMAX(cap, 4); 8775 NVME_CAP_SET_CMBS(cap, n->params.cmb_size_mb ? 1 : 0); 8776 NVME_CAP_SET_PMRS(cap, n->pmr.dev ? 1 : 0); 8777 stq_le_p(&n->bar.cap, cap); 8778 8779 stl_le_p(&n->bar.vs, NVME_SPEC_VER); 8780 n->bar.intmc = n->bar.intms = 0; 8781 8782 if (pci_is_vf(pci_dev) && !sctrl->scs) { 8783 stl_le_p(&n->bar.csts, NVME_CSTS_FAILED); 8784 } 8785 } 8786 8787 static int nvme_init_subsys(NvmeCtrl *n, Error **errp) 8788 { 8789 int cntlid; 8790 8791 if (!n->subsys) { 8792 return 0; 8793 } 8794 8795 cntlid = nvme_subsys_register_ctrl(n, errp); 8796 if (cntlid < 0) { 8797 return -1; 8798 } 8799 8800 n->cntlid = cntlid; 8801 8802 return 0; 8803 } 8804 8805 void nvme_attach_ns(NvmeCtrl *n, NvmeNamespace *ns) 8806 { 8807 uint32_t nsid = ns->params.nsid; 8808 assert(nsid && nsid <= NVME_MAX_NAMESPACES); 8809 8810 n->namespaces[nsid] = ns; 8811 ns->attached++; 8812 8813 n->dmrsl = MIN_NON_ZERO(n->dmrsl, 8814 BDRV_REQUEST_MAX_BYTES / nvme_l2b(ns, 1)); 8815 } 8816 8817 static void nvme_realize(PCIDevice *pci_dev, Error **errp) 8818 { 8819 NvmeCtrl *n = NVME(pci_dev); 8820 DeviceState *dev = DEVICE(pci_dev); 8821 NvmeNamespace *ns; 8822 NvmeCtrl *pn = NVME(pcie_sriov_get_pf(pci_dev)); 8823 8824 if (pci_is_vf(pci_dev)) { 8825 /* 8826 * VFs derive settings from the parent. PF's lifespan exceeds 8827 * that of VF's. 8828 */ 8829 memcpy(&n->params, &pn->params, sizeof(NvmeParams)); 8830 8831 /* 8832 * Set PF's serial value to a new string memory to prevent 'serial' 8833 * property object release of PF when a VF is removed from the system. 8834 */ 8835 n->params.serial = g_strdup(pn->params.serial); 8836 n->subsys = pn->subsys; 8837 } 8838 8839 if (!nvme_check_params(n, errp)) { 8840 return; 8841 } 8842 8843 qbus_init(&n->bus, sizeof(NvmeBus), TYPE_NVME_BUS, dev, dev->id); 8844 8845 if (nvme_init_subsys(n, errp)) { 8846 return; 8847 } 8848 nvme_init_state(n); 8849 if (!nvme_init_pci(n, pci_dev, errp)) { 8850 return; 8851 } 8852 nvme_init_ctrl(n, pci_dev); 8853 8854 /* setup a namespace if the controller drive property was given */ 8855 if (n->namespace.blkconf.blk) { 8856 ns = &n->namespace; 8857 ns->params.nsid = 1; 8858 8859 if (nvme_ns_setup(ns, errp)) { 8860 return; 8861 } 8862 8863 nvme_attach_ns(n, ns); 8864 } 8865 } 8866 8867 static void nvme_exit(PCIDevice *pci_dev) 8868 { 8869 NvmeCtrl *n = NVME(pci_dev); 8870 NvmeNamespace *ns; 8871 int i; 8872 8873 nvme_ctrl_reset(n, NVME_RESET_FUNCTION); 8874 8875 if (n->subsys) { 8876 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { 8877 ns = nvme_ns(n, i); 8878 if (ns) { 8879 ns->attached--; 8880 } 8881 } 8882 8883 nvme_subsys_unregister_ctrl(n->subsys, n); 8884 } 8885 8886 g_free(n->cq); 8887 g_free(n->sq); 8888 g_free(n->aer_reqs); 8889 8890 if (n->params.cmb_size_mb) { 8891 g_free(n->cmb.buf); 8892 } 8893 8894 if (pci_dev->doe_spdm.spdm_socket > 0) { 8895 spdm_socket_close(pci_dev->doe_spdm.spdm_socket, 8896 SPDM_SOCKET_TRANSPORT_TYPE_PCI_DOE); 8897 } 8898 8899 if (n->pmr.dev) { 8900 host_memory_backend_set_mapped(n->pmr.dev, false); 8901 } 8902 8903 if (!pci_is_vf(pci_dev) && n->params.sriov_max_vfs) { 8904 pcie_sriov_pf_exit(pci_dev); 8905 } 8906 8907 if (n->params.msix_exclusive_bar && !pci_is_vf(pci_dev)) { 8908 msix_uninit_exclusive_bar(pci_dev); 8909 } else { 8910 msix_uninit(pci_dev, &n->bar0, &n->bar0); 8911 } 8912 8913 memory_region_del_subregion(&n->bar0, &n->iomem); 