1 /* 2 * QEMU NVM Express Controller 3 * 4 * Copyright (c) 2012, Intel Corporation 5 * 6 * Written by Keith Busch <keith.busch@intel.com> 7 * 8 * This code is licensed under the GNU GPL v2 or later. 9 */ 10 11 /** 12 * Reference Specs: http://www.nvmexpress.org, 1.4, 1.3, 1.2, 1.1, 1.0e 13 * 14 * https://nvmexpress.org/developers/nvme-specification/ 15 * 16 * 17 * Notes on coding style 18 * --------------------- 19 * While QEMU coding style prefers lowercase hexadecimals in constants, the 20 * NVMe subsystem use thes format from the NVMe specifications in the comments 21 * (i.e. 'h' suffix instead of '0x' prefix). 22 * 23 * Usage 24 * ----- 25 * See docs/system/nvme.rst for extensive documentation. 26 * 27 * Add options: 28 * -drive file=<file>,if=none,id=<drive_id> 29 * -device nvme-subsys,id=<subsys_id>,nqn=<nqn_id> 30 * -device nvme,serial=<serial>,id=<bus_name>, \ 31 * cmb_size_mb=<cmb_size_mb[optional]>, \ 32 * [pmrdev=<mem_backend_file_id>,] \ 33 * max_ioqpairs=<N[optional]>, \ 34 * aerl=<N[optional]>,aer_max_queued=<N[optional]>, \ 35 * mdts=<N[optional]>,vsl=<N[optional]>, \ 36 * zoned.zasl=<N[optional]>, \ 37 * zoned.auto_transition=<on|off[optional]>, \ 38 * subsys=<subsys_id> 39 * -device nvme-ns,drive=<drive_id>,bus=<bus_name>,nsid=<nsid>,\ 40 * zoned=<true|false[optional]>, \ 41 * subsys=<subsys_id>,detached=<true|false[optional]> 42 * 43 * Note cmb_size_mb denotes size of CMB in MB. CMB is assumed to be at 44 * offset 0 in BAR2 and supports only WDS, RDS and SQS for now. By default, the 45 * device will use the "v1.4 CMB scheme" - use the `legacy-cmb` parameter to 46 * always enable the CMBLOC and CMBSZ registers (v1.3 behavior). 47 * 48 * Enabling pmr emulation can be achieved by pointing to memory-backend-file. 49 * For example: 50 * -object memory-backend-file,id=<mem_id>,share=on,mem-path=<file_path>, \ 51 * size=<size> .... -device nvme,...,pmrdev=<mem_id> 52 * 53 * The PMR will use BAR 4/5 exclusively. 54 * 55 * To place controller(s) and namespace(s) to a subsystem, then provide 56 * nvme-subsys device as above. 57 * 58 * nvme subsystem device parameters 59 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 60 * - `nqn` 61 * This parameter provides the `<nqn_id>` part of the string 62 * `nqn.2019-08.org.qemu:<nqn_id>` which will be reported in the SUBNQN field 63 * of subsystem controllers. Note that `<nqn_id>` should be unique per 64 * subsystem, but this is not enforced by QEMU. If not specified, it will 65 * default to the value of the `id` parameter (`<subsys_id>`). 66 * 67 * nvme device parameters 68 * ~~~~~~~~~~~~~~~~~~~~~~ 69 * - `subsys` 70 * Specifying this parameter attaches the controller to the subsystem and 71 * the SUBNQN field in the controller will report the NQN of the subsystem 72 * device. This also enables multi controller capability represented in 73 * Identify Controller data structure in CMIC (Controller Multi-path I/O and 74 * Namesapce Sharing Capabilities). 75 * 76 * - `aerl` 77 * The Asynchronous Event Request Limit (AERL). Indicates the maximum number 78 * of concurrently outstanding Asynchronous Event Request commands support 79 * by the controller. This is a 0's based value. 80 * 81 * - `aer_max_queued` 82 * This is the maximum number of events that the device will enqueue for 83 * completion when there are no outstanding AERs. When the maximum number of 84 * enqueued events are reached, subsequent events will be dropped. 85 * 86 * - `mdts` 87 * Indicates the maximum data transfer size for a command that transfers data 88 * between host-accessible memory and the controller. The value is specified 89 * as a power of two (2^n) and is in units of the minimum memory page size 90 * (CAP.MPSMIN). The default value is 7 (i.e. 512 KiB). 91 * 92 * - `vsl` 93 * Indicates the maximum data size limit for the Verify command. Like `mdts`, 94 * this value is specified as a power of two (2^n) and is in units of the 95 * minimum memory page size (CAP.MPSMIN). The default value is 7 (i.e. 512 96 * KiB). 97 * 98 * - `zoned.zasl` 99 * Indicates the maximum data transfer size for the Zone Append command. Like 100 * `mdts`, the value is specified as a power of two (2^n) and is in units of 101 * the minimum memory page size (CAP.MPSMIN). The default value is 0 (i.e. 102 * defaulting to the value of `mdts`). 103 * 104 * - `zoned.auto_transition` 105 * Indicates if zones in zone state implicitly opened can be automatically 106 * transitioned to zone state closed for resource management purposes. 107 * Defaults to 'on'. 108 * 109 * nvme namespace device parameters 110 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 111 * - `shared` 112 * When the parent nvme device (as defined explicitly by the 'bus' parameter 113 * or implicitly by the most recently defined NvmeBus) is linked to an 114 * nvme-subsys device, the namespace will be attached to all controllers in 115 * the subsystem. If set to 'off' (the default), the namespace will remain a 116 * private namespace and may only be attached to a single controller at a 117 * time. 118 * 119 * - `detached` 120 * This parameter is only valid together with the `subsys` parameter. If left 121 * at the default value (`false/off`), the namespace will be attached to all 122 * controllers in the NVMe subsystem at boot-up. If set to `true/on`, the 123 * namespace will be available in the subsystem but not attached to any 124 * controllers. 125 * 126 * Setting `zoned` to true selects Zoned Command Set at the namespace. 127 * In this case, the following namespace properties are available to configure 128 * zoned operation: 129 * zoned.zone_size=<zone size in bytes, default: 128MiB> 130 * The number may be followed by K, M, G as in kilo-, mega- or giga-. 131 * 132 * zoned.zone_capacity=<zone capacity in bytes, default: zone size> 133 * The value 0 (default) forces zone capacity to be the same as zone 134 * size. The value of this property may not exceed zone size. 135 * 136 * zoned.descr_ext_size=<zone descriptor extension size, default 0> 137 * This value needs to be specified in 64B units. If it is zero, 138 * namespace(s) will not support zone descriptor extensions. 139 * 140 * zoned.max_active=<Maximum Active Resources (zones), default: 0> 141 * The default value means there is no limit to the number of 142 * concurrently active zones. 143 * 144 * zoned.max_open=<Maximum Open Resources (zones), default: 0> 145 * The default value means there is no limit to the number of 146 * concurrently open zones. 147 * 148 * zoned.cross_read=<enable RAZB, default: false> 149 * Setting this property to true enables Read Across Zone Boundaries. 150 */ 151 152 #include "qemu/osdep.h" 153 #include "qemu/cutils.h" 154 #include "qemu/error-report.h" 155 #include "qemu/log.h" 156 #include "qemu/units.h" 157 #include "qapi/error.h" 158 #include "qapi/visitor.h" 159 #include "sysemu/sysemu.h" 160 #include "sysemu/block-backend.h" 161 #include "sysemu/hostmem.h" 162 #include "hw/pci/msix.h" 163 #include "migration/vmstate.h" 164 165 #include "nvme.h" 166 #include "dif.h" 167 #include "trace.h" 168 169 #define NVME_MAX_IOQPAIRS 0xffff 170 #define NVME_DB_SIZE 4 171 #define NVME_SPEC_VER 0x00010400 172 #define NVME_CMB_BIR 2 173 #define NVME_PMR_BIR 4 174 #define NVME_TEMPERATURE 0x143 175 #define NVME_TEMPERATURE_WARNING 0x157 176 #define NVME_TEMPERATURE_CRITICAL 0x175 177 #define NVME_NUM_FW_SLOTS 1 178 #define NVME_DEFAULT_MAX_ZA_SIZE (128 * KiB) 179 180 #define NVME_GUEST_ERR(trace, fmt, ...) \ 181 do { \ 182 (trace_##trace)(__VA_ARGS__); \ 183 qemu_log_mask(LOG_GUEST_ERROR, #trace \ 184 " in %s: " fmt "\n", __func__, ## __VA_ARGS__); \ 185 } while (0) 186 187 static const bool nvme_feature_support[NVME_FID_MAX] = { 188 [NVME_ARBITRATION] = true, 189 [NVME_POWER_MANAGEMENT] = true, 190 [NVME_TEMPERATURE_THRESHOLD] = true, 191 [NVME_ERROR_RECOVERY] = true, 192 [NVME_VOLATILE_WRITE_CACHE] = true, 193 [NVME_NUMBER_OF_QUEUES] = true, 194 [NVME_INTERRUPT_COALESCING] = true, 195 [NVME_INTERRUPT_VECTOR_CONF] = true, 196 [NVME_WRITE_ATOMICITY] = true, 197 [NVME_ASYNCHRONOUS_EVENT_CONF] = true, 198 [NVME_TIMESTAMP] = true, 199 [NVME_HOST_BEHAVIOR_SUPPORT] = true, 200 [NVME_COMMAND_SET_PROFILE] = true, 201 }; 202 203 static const uint32_t nvme_feature_cap[NVME_FID_MAX] = { 204 [NVME_TEMPERATURE_THRESHOLD] = NVME_FEAT_CAP_CHANGE, 205 [NVME_ERROR_RECOVERY] = NVME_FEAT_CAP_CHANGE | NVME_FEAT_CAP_NS, 206 [NVME_VOLATILE_WRITE_CACHE] = NVME_FEAT_CAP_CHANGE, 207 [NVME_NUMBER_OF_QUEUES] = NVME_FEAT_CAP_CHANGE, 208 [NVME_ASYNCHRONOUS_EVENT_CONF] = NVME_FEAT_CAP_CHANGE, 209 [NVME_TIMESTAMP] = NVME_FEAT_CAP_CHANGE, 210 [NVME_HOST_BEHAVIOR_SUPPORT] = NVME_FEAT_CAP_CHANGE, 211 [NVME_COMMAND_SET_PROFILE] = NVME_FEAT_CAP_CHANGE, 212 }; 213 214 static const uint32_t nvme_cse_acs[256] = { 215 [NVME_ADM_CMD_DELETE_SQ] = NVME_CMD_EFF_CSUPP, 216 [NVME_ADM_CMD_CREATE_SQ] = NVME_CMD_EFF_CSUPP, 217 [NVME_ADM_CMD_GET_LOG_PAGE] = NVME_CMD_EFF_CSUPP, 218 [NVME_ADM_CMD_DELETE_CQ] = NVME_CMD_EFF_CSUPP, 219 [NVME_ADM_CMD_CREATE_CQ] = NVME_CMD_EFF_CSUPP, 220 [NVME_ADM_CMD_IDENTIFY] = NVME_CMD_EFF_CSUPP, 221 [NVME_ADM_CMD_ABORT] = NVME_CMD_EFF_CSUPP, 222 [NVME_ADM_CMD_SET_FEATURES] = NVME_CMD_EFF_CSUPP, 223 [NVME_ADM_CMD_GET_FEATURES] = NVME_CMD_EFF_CSUPP, 224 [NVME_ADM_CMD_ASYNC_EV_REQ] = NVME_CMD_EFF_CSUPP, 225 [NVME_ADM_CMD_NS_ATTACHMENT] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_NIC, 226 [NVME_ADM_CMD_FORMAT_NVM] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, 227 }; 228 229 static const uint32_t nvme_cse_iocs_none[256]; 230 231 static const uint32_t nvme_cse_iocs_nvm[256] = { 232 [NVME_CMD_FLUSH] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, 233 [NVME_CMD_WRITE_ZEROES] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, 234 [NVME_CMD_WRITE] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, 235 [NVME_CMD_READ] = NVME_CMD_EFF_CSUPP, 236 [NVME_CMD_DSM] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, 237 [NVME_CMD_VERIFY] = NVME_CMD_EFF_CSUPP, 238 [NVME_CMD_COPY] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, 239 [NVME_CMD_COMPARE] = NVME_CMD_EFF_CSUPP, 240 }; 241 242 static const uint32_t nvme_cse_iocs_zoned[256] = { 243 [NVME_CMD_FLUSH] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, 244 [NVME_CMD_WRITE_ZEROES] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, 245 [NVME_CMD_WRITE] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, 246 [NVME_CMD_READ] = NVME_CMD_EFF_CSUPP, 247 [NVME_CMD_DSM] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, 248 [NVME_CMD_VERIFY] = NVME_CMD_EFF_CSUPP, 249 [NVME_CMD_COPY] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, 250 [NVME_CMD_COMPARE] = NVME_CMD_EFF_CSUPP, 251 [NVME_CMD_ZONE_APPEND] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, 252 [NVME_CMD_ZONE_MGMT_SEND] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, 253 [NVME_CMD_ZONE_MGMT_RECV] = NVME_CMD_EFF_CSUPP, 254 }; 255 256 static void nvme_process_sq(void *opaque); 257 258 static uint16_t nvme_sqid(NvmeRequest *req) 259 { 260 return le16_to_cpu(req->sq->sqid); 261 } 262 263 static void nvme_assign_zone_state(NvmeNamespace *ns, NvmeZone *zone, 264 NvmeZoneState state) 265 { 266 if (QTAILQ_IN_USE(zone, entry)) { 267 switch (nvme_get_zone_state(zone)) { 268 case NVME_ZONE_STATE_EXPLICITLY_OPEN: 269 QTAILQ_REMOVE(&ns->exp_open_zones, zone, entry); 270 break; 271 case NVME_ZONE_STATE_IMPLICITLY_OPEN: 272 QTAILQ_REMOVE(&ns->imp_open_zones, zone, entry); 273 break; 274 case NVME_ZONE_STATE_CLOSED: 275 QTAILQ_REMOVE(&ns->closed_zones, zone, entry); 276 break; 277 case NVME_ZONE_STATE_FULL: 278 QTAILQ_REMOVE(&ns->full_zones, zone, entry); 279 default: 280 ; 281 } 282 } 283 284 nvme_set_zone_state(zone, state); 285 286 switch (state) { 287 case NVME_ZONE_STATE_EXPLICITLY_OPEN: 288 QTAILQ_INSERT_TAIL(&ns->exp_open_zones, zone, entry); 289 break; 290 case NVME_ZONE_STATE_IMPLICITLY_OPEN: 291 QTAILQ_INSERT_TAIL(&ns->imp_open_zones, zone, entry); 292 break; 293 case NVME_ZONE_STATE_CLOSED: 294 QTAILQ_INSERT_TAIL(&ns->closed_zones, zone, entry); 295 break; 296 case NVME_ZONE_STATE_FULL: 297 QTAILQ_INSERT_TAIL(&ns->full_zones, zone, entry); 298 case NVME_ZONE_STATE_READ_ONLY: 299 break; 300 default: 301 zone->d.za = 0; 302 } 303 } 304 305 static uint16_t nvme_zns_check_resources(NvmeNamespace *ns, uint32_t act, 306 uint32_t opn, uint32_t zrwa) 307 { 308 if (ns->params.max_active_zones != 0 && 309 ns->nr_active_zones + act > ns->params.max_active_zones) { 310 trace_pci_nvme_err_insuff_active_res(ns->params.max_active_zones); 311 return NVME_ZONE_TOO_MANY_ACTIVE | NVME_DNR; 312 } 313 314 if (ns->params.max_open_zones != 0 && 315 ns->nr_open_zones + opn > ns->params.max_open_zones) { 316 trace_pci_nvme_err_insuff_open_res(ns->params.max_open_zones); 317 return NVME_ZONE_TOO_MANY_OPEN | NVME_DNR; 318 } 319 320 if (zrwa > ns->zns.numzrwa) { 321 return NVME_NOZRWA | NVME_DNR; 322 } 323 324 return NVME_SUCCESS; 325 } 326 327 /* 328 * Check if we can open a zone without exceeding open/active limits. 329 * AOR stands for "Active and Open Resources" (see TP 4053 section 2.5). 330 */ 331 static uint16_t nvme_aor_check(NvmeNamespace *ns, uint32_t act, uint32_t opn) 332 { 333 return nvme_zns_check_resources(ns, act, opn, 0); 334 } 335 336 static bool nvme_addr_is_cmb(NvmeCtrl *n, hwaddr addr) 337 { 338 hwaddr hi, lo; 339 340 if (!n->cmb.cmse) { 341 return false; 342 } 343 344 lo = n->params.legacy_cmb ? n->cmb.mem.addr : n->cmb.cba; 345 hi = lo + int128_get64(n->cmb.mem.size); 346 347 return addr >= lo && addr < hi; 348 } 349 350 static inline void *nvme_addr_to_cmb(NvmeCtrl *n, hwaddr addr) 351 { 352 hwaddr base = n->params.legacy_cmb ? n->cmb.mem.addr : n->cmb.cba; 353 return &n->cmb.buf[addr - base]; 354 } 355 356 static bool nvme_addr_is_pmr(NvmeCtrl *n, hwaddr addr) 357 { 358 hwaddr hi; 359 360 if (!n->pmr.cmse) { 361 return false; 362 } 363 364 hi = n->pmr.cba + int128_get64(n->pmr.dev->mr.size); 365 366 return addr >= n->pmr.cba && addr < hi; 367 } 368 369 static inline void *nvme_addr_to_pmr(NvmeCtrl *n, hwaddr addr) 370 { 371 return memory_region_get_ram_ptr(&n->pmr.dev->mr) + (addr - n->pmr.cba); 372 } 373 374 static inline bool nvme_addr_is_iomem(NvmeCtrl *n, hwaddr addr) 375 { 376 hwaddr hi, lo; 377 378 /* 379 * The purpose of this check is to guard against invalid "local" access to 380 * the iomem (i.e. controller registers). Thus, we check against the range 381 * covered by the 'bar0' MemoryRegion since that is currently composed of 382 * two subregions (the NVMe "MBAR" and the MSI-X table/pba). Note, however, 383 * that if the device model is ever changed to allow the CMB to be located 384 * in BAR0 as well, then this must be changed. 385 */ 386 lo = n->bar0.addr; 387 hi = lo + int128_get64(n->bar0.size); 388 389 return addr >= lo && addr < hi; 390 } 391 392 static int nvme_addr_read(NvmeCtrl *n, hwaddr addr, void *buf, int size) 393 { 394 hwaddr hi = addr + size - 1; 395 if (hi < addr) { 396 return 1; 397 } 398 399 if (n->bar.cmbsz && nvme_addr_is_cmb(n, addr) && nvme_addr_is_cmb(n, hi)) { 400 memcpy(buf, nvme_addr_to_cmb(n, addr), size); 401 return 0; 402 } 403 404 if (nvme_addr_is_pmr(n, addr) && nvme_addr_is_pmr(n, hi)) { 405 memcpy(buf, nvme_addr_to_pmr(n, addr), size); 406 return 0; 407 } 408 409 return pci_dma_read(&n->parent_obj, addr, buf, size); 410 } 411 412 static int nvme_addr_write(NvmeCtrl *n, hwaddr addr, const void *buf, int size) 413 { 414 hwaddr hi = addr + size - 1; 415 if (hi < addr) { 416 return 1; 417 } 418 419 if (n->bar.cmbsz && nvme_addr_is_cmb(n, addr) && nvme_addr_is_cmb(n, hi)) { 420 memcpy(nvme_addr_to_cmb(n, addr), buf, size); 421 return 0; 422 } 423 424 if (nvme_addr_is_pmr(n, addr) && nvme_addr_is_pmr(n, hi)) { 425 memcpy(nvme_addr_to_pmr(n, addr), buf, size); 426 return 0; 427 } 428 429 return pci_dma_write(&n->parent_obj, addr, buf, size); 430 } 431 432 static bool nvme_nsid_valid(NvmeCtrl *n, uint32_t nsid) 433 { 434 return nsid && 435 (nsid == NVME_NSID_BROADCAST || nsid <= NVME_MAX_NAMESPACES); 436 } 437 438 static int nvme_check_sqid(NvmeCtrl *n, uint16_t sqid) 439 { 440 return sqid < n->params.max_ioqpairs + 1 && n->sq[sqid] != NULL ? 0 : -1; 441 } 442 443 static int nvme_check_cqid(NvmeCtrl *n, uint16_t cqid) 444 { 445 return cqid < n->params.max_ioqpairs + 1 && n->cq[cqid] != NULL ? 0 : -1; 446 } 447 448 static void nvme_inc_cq_tail(NvmeCQueue *cq) 449 { 450 cq->tail++; 451 if (cq->tail >= cq->size) { 452 cq->tail = 0; 453 cq->phase = !cq->phase; 454 } 455 } 456 457 static void nvme_inc_sq_head(NvmeSQueue *sq) 458 { 459 sq->head = (sq->head + 1) % sq->size; 460 } 461 462 static uint8_t nvme_cq_full(NvmeCQueue *cq) 463 { 464 return (cq->tail + 1) % cq->size == cq->head; 465 } 466 467 static uint8_t nvme_sq_empty(NvmeSQueue *sq) 468 { 469 return sq->head == sq->tail; 470 } 471 472 static void nvme_irq_check(NvmeCtrl *n) 473 { 474 uint32_t intms = ldl_le_p(&n->bar.intms); 475 476 if (msix_enabled(&(n->parent_obj))) { 477 return; 478 } 479 if (~intms & n->irq_status) { 480 pci_irq_assert(&n->parent_obj); 481 } else { 482 pci_irq_deassert(&n->parent_obj); 483 } 484 } 485 486 static void nvme_irq_assert(NvmeCtrl *n, NvmeCQueue *cq) 487 { 488 if (cq->irq_enabled) { 489 if (msix_enabled(&(n->parent_obj))) { 490 trace_pci_nvme_irq_msix(cq->vector); 491 msix_notify(&(n->parent_obj), cq->vector); 492 } else { 493 trace_pci_nvme_irq_pin(); 494 assert(cq->vector < 32); 495 n->irq_status |= 1 << cq->vector; 496 nvme_irq_check(n); 497 } 498 } else { 499 trace_pci_nvme_irq_masked(); 500 } 501 } 502 503 static void nvme_irq_deassert(NvmeCtrl *n, NvmeCQueue *cq) 504 { 505 if (cq->irq_enabled) { 506 if (msix_enabled(&(n->parent_obj))) { 507 return; 508 } else { 509 assert(cq->vector < 32); 510 if (!n->cq_pending) { 511 n->irq_status &= ~(1 << cq->vector); 512 } 513 nvme_irq_check(n); 514 } 515 } 516 } 517 518 static void nvme_req_clear(NvmeRequest *req) 519 { 520 req->ns = NULL; 521 req->opaque = NULL; 522 req->aiocb = NULL; 523 memset(&req->cqe, 0x0, sizeof(req->cqe)); 524 req->status = NVME_SUCCESS; 525 } 526 527 static inline void nvme_sg_init(NvmeCtrl *n, NvmeSg *sg, bool dma) 528 { 529 if (dma) { 530 pci_dma_sglist_init(&sg->qsg, &n->parent_obj, 0); 531 sg->flags = NVME_SG_DMA; 532 } else { 533 qemu_iovec_init(&sg->iov, 0); 534 } 535 536 sg->flags |= NVME_SG_ALLOC; 537 } 538 539 static inline void nvme_sg_unmap(NvmeSg *sg) 540 { 541 if (!(sg->flags & NVME_SG_ALLOC)) { 542 return; 543 } 544 545 if (sg->flags & NVME_SG_DMA) { 546 qemu_sglist_destroy(&sg->qsg); 547 } else { 548 qemu_iovec_destroy(&sg->iov); 549 } 550 551 memset(sg, 0x0, sizeof(*sg)); 552 } 553 554 /* 555 * When metadata is transfered as extended LBAs, the DPTR mapped into `sg` 556 * holds both data and metadata. This function splits the data and metadata 557 * into two separate QSG/IOVs. 558 */ 559 static void nvme_sg_split(NvmeSg *sg, NvmeNamespace *ns, NvmeSg *data, 560 NvmeSg *mdata) 561 { 562 NvmeSg *dst = data; 563 uint32_t trans_len, count = ns->lbasz; 564 uint64_t offset = 0; 565 bool dma = sg->flags & NVME_SG_DMA; 566 size_t sge_len; 567 size_t sg_len = dma ? sg->qsg.size : sg->iov.size; 568 int sg_idx = 0; 569 570 assert(sg->flags & NVME_SG_ALLOC); 571 572 while (sg_len) { 573 sge_len = dma ? sg->qsg.sg[sg_idx].len : sg->iov.iov[sg_idx].iov_len; 574 575 trans_len = MIN(sg_len, count); 576 trans_len = MIN(trans_len, sge_len - offset); 577 578 if (dst) { 579 if (dma) { 580 qemu_sglist_add(&dst->qsg, sg->qsg.sg[sg_idx].base + offset, 581 trans_len); 582 } else { 583 qemu_iovec_add(&dst->iov, 584 sg->iov.iov[sg_idx].iov_base + offset, 585 trans_len); 586 } 587 } 588 589 sg_len -= trans_len; 590 count -= trans_len; 591 offset += trans_len; 592 593 if (count == 0) { 594 dst = (dst == data) ? mdata : data; 595 count = (dst == data) ? ns->lbasz : ns->lbaf.ms; 596 } 597 598 if (sge_len == offset) { 599 offset = 0; 600 sg_idx++; 601 } 602 } 603 } 604 605 static uint16_t nvme_map_addr_cmb(NvmeCtrl *n, QEMUIOVector *iov, hwaddr addr, 606 size_t len) 607 { 608 if (!len) { 609 return NVME_SUCCESS; 610 } 611 612 trace_pci_nvme_map_addr_cmb(addr, len); 613 614 if (!nvme_addr_is_cmb(n, addr) || !nvme_addr_is_cmb(n, addr + len - 1)) { 615 return NVME_DATA_TRAS_ERROR; 616 } 617 618 qemu_iovec_add(iov, nvme_addr_to_cmb(n, addr), len); 619 620 return NVME_SUCCESS; 621 } 622 623 static uint16_t nvme_map_addr_pmr(NvmeCtrl *n, QEMUIOVector *iov, hwaddr addr, 624 size_t len) 625 { 626 if (!len) { 627 return NVME_SUCCESS; 628 } 629 630 if (!nvme_addr_is_pmr(n, addr) || !nvme_addr_is_pmr(n, addr + len - 1)) { 631 return NVME_DATA_TRAS_ERROR; 632 } 633 634 qemu_iovec_add(iov, nvme_addr_to_pmr(n, addr), len); 635 636 return NVME_SUCCESS; 637 } 638 639 static uint16_t nvme_map_addr(NvmeCtrl *n, NvmeSg *sg, hwaddr addr, size_t len) 640 { 641 bool cmb = false, pmr = false; 642 643 if (!len) { 644 return NVME_SUCCESS; 645 } 646 647 trace_pci_nvme_map_addr(addr, len); 648 649 if (nvme_addr_is_iomem(n, addr)) { 650 return NVME_DATA_TRAS_ERROR; 651 } 652 653 if (nvme_addr_is_cmb(n, addr)) { 654 cmb = true; 655 } else if (nvme_addr_is_pmr(n, addr)) { 656 pmr = true; 657 } 658 659 if (cmb || pmr) { 660 if (sg->flags & NVME_SG_DMA) { 661 return NVME_INVALID_USE_OF_CMB | NVME_DNR; 662 } 663 664 if (sg->iov.niov + 1 > IOV_MAX) { 665 goto max_mappings_exceeded; 666 } 667 668 if (cmb) { 669 return nvme_map_addr_cmb(n, &sg->iov, addr, len); 670 } else { 671 return nvme_map_addr_pmr(n, &sg->iov, addr, len); 672 } 673 } 674 675 if (!(sg->flags & NVME_SG_DMA)) { 676 return NVME_INVALID_USE_OF_CMB | NVME_DNR; 677 } 678 679 if (sg->qsg.nsg + 1 > IOV_MAX) { 680 goto max_mappings_exceeded; 681 } 682 683 qemu_sglist_add(&sg->qsg, addr, len); 684 685 return NVME_SUCCESS; 686 687 max_mappings_exceeded: 688 NVME_GUEST_ERR(pci_nvme_ub_too_many_mappings, 689 "number of mappings exceed 1024"); 690 return NVME_INTERNAL_DEV_ERROR | NVME_DNR; 691 } 692 693 static inline bool nvme_addr_is_dma(NvmeCtrl *n, hwaddr addr) 694 { 695 return !(nvme_addr_is_cmb(n, addr) || nvme_addr_is_pmr(n, addr)); 696 } 697 698 static uint16_t nvme_map_prp(NvmeCtrl *n, NvmeSg *sg, uint64_t prp1, 699 uint64_t prp2, uint32_t len) 700 { 701 hwaddr trans_len = n->page_size - (prp1 % n->page_size); 702 trans_len = MIN(len, trans_len); 703 int num_prps = (len >> n->page_bits) + 1; 704 uint16_t status; 705 int ret; 706 707 trace_pci_nvme_map_prp(trans_len, len, prp1, prp2, num_prps); 708 709 nvme_sg_init(n, sg, nvme_addr_is_dma(n, prp1)); 710 711 status = nvme_map_addr(n, sg, prp1, trans_len); 712 if (status) { 713 goto unmap; 714 } 715 716 len -= trans_len; 717 if (len) { 718 if (len > n->page_size) { 719 uint64_t prp_list[n->max_prp_ents]; 720 uint32_t nents, prp_trans; 721 int i = 0; 722 723 /* 724 * The first PRP list entry, pointed to by PRP2 may contain offset. 725 * Hence, we need to calculate the number of entries in based on 726 * that offset. 