1 /* 2 * QEMU NVM Express Controller 3 * 4 * Copyright (c) 2012, Intel Corporation 5 * 6 * Written by Keith Busch <keith.busch@intel.com> 7 * 8 * This code is licensed under the GNU GPL v2 or later. 9 */ 10 11 /** 12 * Reference Specs: http://www.nvmexpress.org, 1.4, 1.3, 1.2, 1.1, 1.0e 13 * 14 * https://nvmexpress.org/developers/nvme-specification/ 15 * 16 * 17 * Notes on coding style 18 * --------------------- 19 * While QEMU coding style prefers lowercase hexadecimals in constants, the 20 * NVMe subsystem use thes format from the NVMe specifications in the comments 21 * (i.e. 'h' suffix instead of '0x' prefix). 22 * 23 * Usage 24 * ----- 25 * See docs/system/nvme.rst for extensive documentation. 26 * 27 * Add options: 28 * -drive file=<file>,if=none,id=<drive_id> 29 * -device nvme-subsys,id=<subsys_id>,nqn=<nqn_id> 30 * -device nvme,serial=<serial>,id=<bus_name>, \ 31 * cmb_size_mb=<cmb_size_mb[optional]>, \ 32 * [pmrdev=<mem_backend_file_id>,] \ 33 * max_ioqpairs=<N[optional]>, \ 34 * aerl=<N[optional]>,aer_max_queued=<N[optional]>, \ 35 * mdts=<N[optional]>,vsl=<N[optional]>, \ 36 * zoned.zasl=<N[optional]>, \ 37 * zoned.auto_transition=<on|off[optional]>, \ 38 * sriov_max_vfs=<N[optional]> \ 39 * sriov_vq_flexible=<N[optional]> \ 40 * sriov_vi_flexible=<N[optional]> \ 41 * sriov_max_vi_per_vf=<N[optional]> \ 42 * sriov_max_vq_per_vf=<N[optional]> \ 43 * subsys=<subsys_id> 44 * -device nvme-ns,drive=<drive_id>,bus=<bus_name>,nsid=<nsid>,\ 45 * zoned=<true|false[optional]>, \ 46 * subsys=<subsys_id>,detached=<true|false[optional]> 47 * 48 * Note cmb_size_mb denotes size of CMB in MB. CMB is assumed to be at 49 * offset 0 in BAR2 and supports only WDS, RDS and SQS for now. By default, the 50 * device will use the "v1.4 CMB scheme" - use the `legacy-cmb` parameter to 51 * always enable the CMBLOC and CMBSZ registers (v1.3 behavior). 52 * 53 * Enabling pmr emulation can be achieved by pointing to memory-backend-file. 54 * For example: 55 * -object memory-backend-file,id=<mem_id>,share=on,mem-path=<file_path>, \ 56 * size=<size> .... -device nvme,...,pmrdev=<mem_id> 57 * 58 * The PMR will use BAR 4/5 exclusively. 59 * 60 * To place controller(s) and namespace(s) to a subsystem, then provide 61 * nvme-subsys device as above. 62 * 63 * nvme subsystem device parameters 64 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 65 * - `nqn` 66 * This parameter provides the `<nqn_id>` part of the string 67 * `nqn.2019-08.org.qemu:<nqn_id>` which will be reported in the SUBNQN field 68 * of subsystem controllers. Note that `<nqn_id>` should be unique per 69 * subsystem, but this is not enforced by QEMU. If not specified, it will 70 * default to the value of the `id` parameter (`<subsys_id>`). 71 * 72 * nvme device parameters 73 * ~~~~~~~~~~~~~~~~~~~~~~ 74 * - `subsys` 75 * Specifying this parameter attaches the controller to the subsystem and 76 * the SUBNQN field in the controller will report the NQN of the subsystem 77 * device. This also enables multi controller capability represented in 78 * Identify Controller data structure in CMIC (Controller Multi-path I/O and 79 * Namespace Sharing Capabilities). 80 * 81 * - `aerl` 82 * The Asynchronous Event Request Limit (AERL). Indicates the maximum number 83 * of concurrently outstanding Asynchronous Event Request commands support 84 * by the controller. This is a 0's based value. 85 * 86 * - `aer_max_queued` 87 * This is the maximum number of events that the device will enqueue for 88 * completion when there are no outstanding AERs. When the maximum number of 89 * enqueued events are reached, subsequent events will be dropped. 90 * 91 * - `mdts` 92 * Indicates the maximum data transfer size for a command that transfers data 93 * between host-accessible memory and the controller. The value is specified 94 * as a power of two (2^n) and is in units of the minimum memory page size 95 * (CAP.MPSMIN). The default value is 7 (i.e. 512 KiB). 96 * 97 * - `vsl` 98 * Indicates the maximum data size limit for the Verify command. Like `mdts`, 99 * this value is specified as a power of two (2^n) and is in units of the 100 * minimum memory page size (CAP.MPSMIN). The default value is 7 (i.e. 512 101 * KiB). 102 * 103 * - `zoned.zasl` 104 * Indicates the maximum data transfer size for the Zone Append command. Like 105 * `mdts`, the value is specified as a power of two (2^n) and is in units of 106 * the minimum memory page size (CAP.MPSMIN). The default value is 0 (i.e. 107 * defaulting to the value of `mdts`). 108 * 109 * - `zoned.auto_transition` 110 * Indicates if zones in zone state implicitly opened can be automatically 111 * transitioned to zone state closed for resource management purposes. 112 * Defaults to 'on'. 113 * 114 * - `sriov_max_vfs` 115 * Indicates the maximum number of PCIe virtual functions supported 116 * by the controller. The default value is 0. Specifying a non-zero value 117 * enables reporting of both SR-IOV and ARI capabilities by the NVMe device. 118 * Virtual function controllers will not report SR-IOV capability. 119 * 120 * NOTE: Single Root I/O Virtualization support is experimental. 121 * All the related parameters may be subject to change. 122 * 123 * - `sriov_vq_flexible` 124 * Indicates the total number of flexible queue resources assignable to all 125 * the secondary controllers. Implicitly sets the number of primary 126 * controller's private resources to `(max_ioqpairs - sriov_vq_flexible)`. 127 * 128 * - `sriov_vi_flexible` 129 * Indicates the total number of flexible interrupt resources assignable to 130 * all the secondary controllers. Implicitly sets the number of primary 131 * controller's private resources to `(msix_qsize - sriov_vi_flexible)`. 132 * 133 * - `sriov_max_vi_per_vf` 134 * Indicates the maximum number of virtual interrupt resources assignable 135 * to a secondary controller. The default 0 resolves to 136 * `(sriov_vi_flexible / sriov_max_vfs)`. 137 * 138 * - `sriov_max_vq_per_vf` 139 * Indicates the maximum number of virtual queue resources assignable to 140 * a secondary controller. The default 0 resolves to 141 * `(sriov_vq_flexible / sriov_max_vfs)`. 142 * 143 * nvme namespace device parameters 144 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 145 * - `shared` 146 * When the parent nvme device (as defined explicitly by the 'bus' parameter 147 * or implicitly by the most recently defined NvmeBus) is linked to an 148 * nvme-subsys device, the namespace will be attached to all controllers in 149 * the subsystem. If set to 'off' (the default), the namespace will remain a 150 * private namespace and may only be attached to a single controller at a 151 * time. 152 * 153 * - `detached` 154 * This parameter is only valid together with the `subsys` parameter. If left 155 * at the default value (`false/off`), the namespace will be attached to all 156 * controllers in the NVMe subsystem at boot-up. If set to `true/on`, the 157 * namespace will be available in the subsystem but not attached to any 158 * controllers. 159 * 160 * Setting `zoned` to true selects Zoned Command Set at the namespace. 161 * In this case, the following namespace properties are available to configure 162 * zoned operation: 163 * zoned.zone_size=<zone size in bytes, default: 128MiB> 164 * The number may be followed by K, M, G as in kilo-, mega- or giga-. 165 * 166 * zoned.zone_capacity=<zone capacity in bytes, default: zone size> 167 * The value 0 (default) forces zone capacity to be the same as zone 168 * size. The value of this property may not exceed zone size. 169 * 170 * zoned.descr_ext_size=<zone descriptor extension size, default 0> 171 * This value needs to be specified in 64B units. If it is zero, 172 * namespace(s) will not support zone descriptor extensions. 173 * 174 * zoned.max_active=<Maximum Active Resources (zones), default: 0> 175 * The default value means there is no limit to the number of 176 * concurrently active zones. 177 * 178 * zoned.max_open=<Maximum Open Resources (zones), default: 0> 179 * The default value means there is no limit to the number of 180 * concurrently open zones. 181 * 182 * zoned.cross_read=<enable RAZB, default: false> 183 * Setting this property to true enables Read Across Zone Boundaries. 184 */ 185 186 #include "qemu/osdep.h" 187 #include "qemu/cutils.h" 188 #include "qemu/error-report.h" 189 #include "qemu/log.h" 190 #include "qemu/units.h" 191 #include "qemu/range.h" 192 #include "qapi/error.h" 193 #include "qapi/visitor.h" 194 #include "sysemu/sysemu.h" 195 #include "sysemu/block-backend.h" 196 #include "sysemu/hostmem.h" 197 #include "hw/pci/msix.h" 198 #include "hw/pci/pcie_sriov.h" 199 #include "migration/vmstate.h" 200 201 #include "nvme.h" 202 #include "dif.h" 203 #include "trace.h" 204 205 #define NVME_MAX_IOQPAIRS 0xffff 206 #define NVME_DB_SIZE 4 207 #define NVME_SPEC_VER 0x00010400 208 #define NVME_CMB_BIR 2 209 #define NVME_PMR_BIR 4 210 #define NVME_TEMPERATURE 0x143 211 #define NVME_TEMPERATURE_WARNING 0x157 212 #define NVME_TEMPERATURE_CRITICAL 0x175 213 #define NVME_NUM_FW_SLOTS 1 214 #define NVME_DEFAULT_MAX_ZA_SIZE (128 * KiB) 215 #define NVME_MAX_VFS 127 216 #define NVME_VF_RES_GRANULARITY 1 217 #define NVME_VF_OFFSET 0x1 218 #define NVME_VF_STRIDE 1 219 220 #define NVME_GUEST_ERR(trace, fmt, ...) \ 221 do { \ 222 (trace_##trace)(__VA_ARGS__); \ 223 qemu_log_mask(LOG_GUEST_ERROR, #trace \ 224 " in %s: " fmt "\n", __func__, ## __VA_ARGS__); \ 225 } while (0) 226 227 static const bool nvme_feature_support[NVME_FID_MAX] = { 228 [NVME_ARBITRATION] = true, 229 [NVME_POWER_MANAGEMENT] = true, 230 [NVME_TEMPERATURE_THRESHOLD] = true, 231 [NVME_ERROR_RECOVERY] = true, 232 [NVME_VOLATILE_WRITE_CACHE] = true, 233 [NVME_NUMBER_OF_QUEUES] = true, 234 [NVME_INTERRUPT_COALESCING] = true, 235 [NVME_INTERRUPT_VECTOR_CONF] = true, 236 [NVME_WRITE_ATOMICITY] = true, 237 [NVME_ASYNCHRONOUS_EVENT_CONF] = true, 238 [NVME_TIMESTAMP] = true, 239 [NVME_HOST_BEHAVIOR_SUPPORT] = true, 240 [NVME_COMMAND_SET_PROFILE] = true, 241 [NVME_FDP_MODE] = true, 242 [NVME_FDP_EVENTS] = true, 243 }; 244 245 static const uint32_t nvme_feature_cap[NVME_FID_MAX] = { 246 [NVME_TEMPERATURE_THRESHOLD] = NVME_FEAT_CAP_CHANGE, 247 [NVME_ERROR_RECOVERY] = NVME_FEAT_CAP_CHANGE | NVME_FEAT_CAP_NS, 248 [NVME_VOLATILE_WRITE_CACHE] = NVME_FEAT_CAP_CHANGE, 249 [NVME_NUMBER_OF_QUEUES] = NVME_FEAT_CAP_CHANGE, 250 [NVME_ASYNCHRONOUS_EVENT_CONF] = NVME_FEAT_CAP_CHANGE, 251 [NVME_TIMESTAMP] = NVME_FEAT_CAP_CHANGE, 252 [NVME_HOST_BEHAVIOR_SUPPORT] = NVME_FEAT_CAP_CHANGE, 253 [NVME_COMMAND_SET_PROFILE] = NVME_FEAT_CAP_CHANGE, 254 [NVME_FDP_MODE] = NVME_FEAT_CAP_CHANGE, 255 [NVME_FDP_EVENTS] = NVME_FEAT_CAP_CHANGE | NVME_FEAT_CAP_NS, 256 }; 257 258 static const uint32_t nvme_cse_acs[256] = { 259 [NVME_ADM_CMD_DELETE_SQ] = NVME_CMD_EFF_CSUPP, 260 [NVME_ADM_CMD_CREATE_SQ] = NVME_CMD_EFF_CSUPP, 261 [NVME_ADM_CMD_GET_LOG_PAGE] = NVME_CMD_EFF_CSUPP, 262 [NVME_ADM_CMD_DELETE_CQ] = NVME_CMD_EFF_CSUPP, 263 [NVME_ADM_CMD_CREATE_CQ] = NVME_CMD_EFF_CSUPP, 264 [NVME_ADM_CMD_IDENTIFY] = NVME_CMD_EFF_CSUPP, 265 [NVME_ADM_CMD_ABORT] = NVME_CMD_EFF_CSUPP, 266 [NVME_ADM_CMD_SET_FEATURES] = NVME_CMD_EFF_CSUPP, 267 [NVME_ADM_CMD_GET_FEATURES] = NVME_CMD_EFF_CSUPP, 268 [NVME_ADM_CMD_ASYNC_EV_REQ] = NVME_CMD_EFF_CSUPP, 269 [NVME_ADM_CMD_NS_ATTACHMENT] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_NIC, 270 [NVME_ADM_CMD_VIRT_MNGMT] = NVME_CMD_EFF_CSUPP, 271 [NVME_ADM_CMD_DBBUF_CONFIG] = NVME_CMD_EFF_CSUPP, 272 [NVME_ADM_CMD_FORMAT_NVM] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, 273 [NVME_ADM_CMD_DIRECTIVE_RECV] = NVME_CMD_EFF_CSUPP, 274 [NVME_ADM_CMD_DIRECTIVE_SEND] = NVME_CMD_EFF_CSUPP, 275 }; 276 277 static const uint32_t nvme_cse_iocs_none[256]; 278 279 static const uint32_t nvme_cse_iocs_nvm[256] = { 280 [NVME_CMD_FLUSH] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, 281 [NVME_CMD_WRITE_ZEROES] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, 282 [NVME_CMD_WRITE] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, 283 [NVME_CMD_READ] = NVME_CMD_EFF_CSUPP, 284 [NVME_CMD_DSM] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, 285 [NVME_CMD_VERIFY] = NVME_CMD_EFF_CSUPP, 286 [NVME_CMD_COPY] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, 287 [NVME_CMD_COMPARE] = NVME_CMD_EFF_CSUPP, 288 [NVME_CMD_IO_MGMT_RECV] = NVME_CMD_EFF_CSUPP, 289 [NVME_CMD_IO_MGMT_SEND] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, 290 }; 291 292 static const uint32_t nvme_cse_iocs_zoned[256] = { 293 [NVME_CMD_FLUSH] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, 294 [NVME_CMD_WRITE_ZEROES] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, 295 [NVME_CMD_WRITE] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, 296 [NVME_CMD_READ] = NVME_CMD_EFF_CSUPP, 297 [NVME_CMD_DSM] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, 298 [NVME_CMD_VERIFY] = NVME_CMD_EFF_CSUPP, 299 [NVME_CMD_COPY] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, 300 [NVME_CMD_COMPARE] = NVME_CMD_EFF_CSUPP, 301 [NVME_CMD_ZONE_APPEND] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, 302 [NVME_CMD_ZONE_MGMT_SEND] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, 303 [NVME_CMD_ZONE_MGMT_RECV] = NVME_CMD_EFF_CSUPP, 304 }; 305 306 static void nvme_process_sq(void *opaque); 307 static void nvme_ctrl_reset(NvmeCtrl *n, NvmeResetType rst); 308 static inline uint64_t nvme_get_timestamp(const NvmeCtrl *n); 309 310 static uint16_t nvme_sqid(NvmeRequest *req) 311 { 312 return le16_to_cpu(req->sq->sqid); 313 } 314 315 static inline uint16_t nvme_make_pid(NvmeNamespace *ns, uint16_t rg, 316 uint16_t ph) 317 { 318 uint16_t rgif = ns->endgrp->fdp.rgif; 319 320 if (!rgif) { 321 return ph; 322 } 323 324 return (rg << (16 - rgif)) | ph; 325 } 326 327 static inline bool nvme_ph_valid(NvmeNamespace *ns, uint16_t ph) 328 { 329 return ph < ns->fdp.nphs; 330 } 331 332 static inline bool nvme_rg_valid(NvmeEnduranceGroup *endgrp, uint16_t rg) 333 { 334 return rg < endgrp->fdp.nrg; 335 } 336 337 static inline uint16_t nvme_pid2ph(NvmeNamespace *ns, uint16_t pid) 338 { 339 uint16_t rgif = ns->endgrp->fdp.rgif; 340 341 if (!rgif) { 342 return pid; 343 } 344 345 return pid & ((1 << (15 - rgif)) - 1); 346 } 347 348 static inline uint16_t nvme_pid2rg(NvmeNamespace *ns, uint16_t pid) 349 { 350 uint16_t rgif = ns->endgrp->fdp.rgif; 351 352 if (!rgif) { 353 return 0; 354 } 355 356 return pid >> (16 - rgif); 357 } 358 359 static inline bool nvme_parse_pid(NvmeNamespace *ns, uint16_t pid, 360 uint16_t *ph, uint16_t *rg) 361 { 362 *rg = nvme_pid2rg(ns, pid); 363 *ph = nvme_pid2ph(ns, pid); 364 365 return nvme_ph_valid(ns, *ph) && nvme_rg_valid(ns->endgrp, *rg); 366 } 367 368 static void nvme_assign_zone_state(NvmeNamespace *ns, NvmeZone *zone, 369 NvmeZoneState state) 370 { 371 if (QTAILQ_IN_USE(zone, entry)) { 372 switch (nvme_get_zone_state(zone)) { 373 case NVME_ZONE_STATE_EXPLICITLY_OPEN: 374 QTAILQ_REMOVE(&ns->exp_open_zones, zone, entry); 375 break; 376 case NVME_ZONE_STATE_IMPLICITLY_OPEN: 377 QTAILQ_REMOVE(&ns->imp_open_zones, zone, entry); 378 break; 379 case NVME_ZONE_STATE_CLOSED: 380 QTAILQ_REMOVE(&ns->closed_zones, zone, entry); 381 break; 382 case NVME_ZONE_STATE_FULL: 383 QTAILQ_REMOVE(&ns->full_zones, zone, entry); 384 default: 385 ; 386 } 387 } 388 389 nvme_set_zone_state(zone, state); 390 391 switch (state) { 392 case NVME_ZONE_STATE_EXPLICITLY_OPEN: 393 QTAILQ_INSERT_TAIL(&ns->exp_open_zones, zone, entry); 394 break; 395 case NVME_ZONE_STATE_IMPLICITLY_OPEN: 396 QTAILQ_INSERT_TAIL(&ns->imp_open_zones, zone, entry); 397 break; 398 case NVME_ZONE_STATE_CLOSED: 399 QTAILQ_INSERT_TAIL(&ns->closed_zones, zone, entry); 400 break; 401 case NVME_ZONE_STATE_FULL: 402 QTAILQ_INSERT_TAIL(&ns->full_zones, zone, entry); 403 case NVME_ZONE_STATE_READ_ONLY: 404 break; 405 default: 406 zone->d.za = 0; 407 } 408 } 409 410 static uint16_t nvme_zns_check_resources(NvmeNamespace *ns, uint32_t act, 411 uint32_t opn, uint32_t zrwa) 412 { 413 if (ns->params.max_active_zones != 0 && 414 ns->nr_active_zones + act > ns->params.max_active_zones) { 415 trace_pci_nvme_err_insuff_active_res(ns->params.max_active_zones); 416 return NVME_ZONE_TOO_MANY_ACTIVE | NVME_DNR; 417 } 418 419 if (ns->params.max_open_zones != 0 && 420 ns->nr_open_zones + opn > ns->params.max_open_zones) { 421 trace_pci_nvme_err_insuff_open_res(ns->params.max_open_zones); 422 return NVME_ZONE_TOO_MANY_OPEN | NVME_DNR; 423 } 424 425 if (zrwa > ns->zns.numzrwa) { 426 return NVME_NOZRWA | NVME_DNR; 427 } 428 429 return NVME_SUCCESS; 430 } 431 432 /* 433 * Check if we can open a zone without exceeding open/active limits. 434 * AOR stands for "Active and Open Resources" (see TP 4053 section 2.5). 