8914 } 8915 8916 static Property nvme_props[] = { 8917 DEFINE_BLOCK_PROPERTIES(NvmeCtrl, namespace.blkconf), 8918 DEFINE_PROP_LINK("pmrdev", NvmeCtrl, pmr.dev, TYPE_MEMORY_BACKEND, 8919 HostMemoryBackend *), 8920 DEFINE_PROP_LINK("subsys", NvmeCtrl, subsys, TYPE_NVME_SUBSYS, 8921 NvmeSubsystem *), 8922 DEFINE_PROP_STRING("serial", NvmeCtrl, params.serial), 8923 DEFINE_PROP_UINT32("cmb_size_mb", NvmeCtrl, params.cmb_size_mb, 0), 8924 DEFINE_PROP_UINT32("num_queues", NvmeCtrl, params.num_queues, 0), 8925 DEFINE_PROP_UINT32("max_ioqpairs", NvmeCtrl, params.max_ioqpairs, 64), 8926 DEFINE_PROP_UINT16("msix_qsize", NvmeCtrl, params.msix_qsize, 65), 8927 DEFINE_PROP_UINT8("aerl", NvmeCtrl, params.aerl, 3), 8928 DEFINE_PROP_UINT32("aer_max_queued", NvmeCtrl, params.aer_max_queued, 64), 8929 DEFINE_PROP_UINT8("mdts", NvmeCtrl, params.mdts, 7), 8930 DEFINE_PROP_UINT8("vsl", NvmeCtrl, params.vsl, 7), 8931 DEFINE_PROP_BOOL("use-intel-id", NvmeCtrl, params.use_intel_id, false), 8932 DEFINE_PROP_BOOL("legacy-cmb", NvmeCtrl, params.legacy_cmb, false), 8933 DEFINE_PROP_BOOL("ioeventfd", NvmeCtrl, params.ioeventfd, false), 8934 DEFINE_PROP_UINT8("zoned.zasl", NvmeCtrl, params.zasl, 0), 8935 DEFINE_PROP_BOOL("zoned.auto_transition", NvmeCtrl, 8936 params.auto_transition_zones, true), 8937 DEFINE_PROP_UINT16("sriov_max_vfs", NvmeCtrl, params.sriov_max_vfs, 0), 8938 DEFINE_PROP_UINT16("sriov_vq_flexible", NvmeCtrl, 8939 params.sriov_vq_flexible, 0), 8940 DEFINE_PROP_UINT16("sriov_vi_flexible", NvmeCtrl, 8941 params.sriov_vi_flexible, 0), 8942 DEFINE_PROP_UINT32("sriov_max_vi_per_vf", NvmeCtrl, 8943 params.sriov_max_vi_per_vf, 0), 8944 DEFINE_PROP_UINT32("sriov_max_vq_per_vf", NvmeCtrl, 8945 params.sriov_max_vq_per_vf, 0), 8946 DEFINE_PROP_BOOL("msix-exclusive-bar", NvmeCtrl, params.msix_exclusive_bar, 8947 false), 8948 DEFINE_PROP_UINT16("mqes", NvmeCtrl, params.mqes, 0x7ff), 8949 DEFINE_PROP_UINT16("spdm_port", PCIDevice, spdm_port, 0), 8950 DEFINE_PROP_BOOL("ctratt.mem", NvmeCtrl, params.ctratt.mem, false), 8951 DEFINE_PROP_BOOL("atomic.dn", NvmeCtrl, params.atomic_dn, 0), 8952 DEFINE_PROP_UINT16("atomic.awun", NvmeCtrl, params.atomic_awun, 0), 8953 DEFINE_PROP_UINT16("atomic.awupf", NvmeCtrl, params.atomic_awupf, 0), 8954 DEFINE_PROP_END_OF_LIST(), 8955 }; 8956 8957 static void nvme_get_smart_warning(Object *obj, Visitor *v, const char *name, 8958 void *opaque, Error **errp) 8959 { 8960 NvmeCtrl *n = NVME(obj); 8961 uint8_t value = n->smart_critical_warning; 8962 8963 visit_type_uint8(v, name, &value, errp); 8964 } 8965 8966 static void nvme_set_smart_warning(Object *obj, Visitor *v, const char *name, 8967 void *opaque, Error **errp) 8968 { 8969 NvmeCtrl *n = NVME(obj); 8970 uint8_t value, old_value, cap = 0, index, event; 8971 8972 if (!visit_type_uint8(v, name, &value, errp)) { 8973 return; 8974 } 8975 8976 cap = NVME_SMART_SPARE | NVME_SMART_TEMPERATURE | NVME_SMART_RELIABILITY 8977 | NVME_SMART_MEDIA_READ_ONLY | NVME_SMART_FAILED_VOLATILE_MEDIA; 8978 if (NVME_CAP_PMRS(ldq_le_p(&n->bar.cap))) { 8979 cap |= NVME_SMART_PMR_UNRELIABLE; 8980 } 8981 8982 if ((value & cap) != value) { 8983 error_setg(errp, "unsupported smart critical warning bits: 0x%x", 8984 value & ~cap); 8985 return; 8986 } 8987 8988 old_value = n->smart_critical_warning; 8989 n->smart_critical_warning = value; 8990 8991 /* only inject new bits of smart