727 */ 728 nents = (n->page_size - (prp2 & (n->page_size - 1))) >> 3; 729 prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t); 730 ret = nvme_addr_read(n, prp2, (void *)prp_list, prp_trans); 731 if (ret) { 732 trace_pci_nvme_err_addr_read(prp2); 733 status = NVME_DATA_TRAS_ERROR; 734 goto unmap; 735 } 736 while (len != 0) { 737 uint64_t prp_ent = le64_to_cpu(prp_list[i]); 738 739 if (i == nents - 1 && len > n->page_size) { 740 if (unlikely(prp_ent & (n->page_size - 1))) { 741 trace_pci_nvme_err_invalid_prplist_ent(prp_ent); 742 status = NVME_INVALID_PRP_OFFSET | NVME_DNR; 743 goto unmap; 744 } 745 746 i = 0; 747 nents = (len + n->page_size - 1) >> n->page_bits; 748 nents = MIN(nents, n->max_prp_ents); 749 prp_trans = nents * sizeof(uint64_t); 750 ret = nvme_addr_read(n, prp_ent, (void *)prp_list, 751 prp_trans); 752 if (ret) { 753 trace_pci_nvme_err_addr_read(prp_ent); 754 status = NVME_DATA_TRAS_ERROR; 755 goto unmap; 756 } 757 prp_ent = le64_to_cpu(prp_list[i]); 758 } 759 760 if (unlikely(prp_ent & (n->page_size - 1))) { 761 trace_pci_nvme_err_invalid_prplist_ent(prp_ent); 762 status = NVME_INVALID_PRP_OFFSET | NVME_DNR; 763 goto unmap; 764 } 765 766 trans_len = MIN(len, n->page_size); 767 status = nvme_map_addr(n, sg, prp_ent, trans_len); 768 if (status) { 769 goto unmap; 770 } 771 772 len -= trans_len; 773 i++; 774 } 775 } else { 776 if (unlikely(prp2 & (n->page_size - 1))) { 777 trace_pci_nvme_err_invalid_prp2_align(prp2); 778 status = NVME_INVALID_PRP_OFFSET | NVME_DNR; 779 goto unmap; 780 } 781 status = nvme_map_addr(n, sg, prp2, len); 782 if (status) { 783 goto unmap; 784 } 785 } 786 } 787 788 return NVME_SUCCESS; 789 790 unmap: 791 nvme_sg_unmap(sg); 792 return status; 793 } 794 795 /* 796 * Map 'nsgld' data descriptors from 'segment'. The function will subtract the 797 * number of bytes mapped in len. 798 */ 799 static uint16_t nvme_map_sgl_data(NvmeCtrl *n, NvmeSg *sg, 800 NvmeSglDescriptor *segment, uint64_t nsgld, 801 size_t *len, NvmeCmd *cmd) 802 { 803 dma_addr_t addr, trans_len; 804 uint32_t dlen; 805 uint16_t status; 806 807 for (int i = 0; i < nsgld; i++) { 808 uint8_t type = NVME_SGL_TYPE(segment[i].type); 809 810 switch (type) { 811 case NVME_SGL_DESCR_TYPE_BIT_BUCKET: 812 if (cmd->opcode == NVME_CMD_WRITE) { 813 continue; 814 } 815 case NVME_SGL_DESCR_TYPE_DATA_BLOCK: 816 break; 817 case NVME_SGL_DESCR_TYPE_SEGMENT: 818 case NVME_SGL_DESCR_TYPE_LAST_SEGMENT: 819 return NVME_INVALID_NUM_SGL_DESCRS | NVME_DNR; 820 default: 821 return NVME_SGL_DESCR_TYPE_INVALID | NVME_DNR; 822 } 823 824 dlen = le32_to_cpu(segment[i].len); 825 826 if (!dlen) { 827 continue; 828 } 829 830 if (*len == 0) { 831 /* 832 * All data has been mapped, but the SGL contains additional 833 * segments and/or descriptors. The controller might accept 834 * ignoring the rest of the SGL. 835 */ 836 uint32_t sgls = le32_to_cpu(n->id_ctrl.sgls); 837 if (sgls & NVME_CTRL_SGLS_EXCESS_LENGTH) { 838 break; 839 } 840 841 trace_pci_nvme_err_invalid_sgl_excess_length(dlen); 842 return NVME_DATA_SGL_LEN_INVALID | NVME_DNR; 843 } 844 845 trans_len = MIN(*len, dlen); 846 847 if (type == NVME_SGL_DESCR_TYPE_BIT_BUCKET) { 848 goto next; 849 } 850 851 addr = le64_to_cpu(segment[i].addr); 852 853 if (UINT64_MAX - addr < dlen) { 854 return NVME_DATA_SGL_LEN_INVALID | NVME_DNR; 855 } 856 857 status = nvme_map_addr(n, sg, addr, trans_len); 858 if (status) { 859 return status; 860 } 861 862 next: 863 *len -= trans_len; 864 } 865 866 return NVME_SUCCESS; 867 } 868 869 static uint16_t nvme_map_sgl(NvmeCtrl *n, NvmeSg *sg, NvmeSglDescriptor sgl, 870 size_t len, NvmeCmd *cmd) 871 { 872 /* 873 * Read the segment in chunks of 256 descriptors (one 4k page) to avoid 874 * dynamically allocating a potentially huge SGL. The spec allows the SGL 875 * to be larger (as in number of bytes required to describe the SGL 876 * descriptors and segment chain) than the command transfer size, so it is 877 * not bounded by MDTS. 878 */ 879 const int SEG_CHUNK_SIZE = 256; 880 881 NvmeSglDescriptor segment[SEG_CHUNK_SIZE], *sgld, *last_sgld; 882 uint64_t nsgld; 883 uint32_t seg_len; 884 uint16_t status; 885 hwaddr addr; 886 int ret; 887 888 sgld = &sgl; 889 addr = le64_to_cpu(sgl.addr); 890 891 trace_pci_nvme_map_sgl(NVME_SGL_TYPE(sgl.type), len); 892 893 nvme_sg_init(n, sg, nvme_addr_is_dma(n, addr)); 894 895 /* 896 * If the entire transfer can be described with a single data block it can 897 * be mapped directly. 898 */ 899 if (NVME_SGL_TYPE(sgl.type) == NVME_SGL_DESCR_TYPE_DATA_BLOCK) { 900 status = nvme_map_sgl_data(n, sg, sgld, 1, &len, cmd); 901 if (status) { 902 goto unmap; 903 } 904 905 goto out; 906 } 907 908 for (;;) { 909 switch (NVME_SGL_TYPE(sgld->type)) { 910 case NVME_SGL_DESCR_TYPE_SEGMENT: 911 case NVME_SGL_DESCR_TYPE_LAST_SEGMENT: 912 break; 913 default: 914 return NVME_INVALID_SGL_SEG_DESCR | NVME_DNR; 915 } 916 917 seg_len = le32_to_cpu(sgld->len); 918 919 /* check the length of the (Last) Segment descriptor */ 920 if ((!seg_len || seg_len & 0xf) && 921 (NVME_SGL_TYPE(sgld->type) != NVME_SGL_DESCR_TYPE_BIT_BUCKET)) { 922 return NVME_INVALID_SGL_SEG_DESCR | NVME_DNR; 923 } 924 925 if (UINT64_MAX - addr < seg_len) { 926 return NVME_DATA_SGL_LEN_INVALID | NVME_DNR; 927 } 928 929 nsgld = seg_len / sizeof(NvmeSglDescriptor); 930 931 while (nsgld > SEG_CHUNK_SIZE) { 932 if (nvme_addr_read(n, addr, segment, sizeof(segment))) { 933 trace_pci_nvme_err_addr_read(addr); 934 status = NVME_DATA_TRAS_ERROR; 935 goto unmap; 936 } 937 938 status = nvme_map_sgl_data(n, sg, segment, SEG_CHUNK_SIZE, 939 &len, cmd); 940 if (status) { 941 goto unmap; 942 } 943 944 nsgld -= SEG_CHUNK_SIZE; 945 addr += SEG_CHUNK_SIZE * sizeof(NvmeSglDescriptor); 946 } 947 948 ret = nvme_addr_read(n, addr, segment, nsgld * 949 sizeof(NvmeSglDescriptor)); 950 if (ret) { 951 trace_pci_nvme_err_addr_read(addr); 952 status = NVME_DATA_TRAS_ERROR; 953 goto unmap; 954 } 955 956 last_sgld = &segment[nsgld - 1]; 957 958 /* 959 * If the segment ends with a Data Block or Bit Bucket Descriptor Type, 960 * then we are done. 961 */ 962 switch (NVME_SGL_TYPE(last_sgld->type)) { 963 case NVME_SGL_DESCR_TYPE_DATA_BLOCK: 964 case NVME_SGL_DESCR_TYPE_BIT_BUCKET: 965 status = nvme_map_sgl_data(n, sg, segment, nsgld, &len, cmd); 966 if (status) { 967 goto unmap; 968 } 969 970 goto out; 971 972 default: 973 break; 974 } 975 976 /* 977 * If the last descriptor was not a Data Block or Bit Bucket, then the 978 * current segment must not be a Last Segment. 979 */ 980 if (NVME_SGL_TYPE(sgld->type) == NVME_SGL_DESCR_TYPE_LAST_SEGMENT) { 981 status = NVME_INVALID_SGL_SEG_DESCR | NVME_DNR; 982 goto unmap; 983 } 984 985 sgld = last_sgld; 986 addr = le64_to_cpu(sgld->addr); 987 988 /* 989 * Do not map the last descriptor; it will be a Segment or Last Segment 990 * descriptor and is handled by the next iteration. 991 */ 992 status = nvme_map_sgl_data(n, sg, segment, nsgld - 1, &len, cmd); 993 if (status) { 994 goto unmap; 995 } 996 } 997 998 out: 999 /* if there is any residual left in len, the SGL was too short */ 1000 if (len) { 1001 status = NVME_DATA_SGL_LEN_INVALID | NVME_DNR; 1002 goto unmap; 1003 } 1004 1005 return NVME_SUCCESS; 1006 1007 unmap: 1008 nvme_sg_unmap(sg); 1009 return status; 1010 } 1011 1012 uint16_t nvme_map_dptr(NvmeCtrl *n, NvmeSg *sg, size_t len, 1013 NvmeCmd *cmd) 1014 { 1015 uint64_t prp1, prp2; 1016 1017 switch (NVME_CMD_FLAGS_PSDT(cmd->flags)) { 1018 case NVME_PSDT_PRP: 1019 prp1 = le64_to_cpu(cmd->dptr.prp1); 1020 prp2 = le64_to_cpu(cmd->dptr.prp2); 1021 1022 return nvme_map_prp(n, sg, prp1, prp2, len); 1023 case NVME_PSDT_SGL_MPTR_CONTIGUOUS: 1024 case NVME_PSDT_SGL_MPTR_SGL: 1025 return nvme_map_sgl(n, sg, cmd->dptr.sgl, len, cmd); 1026 default: 1027 return NVME_INVALID_FIELD; 1028 } 1029 } 1030 1031 static uint16_t nvme_map_mptr(NvmeCtrl *n, NvmeSg *sg, size_t len, 1032 NvmeCmd *cmd) 1033 { 1034 int psdt = NVME_CMD_FLAGS_PSDT(cmd->flags); 1035 hwaddr mptr = le64_to_cpu(cmd->mptr); 1036 uint16_t status; 1037 1038 if (psdt == NVME_PSDT_SGL_MPTR_SGL) { 1039 NvmeSglDescriptor sgl; 1040 1041 if (nvme_addr_read(n, mptr, &sgl, sizeof(sgl))) { 1042 return NVME_DATA_TRAS_ERROR; 1043 } 1044 1045 status = nvme_map_sgl(n, sg, sgl, len, cmd); 1046 if (status && (status & 0x7ff) == NVME_DATA_SGL_LEN_INVALID) { 1047 status = NVME_MD_SGL_LEN_INVALID | NVME_DNR; 1048 } 1049 1050 return status; 1051 } 1052 1053 nvme_sg_init(n, sg, nvme_addr_is_dma(n, mptr)); 1054 status = nvme_map_addr(n, sg, mptr, len); 1055 if (status) { 1056 nvme_sg_unmap(sg); 1057 } 1058 1059 return status; 1060 } 1061 1062 static uint16_t nvme_map_data(NvmeCtrl *n, uint32_t nlb, NvmeRequest *req) 1063 { 1064 NvmeNamespace *ns = req->ns; 1065 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; 1066 bool pi = !!NVME_ID_NS_DPS_TYPE(ns->id_ns.dps); 1067 bool pract = !!(le16_to_cpu(rw->control) & NVME_RW_PRINFO_PRACT); 1068 size_t len = nvme_l2b(ns, nlb); 1069 uint16_t status; 1070 1071 if (nvme_ns_ext(ns) && 1072 !(pi && pract && ns->lbaf.ms == nvme_pi_tuple_size(ns))) { 1073 NvmeSg sg; 1074 1075 len += nvme_m2b(ns, nlb); 1076 1077 status = nvme_map_dptr(n, &sg, len, &req->cmd); 1078 if (status) { 1079 return status; 1080 } 1081 1082 nvme_sg_init(n, &req->sg, sg.flags & NVME_SG_DMA); 1083 nvme_sg_split(&sg, ns, &req->sg, NULL); 1084 nvme_sg_unmap(&sg); 1085 1086 return NVME_SUCCESS; 1087 } 1088 1089 return nvme_map_dptr(n, &req->sg, len, &req->cmd); 1090 } 1091 1092 static uint16_t nvme_map_mdata(NvmeCtrl *n, uint32_t nlb, NvmeRequest *req) 1093 { 1094 NvmeNamespace *ns = req->ns; 1095 size_t len = nvme_m2b(ns, nlb); 1096 uint16_t status; 1097 1098 if (nvme_ns_ext(ns)) { 1099 NvmeSg sg; 1100 1101 len += nvme_l2b(ns, nlb); 1102 1103 status = nvme_map_dptr(n, &sg, len, &req->cmd); 1104 if (status) { 1105 return status; 1106 } 1107 1108 nvme_sg_init(n, &req->sg, sg.flags & NVME_SG_DMA); 1109 nvme_sg_split(&sg, ns, NULL, &req->sg); 1110 nvme_sg_unmap(&sg); 1111 1112 return NVME_SUCCESS; 1113 } 1114 1115 return nvme_map_mptr(n, &req->sg, len, &req->cmd); 1116 } 1117 1118 static uint16_t nvme_tx_interleaved(NvmeCtrl *n, NvmeSg *sg, uint8_t *ptr, 1119 uint32_t len, uint32_t bytes, 1120 int32_t skip_bytes, int64_t offset, 1121 NvmeTxDirection dir) 1122 { 1123 hwaddr addr; 1124 uint32_t trans_len, count = bytes; 1125 bool dma = sg->flags & NVME_SG_DMA; 1126 int64_t sge_len; 1127 int sg_idx = 0; 1128 int ret; 1129 1130 assert(sg->flags & NVME_SG_ALLOC); 1131 1132 while (len) { 1133 sge_len = dma ? sg->qsg.sg[sg_idx].len : sg->iov.iov[sg_idx].iov_len; 1134 1135 if (sge_len - offset < 0) { 1136 offset -= sge_len; 1137 sg_idx++; 1138 continue; 1139 } 1140 1141 if (sge_len == offset) { 1142 offset = 0; 1143 sg_idx++; 1144 continue; 1145 } 1146 1147 trans_len = MIN(len, count); 1148 trans_len = MIN(trans_len, sge_len - offset); 1149 1150 if (dma) { 1151 addr = sg->qsg.sg[sg_idx].base + offset; 1152 } else { 1153 addr = (hwaddr)(uintptr_t)sg->iov.iov[sg_idx].iov_base + offset; 1154 } 1155 1156 if (dir == NVME_TX_DIRECTION_TO_DEVICE) { 1157 ret = nvme_addr_read(n, addr, ptr, trans_len); 1158 } else { 1159 ret = nvme_addr_write(n, addr, ptr, trans_len); 1160 } 1161 1162 if (ret) { 1163 return NVME_DATA_TRAS_ERROR; 1164 } 1165 1166 ptr += trans_len; 1167 len -= trans_len; 1168 count -= trans_len; 1169 offset += trans_len; 1170 1171 if (count == 0) { 1172 count = bytes; 1173 offset += skip_bytes; 1174 } 1175 } 1176 1177 return NVME_SUCCESS; 1178 } 1179 1180 static uint16_t nvme_tx(NvmeCtrl *n, NvmeSg *sg, void *ptr, uint32_t len, 1181 NvmeTxDirection dir) 1182 { 1183 assert(sg->flags & NVME_SG_ALLOC); 1184 1185 if (sg->flags & NVME_SG_DMA) { 1186 const MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED; 1187 dma_addr_t residual; 1188 1189 if (dir == NVME_TX_DIRECTION_TO_DEVICE) { 1190 dma_buf_write(ptr, len, &residual, &sg->qsg, attrs); 1191 } else { 1192 dma_buf_read(ptr, len, &residual, &sg->qsg, attrs); 1193 } 1194 1195 if (unlikely(residual)) { 1196 trace_pci_nvme_err_invalid_dma(); 1197 return NVME_INVALID_FIELD | NVME_DNR; 1198 } 1199 } else { 1200 size_t bytes; 1201 1202 if (dir == NVME_TX_DIRECTION_TO_DEVICE) { 1203 bytes = qemu_iovec_to_buf(&sg->iov, 0, ptr, len); 1204 } else { 1205 bytes = qemu_iovec_from_buf(&sg->iov, 0, ptr, len); 1206 } 1207 1208 if (unlikely(bytes != len)) { 1209 trace_pci_nvme_err_invalid_dma(); 1210 return NVME_INVALID_FIELD | NVME_DNR; 1211 } 1212 } 1213 1214 return NVME_SUCCESS; 1215 } 1216 1217 static inline uint16_t nvme_c2h(NvmeCtrl *n, void *ptr, uint32_t len, 1218 NvmeRequest *req) 1219 { 1220 uint16_t status; 1221 1222 status = nvme_map_dptr(n, &req->sg, len, &req->cmd); 1223 if (status) { 1224 return status; 1225 } 1226 1227 return nvme_tx(n, &req->sg, ptr, len, NVME_TX_DIRECTION_FROM_DEVICE); 1228 } 1229 1230 static inline uint16_t nvme_h2c(NvmeCtrl *n, void *ptr, uint32_t len, 1231 NvmeRequest *req) 1232 { 1233 uint16_t status; 1234 1235 status = nvme_map_dptr(n, &req->sg, len, &req->cmd); 1236 if (status) { 1237 return status; 1238 } 1239 1240 return nvme_tx(n, &req->sg, ptr, len, NVME_TX_DIRECTION_TO_DEVICE); 1241 } 1242 1243 uint16_t nvme_bounce_data(NvmeCtrl *n, void *ptr, uint32_t len, 1244 NvmeTxDirection dir, NvmeRequest *req) 1245 { 1246 NvmeNamespace *ns = req->ns; 1247 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; 1248 bool pi = !!NVME_ID_NS_DPS_TYPE(ns->id_ns.dps); 1249 bool pract = !!(le16_to_cpu(rw->control) & NVME_RW_PRINFO_PRACT); 1250 1251 if (nvme_ns_ext(ns) && 1252 !(pi && pract && ns->lbaf.ms == nvme_pi_tuple_size(ns))) { 1253 return nvme_tx_interleaved(n, &req->sg, ptr, len, ns->lbasz, 1254 ns->lbaf.ms, 0, dir); 1255 } 1256 1257 return nvme_tx(n, &req->sg, ptr, len, dir); 1258 } 1259 1260 uint16_t nvme_bounce_mdata(NvmeCtrl *n, void *ptr, uint32_t len, 1261 NvmeTxDirection dir, NvmeRequest *req) 1262 { 1263 NvmeNamespace *ns = req->ns; 1264 uint16_t status; 1265 1266 if (nvme_ns_ext(ns)) { 1267 return nvme_tx_interleaved(n, &req->sg, ptr, len, ns->lbaf.ms, 1268 ns->lbasz, ns->lbasz, dir); 1269 } 1270 1271 nvme_sg_unmap(&req->sg); 1272 1273 status = nvme_map_mptr(n, &req->sg, len, &req->cmd); 1274 if (status) { 1275 return status; 1276 } 1277 1278 return nvme_tx(n, &req->sg, ptr, len, dir); 1279 } 1280 1281 static inline void nvme_blk_read(BlockBackend *blk, int64_t offset, 1282 BlockCompletionFunc *cb, NvmeRequest *req) 1283 { 1284 assert(req->sg.flags & NVME_SG_ALLOC); 1285 1286 if (req->sg.flags & NVME_SG_DMA) { 1287 req->aiocb = dma_blk_read(blk, &req->sg.qsg, offset, BDRV_SECTOR_SIZE, 1288 cb, req); 1289 } else { 1290 req->aiocb = blk_aio_preadv(blk, offset, &req->sg.iov, 0, cb, req); 1291 } 1292 } 1293 1294 static inline void nvme_blk_write(BlockBackend *blk, int64_t offset, 1295 BlockCompletionFunc *cb, NvmeRequest *req) 1296 { 1297 assert(req->sg.flags & NVME_SG_ALLOC); 1298 1299 if (req->sg.flags & NVME_SG_DMA) { 1300 req->aiocb = dma_blk_write(blk, &req->sg.qsg, offset, BDRV_SECTOR_SIZE, 1301 cb, req); 1302 } else { 1303 req->aiocb = blk_aio_pwritev(blk, offset, &req->sg.iov, 0, cb, req); 1304 } 1305 } 1306 1307 static void nvme_post_cqes(void *opaque) 1308 { 1309 NvmeCQueue *cq = opaque; 1310 NvmeCtrl *n = cq->ctrl; 1311 NvmeRequest *req, *next; 1312 bool pending = cq->head != cq->tail; 1313 int ret; 1314 1315 QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) { 1316 NvmeSQueue *sq; 1317 hwaddr addr; 1318 1319 if (nvme_cq_full(cq)) { 1320 break; 1321 } 1322 1323 sq = req->sq; 1324 req->cqe.status = cpu_to_le16((req->status << 1) | cq->phase); 1325 req->cqe.sq_id = cpu_to_le16(sq->sqid); 1326 req->cqe.sq_head = cpu_to_le16(sq->head); 1327 addr = cq->dma_addr + cq->tail * n->cqe_size; 1328 ret = pci_dma_write(&n->parent_obj, addr, (void *)&req->cqe, 1329 sizeof(req->cqe)); 1330 if (ret) { 1331 trace_pci_nvme_err_addr_write(addr); 1332 trace_pci_nvme_err_cfs(); 1333 stl_le_p(&n->bar.csts, NVME_CSTS_FAILED); 1334 break; 1335 } 1336 QTAILQ_REMOVE(&cq->req_list, req, entry); 1337 nvme_inc_cq_tail(cq); 1338 nvme_sg_unmap(&req->sg); 1339 QTAILQ_INSERT_TAIL(&sq->req_list, req, entry); 1340 } 1341 if (cq->tail != cq->head) { 1342 if (cq->irq_enabled && !pending) { 1343 n->cq_pending++; 1344 } 1345 1346 nvme_irq_assert(n, cq); 1347 } 1348 } 1349 1350 static void nvme_enqueue_req_completion(NvmeCQueue *cq, NvmeRequest *req) 1351 { 1352 assert(cq->cqid == req->sq->cqid); 1353 trace_pci_nvme_enqueue_req_completion(nvme_cid(req), cq->cqid, 1354 le32_to_cpu(req->cqe.result), 1355 le32_to_cpu(req->cqe.dw1), 1356 req->status); 1357 1358 if (req->status) { 1359 trace_pci_nvme_err_req_status(nvme_cid(req), nvme_nsid(req->ns), 1360 req->status, req->cmd.opcode); 1361 } 1362 1363 QTAILQ_REMOVE(&req->sq->out_req_list, req, entry); 1364 QTAILQ_INSERT_TAIL(&cq->req_list, req, entry); 1365 timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500); 1366 } 1367 1368 static void nvme_process_aers(void *opaque) 1369 { 1370 NvmeCtrl *n = opaque; 1371 NvmeAsyncEvent *event, *next; 1372 1373 trace_pci_nvme_process_aers(n->aer_queued); 1374 1375 QTAILQ_FOREACH_SAFE(event, &n->aer_queue, entry, next) { 1376 NvmeRequest *req; 1377 NvmeAerResult *result; 1378 1379 /* can't post cqe if there is nothing to complete */ 1380 if (!n->outstanding_aers) { 1381 trace_pci_nvme_no_outstanding_aers(); 1382 break; 1383 } 1384 1385 /* ignore if masked (cqe posted, but event not cleared) */ 1386 if (n->aer_mask & (1 << event->result.event_type)) { 1387 trace_pci_nvme_aer_masked(event->result.event_type, n->aer_mask); 1388 continue; 1389 } 1390 1391 QTAILQ_REMOVE(&n->aer_queue, event, entry); 1392 n->aer_queued--; 1393 1394 n->aer_mask |= 1 << event->result.event_type; 1395 n->outstanding_aers--; 1396 1397 req = n->aer_reqs[n->outstanding_aers]; 1398 1399 result = (NvmeAerResult *) &req->cqe.result; 1400 result->event_type = event->result.event_type; 1401 result->event_info = event->result.event_info; 1402 result->log_page = event->result.log_page; 1403 g_free(event); 1404 1405 trace_pci_nvme_aer_post_cqe(result->event_type, result->event_info, 1406 result->log_page); 1407 1408 nvme_enqueue_req_completion(&n->admin_cq, req); 1409 } 1410 } 1411 1412 static void nvme_enqueue_event(NvmeCtrl *n, uint8_t event_type, 1413 uint8_t event_info, uint8_t log_page) 1414 { 1415 NvmeAsyncEvent *event; 1416 1417 trace_pci_nvme_enqueue_event(event_type, event_info, log_page); 1418 1419 if (n->aer_queued == n->params.aer_max_queued) { 1420 trace_pci_nvme_enqueue_event_noqueue(n->aer_queued); 1421 return; 1422 } 1423 1424 event = g_new(NvmeAsyncEvent, 1); 1425 event->result = (NvmeAerResult) { 1426 .event_type = event_type, 1427 .event_info = event_info, 1428 .log_page = log_page, 1429 }; 1430 1431 QTAILQ_INSERT_TAIL(&n->aer_queue, event, entry); 1432 n->aer_queued++; 1433 1434 nvme_process_aers(n); 1435 } 1436 1437 static void nvme_smart_event(NvmeCtrl *n, uint8_t event) 1438 { 1439 uint8_t aer_info; 1440 1441 /* Ref SPEC <Asynchronous Event Information 0x2013 SMART / Health Status> */ 1442 if (!(NVME_AEC_SMART(n->features.async_config) & event)) { 1443 return; 1444 } 1445 1446 switch (event) { 1447 case NVME_SMART_SPARE: 1448 aer_info = NVME_AER_INFO_SMART_SPARE_THRESH; 1449 break; 1450 case NVME_SMART_TEMPERATURE: 1451 aer_info = NVME_AER_INFO_SMART_TEMP_THRESH; 1452 break; 1453 case NVME_SMART_RELIABILITY: 1454 case NVME_SMART_MEDIA_READ_ONLY: 1455 case NVME_SMART_FAILED_VOLATILE_MEDIA: 1456 case NVME_SMART_PMR_UNRELIABLE: 1457 aer_info = NVME_AER_INFO_SMART_RELIABILITY; 1458 break; 1459 default: 1460 return; 1461 } 1462 1463 nvme_enqueue_event(n, NVME_AER_TYPE_SMART, aer_info, NVME_LOG_SMART_INFO); 1464 } 1465 1466 static void nvme_clear_events(NvmeCtrl *n, uint8_t event_type) 1467 { 1468 n->aer_mask &= ~(1 << event_type); 1469 if (!QTAILQ_EMPTY(&n->aer_queue)) { 1470 nvme_process_aers(n); 1471 } 1472 } 1473 1474 static inline uint16_t nvme_check_mdts(NvmeCtrl *n, size_t len) 1475 { 1476 uint8_t mdts = n->params.mdts; 1477 1478 if (mdts && len > n->page_size << mdts) { 1479 trace_pci_nvme_err_mdts(len); 1480 return NVME_INVALID_FIELD | NVME_DNR; 1481 } 1482 1483 return NVME_SUCCESS; 1484 } 1485 1486 static inline uint16_t nvme_check_bounds(NvmeNamespace *ns, uint64_t slba, 1487 uint32_t nlb) 1488 { 1489 uint64_t nsze = le64_to_cpu(ns->id_ns.nsze); 1490 1491 if (unlikely(UINT64_MAX - slba < nlb || slba + nlb > nsze)) { 1492 trace_pci_nvme_err_invalid_lba_range(slba, nlb, nsze); 1493 return NVME_LBA_RANGE | NVME_DNR; 1494 } 1495 1496 return NVME_SUCCESS; 1497 } 1498 1499 static int nvme_block_status_all(NvmeNamespace *ns, uint64_t slba, 1500 uint32_t nlb, int flags) 1501 { 1502 BlockDriverState *bs = blk_bs(ns->blkconf.blk); 1503 1504 int64_t pnum = 0, bytes = nvme_l2b(ns, nlb); 1505 int64_t offset = nvme_l2b(ns, slba); 1506 int ret; 1507 1508 /* 1509 * `pnum` holds the number of bytes after offset that shares the same 1510 * allocation status as the byte at offset. If `pnum` is different from 1511 * `bytes`, we should check the allocation status of the next range and 1512 * continue this until all bytes have been checked. 1513 */ 1514 do { 1515 bytes -= pnum; 1516 1517 ret = bdrv_block_status(bs, offset, bytes, &pnum, NULL, NULL); 1518 if (ret < 0) { 1519 return ret; 1520 } 1521 1522 1523 trace_pci_nvme_block_status(offset, bytes, pnum, ret, 1524 !!(ret & BDRV_BLOCK_ZERO)); 1525 1526 if (!(ret & flags)) { 1527 return 1; 1528 } 1529 1530 offset += pnum; 1531 } while (pnum != bytes); 1532 1533 return 0; 1534 } 1535 1536 static uint16_t nvme_check_dulbe(NvmeNamespace *ns, uint64_t slba, 1537 uint32_t nlb) 1538 { 1539 int ret; 1540 Error *err = NULL; 1541 1542 ret = nvme_block_status_all(ns, slba, nlb, BDRV_BLOCK_DATA); 1543 if (ret) { 1544 if (ret < 0) { 1545 error_setg_errno(&err, -ret, "unable to get block status"); 1546 error_report_err(err); 1547 1548 return NVME_INTERNAL_DEV_ERROR; 1549 } 1550 1551 return NVME_DULB; 1552 } 1553 1554 return NVME_SUCCESS; 1555 } 1556 1557 static void nvme_aio_err(NvmeRequest *req, int ret) 1558 { 1559 uint16_t status = NVME_SUCCESS; 1560 Error *local_err = NULL; 1561 1562 switch (req->cmd.opcode) { 1563 case NVME_CMD_READ: 1564 status = NVME_UNRECOVERED_READ; 1565 break; 1566 case NVME_CMD_FLUSH: 1567 case NVME_CMD_WRITE: 1568 case NVME_CMD_WRITE_ZEROES: 1569 case NVME_CMD_ZONE_APPEND: 1570 status = NVME_WRITE_FAULT; 1571 break; 1572 default: 1573 status = NVME_INTERNAL_DEV_ERROR; 1574 break; 1575 } 1576 1577 trace_pci_nvme_err_aio(nvme_cid(req), strerror(-ret), status); 1578 1579 error_setg_errno(&local_err, -ret, "aio failed"); 1580 error_report_err(local_err); 1581 1582 /* 1583 * Set the command status code to the first encountered error but allow a 1584 * subsequent Internal Device Error to trump it. 1585 */ 1586 if (req->status && status != NVME_INTERNAL_DEV_ERROR) { 1587 return; 1588 } 1589 1590 req->status = status; 1591 } 1592 1593 static inline uint32_t nvme_zone_idx(NvmeNamespace *ns, uint64_t slba) 1594 { 1595 return ns->zone_size_log2 > 0 ? slba >> ns->zone_size_log2 : 1596 slba / ns->zone_size; 1597 } 1598 1599 static inline NvmeZone *nvme_get_zone_by_slba(NvmeNamespace *ns, uint64_t slba) 1600 { 1601 uint32_t zone_idx = nvme_zone_idx(ns, slba); 1602 1603 if (zone_idx >= ns->num_zones) { 1604 return NULL; 1605 } 1606 1607 return &ns->zone_array[zone_idx]; 1608 } 1609 1610 static uint16_t nvme_check_zone_state_for_write(NvmeZone *zone) 1611 { 1612 uint64_t zslba = zone->d.zslba; 1613 1614 switch (nvme_get_zone_state(zone)) { 1615 case NVME_ZONE_STATE_EMPTY: 1616 case NVME_ZONE_STATE_IMPLICITLY_OPEN: 1617 case NVME_ZONE_STATE_EXPLICITLY_OPEN: 1618 case NVME_ZONE_STATE_CLOSED: 1619 return NVME_SUCCESS; 1620 case NVME_ZONE_STATE_FULL: 1621 trace_pci_nvme_err_zone_is_full(zslba); 1622 return NVME_ZONE_FULL; 1623 case NVME_ZONE_STATE_OFFLINE: 1624 trace_pci_nvme_err_zone_is_offline(zslba); 1625 return NVME_ZONE_OFFLINE; 1626 case NVME_ZONE_STATE_READ_ONLY: 1627 trace_pci_nvme_err_zone_is_read_only(zslba); 1628 return NVME_ZONE_READ_ONLY; 1629 default: 1630 assert(false); 1631 } 1632 1633 return NVME_INTERNAL_DEV_ERROR; 1634 } 1635 1636 static uint16_t nvme_check_zone_write(NvmeNamespace *ns, NvmeZone *zone, 1637 uint64_t slba, uint32_t nlb) 1638 { 1639 uint64_t zcap = nvme_zone_wr_boundary(zone); 1640 uint16_t status; 1641 1642 status = nvme_check_zone_state_for_write(zone); 1643 if (status) { 1644 return status; 1645 } 1646 1647 if (zone->d.za & NVME_ZA_ZRWA_VALID) { 1648 uint64_t ezrwa = zone->w_ptr + 2 * ns->zns.zrwas; 1649 1650 if (slba < zone->w_ptr || slba + nlb > ezrwa) { 1651 trace_pci_nvme_err_zone_invalid_write(slba, zone->w_ptr); 1652 return NVME_ZONE_INVALID_WRITE; 1653 } 1654 } else { 1655 if (unlikely(slba != zone->w_ptr)) { 1656 trace_pci_nvme_err_write_not_at_wp(slba, zone->d.zslba, 1657 zone->w_ptr); 1658 return NVME_ZONE_INVALID_WRITE; 1659 } 1660 } 1661 1662 if (unlikely((slba + nlb) > zcap)) { 1663 trace_pci_nvme_err_zone_boundary(slba, nlb, zcap); 1664 return NVME_ZONE_BOUNDARY_ERROR; 1665 } 1666 1667 return NVME_SUCCESS; 1668 } 1669 1670 static uint16_t nvme_check_zone_state_for_read(NvmeZone *zone) 1671 { 1672 switch (nvme_get_zone_state(zone)) { 1673 case NVME_ZONE_STATE_EMPTY: 1674 case NVME_ZONE_STATE_IMPLICITLY_OPEN: 1675 case NVME_ZONE_STATE_EXPLICITLY_OPEN: 1676 case NVME_ZONE_STATE_FULL: 1677 case NVME_ZONE_STATE_CLOSED: 1678 case NVME_ZONE_STATE_READ_ONLY: 1679 return NVME_SUCCESS; 1680 case NVME_ZONE_STATE_OFFLINE: 1681 trace_pci_nvme_err_zone_is_offline(zone->d.zslba); 1682 return NVME_ZONE_OFFLINE; 1683 default: 1684 assert(false); 1685 } 1686 1687 return NVME_INTERNAL_DEV_ERROR; 1688 } 1689 1690 static uint16_t nvme_check_zone_read(NvmeNamespace *ns, uint64_t slba, 1691 uint32_t nlb) 1692 { 1693 NvmeZone *zone; 1694 uint64_t bndry, end; 1695 uint16_t status; 1696 1697 zone = nvme_get_zone_by_slba(ns, slba); 1698 assert(zone); 1699 1700 bndry = nvme_zone_rd_boundary(ns, zone); 1701 end = slba + nlb; 1702 1703 status = nvme_check_zone_state_for_read(zone); 1704 if (status) { 1705 ; 1706 } else if (unlikely(end > bndry)) { 1707 if (!ns->params.cross_zone_read) { 1708 status = NVME_ZONE_BOUNDARY_ERROR; 1709 } else { 1710 /* 1711 * Read across zone boundary - check that all subsequent 1712 * zones that are being read have an appropriate state. 