435 */ 436 static uint16_t nvme_aor_check(NvmeNamespace *ns, uint32_t act, uint32_t opn) 437 { 438 return nvme_zns_check_resources(ns, act, opn, 0); 439 } 440 441 static NvmeFdpEvent *nvme_fdp_alloc_event(NvmeCtrl *n, NvmeFdpEventBuffer *ebuf) 442 { 443 NvmeFdpEvent *ret = NULL; 444 bool is_full = ebuf->next == ebuf->start && ebuf->nelems; 445 446 ret = &ebuf->events[ebuf->next++]; 447 if (unlikely(ebuf->next == NVME_FDP_MAX_EVENTS)) { 448 ebuf->next = 0; 449 } 450 if (is_full) { 451 ebuf->start = ebuf->next; 452 } else { 453 ebuf->nelems++; 454 } 455 456 memset(ret, 0, sizeof(NvmeFdpEvent)); 457 ret->timestamp = nvme_get_timestamp(n); 458 459 return ret; 460 } 461 462 static inline int log_event(NvmeRuHandle *ruh, uint8_t event_type) 463 { 464 return (ruh->event_filter >> nvme_fdp_evf_shifts[event_type]) & 0x1; 465 } 466 467 static bool nvme_update_ruh(NvmeCtrl *n, NvmeNamespace *ns, uint16_t pid) 468 { 469 NvmeEnduranceGroup *endgrp = ns->endgrp; 470 NvmeRuHandle *ruh; 471 NvmeReclaimUnit *ru; 472 NvmeFdpEvent *e = NULL; 473 uint16_t ph, rg, ruhid; 474 475 if (!nvme_parse_pid(ns, pid, &ph, &rg)) { 476 return false; 477 } 478 479 ruhid = ns->fdp.phs[ph]; 480 481 ruh = &endgrp->fdp.ruhs[ruhid]; 482 ru = &ruh->rus[rg]; 483 484 if (ru->ruamw) { 485 if (log_event(ruh, FDP_EVT_RU_NOT_FULLY_WRITTEN)) { 486 e = nvme_fdp_alloc_event(n, &endgrp->fdp.host_events); 487 e->type = FDP_EVT_RU_NOT_FULLY_WRITTEN; 488 e->flags = FDPEF_PIV | FDPEF_NSIDV | FDPEF_LV; 489 e->pid = cpu_to_le16(pid); 490 e->nsid = cpu_to_le32(ns->params.nsid); 491 e->rgid = cpu_to_le16(rg); 492 e->ruhid = cpu_to_le16(ruhid); 493 } 494 495 /* log (eventual) GC overhead of prematurely swapping the RU */ 496 nvme_fdp_stat_inc(&endgrp->fdp.mbmw, nvme_l2b(ns, ru->ruamw)); 497 } 498 499 ru->ruamw = ruh->ruamw; 500 501 return true; 502 } 503 504 static bool nvme_addr_is_cmb(NvmeCtrl *n, hwaddr addr) 505 { 506 hwaddr hi, lo; 507 508 if (!n->cmb.cmse) { 509 return false; 510 } 511 512 lo = n->params.legacy_cmb ? n->cmb.mem.addr : n->cmb.cba; 513 hi = lo + int128_get64(n->cmb.mem.size); 514 515 return addr >= lo && addr < hi; 516 } 517 518 static inline void *nvme_addr_to_cmb(NvmeCtrl *n, hwaddr addr) 519 { 520 hwaddr base = n->params.legacy_cmb ? n->cmb.mem.addr : n->cmb.cba; 521 return &n->cmb.buf[addr - base]; 522 } 523 524 static bool nvme_addr_is_pmr(NvmeCtrl *n, hwaddr addr) 525 { 526 hwaddr hi; 527 528 if (!n->pmr.cmse) { 529 return false; 530 } 531 532 hi = n->pmr.cba + int128_get64(n->pmr.dev->mr.size); 533 534 return addr >= n->pmr.cba && addr < hi; 535 } 536 537 static inline void *nvme_addr_to_pmr(NvmeCtrl *n, hwaddr addr) 538 { 539 return memory_region_get_ram_ptr(&n->pmr.dev->mr) + (addr - n->pmr.cba); 540 } 541 542 static inline bool nvme_addr_is_iomem(NvmeCtrl *n, hwaddr addr) 543 { 544 hwaddr hi, lo; 545 546 /* 547 * The purpose of this check is to guard against invalid "local" access to 548 * the iomem (i.e. controller registers). Thus, we check against the range 549 * covered by the 'bar0' MemoryRegion since that is currently composed of 550 * two subregions (the NVMe "MBAR" and the MSI-X table/pba). Note, however, 551 * that if the device model is ever changed to allow the CMB to be located 552 * in BAR0 as well, then this must be changed. 553 */ 554 lo = n->bar0.addr; 555 hi = lo + int128_get64(n->bar0.size); 556 557 return addr >= lo && addr < hi; 558 } 559 560 static int nvme_addr_read(NvmeCtrl *n, hwaddr addr, void *buf, int size) 561 { 562 hwaddr hi = addr + size - 1; 563 if (hi < addr) { 564 return 1; 565 } 566 567 if (n->bar.cmbsz && nvme_addr_is_cmb(n, addr) && nvme_addr_is_cmb(n, hi)) { 568 memcpy(buf, nvme_addr_to_cmb(n, addr), size); 569 return 0; 570 } 571 572 if (nvme_addr_is_pmr(n, addr) && nvme_addr_is_pmr(n, hi)) { 573 memcpy(buf, nvme_addr_to_pmr(n, addr), size); 574 return 0; 575 } 576 577 return pci_dma_read(PCI_DEVICE(n), addr, buf, size); 578 } 579 580 static int nvme_addr_write(NvmeCtrl *n, hwaddr addr, const void *buf, int size) 581 { 582 hwaddr hi = addr + size - 1; 583 if (hi < addr) { 584 return 1; 585 } 586 587 if (n->bar.cmbsz && nvme_addr_is_cmb(n, addr) && nvme_addr_is_cmb(n, hi)) { 588 memcpy(nvme_addr_to_cmb(n, addr), buf, size); 589 return 0; 590 } 591 592 if (nvme_addr_is_pmr(n, addr) && nvme_addr_is_pmr(n, hi)) { 593 memcpy(nvme_addr_to_pmr(n, addr), buf, size); 594 return 0; 595 } 596 597 return pci_dma_write(PCI_DEVICE(n), addr, buf, size); 598 } 599 600 static bool nvme_nsid_valid(NvmeCtrl *n, uint32_t nsid) 601 { 602 return nsid && 603 (nsid == NVME_NSID_BROADCAST || nsid <= NVME_MAX_NAMESPACES); 604 } 605 606 static int nvme_check_sqid(NvmeCtrl *n, uint16_t sqid) 607 { 608 return sqid < n->conf_ioqpairs + 1 && n->sq[sqid] != NULL ? 0 : -1; 609 } 610 611 static int nvme_check_cqid(NvmeCtrl *n, uint16_t cqid) 612 { 613 return cqid < n->conf_ioqpairs + 1 && n->cq[cqid] != NULL ? 0 : -1; 614 } 615 616 static void nvme_inc_cq_tail(NvmeCQueue *cq) 617 { 618 cq->tail++; 619 if (cq->tail >= cq->size) { 620 cq->tail = 0; 621 cq->phase = !cq->phase; 622 } 623 } 624 625 static void nvme_inc_sq_head(NvmeSQueue *sq) 626 { 627 sq->head = (sq->head + 1) % sq->size; 628 } 629 630 static uint8_t nvme_cq_full(NvmeCQueue *cq) 631 { 632 return (cq->tail + 1) % cq->size == cq->head; 633 } 634 635 static uint8_t nvme_sq_empty(NvmeSQueue *sq) 636 { 637 return sq->head == sq->tail; 638 } 639 640 static void nvme_irq_check(NvmeCtrl *n) 641 { 642 PCIDevice *pci = PCI_DEVICE(n); 643 uint32_t intms = ldl_le_p(&n->bar.intms); 644 645 if (msix_enabled(pci)) { 646 return; 647 } 648 if (~intms & n->irq_status) { 649 pci_irq_assert(pci); 650 } else { 651 pci_irq_deassert(pci); 652 } 653 } 654 655 static void nvme_irq_assert(NvmeCtrl *n, NvmeCQueue *cq) 656 { 657 PCIDevice *pci = PCI_DEVICE(n); 658 659 if (cq->irq_enabled) { 660 if (msix_enabled(pci)) { 661 trace_pci_nvme_irq_msix(cq->vector); 662 msix_notify(pci, cq->vector); 663 } else { 664 trace_pci_nvme_irq_pin(); 665 assert(cq->vector < 32); 666 n->irq_status |= 1 << cq->vector; 667 nvme_irq_check(n); 668 } 669 } else { 670 trace_pci_nvme_irq_masked(); 671 } 672 } 673 674 static void nvme_irq_deassert(NvmeCtrl *n, NvmeCQueue *cq) 675 { 676 if (cq->irq_enabled) { 677 if (msix_enabled(PCI_DEVICE(n))) { 678 return; 679 } else { 680 assert(cq->vector < 32); 681 if (!n->cq_pending) { 682 n->irq_status &= ~(1 << cq->vector); 683 } 684 nvme_irq_check(n); 685 } 686 } 687 } 688 689 static void nvme_req_clear(NvmeRequest *req) 690 { 691 req->ns = NULL; 692 req->opaque = NULL; 693 req->aiocb = NULL; 694 memset(&req->cqe, 0x0, sizeof(req->cqe)); 695 req->status = NVME_SUCCESS; 696 } 697 698 static inline void nvme_sg_init(NvmeCtrl *n, NvmeSg *sg, bool dma) 699 { 700 if (dma) { 701 pci_dma_sglist_init(&sg->qsg, PCI_DEVICE(n), 0); 702 sg->flags = NVME_SG_DMA; 703 } else { 704 qemu_iovec_init(&sg->iov, 0); 705 } 706 707 sg->flags |= NVME_SG_ALLOC; 708 } 709 710 static inline void nvme_sg_unmap(NvmeSg *sg) 711 { 712 if (!(sg->flags & NVME_SG_ALLOC)) { 713 return; 714 } 715 716 if (sg->flags & NVME_SG_DMA) { 717 qemu_sglist_destroy(&sg->qsg); 718 } else { 719 qemu_iovec_destroy(&sg->iov); 720 } 721 722 memset(sg, 0x0, sizeof(*sg)); 723 } 724 725 /* 726 * When metadata is transfered as extended LBAs, the DPTR mapped into `sg` 727 * holds both data and metadata. This function splits the data and metadata 728 * into two separate QSG/IOVs. 729 */ 730 static void nvme_sg_split(NvmeSg *sg, NvmeNamespace *ns, NvmeSg *data, 731 NvmeSg *mdata) 732 { 733 NvmeSg *dst = data; 734 uint32_t trans_len, count = ns->lbasz; 735 uint64_t offset = 0; 736 bool dma = sg->flags & NVME_SG_DMA; 737 size_t sge_len; 738 size_t sg_len = dma ? sg->qsg.size : sg->iov.size; 739 int sg_idx = 0; 740 741 assert(sg->flags & NVME_SG_ALLOC); 742 743 while (sg_len) { 744 sge_len = dma ? sg->qsg.sg[sg_idx].len : sg->iov.iov[sg_idx].iov_len; 745 746 trans_len = MIN(sg_len, count); 747 trans_len = MIN(trans_len, sge_len - offset); 748 749 if (dst) { 750 if (dma) { 751 qemu_sglist_add(&dst->qsg, sg->qsg.sg[sg_idx].base + offset, 752 trans_len); 753 } else { 754 qemu_iovec_add(&dst->iov, 755 sg->iov.iov[sg_idx].iov_base + offset, 756 trans_len); 757 } 758 } 759 760 sg_len -= trans_len; 761 count -= trans_len; 762 offset += trans_len; 763 764 if (count == 0) { 765 dst = (dst == data) ? mdata : data; 766 count = (dst == data) ? ns->lbasz : ns->lbaf.ms; 767 } 768 769 if (sge_len == offset) { 770 offset = 0; 771 sg_idx++; 772 } 773 } 774 } 775 776 static uint16_t nvme_map_addr_cmb(NvmeCtrl *n, QEMUIOVector *iov, hwaddr addr, 777 size_t len) 778 { 779 if (!len) { 780 return NVME_SUCCESS; 781 } 782 783 trace_pci_nvme_map_addr_cmb(addr, len); 784 785 if (!nvme_addr_is_cmb(n, addr) || !nvme_addr_is_cmb(n, addr + len - 1)) { 786 return NVME_DATA_TRAS_ERROR; 787 } 788 789 qemu_iovec_add(iov, nvme_addr_to_cmb(n, addr), len); 790 791 return NVME_SUCCESS; 792 } 793 794 static uint16_t nvme_map_addr_pmr(NvmeCtrl *n, QEMUIOVector *iov, hwaddr addr, 795 size_t len) 796 { 797 if (!len) { 798 return NVME_SUCCESS; 799 } 800 801 if (!nvme_addr_is_pmr(n, addr) || !nvme_addr_is_pmr(n, addr + len - 1)) { 802 return NVME_DATA_TRAS_ERROR; 803 } 804 805 qemu_iovec_add(iov, nvme_addr_to_pmr(n, addr), len); 806 807 return NVME_SUCCESS; 808 } 809 810 static uint16_t nvme_map_addr(NvmeCtrl *n, NvmeSg *sg, hwaddr addr, size_t len) 811 { 812 bool cmb = false, pmr = false; 813 814 if (!len) { 815 return NVME_SUCCESS; 816 } 817 818 trace_pci_nvme_map_addr(addr, len); 819 820 if (nvme_addr_is_iomem(n, addr)) { 821 return NVME_DATA_TRAS_ERROR; 822 } 823 824 if (nvme_addr_is_cmb(n, addr)) { 825 cmb = true; 826 } else if (nvme_addr_is_pmr(n, addr)) { 827 pmr = true; 828 } 829 830 if (cmb || pmr) { 831 if (sg->flags & NVME_SG_DMA) { 832 return NVME_INVALID_USE_OF_CMB | NVME_DNR; 833 } 834 835 if (sg->iov.niov + 1 > IOV_MAX) { 836 goto max_mappings_exceeded; 837 } 838 839 if (cmb) { 840 return nvme_map_addr_cmb(n, &sg->iov, addr, len); 841 } else { 842 return nvme_map_addr_pmr(n, &sg->iov, addr, len); 843 } 844 } 845 846 if (!(sg->flags & NVME_SG_DMA)) { 847 return NVME_INVALID_USE_OF_CMB | NVME_DNR; 848 } 849 850 if (sg->qsg.nsg + 1 > IOV_MAX) { 851 goto max_mappings_exceeded; 852 } 853 854 qemu_sglist_add(&sg->qsg, addr, len); 855 856 return NVME_SUCCESS; 857 858 max_mappings_exceeded: 859 NVME_GUEST_ERR(pci_nvme_ub_too_many_mappings, 860 "number of mappings exceed 1024"); 861 return NVME_INTERNAL_DEV_ERROR | NVME_DNR; 862 } 863 864 static inline bool nvme_addr_is_dma(NvmeCtrl *n, hwaddr addr) 865 { 866 return !(nvme_addr_is_cmb(n, addr) || nvme_addr_is_pmr(n, addr)); 867 } 868 869 static uint16_t nvme_map_prp(NvmeCtrl *n, NvmeSg *sg, uint64_t prp1, 870 uint64_t prp2, uint32_t len) 871 { 872 hwaddr trans_len = n->page_size - (prp1 % n->page_size); 873 trans_len = MIN(len, trans_len); 874 int num_prps = (len >> n->page_bits) + 1; 875 uint16_t status; 876 int ret; 877 878 trace_pci_nvme_map_prp(trans_len, len, prp1, prp2, num_prps); 879 880 nvme_sg_init(n, sg, nvme_addr_is_dma(n, prp1)); 881 882 status = nvme_map_addr(n, sg, prp1, trans_len); 883 if (status) { 884 goto unmap; 885 } 886 887 len -= trans_len; 888 if (len) { 889 if (len > n->page_size) { 890 uint64_t prp_list[n->max_prp_ents]; 891 uint32_t nents, prp_trans; 892 int i = 0; 893 894 /* 895 * The first PRP list entry, pointed to by PRP2 may contain offset. 896 * Hence, we need to calculate the number of entries in based on 897 * that offset. 898 */ 899 nents = (n->page_size - (prp2 & (n->page_size - 1))) >> 3; 900 prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t); 901 ret = nvme_addr_read(n, prp2, (void *)prp_list, prp_trans); 902 if (ret) { 903 trace_pci_nvme_err_addr_read(prp2); 904 status = NVME_DATA_TRAS_ERROR; 905 goto unmap; 906 } 907 while (len != 0) { 908 uint64_t prp_ent = le64_to_cpu(prp_list[i]); 909 910 if (i == nents - 1 && len > n->page_size) { 911 if (unlikely(prp_ent & (n->page_size - 1))) { 912 trace_pci_nvme_err_invalid_prplist_ent(prp_ent); 913 status = NVME_INVALID_PRP_OFFSET | NVME_DNR; 914 goto unmap; 915 } 916 917 i = 0; 918 nents = (len + n->page_size - 1) >> n->page_bits; 919 nents = MIN(nents, n->max_prp_ents); 920 prp_trans = nents * sizeof(uint64_t); 921 ret = nvme_addr_read(n, prp_ent, (void *)prp_list, 922 prp_trans); 923 if (ret) { 924 trace_pci_nvme_err_addr_read(prp_ent); 925 status = NVME_DATA_TRAS_ERROR; 926 goto unmap; 927 } 928 prp_ent = le64_to_cpu(prp_list[i]); 929 } 930 931 if (unlikely(prp_ent & (n->page_size - 1))) { 932 trace_pci_nvme_err_invalid_prplist_ent(prp_ent); 933 status = NVME_INVALID_PRP_OFFSET | NVME_DNR; 934 goto unmap; 935 } 936 937 trans_len = MIN(len, n->page_size); 938 status = nvme_map_addr(n, sg, prp_ent, trans_len); 939 if (status) { 940 goto unmap; 941 } 942 943 len -= trans_len; 944 i++; 945 } 946 } else { 947 if (unlikely(prp2 & (n->page_size - 1))) { 948 trace_pci_nvme_err_invalid_prp2_align(prp2); 949 status = NVME_INVALID_PRP_OFFSET | NVME_DNR; 950 goto unmap; 951 } 952 status = nvme_map_addr(n, sg, prp2, len); 953 if (status) { 954 goto unmap; 955 } 956 } 957 } 958 959 return NVME_SUCCESS; 960 961 unmap: 962 nvme_sg_unmap(sg); 963 return status; 964 } 965 966 /* 967 * Map 'nsgld' data descriptors from 'segment'. The function will subtract the 968 * number of bytes mapped in len. 969 */ 970 static uint16_t nvme_map_sgl_data(NvmeCtrl *n, NvmeSg *sg, 971 NvmeSglDescriptor *segment, uint64_t nsgld, 972 size_t *len, NvmeCmd *cmd) 973 { 974 dma_addr_t addr, trans_len; 975 uint32_t dlen; 976 uint16_t status; 977 978 for (int i = 0; i < nsgld; i++) { 979 uint8_t type = NVME_SGL_TYPE(segment[i].type); 980 981 switch (type) { 982 case NVME_SGL_DESCR_TYPE_DATA_BLOCK: 983 break; 984 case NVME_SGL_DESCR_TYPE_SEGMENT: 985 case NVME_SGL_DESCR_TYPE_LAST_SEGMENT: 986 return NVME_INVALID_NUM_SGL_DESCRS | NVME_DNR; 987 default: 988 return NVME_SGL_DESCR_TYPE_INVALID | NVME_DNR; 989 } 990 991 dlen = le32_to_cpu(segment[i].len); 992 993 if (!dlen) { 994 continue; 995 } 996 997 if (*len == 0) { 998 /* 999 * All data has been mapped, but the SGL contains additional 1000 * segments and/or descriptors. The controller might accept 1001 * ignoring the rest of the SGL. 1002 */ 1003 uint32_t sgls = le32_to_cpu(n->id_ctrl.sgls); 1004 if (sgls & NVME_CTRL_SGLS_EXCESS_LENGTH) { 1005 break; 1006 } 1007 1008 trace_pci_nvme_err_invalid_sgl_excess_length(dlen); 1009 return NVME_DATA_SGL_LEN_INVALID | NVME_DNR; 1010 } 1011 1012 trans_len = MIN(*len, dlen); 1013 1014 addr = le64_to_cpu(segment[i].addr); 1015 1016 if (UINT64_MAX - addr < dlen) { 1017 return NVME_DATA_SGL_LEN_INVALID | NVME_DNR; 1018 } 1019 1020 status = nvme_map_addr(n, sg, addr, trans_len); 1021 if (status) { 1022 return status; 1023 } 1024 1025 *len -= trans_len; 1026 } 1027 1028 return NVME_SUCCESS; 1029 } 1030 1031 static uint16_t nvme_map_sgl(NvmeCtrl *n, NvmeSg *sg, NvmeSglDescriptor sgl, 1032 size_t len, NvmeCmd *cmd) 1033 { 1034 /* 1035 * Read the segment in chunks of 256 descriptors (one 4k page) to avoid 1036 * dynamically allocating a potentially huge SGL. The spec allows the SGL 1037 * to be larger (as in number of bytes required to describe the SGL 1038 * descriptors and segment chain) than the command transfer size, so it is 1039 * not bounded by MDTS. 1040 */ 1041 const int SEG_CHUNK_SIZE = 256; 1042 1043 NvmeSglDescriptor segment[SEG_CHUNK_SIZE], *sgld, *last_sgld; 1044 uint64_t nsgld; 1045 uint32_t seg_len; 1046 uint16_t status; 1047 hwaddr addr; 1048 int ret; 1049 1050 sgld = &sgl; 1051 addr = le64_to_cpu(sgl.addr); 1052 1053 trace_pci_nvme_map_sgl(NVME_SGL_TYPE(sgl.type), len); 1054 1055 nvme_sg_init(n, sg, nvme_addr_is_dma(n, addr)); 1056 1057 /* 1058 * If the entire transfer can be described with a single data block it can 1059 * be mapped directly. 1060 */ 1061 if (NVME_SGL_TYPE(sgl.type) == NVME_SGL_DESCR_TYPE_DATA_BLOCK) { 1062 status = nvme_map_sgl_data(n, sg, sgld, 1, &len, cmd); 1063 if (status) { 1064 goto unmap; 1065 } 1066 1067 goto out; 1068 } 1069 1070 for (;;) { 1071 switch (NVME_SGL_TYPE(sgld->type)) { 1072 case NVME_SGL_DESCR_TYPE_SEGMENT: 1073 case NVME_SGL_DESCR_TYPE_LAST_SEGMENT: 1074 break; 1075 default: 1076 return NVME_INVALID_SGL_SEG_DESCR | NVME_DNR; 1077 } 1078 1079 seg_len = le32_to_cpu(sgld->len); 1080 1081 /* check the length of the (Last) Segment descriptor */ 1082 if (!seg_len || seg_len & 0xf) { 1083 return NVME_INVALID_SGL_SEG_DESCR | NVME_DNR; 1084 } 1085 1086 if (UINT64_MAX - addr < seg_len) { 1087 return NVME_DATA_SGL_LEN_INVALID | NVME_DNR; 1088 } 1089 1090 nsgld = seg_len / sizeof(NvmeSglDescriptor); 1091 1092 while (nsgld > SEG_CHUNK_SIZE) { 1093 if (nvme_addr_read(n, addr, segment, sizeof(segment))) { 1094 trace_pci_nvme_err_addr_read(addr); 1095 status = NVME_DATA_TRAS_ERROR; 1096 goto unmap; 1097 } 1098 1099 status = nvme_map_sgl_data(n, sg, segment, SEG_CHUNK_SIZE, 1100 &len, cmd); 1101 if (status) { 1102 goto unmap; 1103 } 1104 1105 nsgld -= SEG_CHUNK_SIZE; 1106 addr += SEG_CHUNK_SIZE * sizeof(NvmeSglDescriptor); 1107 } 1108 1109 ret = nvme_addr_read(n, addr, segment, nsgld * 1110 sizeof(NvmeSglDescriptor)); 1111 if (ret) { 1112 trace_pci_nvme_err_addr_read(addr); 1113 status = NVME_DATA_TRAS_ERROR; 1114 goto unmap; 1115 } 1116 1117 last_sgld = &segment[nsgld - 1]; 1118 1119 /* 1120 * If the segment ends with a Data Block, then we are done. 1121 */ 1122 if (NVME_SGL_TYPE(last_sgld->type) == NVME_SGL_DESCR_TYPE_DATA_BLOCK) { 1123 status = nvme_map_sgl_data(n, sg, segment, nsgld, &len, cmd); 1124 if (status) { 1125 goto unmap; 1126 } 1127 1128 goto out; 1129 } 1130 1131 /* 1132 * If the last descriptor was not a Data Block, then the current 1133 * segment must not be a Last Segment. 1134 */ 1135 if (NVME_SGL_TYPE(sgld->type) == NVME_SGL_DESCR_TYPE_LAST_SEGMENT) { 1136 status = NVME_INVALID_SGL_SEG_DESCR | NVME_DNR; 1137 goto unmap; 1138 } 1139 1140 sgld = last_sgld; 1141 addr = le64_to_cpu(sgld->addr); 1142 1143 /* 1144 * Do not map the last descriptor; it will be a Segment or Last Segment 1145 * descriptor and is handled by the next iteration. 