critical warning */ 8992 for (index = 0; index < NVME_SMART_WARN_MAX; index++) { 8993 event = 1 << index; 8994 if (value & ~old_value & event) 8995 nvme_smart_event(n, event); 8996 } 8997 } 8998 8999 static void nvme_pci_reset(DeviceState *qdev) 9000 { 9001 PCIDevice *pci_dev = PCI_DEVICE(qdev); 9002 NvmeCtrl *n = NVME(pci_dev); 9003 9004 trace_pci_nvme_pci_reset(); 9005 nvme_ctrl_reset(n, NVME_RESET_FUNCTION); 9006 } 9007 9008 static void nvme_sriov_post_write_config(PCIDevice *dev, uint16_t old_num_vfs) 9009 { 9010 NvmeCtrl *n = NVME(dev); 9011 NvmeSecCtrlEntry *sctrl; 9012 int i; 9013 9014 for (i = pcie_sriov_num_vfs(dev); i < old_num_vfs; i++) { 9015 sctrl = &n->sec_ctrl_list[i]; 9016 nvme_virt_set_state(n, le16_to_cpu(sctrl->scid), false); 9017 } 9018 } 9019 9020 static void nvme_pci_write_config(PCIDevice *dev, uint32_t address, 9021 uint32_t val, int len) 9022 { 9023 uint16_t old_num_vfs = pcie_sriov_num_vfs(dev); 9024 9025 if (pcie_find_capability(dev, PCI_EXT_CAP_ID_DOE)) { 9026 pcie_doe_write_config(&dev->doe_spdm, address, val, len); 9027 } 9028 pci_default_write_config(dev, address, val, len); 9029 pcie_cap_flr_write_config(dev, address, val, len); 9030 nvme_sriov_post_write_config(dev, old_num_vfs); 9031 } 9032 9033 static uint32_t nvme_pci_read_config(PCIDevice *dev, uint32_t address, int len) 9034 { 9035 uint32_t val; 9036 if (dev->spdm_port && pcie_find_capability(dev, PCI_EXT_CAP_ID_DOE)) { 9037 if (pcie_doe_read_config(&dev->doe_spdm, address, len, &val)) { 9038 return val; 9039 } 9040 } 9041 return pci_default_read_config(dev, address, len); 9042 } 9043 9044 static const VMStateDescription nvme_vmstate = { 9045 .name = "nvme", 9046 .unmigratable = 1, 9047 }; 9048 9049 static void nvme_class_init(ObjectClass *oc, void *data) 9050 { 9051 DeviceClass *dc = DEVICE_CLASS(oc); 9052 PCIDeviceClass *pc = PCI_DEVICE_CLASS(oc); 9053 9054 pc->realize = nvme_realize; 9055 pc->config_write = nvme_pci_write_config; 9056 pc->config_read = nvme_pci_read_config; 9057 pc->exit = nvme_exit; 9058 pc->class_id = PCI_CLASS_STORAGE_EXPRESS; 9059 pc->revision = 2; 9060 9061 set_bit(DEVICE_CATEGORY_STORAGE, dc->categories); 9062 dc->desc = "Non-Volatile Memory Express"; 9063 device_class_set_props(dc, nvme_props); 9064 dc->vmsd = &nvme_vmstate; 9065 device_class_set_legacy_reset(dc, nvme_pci_reset); 9066 } 9067 9068 static void nvme_instance_init(Object *obj) 9069 { 9070 NvmeCtrl *n = NVME(obj); 9071 9072 device_add_bootindex_property(obj, &n->namespace.blkconf.bootindex, 9073 "bootindex", "/namespace@1,0", 9074 DEVICE(obj)); 9075 9076 object_property_add(obj, "smart_critical_warning", "uint8", 9077 nvme_get_smart_warning, 9078 nvme_set_smart_warning, NULL, NULL); 9079 } 9080 9081 static const TypeInfo nvme_info = { 9082 .name = TYPE_NVME, 9083 .parent = TYPE_PCI_DEVICE, 9084 .instance_size = sizeof(NvmeCtrl), 9085 .instance_init = nvme_instance_init, 9086 .class_init = nvme_class_init, 9087 .interfaces = (InterfaceInfo[]) { 9088 { INTERFACE_PCIE_DEVICE }, 9089 { } 9090 }, 9091 }; 9092 9093 static const TypeInfo nvme_bus_info = { 9094 .name = TYPE_NVME_BUS, 9095 .parent = TYPE_BUS, 9096 .instance_size = sizeof(NvmeBus), 9097 }; 9098 9099 static void nvme_register_types(void) 9100 { 9101 type_register_static(&nvme_info); 9102 type_register_static(&nvme_bus_info); 9103 } 9104 9105 type_init(nvme_register_types) 9106