1713 */ 1714 do { 1715 zone++; 1716 status = nvme_check_zone_state_for_read(zone); 1717 if (status) { 1718 break; 1719 } 1720 } while (end > nvme_zone_rd_boundary(ns, zone)); 1721 } 1722 } 1723 1724 return status; 1725 } 1726 1727 static uint16_t nvme_zrm_finish(NvmeNamespace *ns, NvmeZone *zone) 1728 { 1729 switch (nvme_get_zone_state(zone)) { 1730 case NVME_ZONE_STATE_FULL: 1731 return NVME_SUCCESS; 1732 1733 case NVME_ZONE_STATE_IMPLICITLY_OPEN: 1734 case NVME_ZONE_STATE_EXPLICITLY_OPEN: 1735 nvme_aor_dec_open(ns); 1736 /* fallthrough */ 1737 case NVME_ZONE_STATE_CLOSED: 1738 nvme_aor_dec_active(ns); 1739 1740 if (zone->d.za & NVME_ZA_ZRWA_VALID) { 1741 zone->d.za &= ~NVME_ZA_ZRWA_VALID; 1742 if (ns->params.numzrwa) { 1743 ns->zns.numzrwa++; 1744 } 1745 } 1746 1747 /* fallthrough */ 1748 case NVME_ZONE_STATE_EMPTY: 1749 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_FULL); 1750 return NVME_SUCCESS; 1751 1752 default: 1753 return NVME_ZONE_INVAL_TRANSITION; 1754 } 1755 } 1756 1757 static uint16_t nvme_zrm_close(NvmeNamespace *ns, NvmeZone *zone) 1758 { 1759 switch (nvme_get_zone_state(zone)) { 1760 case NVME_ZONE_STATE_EXPLICITLY_OPEN: 1761 case NVME_ZONE_STATE_IMPLICITLY_OPEN: 1762 nvme_aor_dec_open(ns); 1763 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_CLOSED); 1764 /* fall through */ 1765 case NVME_ZONE_STATE_CLOSED: 1766 return NVME_SUCCESS; 1767 1768 default: 1769 return NVME_ZONE_INVAL_TRANSITION; 1770 } 1771 } 1772 1773 static uint16_t nvme_zrm_reset(NvmeNamespace *ns, NvmeZone *zone) 1774 { 1775 switch (nvme_get_zone_state(zone)) { 1776 case NVME_ZONE_STATE_EXPLICITLY_OPEN: 1777 case NVME_ZONE_STATE_IMPLICITLY_OPEN: 1778 nvme_aor_dec_open(ns); 1779 /* fallthrough */ 1780 case NVME_ZONE_STATE_CLOSED: 1781 nvme_aor_dec_active(ns); 1782 1783 if (zone->d.za & NVME_ZA_ZRWA_VALID) { 1784 if (ns->params.numzrwa) { 1785 ns->zns.numzrwa++; 1786 } 1787 } 1788 1789 /* fallthrough */ 1790 case NVME_ZONE_STATE_FULL: 1791 zone->w_ptr = zone->d.zslba; 1792 zone->d.wp = zone->w_ptr; 1793 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_EMPTY); 1794 /* fallthrough */ 1795 case NVME_ZONE_STATE_EMPTY: 1796 return NVME_SUCCESS; 1797 1798 default: 1799 return NVME_ZONE_INVAL_TRANSITION; 1800 } 1801 } 1802 1803 static void nvme_zrm_auto_transition_zone(NvmeNamespace *ns) 1804 { 1805 NvmeZone *zone; 1806 1807 if (ns->params.max_open_zones && 1808 ns->nr_open_zones == ns->params.max_open_zones) { 1809 zone = QTAILQ_FIRST(&ns->imp_open_zones); 1810 if (zone) { 1811 /* 1812 * Automatically close this implicitly open zone. 1813 */ 1814 QTAILQ_REMOVE(&ns->imp_open_zones, zone, entry); 1815 nvme_zrm_close(ns, zone); 1816 } 1817 } 1818 } 1819 1820 enum { 1821 NVME_ZRM_AUTO = 1 << 0, 1822 NVME_ZRM_ZRWA = 1 << 1, 1823 }; 1824 1825 static uint16_t nvme_zrm_open_flags(NvmeCtrl *n, NvmeNamespace *ns, 1826 NvmeZone *zone, int flags) 1827 { 1828 int act = 0; 1829 uint16_t status; 1830 1831 switch (nvme_get_zone_state(zone)) { 1832 case NVME_ZONE_STATE_EMPTY: 1833 act = 1; 1834 1835 /* fallthrough */ 1836 1837 case NVME_ZONE_STATE_CLOSED: 1838 if (n->params.auto_transition_zones) { 1839 nvme_zrm_auto_transition_zone(ns); 1840 } 1841 status = nvme_zns_check_resources(ns, act, 1, 1842 (flags & NVME_ZRM_ZRWA) ? 1 : 0); 1843 if (status) { 1844 return status; 1845 } 1846 1847 if (act) { 1848 nvme_aor_inc_active(ns); 1849 } 1850 1851 nvme_aor_inc_open(ns); 1852 1853 if (flags & NVME_ZRM_AUTO) { 1854 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_IMPLICITLY_OPEN); 1855 return NVME_SUCCESS; 1856 } 1857 1858 /* fallthrough */ 1859 1860 case NVME_ZONE_STATE_IMPLICITLY_OPEN: 1861 if (flags & NVME_ZRM_AUTO) { 1862 return NVME_SUCCESS; 1863 } 1864 1865 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_EXPLICITLY_OPEN); 1866 1867 /* fallthrough */ 1868 1869 case NVME_ZONE_STATE_EXPLICITLY_OPEN: 1870 if (flags & NVME_ZRM_ZRWA) { 1871 ns->zns.numzrwa--; 1872 1873 zone->d.za |= NVME_ZA_ZRWA_VALID; 1874 } 1875 1876 return NVME_SUCCESS; 1877 1878 default: 1879 return NVME_ZONE_INVAL_TRANSITION; 1880 } 1881 } 1882 1883 static inline uint16_t nvme_zrm_auto(NvmeCtrl *n, NvmeNamespace *ns, 1884 NvmeZone *zone) 1885 { 1886 return nvme_zrm_open_flags(n, ns, zone, NVME_ZRM_AUTO); 1887 } 1888 1889 static void nvme_advance_zone_wp(NvmeNamespace *ns, NvmeZone *zone, 1890 uint32_t nlb) 1891 { 1892 zone->d.wp += nlb; 1893 1894 if (zone->d.wp == nvme_zone_wr_boundary(zone)) { 1895 nvme_zrm_finish(ns, zone); 1896 } 1897 } 1898 1899 static void nvme_zoned_zrwa_implicit_flush(NvmeNamespace *ns, NvmeZone *zone, 1900 uint32_t nlbc) 1901 { 1902 uint16_t nzrwafgs = DIV_ROUND_UP(nlbc, ns->zns.zrwafg); 1903 1904 nlbc = nzrwafgs * ns->zns.zrwafg; 1905 1906 trace_pci_nvme_zoned_zrwa_implicit_flush(zone->d.zslba, nlbc); 1907 1908 zone->w_ptr += nlbc; 1909 1910 nvme_advance_zone_wp(ns, zone, nlbc); 1911 } 1912 1913 static void nvme_finalize_zoned_write(NvmeNamespace *ns, NvmeRequest *req) 1914 { 1915 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; 1916 NvmeZone *zone; 1917 uint64_t slba; 1918 uint32_t nlb; 1919 1920 slba = le64_to_cpu(rw->slba); 1921 nlb = le16_to_cpu(rw->nlb) + 1; 1922 zone = nvme_get_zone_by_slba(ns, slba); 1923 assert(zone); 1924 1925 if (zone->d.za & NVME_ZA_ZRWA_VALID) { 1926 uint64_t ezrwa = zone->w_ptr + ns->zns.zrwas - 1; 1927 uint64_t elba = slba + nlb - 1; 1928 1929 if (elba > ezrwa) { 1930 nvme_zoned_zrwa_implicit_flush(ns, zone, elba - ezrwa); 1931 } 1932 1933 return; 1934 } 1935 1936 nvme_advance_zone_wp(ns, zone, nlb); 1937 } 1938 1939 static inline bool nvme_is_write(NvmeRequest *req) 1940 { 1941 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; 1942 1943 return rw->opcode == NVME_CMD_WRITE || 1944 rw->opcode == NVME_CMD_ZONE_APPEND || 1945 rw->opcode == NVME_CMD_WRITE_ZEROES; 1946 } 1947 1948 static AioContext *nvme_get_aio_context(BlockAIOCB *acb) 1949 { 1950 return qemu_get_aio_context(); 1951 } 1952 1953 static void nvme_misc_cb(void *opaque, int ret) 1954 { 1955 NvmeRequest *req = opaque; 1956 1957 trace_pci_nvme_misc_cb(nvme_cid(req)); 1958 1959 if (ret) { 1960 nvme_aio_err(req, ret); 1961 } 1962 1963 nvme_enqueue_req_completion(nvme_cq(req), req); 1964 } 1965 1966 void nvme_rw_complete_cb(void *opaque, int ret) 1967 { 1968 NvmeRequest *req = opaque; 1969 NvmeNamespace *ns = req->ns; 1970 BlockBackend *blk = ns->blkconf.blk; 1971 BlockAcctCookie *acct = &req->acct; 1972 BlockAcctStats *stats = blk_get_stats(blk); 1973 1974 trace_pci_nvme_rw_complete_cb(nvme_cid(req), blk_name(blk)); 1975 1976 if (ret) { 1977 block_acct_failed(stats, acct); 1978 nvme_aio_err(req, ret); 1979 } else { 1980 block_acct_done(stats, acct); 1981 } 1982 1983 if (ns->params.zoned && nvme_is_write(req)) { 1984 nvme_finalize_zoned_write(ns, req); 1985 } 1986 1987 nvme_enqueue_req_completion(nvme_cq(req), req); 1988 } 1989 1990 static void nvme_rw_cb(void *opaque, int ret) 1991 { 1992 NvmeRequest *req = opaque; 1993 NvmeNamespace *ns = req->ns; 1994 1995 BlockBackend *blk = ns->blkconf.blk; 1996 1997 trace_pci_nvme_rw_cb(nvme_cid(req), blk_name(blk)); 1998 1999 if (ret) { 2000 goto out; 2001 } 2002 2003 if (ns->lbaf.ms) { 2004 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; 2005 uint64_t slba = le64_to_cpu(rw->slba); 2006 uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1; 2007 uint64_t offset = nvme_moff(ns, slba); 2008 2009 if (req->cmd.opcode == NVME_CMD_WRITE_ZEROES) { 2010 size_t mlen = nvme_m2b(ns, nlb); 2011 2012 req->aiocb = blk_aio_pwrite_zeroes(blk, offset, mlen, 2013 BDRV_REQ_MAY_UNMAP, 2014 nvme_rw_complete_cb, req); 2015 return; 2016 } 2017 2018 if (nvme_ns_ext(ns) || req->cmd.mptr) { 2019 uint16_t status; 2020 2021 nvme_sg_unmap(&req->sg); 2022 status = nvme_map_mdata(nvme_ctrl(req), nlb, req); 2023 if (status) { 2024 ret = -EFAULT; 2025 goto out; 2026 } 2027 2028 if (req->cmd.opcode == NVME_CMD_READ) { 2029 return nvme_blk_read(blk, offset, nvme_rw_complete_cb, req); 2030 } 2031 2032 return nvme_blk_write(blk, offset, nvme_rw_complete_cb, req); 2033 } 2034 } 2035 2036 out: 2037 nvme_rw_complete_cb(req, ret); 2038 } 2039 2040 static void nvme_verify_cb(void *opaque, int ret) 2041 { 2042 NvmeBounceContext *ctx = opaque; 2043 NvmeRequest *req = ctx->req; 2044 NvmeNamespace *ns = req->ns; 2045 BlockBackend *blk = ns->blkconf.blk; 2046 BlockAcctCookie *acct = &req->acct; 2047 BlockAcctStats *stats = blk_get_stats(blk); 2048 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; 2049 uint64_t slba = le64_to_cpu(rw->slba); 2050 uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control)); 2051 uint16_t apptag = le16_to_cpu(rw->apptag); 2052 uint16_t appmask = le16_to_cpu(rw->appmask); 2053 uint64_t reftag = le32_to_cpu(rw->reftag); 2054 uint64_t cdw3 = le32_to_cpu(rw->cdw3); 2055 uint16_t status; 2056 2057 reftag |= cdw3 << 32; 2058 2059 trace_pci_nvme_verify_cb(nvme_cid(req), prinfo, apptag, appmask, reftag); 2060 2061 if (ret) { 2062 block_acct_failed(stats, acct); 2063 nvme_aio_err(req, ret); 2064 goto out; 2065 } 2066 2067 block_acct_done(stats, acct); 2068 2069 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) { 2070 status = nvme_dif_mangle_mdata(ns, ctx->mdata.bounce, 2071 ctx->mdata.iov.size, slba); 2072 if (status) { 2073 req->status = status; 2074 goto out; 2075 } 2076 2077 req->status = nvme_dif_check(ns, ctx->data.bounce, ctx->data.iov.size, 2078 ctx->mdata.bounce, ctx->mdata.iov.size, 2079 prinfo, slba, apptag, appmask, &reftag); 2080 } 2081 2082 out: 2083 qemu_iovec_destroy(&ctx->data.iov); 2084 g_free(ctx->data.bounce); 2085 2086 qemu_iovec_destroy(&ctx->mdata.iov); 2087 g_free(ctx->mdata.bounce); 2088 2089 g_free(ctx); 2090 2091 nvme_enqueue_req_completion(nvme_cq(req), req); 2092 } 2093 2094 2095 static void nvme_verify_mdata_in_cb(void *opaque, int ret) 2096 { 2097 NvmeBounceContext *ctx = opaque; 2098 NvmeRequest *req = ctx->req; 2099 NvmeNamespace *ns = req->ns; 2100 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; 2101 uint64_t slba = le64_to_cpu(rw->slba); 2102 uint32_t nlb = le16_to_cpu(rw->nlb) + 1; 2103 size_t mlen = nvme_m2b(ns, nlb); 2104 uint64_t offset = nvme_moff(ns, slba); 2105 BlockBackend *blk = ns->blkconf.blk; 2106 2107 trace_pci_nvme_verify_mdata_in_cb(nvme_cid(req), blk_name(blk)); 2108 2109 if (ret) { 2110 goto out; 2111 } 2112 2113 ctx->mdata.bounce = g_malloc(mlen); 2114 2115 qemu_iovec_reset(&ctx->mdata.iov); 2116 qemu_iovec_add(&ctx->mdata.iov, ctx->mdata.bounce, mlen); 2117 2118 req->aiocb = blk_aio_preadv(blk, offset, &ctx->mdata.iov, 0, 2119 nvme_verify_cb, ctx); 2120 return; 2121 2122 out: 2123 nvme_verify_cb(ctx, ret); 2124 } 2125 2126 struct nvme_compare_ctx { 2127 struct { 2128 QEMUIOVector iov; 2129 uint8_t *bounce; 2130 } data; 2131 2132 struct { 2133 QEMUIOVector iov; 2134 uint8_t *bounce; 2135 } mdata; 2136 }; 2137 2138 static void nvme_compare_mdata_cb(void *opaque, int ret) 2139 { 2140 NvmeRequest *req = opaque; 2141 NvmeNamespace *ns = req->ns; 2142 NvmeCtrl *n = nvme_ctrl(req); 2143 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; 2144 uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control)); 2145 uint16_t apptag = le16_to_cpu(rw->apptag); 2146 uint16_t appmask = le16_to_cpu(rw->appmask); 2147 uint64_t reftag = le32_to_cpu(rw->reftag); 2148 uint64_t cdw3 = le32_to_cpu(rw->cdw3); 2149 struct nvme_compare_ctx *ctx = req->opaque; 2150 g_autofree uint8_t *buf = NULL; 2151 BlockBackend *blk = ns->blkconf.blk; 2152 BlockAcctCookie *acct = &req->acct; 2153 BlockAcctStats *stats = blk_get_stats(blk); 2154 uint16_t status = NVME_SUCCESS; 2155 2156 reftag |= cdw3 << 32; 2157 2158 trace_pci_nvme_compare_mdata_cb(nvme_cid(req)); 2159 2160 if (ret) { 2161 block_acct_failed(stats, acct); 2162 nvme_aio_err(req, ret); 2163 goto out; 2164 } 2165 2166 buf = g_malloc(ctx->mdata.iov.size); 2167 2168 status = nvme_bounce_mdata(n, buf, ctx->mdata.iov.size, 2169 NVME_TX_DIRECTION_TO_DEVICE, req); 2170 if (status) { 2171 req->status = status; 2172 goto out; 2173 } 2174 2175 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) { 2176 uint64_t slba = le64_to_cpu(rw->slba); 2177 uint8_t *bufp; 2178 uint8_t *mbufp = ctx->mdata.bounce; 2179 uint8_t *end = mbufp + ctx->mdata.iov.size; 2180 int16_t pil = 0; 2181 2182 status = nvme_dif_check(ns, ctx->data.bounce, ctx->data.iov.size, 2183 ctx->mdata.bounce, ctx->mdata.iov.size, prinfo, 2184 slba, apptag, appmask, &reftag); 2185 if (status) { 2186 req->status = status; 2187 goto out; 2188 } 2189 2190 /* 2191 * When formatted with protection information, do not compare the DIF 2192 * tuple. 2193 */ 2194 if (!(ns->id_ns.dps & NVME_ID_NS_DPS_FIRST_EIGHT)) { 2195 pil = ns->lbaf.ms - nvme_pi_tuple_size(ns); 2196 } 2197 2198 for (bufp = buf; mbufp < end; bufp += ns->lbaf.ms, mbufp += ns->lbaf.ms) { 2199 if (memcmp(bufp + pil, mbufp + pil, ns->lbaf.ms - pil)) { 2200 req->status = NVME_CMP_FAILURE; 2201 goto out; 2202 } 2203 } 2204 2205 goto out; 2206 } 2207 2208 if (memcmp(buf, ctx->mdata.bounce, ctx->mdata.iov.size)) { 2209 req->status = NVME_CMP_FAILURE; 2210 goto out; 2211 } 2212 2213 block_acct_done(stats, acct); 2214 2215 out: 2216 qemu_iovec_destroy(&ctx->data.iov); 2217 g_free(ctx->data.bounce); 2218 2219 qemu_iovec_destroy(&ctx->mdata.iov); 2220 g_free(ctx->mdata.bounce); 2221 2222 g_free(ctx); 2223 2224 nvme_enqueue_req_completion(nvme_cq(req), req); 2225 } 2226 2227 static void nvme_compare_data_cb(void *opaque, int ret) 2228 { 2229 NvmeRequest *req = opaque; 2230 NvmeCtrl *n = nvme_ctrl(req); 2231 NvmeNamespace *ns = req->ns; 2232 BlockBackend *blk = ns->blkconf.blk; 2233 BlockAcctCookie *acct = &req->acct; 2234 BlockAcctStats *stats = blk_get_stats(blk); 2235 2236 struct nvme_compare_ctx *ctx = req->opaque; 2237 g_autofree uint8_t *buf = NULL; 2238 uint16_t status; 2239 2240 trace_pci_nvme_compare_data_cb(nvme_cid(req)); 2241 2242 if (ret) { 2243 block_acct_failed(stats, acct); 2244 nvme_aio_err(req, ret); 2245 goto out; 2246 } 2247 2248 buf = g_malloc(ctx->data.iov.size); 2249 2250 status = nvme_bounce_data(n, buf, ctx->data.iov.size, 2251 NVME_TX_DIRECTION_TO_DEVICE, req); 2252 if (status) { 2253 req->status = status; 2254 goto out; 2255 } 2256 2257 if (memcmp(buf, ctx->data.bounce, ctx->data.iov.size)) { 2258 req->status = NVME_CMP_FAILURE; 2259 goto out; 2260 } 2261 2262 if (ns->lbaf.ms) { 2263 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; 2264 uint64_t slba = le64_to_cpu(rw->slba); 2265 uint32_t nlb = le16_to_cpu(rw->nlb) + 1; 2266 size_t mlen = nvme_m2b(ns, nlb); 2267 uint64_t offset = nvme_moff(ns, slba); 2268 2269 ctx->mdata.bounce = g_malloc(mlen); 2270 2271 qemu_iovec_init(&ctx->mdata.iov, 1); 2272 qemu_iovec_add(&ctx->mdata.iov, ctx->mdata.bounce, mlen); 2273 2274 req->aiocb = blk_aio_preadv(blk, offset, &ctx->mdata.iov, 0, 2275 nvme_compare_mdata_cb, req); 2276 return; 2277 } 2278 2279 block_acct_done(stats, acct); 2280 2281 out: 2282 qemu_iovec_destroy(&ctx->data.iov); 2283 g_free(ctx->data.bounce); 2284 g_free(ctx); 2285 2286 nvme_enqueue_req_completion(nvme_cq(req), req); 2287 } 2288 2289 typedef struct NvmeDSMAIOCB { 2290 BlockAIOCB common; 2291 BlockAIOCB *aiocb; 2292 NvmeRequest *req; 2293 QEMUBH *bh; 2294 int ret; 2295 2296 NvmeDsmRange *range; 2297 unsigned int nr; 2298 unsigned int idx; 2299 } NvmeDSMAIOCB; 2300 2301 static void nvme_dsm_cancel(BlockAIOCB *aiocb) 2302 { 2303 NvmeDSMAIOCB *iocb = container_of(aiocb, NvmeDSMAIOCB, common); 2304 2305 /* break nvme_dsm_cb loop */ 2306 iocb->idx = iocb->nr; 2307 iocb->ret = -ECANCELED; 2308 2309 if (iocb->aiocb) { 2310 blk_aio_cancel_async(iocb->aiocb); 2311 iocb->aiocb = NULL; 2312 } else { 2313 /* 2314 * We only reach this if nvme_dsm_cancel() has already been called or 2315 * the command ran to completion and nvme_dsm_bh is scheduled to run. 2316 */ 2317 assert(iocb->idx == iocb->nr); 2318 } 2319 } 2320 2321 static const AIOCBInfo nvme_dsm_aiocb_info = { 2322 .aiocb_size = sizeof(NvmeDSMAIOCB), 2323 .cancel_async = nvme_dsm_cancel, 2324 }; 2325 2326 static void nvme_dsm_bh(void *opaque) 2327 { 2328 NvmeDSMAIOCB *iocb = opaque; 2329 2330 iocb->common.cb(iocb->common.opaque, iocb->ret); 2331 2332 qemu_bh_delete(iocb->bh); 2333 iocb->bh = NULL; 2334 qemu_aio_unref(iocb); 2335 } 2336 2337 static void nvme_dsm_cb(void *opaque, int ret); 2338 2339 static void nvme_dsm_md_cb(void *opaque, int ret) 2340 { 2341 NvmeDSMAIOCB *iocb = opaque; 2342 NvmeRequest *req = iocb->req; 2343 NvmeNamespace *ns = req->ns; 2344 NvmeDsmRange *range; 2345 uint64_t slba; 2346 uint32_t nlb; 2347 2348 if (ret < 0) { 2349 iocb->ret = ret; 2350 goto done; 2351 } 2352 2353 if (!ns->lbaf.ms) { 2354 nvme_dsm_cb(iocb, 0); 2355 return; 2356 } 2357 2358 range = &iocb->range[iocb->idx - 1]; 2359 slba = le64_to_cpu(range->slba); 2360 nlb = le32_to_cpu(range->nlb); 2361 2362 /* 2363 * Check that all block were discarded (zeroed); otherwise we do not zero 2364 * the metadata. 2365 */ 2366 2367 ret = nvme_block_status_all(ns, slba, nlb, BDRV_BLOCK_ZERO); 2368 if (ret) { 2369 if (ret < 0) { 2370 iocb->ret = ret; 2371 goto done; 2372 } 2373 2374 nvme_dsm_cb(iocb, 0); 2375 return; 2376 } 2377 2378 iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk, nvme_moff(ns, slba), 2379 nvme_m2b(ns, nlb), BDRV_REQ_MAY_UNMAP, 2380 nvme_dsm_cb, iocb); 2381 return; 2382 2383 done: 2384 iocb->aiocb = NULL; 2385 qemu_bh_schedule(iocb->bh); 2386 } 2387 2388 static void nvme_dsm_cb(void *opaque, int ret) 2389 { 2390 NvmeDSMAIOCB *iocb = opaque; 2391 NvmeRequest *req = iocb->req; 2392 NvmeCtrl *n = nvme_ctrl(req); 2393 NvmeNamespace *ns = req->ns; 2394 NvmeDsmRange *range; 2395 uint64_t slba; 2396 uint32_t nlb; 2397 2398 if (ret < 0) { 2399 iocb->ret = ret; 2400 goto done; 2401 } 2402 2403 next: 2404 if (iocb->idx == iocb->nr) { 2405 goto done; 2406 } 2407 2408 range = &iocb->range[iocb->idx++]; 2409 slba = le64_to_cpu(range->slba); 2410 nlb = le32_to_cpu(range->nlb); 2411 2412 trace_pci_nvme_dsm_deallocate(slba, nlb); 2413 2414 if (nlb > n->dmrsl) { 2415 trace_pci_nvme_dsm_single_range_limit_exceeded(nlb, n->dmrsl); 2416 goto next; 2417 } 2418 2419 if (nvme_check_bounds(ns, slba, nlb)) { 2420 trace_pci_nvme_err_invalid_lba_range(slba, nlb, 2421 ns->id_ns.nsze); 2422 goto next; 2423 } 2424 2425 iocb->aiocb = blk_aio_pdiscard(ns->blkconf.blk, nvme_l2b(ns, slba), 2426 nvme_l2b(ns, nlb), 2427 nvme_dsm_md_cb, iocb); 2428 return; 2429 2430 done: 2431 iocb->aiocb = NULL; 2432 qemu_bh_schedule(iocb->bh); 2433 } 2434 2435 static uint16_t nvme_dsm(NvmeCtrl *n, NvmeRequest *req) 2436 { 2437 NvmeNamespace *ns = req->ns; 2438 NvmeDsmCmd *dsm = (NvmeDsmCmd *) &req->cmd; 2439 uint32_t attr = le32_to_cpu(dsm->attributes); 2440 uint32_t nr = (le32_to_cpu(dsm->nr) & 0xff) + 1; 2441 uint16_t status = NVME_SUCCESS; 2442 2443 trace_pci_nvme_dsm(nr, attr); 2444 2445 if (attr & NVME_DSMGMT_AD) { 2446 NvmeDSMAIOCB *iocb = blk_aio_get(&nvme_dsm_aiocb_info, ns->blkconf.blk, 2447 nvme_misc_cb, req); 2448 2449 iocb->req = req; 2450 iocb->bh = qemu_bh_new(nvme_dsm_bh, iocb); 2451 iocb->ret = 0; 2452 iocb->range = g_new(NvmeDsmRange, nr); 2453 iocb->nr = nr; 2454 iocb->idx = 0; 2455 2456 status = nvme_h2c(n, (uint8_t *)iocb->range, sizeof(NvmeDsmRange) * nr, 2457 req); 2458 if (status) { 2459 return status; 2460 } 2461 2462 req->aiocb = &iocb->common; 2463 nvme_dsm_cb(iocb, 0); 2464 2465 return NVME_NO_COMPLETE; 2466 } 2467 2468 return status; 2469 } 2470 2471 static uint16_t nvme_verify(NvmeCtrl *n, NvmeRequest *req) 2472 { 2473 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; 2474 NvmeNamespace *ns = req->ns; 2475 BlockBackend *blk = ns->blkconf.blk; 2476 uint64_t slba = le64_to_cpu(rw->slba); 2477 uint32_t nlb = le16_to_cpu(rw->nlb) + 1; 2478 size_t len = nvme_l2b(ns, nlb); 2479 int64_t offset = nvme_l2b(ns, slba); 2480 uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control)); 2481 uint32_t reftag = le32_to_cpu(rw->reftag); 2482 NvmeBounceContext *ctx = NULL; 2483 uint16_t status; 2484 2485 trace_pci_nvme_verify(nvme_cid(req), nvme_nsid(ns), slba, nlb); 2486 2487 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) { 2488 status = nvme_check_prinfo(ns, prinfo, slba, reftag); 2489 if (status) { 2490 return status; 2491 } 2492 2493 if (prinfo & NVME_PRINFO_PRACT) { 2494 return NVME_INVALID_PROT_INFO | NVME_DNR; 2495 } 2496 } 2497 2498 if (len > n->page_size << n->params.vsl) { 2499 return NVME_INVALID_FIELD | NVME_DNR; 2500 } 2501 2502 status = nvme_check_bounds(ns, slba, nlb); 2503 if (status) { 2504 return status; 2505 } 2506 2507 if (NVME_ERR_REC_DULBE(ns->features.err_rec)) { 2508 status = nvme_check_dulbe(ns, slba, nlb); 2509 if (status) { 2510 return status; 2511 } 2512 } 2513 2514 ctx = g_new0(NvmeBounceContext, 1); 2515 ctx->req = req; 2516 2517 ctx->data.bounce = g_malloc(len); 2518 2519 qemu_iovec_init(&ctx->data.iov, 1); 2520 qemu_iovec_add(&ctx->data.iov, ctx->data.bounce, len); 2521 2522 block_acct_start(blk_get_stats(blk), &req->acct, ctx->data.iov.size, 2523 BLOCK_ACCT_READ); 2524 2525 req->aiocb = blk_aio_preadv(ns->blkconf.blk, offset, &ctx->data.iov, 0, 2526 nvme_verify_mdata_in_cb, ctx); 2527 return NVME_NO_COMPLETE; 2528 } 2529 2530 typedef struct NvmeCopyAIOCB { 2531 BlockAIOCB common; 2532 BlockAIOCB *aiocb; 2533 NvmeRequest *req; 2534 QEMUBH *bh; 2535 int ret; 2536 2537 void *ranges; 2538 unsigned int format; 2539 int nr; 2540 int idx; 2541 2542 uint8_t *bounce; 2543 QEMUIOVector iov; 2544 struct { 2545 BlockAcctCookie read; 2546 BlockAcctCookie write; 2547 } acct; 2548 2549 uint64_t reftag; 2550 uint64_t slba; 2551 2552 NvmeZone *zone; 2553 } NvmeCopyAIOCB; 2554 2555 static void nvme_copy_cancel(BlockAIOCB *aiocb) 2556 { 2557 NvmeCopyAIOCB *iocb = container_of(aiocb, NvmeCopyAIOCB, common); 2558 2559 iocb->ret = -ECANCELED; 2560 2561 if (iocb->aiocb) { 2562 blk_aio_cancel_async(iocb->aiocb); 2563 iocb->aiocb = NULL; 2564 } 2565 } 2566 2567 static const AIOCBInfo nvme_copy_aiocb_info = { 2568 .aiocb_size = sizeof(NvmeCopyAIOCB), 2569 .cancel_async = nvme_copy_cancel, 2570 }; 2571 2572 static void nvme_copy_bh(void *opaque) 2573 { 2574 NvmeCopyAIOCB *iocb = opaque; 2575 NvmeRequest *req = iocb->req; 2576 NvmeNamespace *ns = req->ns; 2577 BlockAcctStats *stats = blk_get_stats(ns->blkconf.blk); 2578 2579 if (iocb->idx != iocb->nr) { 2580 req->cqe.result = cpu_to_le32(iocb->idx); 2581 } 2582 2583 qemu_iovec_destroy(&iocb->iov); 2584 g_free(iocb->bounce); 2585 2586 qemu_bh_delete(iocb->bh); 2587 iocb->bh = NULL; 2588 2589 if (iocb->ret < 0) { 2590 block_acct_failed(stats, &iocb->acct.read); 2591 block_acct_failed(stats, &iocb->acct.write); 2592 } else { 2593 block_acct_done(stats, &iocb->acct.read); 2594 block_acct_done(stats, &iocb->acct.write); 2595 } 2596 2597 iocb->common.cb(iocb->common.opaque, iocb->ret); 2598 qemu_aio_unref(iocb); 2599 } 2600 2601 static void nvme_copy_cb(void *opaque, int ret); 2602 2603 static void nvme_copy_source_range_parse_format0(void *ranges, int idx, 2604 uint64_t *slba, uint32_t *nlb, 2605 uint16_t *apptag, 2606 uint16_t *appmask, 2607 uint64_t *reftag) 2608 { 2609 NvmeCopySourceRangeFormat0 *_ranges = ranges; 2610 2611 if (slba) { 2612 *slba = le64_to_cpu(_ranges[idx].slba); 2613 } 2614 2615 if (nlb) { 2616 *nlb = le16_to_cpu(_ranges[idx].nlb) + 1; 2617 } 2618 2619 if (apptag) { 2620 *apptag = le16_to_cpu(_ranges[idx].apptag); 2621 } 2622 2623 if (appmask) { 2624 *appmask = le16_to_cpu(_ranges[idx].appmask); 2625 } 2626 2627 if (reftag) { 2628 *reftag = le32_to_cpu(_ranges[idx].reftag); 2629 } 2630 } 2631 2632 static void nvme_copy_source_range_parse_format1(void *ranges, int idx, 2633 uint64_t *slba, uint32_t *nlb, 2634 uint16_t *apptag, 2635 uint16_t *appmask, 2636 uint64_t *reftag) 2637 { 2638 NvmeCopySourceRangeFormat1 *_ranges = ranges; 2639 2640 if (slba) { 2641 *slba = le64_to_cpu(_ranges[idx].slba); 2642 } 2643 2644 if (nlb) { 2645 *nlb = le16_to_cpu(_ranges[idx].nlb) + 