1146 */ 1147 status = nvme_map_sgl_data(n, sg, segment, nsgld - 1, &len, cmd); 1148 if (status) { 1149 goto unmap; 1150 } 1151 } 1152 1153 out: 1154 /* if there is any residual left in len, the SGL was too short */ 1155 if (len) { 1156 status = NVME_DATA_SGL_LEN_INVALID | NVME_DNR; 1157 goto unmap; 1158 } 1159 1160 return NVME_SUCCESS; 1161 1162 unmap: 1163 nvme_sg_unmap(sg); 1164 return status; 1165 } 1166 1167 uint16_t nvme_map_dptr(NvmeCtrl *n, NvmeSg *sg, size_t len, 1168 NvmeCmd *cmd) 1169 { 1170 uint64_t prp1, prp2; 1171 1172 switch (NVME_CMD_FLAGS_PSDT(cmd->flags)) { 1173 case NVME_PSDT_PRP: 1174 prp1 = le64_to_cpu(cmd->dptr.prp1); 1175 prp2 = le64_to_cpu(cmd->dptr.prp2); 1176 1177 return nvme_map_prp(n, sg, prp1, prp2, len); 1178 case NVME_PSDT_SGL_MPTR_CONTIGUOUS: 1179 case NVME_PSDT_SGL_MPTR_SGL: 1180 return nvme_map_sgl(n, sg, cmd->dptr.sgl, len, cmd); 1181 default: 1182 return NVME_INVALID_FIELD; 1183 } 1184 } 1185 1186 static uint16_t nvme_map_mptr(NvmeCtrl *n, NvmeSg *sg, size_t len, 1187 NvmeCmd *cmd) 1188 { 1189 int psdt = NVME_CMD_FLAGS_PSDT(cmd->flags); 1190 hwaddr mptr = le64_to_cpu(cmd->mptr); 1191 uint16_t status; 1192 1193 if (psdt == NVME_PSDT_SGL_MPTR_SGL) { 1194 NvmeSglDescriptor sgl; 1195 1196 if (nvme_addr_read(n, mptr, &sgl, sizeof(sgl))) { 1197 return NVME_DATA_TRAS_ERROR; 1198 } 1199 1200 status = nvme_map_sgl(n, sg, sgl, len, cmd); 1201 if (status && (status & 0x7ff) == NVME_DATA_SGL_LEN_INVALID) { 1202 status = NVME_MD_SGL_LEN_INVALID | NVME_DNR; 1203 } 1204 1205 return status; 1206 } 1207 1208 nvme_sg_init(n, sg, nvme_addr_is_dma(n, mptr)); 1209 status = nvme_map_addr(n, sg, mptr, len); 1210 if (status) { 1211 nvme_sg_unmap(sg); 1212 } 1213 1214 return status; 1215 } 1216 1217 static uint16_t nvme_map_data(NvmeCtrl *n, uint32_t nlb, NvmeRequest *req) 1218 { 1219 NvmeNamespace *ns = req->ns; 1220 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; 1221 bool pi = !!NVME_ID_NS_DPS_TYPE(ns->id_ns.dps); 1222 bool pract = !!(le16_to_cpu(rw->control) & NVME_RW_PRINFO_PRACT); 1223 size_t len = nvme_l2b(ns, nlb); 1224 uint16_t status; 1225 1226 if (nvme_ns_ext(ns) && 1227 !(pi && pract && ns->lbaf.ms == nvme_pi_tuple_size(ns))) { 1228 NvmeSg sg; 1229 1230 len += nvme_m2b(ns, nlb); 1231 1232 status = nvme_map_dptr(n, &sg, len, &req->cmd); 1233 if (status) { 1234 return status; 1235 } 1236 1237 nvme_sg_init(n, &req->sg, sg.flags & NVME_SG_DMA); 1238 nvme_sg_split(&sg, ns, &req->sg, NULL); 1239 nvme_sg_unmap(&sg); 1240 1241 return NVME_SUCCESS; 1242 } 1243 1244 return nvme_map_dptr(n, &req->sg, len, &req->cmd); 1245 } 1246 1247 static uint16_t nvme_map_mdata(NvmeCtrl *n, uint32_t nlb, NvmeRequest *req) 1248 { 1249 NvmeNamespace *ns = req->ns; 1250 size_t len = nvme_m2b(ns, nlb); 1251 uint16_t status; 1252 1253 if (nvme_ns_ext(ns)) { 1254 NvmeSg sg; 1255 1256 len += nvme_l2b(ns, nlb); 1257 1258 status = nvme_map_dptr(n, &sg, len, &req->cmd); 1259 if (status) { 1260 return status; 1261 } 1262 1263 nvme_sg_init(n, &req->sg, sg.flags & NVME_SG_DMA); 1264 nvme_sg_split(&sg, ns, NULL, &req->sg); 1265 nvme_sg_unmap(&sg); 1266 1267 return NVME_SUCCESS; 1268 } 1269 1270 return nvme_map_mptr(n, &req->sg, len, &req->cmd); 1271 } 1272 1273 static uint16_t nvme_tx_interleaved(NvmeCtrl *n, NvmeSg *sg, uint8_t *ptr, 1274 uint32_t len, uint32_t bytes, 1275 int32_t skip_bytes, int64_t offset, 1276 NvmeTxDirection dir) 1277 { 1278 hwaddr addr; 1279 uint32_t trans_len, count = bytes; 1280 bool dma = sg->flags & NVME_SG_DMA; 1281 int64_t sge_len; 1282 int sg_idx = 0; 1283 int ret; 1284 1285 assert(sg->flags & NVME_SG_ALLOC); 1286 1287 while (len) { 1288 sge_len = dma ? sg->qsg.sg[sg_idx].len : sg->iov.iov[sg_idx].iov_len; 1289 1290 if (sge_len - offset < 0) { 1291 offset -= sge_len; 1292 sg_idx++; 1293 continue; 1294 } 1295 1296 if (sge_len == offset) { 1297 offset = 0; 1298 sg_idx++; 1299 continue; 1300 } 1301 1302 trans_len = MIN(len, count); 1303 trans_len = MIN(trans_len, sge_len - offset); 1304 1305 if (dma) { 1306 addr = sg->qsg.sg[sg_idx].base + offset; 1307 } else { 1308 addr = (hwaddr)(uintptr_t)sg->iov.iov[sg_idx].iov_base + offset; 1309 } 1310 1311 if (dir == NVME_TX_DIRECTION_TO_DEVICE) { 1312 ret = nvme_addr_read(n, addr, ptr, trans_len); 1313 } else { 1314 ret = nvme_addr_write(n, addr, ptr, trans_len); 1315 } 1316 1317 if (ret) { 1318 return NVME_DATA_TRAS_ERROR; 1319 } 1320 1321 ptr += trans_len; 1322 len -= trans_len; 1323 count -= trans_len; 1324 offset += trans_len; 1325 1326 if (count == 0) { 1327 count = bytes; 1328 offset += skip_bytes; 1329 } 1330 } 1331 1332 return NVME_SUCCESS; 1333 } 1334 1335 static uint16_t nvme_tx(NvmeCtrl *n, NvmeSg *sg, void *ptr, uint32_t len, 1336 NvmeTxDirection dir) 1337 { 1338 assert(sg->flags & NVME_SG_ALLOC); 1339 1340 if (sg->flags & NVME_SG_DMA) { 1341 const MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED; 1342 dma_addr_t residual; 1343 1344 if (dir == NVME_TX_DIRECTION_TO_DEVICE) { 1345 dma_buf_write(ptr, len, &residual, &sg->qsg, attrs); 1346 } else { 1347 dma_buf_read(ptr, len, &residual, &sg->qsg, attrs); 1348 } 1349 1350 if (unlikely(residual)) { 1351 trace_pci_nvme_err_invalid_dma(); 1352 return NVME_INVALID_FIELD | NVME_DNR; 1353 } 1354 } else { 1355 size_t bytes; 1356 1357 if (dir == NVME_TX_DIRECTION_TO_DEVICE) { 1358 bytes = qemu_iovec_to_buf(&sg->iov, 0, ptr, len); 1359 } else { 1360 bytes = qemu_iovec_from_buf(&sg->iov, 0, ptr, len); 1361 } 1362 1363 if (unlikely(bytes != len)) { 1364 trace_pci_nvme_err_invalid_dma(); 1365 return NVME_INVALID_FIELD | NVME_DNR; 1366 } 1367 } 1368 1369 return NVME_SUCCESS; 1370 } 1371 1372 static inline uint16_t nvme_c2h(NvmeCtrl *n, void *ptr, uint32_t len, 1373 NvmeRequest *req) 1374 { 1375 uint16_t status; 1376 1377 status = nvme_map_dptr(n, &req->sg, len, &req->cmd); 1378 if (status) { 1379 return status; 1380 } 1381 1382 return nvme_tx(n, &req->sg, ptr, len, NVME_TX_DIRECTION_FROM_DEVICE); 1383 } 1384 1385 static inline uint16_t nvme_h2c(NvmeCtrl *n, void *ptr, uint32_t len, 1386 NvmeRequest *req) 1387 { 1388 uint16_t status; 1389 1390 status = nvme_map_dptr(n, &req->sg, len, &req->cmd); 1391 if (status) { 1392 return status; 1393 } 1394 1395 return nvme_tx(n, &req->sg, ptr, len, NVME_TX_DIRECTION_TO_DEVICE); 1396 } 1397 1398 uint16_t nvme_bounce_data(NvmeCtrl *n, void *ptr, uint32_t len, 1399 NvmeTxDirection dir, NvmeRequest *req) 1400 { 1401 NvmeNamespace *ns = req->ns; 1402 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; 1403 bool pi = !!NVME_ID_NS_DPS_TYPE(ns->id_ns.dps); 1404 bool pract = !!(le16_to_cpu(rw->control) & NVME_RW_PRINFO_PRACT); 1405 1406 if (nvme_ns_ext(ns) && 1407 !(pi && pract && ns->lbaf.ms == nvme_pi_tuple_size(ns))) { 1408 return nvme_tx_interleaved(n, &req->sg, ptr, len, ns->lbasz, 1409 ns->lbaf.ms, 0, dir); 1410 } 1411 1412 return nvme_tx(n, &req->sg, ptr, len, dir); 1413 } 1414 1415 uint16_t nvme_bounce_mdata(NvmeCtrl *n, void *ptr, uint32_t len, 1416 NvmeTxDirection dir, NvmeRequest *req) 1417 { 1418 NvmeNamespace *ns = req->ns; 1419 uint16_t status; 1420 1421 if (nvme_ns_ext(ns)) { 1422 return nvme_tx_interleaved(n, &req->sg, ptr, len, ns->lbaf.ms, 1423 ns->lbasz, ns->lbasz, dir); 1424 } 1425 1426 nvme_sg_unmap(&req->sg); 1427 1428 status = nvme_map_mptr(n, &req->sg, len, &req->cmd); 1429 if (status) { 1430 return status; 1431 } 1432 1433 return nvme_tx(n, &req->sg, ptr, len, dir); 1434 } 1435 1436 static inline void nvme_blk_read(BlockBackend *blk, int64_t offset, 1437 uint32_t align, BlockCompletionFunc *cb, 1438 NvmeRequest *req) 1439 { 1440 assert(req->sg.flags & NVME_SG_ALLOC); 1441 1442 if (req->sg.flags & NVME_SG_DMA) { 1443 req->aiocb = dma_blk_read(blk, &req->sg.qsg, offset, align, cb, req); 1444 } else { 1445 req->aiocb = blk_aio_preadv(blk, offset, &req->sg.iov, 0, cb, req); 1446 } 1447 } 1448 1449 static inline void nvme_blk_write(BlockBackend *blk, int64_t offset, 1450 uint32_t align, BlockCompletionFunc *cb, 1451 NvmeRequest *req) 1452 { 1453 assert(req->sg.flags & NVME_SG_ALLOC); 1454 1455 if (req->sg.flags & NVME_SG_DMA) { 1456 req->aiocb = dma_blk_write(blk, &req->sg.qsg, offset, align, cb, req); 1457 } else { 1458 req->aiocb = blk_aio_pwritev(blk, offset, &req->sg.iov, 0, cb, req); 1459 } 1460 } 1461 1462 static void nvme_update_cq_eventidx(const NvmeCQueue *cq) 1463 { 1464 uint32_t v = cpu_to_le32(cq->head); 1465 1466 trace_pci_nvme_update_cq_eventidx(cq->cqid, cq->head); 1467 1468 pci_dma_write(PCI_DEVICE(cq->ctrl), cq->ei_addr, &v, sizeof(v)); 1469 } 1470 1471 static void nvme_update_cq_head(NvmeCQueue *cq) 1472 { 1473 uint32_t v; 1474 1475 pci_dma_read(PCI_DEVICE(cq->ctrl), cq->db_addr, &v, sizeof(v)); 1476 1477 cq->head = le32_to_cpu(v); 1478 1479 trace_pci_nvme_update_cq_head(cq->cqid, cq->head); 1480 } 1481 1482 static void nvme_post_cqes(void *opaque) 1483 { 1484 NvmeCQueue *cq = opaque; 1485 NvmeCtrl *n = cq->ctrl; 1486 NvmeRequest *req, *next; 1487 bool pending = cq->head != cq->tail; 1488 int ret; 1489 1490 QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) { 1491 NvmeSQueue *sq; 1492 hwaddr addr; 1493 1494 if (n->dbbuf_enabled) { 1495 nvme_update_cq_eventidx(cq); 1496 nvme_update_cq_head(cq); 1497 } 1498 1499 if (nvme_cq_full(cq)) { 1500 break; 1501 } 1502 1503 sq = req->sq; 1504 req->cqe.status = cpu_to_le16((req->status << 1) | cq->phase); 1505 req->cqe.sq_id = cpu_to_le16(sq->sqid); 1506 req->cqe.sq_head = cpu_to_le16(sq->head); 1507 addr = cq->dma_addr + cq->tail * n->cqe_size; 1508 ret = pci_dma_write(PCI_DEVICE(n), addr, (void *)&req->cqe, 1509 sizeof(req->cqe)); 1510 if (ret) { 1511 trace_pci_nvme_err_addr_write(addr); 1512 trace_pci_nvme_err_cfs(); 1513 stl_le_p(&n->bar.csts, NVME_CSTS_FAILED); 1514 break; 1515 } 1516 QTAILQ_REMOVE(&cq->req_list, req, entry); 1517 nvme_inc_cq_tail(cq); 1518 nvme_sg_unmap(&req->sg); 1519 QTAILQ_INSERT_TAIL(&sq->req_list, req, entry); 1520 } 1521 if (cq->tail != cq->head) { 1522 if (cq->irq_enabled && !pending) { 1523 n->cq_pending++; 1524 } 1525 1526 nvme_irq_assert(n, cq); 1527 } 1528 } 1529 1530 static void nvme_enqueue_req_completion(NvmeCQueue *cq, NvmeRequest *req) 1531 { 1532 assert(cq->cqid == req->sq->cqid); 1533 trace_pci_nvme_enqueue_req_completion(nvme_cid(req), cq->cqid, 1534 le32_to_cpu(req->cqe.result), 1535 le32_to_cpu(req->cqe.dw1), 1536 req->status); 1537 1538 if (req->status) { 1539 trace_pci_nvme_err_req_status(nvme_cid(req), nvme_nsid(req->ns), 1540 req->status, req->cmd.opcode); 1541 } 1542 1543 QTAILQ_REMOVE(&req->sq->out_req_list, req, entry); 1544 QTAILQ_INSERT_TAIL(&cq->req_list, req, entry); 1545 1546 qemu_bh_schedule(cq->bh); 1547 } 1548 1549 static void nvme_process_aers(void *opaque) 1550 { 1551 NvmeCtrl *n = opaque; 1552 NvmeAsyncEvent *event, *next; 1553 1554 trace_pci_nvme_process_aers(n->aer_queued); 1555 1556 QTAILQ_FOREACH_SAFE(event, &n->aer_queue, entry, next) { 1557 NvmeRequest *req; 1558 NvmeAerResult *result; 1559 1560 /* can't post cqe if there is nothing to complete */ 1561 if (!n->outstanding_aers) { 1562 trace_pci_nvme_no_outstanding_aers(); 1563 break; 1564 } 1565 1566 /* ignore if masked (cqe posted, but event not cleared) */ 1567 if (n->aer_mask & (1 << event->result.event_type)) { 1568 trace_pci_nvme_aer_masked(event->result.event_type, n->aer_mask); 1569 continue; 1570 } 1571 1572 QTAILQ_REMOVE(&n->aer_queue, event, entry); 1573 n->aer_queued--; 1574 1575 n->aer_mask |= 1 << event->result.event_type; 1576 n->outstanding_aers--; 1577 1578 req = n->aer_reqs[n->outstanding_aers]; 1579 1580 result = (NvmeAerResult *) &req->cqe.result; 1581 result->event_type = event->result.event_type; 1582 result->event_info = event->result.event_info; 1583 result->log_page = event->result.log_page; 1584 g_free(event); 1585 1586 trace_pci_nvme_aer_post_cqe(result->event_type, result->event_info, 1587 result->log_page); 1588 1589 nvme_enqueue_req_completion(&n->admin_cq, req); 1590 } 1591 } 1592 1593 static void nvme_enqueue_event(NvmeCtrl *n, uint8_t event_type, 1594 uint8_t event_info, uint8_t log_page) 1595 { 1596 NvmeAsyncEvent *event; 1597 1598 trace_pci_nvme_enqueue_event(event_type, event_info, log_page); 1599 1600 if (n->aer_queued == n->params.aer_max_queued) { 1601 trace_pci_nvme_enqueue_event_noqueue(n->aer_queued); 1602 return; 1603 } 1604 1605 event = g_new(NvmeAsyncEvent, 1); 1606 event->result = (NvmeAerResult) { 1607 .event_type = event_type, 1608 .event_info = event_info, 1609 .log_page = log_page, 1610 }; 1611 1612 QTAILQ_INSERT_TAIL(&n->aer_queue, event, entry); 1613 n->aer_queued++; 1614 1615 nvme_process_aers(n); 1616 } 1617 1618 static void nvme_smart_event(NvmeCtrl *n, uint8_t event) 1619 { 1620 uint8_t aer_info; 1621 1622 /* Ref SPEC <Asynchronous Event Information 0x2013 SMART / Health Status> */ 1623 if (!(NVME_AEC_SMART(n->features.async_config) & event)) { 1624 return; 1625 } 1626 1627 switch (event) { 1628 case NVME_SMART_SPARE: 1629 aer_info = NVME_AER_INFO_SMART_SPARE_THRESH; 1630 break; 1631 case NVME_SMART_TEMPERATURE: 1632 aer_info = NVME_AER_INFO_SMART_TEMP_THRESH; 1633 break; 1634 case NVME_SMART_RELIABILITY: 1635 case NVME_SMART_MEDIA_READ_ONLY: 1636 case NVME_SMART_FAILED_VOLATILE_MEDIA: 1637 case NVME_SMART_PMR_UNRELIABLE: 1638 aer_info = NVME_AER_INFO_SMART_RELIABILITY; 1639 break; 1640 default: 1641 return; 1642 } 1643 1644 nvme_enqueue_event(n, NVME_AER_TYPE_SMART, aer_info, NVME_LOG_SMART_INFO); 1645 } 1646 1647 static void nvme_clear_events(NvmeCtrl *n, uint8_t event_type) 1648 { 1649 n->aer_mask &= ~(1 << event_type); 1650 if (!QTAILQ_EMPTY(&n->aer_queue)) { 1651 nvme_process_aers(n); 1652 } 1653 } 1654 1655 static inline uint16_t nvme_check_mdts(NvmeCtrl *n, size_t len) 1656 { 1657 uint8_t mdts = n->params.mdts; 1658 1659 if (mdts && len > n->page_size << mdts) { 1660 trace_pci_nvme_err_mdts(len); 1661 return NVME_INVALID_FIELD | NVME_DNR; 1662 } 1663 1664 return NVME_SUCCESS; 1665 } 1666 1667 static inline uint16_t nvme_check_bounds(NvmeNamespace *ns, uint64_t slba, 1668 uint32_t nlb) 1669 { 1670 uint64_t nsze = le64_to_cpu(ns->id_ns.nsze); 1671 1672 if (unlikely(UINT64_MAX - slba < nlb || slba + nlb > nsze)) { 1673 trace_pci_nvme_err_invalid_lba_range(slba, nlb, nsze); 1674 return NVME_LBA_RANGE | NVME_DNR; 1675 } 1676 1677 return NVME_SUCCESS; 1678 } 1679 1680 static int nvme_block_status_all(NvmeNamespace *ns, uint64_t slba, 1681 uint32_t nlb, int flags) 1682 { 1683 BlockDriverState *bs = blk_bs(ns->blkconf.blk); 1684 1685 int64_t pnum = 0, bytes = nvme_l2b(ns, nlb); 1686 int64_t offset = nvme_l2b(ns, slba); 1687 int ret; 1688 1689 /* 1690 * `pnum` holds the number of bytes after offset that shares the same 1691 * allocation status as the byte at offset. If `pnum` is different from 1692 * `bytes`, we should check the allocation status of the next range and 1693 * continue this until all bytes have been checked. 1694 */ 1695 do { 1696 bytes -= pnum; 1697 1698 ret = bdrv_block_status(bs, offset, bytes, &pnum, NULL, NULL); 1699 if (ret < 0) { 1700 return ret; 1701 } 1702 1703 1704 trace_pci_nvme_block_status(offset, bytes, pnum, ret, 1705 !!(ret & BDRV_BLOCK_ZERO)); 1706 1707 if (!(ret & flags)) { 1708 return 1; 1709 } 1710 1711 offset += pnum; 1712 } while (pnum != bytes); 1713 1714 return 0; 1715 } 1716 1717 static uint16_t nvme_check_dulbe(NvmeNamespace *ns, uint64_t slba, 1718 uint32_t nlb) 1719 { 1720 int ret; 1721 Error *err = NULL; 1722 1723 ret = nvme_block_status_all(ns, slba, nlb, BDRV_BLOCK_DATA); 1724 if (ret) { 1725 if (ret < 0) { 1726 error_setg_errno(&err, -ret, "unable to get block status"); 1727 error_report_err(err); 1728 1729 return NVME_INTERNAL_DEV_ERROR; 1730 } 1731 1732 return NVME_DULB; 1733 } 1734 1735 return NVME_SUCCESS; 1736 } 1737 1738 static void nvme_aio_err(NvmeRequest *req, int ret) 1739 { 1740 uint16_t status = NVME_SUCCESS; 1741 Error *local_err = NULL; 1742 1743 switch (req->cmd.opcode) { 1744 case NVME_CMD_READ: 1745 status = NVME_UNRECOVERED_READ; 1746 break; 1747 case NVME_CMD_FLUSH: 1748 case NVME_CMD_WRITE: 1749 case NVME_CMD_WRITE_ZEROES: 1750 case NVME_CMD_ZONE_APPEND: 1751 status = NVME_WRITE_FAULT; 1752 break; 1753 default: 1754 status = NVME_INTERNAL_DEV_ERROR; 1755 break; 1756 } 1757 1758 trace_pci_nvme_err_aio(nvme_cid(req), strerror(-ret), status); 1759 1760 error_setg_errno(&local_err, -ret, "aio failed"); 1761 error_report_err(local_err); 1762 1763 /* 1764 * Set the command status code to the first encountered error but allow a 1765 * subsequent Internal Device Error to trump it. 1766 */ 1767 if (req->status && status != NVME_INTERNAL_DEV_ERROR) { 1768 return; 1769 } 1770 1771 req->status = status; 1772 } 1773 1774 static inline uint32_t nvme_zone_idx(NvmeNamespace *ns, uint64_t slba) 1775 { 1776 return ns->zone_size_log2 > 0 ? slba >> ns->zone_size_log2 : 1777 slba / ns->zone_size; 1778 } 1779 1780 static inline NvmeZone *nvme_get_zone_by_slba(NvmeNamespace *ns, uint64_t slba) 1781 { 1782 uint32_t zone_idx = nvme_zone_idx(ns, slba); 1783 1784 if (zone_idx >= ns->num_zones) { 1785 return NULL; 1786 } 1787 1788 return &ns->zone_array[zone_idx]; 1789 } 1790 1791 static uint16_t nvme_check_zone_state_for_write(NvmeZone *zone) 1792 { 1793 uint64_t zslba = zone->d.zslba; 1794 1795 switch (nvme_get_zone_state(zone)) { 1796 case NVME_ZONE_STATE_EMPTY: 1797 case NVME_ZONE_STATE_IMPLICITLY_OPEN: 1798 case NVME_ZONE_STATE_EXPLICITLY_OPEN: 1799 case NVME_ZONE_STATE_CLOSED: 1800 return NVME_SUCCESS; 1801 case NVME_ZONE_STATE_FULL: 1802 trace_pci_nvme_err_zone_is_full(zslba); 1803 return NVME_ZONE_FULL; 1804 case NVME_ZONE_STATE_OFFLINE: 1805 trace_pci_nvme_err_zone_is_offline(zslba); 1806 return NVME_ZONE_OFFLINE; 1807 case NVME_ZONE_STATE_READ_ONLY: 1808 trace_pci_nvme_err_zone_is_read_only(zslba); 1809 return NVME_ZONE_READ_ONLY; 1810 default: 1811 assert(false); 1812 } 1813 1814 return NVME_INTERNAL_DEV_ERROR; 1815 } 1816 1817 static uint16_t nvme_check_zone_write(NvmeNamespace *ns, NvmeZone *zone, 1818 uint64_t slba, uint32_t nlb) 1819 { 1820 uint64_t zcap = nvme_zone_wr_boundary(zone); 1821 uint16_t status; 1822 1823 status = nvme_check_zone_state_for_write(zone); 1824 if (status) { 1825 return status; 1826 } 1827 1828 if (zone->d.za & NVME_ZA_ZRWA_VALID) { 1829 uint64_t ezrwa = zone->w_ptr + 2 * ns->zns.zrwas; 1830 1831 if (slba < zone->w_ptr || slba + nlb > ezrwa) { 1832 trace_pci_nvme_err_zone_invalid_write(slba, zone->w_ptr); 1833 return NVME_ZONE_INVALID_WRITE; 1834 } 1835 } else { 1836 if (unlikely(slba != zone->w_ptr)) { 1837 trace_pci_nvme_err_write_not_at_wp(slba, zone->d.zslba, 1838 zone->w_ptr); 1839 return NVME_ZONE_INVALID_WRITE; 1840 } 1841 } 1842 1843 if (unlikely((slba + nlb) > zcap)) { 1844 trace_pci_nvme_err_zone_boundary(slba, nlb, zcap); 1845 return NVME_ZONE_BOUNDARY_ERROR; 1846 } 1847 1848 return NVME_SUCCESS; 1849 } 1850 1851 static uint16_t nvme_check_zone_state_for_read(NvmeZone *zone) 1852 { 1853 switch (nvme_get_zone_state(zone)) { 1854 case NVME_ZONE_STATE_EMPTY: 1855 case NVME_ZONE_STATE_IMPLICITLY_OPEN: 1856 case NVME_ZONE_STATE_EXPLICITLY_OPEN: 1857 case NVME_ZONE_STATE_FULL: 1858 case NVME_ZONE_STATE_CLOSED: 1859 case NVME_ZONE_STATE_READ_ONLY: 1860 return NVME_SUCCESS; 1861 case NVME_ZONE_STATE_OFFLINE: 1862 trace_pci_nvme_err_zone_is_offline(zone->d.zslba); 1863 return NVME_ZONE_OFFLINE; 1864 default: 1865 assert(false); 1866 } 1867 1868 return NVME_INTERNAL_DEV_ERROR; 1869 } 1870 1871 static uint16_t nvme_check_zone_read(NvmeNamespace *ns, uint64_t slba, 1872 uint32_t nlb) 1873 { 1874 NvmeZone *zone; 1875 uint64_t bndry, end; 1876 uint16_t status; 1877 1878 zone = nvme_get_zone_by_slba(ns, slba); 1879 assert(zone); 1880 1881 bndry = nvme_zone_rd_boundary(ns, zone); 1882 end = slba + nlb; 1883 1884 status = nvme_check_zone_state_for_read(zone); 1885 if (status) { 1886 ; 1887 } else if (unlikely(end > bndry)) { 1888 if (!ns->params.cross_zone_read) { 1889 status = NVME_ZONE_BOUNDARY_ERROR; 1890 } else { 1891 /* 1892 * Read across zone boundary - check that all subsequent 1893 * zones that are being read have an appropriate state. 1894 */ 1895 do { 1896 zone++; 1897 status = nvme_check_zone_state_for_read(zone); 1898 if (status) { 1899 break; 1900 } 1901 } while (end > nvme_zone_rd_boundary(ns, zone)); 1902 } 1903 } 1904 1905 return status; 1906 } 1907 1908 static uint16_t nvme_zrm_finish(NvmeNamespace *ns, NvmeZone *zone) 1909 { 1910 switch (nvme_get_zone_state(zone)) { 1911 case NVME_ZONE_STATE_FULL: 1912 return NVME_SUCCESS; 1913 1914 case NVME_ZONE_STATE_IMPLICITLY_OPEN: 1915 case NVME_ZONE_STATE_EXPLICITLY_OPEN: 1916 nvme_aor_dec_open(ns); 1917 /* fallthrough */ 1918 case NVME_ZONE_STATE_CLOSED: 1919 nvme_aor_dec_active(ns); 1920 1921 if (zone->d.za & NVME_ZA_ZRWA_VALID) { 1922 zone->d.za &= ~NVME_ZA_ZRWA_VALID; 1923 if (ns->params.numzrwa) { 1924 ns->zns.numzrwa++; 1925 } 1926 } 1927 1928 /* fallthrough */ 1929 case NVME_ZONE_STATE_EMPTY: 1930 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_FULL); 1931 return NVME_SUCCESS; 1932 1933 default: 1934 return NVME_ZONE_INVAL_TRANSITION; 1935 } 1936 } 1937 1938 static uint16_t nvme_zrm_close(NvmeNamespace *ns, NvmeZone *zone) 1939 { 1940 switch (nvme_get_zone_state(zone)) { 1941 case NVME_ZONE_STATE_EXPLICITLY_OPEN: 1942 case NVME_ZONE_STATE_IMPLICITLY_OPEN: 1943 nvme_aor_dec_open(ns); 1944 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_CLOSED); 1945 /* fall through */ 1946 case NVME_ZONE_STATE_CLOSED: 1947 return NVME_SUCCESS; 1948 1949 default: 1950 return NVME_ZONE_INVAL_TRANSITION; 1951 } 1952 } 1953 1954 static uint16_t nvme_zrm_reset(NvmeNamespace *ns, NvmeZone *zone) 1955 { 1956 switch (nvme_get_zone_state(zone)) { 1957 case NVME_ZONE_STATE_EXPLICITLY_OPEN: 1958 case NVME_ZONE_STATE_IMPLICITLY_OPEN: 1959 nvme_aor_dec_open(ns); 1960 /* fallthrough */ 1961 case NVME_ZONE_STATE_CLOSED: 1962 nvme_aor_dec_active(ns); 1963 1964 if (zone->d.za & NVME_ZA_ZRWA_VALID) { 1965 if (ns->params.numzrwa) { 1966 ns->zns.numzrwa++; 1967 } 1968 } 1969 1970 /* fallthrough */ 1971 case NVME_ZONE_STATE_FULL: 1972 zone->w_ptr = zone->d.zslba; 1973 zone->d.wp = zone->w_ptr; 1974 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_EMPTY); 1975 /* fallthrough */ 1976 case NVME_ZONE_STATE_EMPTY: 1977 return NVME_SUCCESS; 1978 1979 default: 1980 return NVME_ZONE_INVAL_TRANSITION; 1981 } 1982 } 1983 1984 static void nvme_zrm_auto_transition_zone(NvmeNamespace *ns) 1985 { 1986 NvmeZone *zone; 1987 1988 if (ns->params.max_open_zones && 1989 ns->nr_open_zones == ns->params.max_open_zones) { 1990 zone = QTAILQ_FIRST(&ns->imp_open_zones); 1991 if (zone) { 1992 /* 1993 * Automatically close this implicitly open zone. 1994 */ 1995 QTAILQ_REMOVE(&ns->imp_open_zones, zone, entry); 1996 nvme_zrm_close(ns, zone); 1997 } 1998 } 1999 } 2000 2001 enum { 2002 NVME_ZRM_AUTO = 1 << 0, 2003 NVME_ZRM_ZRWA = 1 << 1, 2004 }; 2005 2006 static uint16_t nvme_zrm_open_flags(NvmeCtrl *n, NvmeNamespace *ns, 2007 NvmeZone *zone, int flags) 2008 { 2009 int act = 0; 2010 uint16_t status; 2011 2012 switch (nvme_get_zone_state(zone)) { 2013 case NVME_ZONE_STATE_EMPTY: 2014 act = 1; 2015 2016 /* fallthrough */ 2017 2018 case NVME_ZONE_STATE_CLOSED: 2019 if (n->params.auto_transition_zones) { 2020 nvme_zrm_auto_transition_zone(ns); 2021 } 2022 status = nvme_zns_check_resources(ns, act, 1, 2023 (flags & NVME_ZRM_ZRWA) ? 1 : 0); 2024 if (status) { 2025 return status; 2026 } 2027 2028 if (act) { 2029 nvme_aor_inc_active(ns); 2030 } 2031 2032 nvme_aor_inc_open(ns); 2033 2034 if (flags & NVME_ZRM_AUTO) { 2035 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_IMPLICITLY_OPEN); 2036 return NVME_SUCCESS; 2037 } 2038 2039 /* fallthrough */ 2040 2041 case NVME_ZONE_STATE_IMPLICITLY_OPEN: 2042 if (flags & NVME_ZRM_AUTO) { 2043 return NVME_SUCCESS; 2044 } 2045 2046 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_EXPLICITLY_OPEN); 2047 2048 /* fallthrough */ 2049 2050 case NVME_ZONE_STATE_EXPLICITLY_OPEN: 2051 if (flags & NVME_ZRM_ZRWA) { 2052 ns->zns.numzrwa--; 2053 2054 zone->d.za |= NVME_ZA_ZRWA_VALID; 2055 } 2056 2057 return NVME_SUCCESS; 2058 2059 default: 2060 return NVME_ZONE_INVAL_TRANSITION; 2061 } 2062 } 2063 2064 static inline uint16_t nvme_zrm_auto(NvmeCtrl *n, NvmeNamespace *ns, 2065 NvmeZone *zone) 2066 { 2067 return nvme_zrm_open_flags(n, ns, zone, NVME_ZRM_AUTO); 2068 } 2069 2070 static void nvme_advance_zone_wp(NvmeNamespace *ns, NvmeZone *zone, 2071 uint32_t nlb) 2072 { 2073 zone->d.wp += nlb; 2074 2075 if (zone->d.wp == nvme_zone_wr_boundary(zone)) { 2076 nvme_zrm_finish(ns, zone); 2077 } 2078 } 2079 2080 static void nvme_zoned_zrwa_implicit_flush(NvmeNamespace *ns, NvmeZone *zone, 2081 uint32_t nlbc) 2082 { 2083 uint16_t nzrwafgs = DIV_ROUND_UP(nlbc, ns->zns.zrwafg); 2084 2085 nlbc = nzrwafgs * ns->zns.zrwafg; 2086 2087 trace_pci_nvme_zoned_zrwa_implicit_flush(zone->d.zslba, nlbc); 2088 2089 zone->w_ptr += nlbc; 2090 2091 nvme_advance_zone_wp(ns, zone, nlbc); 2092 } 2093 2094 static void nvme_finalize_zoned_write(NvmeNamespace *ns, NvmeRequest *req) 2095 { 2096 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; 2097 NvmeZone *zone; 2098 uint64_t slba; 2099 uint32_t nlb; 2100 2101 slba = le64_to_cpu(rw->slba); 2102 nlb = le16_to_cpu(rw->nlb) + 1; 2103 zone = nvme_get_zone_by_slba(ns, slba); 2104 assert(zone); 2105 2106 if (zone->d.za & NVME_ZA_ZRWA_VALID) { 2107 uint64_t ezrwa = zone->w_ptr + ns->zns.zrwas - 1; 2108 uint64_t elba = slba + nlb - 1; 2109 2110 if (elba > ezrwa) { 2111 nvme_zoned_zrwa_implicit_flush(ns, zone, elba - ezrwa); 2112 } 2113 2114 return; 2115 } 2116 2117 nvme_advance_zone_wp(ns, zone, nlb); 2118 } 2119 2120 static inline bool nvme_is_write(NvmeRequest *req) 2121 { 2122 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; 2123 2124 return rw->opcode == NVME_CMD_WRITE || 2125 rw->opcode == NVME_CMD_ZONE_APPEND || 2126 rw->opcode == NVME_CMD_WRITE_ZEROES; 2127 } 2128 2129 static AioContext *nvme_get_aio_context(BlockAIOCB *acb) 2130 { 2131 return qemu_get_aio_context(); 2132 } 2133 2134 static void nvme_misc_cb(void *opaque, int ret) 2135 { 2136 NvmeRequest *req = opaque; 2137 2138 trace_pci_nvme_misc_cb(nvme_cid(req)); 2139 2140 if (ret) { 2141 nvme_aio_err(req, ret); 2142 } 2143 2144 nvme_enqueue_req_completion(nvme_cq(req), req); 2145 } 2146 2147 void nvme_rw_complete_cb(void *opaque, int ret) 2148 { 2149 NvmeRequest *req = opaque; 2150 NvmeNamespace *ns = req->ns; 2151 BlockBackend *blk = ns->blkconf.blk; 2152 BlockAcctCookie *acct = &req->acct; 2153 BlockAcctStats *stats = blk_get_stats(blk); 2154 2155 trace_pci_nvme_rw_complete_cb(nvme_cid(req), blk_name(blk)); 2156 2157 if (ret) { 2158 block_acct_failed(stats, acct); 2159 nvme_aio_err(req, ret); 2160 } else { 2161 block_acct_done(stats, acct); 2162 } 2163 2164 if (ns->params.zoned && nvme_is_write(req)) { 2165 nvme_finalize_zoned_write(ns, req); 2166 } 2167 2168 nvme_enqueue_req_completion(nvme_cq(req), req); 2169 } 2170 2171 static void nvme_rw_cb(void *opaque, int ret) 2172 { 2173 NvmeRequest *req = opaque; 2174 NvmeNamespace *ns = req->ns; 2175 2176 BlockBackend *blk = ns->blkconf.blk; 2177 2178 trace_pci_nvme_rw_cb(nvme_cid(req), blk_name(blk)); 2179 2180 if (ret) { 2181 goto out; 2182 } 2183 2184 if (ns->lbaf.ms) { 2185 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; 2186 uint64_t slba = le64_to_cpu(rw->slba); 2187 uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1; 2188 uint64_t offset = nvme_moff(ns, slba); 2189 2190 if (req->cmd.opcode == NVME_CMD_WRITE_ZEROES) { 2191 size_t mlen = nvme_m2b(ns, nlb); 2192 2193 req->aiocb = blk_aio_pwrite_zeroes(blk, offset, mlen, 2194 BDRV_REQ_MAY_UNMAP, 2195 nvme_rw_complete_cb, req); 2196 return; 2197 } 2198 2199 if (nvme_ns_ext(ns) || req->cmd.mptr) { 2200 uint16_t status; 2201 2202 nvme_sg_unmap(&req->sg); 2203 status = nvme_map_mdata(nvme_ctrl(req), nlb, req); 2204 if (status) { 2205 ret = -EFAULT; 2206 goto out; 2207 } 2208 2209 if (req->cmd.opcode == NVME_CMD_READ) { 2210 return nvme_blk_read(blk, offset, 1, nvme_rw_complete_cb, req); 2211 } 2212 2213 return nvme_blk_write(blk, offset, 1, nvme_rw_complete_cb, req); 2214 } 2215 } 2216 2217 out: 2218 nvme_rw_complete_cb(req, ret); 2219 } 2220 2221 static void nvme_verify_cb(void *opaque, int ret) 2222 { 2223 NvmeBounceContext *ctx = opaque; 2224 NvmeRequest *req = ctx->req; 2225 NvmeNamespace *ns = req->ns; 2226 BlockBackend *blk = ns->blkconf.blk; 2227 BlockAcctCookie *acct = &req->acct; 2228 BlockAcctStats *stats = blk_get_stats(blk); 2229 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; 2230 uint64_t slba = le64_to_cpu(rw->slba); 2231 uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control)); 2232 uint16_t apptag = le16_to_cpu(rw->apptag); 2233 uint16_t appmask = le16_to_cpu(rw->appmask); 2234 uint64_t reftag = le32_to_cpu(rw->reftag); 2235 uint64_t cdw3 = le32_to_cpu(rw->cdw3); 2236 uint16_t status; 2237 2238 reftag |= cdw3 << 32; 2239 2240 trace_pci_nvme_verify_cb(nvme_cid(req), prinfo, apptag, appmask, reftag); 2241 2242 if (ret) { 2243 block_acct_failed(stats, acct); 2244 nvme_aio_err(req, ret); 2245 goto out; 2246 } 2247 2248 block_acct_done(stats, acct); 2249 2250 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) { 2251 status = nvme_dif_mangle_mdata(ns, ctx->mdata.bounce, 2252 ctx->mdata.iov.size, slba); 2253 if (status) { 2254 req->status = status; 2255 goto out; 2256 } 2257 2258 req->status = nvme_dif_check(ns, ctx->data.bounce, ctx->data.iov.size, 2259 ctx->mdata.bounce, ctx->mdata.iov.size, 2260 prinfo, slba, apptag, appmask, &reftag); 2261 } 2262 2263 out: 2264 qemu_iovec_destroy(&ctx->data.iov); 2265 g_free(ctx->data.bounce); 2266 2267 qemu_iovec_destroy(&ctx->mdata.iov); 2268 g_free(ctx->mdata.bounce); 2269 2270 g_free(ctx); 2271 2272 nvme_enqueue_req_completion(nvme_cq(req), req); 2273 } 2274 2275 2276 static void nvme_verify_mdata_in_cb(void *opaque, int ret) 2277 { 2278 NvmeBounceContext *ctx = opaque; 2279 NvmeRequest *req = ctx->req; 2280 NvmeNamespace *ns = req->ns; 2281 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; 2282 uint64_t slba = le64_to_cpu(rw->slba); 2283 uint32_t nlb = le16_to_cpu(rw->nlb) + 1; 2284 size_t mlen = nvme_m2b(ns, nlb); 2285 uint64_t offset = nvme_moff(ns, slba); 2286 BlockBackend *blk = ns->blkconf.blk; 2287 2288 trace_pci_nvme_verify_mdata_in_cb(nvme_cid(req), blk_name(blk)); 2289 2290 if (ret) { 2291 goto out; 2292 } 2293 2294 ctx->mdata.bounce = g_malloc(mlen); 2295 2296 qemu_iovec_reset(&ctx->mdata.iov); 2297 qemu_iovec_add(&ctx->mdata.iov, ctx->mdata.bounce, mlen); 2298 2299 req->aiocb = blk_aio_preadv(blk, offset, &ctx->mdata.iov, 0, 2300 nvme_verify_cb, ctx); 2301 return; 2302 2303 out: 2304 nvme_verify_cb(ctx, ret); 2305 } 2306 2307 struct nvme_compare_ctx { 2308 struct { 2309 QEMUIOVector iov; 2310 uint8_t *bounce; 2311 } data; 2312 2313 struct { 2314 QEMUIOVector iov; 2315 uint8_t *bounce; 2316 } mdata; 2317 }; 2318 2319 static void nvme_compare_mdata_cb(void *opaque, int ret) 2320 { 2321 NvmeRequest *req = opaque; 2322 NvmeNamespace *ns = req->ns; 2323 NvmeCtrl *n = nvme_ctrl(req); 2324 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; 2325 uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control)); 2326 uint16_t apptag = le16_to_cpu(rw->apptag); 2327 uint16_t appmask = le16_to_cpu(rw->appmask); 2328 uint64_t reftag = le32_to_cpu(rw->reftag); 2329 uint64_t cdw3 = le32_to_cpu(rw->cdw3); 2330 struct nvme_compare_ctx *ctx = req->opaque; 2331 g_autofree uint8_t *buf = NULL; 2332 BlockBackend *blk = ns->blkconf.blk; 2333 BlockAcctCookie *acct = &req->acct; 2334 BlockAcctStats *stats = blk_get_stats(blk); 2335 uint16_t status = NVME_SUCCESS; 2336 2337 reftag |= cdw3 << 32; 2338 2339 trace_pci_nvme_compare_mdata_cb(nvme_cid(req)); 2340 2341 if (ret) { 2342 block_acct_failed(stats, acct); 2343 nvme_aio_err(req, ret); 2344 goto out; 2345 } 2346 2347 buf = g_malloc(ctx->mdata.iov.size); 2348 2349 status = nvme_bounce_mdata(n, buf, ctx->mdata.iov.size, 2350 NVME_TX_DIRECTION_TO_DEVICE, req); 2351 if (status) { 2352 req->status = status; 2353 goto out; 2354 } 2355 2356 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) { 2357 uint64_t slba = le64_to_cpu(rw->slba); 2358 uint8_t *bufp; 2359 uint8_t *mbufp = ctx->mdata.bounce; 2360 uint8_t *end = mbufp + ctx->mdata.iov.size; 2361 int16_t pil = 0; 2362 2363 status = nvme_dif_check(ns, ctx->data.bounce, ctx->data.iov.size, 2364 ctx->mdata.bounce, ctx->mdata.iov.size, prinfo, 2365 slba, apptag, appmask, &reftag); 2366 if (status) { 2367 req->status = status; 2368 goto out; 2369 } 2370 2371 /* 2372 * When formatted with protection information, do not compare the DIF 2373 * tuple. 2374 */ 2375 if (!(ns->id_ns.dps & NVME_ID_NS_DPS_FIRST_EIGHT)) { 2376 pil = ns->lbaf.ms - nvme_pi_tuple_size(ns); 2377 } 2378 2379 for (bufp = buf; mbufp < end; bufp += ns->lbaf.ms, mbufp += ns->lbaf.ms) { 2380 if (memcmp(bufp + pil, mbufp + pil, ns->lbaf.ms - pil)) { 2381 req->status = NVME_CMP_FAILURE | NVME_DNR; 2382 goto out; 2383 } 2384 } 2385 2386 goto out; 2387 } 2388 2389 if (memcmp(buf, ctx->mdata.bounce, ctx->mdata.iov.size)) { 2390 req->status = NVME_CMP_FAILURE | NVME_DNR; 2391 goto out; 2392 } 2393 2394 block_acct_done(stats, acct); 2395 2396 out: 2397 qemu_iovec_destroy(&ctx->data.iov); 2398 g_free(ctx->data.bounce); 2399 2400 qemu_iovec_destroy(&ctx->mdata.iov); 2401 g_free(ctx->mdata.bounce); 2402 2403 g_free(ctx); 2404 2405 nvme_enqueue_req_completion(nvme_cq(req), req); 2406 } 2407 2408 static void nvme_compare_data_cb(void *opaque, int ret) 2409 { 2410 NvmeRequest *req = opaque; 2411 NvmeCtrl *n = nvme_ctrl(req); 2412 NvmeNamespace *ns = req->ns; 2413 BlockBackend *blk = ns->blkconf.blk; 2414 BlockAcctCookie *acct = &req->acct; 2415 BlockAcctStats *stats = blk_get_stats(blk); 2416 2417 struct nvme_compare_ctx *ctx = req->opaque; 2418 g_autofree uint8_t *buf = NULL; 2419 uint16_t status; 2420 2421 trace_pci_nvme_compare_data_cb(nvme_cid(req)); 2422 2423 if (ret) { 2424 block_acct_failed(stats, acct); 2425 nvme_aio_err(req, ret); 2426 goto out; 2427 } 2428 2429 buf = g_malloc(ctx->data.iov.size); 2430 2431 status = nvme_bounce_data(n, buf, ctx->data.iov.size, 2432 NVME_TX_DIRECTION_TO_DEVICE, req); 2433 if (status) { 2434 req->status = status; 2435 goto out; 2436 } 2437 2438 if (memcmp(buf, ctx->data.bounce, ctx->data.iov.size)) { 2439 req->status = NVME_CMP_FAILURE | NVME_DNR; 2440 goto out; 2441 } 2442 2443 if (ns->lbaf.ms) { 2444 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; 2445 uint64_t slba = le64_to_cpu(rw->slba); 2446 uint32_t nlb = le16_to_cpu(rw->nlb) + 1; 2447 size_t mlen = nvme_m2b(ns, nlb); 2448 uint64_t offset = nvme_moff(ns, slba); 2449 2450 ctx->mdata.bounce = g_malloc(mlen); 2451 2452 qemu_iovec_init(&ctx->mdata.iov, 1); 2453 qemu_iovec_add(&ctx->mdata.iov, ctx->mdata.bounce, mlen); 2454 2455 req->aiocb = blk_aio_preadv(blk, offset, &ctx->mdata.iov, 0, 2456 nvme_compare_mdata_cb, req); 2457 return; 2458 } 2459 2460 block_acct_done(stats, acct); 2461 2462 out: 2463 qemu_iovec_destroy(&ctx->data.iov); 2464 g_free(ctx->data.bounce); 2465 g_free(ctx); 2466 2467 nvme_enqueue_req_completion(nvme_cq(req), req); 2468 } 2469 2470 typedef struct NvmeDSMAIOCB { 2471 BlockAIOCB common; 2472 BlockAIOCB *aiocb; 2473 NvmeRequest *req; 2474 int ret; 2475 2476 NvmeDsmRange *range; 2477 unsigned int nr; 2478 unsigned int idx; 2479 } NvmeDSMAIOCB; 2480 2481 static void nvme_dsm_cancel(BlockAIOCB *aiocb) 2482 { 2483 NvmeDSMAIOCB *iocb = container_of(aiocb, NvmeDSMAIOCB, common); 2484 2485 /* break nvme_dsm_cb loop */ 2486 iocb->idx = iocb->nr; 2487 iocb->ret = -ECANCELED; 2488 2489 if (iocb->aiocb) { 2490 blk_aio_cancel_async(iocb->aiocb); 2491 iocb->aiocb = NULL; 2492 } else { 2493 /* 2494 * We only reach this if nvme_dsm_cancel() has already been called or 2495 * the command ran to completion. 2496 */ 2497 assert(iocb->idx == iocb->nr); 2498 } 2499 } 2500 2501 static const AIOCBInfo nvme_dsm_aiocb_info = { 2502 .aiocb_size = sizeof(NvmeDSMAIOCB), 2503 .cancel_async = nvme_dsm_cancel, 2504 }; 2505 2506 static void nvme_dsm_cb(void *opaque, int ret); 2507 2508 static void nvme_dsm_md_cb(void *opaque, int ret) 2509 { 2510 NvmeDSMAIOCB *iocb = opaque; 2511 NvmeRequest *req = iocb->req; 2512 NvmeNamespace *ns = req->ns; 2513 NvmeDsmRange *range; 2514 uint64_t slba; 2515 uint32_t nlb; 2516 2517 if (ret < 0 || iocb->ret < 0 || !ns->lbaf.ms) { 2518 goto done; 2519 } 2520 2521 range = &iocb->range[iocb->idx - 1]; 2522 slba = le64_to_cpu(range->slba); 2523 nlb = le32_to_cpu(range->nlb); 2524 2525 /* 2526 * Check that all block were discarded (zeroed); otherwise we do not zero 2527 * the metadata. 