1; 2646 } 2647 2648 if (apptag) { 2649 *apptag = le16_to_cpu(_ranges[idx].apptag); 2650 } 2651 2652 if (appmask) { 2653 *appmask = le16_to_cpu(_ranges[idx].appmask); 2654 } 2655 2656 if (reftag) { 2657 *reftag = 0; 2658 2659 *reftag |= (uint64_t)_ranges[idx].sr[4] << 40; 2660 *reftag |= (uint64_t)_ranges[idx].sr[5] << 32; 2661 *reftag |= (uint64_t)_ranges[idx].sr[6] << 24; 2662 *reftag |= (uint64_t)_ranges[idx].sr[7] << 16; 2663 *reftag |= (uint64_t)_ranges[idx].sr[8] << 8; 2664 *reftag |= (uint64_t)_ranges[idx].sr[9]; 2665 } 2666 } 2667 2668 static void nvme_copy_source_range_parse(void *ranges, int idx, uint8_t format, 2669 uint64_t *slba, uint32_t *nlb, 2670 uint16_t *apptag, uint16_t *appmask, 2671 uint64_t *reftag) 2672 { 2673 switch (format) { 2674 case NVME_COPY_FORMAT_0: 2675 nvme_copy_source_range_parse_format0(ranges, idx, slba, nlb, apptag, 2676 appmask, reftag); 2677 break; 2678 2679 case NVME_COPY_FORMAT_1: 2680 nvme_copy_source_range_parse_format1(ranges, idx, slba, nlb, apptag, 2681 appmask, reftag); 2682 break; 2683 2684 default: 2685 abort(); 2686 } 2687 } 2688 2689 static void nvme_copy_out_completed_cb(void *opaque, int ret) 2690 { 2691 NvmeCopyAIOCB *iocb = opaque; 2692 NvmeRequest *req = iocb->req; 2693 NvmeNamespace *ns = req->ns; 2694 uint32_t nlb; 2695 2696 nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, NULL, 2697 &nlb, NULL, NULL, NULL); 2698 2699 if (ret < 0) { 2700 iocb->ret = ret; 2701 goto out; 2702 } else if (iocb->ret < 0) { 2703 goto out; 2704 } 2705 2706 if (ns->params.zoned) { 2707 nvme_advance_zone_wp(ns, iocb->zone, nlb); 2708 } 2709 2710 iocb->idx++; 2711 iocb->slba += nlb; 2712 out: 2713 nvme_copy_cb(iocb, iocb->ret); 2714 } 2715 2716 static void nvme_copy_out_cb(void *opaque, int ret) 2717 { 2718 NvmeCopyAIOCB *iocb = opaque; 2719 NvmeRequest *req = iocb->req; 2720 NvmeNamespace *ns = req->ns; 2721 uint32_t nlb; 2722 size_t mlen; 2723 uint8_t *mbounce; 2724 2725 if (ret < 0) { 2726 iocb->ret = ret; 2727 goto out; 2728 } else if (iocb->ret < 0) { 2729 goto out; 2730 } 2731 2732 if (!ns->lbaf.ms) { 2733 nvme_copy_out_completed_cb(iocb, 0); 2734 return; 2735 } 2736 2737 nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, NULL, 2738 &nlb, NULL, NULL, NULL); 2739 2740 mlen = nvme_m2b(ns, nlb); 2741 mbounce = iocb->bounce + nvme_l2b(ns, nlb); 2742 2743 qemu_iovec_reset(&iocb->iov); 2744 qemu_iovec_add(&iocb->iov, mbounce, mlen); 2745 2746 iocb->aiocb = blk_aio_pwritev(ns->blkconf.blk, nvme_moff(ns, iocb->slba), 2747 &iocb->iov, 0, nvme_copy_out_completed_cb, 2748 iocb); 2749 2750 return; 2751 2752 out: 2753 nvme_copy_cb(iocb, ret); 2754 } 2755 2756 static void nvme_copy_in_completed_cb(void *opaque, int ret) 2757 { 2758 NvmeCopyAIOCB *iocb = opaque; 2759 NvmeRequest *req = iocb->req; 2760 NvmeNamespace *ns = req->ns; 2761 uint32_t nlb; 2762 uint64_t slba; 2763 uint16_t apptag, appmask; 2764 uint64_t reftag; 2765 size_t len; 2766 uint16_t status; 2767 2768 if (ret < 0) { 2769 iocb->ret = ret; 2770 goto out; 2771 } else if (iocb->ret < 0) { 2772 goto out; 2773 } 2774 2775 nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, &slba, 2776 &nlb, &apptag, &appmask, &reftag); 2777 len = nvme_l2b(ns, nlb); 2778 2779 trace_pci_nvme_copy_out(iocb->slba, nlb); 2780 2781 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) { 2782 NvmeCopyCmd *copy = (NvmeCopyCmd *)&req->cmd; 2783 2784 uint16_t prinfor = ((copy->control[0] >> 4) & 0xf); 2785 uint16_t prinfow = ((copy->control[2] >> 2) & 0xf); 2786 2787 size_t mlen = nvme_m2b(ns, nlb); 2788 uint8_t *mbounce = iocb->bounce + nvme_l2b(ns, nlb); 2789 2790 status = nvme_dif_mangle_mdata(ns, mbounce, mlen, slba); 2791 if (status) { 2792 goto invalid; 2793 } 2794 status = nvme_dif_check(ns, iocb->bounce, len, mbounce, mlen, prinfor, 2795 slba, apptag, appmask, &reftag); 2796 if (status) { 2797 goto invalid; 2798 } 2799 2800 apptag = le16_to_cpu(copy->apptag); 2801 appmask = le16_to_cpu(copy->appmask); 2802 2803 if (prinfow & NVME_PRINFO_PRACT) { 2804 status = nvme_check_prinfo(ns, prinfow, iocb->slba, iocb->reftag); 2805 if (status) { 2806 goto invalid; 2807 } 2808 2809 nvme_dif_pract_generate_dif(ns, iocb->bounce, len, mbounce, mlen, 2810 apptag, &iocb->reftag); 2811 } else { 2812 status = nvme_dif_check(ns, iocb->bounce, len, mbounce, mlen, 2813 prinfow, iocb->slba, apptag, appmask, 2814 &iocb->reftag); 2815 if (status) { 2816 goto invalid; 2817 } 2818 } 2819 } 2820 2821 status = nvme_check_bounds(ns, iocb->slba, nlb); 2822 if (status) { 2823 goto invalid; 2824 } 2825 2826 if (ns->params.zoned) { 2827 status = nvme_check_zone_write(ns, iocb->zone, iocb->slba, nlb); 2828 if (status) { 2829 goto invalid; 2830 } 2831 2832 if (!(iocb->zone->d.za & NVME_ZA_ZRWA_VALID)) { 2833 iocb->zone->w_ptr += nlb; 2834 } 2835 } 2836 2837 qemu_iovec_reset(&iocb->iov); 2838 qemu_iovec_add(&iocb->iov, iocb->bounce, len); 2839 2840 iocb->aiocb = blk_aio_pwritev(ns->blkconf.blk, nvme_l2b(ns, iocb->slba), 2841 &iocb->iov, 0, nvme_copy_out_cb, iocb); 2842 2843 return; 2844 2845 invalid: 2846 req->status = status; 2847 iocb->aiocb = NULL; 2848 if (iocb->bh) { 2849 qemu_bh_schedule(iocb->bh); 2850 } 2851 2852 return; 2853 2854 out: 2855 nvme_copy_cb(iocb, ret); 2856 } 2857 2858 static void nvme_copy_in_cb(void *opaque, int ret) 2859 { 2860 NvmeCopyAIOCB *iocb = opaque; 2861 NvmeRequest *req = iocb->req; 2862 NvmeNamespace *ns = req->ns; 2863 uint64_t slba; 2864 uint32_t nlb; 2865 2866 if (ret < 0) { 2867 iocb->ret = ret; 2868 goto out; 2869 } else if (iocb->ret < 0) { 2870 goto out; 2871 } 2872 2873 if (!ns->lbaf.ms) { 2874 nvme_copy_in_completed_cb(iocb, 0); 2875 return; 2876 } 2877 2878 nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, &slba, 2879 &nlb, NULL, NULL, NULL); 2880 2881 qemu_iovec_reset(&iocb->iov); 2882 qemu_iovec_add(&iocb->iov, iocb->bounce + nvme_l2b(ns, nlb), 2883 nvme_m2b(ns, nlb)); 2884 2885 iocb->aiocb = blk_aio_preadv(ns->blkconf.blk, nvme_moff(ns, slba), 2886 &iocb->iov, 0, nvme_copy_in_completed_cb, 2887 iocb); 2888 return; 2889 2890 out: 2891 nvme_copy_cb(iocb, iocb->ret); 2892 } 2893 2894 static void nvme_copy_cb(void *opaque, int ret) 2895 { 2896 NvmeCopyAIOCB *iocb = opaque; 2897 NvmeRequest *req = iocb->req; 2898 NvmeNamespace *ns = req->ns; 2899 uint64_t slba; 2900 uint32_t nlb; 2901 size_t len; 2902 uint16_t status; 2903 2904 if (ret < 0) { 2905 iocb->ret = ret; 2906 goto done; 2907 } else if (iocb->ret < 0) { 2908 goto done; 2909 } 2910 2911 if (iocb->idx == iocb->nr) { 2912 goto done; 2913 } 2914 2915 nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, &slba, 2916 &nlb, NULL, NULL, NULL); 2917 len = nvme_l2b(ns, nlb); 2918 2919 trace_pci_nvme_copy_source_range(slba, nlb); 2920 2921 if (nlb > le16_to_cpu(ns->id_ns.mssrl)) { 2922 status = NVME_CMD_SIZE_LIMIT | NVME_DNR; 2923 goto invalid; 2924 } 2925 2926 status = nvme_check_bounds(ns, slba, nlb); 2927 if (status) { 2928 goto invalid; 2929 } 2930 2931 if (NVME_ERR_REC_DULBE(ns->features.err_rec)) { 2932 status = nvme_check_dulbe(ns, slba, nlb); 2933 if (status) { 2934 goto invalid; 2935 } 2936 } 2937 2938 if (ns->params.zoned) { 2939 status = nvme_check_zone_read(ns, slba, nlb); 2940 if (status) { 2941 goto invalid; 2942 } 2943 } 2944 2945 qemu_iovec_reset(&iocb->iov); 2946 qemu_iovec_add(&iocb->iov, iocb->bounce, len); 2947 2948 iocb->aiocb = blk_aio_preadv(ns->blkconf.blk, nvme_l2b(ns, slba), 2949 &iocb->iov, 0, nvme_copy_in_cb, iocb); 2950 return; 2951 2952 invalid: 2953 req->status = status; 2954 done: 2955 iocb->aiocb = NULL; 2956 if (iocb->bh) { 2957 qemu_bh_schedule(iocb->bh); 2958 } 2959 } 2960 2961 2962 static uint16_t nvme_copy(NvmeCtrl *n, NvmeRequest *req) 2963 { 2964 NvmeNamespace *ns = req->ns; 2965 NvmeCopyCmd *copy = (NvmeCopyCmd *)&req->cmd; 2966 NvmeCopyAIOCB *iocb = blk_aio_get(&nvme_copy_aiocb_info, ns->blkconf.blk, 2967 nvme_misc_cb, req); 2968 uint16_t nr = copy->nr + 1; 2969 uint8_t format = copy->control[0] & 0xf; 2970 uint16_t prinfor = ((copy->control[0] >> 4) & 0xf); 2971 uint16_t prinfow = ((copy->control[2] >> 2) & 0xf); 2972 size_t len = sizeof(NvmeCopySourceRangeFormat0); 2973 2974 uint16_t status; 2975 2976 trace_pci_nvme_copy(nvme_cid(req), nvme_nsid(ns), nr, format); 2977 2978 iocb->ranges = NULL; 2979 iocb->zone = NULL; 2980 2981 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps) && 2982 ((prinfor & NVME_PRINFO_PRACT) != (prinfow & NVME_PRINFO_PRACT))) { 2983 status = NVME_INVALID_FIELD | NVME_DNR; 2984 goto invalid; 2985 } 2986 2987 if (!(n->id_ctrl.ocfs & (1 << format))) { 2988 trace_pci_nvme_err_copy_invalid_format(format); 2989 status = NVME_INVALID_FIELD | NVME_DNR; 2990 goto invalid; 2991 } 2992 2993 if (nr > ns->id_ns.msrc + 1) { 2994 status = NVME_CMD_SIZE_LIMIT | NVME_DNR; 2995 goto invalid; 2996 } 2997 2998 if (ns->pif && format != 0x1) { 2999 status = NVME_INVALID_FORMAT | NVME_DNR; 3000 goto invalid; 3001 } 3002 3003 if (ns->pif) { 3004 len = sizeof(NvmeCopySourceRangeFormat1); 3005 } 3006 3007 iocb->format = format; 3008 iocb->ranges = g_malloc_n(nr, len); 3009 status = nvme_h2c(n, (uint8_t *)iocb->ranges, len * nr, req); 3010 if (status) { 3011 goto invalid; 3012 } 3013 3014 iocb->slba = le64_to_cpu(copy->sdlba); 3015 3016 if (ns->params.zoned) { 3017 iocb->zone = nvme_get_zone_by_slba(ns, iocb->slba); 3018 if (!iocb->zone) { 3019 status = NVME_LBA_RANGE | NVME_DNR; 3020 goto invalid; 3021 } 3022 3023 status = nvme_zrm_auto(n, ns, iocb->zone); 3024 if (status) { 3025 goto invalid; 3026 } 3027 } 3028 3029 iocb->req = req; 3030 iocb->bh = qemu_bh_new(nvme_copy_bh, iocb); 3031 iocb->ret = 0; 3032 iocb->nr = nr; 3033 iocb->idx = 0; 3034 iocb->reftag = le32_to_cpu(copy->reftag); 3035 iocb->reftag |= (uint64_t)le32_to_cpu(copy->cdw3) << 32; 3036 iocb->bounce = g_malloc_n(le16_to_cpu(ns->id_ns.mssrl), 3037 ns->lbasz + ns->lbaf.ms); 3038 3039 qemu_iovec_init(&iocb->iov, 1); 3040 3041 block_acct_start(blk_get_stats(ns->blkconf.blk), &iocb->acct.read, 0, 3042 BLOCK_ACCT_READ); 3043 block_acct_start(blk_get_stats(ns->blkconf.blk), &iocb->acct.write, 0, 3044 BLOCK_ACCT_WRITE); 3045 3046 req->aiocb = &iocb->common; 3047 nvme_copy_cb(iocb, 0); 3048 3049 return NVME_NO_COMPLETE; 3050 3051 invalid: 3052 g_free(iocb->ranges); 3053 qemu_aio_unref(iocb); 3054 return status; 3055 } 3056 3057 static uint16_t nvme_compare(NvmeCtrl *n, NvmeRequest *req) 3058 { 3059 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; 3060 NvmeNamespace *ns = req->ns; 3061 BlockBackend *blk = ns->blkconf.blk; 3062 uint64_t slba = le64_to_cpu(rw->slba); 3063 uint32_t nlb = le16_to_cpu(rw->nlb) + 1; 3064 uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control)); 3065 size_t data_len = nvme_l2b(ns, nlb); 3066 size_t len = data_len; 3067 int64_t offset = nvme_l2b(ns, slba); 3068 struct nvme_compare_ctx *ctx = NULL; 3069 uint16_t status; 3070 3071 trace_pci_nvme_compare(nvme_cid(req), nvme_nsid(ns), slba, nlb); 3072 3073 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps) && (prinfo & NVME_PRINFO_PRACT)) { 3074 return NVME_INVALID_PROT_INFO | NVME_DNR; 3075 } 3076 3077 if (nvme_ns_ext(ns)) { 3078 len += nvme_m2b(ns, nlb); 3079 } 3080 3081 status = nvme_check_mdts(n, len); 3082 if (status) { 3083 return status; 3084 } 3085 3086 status = nvme_check_bounds(ns, slba, nlb); 3087 if (status) { 3088 return status; 3089 } 3090 3091 if (NVME_ERR_REC_DULBE(ns->features.err_rec)) { 3092 status = nvme_check_dulbe(ns, slba, nlb); 3093 if (status) { 3094 return status; 3095 } 3096 } 3097 3098 status = nvme_map_dptr(n, &req->sg, len, &req->cmd); 3099 if (status) { 3100 return status; 3101 } 3102 3103 ctx = g_new(struct nvme_compare_ctx, 1); 3104 ctx->data.bounce = g_malloc(data_len); 3105 3106 req->opaque = ctx; 3107 3108 qemu_iovec_init(&ctx->data.iov, 1); 3109 qemu_iovec_add(&ctx->data.iov, ctx->data.bounce, data_len); 3110 3111 block_acct_start(blk_get_stats(blk), &req->acct, data_len, 3112 BLOCK_ACCT_READ); 3113 req->aiocb = blk_aio_preadv(blk, offset, &ctx->data.iov, 0, 3114 nvme_compare_data_cb, req); 3115 3116 return NVME_NO_COMPLETE; 3117 } 3118 3119 typedef struct NvmeFlushAIOCB { 3120 BlockAIOCB common; 3121 BlockAIOCB *aiocb; 3122 NvmeRequest *req; 3123 QEMUBH *bh; 3124 int ret; 3125 3126 NvmeNamespace *ns; 3127 uint32_t nsid; 3128 bool broadcast; 3129 } NvmeFlushAIOCB; 3130 3131 static void nvme_flush_cancel(BlockAIOCB *acb) 3132 { 3133 NvmeFlushAIOCB *iocb = container_of(acb, NvmeFlushAIOCB, common); 3134 3135 iocb->ret = -ECANCELED; 3136 3137 if (iocb->aiocb) { 3138 blk_aio_cancel_async(iocb->aiocb); 3139 } 3140 } 3141 3142 static const AIOCBInfo nvme_flush_aiocb_info = { 3143 .aiocb_size = sizeof(NvmeFlushAIOCB), 3144 .cancel_async = nvme_flush_cancel, 3145 .get_aio_context = nvme_get_aio_context, 3146 }; 3147 3148 static void nvme_flush_ns_cb(void *opaque, int ret) 3149 { 3150 NvmeFlushAIOCB *iocb = opaque; 3151 NvmeNamespace *ns = iocb->ns; 3152 3153 if (ret < 0) { 3154 iocb->ret = ret; 3155 goto out; 3156 } else if (iocb->ret < 0) { 3157 goto out; 3158 } 3159 3160 if (ns) { 3161 trace_pci_nvme_flush_ns(iocb->nsid); 3162 3163 iocb->ns = NULL; 3164 iocb->aiocb = blk_aio_flush(ns->blkconf.blk, nvme_flush_ns_cb, iocb); 3165 return; 3166 } 3167 3168 out: 3169 iocb->aiocb = NULL; 3170 qemu_bh_schedule(iocb->bh); 3171 } 3172 3173 static void nvme_flush_bh(void *opaque) 3174 { 3175 NvmeFlushAIOCB *iocb = opaque; 3176 NvmeRequest *req = iocb->req; 3177 NvmeCtrl *n = nvme_ctrl(req); 3178 int i; 3179 3180 if (iocb->ret < 0) { 3181 goto done; 3182 } 3183 3184 if (iocb->broadcast) { 3185 for (i = iocb->nsid + 1; i <= NVME_MAX_NAMESPACES; i++) { 3186 iocb->ns = nvme_ns(n, i); 3187 if (iocb->ns) { 3188 iocb->nsid = i; 3189 break; 3190 } 3191 } 3192 } 3193 3194 if (!iocb->ns) { 3195 goto done; 3196 } 3197 3198 nvme_flush_ns_cb(iocb, 0); 3199 return; 3200 3201 done: 3202 qemu_bh_delete(iocb->bh); 3203 iocb->bh = NULL; 3204 3205 iocb->common.cb(iocb->common.opaque, iocb->ret); 3206 3207 qemu_aio_unref(iocb); 3208 3209 return; 3210 } 3211 3212 static uint16_t nvme_flush(NvmeCtrl *n, NvmeRequest *req) 3213 { 3214 NvmeFlushAIOCB *iocb; 3215 uint32_t nsid = le32_to_cpu(req->cmd.nsid); 3216 uint16_t status; 3217 3218 iocb = qemu_aio_get(&nvme_flush_aiocb_info, NULL, nvme_misc_cb, req); 3219 3220 iocb->req = req; 3221 iocb->bh = qemu_bh_new(nvme_flush_bh, iocb); 3222 iocb->ret = 0; 3223 iocb->ns = NULL; 3224 iocb->nsid = 0; 3225 iocb->broadcast = (nsid == NVME_NSID_BROADCAST); 3226 3227 if (!iocb->broadcast) { 3228 if (!nvme_nsid_valid(n, nsid)) { 3229 status = NVME_INVALID_NSID | NVME_DNR; 3230 goto out; 3231 } 3232 3233 iocb->ns = nvme_ns(n, nsid); 3234 if (!iocb->ns) { 3235 status = NVME_INVALID_FIELD | NVME_DNR; 3236 goto out; 3237 } 3238 3239 iocb->nsid = nsid; 3240 } 3241 3242 req->aiocb = &iocb->common; 3243 qemu_bh_schedule(iocb->bh); 3244 3245 return NVME_NO_COMPLETE; 3246 3247 out: 3248 qemu_bh_delete(iocb->bh); 3249 iocb->bh = NULL; 3250 qemu_aio_unref(iocb); 3251 3252 return status; 3253 } 3254 3255 static uint16_t nvme_read(NvmeCtrl *n, NvmeRequest *req) 3256 { 3257 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; 3258 NvmeNamespace *ns = req->ns; 3259 uint64_t slba = le64_to_cpu(rw->slba); 3260 uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1; 3261 uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control)); 3262 uint64_t data_size = nvme_l2b(ns, nlb); 3263 uint64_t mapped_size = data_size; 3264 uint64_t data_offset; 3265 BlockBackend *blk = ns->blkconf.blk; 3266 uint16_t status; 3267 3268 if (nvme_ns_ext(ns)) { 3269 mapped_size += nvme_m2b(ns, nlb); 3270 3271 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) { 3272 bool pract = prinfo & NVME_PRINFO_PRACT; 3273 3274 if (pract && ns->lbaf.ms == nvme_pi_tuple_size(ns)) { 3275 mapped_size = data_size; 3276 } 3277 } 3278 } 3279 3280 trace_pci_nvme_read(nvme_cid(req), nvme_nsid(ns), nlb, mapped_size, slba); 3281 3282 status = nvme_check_mdts(n, mapped_size); 3283 if (status) { 3284 goto invalid; 3285 } 3286 3287 status = nvme_check_bounds(ns, slba, nlb); 3288 if (status) { 3289 goto invalid; 3290 } 3291 3292 if (ns->params.zoned) { 3293 status = nvme_check_zone_read(ns, slba, nlb); 3294 if (status) { 3295 trace_pci_nvme_err_zone_read_not_ok(slba, nlb, status); 3296 goto invalid; 3297 } 3298 } 3299 3300 if (NVME_ERR_REC_DULBE(ns->features.err_rec)) { 3301 status = nvme_check_dulbe(ns, slba, nlb); 3302 if (status) { 3303 goto invalid; 3304 } 3305 } 3306 3307 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) { 3308 return nvme_dif_rw(n, req); 3309 } 3310 3311 status = nvme_map_data(n, nlb, req); 3312 if (status) { 3313 goto invalid; 3314 } 3315 3316 data_offset = nvme_l2b(ns, slba); 3317 3318 block_acct_start(blk_get_stats(blk), &req->acct, data_size, 3319 BLOCK_ACCT_READ); 3320 nvme_blk_read(blk, data_offset, nvme_rw_cb, req); 3321 return NVME_NO_COMPLETE; 3322 3323 invalid: 3324 block_acct_invalid(blk_get_stats(blk), BLOCK_ACCT_READ); 3325 return status | NVME_DNR; 3326 } 3327 3328 static uint16_t nvme_do_write(NvmeCtrl *n, NvmeRequest *req, bool append, 3329 bool wrz) 3330 { 3331 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; 3332 NvmeNamespace *ns = req->ns; 3333 uint64_t slba = le64_to_cpu(rw->slba); 3334 uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1; 3335 uint16_t ctrl = le16_to_cpu(rw->control); 3336 uint8_t prinfo = NVME_RW_PRINFO(ctrl); 3337 uint64_t data_size = nvme_l2b(ns, nlb); 3338 uint64_t mapped_size = data_size; 3339 uint64_t data_offset; 3340 NvmeZone *zone; 3341 NvmeZonedResult *res = (NvmeZonedResult *)&req->cqe; 3342 BlockBackend *blk = ns->blkconf.blk; 3343 uint16_t status; 3344 3345 if (nvme_ns_ext(ns)) { 3346 mapped_size += nvme_m2b(ns, nlb); 3347 3348 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) { 3349 bool pract = prinfo & NVME_PRINFO_PRACT; 3350 3351 if (pract && ns->lbaf.ms == nvme_pi_tuple_size(ns)) { 3352 mapped_size -= nvme_m2b(ns, nlb); 3353 } 3354 } 3355 } 3356 3357 trace_pci_nvme_write(nvme_cid(req), nvme_io_opc_str(rw->opcode), 3358 nvme_nsid(ns), nlb, mapped_size, slba); 3359 3360 if (!wrz) { 3361 status = nvme_check_mdts(n, mapped_size); 3362 if (status) { 3363 goto invalid; 3364 } 3365 } 3366 3367 status = nvme_check_bounds(ns, slba, nlb); 3368 if (status) { 3369 goto invalid; 3370 } 3371 3372 if (ns->params.zoned) { 3373 zone = nvme_get_zone_by_slba(ns, slba); 3374 assert(zone); 3375 3376 if (append) { 3377 bool piremap = !!(ctrl & NVME_RW_PIREMAP); 3378 3379 if (unlikely(zone->d.za & NVME_ZA_ZRWA_VALID)) { 3380 return NVME_INVALID_ZONE_OP | NVME_DNR; 3381 } 3382 3383 if (unlikely(slba != zone->d.zslba)) { 3384 trace_pci_nvme_err_append_not_at_start(slba, zone->d.zslba); 3385 status = NVME_INVALID_FIELD; 3386 goto invalid; 3387 } 3388 3389 if (n->params.zasl && 3390 data_size > (uint64_t)n->page_size << n->params.zasl) { 3391 trace_pci_nvme_err_zasl(data_size); 3392 return NVME_INVALID_FIELD | NVME_DNR; 3393 } 3394 3395 slba = zone->w_ptr; 3396 rw->slba = cpu_to_le64(slba); 3397 res->slba = cpu_to_le64(slba); 3398 3399 switch (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) { 3400 case NVME_ID_NS_DPS_TYPE_1: 3401 if (!piremap) { 3402 return NVME_INVALID_PROT_INFO | NVME_DNR; 3403 } 3404 3405 /* fallthrough */ 3406 3407 case NVME_ID_NS_DPS_TYPE_2: 3408 if (piremap) { 3409 uint32_t reftag = le32_to_cpu(rw->reftag); 3410 rw->reftag = cpu_to_le32(reftag + (slba - zone->d.zslba)); 3411 } 3412 3413 break; 3414 3415 case NVME_ID_NS_DPS_TYPE_3: 3416 if (piremap) { 3417 return NVME_INVALID_PROT_INFO | NVME_DNR; 3418 } 3419 3420 break; 3421 } 3422 } 3423 3424 status = nvme_check_zone_write(ns, zone, slba, nlb); 3425 if (status) { 3426 goto invalid; 3427 } 3428 3429 status = nvme_zrm_auto(n, ns, zone); 3430 if (status) { 3431 goto invalid; 3432 } 3433 3434 if (!(zone->d.za & NVME_ZA_ZRWA_VALID)) { 3435 zone->w_ptr += nlb; 3436 } 3437 } 3438 3439 data_offset = nvme_l2b(ns, slba); 3440 3441 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) { 3442 return nvme_dif_rw(n, req); 3443 } 3444 3445 if (!wrz) { 3446 status = nvme_map_data(n, nlb, req); 3447 if (status) { 3448 goto invalid; 3449 } 3450 3451 block_acct_start(blk_get_stats(blk), &req->acct, data_size, 3452 BLOCK_ACCT_WRITE); 3453 nvme_blk_write(blk, data_offset, nvme_rw_cb, req); 3454 } else { 3455 req->aiocb = blk_aio_pwrite_zeroes(blk, data_offset, data_size, 3456 BDRV_REQ_MAY_UNMAP, nvme_rw_cb, 3457 req); 3458 } 3459 3460 return NVME_NO_COMPLETE; 3461 3462 invalid: 3463 block_acct_invalid(blk_get_stats(blk), BLOCK_ACCT_WRITE); 3464 return status | NVME_DNR; 3465 } 3466 3467 static inline uint16_t nvme_write(NvmeCtrl *n, NvmeRequest *req) 3468 { 3469 return nvme_do_write(n, req, false, false); 3470 } 3471 3472 static inline uint16_t nvme_write_zeroes(NvmeCtrl *n, NvmeRequest *req) 3473 { 3474 return nvme_do_write(n, req, false, true); 3475 } 3476 3477 static inline uint16_t nvme_zone_append(NvmeCtrl *n, NvmeRequest *req) 3478 { 3479 return nvme_do_write(n, req, true, false); 3480 } 3481 3482 static uint16_t nvme_get_mgmt_zone_slba_idx(NvmeNamespace *ns, NvmeCmd *c, 3483 uint64_t *slba, uint32_t *zone_idx) 3484 { 3485 uint32_t dw10 = le32_to_cpu(c->cdw10); 3486 uint32_t dw11 = le32_to_cpu(c->cdw11); 3487 3488 if (!ns->params.zoned) { 3489 trace_pci_nvme_err_invalid_opc(c->opcode); 3490 return NVME_INVALID_OPCODE | NVME_DNR; 3491 } 3492 3493 *slba = ((uint64_t)dw11) << 32 | dw10; 3494 if (unlikely(*slba >= ns->id_ns.nsze)) { 3495 trace_pci_nvme_err_invalid_lba_range(*slba, 0, ns->id_ns.nsze); 3496 *slba = 0; 3497 return NVME_LBA_RANGE | NVME_DNR; 3498 } 3499 3500 *zone_idx = nvme_zone_idx(ns, *slba); 3501 assert(*zone_idx < ns->num_zones); 3502 3503 return NVME_SUCCESS; 3504 } 3505 3506 typedef uint16_t (*op_handler_t)(NvmeNamespace *, NvmeZone *, NvmeZoneState, 3507 NvmeRequest *); 3508 3509 enum NvmeZoneProcessingMask { 3510 NVME_PROC_CURRENT_ZONE = 0, 3511 NVME_PROC_OPENED_ZONES = 1 << 0, 3512 NVME_PROC_CLOSED_ZONES = 1 << 1, 3513 NVME_PROC_READ_ONLY_ZONES = 1 << 2, 3514 NVME_PROC_FULL_ZONES = 1 << 3, 3515 }; 3516 3517 static uint16_t nvme_open_zone(NvmeNamespace *ns, NvmeZone *zone, 3518 NvmeZoneState state, NvmeRequest *req) 3519 { 3520 NvmeZoneSendCmd *cmd = (NvmeZoneSendCmd *)&req->cmd; 3521 int flags = 0; 3522 3523 if (cmd->zsflags & NVME_ZSFLAG_ZRWA_ALLOC) { 3524 uint16_t ozcs = le16_to_cpu(ns->id_ns_zoned->ozcs); 3525 3526 if (!