2528 */ 2529 2530 ret = nvme_block_status_all(ns, slba, nlb, BDRV_BLOCK_ZERO); 2531 if (ret) { 2532 if (ret < 0) { 2533 goto done; 2534 } 2535 2536 nvme_dsm_cb(iocb, 0); 2537 return; 2538 } 2539 2540 iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk, nvme_moff(ns, slba), 2541 nvme_m2b(ns, nlb), BDRV_REQ_MAY_UNMAP, 2542 nvme_dsm_cb, iocb); 2543 return; 2544 2545 done: 2546 nvme_dsm_cb(iocb, ret); 2547 } 2548 2549 static void nvme_dsm_cb(void *opaque, int ret) 2550 { 2551 NvmeDSMAIOCB *iocb = opaque; 2552 NvmeRequest *req = iocb->req; 2553 NvmeCtrl *n = nvme_ctrl(req); 2554 NvmeNamespace *ns = req->ns; 2555 NvmeDsmRange *range; 2556 uint64_t slba; 2557 uint32_t nlb; 2558 2559 if (iocb->ret < 0) { 2560 goto done; 2561 } else if (ret < 0) { 2562 iocb->ret = ret; 2563 goto done; 2564 } 2565 2566 next: 2567 if (iocb->idx == iocb->nr) { 2568 goto done; 2569 } 2570 2571 range = &iocb->range[iocb->idx++]; 2572 slba = le64_to_cpu(range->slba); 2573 nlb = le32_to_cpu(range->nlb); 2574 2575 trace_pci_nvme_dsm_deallocate(slba, nlb); 2576 2577 if (nlb > n->dmrsl) { 2578 trace_pci_nvme_dsm_single_range_limit_exceeded(nlb, n->dmrsl); 2579 goto next; 2580 } 2581 2582 if (nvme_check_bounds(ns, slba, nlb)) { 2583 trace_pci_nvme_err_invalid_lba_range(slba, nlb, 2584 ns->id_ns.nsze); 2585 goto next; 2586 } 2587 2588 iocb->aiocb = blk_aio_pdiscard(ns->blkconf.blk, nvme_l2b(ns, slba), 2589 nvme_l2b(ns, nlb), 2590 nvme_dsm_md_cb, iocb); 2591 return; 2592 2593 done: 2594 iocb->aiocb = NULL; 2595 iocb->common.cb(iocb->common.opaque, iocb->ret); 2596 qemu_aio_unref(iocb); 2597 } 2598 2599 static uint16_t nvme_dsm(NvmeCtrl *n, NvmeRequest *req) 2600 { 2601 NvmeNamespace *ns = req->ns; 2602 NvmeDsmCmd *dsm = (NvmeDsmCmd *) &req->cmd; 2603 uint32_t attr = le32_to_cpu(dsm->attributes); 2604 uint32_t nr = (le32_to_cpu(dsm->nr) & 0xff) + 1; 2605 uint16_t status = NVME_SUCCESS; 2606 2607 trace_pci_nvme_dsm(nr, attr); 2608 2609 if (attr & NVME_DSMGMT_AD) { 2610 NvmeDSMAIOCB *iocb = blk_aio_get(&nvme_dsm_aiocb_info, ns->blkconf.blk, 2611 nvme_misc_cb, req); 2612 2613 iocb->req = req; 2614 iocb->ret = 0; 2615 iocb->range = g_new(NvmeDsmRange, nr); 2616 iocb->nr = nr; 2617 iocb->idx = 0; 2618 2619 status = nvme_h2c(n, (uint8_t *)iocb->range, sizeof(NvmeDsmRange) * nr, 2620 req); 2621 if (status) { 2622 g_free(iocb->range); 2623 qemu_aio_unref(iocb); 2624 2625 return status; 2626 } 2627 2628 req->aiocb = &iocb->common; 2629 nvme_dsm_cb(iocb, 0); 2630 2631 return NVME_NO_COMPLETE; 2632 } 2633 2634 return status; 2635 } 2636 2637 static uint16_t nvme_verify(NvmeCtrl *n, NvmeRequest *req) 2638 { 2639 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; 2640 NvmeNamespace *ns = req->ns; 2641 BlockBackend *blk = ns->blkconf.blk; 2642 uint64_t slba = le64_to_cpu(rw->slba); 2643 uint32_t nlb = le16_to_cpu(rw->nlb) + 1; 2644 size_t len = nvme_l2b(ns, nlb); 2645 int64_t offset = nvme_l2b(ns, slba); 2646 uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control)); 2647 uint32_t reftag = le32_to_cpu(rw->reftag); 2648 NvmeBounceContext *ctx = NULL; 2649 uint16_t status; 2650 2651 trace_pci_nvme_verify(nvme_cid(req), nvme_nsid(ns), slba, nlb); 2652 2653 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) { 2654 status = nvme_check_prinfo(ns, prinfo, slba, reftag); 2655 if (status) { 2656 return status; 2657 } 2658 2659 if (prinfo & NVME_PRINFO_PRACT) { 2660 return NVME_INVALID_PROT_INFO | NVME_DNR; 2661 } 2662 } 2663 2664 if (len > n->page_size << n->params.vsl) { 2665 return NVME_INVALID_FIELD | NVME_DNR; 2666 } 2667 2668 status = nvme_check_bounds(ns, slba, nlb); 2669 if (status) { 2670 return status; 2671 } 2672 2673 if (NVME_ERR_REC_DULBE(ns->features.err_rec)) { 2674 status = nvme_check_dulbe(ns, slba, nlb); 2675 if (status) { 2676 return status; 2677 } 2678 } 2679 2680 ctx = g_new0(NvmeBounceContext, 1); 2681 ctx->req = req; 2682 2683 ctx->data.bounce = g_malloc(len); 2684 2685 qemu_iovec_init(&ctx->data.iov, 1); 2686 qemu_iovec_add(&ctx->data.iov, ctx->data.bounce, len); 2687 2688 block_acct_start(blk_get_stats(blk), &req->acct, ctx->data.iov.size, 2689 BLOCK_ACCT_READ); 2690 2691 req->aiocb = blk_aio_preadv(ns->blkconf.blk, offset, &ctx->data.iov, 0, 2692 nvme_verify_mdata_in_cb, ctx); 2693 return NVME_NO_COMPLETE; 2694 } 2695 2696 typedef struct NvmeCopyAIOCB { 2697 BlockAIOCB common; 2698 BlockAIOCB *aiocb; 2699 NvmeRequest *req; 2700 int ret; 2701 2702 void *ranges; 2703 unsigned int format; 2704 int nr; 2705 int idx; 2706 2707 uint8_t *bounce; 2708 QEMUIOVector iov; 2709 struct { 2710 BlockAcctCookie read; 2711 BlockAcctCookie write; 2712 } acct; 2713 2714 uint64_t reftag; 2715 uint64_t slba; 2716 2717 NvmeZone *zone; 2718 } NvmeCopyAIOCB; 2719 2720 static void nvme_copy_cancel(BlockAIOCB *aiocb) 2721 { 2722 NvmeCopyAIOCB *iocb = container_of(aiocb, NvmeCopyAIOCB, common); 2723 2724 iocb->ret = -ECANCELED; 2725 2726 if (iocb->aiocb) { 2727 blk_aio_cancel_async(iocb->aiocb); 2728 iocb->aiocb = NULL; 2729 } 2730 } 2731 2732 static const AIOCBInfo nvme_copy_aiocb_info = { 2733 .aiocb_size = sizeof(NvmeCopyAIOCB), 2734 .cancel_async = nvme_copy_cancel, 2735 }; 2736 2737 static void nvme_copy_done(NvmeCopyAIOCB *iocb) 2738 { 2739 NvmeRequest *req = iocb->req; 2740 NvmeNamespace *ns = req->ns; 2741 BlockAcctStats *stats = blk_get_stats(ns->blkconf.blk); 2742 2743 if (iocb->idx != iocb->nr) { 2744 req->cqe.result = cpu_to_le32(iocb->idx); 2745 } 2746 2747 qemu_iovec_destroy(&iocb->iov); 2748 g_free(iocb->bounce); 2749 2750 if (iocb->ret < 0) { 2751 block_acct_failed(stats, &iocb->acct.read); 2752 block_acct_failed(stats, &iocb->acct.write); 2753 } else { 2754 block_acct_done(stats, &iocb->acct.read); 2755 block_acct_done(stats, &iocb->acct.write); 2756 } 2757 2758 iocb->common.cb(iocb->common.opaque, iocb->ret); 2759 qemu_aio_unref(iocb); 2760 } 2761 2762 static void nvme_do_copy(NvmeCopyAIOCB *iocb); 2763 2764 static void nvme_copy_source_range_parse_format0(void *ranges, int idx, 2765 uint64_t *slba, uint32_t *nlb, 2766 uint16_t *apptag, 2767 uint16_t *appmask, 2768 uint64_t *reftag) 2769 { 2770 NvmeCopySourceRangeFormat0 *_ranges = ranges; 2771 2772 if (slba) { 2773 *slba = le64_to_cpu(_ranges[idx].slba); 2774 } 2775 2776 if (nlb) { 2777 *nlb = le16_to_cpu(_ranges[idx].nlb) + 1; 2778 } 2779 2780 if (apptag) { 2781 *apptag = le16_to_cpu(_ranges[idx].apptag); 2782 } 2783 2784 if (appmask) { 2785 *appmask = le16_to_cpu(_ranges[idx].appmask); 2786 } 2787 2788 if (reftag) { 2789 *reftag = le32_to_cpu(_ranges[idx].reftag); 2790 } 2791 } 2792 2793 static void nvme_copy_source_range_parse_format1(void *ranges, int idx, 2794 uint64_t *slba, uint32_t *nlb, 2795 uint16_t *apptag, 2796 uint16_t *appmask, 2797 uint64_t *reftag) 2798 { 2799 NvmeCopySourceRangeFormat1 *_ranges = ranges; 2800 2801 if (slba) { 2802 *slba = le64_to_cpu(_ranges[idx].slba); 2803 } 2804 2805 if (nlb) { 2806 *nlb = le16_to_cpu(_ranges[idx].nlb) + 1; 2807 } 2808 2809 if (apptag) { 2810 *apptag = le16_to_cpu(_ranges[idx].apptag); 2811 } 2812 2813 if (appmask) { 2814 *appmask = le16_to_cpu(_ranges[idx].appmask); 2815 } 2816 2817 if (reftag) { 2818 *reftag = 0; 2819 2820 *reftag |= (uint64_t)_ranges[idx].sr[4] << 40; 2821 *reftag |= (uint64_t)_ranges[idx].sr[5] << 32; 2822 *reftag |= (uint64_t)_ranges[idx].sr[6] << 24; 2823 *reftag |= (uint64_t)_ranges[idx].sr[7] << 16; 2824 *reftag |= (uint64_t)_ranges[idx].sr[8] << 8; 2825 *reftag |= (uint64_t)_ranges[idx].sr[9]; 2826 } 2827 } 2828 2829 static void nvme_copy_source_range_parse(void *ranges, int idx, uint8_t format, 2830 uint64_t *slba, uint32_t *nlb, 2831 uint16_t *apptag, uint16_t *appmask, 2832 uint64_t *reftag) 2833 { 2834 switch (format) { 2835 case NVME_COPY_FORMAT_0: 2836 nvme_copy_source_range_parse_format0(ranges, idx, slba, nlb, apptag, 2837 appmask, reftag); 2838 break; 2839 2840 case NVME_COPY_FORMAT_1: 2841 nvme_copy_source_range_parse_format1(ranges, idx, slba, nlb, apptag, 2842 appmask, reftag); 2843 break; 2844 2845 default: 2846 abort(); 2847 } 2848 } 2849 2850 static void nvme_copy_out_completed_cb(void *opaque, int ret) 2851 { 2852 NvmeCopyAIOCB *iocb = opaque; 2853 NvmeRequest *req = iocb->req; 2854 NvmeNamespace *ns = req->ns; 2855 uint32_t nlb; 2856 2857 nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, NULL, 2858 &nlb, NULL, NULL, NULL); 2859 2860 if (ret < 0) { 2861 iocb->ret = ret; 2862 goto out; 2863 } else if (iocb->ret < 0) { 2864 goto out; 2865 } 2866 2867 if (ns->params.zoned) { 2868 nvme_advance_zone_wp(ns, iocb->zone, nlb); 2869 } 2870 2871 iocb->idx++; 2872 iocb->slba += nlb; 2873 out: 2874 nvme_do_copy(iocb); 2875 } 2876 2877 static void nvme_copy_out_cb(void *opaque, int ret) 2878 { 2879 NvmeCopyAIOCB *iocb = opaque; 2880 NvmeRequest *req = iocb->req; 2881 NvmeNamespace *ns = req->ns; 2882 uint32_t nlb; 2883 size_t mlen; 2884 uint8_t *mbounce; 2885 2886 if (ret < 0 || iocb->ret < 0 || !ns->lbaf.ms) { 2887 goto out; 2888 } 2889 2890 nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, NULL, 2891 &nlb, NULL, NULL, NULL); 2892 2893 mlen = nvme_m2b(ns, nlb); 2894 mbounce = iocb->bounce + nvme_l2b(ns, nlb); 2895 2896 qemu_iovec_reset(&iocb->iov); 2897 qemu_iovec_add(&iocb->iov, mbounce, mlen); 2898 2899 iocb->aiocb = blk_aio_pwritev(ns->blkconf.blk, nvme_moff(ns, iocb->slba), 2900 &iocb->iov, 0, nvme_copy_out_completed_cb, 2901 iocb); 2902 2903 return; 2904 2905 out: 2906 nvme_copy_out_completed_cb(iocb, ret); 2907 } 2908 2909 static void nvme_copy_in_completed_cb(void *opaque, int ret) 2910 { 2911 NvmeCopyAIOCB *iocb = opaque; 2912 NvmeRequest *req = iocb->req; 2913 NvmeNamespace *ns = req->ns; 2914 uint32_t nlb; 2915 uint64_t slba; 2916 uint16_t apptag, appmask; 2917 uint64_t reftag; 2918 size_t len; 2919 uint16_t status; 2920 2921 if (ret < 0) { 2922 iocb->ret = ret; 2923 goto out; 2924 } else if (iocb->ret < 0) { 2925 goto out; 2926 } 2927 2928 nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, &slba, 2929 &nlb, &apptag, &appmask, &reftag); 2930 len = nvme_l2b(ns, nlb); 2931 2932 trace_pci_nvme_copy_out(iocb->slba, nlb); 2933 2934 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) { 2935 NvmeCopyCmd *copy = (NvmeCopyCmd *)&req->cmd; 2936 2937 uint16_t prinfor = ((copy->control[0] >> 4) & 0xf); 2938 uint16_t prinfow = ((copy->control[2] >> 2) & 0xf); 2939 2940 size_t mlen = nvme_m2b(ns, nlb); 2941 uint8_t *mbounce = iocb->bounce + nvme_l2b(ns, nlb); 2942 2943 status = nvme_dif_mangle_mdata(ns, mbounce, mlen, slba); 2944 if (status) { 2945 goto invalid; 2946 } 2947 status = nvme_dif_check(ns, iocb->bounce, len, mbounce, mlen, prinfor, 2948 slba, apptag, appmask, &reftag); 2949 if (status) { 2950 goto invalid; 2951 } 2952 2953 apptag = le16_to_cpu(copy->apptag); 2954 appmask = le16_to_cpu(copy->appmask); 2955 2956 if (prinfow & NVME_PRINFO_PRACT) { 2957 status = nvme_check_prinfo(ns, prinfow, iocb->slba, iocb->reftag); 2958 if (status) { 2959 goto invalid; 2960 } 2961 2962 nvme_dif_pract_generate_dif(ns, iocb->bounce, len, mbounce, mlen, 2963 apptag, &iocb->reftag); 2964 } else { 2965 status = nvme_dif_check(ns, iocb->bounce, len, mbounce, mlen, 2966 prinfow, iocb->slba, apptag, appmask, 2967 &iocb->reftag); 2968 if (status) { 2969 goto invalid; 2970 } 2971 } 2972 } 2973 2974 status = nvme_check_bounds(ns, iocb->slba, nlb); 2975 if (status) { 2976 goto invalid; 2977 } 2978 2979 if (ns->params.zoned) { 2980 status = nvme_check_zone_write(ns, iocb->zone, iocb->slba, nlb); 2981 if (status) { 2982 goto invalid; 2983 } 2984 2985 if (!(iocb->zone->d.za & NVME_ZA_ZRWA_VALID)) { 2986 iocb->zone->w_ptr += nlb; 2987 } 2988 } 2989 2990 qemu_iovec_reset(&iocb->iov); 2991 qemu_iovec_add(&iocb->iov, iocb->bounce, len); 2992 2993 iocb->aiocb = blk_aio_pwritev(ns->blkconf.blk, nvme_l2b(ns, iocb->slba), 2994 &iocb->iov, 0, nvme_copy_out_cb, iocb); 2995 2996 return; 2997 2998 invalid: 2999 req->status = status; 3000 iocb->ret = -1; 3001 out: 3002 nvme_do_copy(iocb); 3003 } 3004 3005 static void nvme_copy_in_cb(void *opaque, int ret) 3006 { 3007 NvmeCopyAIOCB *iocb = opaque; 3008 NvmeRequest *req = iocb->req; 3009 NvmeNamespace *ns = req->ns; 3010 uint64_t slba; 3011 uint32_t nlb; 3012 3013 if (ret < 0 || iocb->ret < 0 || !ns->lbaf.ms) { 3014 goto out; 3015 } 3016 3017 nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, &slba, 3018 &nlb, NULL, NULL, NULL); 3019 3020 qemu_iovec_reset(&iocb->iov); 3021 qemu_iovec_add(&iocb->iov, iocb->bounce + nvme_l2b(ns, nlb), 3022 nvme_m2b(ns, nlb)); 3023 3024 iocb->aiocb = blk_aio_preadv(ns->blkconf.blk, nvme_moff(ns, slba), 3025 &iocb->iov, 0, nvme_copy_in_completed_cb, 3026 iocb); 3027 return; 3028 3029 out: 3030 nvme_copy_in_completed_cb(iocb, ret); 3031 } 3032 3033 static void nvme_do_copy(NvmeCopyAIOCB *iocb) 3034 { 3035 NvmeRequest *req = iocb->req; 3036 NvmeNamespace *ns = req->ns; 3037 uint64_t slba; 3038 uint32_t nlb; 3039 size_t len; 3040 uint16_t status; 3041 3042 if (iocb->ret < 0) { 3043 goto done; 3044 } 3045 3046 if (iocb->idx == iocb->nr) { 3047 goto done; 3048 } 3049 3050 nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, &slba, 3051 &nlb, NULL, NULL, NULL); 3052 len = nvme_l2b(ns, nlb); 3053 3054 trace_pci_nvme_copy_source_range(slba, nlb); 3055 3056 if (nlb > le16_to_cpu(ns->id_ns.mssrl)) { 3057 status = NVME_CMD_SIZE_LIMIT | NVME_DNR; 3058 goto invalid; 3059 } 3060 3061 status = nvme_check_bounds(ns, slba, nlb); 3062 if (status) { 3063 goto invalid; 3064 } 3065 3066 if (NVME_ERR_REC_DULBE(ns->features.err_rec)) { 3067 status = nvme_check_dulbe(ns, slba, nlb); 3068 if (status) { 3069 goto invalid; 3070 } 3071 } 3072 3073 if (ns->params.zoned) { 3074 status = nvme_check_zone_read(ns, slba, nlb); 3075 if (status) { 3076 goto invalid; 3077 } 3078 } 3079 3080 qemu_iovec_reset(&iocb->iov); 3081 qemu_iovec_add(&iocb->iov, iocb->bounce, len); 3082 3083 iocb->aiocb = blk_aio_preadv(ns->blkconf.blk, nvme_l2b(ns, slba), 3084 &iocb->iov, 0, nvme_copy_in_cb, iocb); 3085 return; 3086 3087 invalid: 3088 req->status = status; 3089 iocb->ret = -1; 3090 done: 3091 nvme_copy_done(iocb); 3092 } 3093 3094 static uint16_t nvme_copy(NvmeCtrl *n, NvmeRequest *req) 3095 { 3096 NvmeNamespace *ns = req->ns; 3097 NvmeCopyCmd *copy = (NvmeCopyCmd *)&req->cmd; 3098 NvmeCopyAIOCB *iocb = blk_aio_get(&nvme_copy_aiocb_info, ns->blkconf.blk, 3099 nvme_misc_cb, req); 3100 uint16_t nr = copy->nr + 1; 3101 uint8_t format = copy->control[0] & 0xf; 3102 uint16_t prinfor = ((copy->control[0] >> 4) & 0xf); 3103 uint16_t prinfow = ((copy->control[2] >> 2) & 0xf); 3104 size_t len = sizeof(NvmeCopySourceRangeFormat0); 3105 3106 uint16_t status; 3107 3108 trace_pci_nvme_copy(nvme_cid(req), nvme_nsid(ns), nr, format); 3109 3110 iocb->ranges = NULL; 3111 iocb->zone = NULL; 3112 3113 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps) && 3114 ((prinfor & NVME_PRINFO_PRACT) != (prinfow & NVME_PRINFO_PRACT))) { 3115 status = NVME_INVALID_FIELD | NVME_DNR; 3116 goto invalid; 3117 } 3118 3119 if (!(n->id_ctrl.ocfs & (1 << format))) { 3120 trace_pci_nvme_err_copy_invalid_format(format); 3121 status = NVME_INVALID_FIELD | NVME_DNR; 3122 goto invalid; 3123 } 3124 3125 if (nr > ns->id_ns.msrc + 1) { 3126 status = NVME_CMD_SIZE_LIMIT | NVME_DNR; 3127 goto invalid; 3128 } 3129 3130 if ((ns->pif == 0x0 && format != 0x0) || 3131 (ns->pif != 0x0 && format != 0x1)) { 3132 status = NVME_INVALID_FORMAT | NVME_DNR; 3133 goto invalid; 3134 } 3135 3136 if (ns->pif) { 3137 len = sizeof(NvmeCopySourceRangeFormat1); 3138 } 3139 3140 iocb->format = format; 3141 iocb->ranges = g_malloc_n(nr, len); 3142 status = nvme_h2c(n, (uint8_t *)iocb->ranges, len * nr, req); 3143 if (status) { 3144 goto invalid; 3145 } 3146 3147 iocb->slba = le64_to_cpu(copy->sdlba); 3148 3149 if (ns->params.zoned) { 3150 iocb->zone = nvme_get_zone_by_slba(ns, iocb->slba); 3151 if (!iocb->zone) { 3152 status = NVME_LBA_RANGE | NVME_DNR; 3153 goto invalid; 3154 } 3155 3156 status = nvme_zrm_auto(n, ns, iocb->zone); 3157 if (status) { 3158 goto invalid; 3159 } 3160 } 3161 3162 iocb->req = req; 3163 iocb->ret = 0; 3164 iocb->nr = nr; 3165 iocb->idx = 0; 3166 iocb->reftag = le32_to_cpu(copy->reftag); 3167 iocb->reftag |= (uint64_t)le32_to_cpu(copy->cdw3) << 32; 3168 iocb->bounce = g_malloc_n(le16_to_cpu(ns->id_ns.mssrl), 3169 ns->lbasz + ns->lbaf.ms); 3170 3171 qemu_iovec_init(&iocb->iov, 1); 3172 3173 block_acct_start(blk_get_stats(ns->blkconf.blk), &iocb->acct.read, 0, 3174 BLOCK_ACCT_READ); 3175 block_acct_start(blk_get_stats(ns->blkconf.blk), &iocb->acct.write, 0, 3176 BLOCK_ACCT_WRITE); 3177 3178 req->aiocb = &iocb->common; 3179 nvme_do_copy(iocb); 3180 3181 return NVME_NO_COMPLETE; 3182 3183 invalid: 3184 g_free(iocb->ranges); 3185 qemu_aio_unref(iocb); 3186 return status; 3187 } 3188 3189 static uint16_t nvme_compare(NvmeCtrl *n, NvmeRequest *req) 3190 { 3191 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; 3192 NvmeNamespace *ns = req->ns; 3193 BlockBackend *blk = ns->blkconf.blk; 3194 uint64_t slba = le64_to_cpu(rw->slba); 3195 uint32_t nlb = le16_to_cpu(rw->nlb) + 1; 3196 uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control)); 3197 size_t data_len = nvme_l2b(ns, nlb); 3198 size_t len = data_len; 3199 int64_t offset = nvme_l2b(ns, slba); 3200 struct nvme_compare_ctx *ctx = NULL; 3201 uint16_t status; 3202 3203 trace_pci_nvme_compare(nvme_cid(req), nvme_nsid(ns), slba, nlb); 3204 3205 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps) && (prinfo & NVME_PRINFO_PRACT)) { 3206 return NVME_INVALID_PROT_INFO | NVME_DNR; 3207 } 3208 3209 if (nvme_ns_ext(ns)) { 3210 len += nvme_m2b(ns, nlb); 3211 } 3212 3213 status = nvme_check_mdts(n, len); 3214 if (status) { 3215 return status; 3216 } 3217 3218 status = nvme_check_bounds(ns, slba, nlb); 3219 if (status) { 3220 return status; 3221 } 3222 3223 if (NVME_ERR_REC_DULBE(ns->features.err_rec)) { 3224 status = nvme_check_dulbe(ns, slba, nlb); 3225 if (status) { 3226 return status; 3227 } 3228 } 3229 3230 status = nvme_map_dptr(n, &req->sg, len, &req->cmd); 3231 if (status) { 3232 return status; 3233 } 3234 3235 ctx = g_new(struct nvme_compare_ctx, 1); 3236 ctx->data.bounce = g_malloc(data_len); 3237 3238 req->opaque = ctx; 3239 3240 qemu_iovec_init(&ctx->data.iov, 1); 3241 qemu_iovec_add(&ctx->data.iov, ctx->data.bounce, data_len); 3242 3243 block_acct_start(blk_get_stats(blk), &req->acct, data_len, 3244 BLOCK_ACCT_READ); 3245 req->aiocb = blk_aio_preadv(blk, offset, &ctx->data.iov, 0, 3246 nvme_compare_data_cb, req); 3247 3248 return NVME_NO_COMPLETE; 3249 } 3250 3251 typedef struct NvmeFlushAIOCB { 3252 BlockAIOCB common; 3253 BlockAIOCB *aiocb; 3254 NvmeRequest *req; 3255 int ret; 3256 3257 NvmeNamespace *ns; 3258 uint32_t nsid; 3259 bool broadcast; 3260 } NvmeFlushAIOCB; 3261 3262 static void nvme_flush_cancel(BlockAIOCB *acb) 3263 { 3264 NvmeFlushAIOCB *iocb = container_of(acb, NvmeFlushAIOCB, common); 3265 3266 iocb->ret = -ECANCELED; 3267 3268 if (iocb->aiocb) { 3269 blk_aio_cancel_async(iocb->aiocb); 3270 iocb->aiocb = NULL; 3271 } 3272 } 3273 3274 static const AIOCBInfo nvme_flush_aiocb_info = { 3275 .aiocb_size = sizeof(NvmeFlushAIOCB), 3276 .cancel_async = nvme_flush_cancel, 3277 .get_aio_context = nvme_get_aio_context, 3278 }; 3279 3280 static void nvme_do_flush(NvmeFlushAIOCB *iocb); 3281 3282 static void nvme_flush_ns_cb(void *opaque, int ret) 3283 { 3284 NvmeFlushAIOCB *iocb = opaque; 3285 NvmeNamespace *ns = iocb->ns; 3286 3287 if (ret < 0) { 3288 iocb->ret = ret; 3289 goto out; 3290 } else if (iocb->ret < 0) { 3291 goto out; 3292 } 3293 3294 if (ns) { 3295 trace_pci_nvme_flush_ns(iocb->nsid); 3296 3297 iocb->ns = NULL; 3298 iocb->aiocb = blk_aio_flush(ns->blkconf.blk, nvme_flush_ns_cb, iocb); 3299 return; 3300 } 3301 3302 out: 3303 nvme_do_flush(iocb); 3304 } 3305 3306 static void nvme_do_flush(NvmeFlushAIOCB *iocb) 3307 { 3308 NvmeRequest *req = iocb->req; 3309 NvmeCtrl *n = nvme_ctrl(req); 3310 int i; 3311 3312 if (iocb->ret < 0) { 3313 goto done; 3314 } 3315 3316 if (iocb->broadcast) { 3317 for (i = iocb->nsid + 1; i <= NVME_MAX_NAMESPACES; i++) { 3318 iocb->ns = nvme_ns(n, i); 3319 if (iocb->ns) { 3320 iocb->nsid = i; 3321 break; 3322 } 3323 } 3324 } 3325 3326 if (!iocb->ns) { 3327 goto done; 3328 } 3329 3330 nvme_flush_ns_cb(iocb, 0); 3331 return; 3332 3333 done: 3334 iocb->common.cb(iocb->common.opaque, iocb->ret); 3335 qemu_aio_unref(iocb); 3336 } 3337 3338 static uint16_t nvme_flush(NvmeCtrl *n, NvmeRequest *req) 3339 { 3340 NvmeFlushAIOCB *iocb; 3341 uint32_t nsid = le32_to_cpu(req->cmd.nsid); 3342 uint16_t status; 3343 3344 iocb = qemu_aio_get(&nvme_flush_aiocb_info, NULL, nvme_misc_cb, req); 3345 3346 iocb->req = req; 3347 iocb->ret = 0; 3348 iocb->ns = NULL; 3349 iocb->nsid = 0; 3350 iocb->broadcast = (nsid == NVME_NSID_BROADCAST); 3351 3352 if (!iocb->broadcast) { 3353 if (!nvme_nsid_valid(n, nsid)) { 3354 status = NVME_INVALID_NSID | NVME_DNR; 3355 goto out; 3356 } 3357 3358 iocb->ns = nvme_ns(n, nsid); 3359 if (!iocb->ns) { 3360 status = NVME_INVALID_FIELD | NVME_DNR; 3361 goto out; 3362 } 3363 3364 iocb->nsid = nsid; 3365 } 3366 3367 req->aiocb = &iocb->common; 3368 nvme_do_flush(iocb); 3369 3370 return NVME_NO_COMPLETE; 3371 3372 out: 3373 qemu_aio_unref(iocb); 3374 3375 return status; 3376 } 3377 3378 static uint16_t nvme_read(NvmeCtrl *n, NvmeRequest *req) 3379 { 3380 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; 3381 NvmeNamespace *ns = req->ns; 3382 uint64_t slba = le64_to_cpu(rw->slba); 3383 uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1; 3384 uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control)); 3385 uint64_t data_size = nvme_l2b(ns, nlb); 3386 uint64_t mapped_size = data_size; 3387 uint64_t data_offset; 3388 BlockBackend *blk = ns->blkconf.blk; 3389 uint16_t status; 3390 3391 if (nvme_ns_ext(ns)) { 3392 mapped_size += nvme_m2b(ns, nlb); 3393 3394 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) { 3395 bool pract = prinfo & NVME_PRINFO_PRACT; 3396 3397 if (pract && ns->lbaf.ms == nvme_pi_tuple_size(ns)) { 3398 mapped_size = data_size; 3399 } 3400 } 3401 } 3402 3403 trace_pci_nvme_read(nvme_cid(req), nvme_nsid(ns), nlb, mapped_size, slba); 3404 3405 status = nvme_check_mdts(n, mapped_size); 3406 if (status) { 3407 goto invalid; 3408 } 3409 3410 status = nvme_check_bounds(ns, slba, nlb); 3411 if (status) { 3412 goto invalid; 3413 } 3414 3415 if (ns->params.zoned) { 3416 status = nvme_check_zone_read(ns, slba, nlb); 3417 if (status) { 3418 trace_pci_nvme_err_zone_read_not_ok(slba, nlb, status); 3419 goto invalid; 3420 } 3421 } 3422 3423 if (NVME_ERR_REC_DULBE(ns->features.err_rec)) { 3424 status = nvme_check_dulbe(ns, slba, nlb); 3425 if (status) { 3426 goto invalid; 3427 } 3428 } 3429 3430 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) { 3431 return nvme_dif_rw(n, req); 3432 } 3433 3434 status = nvme_map_data(n, nlb, req); 3435 if (status) { 3436 goto invalid; 3437 } 3438 3439 data_offset = nvme_l2b(ns, slba); 3440 3441 block_acct_start(blk_get_stats(blk), &req->acct, data_size, 3442 BLOCK_ACCT_READ); 3443 nvme_blk_read(blk, data_offset, BDRV_SECTOR_SIZE, nvme_rw_cb, req); 3444 return NVME_NO_COMPLETE; 3445 3446 invalid: 3447 block_acct_invalid(blk_get_stats(blk), BLOCK_ACCT_READ); 3448 return status | NVME_DNR; 3449 } 3450 3451 static void nvme_do_write_fdp(NvmeCtrl *n, NvmeRequest *req, uint64_t slba, 3452 uint32_t nlb) 3453 { 3454 NvmeNamespace *ns = req->ns; 3455 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; 3456 uint64_t data_size = nvme_l2b(ns, nlb); 3457 uint32_t dw12 = le32_to_cpu(req->cmd.cdw12); 3458 uint8_t dtype = (dw12 >> 20) & 0xf; 3459 uint16_t pid = le16_to_cpu(rw->dspec); 3460 uint16_t ph, rg, ruhid; 3461 NvmeReclaimUnit *ru; 3462 3463 if (dtype != NVME_DIRECTIVE_DATA_PLACEMENT || 3464 !nvme_parse_pid(ns, pid, &ph, &rg)) { 3465 ph = 0; 3466 rg = 0; 3467 } 3468 3469 ruhid = ns->fdp.phs[ph]; 3470 ru = &ns->endgrp->fdp.ruhs[ruhid].rus[rg]; 3471 3472 nvme_fdp_stat_inc(&ns->endgrp->fdp.hbmw, data_size); 3473 nvme_fdp_stat_inc(&ns->endgrp->fdp.mbmw, data_size); 3474 3475 while (nlb) { 3476 if (nlb < ru->ruamw) { 3477 ru->ruamw -= nlb; 3478 break; 3479 } 3480 3481 nlb -= ru->ruamw; 3482 nvme_update_ruh(n, ns, pid); 3483 } 3484 } 3485 3486 static uint16_t nvme_do_write(NvmeCtrl *n, NvmeRequest *req, bool append, 3487 bool wrz) 3488 { 3489 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; 3490 NvmeNamespace *ns = req->ns; 3491 uint64_t slba = le64_to_cpu(rw->slba); 3492 uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1; 3493 uint16_t ctrl = le16_to_cpu(rw->control); 3494 uint8_t prinfo = NVME_RW_PRINFO(ctrl); 3495 uint64_t data_size = nvme_l2b(ns, nlb); 3496 uint64_t mapped_size = data_size; 3497 uint64_t data_offset; 3498 NvmeZone *zone; 3499 NvmeZonedResult *res = (NvmeZonedResult *)&req->cqe; 3500 BlockBackend *blk = ns->blkconf.blk; 3501 uint16_t status; 3502 3503 if (nvme_ns_ext(ns)) { 3504 mapped_size += nvme_m2b(ns, nlb); 3505 3506 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) { 3507 bool pract = prinfo & NVME_PRINFO_PRACT; 3508 3509 if (pract && ns->lbaf.ms == nvme_pi_tuple_size(ns)) { 3510 mapped_size -= nvme_m2b(ns, nlb); 3511 } 3512 } 3513 } 3514 3515 trace_pci_nvme_write(nvme_cid(req), nvme_io_opc_str(rw->opcode), 3516 nvme_nsid(ns), nlb, mapped_size, slba); 3517 3518 if (!wrz) { 3519 status = nvme_check_mdts(n, mapped_size); 3520 if (status) { 3521 goto invalid; 3522 } 3523 } 3524 3525 status = nvme_check_bounds(ns, slba, nlb); 3526 if (status) { 3527 goto invalid; 3528 } 3529 3530 if (ns->params.zoned) { 3531 zone = nvme_get_zone_by_slba(ns, slba); 3532 assert(zone); 3533 3534 if (append) { 3535 bool piremap = !!(ctrl & NVME_RW_PIREMAP); 3536 3537 if (unlikely(zone->d.za & NVME_ZA_ZRWA_VALID)) { 3538 return NVME_INVALID_ZONE_OP | NVME_DNR; 3539 } 3540 3541 if (unlikely(slba != zone->d.zslba)) { 3542 trace_pci_nvme_err_append_not_at_start(slba, zone->d.zslba); 3543 status = NVME_INVALID_FIELD; 3544 goto invalid; 3545 } 3546 3547 if (n->params.zasl && 3548 data_size > (uint64_t)n->page_size << n->params.zasl) { 3549 trace_pci_nvme_err_zasl(data_size); 3550 return NVME_INVALID_FIELD | NVME_DNR; 3551 } 3552 3553 slba = zone->w_ptr; 3554 rw->slba = cpu_to_le64(slba); 3555 res->slba = cpu_to_le64(slba); 3556 3557 switch (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) { 3558 case NVME_ID_NS_DPS_TYPE_1: 3559 if (!piremap) { 3560 return NVME_INVALID_PROT_INFO | NVME_DNR; 3561 } 3562 3563 /* fallthrough */ 3564 3565 case NVME_ID_NS_DPS_TYPE_2: 3566 if (piremap) { 3567 uint32_t reftag = le32_to_cpu(rw->reftag); 3568 rw->reftag = cpu_to_le32(reftag + (slba - zone->d.zslba)); 3569 } 3570 3571 break; 3572 3573 case NVME_ID_NS_DPS_TYPE_3: 3574 if (piremap) { 3575 return NVME_INVALID_PROT_INFO | NVME_DNR; 3576 } 3577 3578 break; 3579 } 3580 } 3581 3582 status = nvme_check_zone_write(ns, zone, slba, nlb); 3583 if (status) { 3584 goto invalid; 3585 } 3586 3587 status = nvme_zrm_auto(n, ns, zone); 3588 if (status) { 3589 goto invalid; 3590 } 3591 3592 if (!(zone->d.za & NVME_ZA_ZRWA_VALID)) { 3593 zone->w_ptr += nlb; 3594 } 3595 } else if (ns->endgrp && ns->endgrp->fdp.enabled) { 3596 nvme_do_write_fdp(n, req, slba, nlb); 3597 } 3598 3599 data_offset = nvme_l2b(ns, slba); 3600 3601 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) { 3602 return nvme_dif_rw(n, req); 3603 } 3604 3605 if (!wrz) { 3606 status = nvme_map_data(n, nlb, req); 3607 if (status) { 3608 goto invalid; 3609 } 3610 3611 block_acct_start(blk_get_stats(blk), &req->acct, data_size, 3612 BLOCK_ACCT_WRITE); 3613 nvme_blk_write(blk, data_offset, BDRV_SECTOR_SIZE, nvme_rw_cb, req); 3614 } else { 3615 req->aiocb = blk_aio_pwrite_zeroes(blk, data_offset, data_size, 3616 BDRV_REQ_MAY_UNMAP, nvme_rw_cb, 3617 req); 3618 } 3619 3620 return NVME_NO_COMPLETE; 3621 3622 invalid: 3623 block_acct_invalid(blk_get_stats(blk), BLOCK_ACCT_WRITE); 3624 return status | NVME_DNR; 3625 } 3626 3627 static inline uint16_t nvme_write(NvmeCtrl *n, NvmeRequest *req) 3628 { 3629 return nvme_do_write(n, req, false, false); 3630 } 3631 3632 static inline uint16_t nvme_write_zeroes(NvmeCtrl *n, NvmeRequest *req) 3633 { 3634 return nvme_do_write(n, req, false, true); 3635 } 3636 3637 static inline uint16_t nvme_zone_append(NvmeCtrl *n, NvmeRequest *req) 3638 { 3639 return nvme_do_write(n, req, true, false); 3640 } 3641 3642 static uint16_t nvme_get_mgmt_zone_slba_idx(NvmeNamespace *ns, NvmeCmd *c, 3643 uint64_t *slba, uint32_t *zone_idx) 3644 { 3645 uint32_t dw10 = le32_to_cpu(c->cdw10); 3646 uint32_t dw11 = le32_to_cpu(c->cdw11); 3647 3648 if (!ns->params.zoned) { 3649 trace_pci_nvme_err_invalid_opc(c->opcode); 3650 return NVME_INVALID_OPCODE | NVME_DNR; 3651 } 3652 3653 *slba = ((uint64_t)dw11) << 32 | dw10; 3654 if (unlikely(*slba >= ns->id_ns.nsze)) { 3655 trace_pci_nvme_err_invalid_lba_range(*slba, 0, ns->id_ns.nsze); 3656 *slba = 0; 3657 return NVME_LBA_RANGE | NVME_DNR; 3658 } 3659 3660 *zone_idx = nvme_zone_idx(ns, *slba); 3661 assert(*zone_idx < ns->num_zones); 3662 3663 return NVME_SUCCESS; 3664 } 3665 3666 typedef uint16_t (*op_handler_t)(NvmeNamespace *, NvmeZone *, NvmeZoneState, 3667 NvmeRequest *); 3668 3669 enum NvmeZoneProcessingMask { 3670 NVME_PROC_CURRENT_ZONE = 0, 3671 NVME_PROC_OPENED_ZONES = 1 << 0, 3672 NVME_PROC_CLOSED_ZONES = 1 << 1, 3673 NVME_PROC_READ_ONLY_ZONES = 1 << 2, 3674 NVME_PROC_FULL_ZONES = 1 << 3, 3675 }; 3676 3677 static uint16_t nvme_open_zone(NvmeNamespace *ns, NvmeZone *zone, 3678 NvmeZoneState state, NvmeRequest *req) 3679 { 3680 NvmeZoneSendCmd *cmd = (NvmeZoneSendCmd *)&req->cmd; 3681 int flags = 0; 3682 3683 if (cmd->zsflags & NVME_ZSFLAG_ZRWA_ALLOC) { 3684 uint16_t ozcs = le16_to_cpu(ns->id_ns_zoned->ozcs); 3685 3686 if (!(ozcs & NVME_ID_NS_ZONED_OZCS_ZRWASUP)) { 3687 return NVME_INVALID_ZONE_OP | NVME_DNR; 3688 } 3689 3690 if (zone->w_ptr % ns->zns.zrwafg) { 3691 return NVME_NOZRWA | NVME_DNR; 3692 } 3693 3694 flags = NVME_ZRM_ZRWA; 3695 } 3696 3697 return nvme_zrm_open_flags(nvme_ctrl(req), ns, zone, flags); 3698 } 3699 3700 static uint16_t nvme_close_zone(NvmeNamespace *ns, NvmeZone *zone, 3701 NvmeZoneState state, NvmeRequest *req) 3702 { 3703 return nvme_zrm_close(ns, zone); 3704 } 3705 3706 static uint16_t nvme_finish_zone(NvmeNamespace *ns, NvmeZone *zone, 3707 NvmeZoneState state, NvmeRequest *req) 3708 { 3709 return nvme_zrm_finish(ns, zone); 3710 } 3711 3712 static uint16_t nvme_offline_zone(NvmeNamespace *ns, NvmeZone *zone, 3713 NvmeZoneState state, NvmeRequest *req) 3714 { 3715 switch (state) { 3716 case NVME_ZONE_STATE_READ_ONLY: 3717 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_OFFLINE); 3718 /* fall through */ 3719 case NVME_ZONE_STATE_OFFLINE: 3720 return NVME_SUCCESS; 3721 default: 3722 return NVME_ZONE_INVAL_TRANSITION; 3723 } 3724 } 3725 3726 static uint16_t nvme_set_zd_ext(NvmeNamespace *ns, NvmeZone *zone) 3727 { 3728 uint16_t status; 3729 uint8_t state = nvme_get_zone_state(zone); 3730 3731 if (state == NVME_ZONE_STATE_EMPTY) { 3732 status = nvme_aor_check(ns, 1, 0); 3733 if (status) { 3734 return status; 3735 } 3736 nvme_aor_inc_active(ns); 3737 zone->d.za |= NVME_ZA_ZD_EXT_VALID; 3738 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_CLOSED); 3739 return NVME_SUCCESS; 3740 } 3741 3742 return NVME_ZONE_INVAL_TRANSITION; 3743 } 3744 3745 static uint16_t nvme_bulk_proc_zone(NvmeNamespace *ns, NvmeZone *zone, 3746 enum NvmeZoneProcessingMask proc_mask, 3747 op_handler_t op_hndlr, NvmeRequest *req) 3748 { 3749 uint16_t status = NVME_SUCCESS; 3750 NvmeZoneState zs = nvme_get_zone_state(zone); 3751 bool proc_zone; 3752 3753 switch (zs) { 3754 case NVME_ZONE_STATE_IMPLICITLY_OPEN: 3755 case NVME_ZONE_STATE_EXPLICITLY_OPEN: 3756 proc_zone = proc_mask & NVME_PROC_OPENED_ZONES; 3757 break; 3758 case NVME_ZONE_STATE_CLOSED: 3759 proc_zone = proc_mask & NVME_PROC_CLOSED_ZONES; 3760 break; 3761 case NVME_ZONE_STATE_READ_ONLY: 3762 proc_zone = proc_mask & NVME_PROC_READ_ONLY_ZONES; 3763 break; 3764 case NVME_ZONE_STATE_FULL: 3765 proc_zone = proc_mask & NVME_PROC_FULL_ZONES; 3766 break; 3767 default: 3768 proc_zone = false; 3769 } 3770 3771 if (proc_zone) { 3772 status = op_hndlr(ns, zone, zs, req); 3773 } 3774 3775 return status; 3776 } 3777 3778 static uint16_t nvme_do_zone_op(NvmeNamespace *ns, NvmeZone *zone, 3779 enum NvmeZoneProcessingMask proc_mask, 3780 op_handler_t op_hndlr, NvmeRequest *req) 3781 { 3782 NvmeZone *next; 3783 uint16_t status = NVME_SUCCESS; 3784 int i; 3785 3786 if (!proc_mask) { 3787 status = op_hndlr(ns, zone, nvme_get_zone_state(zone), req); 3788 } else { 3789 if (proc_mask & NVME_PROC_CLOSED_ZONES) { 3790 QTAILQ_FOREACH_SAFE(zone, &ns->closed_zones, entry, next) { 3791 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr, 3792 req); 3793 if (status && status != NVME_NO_COMPLETE) { 3794 goto out; 3795 } 3796 } 3797 } 3798 if (proc_mask & NVME_PROC_OPENED_ZONES) { 3799 QTAILQ_FOREACH_SAFE(zone, &ns->imp_open_zones, entry, next) { 3800 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr, 3801 req); 3802 if (status && status != NVME_NO_COMPLETE) { 3803 goto out; 3804 } 3805 } 3806 3807 QTAILQ_FOREACH_SAFE(zone, &ns->exp_open_zones, entry, next) { 3808 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr, 3809 req); 3810 if (status && status != NVME_NO_COMPLETE) { 3811 goto out; 3812 } 3813 } 3814 } 3815 if (proc_mask & NVME_PROC_FULL_ZONES) { 3816 QTAILQ_FOREACH_SAFE(zone, &ns->full_zones, entry, next) { 3817 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr, 3818 req); 3819 if (status && status != NVME_NO_COMPLETE) { 3820 goto out; 3821 } 3822 } 3823 } 3824 3825 if (proc_mask & NVME_PROC_READ_ONLY_ZONES) { 3826 for (i = 0; i < ns->num_zones; i++, zone++) { 3827 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr, 3828 req); 3829 if (status && status != NVME_NO_COMPLETE) { 3830 goto out; 3831 } 3832 } 3833 } 3834 } 3835 3836 out: 3837 return status; 3838 } 3839 3840 typedef struct NvmeZoneResetAIOCB { 3841 BlockAIOCB common; 3842 BlockAIOCB *aiocb; 3843 NvmeRequest *req; 3844 int ret; 3845 3846 bool all; 3847 int idx; 3848 NvmeZone *zone; 3849 } NvmeZoneResetAIOCB; 3850 3851 static void nvme_zone_reset_cancel(BlockAIOCB *aiocb) 3852 { 3853 NvmeZoneResetAIOCB *iocb = container_of(aiocb, NvmeZoneResetAIOCB, common); 3854 NvmeRequest *req = iocb->req; 3855 NvmeNamespace *ns = req->ns; 3856 3857 iocb->idx = ns->num_zones; 3858 3859 iocb->ret = -ECANCELED; 3860 3861 if (iocb->aiocb) { 3862 blk_aio_cancel_async(iocb->aiocb); 3863 iocb->aiocb = NULL; 3864 } 3865 } 3866 3867 static const AIOCBInfo nvme_zone_reset_aiocb_info = { 3868 .aiocb_size = sizeof(NvmeZoneResetAIOCB), 3869 .cancel_async = nvme_zone_reset_cancel, 3870 }; 3871 3872 static void nvme_zone_reset_cb(void *opaque, int ret); 3873 3874 static void nvme_zone_reset_epilogue_cb(void *opaque, int ret) 3875 { 3876 NvmeZoneResetAIOCB *iocb = opaque; 3877 NvmeRequest *req = iocb->req; 3878 NvmeNamespace *ns = req->ns; 3879 int64_t moff; 3880 int count; 3881 3882 if (ret < 0 || iocb->ret < 0 || !ns->lbaf.ms) { 3883 goto out; 3884 } 3885 3886 moff = nvme_moff(ns, iocb->zone->d.zslba); 3887 count = nvme_m2b(ns, ns->zone_size); 3888 3889 iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk, moff, count, 3890 BDRV_REQ_MAY_UNMAP, 3891 nvme_zone_reset_cb, iocb); 3892 return; 3893 3894 out: 3895 nvme_zone_reset_cb(iocb, ret); 3896 } 3897 3898 static void nvme_zone_reset_cb(void *opaque, int ret) 3899 { 3900 NvmeZoneResetAIOCB *iocb = opaque; 3901 NvmeRequest *req = iocb->req; 3902 NvmeNamespace *ns = req->ns; 3903 3904 if (iocb->ret < 0) { 3905 goto done; 3906 } else if (ret < 0) { 3907 iocb->ret = ret; 3908 goto done; 3909 } 3910 3911 if (iocb->zone) { 3912 nvme_zrm_reset(ns, iocb->zone); 3913 3914 if (!iocb->all) { 3915 goto done; 3916 } 3917 } 3918 3919 while (iocb->idx < ns->num_zones) { 3920 NvmeZone *zone = &ns->zone_array[iocb->idx++]; 3921 3922 switch (nvme_get_zone_state(zone)) { 3923 case NVME_ZONE_STATE_EMPTY: 3924 if (!iocb->all) { 3925 goto done; 3926 } 3927 3928 continue; 3929 3930 case NVME_ZONE_STATE_EXPLICITLY_OPEN: 3931 case NVME_ZONE_STATE_IMPLICITLY_OPEN: 3932 case NVME_ZONE_STATE_CLOSED: 3933 case NVME_ZONE_STATE_FULL: 3934 iocb->zone = zone; 3935 break; 3936 3937 default: 3938 continue; 3939 } 3940 3941 trace_pci_nvme_zns_zone_reset(zone->d.zslba); 3942 3943 iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk, 3944 nvme_l2b(ns, zone->d.zslba), 3945 nvme_l2b(ns, ns->zone_size), 3946 BDRV_REQ_MAY_UNMAP, 3947 nvme_zone_reset_epilogue_cb, 3948 iocb); 3949 return; 3950 } 3951 3952 done: 3953 iocb->aiocb = NULL; 3954 3955 iocb->common.cb(iocb->common.opaque, iocb->ret); 3956 qemu_aio_unref(iocb); 3957 } 3958 3959 static uint16_t nvme_zone_mgmt_send_zrwa_flush(NvmeCtrl *n, NvmeZone *zone, 3960 uint64_t elba, NvmeRequest *req) 3961 { 3962 NvmeNamespace *ns = req->ns; 3963 uint16_t ozcs = le16_to_cpu(ns->id_ns_zoned->ozcs); 3964 uint64_t wp = zone->d.wp; 3965 uint32_t nlb = elba - wp + 1; 3966 uint16_t status; 3967 3968 3969 if (!