(ozcs & NVME_ID_NS_ZONED_OZCS_ZRWASUP)) { 3527 return NVME_INVALID_ZONE_OP | NVME_DNR; 3528 } 3529 3530 if (zone->w_ptr % ns->zns.zrwafg) { 3531 return NVME_NOZRWA | NVME_DNR; 3532 } 3533 3534 flags = NVME_ZRM_ZRWA; 3535 } 3536 3537 return nvme_zrm_open_flags(nvme_ctrl(req), ns, zone, flags); 3538 } 3539 3540 static uint16_t nvme_close_zone(NvmeNamespace *ns, NvmeZone *zone, 3541 NvmeZoneState state, NvmeRequest *req) 3542 { 3543 return nvme_zrm_close(ns, zone); 3544 } 3545 3546 static uint16_t nvme_finish_zone(NvmeNamespace *ns, NvmeZone *zone, 3547 NvmeZoneState state, NvmeRequest *req) 3548 { 3549 return nvme_zrm_finish(ns, zone); 3550 } 3551 3552 static uint16_t nvme_offline_zone(NvmeNamespace *ns, NvmeZone *zone, 3553 NvmeZoneState state, NvmeRequest *req) 3554 { 3555 switch (state) { 3556 case NVME_ZONE_STATE_READ_ONLY: 3557 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_OFFLINE); 3558 /* fall through */ 3559 case NVME_ZONE_STATE_OFFLINE: 3560 return NVME_SUCCESS; 3561 default: 3562 return NVME_ZONE_INVAL_TRANSITION; 3563 } 3564 } 3565 3566 static uint16_t nvme_set_zd_ext(NvmeNamespace *ns, NvmeZone *zone) 3567 { 3568 uint16_t status; 3569 uint8_t state = nvme_get_zone_state(zone); 3570 3571 if (state == NVME_ZONE_STATE_EMPTY) { 3572 status = nvme_aor_check(ns, 1, 0); 3573 if (status) { 3574 return status; 3575 } 3576 nvme_aor_inc_active(ns); 3577 zone->d.za |= NVME_ZA_ZD_EXT_VALID; 3578 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_CLOSED); 3579 return NVME_SUCCESS; 3580 } 3581 3582 return NVME_ZONE_INVAL_TRANSITION; 3583 } 3584 3585 static uint16_t nvme_bulk_proc_zone(NvmeNamespace *ns, NvmeZone *zone, 3586 enum NvmeZoneProcessingMask proc_mask, 3587 op_handler_t op_hndlr, NvmeRequest *req) 3588 { 3589 uint16_t status = NVME_SUCCESS; 3590 NvmeZoneState zs = nvme_get_zone_state(zone); 3591 bool proc_zone; 3592 3593 switch (zs) { 3594 case NVME_ZONE_STATE_IMPLICITLY_OPEN: 3595 case NVME_ZONE_STATE_EXPLICITLY_OPEN: 3596 proc_zone = proc_mask & NVME_PROC_OPENED_ZONES; 3597 break; 3598 case NVME_ZONE_STATE_CLOSED: 3599 proc_zone = proc_mask & NVME_PROC_CLOSED_ZONES; 3600 break; 3601 case NVME_ZONE_STATE_READ_ONLY: 3602 proc_zone = proc_mask & NVME_PROC_READ_ONLY_ZONES; 3603 break; 3604 case NVME_ZONE_STATE_FULL: 3605 proc_zone = proc_mask & NVME_PROC_FULL_ZONES; 3606 break; 3607 default: 3608 proc_zone = false; 3609 } 3610 3611 if (proc_zone) { 3612 status = op_hndlr(ns, zone, zs, req); 3613 } 3614 3615 return status; 3616 } 3617 3618 static uint16_t nvme_do_zone_op(NvmeNamespace *ns, NvmeZone *zone, 3619 enum NvmeZoneProcessingMask proc_mask, 3620 op_handler_t op_hndlr, NvmeRequest *req) 3621 { 3622 NvmeZone *next; 3623 uint16_t status = NVME_SUCCESS; 3624 int i; 3625 3626 if (!proc_mask) { 3627 status = op_hndlr(ns, zone, nvme_get_zone_state(zone), req); 3628 } else { 3629 if (proc_mask & NVME_PROC_CLOSED_ZONES) { 3630 QTAILQ_FOREACH_SAFE(zone, &ns->closed_zones, entry, next) { 3631 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr, 3632 req); 3633 if (status && status != NVME_NO_COMPLETE) { 3634 goto out; 3635 } 3636 } 3637 } 3638 if (proc_mask & NVME_PROC_OPENED_ZONES) { 3639 QTAILQ_FOREACH_SAFE(zone, &ns->imp_open_zones, entry, next) { 3640 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr, 3641 req); 3642 if (status && status != NVME_NO_COMPLETE) { 3643 goto out; 3644 } 3645 } 3646 3647 QTAILQ_FOREACH_SAFE(zone, &ns->exp_open_zones, entry, next) { 3648 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr, 3649 req); 3650 if (status && status != NVME_NO_COMPLETE) { 3651 goto out; 3652 } 3653 } 3654 } 3655 if (proc_mask & NVME_PROC_FULL_ZONES) { 3656 QTAILQ_FOREACH_SAFE(zone, &ns->full_zones, entry, next) { 3657 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr, 3658 req); 3659 if (status && status != NVME_NO_COMPLETE) { 3660 goto out; 3661 } 3662 } 3663 } 3664 3665 if (proc_mask & NVME_PROC_READ_ONLY_ZONES) { 3666 for (i = 0; i < ns->num_zones; i++, zone++) { 3667 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr, 3668 req); 3669 if (status && status != NVME_NO_COMPLETE) { 3670 goto out; 3671 } 3672 } 3673 } 3674 } 3675 3676 out: 3677 return status; 3678 } 3679 3680 typedef struct NvmeZoneResetAIOCB { 3681 BlockAIOCB common; 3682 BlockAIOCB *aiocb; 3683 NvmeRequest *req; 3684 QEMUBH *bh; 3685 int ret; 3686 3687 bool all; 3688 int idx; 3689 NvmeZone *zone; 3690 } NvmeZoneResetAIOCB; 3691 3692 static void nvme_zone_reset_cancel(BlockAIOCB *aiocb) 3693 { 3694 NvmeZoneResetAIOCB *iocb = container_of(aiocb, NvmeZoneResetAIOCB, common); 3695 NvmeRequest *req = iocb->req; 3696 NvmeNamespace *ns = req->ns; 3697 3698 iocb->idx = ns->num_zones; 3699 3700 iocb->ret = -ECANCELED; 3701 3702 if (iocb->aiocb) { 3703 blk_aio_cancel_async(iocb->aiocb); 3704 iocb->aiocb = NULL; 3705 } 3706 } 3707 3708 static const AIOCBInfo nvme_zone_reset_aiocb_info = { 3709 .aiocb_size = sizeof(NvmeZoneResetAIOCB), 3710 .cancel_async = nvme_zone_reset_cancel, 3711 }; 3712 3713 static void nvme_zone_reset_bh(void *opaque) 3714 { 3715 NvmeZoneResetAIOCB *iocb = opaque; 3716 3717 iocb->common.cb(iocb->common.opaque, iocb->ret); 3718 3719 qemu_bh_delete(iocb->bh); 3720 iocb->bh = NULL; 3721 qemu_aio_unref(iocb); 3722 } 3723 3724 static void nvme_zone_reset_cb(void *opaque, int ret); 3725 3726 static void nvme_zone_reset_epilogue_cb(void *opaque, int ret) 3727 { 3728 NvmeZoneResetAIOCB *iocb = opaque; 3729 NvmeRequest *req = iocb->req; 3730 NvmeNamespace *ns = req->ns; 3731 int64_t moff; 3732 int count; 3733 3734 if (ret < 0) { 3735 nvme_zone_reset_cb(iocb, ret); 3736 return; 3737 } 3738 3739 if (!ns->lbaf.ms) { 3740 nvme_zone_reset_cb(iocb, 0); 3741 return; 3742 } 3743 3744 moff = nvme_moff(ns, iocb->zone->d.zslba); 3745 count = nvme_m2b(ns, ns->zone_size); 3746 3747 iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk, moff, count, 3748 BDRV_REQ_MAY_UNMAP, 3749 nvme_zone_reset_cb, iocb); 3750 return; 3751 } 3752 3753 static void nvme_zone_reset_cb(void *opaque, int ret) 3754 { 3755 NvmeZoneResetAIOCB *iocb = opaque; 3756 NvmeRequest *req = iocb->req; 3757 NvmeNamespace *ns = req->ns; 3758 3759 if (ret < 0) { 3760 iocb->ret = ret; 3761 goto done; 3762 } 3763 3764 if (iocb->zone) { 3765 nvme_zrm_reset(ns, iocb->zone); 3766 3767 if (!iocb->all) { 3768 goto done; 3769 } 3770 } 3771 3772 while (iocb->idx < ns->num_zones) { 3773 NvmeZone *zone = &ns->zone_array[iocb->idx++]; 3774 3775 switch (nvme_get_zone_state(zone)) { 3776 case NVME_ZONE_STATE_EMPTY: 3777 if (!iocb->all) { 3778 goto done; 3779 } 3780 3781 continue; 3782 3783 case NVME_ZONE_STATE_EXPLICITLY_OPEN: 3784 case NVME_ZONE_STATE_IMPLICITLY_OPEN: 3785 case NVME_ZONE_STATE_CLOSED: 3786 case NVME_ZONE_STATE_FULL: 3787 iocb->zone = zone; 3788 break; 3789 3790 default: 3791 continue; 3792 } 3793 3794 trace_pci_nvme_zns_zone_reset(zone->d.zslba); 3795 3796 iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk, 3797 nvme_l2b(ns, zone->d.zslba), 3798 nvme_l2b(ns, ns->zone_size), 3799 BDRV_REQ_MAY_UNMAP, 3800 nvme_zone_reset_epilogue_cb, 3801 iocb); 3802 return; 3803 } 3804 3805 done: 3806 iocb->aiocb = NULL; 3807 if (iocb->bh) { 3808 qemu_bh_schedule(iocb->bh); 3809 } 3810 } 3811 3812 static uint16_t nvme_zone_mgmt_send_zrwa_flush(NvmeCtrl *n, NvmeZone *zone, 3813 uint64_t elba, NvmeRequest *req) 3814 { 3815 NvmeNamespace *ns = req->ns; 3816 uint16_t ozcs = le16_to_cpu(ns->id_ns_zoned->ozcs); 3817 uint64_t wp = zone->d.wp; 3818 uint32_t nlb = elba - wp + 1; 3819 uint16_t status; 3820 3821 3822 if (!(ozcs & NVME_ID_NS_ZONED_OZCS_ZRWASUP)) { 3823 return NVME_INVALID_ZONE_OP | NVME_DNR; 3824 } 3825 3826 if (!(zone->d.za & NVME_ZA_ZRWA_VALID)) { 3827 return NVME_INVALID_FIELD | NVME_DNR; 3828 } 3829 3830 if (elba < wp || elba > wp + ns->zns.zrwas) { 3831 return NVME_ZONE_BOUNDARY_ERROR | NVME_DNR; 3832 } 3833 3834 if (nlb % ns->zns.zrwafg) { 3835 return NVME_INVALID_FIELD | NVME_DNR; 3836 } 3837 3838 status = nvme_zrm_auto(n, ns, zone); 3839 if (status) { 3840 return status; 3841 } 3842 3843 zone->w_ptr += nlb; 3844 3845 nvme_advance_zone_wp(ns, zone, nlb); 3846 3847 return NVME_SUCCESS; 3848 } 3849 3850 static uint16_t nvme_zone_mgmt_send(NvmeCtrl *n, NvmeRequest *req) 3851 { 3852 NvmeZoneSendCmd *cmd = (NvmeZoneSendCmd *)&req->cmd; 3853 NvmeNamespace *ns = req->ns; 3854 NvmeZone *zone; 3855 NvmeZoneResetAIOCB *iocb; 3856 uint8_t *zd_ext; 3857 uint64_t slba = 0; 3858 uint32_t zone_idx = 0; 3859 uint16_t status; 3860 uint8_t action = cmd->zsa; 3861 bool all; 3862 enum NvmeZoneProcessingMask proc_mask = NVME_PROC_CURRENT_ZONE; 3863 3864 all = cmd->zsflags & NVME_ZSFLAG_SELECT_ALL; 3865 3866 req->status = NVME_SUCCESS; 3867 3868 if (!all) { 3869 status = nvme_get_mgmt_zone_slba_idx(ns, &req->cmd, &slba, &zone_idx); 3870 if (status) { 3871 return status; 3872 } 3873 } 3874 3875 zone = &ns->zone_array[zone_idx]; 3876 if (slba != zone->d.zslba && action != NVME_ZONE_ACTION_ZRWA_FLUSH) { 3877 trace_pci_nvme_err_unaligned_zone_cmd(action, slba, zone->d.zslba); 3878 return NVME_INVALID_FIELD | NVME_DNR; 3879 } 3880 3881 switch (action) { 3882 3883 case NVME_ZONE_ACTION_OPEN: 3884 if (all) { 3885 proc_mask = NVME_PROC_CLOSED_ZONES; 3886 } 3887 trace_pci_nvme_open_zone(slba, zone_idx, all); 3888 status = nvme_do_zone_op(ns, zone, proc_mask, nvme_open_zone, req); 3889 break; 3890 3891 case NVME_ZONE_ACTION_CLOSE: 3892 if (all) { 3893 proc_mask = NVME_PROC_OPENED_ZONES; 3894 } 3895 trace_pci_nvme_close_zone(slba, zone_idx, all); 3896 status = nvme_do_zone_op(ns, zone, proc_mask, nvme_close_zone, req); 3897 break; 3898 3899 case NVME_ZONE_ACTION_FINISH: 3900 if (all) { 3901 proc_mask = NVME_PROC_OPENED_ZONES | NVME_PROC_CLOSED_ZONES; 3902 } 3903 trace_pci_nvme_finish_zone(slba, zone_idx, all); 3904 status = nvme_do_zone_op(ns, zone, proc_mask, nvme_finish_zone, req); 3905 break; 3906 3907 case NVME_ZONE_ACTION_RESET: 3908 trace_pci_nvme_reset_zone(slba, zone_idx, all); 3909 3910 iocb = blk_aio_get(&nvme_zone_reset_aiocb_info, ns->blkconf.blk, 3911 nvme_misc_cb, req); 3912 3913 iocb->req = req; 3914 iocb->bh = qemu_bh_new(nvme_zone_reset_bh, iocb); 3915 iocb->ret = 0; 3916 iocb->all = all; 3917 iocb->idx = zone_idx; 3918 iocb->zone = NULL; 3919 3920 req->aiocb = &iocb->common; 3921 nvme_zone_reset_cb(iocb, 0); 3922 3923 return NVME_NO_COMPLETE; 3924 3925 case NVME_ZONE_ACTION_OFFLINE: 3926 if (all) { 3927 proc_mask = NVME_PROC_READ_ONLY_ZONES; 3928 } 3929 trace_pci_nvme_offline_zone(slba, zone_idx, all); 3930 status = nvme_do_zone_op(ns, zone, proc_mask, nvme_offline_zone, req); 3931 break; 3932 3933 case NVME_ZONE_ACTION_SET_ZD_EXT: 3934 trace_pci_nvme_set_descriptor_extension(slba, zone_idx); 3935 if (all || !ns->params.zd_extension_size) { 3936 return NVME_INVALID_FIELD | NVME_DNR; 3937 } 3938 zd_ext = nvme_get_zd_extension(ns, zone_idx); 3939 status = nvme_h2c(n, zd_ext, ns->params.zd_extension_size, req); 3940 if (status) { 3941 trace_pci_nvme_err_zd_extension_map_error(zone_idx); 3942 return status; 3943 } 3944 3945 status = nvme_set_zd_ext(ns, zone); 3946 if (status == NVME_SUCCESS) { 3947 trace_pci_nvme_zd_extension_set(zone_idx); 3948 return status; 3949 } 3950 break; 3951 3952 case NVME_ZONE_ACTION_ZRWA_FLUSH: 3953 if (all) { 3954 return NVME_INVALID_FIELD | NVME_DNR; 3955 } 3956 3957 return nvme_zone_mgmt_send_zrwa_flush(n, zone, slba, req); 3958 3959 default: 3960 trace_pci_nvme_err_invalid_mgmt_action(action); 3961 status = NVME_INVALID_FIELD; 3962 } 3963 3964 if (status == NVME_ZONE_INVAL_TRANSITION) { 3965 trace_pci_nvme_err_invalid_zone_state_transition(action, slba, 3966 zone->d.za); 3967 } 3968 if (status) { 3969 status |= NVME_DNR; 3970 } 3971 3972 return status; 3973 } 3974 3975 static bool nvme_zone_matches_filter(uint32_t zafs, NvmeZone *zl) 3976 { 3977 NvmeZoneState zs = nvme_get_zone_state(zl); 3978 3979 switch (zafs) { 3980 case NVME_ZONE_REPORT_ALL: 3981 return true; 3982 case NVME_ZONE_REPORT_EMPTY: 3983 return zs == NVME_ZONE_STATE_EMPTY; 3984 case NVME_ZONE_REPORT_IMPLICITLY_OPEN: 3985 return zs == NVME_ZONE_STATE_IMPLICITLY_OPEN; 3986 case NVME_ZONE_REPORT_EXPLICITLY_OPEN: 3987 return zs == NVME_ZONE_STATE_EXPLICITLY_OPEN; 3988 case NVME_ZONE_REPORT_CLOSED: 3989 return zs == NVME_ZONE_STATE_CLOSED; 3990 case NVME_ZONE_REPORT_FULL: 3991 return zs == NVME_ZONE_STATE_FULL; 3992 case NVME_ZONE_REPORT_READ_ONLY: 3993 return zs == NVME_ZONE_STATE_READ_ONLY; 3994 case NVME_ZONE_REPORT_OFFLINE: 3995 return zs == NVME_ZONE_STATE_OFFLINE; 3996 default: 3997 return false; 3998 } 3999 } 4000 4001 static uint16_t nvme_zone_mgmt_recv(NvmeCtrl *n, NvmeRequest *req) 4002 { 4003 NvmeCmd *cmd = (NvmeCmd *)&req->cmd; 4004 NvmeNamespace *ns = req->ns; 4005 /* cdw12 is zero-based number of dwords to return. Convert to bytes */ 4006 uint32_t data_size = (le32_to_cpu(cmd->cdw12) + 1) << 2; 4007 uint32_t dw13 = le32_to_cpu(cmd->cdw13); 4008 uint32_t zone_idx, zra, zrasf, partial; 4009 uint64_t max_zones, nr_zones = 0; 4010 uint16_t status; 4011 uint64_t slba; 4012 NvmeZoneDescr *z; 4013 NvmeZone *zone; 4014 NvmeZoneReportHeader *header; 4015 void *buf, *buf_p; 4016 size_t zone_entry_sz; 4017 int i; 4018 4019 req->status = NVME_SUCCESS; 4020 4021 status = nvme_get_mgmt_zone_slba_idx(ns, cmd, &slba, &zone_idx); 4022 if (status) { 4023 return status; 4024 } 4025 4026 zra = dw13 & 0xff; 4027 if (zra != NVME_ZONE_REPORT && zra != NVME_ZONE_REPORT_EXTENDED) { 4028 return NVME_INVALID_FIELD | NVME_DNR; 4029 } 4030 if (zra == NVME_ZONE_REPORT_EXTENDED && !ns->params.zd_extension_size) { 4031 return NVME_INVALID_FIELD | NVME_DNR; 4032 } 4033 4034 zrasf = (dw13 >> 8) & 0xff; 4035 if (zrasf > NVME_ZONE_REPORT_OFFLINE) { 4036 return NVME_INVALID_FIELD | NVME_DNR; 4037 } 4038 4039 if (data_size < sizeof(NvmeZoneReportHeader)) { 4040 return NVME_INVALID_FIELD | NVME_DNR; 4041 } 4042 4043 status = nvme_check_mdts(n, data_size); 4044 if (status) { 4045 return status; 4046 } 4047 4048 partial = (dw13 >> 16) & 0x01; 4049 4050 zone_entry_sz = sizeof(NvmeZoneDescr); 4051 if (zra == NVME_ZONE_REPORT_EXTENDED) { 4052 zone_entry_sz += ns->params.zd_extension_size; 4053 } 4054 4055 max_zones = (data_size - sizeof(NvmeZoneReportHeader)) / zone_entry_sz; 4056 buf = g_malloc0(data_size); 4057 4058 zone = &ns->zone_array[zone_idx]; 4059 for (i = zone_idx; i < ns->num_zones; i++) { 4060 if (partial && nr_zones >= max_zones) { 4061 break; 4062 } 4063 if (nvme_zone_matches_filter(zrasf, zone++)) { 4064 nr_zones++; 4065 } 4066 } 4067 header = (NvmeZoneReportHeader *)buf; 4068 header->nr_zones = cpu_to_le64(nr_zones); 4069 4070 buf_p = buf + sizeof(NvmeZoneReportHeader); 4071 for (; zone_idx < ns->num_zones && max_zones > 0; zone_idx++) { 4072 zone = &ns->zone_array[zone_idx]; 4073 if (nvme_zone_matches_filter(zrasf, zone)) { 4074 z = (NvmeZoneDescr *)buf_p; 4075 buf_p += sizeof(NvmeZoneDescr); 4076 4077 z->zt = zone->d.zt; 4078 z->zs = zone->d.zs; 4079 z->zcap = cpu_to_le64(zone->d.zcap); 4080 z->zslba = cpu_to_le64(zone->d.zslba); 4081 z->za = zone->d.za; 4082 4083 if (nvme_wp_is_valid(zone)) { 4084 z->wp = cpu_to_le64(zone->d.wp); 4085 } else { 4086 z->wp = cpu_to_le64(~0ULL); 4087 } 4088 4089 if (zra == NVME_ZONE_REPORT_EXTENDED) { 4090 if (zone->d.za & NVME_ZA_ZD_EXT_VALID) { 4091 memcpy(buf_p, nvme_get_zd_extension(ns, zone_idx), 4092 ns->params.zd_extension_size); 4093 } 4094 buf_p += ns->params.zd_extension_size; 4095 } 4096 4097 max_zones--; 4098 } 4099 } 4100 4101 status = nvme_c2h(n, (uint8_t *)buf, data_size, req); 4102 4103 g_free(buf); 4104 4105 return status; 4106 } 4107 4108 static uint16_t nvme_io_cmd(NvmeCtrl *n, NvmeRequest *req) 4109 { 4110 NvmeNamespace *ns; 4111 uint32_t nsid = le32_to_cpu(req->cmd.nsid); 4112 4113 trace_pci_nvme_io_cmd(nvme_cid(req), nsid, nvme_sqid(req), 4114 req->cmd.opcode, nvme_io_opc_str(req->cmd.opcode)); 4115 4116 if (!nvme_nsid_valid(n, nsid)) { 4117 return NVME_INVALID_NSID | NVME_DNR; 4118 } 4119 4120 /* 4121 * In the base NVM command set, Flush may apply to all namespaces 4122 * (indicated by NSID being set to FFFFFFFFh). But if that feature is used 4123 * along with TP 4056 (Namespace Types), it may be pretty screwed up. 4124 * 4125 * If NSID is indeed set to FFFFFFFFh, we simply cannot associate the 4126 * opcode with a specific command since we cannot determine a unique I/O 4127 * command set. Opcode 0h could have any other meaning than something 4128 * equivalent to flushing and say it DOES have completely different 4129 * semantics in some other command set - does an NSID of FFFFFFFFh then 4130 * mean "for all namespaces, apply whatever command set specific command 4131 * that uses the 0h opcode?" Or does it mean "for all namespaces, apply 4132 * whatever command that uses the 0h opcode if, and only if, it allows NSID 4133 * to be FFFFFFFFh"? 4134 * 4135 * Anyway (and luckily), for now, we do not care about this since the 4136 * device only supports namespace types that includes the NVM Flush command 4137 * (NVM and Zoned), so always do an NVM Flush. 4138 */ 4139 if (req->cmd.opcode == NVME_CMD_FLUSH) { 4140 return nvme_flush(n, req); 4141 } 4142 4143 ns = nvme_ns(n, nsid); 4144 if (unlikely(!ns)) { 4145 return NVME_INVALID_FIELD | NVME_DNR; 4146 } 4147 4148 if (!(ns->iocs[req->cmd.opcode] & NVME_CMD_EFF_CSUPP)) { 4149 trace_pci_nvme_err_invalid_opc(req->cmd.opcode); 4150 return NVME_INVALID_OPCODE | NVME_DNR; 4151 } 4152 4153 if (ns->status) { 4154 return ns->status; 4155 } 4156 4157 if (NVME_CMD_FLAGS_FUSE(req->cmd.flags)) { 4158 return NVME_INVALID_FIELD; 4159 } 4160 4161 req->ns = ns; 4162 4163 switch (req->cmd.opcode) { 4164 case NVME_CMD_WRITE_ZEROES: 4165 return nvme_write_zeroes(n, req); 4166 case NVME_CMD_ZONE_APPEND: 4167 return nvme_zone_append(n, req); 4168 case NVME_CMD_WRITE: 4169 return nvme_write(n, req); 4170 case NVME_CMD_READ: 4171 return nvme_read(n, req); 4172 case NVME_CMD_COMPARE: 4173 return nvme_compare(n, req); 4174 case NVME_CMD_DSM: 4175 return nvme_dsm(n, req); 4176 case NVME_CMD_VERIFY: 4177 return nvme_verify(n, req); 4178 case NVME_CMD_COPY: 4179 return nvme_copy(n, req); 4180 case NVME_CMD_ZONE_MGMT_SEND: 4181 return nvme_zone_mgmt_send(n, req); 4182 case NVME_CMD_ZONE_MGMT_RECV: 4183 return nvme_zone_mgmt_recv(n, req); 4184 default: 4185 assert(false); 4186 } 4187 4188 return NVME_INVALID_OPCODE | NVME_DNR; 4189 } 4190 4191 static void nvme_free_sq(NvmeSQueue *sq, NvmeCtrl *n) 4192 { 4193 n->sq[sq->sqid] = NULL; 4194 timer_free(sq->timer); 4195 g_free(sq->io_req); 4196 if (sq->sqid) { 4197 g_free(sq); 4198 } 4199 } 4200 4201 static uint16_t nvme_del_sq(NvmeCtrl *n, NvmeRequest *req) 4202 { 4203 NvmeDeleteQ *c = (NvmeDeleteQ *)&req->cmd; 4204 NvmeRequest *r, *next; 4205 NvmeSQueue *sq; 4206 NvmeCQueue *cq; 4207 uint16_t qid = le16_to_cpu(c->qid); 4208 4209 if (unlikely(!qid || nvme_check_sqid(n, qid))) { 4210 trace_pci_nvme_err_invalid_del_sq(qid); 4211 return NVME_INVALID_QID | NVME_DNR; 4212 } 4213 4214 trace_pci_nvme_del_sq(qid); 4215 4216 sq = n->sq[qid]; 4217 while (!QTAILQ_EMPTY(&sq->out_req_list)) { 4218 r = QTAILQ_FIRST(&sq->out_req_list); 4219 assert(r->aiocb); 4220 blk_aio_cancel(r->aiocb); 4221 } 4222 4223 assert(QTAILQ_EMPTY(&sq->out_req_list)); 4224 4225 if (!nvme_check_cqid(n, sq->cqid)) { 4226 cq = n->cq[sq->cqid]; 4227 QTAILQ_REMOVE(&cq->sq_list, sq, entry); 4228 4229 nvme_post_cqes(cq); 4230 QTAILQ_FOREACH_SAFE(r, &cq->req_list, entry, next) { 4231 if (r->sq == sq) { 4232 QTAILQ_REMOVE(&cq->req_list, r, entry); 4233 QTAILQ_INSERT_TAIL(&sq->req_list, r, entry); 4234 } 4235 } 4236 } 4237 4238 nvme_free_sq(sq, n); 4239 return NVME_SUCCESS; 4240 } 4241 4242 static void nvme_init_sq(NvmeSQueue *sq, NvmeCtrl *n, uint64_t dma_addr, 4243 uint16_t sqid, uint16_t cqid, uint16_t size) 4244 { 4245 int i; 4246 NvmeCQueue *cq; 4247 4248 sq->ctrl = n; 4249 sq->dma_addr = dma_addr; 4250 sq->sqid = sqid; 4251 sq->size = size; 4252 sq->cqid = cqid; 4253 sq->head = sq->tail = 0; 4254 sq->io_req = g_new0(NvmeRequest, sq->size); 4255 4256 QTAILQ_INIT(&sq->req_list); 4257 QTAILQ_INIT(&sq->out_req_list); 4258 for (i = 0; i < sq->size; i++) { 4259 sq->io_req[i].sq = sq; 4260 QTAILQ_INSERT_TAIL(&(sq->req_list), &sq->io_req[i], entry); 4261 } 4262 sq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_process_sq, sq); 4263 4264 assert(n->cq[cqid]); 4265 cq = n->cq[cqid]; 4266 QTAILQ_INSERT_TAIL(&(cq->sq_list), sq, entry); 4267 n->sq[sqid] = sq; 4268 } 4269 4270 static uint16_t nvme_create_sq(NvmeCtrl *n, NvmeRequest *req) 4271 { 4272 NvmeSQueue *sq; 4273 NvmeCreateSq *c = (NvmeCreateSq *)&req->cmd; 4274 4275 uint16_t cqid = le16_to_cpu(c->cqid); 4276 uint16_t sqid = le16_to_cpu(c->sqid); 4277 uint16_t qsize = le16_to_cpu(c->qsize); 4278 uint16_t qflags = le16_to_cpu(c->sq_flags); 4279 uint64_t prp1 = le64_to_cpu(c->prp1); 4280 4281 trace_pci_nvme_create_sq(prp1, sqid, cqid, qsize, qflags); 4282 4283 if (unlikely(!cqid || nvme_check_cqid(n, cqid))) { 4284 trace_pci_nvme_err_invalid_create_sq_cqid(cqid); 4285 return NVME_INVALID_CQID | NVME_DNR; 4286 } 4287 if (unlikely(!sqid || sqid > n->params.max_ioqpairs || 4288 n->sq[sqid] != NULL)) { 4289 trace_pci_nvme_err_invalid_create_sq_sqid(sqid); 4290 return NVME_INVALID_QID | NVME_DNR; 4291 } 4292 if (unlikely(!qsize || qsize > NVME_CAP_MQES(ldq_le_p(&n->bar.cap)))) { 4293 trace_pci_nvme_err_invalid_create_sq_size(qsize); 4294 return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR; 4295 } 4296 if (unlikely(prp1 & (n->page_size - 1))) { 4297 trace_pci_nvme_err_invalid_create_sq_addr(prp1); 4298 return NVME_INVALID_PRP_OFFSET | NVME_DNR; 4299 } 4300 if (unlikely(!(NVME_SQ_FLAGS_PC(qflags)))) { 4301 trace_pci_nvme_err_invalid_create_sq_qflags(NVME_SQ_FLAGS_PC(qflags)); 4302 return NVME_INVALID_FIELD | NVME_DNR; 4303 } 4304 sq = g_malloc0(sizeof(*sq)); 4305 nvme_init_sq(sq, n, prp1, sqid, cqid, qsize + 1); 4306 return NVME_SUCCESS; 4307 } 4308 4309 struct nvme_stats { 4310 uint64_t units_read; 4311 uint64_t units_written; 4312 uint64_t read_commands; 4313 uint64_t write_commands; 4314 }; 4315 4316 static void nvme_set_blk_stats(NvmeNamespace *ns, struct nvme_stats *stats) 4317 { 4318 BlockAcctStats *s = blk_get_stats(ns->blkconf.blk); 4319 4320 stats->units_read += s->nr_bytes[BLOCK_ACCT_READ] >> BDRV_SECTOR_BITS; 4321 stats->units_written += s->nr_bytes[BLOCK_ACCT_WRITE] >> BDRV_SECTOR_BITS; 4322 stats->read_commands += s->nr_ops[BLOCK_ACCT_READ]; 4323 stats->write_commands += s->nr_ops[BLOCK_ACCT_WRITE]; 4324 } 4325 4326 static uint16_t nvme_smart_info(NvmeCtrl *n, uint8_t rae, uint32_t buf_len, 4327 uint64_t off, NvmeRequest *req) 4328 { 4329 uint32_t nsid = le32_to_cpu(req->cmd.nsid); 4330 struct nvme_stats stats = { 0 }; 4331 NvmeSmartLog smart = { 0 }; 4332 uint32_t trans_len; 4333 NvmeNamespace *ns; 4334 time_t current_ms; 4335 4336 if (off >= sizeof(smart)) { 4337 return NVME_INVALID_FIELD | NVME_DNR; 4338 } 4339 4340 if (nsid != 0xffffffff) { 4341 ns = nvme_ns(n, nsid); 4342 if (!ns) { 4343 return NVME_INVALID_NSID | NVME_DNR; 4344 } 4345 nvme_set_blk_stats(ns, &stats); 4346 } else { 4347 int i; 4348 4349 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { 4350 ns = nvme_ns(n, i); 4351 if (!ns) { 4352 continue; 4353 } 4354 nvme_set_blk_stats(ns, &stats); 4355 } 4356 } 4357 4358 trans_len = MIN(sizeof(smart) - off, buf_len); 4359 smart.critical_warning = n->smart_critical_warning; 4360 4361 smart.data_units_read[0] = cpu_to_le64(DIV_ROUND_UP(stats.units_read, 4362 1000)); 4363 smart.data_units_written[0] = cpu_to_le64(DIV_ROUND_UP(stats.units_written, 4364 1000)); 4365 smart.host_read_commands[0] = cpu_to_le64(stats.read_commands); 4366 smart.host_write_commands[0] = cpu_to_le64(stats.write_commands); 4367 4368 smart.temperature = cpu_to_le16(n->temperature); 4369 4370 if ((n->temperature >= n->features.temp_thresh_hi) || 4371 (n->temperature <= n->features.temp_thresh_low)) { 4372 smart.critical_warning |= NVME_SMART_TEMPERATURE; 4373 } 4374 4375 current_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL); 4376 smart.power_on_hours[0] = 4377 cpu_to_le64((((current_ms - n->starttime_ms) / 1000) / 60) / 60); 4378 4379 if (!rae) { 4380 nvme_clear_events(n, NVME_AER_TYPE_SMART); 4381 } 4382 4383 return nvme_c2h(n, (uint8_t *) &smart + off, trans_len, req); 4384 } 4385 4386 static uint16_t nvme_fw_log_info(NvmeCtrl *n, uint32_t buf_len, uint64_t off, 4387 NvmeRequest *req) 4388 { 4389 uint32_t trans_len; 4390 NvmeFwSlotInfoLog fw_log = { 4391 .afi = 0x1, 4392 }; 4393 4394 if (off >= sizeof(fw_log)) { 4395 return NVME_INVALID_FIELD | NVME_DNR; 4396 } 4397 4398 strpadcpy((char *)&fw_log.frs1, sizeof(fw_log.frs1), "1.0", ' '); 4399 trans_len = MIN(sizeof(fw_log) - off, buf_len); 4400 4401 return nvme_c2h(n, (uint8_t *) &fw_log + off, trans_len, req); 4402 } 4403 4404 static uint16_t nvme_error_info(NvmeCtrl *n, uint8_t rae, uint32_t buf_len, 4405 uint64_t off, NvmeRequest *req) 4406 { 4407 uint32_t trans_len; 4408 NvmeErrorLog errlog; 4409 4410 if (off >= sizeof(errlog)) { 4411 return NVME_INVALID_FIELD | NVME_DNR; 4412 } 4413 4414 if (!rae) { 4415 nvme_clear_events(n, NVME_AER_TYPE_ERROR); 4416 } 4417 4418 memset(&errlog, 0x0, sizeof(errlog)); 4419 trans_len = MIN(sizeof(errlog) - off, buf_len); 4420 4421 return nvme_c2h(n, (uint8_t *)&errlog, trans_len, req); 4422 } 4423 4424 static uint16_t nvme_changed_nslist(NvmeCtrl *n, uint8_t rae, uint32_t buf_len, 4425 uint64_t off, NvmeRequest *req) 4426 { 4427 uint32_t nslist[1024]; 4428 uint32_t trans_len; 4429 int i = 0; 4430 uint32_t nsid; 4431 4432 if (off >= sizeof(nslist)) { 4433 trace_pci_nvme_err_invalid_log_page_offset(off, sizeof(nslist)); 4434 return NVME_INVALID_FIELD | NVME_DNR; 4435 } 4436 4437 memset(nslist, 0x0, sizeof(nslist)); 4438 trans_len = MIN(sizeof(nslist) - off, buf_len); 4439 4440 while ((nsid = find_first_bit(n->changed_nsids, NVME_CHANGED_NSID_SIZE)) != 4441 NVME_CHANGED_NSID_SIZE) { 4442 /* 4443 * If more than 1024 namespaces, the first entry in the log page should 4444 * be set to FFFFFFFFh and the others to 0 as spec. 4445 */ 4446 if (i == ARRAY_SIZE(nslist)) { 4447 memset(nslist, 0x0, sizeof(nslist)); 4448 nslist[0] = 0xffffffff; 4449 break; 4450 } 4451 4452 nslist[i++] = nsid; 4453 clear_bit(nsid, n->changed_nsids); 4454 } 4455 4456 /* 4457 * Remove all the remaining list entries in case returns directly due to 4458 * more than 1024 namespaces. 