(ozcs & NVME_ID_NS_ZONED_OZCS_ZRWASUP)) { 3970 return NVME_INVALID_ZONE_OP | NVME_DNR; 3971 } 3972 3973 if (!(zone->d.za & NVME_ZA_ZRWA_VALID)) { 3974 return NVME_INVALID_FIELD | NVME_DNR; 3975 } 3976 3977 if (elba < wp || elba > wp + ns->zns.zrwas) { 3978 return NVME_ZONE_BOUNDARY_ERROR | NVME_DNR; 3979 } 3980 3981 if (nlb % ns->zns.zrwafg) { 3982 return NVME_INVALID_FIELD | NVME_DNR; 3983 } 3984 3985 status = nvme_zrm_auto(n, ns, zone); 3986 if (status) { 3987 return status; 3988 } 3989 3990 zone->w_ptr += nlb; 3991 3992 nvme_advance_zone_wp(ns, zone, nlb); 3993 3994 return NVME_SUCCESS; 3995 } 3996 3997 static uint16_t nvme_zone_mgmt_send(NvmeCtrl *n, NvmeRequest *req) 3998 { 3999 NvmeZoneSendCmd *cmd = (NvmeZoneSendCmd *)&req->cmd; 4000 NvmeNamespace *ns = req->ns; 4001 NvmeZone *zone; 4002 NvmeZoneResetAIOCB *iocb; 4003 uint8_t *zd_ext; 4004 uint64_t slba = 0; 4005 uint32_t zone_idx = 0; 4006 uint16_t status; 4007 uint8_t action = cmd->zsa; 4008 bool all; 4009 enum NvmeZoneProcessingMask proc_mask = NVME_PROC_CURRENT_ZONE; 4010 4011 all = cmd->zsflags & NVME_ZSFLAG_SELECT_ALL; 4012 4013 req->status = NVME_SUCCESS; 4014 4015 if (!all) { 4016 status = nvme_get_mgmt_zone_slba_idx(ns, &req->cmd, &slba, &zone_idx); 4017 if (status) { 4018 return status; 4019 } 4020 } 4021 4022 zone = &ns->zone_array[zone_idx]; 4023 if (slba != zone->d.zslba && action != NVME_ZONE_ACTION_ZRWA_FLUSH) { 4024 trace_pci_nvme_err_unaligned_zone_cmd(action, slba, zone->d.zslba); 4025 return NVME_INVALID_FIELD | NVME_DNR; 4026 } 4027 4028 switch (action) { 4029 4030 case NVME_ZONE_ACTION_OPEN: 4031 if (all) { 4032 proc_mask = NVME_PROC_CLOSED_ZONES; 4033 } 4034 trace_pci_nvme_open_zone(slba, zone_idx, all); 4035 status = nvme_do_zone_op(ns, zone, proc_mask, nvme_open_zone, req); 4036 break; 4037 4038 case NVME_ZONE_ACTION_CLOSE: 4039 if (all) { 4040 proc_mask = NVME_PROC_OPENED_ZONES; 4041 } 4042 trace_pci_nvme_close_zone(slba, zone_idx, all); 4043 status = nvme_do_zone_op(ns, zone, proc_mask, nvme_close_zone, req); 4044 break; 4045 4046 case NVME_ZONE_ACTION_FINISH: 4047 if (all) { 4048 proc_mask = NVME_PROC_OPENED_ZONES | NVME_PROC_CLOSED_ZONES; 4049 } 4050 trace_pci_nvme_finish_zone(slba, zone_idx, all); 4051 status = nvme_do_zone_op(ns, zone, proc_mask, nvme_finish_zone, req); 4052 break; 4053 4054 case NVME_ZONE_ACTION_RESET: 4055 trace_pci_nvme_reset_zone(slba, zone_idx, all); 4056 4057 iocb = blk_aio_get(&nvme_zone_reset_aiocb_info, ns->blkconf.blk, 4058 nvme_misc_cb, req); 4059 4060 iocb->req = req; 4061 iocb->ret = 0; 4062 iocb->all = all; 4063 iocb->idx = zone_idx; 4064 iocb->zone = NULL; 4065 4066 req->aiocb = &iocb->common; 4067 nvme_zone_reset_cb(iocb, 0); 4068 4069 return NVME_NO_COMPLETE; 4070 4071 case NVME_ZONE_ACTION_OFFLINE: 4072 if (all) { 4073 proc_mask = NVME_PROC_READ_ONLY_ZONES; 4074 } 4075 trace_pci_nvme_offline_zone(slba, zone_idx, all); 4076 status = nvme_do_zone_op(ns, zone, proc_mask, nvme_offline_zone, req); 4077 break; 4078 4079 case NVME_ZONE_ACTION_SET_ZD_EXT: 4080 trace_pci_nvme_set_descriptor_extension(slba, zone_idx); 4081 if (all || !ns->params.zd_extension_size) { 4082 return NVME_INVALID_FIELD | NVME_DNR; 4083 } 4084 zd_ext = nvme_get_zd_extension(ns, zone_idx); 4085 status = nvme_h2c(n, zd_ext, ns->params.zd_extension_size, req); 4086 if (status) { 4087 trace_pci_nvme_err_zd_extension_map_error(zone_idx); 4088 return status; 4089 } 4090 4091 status = nvme_set_zd_ext(ns, zone); 4092 if (status == NVME_SUCCESS) { 4093 trace_pci_nvme_zd_extension_set(zone_idx); 4094 return status; 4095 } 4096 break; 4097 4098 case NVME_ZONE_ACTION_ZRWA_FLUSH: 4099 if (all) { 4100 return NVME_INVALID_FIELD | NVME_DNR; 4101 } 4102 4103 return nvme_zone_mgmt_send_zrwa_flush(n, zone, slba, req); 4104 4105 default: 4106 trace_pci_nvme_err_invalid_mgmt_action(action); 4107 status = NVME_INVALID_FIELD; 4108 } 4109 4110 if (status == NVME_ZONE_INVAL_TRANSITION) { 4111 trace_pci_nvme_err_invalid_zone_state_transition(action, slba, 4112 zone->d.za); 4113 } 4114 if (status) { 4115 status |= NVME_DNR; 4116 } 4117 4118 return status; 4119 } 4120 4121 static bool nvme_zone_matches_filter(uint32_t zafs, NvmeZone *zl) 4122 { 4123 NvmeZoneState zs = nvme_get_zone_state(zl); 4124 4125 switch (zafs) { 4126 case NVME_ZONE_REPORT_ALL: 4127 return true; 4128 case NVME_ZONE_REPORT_EMPTY: 4129 return zs == NVME_ZONE_STATE_EMPTY; 4130 case NVME_ZONE_REPORT_IMPLICITLY_OPEN: 4131 return zs == NVME_ZONE_STATE_IMPLICITLY_OPEN; 4132 case NVME_ZONE_REPORT_EXPLICITLY_OPEN: 4133 return zs == NVME_ZONE_STATE_EXPLICITLY_OPEN; 4134 case NVME_ZONE_REPORT_CLOSED: 4135 return zs == NVME_ZONE_STATE_CLOSED; 4136 case NVME_ZONE_REPORT_FULL: 4137 return zs == NVME_ZONE_STATE_FULL; 4138 case NVME_ZONE_REPORT_READ_ONLY: 4139 return zs == NVME_ZONE_STATE_READ_ONLY; 4140 case NVME_ZONE_REPORT_OFFLINE: 4141 return zs == NVME_ZONE_STATE_OFFLINE; 4142 default: 4143 return false; 4144 } 4145 } 4146 4147 static uint16_t nvme_zone_mgmt_recv(NvmeCtrl *n, NvmeRequest *req) 4148 { 4149 NvmeCmd *cmd = (NvmeCmd *)&req->cmd; 4150 NvmeNamespace *ns = req->ns; 4151 /* cdw12 is zero-based number of dwords to return. Convert to bytes */ 4152 uint32_t data_size = (le32_to_cpu(cmd->cdw12) + 1) << 2; 4153 uint32_t dw13 = le32_to_cpu(cmd->cdw13); 4154 uint32_t zone_idx, zra, zrasf, partial; 4155 uint64_t max_zones, nr_zones = 0; 4156 uint16_t status; 4157 uint64_t slba; 4158 NvmeZoneDescr *z; 4159 NvmeZone *zone; 4160 NvmeZoneReportHeader *header; 4161 void *buf, *buf_p; 4162 size_t zone_entry_sz; 4163 int i; 4164 4165 req->status = NVME_SUCCESS; 4166 4167 status = nvme_get_mgmt_zone_slba_idx(ns, cmd, &slba, &zone_idx); 4168 if (status) { 4169 return status; 4170 } 4171 4172 zra = dw13 & 0xff; 4173 if (zra != NVME_ZONE_REPORT && zra != NVME_ZONE_REPORT_EXTENDED) { 4174 return NVME_INVALID_FIELD | NVME_DNR; 4175 } 4176 if (zra == NVME_ZONE_REPORT_EXTENDED && !ns->params.zd_extension_size) { 4177 return NVME_INVALID_FIELD | NVME_DNR; 4178 } 4179 4180 zrasf = (dw13 >> 8) & 0xff; 4181 if (zrasf > NVME_ZONE_REPORT_OFFLINE) { 4182 return NVME_INVALID_FIELD | NVME_DNR; 4183 } 4184 4185 if (data_size < sizeof(NvmeZoneReportHeader)) { 4186 return NVME_INVALID_FIELD | NVME_DNR; 4187 } 4188 4189 status = nvme_check_mdts(n, data_size); 4190 if (status) { 4191 return status; 4192 } 4193 4194 partial = (dw13 >> 16) & 0x01; 4195 4196 zone_entry_sz = sizeof(NvmeZoneDescr); 4197 if (zra == NVME_ZONE_REPORT_EXTENDED) { 4198 zone_entry_sz += ns->params.zd_extension_size; 4199 } 4200 4201 max_zones = (data_size - sizeof(NvmeZoneReportHeader)) / zone_entry_sz; 4202 buf = g_malloc0(data_size); 4203 4204 zone = &ns->zone_array[zone_idx]; 4205 for (i = zone_idx; i < ns->num_zones; i++) { 4206 if (partial && nr_zones >= max_zones) { 4207 break; 4208 } 4209 if (nvme_zone_matches_filter(zrasf, zone++)) { 4210 nr_zones++; 4211 } 4212 } 4213 header = buf; 4214 header->nr_zones = cpu_to_le64(nr_zones); 4215 4216 buf_p = buf + sizeof(NvmeZoneReportHeader); 4217 for (; zone_idx < ns->num_zones && max_zones > 0; zone_idx++) { 4218 zone = &ns->zone_array[zone_idx]; 4219 if (nvme_zone_matches_filter(zrasf, zone)) { 4220 z = buf_p; 4221 buf_p += sizeof(NvmeZoneDescr); 4222 4223 z->zt = zone->d.zt; 4224 z->zs = zone->d.zs; 4225 z->zcap = cpu_to_le64(zone->d.zcap); 4226 z->zslba = cpu_to_le64(zone->d.zslba); 4227 z->za = zone->d.za; 4228 4229 if (nvme_wp_is_valid(zone)) { 4230 z->wp = cpu_to_le64(zone->d.wp); 4231 } else { 4232 z->wp = cpu_to_le64(~0ULL); 4233 } 4234 4235 if (zra == NVME_ZONE_REPORT_EXTENDED) { 4236 if (zone->d.za & NVME_ZA_ZD_EXT_VALID) { 4237 memcpy(buf_p, nvme_get_zd_extension(ns, zone_idx), 4238 ns->params.zd_extension_size); 4239 } 4240 buf_p += ns->params.zd_extension_size; 4241 } 4242 4243 max_zones--; 4244 } 4245 } 4246 4247 status = nvme_c2h(n, (uint8_t *)buf, data_size, req); 4248 4249 g_free(buf); 4250 4251 return status; 4252 } 4253 4254 static uint16_t nvme_io_mgmt_recv_ruhs(NvmeCtrl *n, NvmeRequest *req, 4255 size_t len) 4256 { 4257 NvmeNamespace *ns = req->ns; 4258 NvmeEnduranceGroup *endgrp; 4259 NvmeRuhStatus *hdr; 4260 NvmeRuhStatusDescr *ruhsd; 4261 unsigned int nruhsd; 4262 uint16_t rg, ph, *ruhid; 4263 size_t trans_len; 4264 g_autofree uint8_t *buf = NULL; 4265 4266 if (!n->subsys) { 4267 return NVME_INVALID_FIELD | NVME_DNR; 4268 } 4269 4270 if (ns->params.nsid == 0 || ns->params.nsid == 0xffffffff) { 4271 return NVME_INVALID_NSID | NVME_DNR; 4272 } 4273 4274 if (!n->subsys->endgrp.fdp.enabled) { 4275 return NVME_FDP_DISABLED | NVME_DNR; 4276 } 4277 4278 endgrp = ns->endgrp; 4279 4280 nruhsd = ns->fdp.nphs * endgrp->fdp.nrg; 4281 trans_len = sizeof(NvmeRuhStatus) + nruhsd * sizeof(NvmeRuhStatusDescr); 4282 buf = g_malloc(trans_len); 4283 4284 trans_len = MIN(trans_len, len); 4285 4286 hdr = (NvmeRuhStatus *)buf; 4287 ruhsd = (NvmeRuhStatusDescr *)(buf + sizeof(NvmeRuhStatus)); 4288 4289 hdr->nruhsd = cpu_to_le16(nruhsd); 4290 4291 ruhid = ns->fdp.phs; 4292 4293 for (ph = 0; ph < ns->fdp.nphs; ph++, ruhid++) { 4294 NvmeRuHandle *ruh = &endgrp->fdp.ruhs[*ruhid]; 4295 4296 for (rg = 0; rg < endgrp->fdp.nrg; rg++, ruhsd++) { 4297 uint16_t pid = nvme_make_pid(ns, rg, ph); 4298 4299 ruhsd->pid = cpu_to_le16(pid); 4300 ruhsd->ruhid = *ruhid; 4301 ruhsd->earutr = 0; 4302 ruhsd->ruamw = cpu_to_le64(ruh->rus[rg].ruamw); 4303 } 4304 } 4305 4306 return nvme_c2h(n, buf, trans_len, req); 4307 } 4308 4309 static uint16_t nvme_io_mgmt_recv(NvmeCtrl *n, NvmeRequest *req) 4310 { 4311 NvmeCmd *cmd = &req->cmd; 4312 uint32_t cdw10 = le32_to_cpu(cmd->cdw10); 4313 uint32_t numd = le32_to_cpu(cmd->cdw11); 4314 uint8_t mo = (cdw10 & 0xff); 4315 size_t len = (numd + 1) << 2; 4316 4317 switch (mo) { 4318 case NVME_IOMR_MO_NOP: 4319 return 0; 4320 case NVME_IOMR_MO_RUH_STATUS: 4321 return nvme_io_mgmt_recv_ruhs(n, req, len); 4322 default: 4323 return NVME_INVALID_FIELD | NVME_DNR; 4324 }; 4325 } 4326 4327 static uint16_t nvme_io_mgmt_send_ruh_update(NvmeCtrl *n, NvmeRequest *req) 4328 { 4329 NvmeCmd *cmd = &req->cmd; 4330 NvmeNamespace *ns = req->ns; 4331 uint32_t cdw10 = le32_to_cpu(cmd->cdw10); 4332 uint16_t ret = NVME_SUCCESS; 4333 uint32_t npid = (cdw10 >> 1) + 1; 4334 unsigned int i = 0; 4335 g_autofree uint16_t *pids = NULL; 4336 uint32_t maxnpid = n->subsys->endgrp.fdp.nrg * n->subsys->endgrp.fdp.nruh; 4337 4338 if (unlikely(npid >= MIN(NVME_FDP_MAXPIDS, maxnpid))) { 4339 return NVME_INVALID_FIELD | NVME_DNR; 4340 } 4341 4342 pids = g_new(uint16_t, npid); 4343 4344 ret = nvme_h2c(n, pids, npid * sizeof(uint16_t), req); 4345 if (ret) { 4346 return ret; 4347 } 4348 4349 for (; i < npid; i++) { 4350 if (!nvme_update_ruh(n, ns, pids[i])) { 4351 return NVME_INVALID_FIELD | NVME_DNR; 4352 } 4353 } 4354 4355 return ret; 4356 } 4357 4358 static uint16_t nvme_io_mgmt_send(NvmeCtrl *n, NvmeRequest *req) 4359 { 4360 NvmeCmd *cmd = &req->cmd; 4361 uint32_t cdw10 = le32_to_cpu(cmd->cdw10); 4362 uint8_t mo = (cdw10 & 0xff); 4363 4364 switch (mo) { 4365 case NVME_IOMS_MO_NOP: 4366 return 0; 4367 case NVME_IOMS_MO_RUH_UPDATE: 4368 return nvme_io_mgmt_send_ruh_update(n, req); 4369 default: 4370 return NVME_INVALID_FIELD | NVME_DNR; 4371 }; 4372 } 4373 4374 static uint16_t nvme_io_cmd(NvmeCtrl *n, NvmeRequest *req) 4375 { 4376 NvmeNamespace *ns; 4377 uint32_t nsid = le32_to_cpu(req->cmd.nsid); 4378 4379 trace_pci_nvme_io_cmd(nvme_cid(req), nsid, nvme_sqid(req), 4380 req->cmd.opcode, nvme_io_opc_str(req->cmd.opcode)); 4381 4382 if (!nvme_nsid_valid(n, nsid)) { 4383 return NVME_INVALID_NSID | NVME_DNR; 4384 } 4385 4386 /* 4387 * In the base NVM command set, Flush may apply to all namespaces 4388 * (indicated by NSID being set to FFFFFFFFh). But if that feature is used 4389 * along with TP 4056 (Namespace Types), it may be pretty screwed up. 4390 * 4391 * If NSID is indeed set to FFFFFFFFh, we simply cannot associate the 4392 * opcode with a specific command since we cannot determine a unique I/O 4393 * command set. Opcode 0h could have any other meaning than something 4394 * equivalent to flushing and say it DOES have completely different 4395 * semantics in some other command set - does an NSID of FFFFFFFFh then 4396 * mean "for all namespaces, apply whatever command set specific command 4397 * that uses the 0h opcode?" Or does it mean "for all namespaces, apply 4398 * whatever command that uses the 0h opcode if, and only if, it allows NSID 4399 * to be FFFFFFFFh"? 4400 * 4401 * Anyway (and luckily), for now, we do not care about this since the 4402 * device only supports namespace types that includes the NVM Flush command 4403 * (NVM and Zoned), so always do an NVM Flush. 4404 */ 4405 if (req->cmd.opcode == NVME_CMD_FLUSH) { 4406 return nvme_flush(n, req); 4407 } 4408 4409 ns = nvme_ns(n, nsid); 4410 if (unlikely(!ns)) { 4411 return NVME_INVALID_FIELD | NVME_DNR; 4412 } 4413 4414 if (!(ns->iocs[req->cmd.opcode] & NVME_CMD_EFF_CSUPP)) { 4415 trace_pci_nvme_err_invalid_opc(req->cmd.opcode); 4416 return NVME_INVALID_OPCODE | NVME_DNR; 4417 } 4418 4419 if (ns->status) { 4420 return ns->status; 4421 } 4422 4423 if (NVME_CMD_FLAGS_FUSE(req->cmd.flags)) { 4424 return NVME_INVALID_FIELD; 4425 } 4426 4427 req->ns = ns; 4428 4429 switch (req->cmd.opcode) { 4430 case NVME_CMD_WRITE_ZEROES: 4431 return nvme_write_zeroes(n, req); 4432 case NVME_CMD_ZONE_APPEND: 4433 return nvme_zone_append(n, req); 4434 case NVME_CMD_WRITE: 4435 return nvme_write(n, req); 4436 case NVME_CMD_READ: 4437 return nvme_read(n, req); 4438 case NVME_CMD_COMPARE: 4439 return nvme_compare(n, req); 4440 case NVME_CMD_DSM: 4441 return nvme_dsm(n, req); 4442 case NVME_CMD_VERIFY: 4443 return nvme_verify(n, req); 4444 case NVME_CMD_COPY: 4445 return nvme_copy(n, req); 4446 case NVME_CMD_ZONE_MGMT_SEND: 4447 return nvme_zone_mgmt_send(n, req); 4448 case NVME_CMD_ZONE_MGMT_RECV: 4449 return nvme_zone_mgmt_recv(n, req); 4450 case NVME_CMD_IO_MGMT_RECV: 4451 return nvme_io_mgmt_recv(n, req); 4452 case NVME_CMD_IO_MGMT_SEND: 4453 return nvme_io_mgmt_send(n, req); 4454 default: 4455 assert(false); 4456 } 4457 4458 return NVME_INVALID_OPCODE | NVME_DNR; 4459 } 4460 4461 static void nvme_cq_notifier(EventNotifier *e) 4462 { 4463 NvmeCQueue *cq = container_of(e, NvmeCQueue, notifier); 4464 NvmeCtrl *n = cq->ctrl; 4465 4466 if (!event_notifier_test_and_clear(e)) { 4467 return; 4468 } 4469 4470 nvme_update_cq_head(cq); 4471 4472 if (cq->tail == cq->head) { 4473 if (cq->irq_enabled) { 4474 n->cq_pending--; 4475 } 4476 4477 nvme_irq_deassert(n, cq); 4478 } 4479 4480 qemu_bh_schedule(cq->bh); 4481 } 4482 4483 static int nvme_init_cq_ioeventfd(NvmeCQueue *cq) 4484 { 4485 NvmeCtrl *n = cq->ctrl; 4486 uint16_t offset = (cq->cqid << 3) + (1 << 2); 4487 int ret; 4488 4489 ret = event_notifier_init(&cq->notifier, 0); 4490 if (ret < 0) { 4491 return ret; 4492 } 4493 4494 event_notifier_set_handler(&cq->notifier, nvme_cq_notifier); 4495 memory_region_add_eventfd(&n->iomem, 4496 0x1000 + offset, 4, false, 0, &cq->notifier); 4497 4498 return 0; 4499 } 4500 4501 static void nvme_sq_notifier(EventNotifier *e) 4502 { 4503 NvmeSQueue *sq = container_of(e, NvmeSQueue, notifier); 4504 4505 if (!event_notifier_test_and_clear(e)) { 4506 return; 4507 } 4508 4509 nvme_process_sq(sq); 4510 } 4511 4512 static int nvme_init_sq_ioeventfd(NvmeSQueue *sq) 4513 { 4514 NvmeCtrl *n = sq->ctrl; 4515 uint16_t offset = sq->sqid << 3; 4516 int ret; 4517 4518 ret = event_notifier_init(&sq->notifier, 0); 4519 if (ret < 0) { 4520 return ret; 4521 } 4522 4523 event_notifier_set_handler(&sq->notifier, nvme_sq_notifier); 4524 memory_region_add_eventfd(&n->iomem, 4525 0x1000 + offset, 4, false, 0, &sq->notifier); 4526 4527 return 0; 4528 } 4529 4530 static void nvme_free_sq(NvmeSQueue *sq, NvmeCtrl *n) 4531 { 4532 uint16_t offset = sq->sqid << 3; 4533 4534 n->sq[sq->sqid] = NULL; 4535 qemu_bh_delete(sq->bh); 4536 if (sq->ioeventfd_enabled) { 4537 memory_region_del_eventfd(&n->iomem, 4538 0x1000 + offset, 4, false, 0, &sq->notifier); 4539 event_notifier_set_handler(&sq->notifier, NULL); 4540 event_notifier_cleanup(&sq->notifier); 4541 } 4542 g_free(sq->io_req); 4543 if (sq->sqid) { 4544 g_free(sq); 4545 } 4546 } 4547 4548 static uint16_t nvme_del_sq(NvmeCtrl *n, NvmeRequest *req) 4549 { 4550 NvmeDeleteQ *c = (NvmeDeleteQ *)&req->cmd; 4551 NvmeRequest *r, *next; 4552 NvmeSQueue *sq; 4553 NvmeCQueue *cq; 4554 uint16_t qid = le16_to_cpu(c->qid); 4555 4556 if (unlikely(!qid || nvme_check_sqid(n, qid))) { 4557 trace_pci_nvme_err_invalid_del_sq(qid); 4558 return NVME_INVALID_QID | NVME_DNR; 4559 } 4560 4561 trace_pci_nvme_del_sq(qid); 4562 4563 sq = n->sq[qid]; 4564 while (!QTAILQ_EMPTY(&sq->out_req_list)) { 