4459 */ 4460 if (nslist[0] == 0xffffffff) { 4461 bitmap_zero(n->changed_nsids, NVME_CHANGED_NSID_SIZE); 4462 } 4463 4464 if (!rae) { 4465 nvme_clear_events(n, NVME_AER_TYPE_NOTICE); 4466 } 4467 4468 return nvme_c2h(n, ((uint8_t *)nslist) + off, trans_len, req); 4469 } 4470 4471 static uint16_t nvme_cmd_effects(NvmeCtrl *n, uint8_t csi, uint32_t buf_len, 4472 uint64_t off, NvmeRequest *req) 4473 { 4474 NvmeEffectsLog log = {}; 4475 const uint32_t *src_iocs = NULL; 4476 uint32_t trans_len; 4477 4478 if (off >= sizeof(log)) { 4479 trace_pci_nvme_err_invalid_log_page_offset(off, sizeof(log)); 4480 return NVME_INVALID_FIELD | NVME_DNR; 4481 } 4482 4483 switch (NVME_CC_CSS(ldl_le_p(&n->bar.cc))) { 4484 case NVME_CC_CSS_NVM: 4485 src_iocs = nvme_cse_iocs_nvm; 4486 /* fall through */ 4487 case NVME_CC_CSS_ADMIN_ONLY: 4488 break; 4489 case NVME_CC_CSS_CSI: 4490 switch (csi) { 4491 case NVME_CSI_NVM: 4492 src_iocs = nvme_cse_iocs_nvm; 4493 break; 4494 case NVME_CSI_ZONED: 4495 src_iocs = nvme_cse_iocs_zoned; 4496 break; 4497 } 4498 } 4499 4500 memcpy(log.acs, nvme_cse_acs, sizeof(nvme_cse_acs)); 4501 4502 if (src_iocs) { 4503 memcpy(log.iocs, src_iocs, sizeof(log.iocs)); 4504 } 4505 4506 trans_len = MIN(sizeof(log) - off, buf_len); 4507 4508 return nvme_c2h(n, ((uint8_t *)&log) + off, trans_len, req); 4509 } 4510 4511 static uint16_t nvme_get_log(NvmeCtrl *n, NvmeRequest *req) 4512 { 4513 NvmeCmd *cmd = &req->cmd; 4514 4515 uint32_t dw10 = le32_to_cpu(cmd->cdw10); 4516 uint32_t dw11 = le32_to_cpu(cmd->cdw11); 4517 uint32_t dw12 = le32_to_cpu(cmd->cdw12); 4518 uint32_t dw13 = le32_to_cpu(cmd->cdw13); 4519 uint8_t lid = dw10 & 0xff; 4520 uint8_t lsp = (dw10 >> 8) & 0xf; 4521 uint8_t rae = (dw10 >> 15) & 0x1; 4522 uint8_t csi = le32_to_cpu(cmd->cdw14) >> 24; 4523 uint32_t numdl, numdu; 4524 uint64_t off, lpol, lpou; 4525 size_t len; 4526 uint16_t status; 4527 4528 numdl = (dw10 >> 16); 4529 numdu = (dw11 & 0xffff); 4530 lpol = dw12; 4531 lpou = dw13; 4532 4533 len = (((numdu << 16) | numdl) + 1) << 2; 4534 off = (lpou << 32ULL) | lpol; 4535 4536 if (off & 0x3) { 4537 return NVME_INVALID_FIELD | NVME_DNR; 4538 } 4539 4540 trace_pci_nvme_get_log(nvme_cid(req), lid, lsp, rae, len, off); 4541 4542 status = nvme_check_mdts(n, len); 4543 if (status) { 4544 return status; 4545 } 4546 4547 switch (lid) { 4548 case NVME_LOG_ERROR_INFO: 4549 return nvme_error_info(n, rae, len, off, req); 4550 case NVME_LOG_SMART_INFO: 4551 return nvme_smart_info(n, rae, len, off, req); 4552 case NVME_LOG_FW_SLOT_INFO: 4553 return nvme_fw_log_info(n, len, off, req); 4554 case NVME_LOG_CHANGED_NSLIST: 4555 return nvme_changed_nslist(n, rae, len, off, req); 4556 case NVME_LOG_CMD_EFFECTS: 4557 return nvme_cmd_effects(n, csi, len, off, req); 4558 default: 4559 trace_pci_nvme_err_invalid_log_page(nvme_cid(req), lid); 4560 return NVME_INVALID_FIELD | NVME_DNR; 4561 } 4562 } 4563 4564 static void nvme_free_cq(NvmeCQueue *cq, NvmeCtrl *n) 4565 { 4566 n->cq[cq->cqid] = NULL; 4567 timer_free(cq->timer); 4568 if (msix_enabled(&n->parent_obj)) { 4569 msix_vector_unuse(&n->parent_obj, cq->vector); 4570 } 4571 if (cq->cqid) { 4572 g_free(cq); 4573 } 4574 } 4575 4576 static uint16_t nvme_del_cq(NvmeCtrl *n, NvmeRequest *req) 4577 { 4578 NvmeDeleteQ *c = (NvmeDeleteQ *)&req->cmd; 4579 NvmeCQueue *cq; 4580 uint16_t qid = le16_to_cpu(c->qid); 4581 4582 if (unlikely(!qid || nvme_check_cqid(n, qid))) { 4583 trace_pci_nvme_err_invalid_del_cq_cqid(qid); 4584 return NVME_INVALID_CQID | NVME_DNR; 4585 } 4586 4587 cq = n->cq[qid]; 4588 if (unlikely(!QTAILQ_EMPTY(&cq->sq_list))) { 4589 trace_pci_nvme_err_invalid_del_cq_notempty(qid); 4590 return NVME_INVALID_QUEUE_DEL; 4591 } 4592 4593 if (cq->irq_enabled && cq->tail != cq->head) { 4594 n->cq_pending--; 4595 } 4596 4597 nvme_irq_deassert(n, cq); 4598 trace_pci_nvme_del_cq(qid); 4599 nvme_free_cq(cq, n); 4600 return NVME_SUCCESS; 4601 } 4602 4603 static void nvme_init_cq(NvmeCQueue *cq, NvmeCtrl *n, uint64_t dma_addr, 4604 uint16_t cqid, uint16_t vector, uint16_t size, 4605 uint16_t irq_enabled) 4606 { 4607 int ret; 4608 4609 if (msix_enabled(&n->parent_obj)) { 4610 ret = msix_vector_use(&n->parent_obj, vector); 4611 assert(ret == 0); 4612 } 4613 cq->ctrl = n; 4614 cq->cqid = cqid; 4615 cq->size = size; 4616 cq->dma_addr = dma_addr; 4617 cq->phase = 1; 4618 cq->irq_enabled = irq_enabled; 4619 cq->vector = vector; 4620 cq->head = cq->tail = 0; 4621 QTAILQ_INIT(&cq->req_list); 4622 QTAILQ_INIT(&cq->sq_list); 4623 n->cq[cqid] = cq; 4624 cq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_post_cqes, cq); 4625 } 4626 4627 static uint16_t nvme_create_cq(NvmeCtrl *n, NvmeRequest *req) 4628 { 4629 NvmeCQueue *cq; 4630 NvmeCreateCq *c = (NvmeCreateCq *)&req->cmd; 4631 uint16_t cqid = le16_to_cpu(c->cqid); 4632 uint16_t vector = le16_to_cpu(c->irq_vector); 4633 uint16_t qsize = le16_to_cpu(c->qsize); 4634 uint16_t qflags = le16_to_cpu(c->cq_flags); 4635 uint64_t prp1 = le64_to_cpu(c->prp1); 4636 4637 trace_pci_nvme_create_cq(prp1, cqid, vector, qsize, qflags, 4638 NVME_CQ_FLAGS_IEN(qflags) != 0); 4639 4640 if (unlikely(!cqid || cqid > n->params.max_ioqpairs || 4641 n->cq[cqid] != NULL)) { 4642 trace_pci_nvme_err_invalid_create_cq_cqid(cqid); 4643 return NVME_INVALID_QID | NVME_DNR; 4644 } 4645 if (unlikely(!qsize || qsize > NVME_CAP_MQES(ldq_le_p(&n->bar.cap)))) { 4646 trace_pci_nvme_err_invalid_create_cq_size(qsize); 4647 return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR; 4648 } 4649 if (unlikely(prp1 & (n->page_size - 1))) { 4650 trace_pci_nvme_err_invalid_create_cq_addr(prp1); 4651 return NVME_INVALID_PRP_OFFSET | NVME_DNR; 4652 } 4653 if (unlikely(!msix_enabled(&n->parent_obj) && vector)) { 4654 trace_pci_nvme_err_invalid_create_cq_vector(vector); 4655 return NVME_INVALID_IRQ_VECTOR | NVME_DNR; 4656 } 4657 if (unlikely(vector >= n->params.msix_qsize)) { 4658 trace_pci_nvme_err_invalid_create_cq_vector(vector); 4659 return NVME_INVALID_IRQ_VECTOR | NVME_DNR; 4660 } 4661 if (unlikely(!(NVME_CQ_FLAGS_PC(qflags)))) { 4662 trace_pci_nvme_err_invalid_create_cq_qflags(NVME_CQ_FLAGS_PC(qflags)); 4663 return NVME_INVALID_FIELD | NVME_DNR; 4664 } 4665 4666 cq = g_malloc0(sizeof(*cq)); 4667 nvme_init_cq(cq, n, prp1, cqid, vector, qsize + 1, 4668 NVME_CQ_FLAGS_IEN(qflags)); 4669 4670 /* 4671 * It is only required to set qs_created when creating a completion queue; 4672 * creating a submission queue without a matching completion queue will 4673 * fail. 4674 */ 4675 n->qs_created = true; 4676 return NVME_SUCCESS; 4677 } 4678 4679 static uint16_t nvme_rpt_empty_id_struct(NvmeCtrl *n, NvmeRequest *req) 4680 { 4681 uint8_t id[NVME_IDENTIFY_DATA_SIZE] = {}; 4682 4683 return nvme_c2h(n, id, sizeof(id), req); 4684 } 4685 4686 static uint16_t nvme_identify_ctrl(NvmeCtrl *n, NvmeRequest *req) 4687 { 4688 trace_pci_nvme_identify_ctrl(); 4689 4690 return nvme_c2h(n, (uint8_t *)&n->id_ctrl, sizeof(n->id_ctrl), req); 4691 } 4692 4693 static uint16_t nvme_identify_ctrl_csi(NvmeCtrl *n, NvmeRequest *req) 4694 { 4695 NvmeIdentify *c = (NvmeIdentify *)&req->cmd; 4696 uint8_t id[NVME_IDENTIFY_DATA_SIZE] = {}; 4697 NvmeIdCtrlNvm *id_nvm = (NvmeIdCtrlNvm *)&id; 4698 4699 trace_pci_nvme_identify_ctrl_csi(c->csi); 4700 4701 switch (c->csi) { 4702 case NVME_CSI_NVM: 4703 id_nvm->vsl = n->params.vsl; 4704 id_nvm->dmrsl = cpu_to_le32(n->dmrsl); 4705 break; 4706 4707 case NVME_CSI_ZONED: 4708 ((NvmeIdCtrlZoned *)&id)->zasl = n->params.zasl; 4709 break; 4710 4711 default: 4712 return NVME_INVALID_FIELD | NVME_DNR; 4713 } 4714 4715 return nvme_c2h(n, id, sizeof(id), req); 4716 } 4717 4718 static uint16_t nvme_identify_ns(NvmeCtrl *n, NvmeRequest *req, bool active) 4719 { 4720 NvmeNamespace *ns; 4721 NvmeIdentify *c = (NvmeIdentify *)&req->cmd; 4722 uint32_t nsid = le32_to_cpu(c->nsid); 4723 4724 trace_pci_nvme_identify_ns(nsid); 4725 4726 if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) { 4727 return NVME_INVALID_NSID | NVME_DNR; 4728 } 4729 4730 ns = nvme_ns(n, nsid); 4731 if (unlikely(!ns)) { 4732 if (!active) { 4733 ns = nvme_subsys_ns(n->subsys, nsid); 4734 if (!ns) { 4735 return nvme_rpt_empty_id_struct(n, req); 4736 } 4737 } else { 4738 return nvme_rpt_empty_id_struct(n, req); 4739 } 4740 } 4741 4742 if (active || ns->csi == NVME_CSI_NVM) { 4743 return nvme_c2h(n, (uint8_t *)&ns->id_ns, sizeof(NvmeIdNs), req); 4744 } 4745 4746 return NVME_INVALID_CMD_SET | NVME_DNR; 4747 } 4748 4749 static uint16_t nvme_identify_ctrl_list(NvmeCtrl *n, NvmeRequest *req, 4750 bool attached) 4751 { 4752 NvmeIdentify *c = (NvmeIdentify *)&req->cmd; 4753 uint32_t nsid = le32_to_cpu(c->nsid); 4754 uint16_t min_id = le16_to_cpu(c->ctrlid); 4755 uint16_t list[NVME_CONTROLLER_LIST_SIZE] = {}; 4756 uint16_t *ids = &list[1]; 4757 NvmeNamespace *ns; 4758 NvmeCtrl *ctrl; 4759 int cntlid, nr_ids = 0; 4760 4761 trace_pci_nvme_identify_ctrl_list(c->cns, min_id); 4762 4763 if (!n->subsys) { 4764 return NVME_INVALID_FIELD | NVME_DNR; 4765 } 4766 4767 if (attached) { 4768 if (nsid == NVME_NSID_BROADCAST) { 4769 return NVME_INVALID_FIELD | NVME_DNR; 4770 } 4771 4772 ns = nvme_subsys_ns(n->subsys, nsid); 4773 if (!ns) { 4774 return NVME_INVALID_FIELD | NVME_DNR; 4775 } 4776 } 4777 4778 for (cntlid = min_id; cntlid < ARRAY_SIZE(n->subsys->ctrls); cntlid++) { 4779 ctrl = nvme_subsys_ctrl(n->subsys, cntlid); 4780 if (!ctrl) { 4781 continue; 4782 } 4783 4784 if (attached && !nvme_ns(ctrl, nsid)) { 4785 continue; 4786 } 4787 4788 ids[nr_ids++] = cntlid; 4789 } 4790 4791 list[0] = nr_ids; 4792 4793 return nvme_c2h(n, (uint8_t *)list, sizeof(list), req); 4794 } 4795 4796 static uint16_t nvme_identify_ns_csi(NvmeCtrl *n, NvmeRequest *req, 4797 bool active) 4798 { 4799 NvmeNamespace *ns; 4800 NvmeIdentify *c = (NvmeIdentify *)&req->cmd; 4801 uint32_t nsid = le32_to_cpu(c->nsid); 4802 4803 trace_pci_nvme_identify_ns_csi(nsid, c->csi); 4804 4805 if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) { 4806 return NVME_INVALID_NSID | NVME_DNR; 4807 } 4808 4809 ns = nvme_ns(n, nsid); 4810 if (unlikely(!ns)) { 4811 if (!active) { 4812 ns = nvme_subsys_ns(n->subsys, nsid); 4813 if (!ns) { 4814 return nvme_rpt_empty_id_struct(n, req); 4815 } 4816 } else { 4817 return nvme_rpt_empty_id_struct(n, req); 4818 } 4819 } 4820 4821 if (c->csi == NVME_CSI_NVM) { 4822 return nvme_c2h(n, (uint8_t *)&ns->id_ns_nvm, sizeof(NvmeIdNsNvm), 4823 req); 4824 } else if (c->csi == NVME_CSI_ZONED && ns->csi == NVME_CSI_ZONED) { 4825 return nvme_c2h(n, (uint8_t *)ns->id_ns_zoned, sizeof(NvmeIdNsZoned), 4826 req); 4827 } 4828 4829 return NVME_INVALID_FIELD | NVME_DNR; 4830 } 4831 4832 static uint16_t nvme_identify_nslist(NvmeCtrl *n, NvmeRequest *req, 4833 bool active) 4834 { 4835 NvmeNamespace *ns; 4836 NvmeIdentify *c = (NvmeIdentify *)&req->cmd; 4837 uint32_t min_nsid = le32_to_cpu(c->nsid); 4838 uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {}; 4839 static const int data_len = sizeof(list); 4840 uint32_t *list_ptr = (uint32_t *)list; 4841 int i, j = 0; 4842 4843 trace_pci_nvme_identify_nslist(min_nsid); 4844 4845 /* 4846 * Both FFFFFFFFh (NVME_NSID_BROADCAST) and FFFFFFFFEh are invalid values 4847 * since the Active Namespace ID List should return namespaces with ids 4848 * *higher* than the NSID specified in the command. This is also specified 4849 * in the spec (NVM Express v1.3d, Section 5.15.4). 4850 */ 4851 if (min_nsid >= NVME_NSID_BROADCAST - 1) { 4852 return NVME_INVALID_NSID | NVME_DNR; 4853 } 4854 4855 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { 4856 ns = nvme_ns(n, i); 4857 if (!ns) { 4858 if (!active) { 4859 ns = nvme_subsys_ns(n->subsys, i); 4860 if (!ns) { 4861 continue; 4862 } 4863 } else { 4864 continue; 4865 } 4866 } 4867 if (ns->params.nsid <= min_nsid) { 4868 continue; 4869 } 4870 list_ptr[j++] = cpu_to_le32(ns->params.nsid); 4871 if (j == data_len / sizeof(uint32_t)) { 4872 break; 4873 } 4874 } 4875 4876 return nvme_c2h(n, list, data_len, req); 4877 } 4878 4879 static uint16_t nvme_identify_nslist_csi(NvmeCtrl *n, NvmeRequest *req, 4880 bool active) 4881 { 4882 NvmeNamespace *ns; 4883 NvmeIdentify *c = (NvmeIdentify *)&req->cmd; 4884 uint32_t min_nsid = le32_to_cpu(c->nsid); 4885 uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {}; 4886 static const int data_len = sizeof(list); 4887 uint32_t *list_ptr = (uint32_t *)list; 4888 int i, j = 0; 4889 4890 trace_pci_nvme_identify_nslist_csi(min_nsid, c->csi); 4891 4892 /* 4893 * Same as in nvme_identify_nslist(), FFFFFFFFh/FFFFFFFFEh are invalid. 4894 */ 4895 if (min_nsid >= NVME_NSID_BROADCAST - 1) { 4896 return NVME_INVALID_NSID | NVME_DNR; 4897 } 4898 4899 if (c->csi != NVME_CSI_NVM && c->csi != NVME_CSI_ZONED) { 4900 return NVME_INVALID_FIELD | NVME_DNR; 4901 } 4902 4903 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { 4904 ns = nvme_ns(n, i); 4905 if (!ns) { 4906 if (!active) { 4907 ns = nvme_subsys_ns(n->subsys, i); 4908 if (!ns) { 4909 continue; 4910 } 4911 } else { 4912 continue; 4913 } 4914 } 4915 if (ns->params.nsid <= min_nsid || c->csi != ns->csi) { 4916 continue; 4917 } 4918 list_ptr[j++] = cpu_to_le32(ns->params.nsid); 4919 if (j == data_len / sizeof(uint32_t)) { 4920 break; 4921 } 4922 } 4923 4924 return nvme_c2h(n, list, data_len, req); 4925 } 4926 4927 static uint16_t nvme_identify_ns_descr_list(NvmeCtrl *n, NvmeRequest *req) 4928 { 4929 NvmeNamespace *ns; 4930 NvmeIdentify *c = (NvmeIdentify *)&req->cmd; 4931 uint32_t nsid = le32_to_cpu(c->nsid); 4932 uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {}; 4933 uint8_t *pos = list; 4934 struct { 4935 NvmeIdNsDescr hdr; 4936 uint8_t v[NVME_NIDL_UUID]; 4937 } QEMU_PACKED uuid = {}; 4938 struct { 4939 NvmeIdNsDescr hdr; 4940 uint64_t v; 4941 } QEMU_PACKED eui64 = {}; 4942 struct { 4943 NvmeIdNsDescr hdr; 4944 uint8_t v; 4945 } QEMU_PACKED csi = {}; 4946 4947 trace_pci_nvme_identify_ns_descr_list(nsid); 4948 4949 if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) { 4950 return NVME_INVALID_NSID | NVME_DNR; 4951 } 4952 4953 ns = nvme_ns(n, nsid); 4954 if (unlikely(!ns)) { 4955 return NVME_INVALID_FIELD | NVME_DNR; 4956 } 4957 4958 if (!qemu_uuid_is_null(&ns->params.uuid)) { 4959 uuid.hdr.nidt = NVME_NIDT_UUID; 4960 uuid.hdr.nidl = NVME_NIDL_UUID; 4961 memcpy(uuid.v, ns->params.uuid.data, NVME_NIDL_UUID); 4962 memcpy(pos, &uuid, sizeof(uuid)); 4963 pos += sizeof(uuid); 4964 } 4965 4966 if (ns->params.eui64) { 4967 eui64.hdr.nidt = NVME_NIDT_EUI64; 4968 eui64.hdr.nidl = NVME_NIDL_EUI64; 4969 eui64.v = cpu_to_be64(ns->params.eui64); 4970 memcpy(pos, &eui64, sizeof(eui64)); 4971 pos += sizeof(eui64); 4972 } 4973 4974 csi.hdr.nidt = NVME_NIDT_CSI; 4975 csi.hdr.nidl = NVME_NIDL_CSI; 4976 csi.v = ns->csi; 4977 memcpy(pos, &csi, sizeof(csi)); 4978 pos += sizeof(csi); 4979 4980 return nvme_c2h(n, list, sizeof(list), req); 4981 } 4982 4983 static uint16_t nvme_identify_cmd_set(NvmeCtrl *n, NvmeRequest *req) 4984 { 4985 uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {}; 4986 static const int data_len = sizeof(list); 4987 4988 trace_pci_nvme_identify_cmd_set(); 4989 4990 NVME_SET_CSI(*list, NVME_CSI_NVM); 4991 NVME_SET_CSI(*list, NVME_CSI_ZONED); 4992 4993 return nvme_c2h(n, list, data_len, req); 4994 } 4995 4996 static uint16_t nvme_identify(NvmeCtrl *n, NvmeRequest *req) 4997 { 4998 NvmeIdentify *c = (NvmeIdentify *)&req->cmd; 4999 5000 trace_pci_nvme_identify(nvme_cid(req), c->cns, le16_to_cpu(c->ctrlid), 5001 c->csi); 5002 5003 switch (c->cns) { 5004 case NVME_ID_CNS_NS: 5005 return nvme_identify_ns(n, req, true); 5006 case NVME_ID_CNS_NS_PRESENT: 5007 return nvme_identify_ns(n, req, false); 5008 case NVME_ID_CNS_NS_ATTACHED_CTRL_LIST: 5009 return nvme_identify_ctrl_list(n, req, true); 5010 case NVME_ID_CNS_CTRL_LIST: 5011 return nvme_identify_ctrl_list(n, req, false); 5012 case NVME_ID_CNS_CS_NS: 5013 return nvme_identify_ns_csi(n, req, true); 5014 case NVME_ID_CNS_CS_NS_PRESENT: 5015 return nvme_identify_ns_csi(n, req, false); 5016 case NVME_ID_CNS_CTRL: 5017 return nvme_identify_ctrl(n, req); 5018 case NVME_ID_CNS_CS_CTRL: 5019 return nvme_identify_ctrl_csi(n, req); 5020 case NVME_ID_CNS_NS_ACTIVE_LIST: 5021 return nvme_identify_nslist(n, req, true); 5022 case NVME_ID_CNS_NS_PRESENT_LIST: 5023 return nvme_identify_nslist(n, req, false); 5024 case NVME_ID_CNS_CS_NS_ACTIVE_LIST: 5025 return nvme_identify_nslist_csi(n, req, true); 5026 case NVME_ID_CNS_CS_NS_PRESENT_LIST: 5027 return nvme_identify_nslist_csi(n, req, false); 5028 case NVME_ID_CNS_NS_DESCR_LIST: 5029 return nvme_identify_ns_descr_list(n, req); 5030 case NVME_ID_CNS_IO_COMMAND_SET: 5031 return nvme_identify_cmd_set(n, req); 5032 default: 5033 trace_pci_nvme_err_invalid_identify_cns(le32_to_cpu(c->cns)); 5034 return NVME_INVALID_FIELD | NVME_DNR; 5035 } 5036 } 5037 5038 static uint16_t nvme_abort(NvmeCtrl *n, NvmeRequest *req) 5039 { 5040 uint16_t sqid = le32_to_cpu(req->cmd.cdw10) & 0xffff; 5041 5042 req->cqe.result = 1; 5043 if (nvme_check_sqid(n, sqid)) { 5044 return NVME_INVALID_FIELD | NVME_DNR; 5045 } 5046 5047 return NVME_SUCCESS; 5048 } 5049 5050 static inline void nvme_set_timestamp(NvmeCtrl *n, uint64_t ts) 5051 { 5052 trace_pci_nvme_setfeat_timestamp(ts); 5053 5054 n->host_timestamp = le64_to_cpu(ts); 5055 n->timestamp_set_qemu_clock_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL); 5056 } 5057 5058 static inline uint64_t nvme_get_timestamp(const NvmeCtrl *n) 5059 { 5060 uint64_t current_time = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL); 5061 uint64_t elapsed_time = current_time - n->timestamp_set_qemu_clock_ms; 5062 5063 union nvme_timestamp { 5064 struct { 5065 uint64_t timestamp:48; 5066 uint64_t sync:1; 5067 uint64_t origin:3; 5068 uint64_t rsvd1:12; 5069 }; 5070 uint64_t all; 5071 }; 5072 5073 union nvme_timestamp ts; 5074 ts.all = 0; 5075 ts.timestamp = n->host_timestamp + elapsed_time; 5076 5077 /* If the host timestamp is non-zero, set the timestamp origin */ 5078 ts.origin = n->host_timestamp ? 0x01 : 0x00; 5079 5080 trace_pci_nvme_getfeat_timestamp(ts.all); 5081 5082 return cpu_to_le64(ts.all); 5083 } 5084 5085 static uint16_t nvme_get_feature_timestamp(NvmeCtrl *n, NvmeRequest *req) 5086 { 5087 uint64_t timestamp = nvme_get_timestamp(n); 5088 5089 return nvme_c2h(n, (uint8_t *)×tamp, sizeof(timestamp), req); 5090 } 5091 5092 static uint16_t nvme_get_feature(NvmeCtrl *n, NvmeRequest *req) 5093 { 5094 NvmeCmd *cmd = &req->cmd; 5095 uint32_t dw10 = le32_to_cpu(cmd->cdw10); 5096 uint32_t dw11 = le32_to_cpu(cmd->cdw11); 5097 uint32_t nsid = le32_to_cpu(cmd->nsid); 5098 uint32_t result; 5099 uint8_t fid = NVME_GETSETFEAT_FID(dw10); 5100 NvmeGetFeatureSelect sel = NVME_GETFEAT_SELECT(dw10); 5101 uint16_t iv; 5102 NvmeNamespace *ns; 5103 int i; 5104 5105 static const uint32_t nvme_feature_default[NVME_FID_MAX] = { 5106 [NVME_ARBITRATION] = NVME_ARB_AB_NOLIMIT, 5107 }; 5108 5109 trace_pci_nvme_getfeat(nvme_cid(req), nsid, fid, sel, dw11); 5110 5111 if (!nvme_feature_support[fid]) { 5112 return NVME_INVALID_FIELD | NVME_DNR; 5113 } 5114 5115 if (nvme_feature_cap[fid] & NVME_FEAT_CAP_NS) { 5116 if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) { 5117 /* 5118 * The Reservation Notification Mask and Reservation Persistence 5119 * features require a status code of Invalid Field in Command when 5120 * NSID is FFFFFFFFh. Since the device does not support those 5121 * features we can always return Invalid Namespace or Format as we 5122 * should do for all other features. 5123 */ 5124 return NVME_INVALID_NSID | NVME_DNR; 5125 } 5126 5127 if (!nvme_ns(n, nsid)) { 5128 return NVME_INVALID_FIELD | NVME_DNR; 5129 } 5130 } 5131 5132 switch (sel) { 5133 case NVME_GETFEAT_SELECT_CURRENT: 5134 break; 5135 case NVME_GETFEAT_SELECT_SAVED: 5136 /* no features are saveable by the controller; fallthrough */ 5137 case NVME_GETFEAT_SELECT_DEFAULT: 5138 goto defaults; 5139 case NVME_GETFEAT_SELECT_CAP: 5140 result = nvme_feature_cap[fid]; 5141 goto out; 5142 } 5143 5144 switch (fid) { 5145 case NVME_TEMPERATURE_THRESHOLD: 5146 result = 0; 5147 5148 /* 5149 * The controller only implements the Composite Temperature sensor, so 5150 * return 0 for all other sensors. 5151 */ 5152 if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) { 5153 goto out; 5154 } 5155 5156 switch (NVME_TEMP_THSEL(dw11)) { 5157 case NVME_TEMP_THSEL_OVER: 5158 result = n->features.temp_thresh_hi; 5159 goto out; 5160 case NVME_TEMP_THSEL_UNDER: 5161 result = n->features.temp_thresh_low; 5162 goto out; 5163 } 5164 5165 return NVME_INVALID_FIELD | NVME_DNR; 5166 case NVME_ERROR_RECOVERY: 5167 if (!nvme_nsid_valid(n, nsid)) { 5168 return NVME_INVALID_NSID | NVME_DNR; 5169 } 5170 5171 ns = nvme_ns(n, nsid); 5172 if (unlikely(!ns)) { 5173 return NVME_INVALID_FIELD | NVME_DNR; 5174 } 5175 5176 result = ns->features.err_rec; 5177 goto out; 5178 case NVME_VOLATILE_WRITE_CACHE: 5179 result = 0; 5180 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { 5181 ns = nvme_ns(n, i); 5182 if (!ns) { 5183 continue; 5184 } 5185 5186 result = blk_enable_write_cache(ns->blkconf.blk); 5187 if (result) { 5188 break; 5189 } 5190 } 5191 trace_pci_nvme_getfeat_vwcache(result ? "enabled" : "disabled"); 5192 goto out; 5193 case NVME_ASYNCHRONOUS_EVENT_CONF: 5194 result = n->features.async_config; 5195 goto out; 5196 case NVME_TIMESTAMP: 5197 return nvme_get_feature_timestamp(n, req); 5198 case NVME_HOST_BEHAVIOR_SUPPORT: 5199 return nvme_c2h(n, (uint8_t *)&n->features.hbs, 5200 sizeof(n->features.hbs), req); 5201 default: 5202 break; 5203 } 5204 5205 defaults: 5206 switch (fid) { 5207 case NVME_TEMPERATURE_THRESHOLD: 5208 result = 0; 5209 5210 if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) { 5211 break; 5212 } 5213 5214 if (NVME_TEMP_THSEL(dw11) == NVME_TEMP_THSEL_OVER) { 5215 result = NVME_TEMPERATURE_WARNING; 5216 } 5217 5218 break; 5219 case NVME_NUMBER_OF_QUEUES: 5220 result = (n->params.max_ioqpairs - 1) | 5221 ((n->params.max_ioqpairs - 1) << 16); 5222 trace_pci_nvme_getfeat_numq(result); 5223 break; 5224 case NVME_INTERRUPT_VECTOR_CONF: 5225 iv = dw11 & 0xffff; 5226 if (iv >= n->params.max_ioqpairs + 1) { 5227 return NVME_INVALID_FIELD | NVME_DNR; 5228 } 5229 5230 result = iv; 5231 if (iv == n->admin_cq.vector) { 5232 result |= NVME_INTVC_NOCOALESCING; 5233 } 5234 break; 5235 default: 5236 result = nvme_feature_default[fid]; 5237 break; 5238 } 5239 5240 out: 5241 req->cqe.result = cpu_to_le32(result); 5242 return NVME_SUCCESS; 5243 } 5244 5245 static uint16_t nvme_set_feature_timestamp(NvmeCtrl *n, NvmeRequest *req) 5246 { 5247 uint16_t ret; 5248 uint64_t timestamp; 5249 5250 ret = nvme_h2c(n, (uint8_t *)×tamp, sizeof(timestamp), req); 5251 if (ret) { 5252 return ret; 5253 } 5254 5255 nvme_set_timestamp(n, timestamp); 5256 5257 return NVME_SUCCESS; 5258 } 5259 5260 static uint16_t nvme_set_feature(NvmeCtrl *n, NvmeRequest *req) 5261 { 5262 NvmeNamespace *ns = NULL; 5263 5264 NvmeCmd *cmd = &req->cmd; 5265 uint32_t dw10 = le32_to_cpu(cmd->cdw10); 5266 uint32_t dw11 = le32_to_cpu(cmd->cdw11); 5267 uint32_t nsid = le32_to_cpu(cmd->nsid); 5268 uint8_t fid = NVME_GETSETFEAT_FID(dw10); 5269 uint8_t save = NVME_SETFEAT_SAVE(dw10); 5270 uint16_t status; 5271 int i; 5272 5273 trace_pci_nvme_setfeat(nvme_cid(req), nsid, fid, save, dw11); 5274 5275 if (save && !(nvme_feature_cap[fid] & NVME_FEAT_CAP_SAVE)) { 5276 return NVME_FID_NOT_SAVEABLE | NVME_DNR; 5277 } 5278 5279 if (!nvme_feature_support[fid]) { 5280 return NVME_INVALID_FIELD | NVME_DNR; 5281 } 5282 5283 if (nvme_feature_cap[fid] & NVME_FEAT_CAP_NS) { 5284 if (nsid != NVME_NSID_BROADCAST) { 5285 if (!nvme_nsid_valid(n, nsid)) { 5286 return NVME_INVALID_NSID | NVME_DNR; 5287 } 5288 5289 ns = nvme_ns(n, nsid); 5290 if (unlikely(!ns)) { 5291 return NVME_INVALID_FIELD | NVME_DNR; 5292 } 5293 } 5294 } else if (nsid && nsid != NVME_NSID_BROADCAST) { 5295 if (!nvme_nsid_valid(n, nsid)) { 5296 return NVME_INVALID_NSID | NVME_DNR; 5297 } 5298 5299 return NVME_FEAT_NOT_NS_SPEC | NVME_DNR; 5300 } 5301 5302 if (!(nvme_feature_cap[fid] & NVME_FEAT_CAP_CHANGE)) { 5303 return NVME_FEAT_NOT_CHANGEABLE | NVME_DNR; 5304 } 5305 5306 switch (fid) { 5307 case NVME_TEMPERATURE_THRESHOLD: 5308 if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) { 5309 break; 5310 } 5311 5312 switch (NVME_TEMP_THSEL(dw11)) { 5313 case NVME_TEMP_THSEL_OVER: 5314 n->features.temp_thresh_hi = NVME_TEMP_TMPTH(dw11); 5315 break; 5316 case NVME_TEMP_THSEL_UNDER: 5317 n->features.temp_thresh_low = NVME_TEMP_TMPTH(dw11); 5318 break; 5319 default: 5320 return NVME_INVALID_FIELD | NVME_DNR; 5321 } 5322 5323 if ((n->temperature >= n->features.temp_thresh_hi) || 5324 (n->temperature <= n->features.temp_thresh_low)) { 5325 nvme_smart_event(n, NVME_SMART_TEMPERATURE); 5326 } 5327 5328 break; 5329 case NVME_ERROR_RECOVERY: 5330 if (nsid == NVME_NSID_BROADCAST) { 5331 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { 5332 ns = nvme_ns(n, i); 5333 5334 if (!ns) { 5335 continue; 5336 } 5337 5338 if (NVME_ID_NS_NSFEAT_DULBE(ns->id_ns.nsfeat)) { 5339 ns->features.err_rec = dw11; 5340 } 5341 } 5342 5343 break; 5344 } 5345 5346 assert(ns); 5347 if (NVME_ID_NS_NSFEAT_DULBE(ns->id_ns.nsfeat)) { 5348 ns->features.err_rec = dw11; 5349 } 5350 break; 5351 case NVME_VOLATILE_WRITE_CACHE: 5352 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { 5353 ns = nvme_ns(n, i); 5354 if (!ns) { 5355 continue; 5356 } 5357 5358 if (!(dw11 & 0x1) && blk_enable_write_cache(ns->blkconf.blk)) { 5359 blk_flush(ns->blkconf.blk); 5360 } 5361 5362 blk_set_enable_write_cache(ns->blkconf.blk, dw11 & 1); 5363 } 5364 5365 break; 5366 5367 case NVME_NUMBER_OF_QUEUES: 5368 if (n->qs_created) { 5369 return NVME_CMD_SEQ_ERROR | NVME_DNR; 5370 } 5371 5372 /* 5373 * NVMe v1.3, Section 5.21.1.7: FFFFh is not an allowed value for NCQR 5374 * and NSQR. 5375 */ 5376 if ((dw11 & 0xffff) == 0xffff || ((dw11 >> 16) & 0xffff) == 0xffff) { 5377 return NVME_INVALID_FIELD | NVME_DNR; 5378 } 5379 5380 trace_pci_nvme_setfeat_numq((dw11 & 0xffff) + 1, 5381 ((dw11 >> 16) & 0xffff) + 1, 5382 n->params.max_ioqpairs, 5383 n->params.max_ioqpairs); 5384 req->cqe.result = cpu_to_le32((n->params.max_ioqpairs - 1) | 5385 ((n->params.max_ioqpairs - 1) << 16)); 5386 break; 5387 case NVME_ASYNCHRONOUS_EVENT_CONF: 5388 n->features.async_config = dw11; 5389 break; 5390 case NVME_TIMESTAMP: 5391 return nvme_set_feature_timestamp(n, req); 5392 case NVME_HOST_BEHAVIOR_SUPPORT: 5393 status = nvme_h2c(n, (uint8_t *)&n->features.hbs, 5394 sizeof(n->features.hbs), req); 5395 if (status) { 5396 return status; 5397 } 5398 5399 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { 5400 ns = nvme_ns(n, i); 5401 5402 if (!ns) { 5403 continue; 5404 } 5405 5406 ns->id_ns.nlbaf = ns->nlbaf - 1; 5407 if (!n->features.hbs.lbafee) { 5408 ns->id_ns.nlbaf = MIN(ns->id_ns.nlbaf, 15); 5409 } 5410 } 5411 5412 return status; 5413 case NVME_COMMAND_SET_PROFILE: 5414 if (dw11 & 0x1ff) { 5415 trace_pci_nvme_err_invalid_iocsci(dw11 & 0x1ff); 5416 return NVME_CMD_SET_CMB_REJECTED | NVME_DNR; 5417 } 5418 break; 5419 default: 5420 return NVME_FEAT_NOT_CHANGEABLE | NVME_DNR; 5421 } 5422 return NVME_SUCCESS; 5423 } 5424 5425 static uint16_t nvme_aer(NvmeCtrl *n, NvmeRequest *req) 5426 { 5427 trace_pci_nvme_aer(nvme_cid(req)); 5428 5429 if (n->outstanding_aers > n->params.aerl) { 5430 trace_pci_nvme_aer_aerl_exceeded(); 5431 return NVME_AER_LIMIT_EXCEEDED; 5432 } 5433 5434 n->aer_reqs[n->outstanding_aers] = req; 5435 n->outstanding_aers++; 5436 5437 if (!QTAILQ_EMPTY(&n->aer_queue)) { 5438 nvme_process_aers(n); 5439 } 5440 5441 return NVME_NO_COMPLETE; 5442 } 5443 5444 static void nvme_update_dmrsl(NvmeCtrl *n) 5445 { 5446 int nsid; 5447 5448 for (nsid = 1; nsid <= NVME_MAX_NAMESPACES; nsid++) { 5449 NvmeNamespace *ns = nvme_ns(n, nsid); 5450 if (!ns) { 5451 continue; 5452 } 5453 5454 n->dmrsl = MIN_NON_ZERO(n->dmrsl, 5455 BDRV_REQUEST_MAX_BYTES / nvme_l2b(ns, 1)); 5456 } 5457 } 5458 5459 static void nvme_select_iocs_ns(NvmeCtrl *n, NvmeNamespace *ns) 5460 { 5461 uint32_t cc = ldl_le_p(&n->bar.cc); 5462 5463 ns->iocs = nvme_cse_iocs_none; 5464 switch (ns->csi) { 5465 case NVME_CSI_NVM: 5466 if (NVME_CC_CSS(cc) != NVME_CC_CSS_ADMIN_ONLY) { 5467 ns->iocs = nvme_cse_iocs_nvm; 5468 } 5469 break; 5470 case NVME_CSI_ZONED: 5471 if (NVME_CC_CSS(cc) == NVME_CC_CSS_CSI) { 5472 ns->iocs = nvme_cse_iocs_zoned; 5473 } else if (NVME_CC_CSS(cc) == NVME_CC_CSS_NVM) { 5474 ns->iocs = nvme_cse_iocs_nvm; 5475 } 5476 break; 5477 } 5478 } 5479 5480 static uint16_t nvme_ns_attachment(NvmeCtrl *n, NvmeRequest *req) 5481 { 5482 NvmeNamespace *ns; 5483 NvmeCtrl *ctrl; 5484 uint16_t list[NVME_CONTROLLER_LIST_SIZE] = {}; 5485 uint32_t nsid = le32_to_cpu(req->cmd.nsid); 5486 uint32_t dw10 = le32_to_cpu(req->cmd.cdw10); 5487 uint8_t sel = dw10 & 0xf; 5488 uint16_t *nr_ids = &list[0]; 5489 uint16_t *ids = &list[1]; 5490 uint16_t ret; 5491 int i; 5492 5493 trace_pci_nvme_ns_attachment(nvme_cid(req), dw10 & 0xf); 5494 5495 if (!nvme_nsid_valid(n, nsid)) { 5496 return NVME_INVALID_NSID | NVME_DNR; 5497 } 5498 5499 ns = nvme_subsys_ns(n->subsys, nsid); 5500 if (!ns) { 5501 return NVME_INVALID_FIELD | NVME_DNR; 5502 } 5503 5504 ret = nvme_h2c(n, (uint8_t *)list, 4096, req); 5505 if (ret) { 5506 return ret; 5507 } 5508 5509 if (!*nr_ids) { 5510 return NVME_NS_CTRL_LIST_INVALID | NVME_DNR; 5511 } 5512 5513 *nr_ids = MIN(*nr_ids, NVME_CONTROLLER_LIST_SIZE - 1); 5514 for (i = 0; i < *nr_ids; i++) { 5515 ctrl = nvme_subsys_ctrl(n->subsys, ids[i]); 5516 if (!ctrl) { 5517 return NVME_NS_CTRL_LIST_INVALID | NVME_DNR; 5518 } 5519 5520 switch (sel) { 5521 case NVME_NS_ATTACHMENT_ATTACH: 5522 if (nvme_ns(ctrl, nsid)) { 5523 return NVME_NS_ALREADY_ATTACHED | NVME_DNR; 5524 } 5525 5526 if (ns->attached && !ns->params.shared) { 5527 return NVME_NS_PRIVATE | NVME_DNR; 5528 } 5529 5530 nvme_attach_ns(ctrl, ns); 5531 nvme_select_iocs_ns(ctrl, ns); 5532 5533 break; 5534 5535 case NVME_NS_ATTACHMENT_DETACH: 5536 if (!nvme_ns(ctrl, nsid)) { 5537 return NVME_NS_NOT_ATTACHED | NVME_DNR; 5538 } 5539 5540 ctrl->namespaces[nsid] = NULL; 5541 ns->attached--; 5542 5543 nvme_update_dmrsl(ctrl); 5544 5545 break; 5546 5547 default: 5548 return NVME_INVALID_FIELD | NVME_DNR; 5549 } 5550 5551 /* 5552 * Add namespace id to the changed namespace id list for event clearing 5553 * via Get Log Page command. 5554 */ 5555 if (!test_and_set_bit(nsid, ctrl->changed_nsids)) { 5556 nvme_enqueue_event(ctrl, NVME_AER_TYPE_NOTICE, 5557 NVME_AER_INFO_NOTICE_NS_ATTR_CHANGED, 5558 NVME_LOG_CHANGED_NSLIST); 5559 } 5560 } 5561 5562 return NVME_SUCCESS; 5563 } 5564 5565 typedef struct NvmeFormatAIOCB { 5566 BlockAIOCB common; 5567 BlockAIOCB *aiocb; 5568 QEMUBH *bh; 5569 NvmeRequest *req; 5570 int ret; 5571 5572 NvmeNamespace *ns; 5573 uint32_t nsid; 5574 bool broadcast; 5575 int64_t offset; 5576 5577 uint8_t lbaf; 5578 uint8_t mset; 5579 uint8_t pi; 5580 uint8_t pil; 5581 } NvmeFormatAIOCB; 5582 5583 static void nvme_format_bh(void *opaque); 5584 5585 static void nvme_format_cancel(BlockAIOCB *aiocb) 5586 { 5587 NvmeFormatAIOCB *iocb = container_of(aiocb, NvmeFormatAIOCB, common); 5588 5589 if (iocb->aiocb) { 5590 blk_aio_cancel_async(iocb->aiocb); 5591 } 5592 } 5593 5594 static const AIOCBInfo nvme_format_aiocb_info = { 5595 .aiocb_size = sizeof(NvmeFormatAIOCB), 5596 .cancel_async = nvme_format_cancel, 5597 .get_aio_context = nvme_get_aio_context, 5598 }; 5599 5600 static void nvme_format_set(NvmeNamespace *ns, uint8_t lbaf, uint8_t mset, 5601 uint8_t pi, uint8_t pil) 5602 { 5603 uint8_t lbafl = lbaf & 0xf; 5604 uint8_t lbafu = lbaf >> 4; 5605 5606 trace_pci_nvme_format_set(ns->params.nsid, lbaf, mset, pi, pil); 5607 5608 ns->id_ns.dps = (pil << 3) | pi; 5609 ns->id_ns.flbas = (lbafu << 5) | (mset << 4) | lbafl; 5610 5611 nvme_ns_init_format(ns); 5612 } 5613 5614 static void nvme_format_ns_cb(void *opaque, int ret) 5615 { 5616 NvmeFormatAIOCB *iocb = opaque; 5617 NvmeNamespace *ns = iocb->ns; 5618 int bytes; 5619 5620 if (ret < 0) { 5621 iocb->ret = ret; 5622 goto done; 5623 } 5624 5625 assert(ns); 5626 5627 if (iocb->offset < ns->size) { 5628 bytes = MIN(BDRV_REQUEST_MAX_BYTES, ns->size - iocb->offset); 5629 5630 iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk, iocb->offset, 5631 bytes, BDRV_REQ_MAY_UNMAP, 5632 nvme_format_ns_cb, iocb); 5633 5634 iocb->offset += bytes; 5635 return; 5636 } 5637 5638 nvme_format_set(ns, iocb->lbaf, iocb->mset, iocb->pi, iocb->pil); 5639 ns->status = 0x0; 5640 iocb->ns = NULL; 5641 iocb->offset = 0; 5642 5643 done: 5644 iocb->aiocb = NULL; 5645 qemu_bh_schedule(iocb->bh); 5646 } 5647 5648 static uint16_t nvme_format_check(NvmeNamespace *ns, uint8_t lbaf, uint8_t pi) 5649 { 5650 if (ns->params.zoned) { 5651 return NVME_INVALID_FORMAT | NVME_DNR; 5652 } 5653 5654 if (lbaf > ns->id_ns.nlbaf) { 5655 return NVME_INVALID_FORMAT | NVME_DNR; 5656 } 5657 5658 if (pi && (ns->id_ns.lbaf[lbaf].ms < nvme_pi_tuple_size(ns))) { 5659 return NVME_INVALID_FORMAT | NVME_DNR; 5660 } 5661 5662 if (pi && pi > NVME_ID_NS_DPS_TYPE_3) { 5663 return NVME_INVALID_FIELD | NVME_DNR; 5664 } 5665 5666 return NVME_SUCCESS; 5667 } 5668 5669 static void nvme_format_bh(void *opaque) 5670 { 5671 NvmeFormatAIOCB *iocb = opaque; 5672 NvmeRequest *req = iocb->req; 5673 NvmeCtrl *n = nvme_ctrl(req); 5674 uint32_t dw10 = le32_to_cpu(req->cmd.cdw10); 5675 uint8_t lbaf = dw10 & 0xf; 5676 uint8_t pi = (dw10 >> 5) & 0x7; 5677 uint16_t status; 5678 int i; 5679 5680 if (iocb->ret < 0) { 5681 goto done; 5682 } 5683 5684 if (iocb->broadcast) { 5685 for (i = iocb->nsid + 1; i <= NVME_MAX_NAMESPACES; i++) { 5686 iocb->ns = nvme_ns(n, i); 5687 if (iocb->ns) { 5688 iocb->nsid = i; 5689 break; 5690 } 5691 } 5692 } 5693 5694 if (!iocb->ns) { 5695 goto done; 5696 } 5697 5698 status = nvme_format_check(iocb->ns, lbaf, pi); 5699 if (status) { 5700 req->status = status; 5701 goto done; 5702 } 5703 5704 iocb->ns->status = NVME_FORMAT_IN_PROGRESS; 5705 nvme_format_ns_cb(iocb, 0); 5706 return; 5707 5708 done: 5709 qemu_bh_delete(iocb->bh); 5710 iocb->bh = NULL; 5711 5712 iocb->common.cb(iocb->common.opaque, iocb->ret); 5713 5714 qemu_aio_unref(iocb); 5715 } 5716 5717 static uint16_t nvme_format(NvmeCtrl *n, NvmeRequest *req) 5718 { 5719 NvmeFormatAIOCB *iocb; 5720 uint32_t nsid = le32_to_cpu(req->cmd.nsid); 5721 uint32_t dw10 = le32_to_cpu(req->cmd.cdw10); 5722 uint8_t lbaf = dw10 & 0xf; 5723 uint8_t mset = (dw10 >> 4) & 0x1; 5724 uint8_t pi = (dw10 >> 5) & 0x7; 5725 uint8_t pil = (dw10 >> 8) & 0x1; 5726 uint8_t lbafu = (dw10 >> 12) & 0x3; 5727 uint16_t status; 5728 5729 iocb = qemu_aio_get(&nvme_format_aiocb_info, NULL, nvme_misc_cb, req); 5730 5731 iocb->req = req; 5732 iocb->bh = qemu_bh_new(nvme_format_bh, iocb); 5733 iocb->ret = 0; 5734 iocb->ns = NULL; 5735 iocb->nsid = 0; 5736 iocb->lbaf = lbaf; 5737 iocb->mset = mset; 5738 iocb->pi = pi; 5739 iocb->pil = pil; 5740 iocb->broadcast = (nsid == NVME_NSID_BROADCAST); 5741 iocb->offset = 0; 5742 5743 if (n->features.hbs.lbafee) { 5744 iocb->lbaf |= lbafu << 4; 5745 } 5746 5747 if (!iocb->broadcast) { 5748 if (!nvme_nsid_valid(n, nsid)) { 5749 status = NVME_INVALID_NSID | NVME_DNR; 5750 goto out; 5751 } 5752 5753 iocb->ns = nvme_ns(n, nsid); 5754 if (!iocb->ns) { 5755 status = NVME_INVALID_FIELD | NVME_DNR; 5756 goto out; 5757 } 5758 } 5759 5760 req->aiocb = &iocb->common; 5761 qemu_bh_schedule(iocb->bh); 5762 5763 return NVME_NO_COMPLETE; 5764 5765 out: 5766 qemu_bh_delete(iocb->bh); 5767 iocb->bh = NULL; 5768 qemu_aio_unref(iocb); 5769 return status; 5770 } 5771 5772 static uint16_t nvme_admin_cmd(NvmeCtrl *n, NvmeRequest *req) 5773 { 5774 trace_pci_nvme_admin_cmd(nvme_cid(req), nvme_sqid(req), req->cmd.opcode, 5775 nvme_adm_opc_str(req->cmd.opcode)); 5776 5777 if (!(nvme_cse_acs[req->cmd.opcode] & NVME_CMD_EFF_CSUPP)) { 5778 trace_pci_nvme_err_invalid_admin_opc(req->cmd.opcode); 5779 return NVME_INVALID_OPCODE | NVME_DNR; 5780 } 5781 5782 /* SGLs shall not be used for Admin commands in NVMe over PCIe */ 5783 if (NVME_CMD_FLAGS_PSDT(req->cmd.flags) != NVME_PSDT_PRP) { 5784 return NVME_INVALID_FIELD | NVME_DNR; 5785 } 5786 5787 if (NVME_CMD_FLAGS_FUSE(req->cmd.flags)) { 5788 return NVME_INVALID_FIELD; 5789 } 5790 5791 switch (req->cmd.opcode) { 5792 case NVME_ADM_CMD_DELETE_SQ: 5793 return nvme_del_sq(n, req); 5794 case NVME_ADM_CMD_CREATE_SQ: 5795 return nvme_create_sq(n, req); 5796 case NVME_ADM_CMD_GET_LOG_PAGE: 5797 return nvme_get_log(n, req); 5798 case NVME_ADM_CMD_DELETE_CQ: 5799 return nvme_del_cq(n, req); 5800 case NVME_ADM_CMD_CREATE_CQ: 5801 return nvme_create_cq(n, req); 5802 case NVME_ADM_CMD_IDENTIFY: 5803 return nvme_identify(n, req); 5804 case NVME_ADM_CMD_ABORT: 5805 return nvme_abort(n, req); 5806 case NVME_ADM_CMD_SET_FEATURES: 5807 return nvme_set_feature(n, req); 5808 case NVME_ADM_CMD_GET_FEATURES: 5809 return nvme_get_feature(n, req); 5810 case NVME_ADM_CMD_ASYNC_EV_REQ: 5811 return nvme_aer(n, req); 5812 case NVME_ADM_CMD_NS_ATTACHMENT: 5813 return nvme_ns_attachment(n, req); 5814 case NVME_ADM_CMD_FORMAT_NVM: 5815 return nvme_format(n, req); 5816 default: 5817 assert(false); 5818 } 5819 5820 return NVME_INVALID_OPCODE | NVME_DNR; 5821 } 5822 5823 static void nvme_process_sq(void *opaque) 5824 { 5825 NvmeSQueue *sq = opaque; 5826 NvmeCtrl *n = sq->ctrl; 5827 NvmeCQueue *cq = n->cq[sq->cqid]; 5828 5829 uint16_t status; 5830 hwaddr addr; 5831 NvmeCmd cmd; 5832 NvmeRequest *req; 5833 5834 while (!(nvme_sq_empty(sq) || QTAILQ_EMPTY(&sq->req_list))) { 5835 addr = sq->dma_addr + sq->head * n->sqe_size; 5836 if (nvme_addr_read(n, addr, (void *)&cmd, sizeof(cmd))) { 5837 trace_pci_nvme_err_addr_read(addr); 5838 trace_pci_nvme_err_cfs(); 5839 stl_le_p(&n->bar.csts, NVME_CSTS_FAILED); 5840 break; 5841 } 5842 nvme_inc_sq_head(sq); 5843 5844 req = QTAILQ_FIRST(&sq->req_list); 5845 QTAILQ_REMOVE(&sq->req_list, req, entry); 5846 QTAILQ_INSERT_TAIL(&sq->out_req_list, req, entry); 5847 nvme_req_clear(req); 5848 req->cqe.cid = cmd.cid; 5849 memcpy(&req->cmd, &cmd, sizeof(NvmeCmd)); 5850 5851 status = sq->sqid ? nvme_io_cmd(n, req) : 5852 nvme_admin_cmd(n, req); 5853 if (status != NVME_NO_COMPLETE) { 5854 req->status = status; 5855 nvme_enqueue_req_completion(cq, req); 5856 } 5857 } 5858 } 5859 5860 static void nvme_ctrl_reset(NvmeCtrl *n) 5861 { 5862 NvmeNamespace *ns; 5863 int i; 5864 5865 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { 5866 ns = nvme_ns(n, i); 5867 if (!ns) { 5868 continue; 5869 } 5870 5871 nvme_ns_drain(ns); 5872 } 5873 5874 for (i = 0; i < n->params.max_ioqpairs + 1; i++) { 5875 if (n->sq[i] != NULL) { 5876 nvme_free_sq(n->sq[i], n); 5877 } 5878 } 5879 for (i = 0; i < n->params.max_ioqpairs + 1; i++) { 5880 if (n->cq[i] != NULL) { 5881 nvme_free_cq(n->cq[i], n); 5882 } 5883 } 5884 5885 while (!QTAILQ_EMPTY(&n->aer_queue)) { 5886 NvmeAsyncEvent *event = QTAILQ_FIRST(&n->aer_queue); 5887 QTAILQ_REMOVE(&n->aer_queue, event, entry); 5888 g_free(event); 5889 } 5890 5891 n->aer_queued = 0; 5892 n->outstanding_aers = 0; 5893 n->qs_created = false; 5894 } 5895 5896 static void nvme_ctrl_shutdown(NvmeCtrl *n) 5897 { 5898 NvmeNamespace *ns; 5899 int i; 5900 5901 if (n->pmr.dev) { 5902 memory_region_msync(&n->pmr.dev->mr, 0, n->pmr.dev->size); 5903 } 5904 5905 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { 5906 ns = nvme_ns(n, i); 5907 if (!ns) { 5908 continue; 5909 } 5910 5911 nvme_ns_shutdown(ns); 5912 } 5913 } 5914 5915 static void nvme_select_iocs(NvmeCtrl *n) 5916 { 5917 NvmeNamespace *ns; 5918 int i; 5919 5920 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { 5921 ns = nvme_ns(n, i); 5922 if (!ns) { 5923 continue; 5924 } 5925 5926 nvme_select_iocs_ns(n, ns); 5927 } 5928 } 5929 5930 static int nvme_start_ctrl(NvmeCtrl *n) 5931 { 5932 uint64_t cap = ldq_le_p(&n->bar.cap); 5933 uint32_t cc = ldl_le_p(&n->bar.cc); 5934 uint32_t aqa = ldl_le_p(&n->bar.aqa); 5935 uint64_t asq = ldq_le_p(&n->bar.asq); 5936 uint64_t acq = ldq_le_p(&n->bar.acq); 5937 uint32_t page_bits = NVME_CC_MPS(cc) + 12; 5938 uint32_t page_size = 1 << page_bits; 5939 5940 if (unlikely(n->cq[0])) { 5941 trace_pci_nvme_err_startfail_cq(); 5942 return -1; 5943 } 5944 if (unlikely(n->sq[0])) { 5945 trace_pci_nvme_err_startfail_sq(); 5946 return -1; 5947 } 5948 if (unlikely(asq & (page_size - 1))) { 5949 trace_pci_nvme_err_startfail_asq_misaligned(asq); 5950 return -1; 5951 } 5952 if (unlikely(acq & (page_size - 1))) { 5953 trace_pci_nvme_err_startfail_acq_misaligned(acq); 5954 return -1; 5955 } 5956 if (unlikely(!(NVME_CAP_CSS(cap) & (1 << NVME_CC_CSS(cc))))) { 5957 trace_pci_nvme_err_startfail_css(NVME_CC_CSS(cc)); 5958 return -1; 5959 } 5960 if (unlikely(NVME_CC_MPS(cc) < NVME_CAP_MPSMIN(cap))) { 5961 trace_pci_nvme_err_startfail_page_too_small( 5962 NVME_CC_MPS(cc), 5963 NVME_CAP_MPSMIN(cap)); 5964 return -1; 5965 } 5966 if (unlikely(NVME_CC_MPS(cc) > 5967 NVME_CAP_MPSMAX(cap))) { 5968 trace_pci_nvme_err_startfail_page_too_large( 5969 NVME_CC_MPS(cc), 5970 NVME_CAP_MPSMAX(cap)); 5971 return -1; 5972 } 5973 if (unlikely(NVME_CC_IOCQES(cc) < 5974 NVME_CTRL_CQES_MIN(n->id_ctrl.cqes))) { 5975 trace_pci_nvme_err_startfail_cqent_too_small( 5976 NVME_CC_IOCQES(cc), 5977 NVME_CTRL_CQES_MIN(cap)); 5978 return -1; 5979 } 5980 if (unlikely(NVME_CC_IOCQES(cc) > 5981 NVME_CTRL_CQES_MAX(n->id_ctrl.cqes))) { 5982 trace_pci_nvme_err_startfail_cqent_too_large( 5983 NVME_CC_IOCQES(cc), 5984 NVME_CTRL_CQES_MAX(cap)); 5985 return -1; 5986 } 5987 if (unlikely(NVME_CC_IOSQES(cc) < 5988 NVME_CTRL_SQES_MIN(n->id_ctrl.sqes))) { 5989 trace_pci_nvme_err_startfail_sqent_too_small( 5990 NVME_CC_IOSQES(cc), 5991 NVME_CTRL_SQES_MIN(cap)); 5992 return -1; 5993 } 5994 if (unlikely(NVME_CC_IOSQES(cc) > 5995 NVME_CTRL_SQES_MAX(n->id_ctrl.sqes))) { 5996 trace_pci_nvme_err_startfail_sqent_too_large( 5997 NVME_CC_IOSQES(cc), 5998 NVME_CTRL_SQES_MAX(cap)); 5999 return -1; 6000 } 6001 if (unlikely(!NVME_AQA_ASQS(aqa))) { 6002 trace_pci_nvme_err_startfail_asqent_sz_zero(); 6003 return -1; 6004 } 6005 if (unlikely(!NVME_AQA_ACQS(aqa))) { 6006 trace_pci_nvme_err_startfail_acqent_sz_zero(); 6007 return -1; 6008 } 6009 6010 n->page_bits = page_bits; 6011 n->page_size = page_size; 6012 n->max_prp_ents = n->page_size / sizeof(uint64_t); 6013 n->cqe_size = 1 << NVME_CC_IOCQES(cc); 6014 n->sqe_size = 1 << NVME_CC_IOSQES(cc); 6015 nvme_init_cq(&n->admin_cq, n, acq, 0, 0, NVME_AQA_ACQS(aqa) + 1, 1); 6016 nvme_init_sq(&n->admin_sq, n, asq, 0, 0, NVME_AQA_ASQS(aqa) + 1); 6017 6018 nvme_set_timestamp(n, 0ULL); 6019 6020 QTAILQ_INIT(&n->aer_queue); 6021 6022 nvme_select_iocs(n); 6023 6024 return 0; 6025 } 6026 6027 static void nvme_cmb_enable_regs(NvmeCtrl *n) 6028 { 6029 uint32_t cmbloc = ldl_le_p(&n->bar.cmbloc); 6030 uint32_t cmbsz = ldl_le_p(&n->bar.cmbsz); 6031 6032 NVME_CMBLOC_SET_CDPCILS(cmbloc, 1); 6033 NVME_CMBLOC_SET_CDPMLS(cmbloc, 1); 6034 NVME_CMBLOC_SET_BIR(cmbloc, NVME_CMB_BIR); 6035 stl_le_p(&n->bar.cmbloc, cmbloc); 6036 6037 NVME_CMBSZ_SET_SQS(cmbsz, 1); 6038 NVME_CMBSZ_SET_CQS(cmbsz, 0); 6039 NVME_CMBSZ_SET_LISTS(cmbsz, 1); 6040 NVME_CMBSZ_SET_RDS(cmbsz, 1); 6041 NVME_CMBSZ_SET_WDS(cmbsz, 1); 6042 NVME_CMBSZ_SET_SZU(cmbsz, 2); /* MBs */ 6043 NVME_CMBSZ_SET_SZ(cmbsz, n->params.cmb_size_mb); 6044 stl_le_p(&n->bar.cmbsz, cmbsz); 6045 } 6046 6047 static void nvme_write_bar(NvmeCtrl *n, hwaddr offset, uint64_t data, 6048 unsigned size) 6049 { 6050 uint64_t cap = ldq_le_p(&n->bar.cap); 6051 uint32_t cc = ldl_le_p(&n->bar.cc); 6052 uint32_t intms = ldl_le_p(&n->bar.intms); 6053 uint32_t csts = ldl_le_p(&n->bar.csts); 6054 uint32_t pmrsts = ldl_le_p(&n->bar.pmrsts); 6055 6056 if (unlikely(offset & (sizeof(uint32_t) - 1))) { 6057 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_misaligned32, 6058 "MMIO write not 32-bit aligned," 6059 " offset=0x%"PRIx64"", offset); 6060 /* should be ignored, fall through for now */ 6061 } 6062 6063 if (unlikely(size < sizeof(uint32_t))) { 6064 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_toosmall, 6065 "MMIO write smaller than 32-bits," 6066 " offset=0x%"PRIx64", size=%u", 6067 offset, size); 6068 /* should be ignored, fall through for now */ 6069 } 6070 6071 switch (offset) { 6072 case NVME_REG_INTMS: 6073 if (unlikely(msix_enabled(&(n->parent_obj)))) { 6074 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix, 6075 "undefined access to interrupt mask set" 6076 " when MSI-X is enabled"); 6077 /* should be ignored, fall through for now */ 6078 } 6079 intms |= data; 6080 stl_le_p(&n->bar.intms, intms); 6081 n->bar.intmc = n->bar.intms; 6082 trace_pci_nvme_mmio_intm_set(data & 0xffffffff, intms); 6083 nvme_irq_check(n); 6084 break; 6085 case NVME_REG_INTMC: 6086 if (unlikely(msix_enabled(&(n->parent_obj)))) { 6087 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix, 6088 "undefined access to interrupt mask clr" 6089 " when MSI-X is enabled"); 6090 /* should be ignored, fall through for now */ 6091 } 6092 intms &= ~data; 6093 stl_le_p(&n->bar.intms, intms); 6094 n->bar.intmc = n->bar.intms; 6095 trace_pci_nvme_mmio_intm_clr(data & 0xffffffff, intms); 6096 nvme_irq_check(n); 6097 break; 6098 case NVME_REG_CC: 6099 trace_pci_nvme_mmio_cfg(data & 0xffffffff); 6100 6101 /* Windows first sends data, then sends enable bit */ 6102 if (!NVME_CC_EN(data) && !NVME_CC_EN(cc) && 6103 !NVME_CC_SHN(data) && !NVME_CC_SHN(cc)) 6104 { 6105 cc = data; 6106 } 6107 6108 if (NVME_CC_EN(data) && !NVME_CC_EN(cc)) { 6109 cc = data; 6110 6111 /* flush CC since nvme_start_ctrl() needs the value */ 6112 stl_le_p(&n->bar.cc, cc); 6113 if (unlikely(nvme_start_ctrl(n))) { 6114 trace_pci_nvme_err_startfail(); 6115 csts = NVME_CSTS_FAILED; 6116 } else { 6117 trace_pci_nvme_mmio_start_success(); 6118 csts = NVME_CSTS_READY; 6119 } 6120 } else if (!NVME_CC_EN(data) && NVME_CC_EN(cc)) { 6121 trace_pci_nvme_mmio_stopped(); 6122 nvme_ctrl_reset(n); 6123 cc = 0; 6124 csts &= ~NVME_CSTS_READY; 6125 } 6126 6127 if (NVME_CC_SHN(data) && !(NVME_CC_SHN(cc))) { 6128 trace_pci_nvme_mmio_shutdown_set(); 6129 nvme_ctrl_shutdown(n); 6130 cc = data; 6131 csts |= NVME_CSTS_SHST_COMPLETE; 6132 } else if (!NVME_CC_SHN(data) && NVME_CC_SHN(cc)) { 6133 trace_pci_nvme_mmio_shutdown_cleared(); 6134 csts &= ~NVME_CSTS_SHST_COMPLETE; 6135 cc = data; 6136 } 6137 6138 stl_le_p(&n->bar.cc, cc); 6139 stl_le_p(&n->bar.csts, csts); 6140 6141 break; 6142 case NVME_REG_CSTS: 6143 if (data & (1 << 4)) { 6144 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ssreset_w1c_unsupported, 6145 "attempted to W1C CSTS.NSSRO" 6146 " but CAP.NSSRS is zero (not supported)"); 6147 } else if (data != 0) { 6148 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ro_csts, 6149 "attempted to set a read only bit" 6150 " of controller status"); 6151 } 6152 break; 6153 case NVME_REG_NSSR: 6154 if (data == 0x4e564d65) { 6155 trace_pci_nvme_ub_mmiowr_ssreset_unsupported(); 6156 } else { 6157 /* The spec says that writes of other values have no effect */ 6158 return; 6159 } 6160 break; 6161 case NVME_REG_AQA: 6162 stl_le_p(&n->bar.aqa, data); 6163 trace_pci_nvme_mmio_aqattr(data & 0xffffffff); 6164 break; 6165 case NVME_REG_ASQ: 6166 stn_le_p(&n->bar.asq, size, data); 6167 trace_pci_nvme_mmio_asqaddr(data); 6168 break; 6169 case NVME_REG_ASQ + 4: 6170 stl_le_p((uint8_t *)&n->bar.asq + 4, data); 6171 trace_pci_nvme_mmio_asqaddr_hi(data, ldq_le_p(&n->bar.asq)); 6172 break; 6173 case NVME_REG_ACQ: 6174 trace_pci_nvme_mmio_acqaddr(data); 6175 stn_le_p(&n->bar.acq, size, data); 6176 break; 6177 case NVME_REG_ACQ + 4: 6178 stl_le_p((uint8_t *)&n->bar.acq + 4, data); 6179 trace_pci_nvme_mmio_acqaddr_hi(data, ldq_le_p(&n->bar.acq)); 6180 break; 6181 case NVME_REG_CMBLOC: 6182 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbloc_reserved, 6183 "invalid write to reserved CMBLOC" 6184 " when CMBSZ is zero, ignored"); 6185 return; 6186 case NVME_REG_CMBSZ: 6187 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbsz_readonly, 6188 "invalid write to read only CMBSZ, ignored"); 6189 return; 6190 case NVME_REG_CMBMSC: 6191 if (!NVME_CAP_CMBS(cap)) { 6192 return; 6193 } 6194 6195 stn_le_p(&n->bar.cmbmsc, size, data); 6196 n->cmb.cmse = false; 6197 6198 if (NVME_CMBMSC_CRE(data)) { 6199 nvme_cmb_enable_regs(n); 6200 6201 if (NVME_CMBMSC_CMSE(data)) { 6202 uint64_t cmbmsc = ldq_le_p(&n->bar.cmbmsc); 6203 hwaddr cba = NVME_CMBMSC_CBA(cmbmsc) << CMBMSC_CBA_SHIFT; 6204 if (cba + int128_get64(n->cmb.mem.size) < cba) { 6205 uint32_t cmbsts = ldl_le_p(&n->bar.cmbsts); 6206 NVME_CMBSTS_SET_CBAI(cmbsts, 1); 6207 stl_le_p(&n->bar.cmbsts, cmbsts); 6208 return; 6209 } 6210 6211 n->cmb.cba = cba; 6212 n->cmb.cmse = true; 6213 } 6214 } else { 6215 n->bar.cmbsz = 0; 6216 n->bar.cmbloc = 0; 6217 } 6218 6219 return; 6220 case NVME_REG_CMBMSC + 4: 6221 stl_le_p((uint8_t *)&n->bar.cmbmsc + 4, data); 6222 return; 6223 6224 case NVME_REG_PMRCAP: 6225 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrcap_readonly, 6226 "invalid write to PMRCAP register, ignored"); 6227 return; 6228 case NVME_REG_PMRCTL: 6229 if (!NVME_CAP_PMRS(cap)) { 6230 return; 6231 } 6232 6233 stl_le_p(&n->bar.pmrctl, data); 6234 if (NVME_PMRCTL_EN(data)) { 6235 memory_region_set_enabled(&n->pmr.dev->mr, true); 6236 pmrsts = 0; 6237 } else { 6238 memory_region_set_enabled(&n->pmr.dev->mr, false); 6239 NVME_PMRSTS_SET_NRDY(pmrsts, 1); 6240 n->pmr.cmse = false; 6241 } 6242 stl_le_p(&n->bar.pmrsts, pmrsts); 6243 return; 6244 case NVME_REG_PMRSTS: 6245 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrsts_readonly, 6246 "invalid write to PMRSTS register, ignored"); 6247 return; 6248 case NVME_REG_PMREBS: 6249 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrebs_readonly, 6250 "invalid write to PMREBS register, ignored"); 6251 return; 6252 case NVME_REG_PMRSWTP: 6253 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrswtp_readonly, 6254 "invalid write to PMRSWTP register, ignored"); 6255 return; 6256 case NVME_REG_PMRMSCL: 6257 if (!NVME_CAP_PMRS(cap)) { 6258 return; 6259 } 6260 6261 stl_le_p(&n->bar.pmrmscl, data); 6262 n->pmr.cmse = false; 6263 6264 if (NVME_PMRMSCL_CMSE(data)) { 6265 uint64_t pmrmscu = ldl_le_p(&n->bar.pmrmscu); 6266 hwaddr cba = pmrmscu << 32 | 6267 (NVME_PMRMSCL_CBA(data) << PMRMSCL_CBA_SHIFT); 6268 if (cba + int128_get64(n->pmr.dev->mr.size) < cba) { 6269 NVME_PMRSTS_SET_CBAI(pmrsts, 1); 6270 stl_le_p(&n->bar.pmrsts, pmrsts); 6271 return; 6272 } 6273 6274 n->pmr.cmse = true; 6275 n->pmr.cba = cba; 6276 } 6277 6278 return; 6279 case NVME_REG_PMRMSCU: 6280 if (!NVME_CAP_PMRS(cap)) { 6281 return; 6282 } 6283 6284 stl_le_p(&n->bar.pmrmscu, data); 6285 return; 6286 default: 6287 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_invalid, 6288 "invalid MMIO write," 6289 " offset=0x%"PRIx64", data=%"PRIx64"", 6290 offset, data); 6291 break; 6292 } 6293 } 6294 6295 static uint64_t nvme_mmio_read(void *opaque, hwaddr addr, unsigned size) 6296 { 6297 NvmeCtrl *n = (NvmeCtrl *)opaque; 6298 uint8_t *ptr = (uint8_t *)&n->bar; 6299 6300 trace_pci_nvme_mmio_read(addr, size); 6301 6302 if (unlikely(addr & (sizeof(uint32_t) - 1))) { 6303 NVME_GUEST_ERR(pci_nvme_ub_mmiord_misaligned32, 6304 "MMIO read not 32-bit aligned," 6305 " offset=0x%"PRIx64"", addr); 6306 /* should RAZ, fall through for now */ 6307 } else if (unlikely(size < sizeof(uint32_t))) { 6308 NVME_GUEST_ERR(pci_nvme_ub_mmiord_toosmall, 6309 "MMIO read smaller than 32-bits," 6310 " offset=0x%"PRIx64"", addr); 6311 /* should RAZ, fall through for now */ 6312 } 6313 6314 if (addr > sizeof(n->bar) - size) { 6315 NVME_GUEST_ERR(pci_nvme_ub_mmiord_invalid_ofs, 6316 "MMIO read beyond last register," 6317 " offset=0x%"PRIx64", returning 0", addr); 6318 6319 return 0; 6320 } 6321 6322 /* 6323 * When PMRWBM bit 1 is set then read from 6324 * from PMRSTS should ensure prior writes 6325 * made it to persistent media 6326 */ 6327 if (addr == NVME_REG_PMRSTS && 6328 (NVME_PMRCAP_PMRWBM(ldl_le_p(&n->bar.pmrcap)) & 0x02)) { 6329 memory_region_msync(&n->pmr.dev->mr, 0, n->pmr.dev->size); 6330 } 6331 6332 return ldn_le_p(ptr + addr, size); 6333 } 6334 6335 static void nvme_process_db(NvmeCtrl *n, hwaddr addr, int val) 6336 { 6337 uint32_t qid; 6338 6339 if (unlikely(addr & ((1 << 2) - 1))) { 6340 NVME_GUEST_ERR(pci_nvme_ub_db_wr_misaligned, 6341 "doorbell write not 32-bit aligned," 6342 " offset=0x%"PRIx64", ignoring", addr); 6343 return; 6344 } 6345 6346 if (((addr - 0x1000) >> 2) & 1) { 6347 /* Completion queue doorbell write */ 6348 6349 uint16_t new_head = val & 0xffff; 6350 int start_sqs; 6351 NvmeCQueue *cq; 6352 6353 qid = (addr - (0x1000 + (1 << 2))) >> 3; 6354 if (unlikely(nvme_check_cqid(n, qid))) { 6355 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cq, 6356 "completion queue doorbell write" 6357 " for nonexistent queue," 6358 " sqid=%"PRIu32", ignoring", qid); 6359 6360 /* 6361 * NVM Express v1.3d, Section 4.1 state: "If host software writes 6362 * an invalid value to the Submission Queue Tail Doorbell or 6363 * Completion Queue Head Doorbell regiter and an Asynchronous Event 6364 * Request command is outstanding, then an asynchronous event is 6365 * posted to the Admin Completion Queue with a status code of 6366 * Invalid Doorbell Write Value." 6367 * 6368 * Also note that the spec includes the "Invalid Doorbell Register" 6369 * status code, but nowhere does it specify when to use it. 6370 * However, it seems reasonable to use it here in a similar 6371 * fashion. 6372 */ 6373 if (n->outstanding_aers) { 6374 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR, 6375 NVME_AER_INFO_ERR_INVALID_DB_REGISTER, 6376 NVME_LOG_ERROR_INFO); 6377 } 6378 6379 return; 6380 } 6381 6382 cq = n->cq[qid]; 6383 if (unlikely(new_head >= cq->size)) { 6384 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cqhead, 6385 "completion queue doorbell write value" 6386 " beyond queue size, sqid=%"PRIu32"," 6387 " new_head=%"PRIu16", ignoring", 6388 qid, new_head); 6389 6390 if (n->outstanding_aers) { 6391 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR, 6392 NVME_AER_INFO_ERR_INVALID_DB_VALUE, 6393 NVME_LOG_ERROR_INFO); 6394 } 6395 6396 return; 6397 } 6398 6399 trace_pci_nvme_mmio_doorbell_cq(cq->cqid, new_head); 6400 6401 start_sqs = nvme_cq_full(cq) ? 1 : 0; 6402 cq->head = new_head; 6403 if (start_sqs) { 6404 NvmeSQueue *sq; 6405 QTAILQ_FOREACH(sq, &cq->sq_list, entry) { 6406 timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500); 6407 } 6408 timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500); 6409 } 6410 6411 if (cq->tail == cq->head) { 6412 if (cq->irq_enabled) { 6413 n->cq_pending--; 6414 } 6415 6416 nvme_irq_deassert(n, cq); 6417 } 6418 } else { 6419 /* Submission queue doorbell write */ 6420 6421 uint16_t new_tail = val & 0xffff; 6422 NvmeSQueue *sq; 6423 6424 qid = (addr - 0x1000) >> 3; 6425 if (unlikely(nvme_check_sqid(n, qid))) { 6426 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sq, 6427 "submission queue doorbell write" 6428 " for nonexistent queue," 6429 " sqid=%"PRIu32", ignoring", qid); 6430 6431 if (n->outstanding_aers) { 6432 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR, 6433 NVME_AER_INFO_ERR_INVALID_DB_REGISTER, 6434 NVME_LOG_ERROR_INFO); 6435 } 6436 6437 return; 6438 } 6439 6440 sq = n->sq[qid]; 6441 if (unlikely(new_tail >= sq->size)) { 6442 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sqtail, 6443 "submission queue doorbell write value" 6444 " beyond queue size, sqid=%"PRIu32"," 6445 " new_tail=%"PRIu16", ignoring", 6446 qid, new_tail); 6447 6448 if (n->outstanding_aers) { 6449 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR, 6450 NVME_AER_INFO_ERR_INVALID_DB_VALUE, 6451 NVME_LOG_ERROR_INFO); 6452 } 6453 6454 return; 6455 } 6456 6457 trace_pci_nvme_mmio_doorbell_sq(sq->sqid, new_tail); 6458 6459 sq->tail = new_tail; 6460 timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500); 6461 } 6462 } 6463 6464 static void nvme_mmio_write(void *opaque, hwaddr addr, uint64_t data, 6465 unsigned size) 6466 { 6467 NvmeCtrl *n = (NvmeCtrl *)opaque; 6468 6469 trace_pci_nvme_mmio_write(addr, data, size); 6470 6471 if (addr < sizeof(n->bar)) { 6472 nvme_write_bar(n, addr, data, size); 6473 } else { 6474 nvme_process_db(n, addr, data); 6475 } 6476 } 6477 6478 static const MemoryRegionOps nvme_mmio_ops = { 6479 .read = nvme_mmio_read, 6480 .write = nvme_mmio_write, 6481 .endianness = DEVICE_LITTLE_ENDIAN, 6482 .impl = { 6483 .min_access_size = 2, 6484 .max_access_size = 8, 6485 }, 6486 }; 6487 6488 static void nvme_cmb_write(void *opaque, hwaddr addr, uint64_t data, 6489 unsigned size) 6490 { 6491 NvmeCtrl *n = (NvmeCtrl *)opaque; 6492 stn_le_p(&n->cmb.buf[addr], size, data); 6493 } 6494 6495 static uint64_t nvme_cmb_read(void *opaque, hwaddr addr, unsigned size) 6496 { 6497 NvmeCtrl *n = (NvmeCtrl *)opaque; 6498 return ldn_le_p(&n->cmb.buf[addr], size); 6499 } 6500 6501 static const MemoryRegionOps nvme_cmb_ops = { 6502 .read = nvme_cmb_read, 6503 .write = nvme_cmb_write, 6504 .endianness = DEVICE_LITTLE_ENDIAN, 6505 .impl = { 6506 .min_access_size = 1, 6507 .max_access_size = 8, 6508 }, 6509 }; 6510 6511 static void nvme_check_constraints(NvmeCtrl *n, Error **errp) 6512 { 6513 NvmeParams *params = &n->params; 6514 6515 if (params->num_queues) { 6516 warn_report("num_queues is deprecated; please use max_ioqpairs " 6517 "instead"); 6518 6519 params->max_ioqpairs = params->num_queues - 1; 6520 } 6521 6522 if (n->namespace.blkconf.blk && n->subsys) { 6523 error_setg(errp, "subsystem support is unavailable with legacy " 6524 "namespace ('drive' property)"); 6525 return; 6526 } 6527 6528 if (params->max_ioqpairs < 1 || 6529 params->max_ioqpairs > NVME_MAX_IOQPAIRS) { 6530 error_setg(errp, "max_ioqpairs must be between 1 and %d", 6531 NVME_MAX_IOQPAIRS); 6532 return; 6533 } 6534 6535 if (params->msix_qsize < 1 || 6536 params->msix_qsize > PCI_MSIX_FLAGS_QSIZE + 1) { 6537 error_setg(errp, "msix_qsize must be between 1 and %d", 6538 PCI_MSIX_FLAGS_QSIZE + 1); 6539 return; 6540 } 6541 6542 if (!params->serial) { 6543 error_setg(errp, "serial property not set"); 6544 return; 6545 } 6546 6547 if (n->pmr.dev) { 6548 if (host_memory_backend_is_mapped(n->pmr.dev)) { 6549 error_setg(errp, "can't use already busy memdev: %s", 6550 object_get_canonical_path_component(OBJECT(n->pmr.dev))); 6551 return; 6552 } 6553 6554 if (!is_power_of_2(n->pmr.dev->size)) { 6555 error_setg(errp, "pmr backend size needs to be power of 2 in size"); 6556 return; 6557 } 6558 6559 host_memory_backend_set_mapped(n->pmr.dev, true); 6560 } 6561 6562 if (n->params.zasl > n->params.mdts) { 6563 error_setg(errp, "zoned.zasl (Zone Append Size Limit) must be less " 6564 "than or equal to mdts (Maximum Data Transfer Size)"); 6565 return; 6566 } 6567 6568 if (!n->params.vsl) { 6569 error_setg(errp, "vsl must be non-zero"); 6570 return; 6571 } 6572 } 6573 6574 static void nvme_init_state(NvmeCtrl *n) 6575 { 6576 /* add one to max_ioqpairs to account for the admin queue pair */ 6577 n->reg_size = pow2ceil(sizeof(NvmeBar) + 6578 2 * (n->params.max_ioqpairs + 1) * NVME_DB_SIZE); 6579 n->sq = g_new0(NvmeSQueue *, n->params.max_ioqpairs + 1); 6580 n->cq = g_new0(NvmeCQueue *, n->params.max_ioqpairs + 1); 6581 n->temperature = NVME_TEMPERATURE; 6582 n->features.temp_thresh_hi = NVME_TEMPERATURE_WARNING; 6583 n->starttime_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL); 6584 n->aer_reqs = g_new0(NvmeRequest *, n->params.aerl + 1); 6585 } 6586 6587 static void nvme_init_cmb(NvmeCtrl *n, PCIDevice *pci_dev) 6588 { 6589 uint64_t cmb_size = n->params.cmb_size_mb * MiB; 6590 uint64_t cap = ldq_le_p(&n->bar.cap); 6591 6592 n->cmb.buf = g_malloc0(cmb_size); 6593 memory_region_init_io(&n->cmb.mem, OBJECT(n), &nvme_cmb_ops, n, 6594 "nvme-cmb", cmb_size); 6595 pci_register_bar(pci_dev, NVME_CMB_BIR, 6596 PCI_BASE_ADDRESS_SPACE_MEMORY | 6597 PCI_BASE_ADDRESS_MEM_TYPE_64 | 6598 PCI_BASE_ADDRESS_MEM_PREFETCH, &n->cmb.mem); 6599 6600 NVME_CAP_SET_CMBS(cap, 1); 6601 stq_le_p(&n->bar.cap, cap); 6602 6603 if (n->params.legacy_cmb) { 6604 nvme_cmb_enable_regs(n); 6605 n->cmb.cmse = true; 6606 } 6607 } 6608 6609 static void nvme_init_pmr(NvmeCtrl *n, PCIDevice *pci_dev) 6610 { 6611 uint32_t pmrcap = ldl_le_p(&n->bar.pmrcap); 6612 6613 NVME_PMRCAP_SET_RDS(pmrcap, 1); 6614 NVME_PMRCAP_SET_WDS(pmrcap, 1); 6615 NVME_PMRCAP_SET_BIR(pmrcap, NVME_PMR_BIR); 6616 /* Turn on bit 1 support */ 6617 NVME_PMRCAP_SET_PMRWBM(pmrcap, 0x02); 6618 NVME_PMRCAP_SET_CMSS(pmrcap, 1); 6619 stl_le_p(&n->bar.pmrcap, pmrcap); 6620 6621 pci_register_bar(pci_dev, NVME_PMR_BIR, 6622 PCI_BASE_ADDRESS_SPACE_MEMORY | 6623 PCI_BASE_ADDRESS_MEM_TYPE_64 | 6624 PCI_BASE_ADDRESS_MEM_PREFETCH, &n->pmr.dev->mr); 6625 6626 memory_region_set_enabled(&n->pmr.dev->mr, false); 6627 } 6628 6629 static int nvme_init_pci(NvmeCtrl *n, PCIDevice *pci_dev, Error **errp) 6630 { 6631 uint8_t *pci_conf = pci_dev->config; 6632 uint64_t bar_size, msix_table_size, msix_pba_size; 6633 unsigned msix_table_offset, msix_pba_offset; 6634 int ret; 6635 6636 Error *err = NULL; 6637 6638 pci_conf[PCI_INTERRUPT_PIN] = 1; 6639 pci_config_set_prog_interface(pci_conf, 0x2); 6640 6641 if (n->params.use_intel_id) { 6642 pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_INTEL); 6643 pci_config_set_device_id(pci_conf, 0x5845); 6644 } else { 6645 pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_REDHAT); 6646 pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_REDHAT_NVME); 6647 } 6648 6649 pci_config_set_class(pci_conf, PCI_CLASS_STORAGE_EXPRESS); 6650 pcie_endpoint_cap_init(pci_dev, 0x80); 6651 6652 bar_size = QEMU_ALIGN_UP(n->reg_size, 4 * KiB); 6653 msix_table_offset = bar_size; 6654 msix_table_size = PCI_MSIX_ENTRY_SIZE * n->params.msix_qsize; 6655 6656 bar_size += msix_table_size; 6657 bar_size = QEMU_ALIGN_UP(bar_size, 4 * KiB); 6658 msix_pba_offset = bar_size; 6659 msix_pba_size = QEMU_ALIGN_UP(n->params.msix_qsize, 64) / 8; 6660 6661 bar_size += msix_pba_size; 6662 bar_size = pow2ceil(bar_size); 6663 6664 memory_region_init(&n->bar0, OBJECT(n), "nvme-bar0", bar_size); 6665 memory_region_init_io(&n->iomem, OBJECT(n), &nvme_mmio_ops, n, "nvme", 6666 n->reg_size); 6667 memory_region_add_subregion(&n->bar0, 0, &n->iomem); 6668 6669 pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY | 6670 PCI_BASE_ADDRESS_MEM_TYPE_64, &n->bar0); 6671 ret = msix_init(pci_dev, n->params.msix_qsize, 6672 &n->bar0, 0, msix_table_offset, 6673 &n->bar0, 0, msix_pba_offset, 0, &err); 6674 if (ret < 0) { 6675 if (ret == -ENOTSUP) { 6676 warn_report_err(err); 6677 } else { 6678 error_propagate(errp, err); 6679 return ret; 6680 } 6681 } 6682 6683 if (n->params.cmb_size_mb) { 6684 nvme_init_cmb(n, pci_dev); 6685 } 6686 6687 if (n->pmr.dev) { 6688 nvme_init_pmr(n, pci_dev); 6689 } 6690 6691 return 0; 6692 } 6693 6694 static void nvme_init_subnqn(NvmeCtrl *n) 6695 { 6696 NvmeSubsystem *subsys = n->subsys; 6697 NvmeIdCtrl *id = &n->id_ctrl; 6698 6699 if (!subsys) { 6700 snprintf((char *)id->subnqn, sizeof(id->subnqn), 6701 "nqn.2019-08.org.qemu:%s", n->params.serial); 6702 } else { 6703 pstrcpy((char *)id->subnqn, sizeof(id->subnqn), (char*)subsys->subnqn); 6704 } 6705 } 6706 6707 static void nvme_init_ctrl(NvmeCtrl *n, PCIDevice *pci_dev) 6708 { 6709 NvmeIdCtrl *id = &n->id_ctrl; 6710 uint8_t *pci_conf = pci_dev->config; 6711 uint64_t cap = ldq_le_p(&n->bar.cap); 6712 6713 id->vid = cpu_to_le16(pci_get_word(pci_conf + PCI_VENDOR_ID)); 6714 id->ssvid = cpu_to_le16(pci_get_word(pci_conf + PCI_SUBSYSTEM_VENDOR_ID)); 6715 strpadcpy((char *)id->mn, sizeof(id->mn), "QEMU NVMe Ctrl", ' '); 6716 strpadcpy((char *)id->fr, sizeof(id->fr), QEMU_VERSION, ' '); 6717 strpadcpy((char *)id->sn, sizeof(id->sn), n->params.serial, ' '); 6718 6719 id->cntlid = cpu_to_le16(n->cntlid); 6720 6721 id->oaes = cpu_to_le32(NVME_OAES_NS_ATTR); 6722 id->ctratt |= cpu_to_le32(NVME_CTRATT_ELBAS); 6723 6724 id->rab = 6; 6725 6726 if (n->params.use_intel_id) { 6727 id->ieee[0] = 0xb3; 6728 id->ieee[1] = 0x02; 6729 id->ieee[2] = 0x00; 6730 } else { 6731 id->ieee[0] = 0x00; 6732 id->ieee[1] = 0x54; 6733 id->ieee[2] = 0x52; 6734 } 6735 6736 id->mdts = n->params.mdts; 6737 id->ver = cpu_to_le32(NVME_SPEC_VER); 6738 id->oacs = cpu_to_le16(NVME_OACS_NS_MGMT | NVME_OACS_FORMAT); 6739 id->cntrltype = 0x1; 6740 6741 /* 6742 * Because the controller always completes the Abort command immediately, 6743 * there can never be more than one concurrently executing Abort command, 6744 * so this value is never used for anything. Note that there can easily be 6745 * many Abort commands in the queues, but they are not considered 6746 * "executing" until processed by nvme_abort. 6747 * 6748 * The specification recommends a value of 3 for Abort Command Limit (four 6749 * concurrently outstanding Abort commands), so lets use that though it is 6750 * inconsequential. 6751 */ 6752 id->acl = 3; 6753 id->aerl = n->params.aerl; 6754 id->frmw = (NVME_NUM_FW_SLOTS << 1) | NVME_FRMW_SLOT1_RO; 6755 id->lpa = NVME_LPA_NS_SMART | NVME_LPA_CSE | NVME_LPA_EXTENDED; 6756 6757 /* recommended default value (~70 C) */ 6758 id->wctemp = cpu_to_le16(NVME_TEMPERATURE_WARNING); 6759 id->cctemp = cpu_to_le16(NVME_TEMPERATURE_CRITICAL); 6760 6761 id->sqes = (0x6 << 4) | 0x6; 6762 id->cqes = (0x4 << 4) | 0x4; 6763 id->nn = cpu_to_le32(NVME_MAX_NAMESPACES); 6764 id->oncs = cpu_to_le16(NVME_ONCS_WRITE_ZEROES | NVME_ONCS_TIMESTAMP | 6765 NVME_ONCS_FEATURES | NVME_ONCS_DSM | 6766 NVME_ONCS_COMPARE | NVME_ONCS_COPY); 6767 6768 /* 6769 * NOTE: If this device ever supports a command set that does NOT use 0x0 6770 * as a Flush-equivalent operation, support for the broadcast NSID in Flush 6771 * should probably be removed. 6772 * 6773 * See comment in nvme_io_cmd. 6774 */ 6775 id->vwc = NVME_VWC_NSID_BROADCAST_SUPPORT | NVME_VWC_PRESENT; 6776 6777 id->ocfs = cpu_to_le16(NVME_OCFS_COPY_FORMAT_0 | NVME_OCFS_COPY_FORMAT_1); 6778 id->sgls = cpu_to_le32(NVME_CTRL_SGLS_SUPPORT_NO_ALIGN | 6779 NVME_CTRL_SGLS_BITBUCKET); 6780 6781 nvme_init_subnqn(n); 6782 6783 id->psd[0].mp = cpu_to_le16(0x9c4); 6784 id->psd[0].enlat = cpu_to_le32(0x10); 6785 id->psd[0].exlat = cpu_to_le32(0x4); 6786 6787 if (n->subsys) { 6788 id->cmic |= NVME_CMIC_MULTI_CTRL; 6789 } 6790 6791 NVME_CAP_SET_MQES(cap, 0x7ff); 6792 NVME_CAP_SET_CQR(cap, 1); 6793 NVME_CAP_SET_TO(cap, 0xf); 6794 NVME_CAP_SET_CSS(cap, NVME_CAP_CSS_NVM); 6795 NVME_CAP_SET_CSS(cap, NVME_CAP_CSS_CSI_SUPP); 6796 NVME_CAP_SET_CSS(cap, NVME_CAP_CSS_ADMIN_ONLY); 6797 NVME_CAP_SET_MPSMAX(cap, 4); 6798 NVME_CAP_SET_CMBS(cap, n->params.cmb_size_mb ? 1 : 0); 6799 NVME_CAP_SET_PMRS(cap, n->pmr.dev ? 1 : 0); 6800 stq_le_p(&n->bar.cap, cap); 6801 6802 stl_le_p(&n->bar.vs, NVME_SPEC_VER); 6803 n->bar.intmc = n->bar.intms = 0; 6804 } 6805 6806 static int nvme_init_subsys(NvmeCtrl *n, Error **errp) 6807 { 6808 int cntlid; 6809 6810 if (!n->subsys) { 6811 return 0; 6812 } 6813 6814 cntlid = nvme_subsys_register_ctrl(n, errp); 6815 if (cntlid < 0) { 6816 return -1; 6817 } 6818 6819 n->cntlid = cntlid; 6820 6821 return 0; 6822 } 6823 6824 void nvme_attach_ns(NvmeCtrl *n, NvmeNamespace *ns) 6825 { 6826 uint32_t nsid = ns->params.nsid; 6827 assert(nsid && nsid <= NVME_MAX_NAMESPACES); 6828 6829 n->namespaces[nsid] = ns; 6830 ns->attached++; 6831 6832 n->dmrsl = MIN_NON_ZERO(n->dmrsl, 6833 BDRV_REQUEST_MAX_BYTES / nvme_l2b(ns, 1)); 6834 } 6835 6836 static void nvme_realize(PCIDevice *pci_dev, Error **errp) 6837 { 6838 NvmeCtrl *n = NVME(pci_dev); 6839 NvmeNamespace *ns; 6840 Error *local_err = NULL; 6841 6842 nvme_check_constraints(n, &local_err); 6843 if (local_err) { 6844 error_propagate(errp, local_err); 6845 return; 6846 } 6847 6848 qbus_init(&n->bus, sizeof(NvmeBus), TYPE_NVME_BUS, 6849 &pci_dev->qdev, n->parent_obj.qdev.id); 6850 6851 nvme_init_state(n); 6852 if (nvme_init_pci(n, pci_dev, errp)) { 6853 return; 6854 } 6855 6856 if (nvme_init_subsys(n, errp)) { 6857 error_propagate(errp, local_err); 6858 return; 6859 } 6860 nvme_init_ctrl(n, pci_dev); 6861 6862 /* setup a namespace if the controller drive property was given */ 6863 if (n->namespace.blkconf.blk) { 6864 ns = &n->namespace; 6865 ns->params.nsid = 1; 6866 6867 if (nvme_ns_setup(ns, errp)) { 6868 return; 6869 } 6870 6871 nvme_attach_ns(n, ns); 6872 } 6873 } 6874 6875 static void nvme_exit(PCIDevice *pci_dev) 6876 { 6877 NvmeCtrl *n = NVME(pci_dev); 6878 NvmeNamespace *ns; 6879 int i; 6880 6881 nvme_ctrl_reset(n); 6882 6883 if (n->subsys) { 6884 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { 6885 ns = nvme_ns(n, i); 6886 if (ns) { 6887 ns->attached--; 6888 } 6889 } 6890 6891 nvme_subsys_unregister_ctrl(n->subsys, n); 6892 } 6893 6894 g_free(n->cq); 6895 g_free(n->sq); 6896 g_free(n->aer_reqs); 6897 6898 if (n->params.cmb_size_mb) { 6899 g_free(n->cmb.buf); 6900 } 6901 6902 if (n->pmr.dev) { 6903 host_memory_backend_set_mapped(n->pmr.dev, false); 6904 } 6905 msix_uninit(pci_dev, &n->bar0, &n->bar0); 6906 memory_region_del_subregion(&n->bar0, &n->iomem); 6907 } 6908 6909 static Property nvme_props[] = { 6910 DEFINE_BLOCK_PROPERTIES(NvmeCtrl, namespace.blkconf), 6911 DEFINE_PROP_LINK("pmrdev", NvmeCtrl, pmr.dev, TYPE_MEMORY_BACKEND, 6912 HostMemoryBackend *), 6913 DEFINE_PROP_LINK("subsys", NvmeCtrl, subsys, TYPE_NVME_SUBSYS, 6914 NvmeSubsystem *), 6915 DEFINE_PROP_STRING("serial", NvmeCtrl, params.serial), 6916 DEFINE_PROP_UINT32("cmb_size_mb", NvmeCtrl, params.cmb_size_mb, 0), 6917 DEFINE_PROP_UINT32("num_queues", NvmeCtrl, params.num_queues, 0), 6918 DEFINE_PROP_UINT32("max_ioqpairs", NvmeCtrl, params.max_ioqpairs, 64), 6919 DEFINE_PROP_UINT16("msix_qsize", NvmeCtrl, params.msix_qsize, 65), 6920 DEFINE_PROP_UINT8("aerl", NvmeCtrl, params.aerl, 3), 6921 DEFINE_PROP_UINT32("aer_max_queued", NvmeCtrl, params.aer_max_queued, 64), 6922 DEFINE_PROP_UINT8("mdts", NvmeCtrl, params.mdts, 7), 6923 DEFINE_PROP_UINT8("vsl", NvmeCtrl, params.vsl, 7), 6924 DEFINE_PROP_BOOL("use-intel-id", NvmeCtrl, params.use_intel_id, false), 6925 DEFINE_PROP_BOOL("legacy-cmb", NvmeCtrl, params.legacy_cmb, false), 6926 DEFINE_PROP_UINT8("zoned.zasl", NvmeCtrl, params.zasl, 0), 6927 DEFINE_PROP_BOOL("zoned.auto_transition", NvmeCtrl, 6928 params.auto_transition_zones, true), 6929 DEFINE_PROP_END_OF_LIST(), 6930 }; 6931 6932 static void nvme_get_smart_warning(Object *obj, Visitor *v, const char *name, 6933 void *opaque, Error **errp) 6934 { 6935 NvmeCtrl *n = NVME(obj); 6936 uint8_t value = n->smart_critical_warning; 6937 6938 visit_type_uint8(v, name, &value, errp); 6939 } 6940 6941 static void nvme_set_smart_warning(Object *obj, Visitor *v, const char *name, 6942 void *opaque, Error **errp) 6943 { 6944 NvmeCtrl *n = NVME(obj); 6945 uint8_t value, old_value, cap = 0, index, event; 6946 6947 if (!visit_type_uint8(v, name, &value, errp)) { 6948 return; 6949 } 6950 6951 cap = NVME_SMART_SPARE | NVME_SMART_TEMPERATURE | NVME_SMART_RELIABILITY 6952 | NVME_SMART_MEDIA_READ_ONLY | NVME_SMART_FAILED_VOLATILE_MEDIA; 6953 if (NVME_CAP_PMRS(ldq_le_p(&n->bar.cap))) { 6954 cap |= NVME_SMART_PMR_UNRELIABLE; 6955 } 6956 6957 if ((value & cap) != value) { 6958 error_setg(errp, "unsupported smart critical warning bits: 0x%x", 6959 value & ~cap); 6960 return; 6961 } 6962 6963 old_value = n->smart_critical_warning; 6964 n->smart_critical_warning = value; 6965 6966 /* only inject new bits of smart critical warning */ 6967 for (index = 0; index < NVME_SMART_WARN_MAX; index++) { 6968 event = 1 << index; 6969 if (value & ~old_value & event) 6970 nvme_smart_event(n, event); 6971 } 6972 } 6973 6974 static const VMStateDescription nvme_vmstate = { 6975 .name = "nvme", 6976 .unmigratable = 1, 6977 }; 6978 6979 static void nvme_class_init(ObjectClass *oc, void *data) 6980 { 6981 DeviceClass *dc = DEVICE_CLASS(oc); 6982 PCIDeviceClass *pc = PCI_DEVICE_CLASS(oc); 6983 6984 pc->realize = nvme_realize; 6985 pc->exit = nvme_exit; 6986 pc->class_id = PCI_CLASS_STORAGE_EXPRESS; 6987 pc->revision = 2; 6988 6989 set_bit(DEVICE_CATEGORY_STORAGE, dc->categories); 6990 dc->desc = "Non-Volatile Memory Express"; 6991 device_class_set_props(dc, nvme_props); 6992 dc->vmsd = &nvme_vmstate; 6993 } 6994 6995 static void nvme_instance_init(Object *obj) 6996 { 6997 NvmeCtrl *n = NVME(obj); 6998 6999 device_add_bootindex_property(obj, &n->namespace.blkconf.bootindex, 7000 "bootindex", "/namespace@1,0", 7001 DEVICE(obj)); 7002 7003 object_property_add(obj, "smart_critical_warning", "uint8", 7004 nvme_get_smart_warning, 7005 nvme_set_smart_warning, NULL, NULL); 7006 } 7007 7008 static const TypeInfo nvme_info = { 7009 .name = TYPE_NVME, 7010 .parent = TYPE_PCI_DEVICE, 7011 .instance_size = sizeof(NvmeCtrl), 7012 .instance_init = nvme_instance_init, 7013 .class_init = nvme_class_init, 7014 .interfaces = (InterfaceInfo[]) { 7015 { INTERFACE_PCIE_DEVICE }, 7016 { } 7017 }, 7018 }; 7019 7020 static const TypeInfo nvme_bus_info = { 7021 .name = TYPE_NVME_BUS, 7022 .parent = TYPE_BUS, 7023 .instance_size = sizeof(NvmeBus), 7024 }; 7025 7026 static void nvme_register_types(void) 7027 { 7028 type_register_static(&nvme_info); 7029 type_register_static(&nvme_bus_info); 7030 } 7031 7032 type_init(nvme_register_types) 7033