4565 r = QTAILQ_FIRST(&sq->out_req_list); 4566 assert(r->aiocb); 4567 blk_aio_cancel(r->aiocb); 4568 } 4569 4570 assert(QTAILQ_EMPTY(&sq->out_req_list)); 4571 4572 if (!nvme_check_cqid(n, sq->cqid)) { 4573 cq = n->cq[sq->cqid]; 4574 QTAILQ_REMOVE(&cq->sq_list, sq, entry); 4575 4576 nvme_post_cqes(cq); 4577 QTAILQ_FOREACH_SAFE(r, &cq->req_list, entry, next) { 4578 if (r->sq == sq) { 4579 QTAILQ_REMOVE(&cq->req_list, r, entry); 4580 QTAILQ_INSERT_TAIL(&sq->req_list, r, entry); 4581 } 4582 } 4583 } 4584 4585 nvme_free_sq(sq, n); 4586 return NVME_SUCCESS; 4587 } 4588 4589 static void nvme_init_sq(NvmeSQueue *sq, NvmeCtrl *n, uint64_t dma_addr, 4590 uint16_t sqid, uint16_t cqid, uint16_t size) 4591 { 4592 int i; 4593 NvmeCQueue *cq; 4594 4595 sq->ctrl = n; 4596 sq->dma_addr = dma_addr; 4597 sq->sqid = sqid; 4598 sq->size = size; 4599 sq->cqid = cqid; 4600 sq->head = sq->tail = 0; 4601 sq->io_req = g_new0(NvmeRequest, sq->size); 4602 4603 QTAILQ_INIT(&sq->req_list); 4604 QTAILQ_INIT(&sq->out_req_list); 4605 for (i = 0; i < sq->size; i++) { 4606 sq->io_req[i].sq = sq; 4607 QTAILQ_INSERT_TAIL(&(sq->req_list), &sq->io_req[i], entry); 4608 } 4609 4610 sq->bh = qemu_bh_new_guarded(nvme_process_sq, sq, 4611 &DEVICE(sq->ctrl)->mem_reentrancy_guard); 4612 4613 if (n->dbbuf_enabled) { 4614 sq->db_addr = n->dbbuf_dbs + (sqid << 3); 4615 sq->ei_addr = n->dbbuf_eis + (sqid << 3); 4616 4617 if (n->params.ioeventfd && sq->sqid != 0) { 4618 if (!nvme_init_sq_ioeventfd(sq)) { 4619 sq->ioeventfd_enabled = true; 4620 } 4621 } 4622 } 4623 4624 assert(n->cq[cqid]); 4625 cq = n->cq[cqid]; 4626 QTAILQ_INSERT_TAIL(&(cq->sq_list), sq, entry); 4627 n->sq[sqid] = sq; 4628 } 4629 4630 static uint16_t nvme_create_sq(NvmeCtrl *n, NvmeRequest *req) 4631 { 4632 NvmeSQueue *sq; 4633 NvmeCreateSq *c = (NvmeCreateSq *)&req->cmd; 4634 4635 uint16_t cqid = le16_to_cpu(c->cqid); 4636 uint16_t sqid = le16_to_cpu(c->sqid); 4637 uint16_t qsize = le16_to_cpu(c->qsize); 4638 uint16_t qflags = le16_to_cpu(c->sq_flags); 4639 uint64_t prp1 = le64_to_cpu(c->prp1); 4640 4641 trace_pci_nvme_create_sq(prp1, sqid, cqid, qsize, qflags); 4642 4643 if (unlikely(!cqid || nvme_check_cqid(n, cqid))) { 4644 trace_pci_nvme_err_invalid_create_sq_cqid(cqid); 4645 return NVME_INVALID_CQID | NVME_DNR; 4646 } 4647 if (unlikely(!sqid || sqid > n->conf_ioqpairs || n->sq[sqid] != NULL)) { 4648 trace_pci_nvme_err_invalid_create_sq_sqid(sqid); 4649 return NVME_INVALID_QID | NVME_DNR; 4650 } 4651 if (unlikely(!qsize || qsize > NVME_CAP_MQES(ldq_le_p(&n->bar.cap)))) { 4652 trace_pci_nvme_err_invalid_create_sq_size(qsize); 4653 return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR; 4654 } 4655 if (unlikely(prp1 & (n->page_size - 1))) { 4656 trace_pci_nvme_err_invalid_create_sq_addr(prp1); 4657 return NVME_INVALID_PRP_OFFSET | NVME_DNR; 4658 } 4659 if (unlikely(!(NVME_SQ_FLAGS_PC(qflags)))) { 4660 trace_pci_nvme_err_invalid_create_sq_qflags(NVME_SQ_FLAGS_PC(qflags)); 4661 return NVME_INVALID_FIELD | NVME_DNR; 4662 } 4663 sq = g_malloc0(sizeof(*sq)); 4664 nvme_init_sq(sq, n, prp1, sqid, cqid, qsize + 1); 4665 return NVME_SUCCESS; 4666 } 4667 4668 struct nvme_stats { 4669 uint64_t units_read; 4670 uint64_t units_written; 4671 uint64_t read_commands; 4672 uint64_t write_commands; 4673 }; 4674 4675 static void nvme_set_blk_stats(NvmeNamespace *ns, struct nvme_stats *stats) 4676 { 4677 BlockAcctStats *s = blk_get_stats(ns->blkconf.blk); 4678 4679 stats->units_read += s->nr_bytes[BLOCK_ACCT_READ]; 4680 stats->units_written += s->nr_bytes[BLOCK_ACCT_WRITE]; 4681 stats->read_commands += s->nr_ops[BLOCK_ACCT_READ]; 4682 stats->write_commands += s->nr_ops[BLOCK_ACCT_WRITE]; 4683 } 4684 4685 static uint16_t nvme_smart_info(NvmeCtrl *n, uint8_t rae, uint32_t buf_len, 4686 uint64_t off, NvmeRequest *req) 4687 { 4688 uint32_t nsid = le32_to_cpu(req->cmd.nsid); 4689 struct nvme_stats stats = { 0 }; 4690 NvmeSmartLog smart = { 0 }; 4691 uint32_t trans_len; 4692 NvmeNamespace *ns; 4693 time_t current_ms; 4694 uint64_t u_read, u_written; 4695 4696 if (off >= sizeof(smart)) { 4697 return NVME_INVALID_FIELD | NVME_DNR; 4698 } 4699 4700 if (nsid != 0xffffffff) { 4701 ns = nvme_ns(n, nsid); 4702 if (!ns) { 4703 return NVME_INVALID_NSID | NVME_DNR; 4704 } 4705 nvme_set_blk_stats(ns, &stats); 4706 } else { 4707 int i; 4708 4709 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { 4710 ns = nvme_ns(n, i); 4711 if (!ns) { 4712 continue; 4713 } 4714 nvme_set_blk_stats(ns, &stats); 4715 } 4716 } 4717 4718 trans_len = MIN(sizeof(smart) - off, buf_len); 4719 smart.critical_warning = n->smart_critical_warning; 4720 4721 u_read = DIV_ROUND_UP(stats.units_read >> BDRV_SECTOR_BITS, 1000); 4722 u_written = DIV_ROUND_UP(stats.units_written >> BDRV_SECTOR_BITS, 1000); 4723 4724 smart.data_units_read[0] = cpu_to_le64(u_read); 4725 smart.data_units_written[0] = cpu_to_le64(u_written); 4726 smart.host_read_commands[0] = cpu_to_le64(stats.read_commands); 4727 smart.host_write_commands[0] = cpu_to_le64(stats.write_commands); 4728 4729 smart.temperature = cpu_to_le16(n->temperature); 4730 4731 if ((n->temperature >= n->features.temp_thresh_hi) || 4732 (n->temperature <= n->features.temp_thresh_low)) { 4733 smart.critical_warning |= NVME_SMART_TEMPERATURE; 4734 } 4735 4736 current_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL); 4737 smart.power_on_hours[0] = 4738 cpu_to_le64((((current_ms - n->starttime_ms) / 1000) / 60) / 60); 4739 4740 if (!rae) { 4741 nvme_clear_events(n, NVME_AER_TYPE_SMART); 4742 } 4743 4744 return nvme_c2h(n, (uint8_t *) &smart + off, trans_len, req); 4745 } 4746 4747 static uint16_t nvme_endgrp_info(NvmeCtrl *n, uint8_t rae, uint32_t buf_len, 4748 uint64_t off, NvmeRequest *req) 4749 { 4750 uint32_t dw11 = le32_to_cpu(req->cmd.cdw11); 4751 uint16_t endgrpid = (dw11 >> 16) & 0xffff; 4752 struct nvme_stats stats = {}; 4753 NvmeEndGrpLog info = {}; 4754 int i; 4755 4756 if (!n->subsys || endgrpid != 0x1) { 4757 return NVME_INVALID_FIELD | NVME_DNR; 4758 } 4759 4760 if (off >= sizeof(info)) { 4761 return NVME_INVALID_FIELD | NVME_DNR; 4762 } 4763 4764 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { 4765 NvmeNamespace *ns = nvme_subsys_ns(n->subsys, i); 4766 if (!ns) { 4767 continue; 4768 } 4769 4770 nvme_set_blk_stats(ns, &stats); 4771 } 4772 4773 info.data_units_read[0] = 4774 cpu_to_le64(DIV_ROUND_UP(stats.units_read / 1000000000, 1000000000)); 4775 info.data_units_written[0] = 4776 cpu_to_le64(DIV_ROUND_UP(stats.units_written / 1000000000, 1000000000)); 4777 info.media_units_written[0] = 4778 cpu_to_le64(DIV_ROUND_UP(stats.units_written / 1000000000, 1000000000)); 4779 4780 info.host_read_commands[0] = cpu_to_le64(stats.read_commands); 4781 info.host_write_commands[0] = cpu_to_le64(stats.write_commands); 4782 4783 buf_len = MIN(sizeof(info) - off, buf_len); 4784 4785 return nvme_c2h(n, (uint8_t *)&info + off, buf_len, req); 4786 } 4787 4788 4789 static uint16_t nvme_fw_log_info(NvmeCtrl *n, uint32_t buf_len, uint64_t off, 4790 NvmeRequest *req) 4791 { 4792 uint32_t trans_len; 4793 NvmeFwSlotInfoLog fw_log = { 4794 .afi = 0x1, 4795 }; 4796 4797 if (off >= sizeof(fw_log)) { 4798 return NVME_INVALID_FIELD | NVME_DNR; 4799 } 4800 4801 strpadcpy((char *)&fw_log.frs1, sizeof(fw_log.frs1), "1.0", ' '); 4802 trans_len = MIN(sizeof(fw_log) - off, buf_len); 4803 4804 return nvme_c2h(n, (uint8_t *) &fw_log + off, trans_len, req); 4805 } 4806 4807 static uint16_t nvme_error_info(NvmeCtrl *n, uint8_t rae, uint32_t buf_len, 4808 uint64_t off, NvmeRequest *req) 4809 { 4810 uint32_t trans_len; 4811 NvmeErrorLog errlog; 4812 4813 if (off >= sizeof(errlog)) { 4814 return NVME_INVALID_FIELD | NVME_DNR; 4815 } 4816 4817 if (!rae) { 4818 nvme_clear_events(n, NVME_AER_TYPE_ERROR); 4819 } 4820 4821 memset(&errlog, 0x0, sizeof(errlog)); 4822 trans_len = MIN(sizeof(errlog) - off, buf_len); 4823 4824 return nvme_c2h(n, (uint8_t *)&errlog, trans_len, req); 4825 } 4826 4827 static uint16_t nvme_changed_nslist(NvmeCtrl *n, uint8_t rae, uint32_t buf_len, 4828 uint64_t off, NvmeRequest *req) 4829 { 4830 uint32_t nslist[1024]; 4831 uint32_t trans_len; 4832 int i = 0; 4833 uint32_t nsid; 4834 4835 if (off >= sizeof(nslist)) { 4836 trace_pci_nvme_err_invalid_log_page_offset(off, sizeof(nslist)); 4837 return NVME_INVALID_FIELD | NVME_DNR; 4838 } 4839 4840 memset(nslist, 0x0, sizeof(nslist)); 4841 trans_len = MIN(sizeof(nslist) - off, buf_len); 4842 4843 while ((nsid = find_first_bit(n->changed_nsids, NVME_CHANGED_NSID_SIZE)) != 4844 NVME_CHANGED_NSID_SIZE) { 4845 /* 4846 * If more than 1024 namespaces, the first entry in the log page should 4847 * be set to FFFFFFFFh and the others to 0 as spec. 4848 */ 4849 if (i == ARRAY_SIZE(nslist)) { 4850 memset(nslist, 0x0, sizeof(nslist)); 4851 nslist[0] = 0xffffffff; 4852 break; 4853 } 4854 4855 nslist[i++] = nsid; 4856 clear_bit(nsid, n->changed_nsids); 4857 } 4858 4859 /* 4860 * Remove all the remaining list entries in case returns directly due to 4861 * more than 1024 namespaces. 4862 */ 4863 if (nslist[0] == 0xffffffff) { 4864 bitmap_zero(n->changed_nsids, NVME_CHANGED_NSID_SIZE); 4865 } 4866 4867 if (!rae) { 4868 nvme_clear_events(n, NVME_AER_TYPE_NOTICE); 4869 } 4870 4871 return nvme_c2h(n, ((uint8_t *)nslist) + off, trans_len, req); 4872 } 4873 4874 static uint16_t nvme_cmd_effects(NvmeCtrl *n, uint8_t csi, uint32_t buf_len, 4875 uint64_t off, NvmeRequest *req) 4876 { 4877 NvmeEffectsLog log = {}; 4878 const uint32_t *src_iocs = NULL; 4879 uint32_t trans_len; 4880 4881 if (off >= sizeof(log)) { 4882 trace_pci_nvme_err_invalid_log_page_offset(off, sizeof(log)); 4883 return NVME_INVALID_FIELD | NVME_DNR; 4884 } 4885 4886 switch (NVME_CC_CSS(ldl_le_p(&n->bar.cc))) { 4887 case NVME_CC_CSS_NVM: 4888 src_iocs = nvme_cse_iocs_nvm; 4889 /* fall through */ 4890 case NVME_CC_CSS_ADMIN_ONLY: 4891 break; 4892 case NVME_CC_CSS_CSI: 4893 switch (csi) { 4894 case NVME_CSI_NVM: 4895 src_iocs = nvme_cse_iocs_nvm; 4896 break; 4897 case NVME_CSI_ZONED: 4898 src_iocs = nvme_cse_iocs_zoned; 4899 break; 4900 } 4901 } 4902 4903 memcpy(log.acs, nvme_cse_acs, sizeof(nvme_cse_acs)); 4904 4905 if (src_iocs) { 4906 memcpy(log.iocs, src_iocs, sizeof(log.iocs)); 4907 } 4908 4909 trans_len = MIN(sizeof(log) - off, buf_len); 4910 4911 return nvme_c2h(n, ((uint8_t *)&log) + off, trans_len, req); 4912 } 4913 4914 static size_t sizeof_fdp_conf_descr(size_t nruh, size_t vss) 4915 { 4916 size_t entry_siz = sizeof(NvmeFdpDescrHdr) + nruh * sizeof(NvmeRuhDescr) 4917 + vss; 4918 return ROUND_UP(entry_siz, 8); 4919 } 4920 4921 static uint16_t nvme_fdp_confs(NvmeCtrl *n, uint32_t endgrpid, uint32_t buf_len, 4922 uint64_t off, NvmeRequest *req) 4923 { 4924 uint32_t log_size, trans_len; 4925 g_autofree uint8_t *buf = NULL; 4926 NvmeFdpDescrHdr *hdr; 4927 NvmeRuhDescr *ruhd; 4928 NvmeEnduranceGroup *endgrp; 4929 NvmeFdpConfsHdr *log; 4930 size_t nruh, fdp_descr_size; 4931 int i; 4932 4933 if (endgrpid != 1 || !n->subsys) { 4934 return NVME_INVALID_FIELD | NVME_DNR; 4935 } 4936 4937 endgrp = &n->subsys->endgrp; 4938 4939 if (endgrp->fdp.enabled) { 4940 nruh = endgrp->fdp.nruh; 4941 } else { 4942 nruh = 1; 4943 } 4944 4945 fdp_descr_size = sizeof_fdp_conf_descr(nruh, FDPVSS); 4946 log_size = sizeof(NvmeFdpConfsHdr) + fdp_descr_size; 4947 4948 if (off >= log_size) { 4949 return NVME_INVALID_FIELD | NVME_DNR; 4950 } 4951 4952 trans_len = MIN(log_size - off, buf_len); 4953 4954 buf = g_malloc0(log_size); 4955 log = (NvmeFdpConfsHdr *)buf; 4956 hdr = (NvmeFdpDescrHdr *)(log + 1); 4957 ruhd = (NvmeRuhDescr *)(buf + sizeof(*log) + sizeof(*hdr)); 4958 4959 log->num_confs = cpu_to_le16(0); 4960 log->size = cpu_to_le32(log_size); 4961 4962 hdr->descr_size = cpu_to_le16(fdp_descr_size); 4963 if (endgrp->fdp.enabled) { 4964 hdr->fdpa = FIELD_DP8(hdr->fdpa, FDPA, VALID, 1); 4965 hdr->fdpa = FIELD_DP8(hdr->fdpa, FDPA, RGIF, endgrp->fdp.rgif); 4966 hdr->nrg = cpu_to_le16(endgrp->fdp.nrg); 4967 hdr->nruh = cpu_to_le16(endgrp->fdp.nruh); 4968 hdr->maxpids = cpu_to_le16(NVME_FDP_MAXPIDS - 1); 4969 hdr->nnss = cpu_to_le32(NVME_MAX_NAMESPACES); 4970 hdr->runs = cpu_to_le64(endgrp->fdp.runs); 4971 4972 for (i = 0; i < nruh; i++) { 4973 ruhd->ruht = NVME_RUHT_INITIALLY_ISOLATED; 4974 ruhd++; 4975 } 4976 } else { 4977 /* 1 bit for RUH in PIF -> 2 RUHs max. */ 4978 hdr->nrg = cpu_to_le16(1); 4979 hdr->nruh = cpu_to_le16(1); 4980 hdr->maxpids = cpu_to_le16(NVME_FDP_MAXPIDS - 1); 4981 hdr->nnss = cpu_to_le32(1); 4982 hdr->runs = cpu_to_le64(96 * MiB); 4983 4984 ruhd->ruht = NVME_RUHT_INITIALLY_ISOLATED; 4985 } 4986 4987 return nvme_c2h(n, (uint8_t *)buf + off, trans_len, req); 4988 } 4989 4990 static uint16_t nvme_fdp_ruh_usage(NvmeCtrl *n, uint32_t endgrpid, 4991 uint32_t dw10, uint32_t dw12, 4992 uint32_t buf_len, uint64_t off, 4993 NvmeRequest *req) 4994 { 4995 NvmeRuHandle *ruh; 4996 NvmeRuhuLog *hdr; 4997 NvmeRuhuDescr *ruhud; 4998 NvmeEnduranceGroup *endgrp; 4999 g_autofree uint8_t *buf = NULL; 5000 uint32_t log_size, trans_len; 5001 uint16_t i; 5002 5003 if (endgrpid != 1 || !n->subsys) { 5004 return NVME_INVALID_FIELD | NVME_DNR; 5005 } 5006 5007 endgrp = &n->subsys->endgrp; 5008 5009 if (!endgrp->fdp.enabled) { 5010 return NVME_FDP_DISABLED | NVME_DNR; 5011 } 5012 5013 log_size = sizeof(NvmeRuhuLog) + endgrp->fdp.nruh * sizeof(NvmeRuhuDescr); 5014 5015 if (off >= log_size) { 5016 return NVME_INVALID_FIELD | NVME_DNR; 5017 } 5018 5019 trans_len = MIN(log_size - off, buf_len); 5020 5021 buf = g_malloc0(log_size); 5022 hdr = (NvmeRuhuLog *)buf; 5023 ruhud = (NvmeRuhuDescr *)(hdr + 1); 5024 5025 ruh = endgrp->fdp.ruhs; 5026 hdr->nruh = cpu_to_le16(endgrp->fdp.nruh); 5027 5028 for (i = 0; i < endgrp->fdp.nruh; i++, ruhud++, ruh++) { 5029 ruhud->ruha = ruh->ruha; 5030 } 5031 5032 return nvme_c2h(n, (uint8_t *)buf + off, trans_len, req); 5033 } 5034 5035 static uint16_t nvme_fdp_stats(NvmeCtrl *n, uint32_t endgrpid, uint32_t buf_len, 5036 uint64_t off, NvmeRequest *req) 5037 { 5038 NvmeEnduranceGroup *endgrp; 5039 NvmeFdpStatsLog log = {}; 5040 uint32_t trans_len; 5041 5042 if (off >= sizeof(NvmeFdpStatsLog)) { 5043 return NVME_INVALID_FIELD | NVME_DNR; 5044 } 5045 5046 if (endgrpid != 1 || !n->subsys) { 5047 return NVME_INVALID_FIELD | NVME_DNR; 5048 } 5049 5050 if (!n->subsys->endgrp.fdp.enabled) { 5051 return NVME_FDP_DISABLED | NVME_DNR; 5052 } 5053 5054 endgrp = &n->subsys->endgrp; 5055 5056 trans_len = MIN(sizeof(log) - off, buf_len); 5057 5058 /* spec value is 128 bit, we only use 64 bit */ 5059 log.hbmw[0] = cpu_to_le64(endgrp->fdp.hbmw); 5060 log.mbmw[0] = cpu_to_le64(endgrp->fdp.mbmw); 5061 log.mbe[0] = cpu_to_le64(endgrp->fdp.mbe); 5062 5063 return nvme_c2h(n, (uint8_t *)&log + off, trans_len, req); 5064 } 5065 5066 static uint16_t nvme_fdp_events(NvmeCtrl *n, uint32_t endgrpid, 5067 uint32_t buf_len, uint64_t off, 5068 NvmeRequest *req) 5069 { 5070 NvmeEnduranceGroup *endgrp; 5071 NvmeCmd *cmd = &req->cmd; 5072 bool host_events = (cmd->cdw10 >> 8) & 0x1; 5073 uint32_t log_size, trans_len; 5074 NvmeFdpEventBuffer *ebuf; 5075 g_autofree NvmeFdpEventsLog *elog = NULL; 5076 NvmeFdpEvent *event; 5077 5078 if (endgrpid != 1 || !n->subsys) { 5079 return NVME_INVALID_FIELD | NVME_DNR; 5080 } 5081 5082 endgrp = &n->subsys->endgrp; 5083 5084 if (!endgrp->fdp.enabled) { 5085 return NVME_FDP_DISABLED | NVME_DNR; 5086 } 5087 5088 if (host_events) { 5089 ebuf = &endgrp->fdp.host_events; 5090 } else { 5091 ebuf = &endgrp->fdp.ctrl_events; 5092 } 5093 5094 log_size = sizeof(NvmeFdpEventsLog) + ebuf->nelems * sizeof(NvmeFdpEvent); 5095 trans_len = MIN(log_size - off, buf_len); 5096 elog = g_malloc0(log_size); 5097 elog->num_events = cpu_to_le32(ebuf->nelems); 5098 event = (NvmeFdpEvent *)(elog + 1); 5099 5100 if (ebuf->nelems && ebuf->start == ebuf->next) { 5101 unsigned int nelems = (NVME_FDP_MAX_EVENTS - ebuf->start); 5102 /* wrap over, copy [start;NVME_FDP_MAX_EVENTS[ and [0; next[ */ 5103 memcpy(event, &ebuf->events[ebuf->start], 5104 sizeof(NvmeFdpEvent) * nelems); 5105 memcpy(event + nelems, ebuf->events, 5106 sizeof(NvmeFdpEvent) * ebuf->next); 5107 } else if (ebuf->start < ebuf->next) { 5108 memcpy(event, &ebuf->events[ebuf->start], 5109 sizeof(NvmeFdpEvent) * (ebuf->next - ebuf->start)); 5110 } 5111 5112 return nvme_c2h(n, (uint8_t *)elog + off, trans_len, req); 5113 } 5114 5115 static uint16_t nvme_get_log(NvmeCtrl *n, NvmeRequest *req) 5116 { 5117 NvmeCmd *cmd = &req->cmd; 5118 5119 uint32_t dw10 = le32_to_cpu(cmd->cdw10); 5120 uint32_t dw11 = le32_to_cpu(cmd->cdw11); 5121 uint32_t dw12 = le32_to_cpu(cmd->cdw12); 5122 uint32_t dw13 = le32_to_cpu(cmd->cdw13); 5123 uint8_t lid = dw10 & 0xff; 5124 uint8_t lsp = (dw10 >> 8) & 0xf; 5125 uint8_t rae = (dw10 >> 15) & 0x1; 5126 uint8_t csi = le32_to_cpu(cmd->cdw14) >> 24; 5127 uint32_t numdl, numdu, lspi; 5128 uint64_t off, lpol, lpou; 5129 size_t len; 5130 uint16_t status; 5131 5132 numdl = (dw10 >> 16); 5133 numdu = (dw11 & 0xffff); 5134 lspi = (dw11 >> 16); 5135 lpol = dw12; 5136 lpou = dw13; 5137 5138 len = (((numdu << 16) | numdl) + 1) << 2; 5139 off = (lpou << 32ULL) | lpol; 5140 5141 if (off & 0x3) { 5142 return NVME_INVALID_FIELD | NVME_DNR; 5143 } 5144 5145 trace_pci_nvme_get_log(nvme_cid(req), lid, lsp, rae, len, off); 5146 5147 status = nvme_check_mdts(n, len); 5148 if (status) { 5149 return status; 5150 } 5151 5152 switch (lid) { 5153 case NVME_LOG_ERROR_INFO: 5154 return nvme_error_info(n, rae, len, off, req); 5155 case NVME_LOG_SMART_INFO: 5156 return nvme_smart_info(n, rae, len, off, req); 5157 case NVME_LOG_FW_SLOT_INFO: 5158 return nvme_fw_log_info(n, len, off, req); 5159 case NVME_LOG_CHANGED_NSLIST: 5160 return nvme_changed_nslist(n, rae, len, off, req); 5161 case NVME_LOG_CMD_EFFECTS: 5162 return nvme_cmd_effects(n, csi, len, off, req); 5163 case NVME_LOG_ENDGRP: 5164 return nvme_endgrp_info(n, rae, len, off, req); 5165 case NVME_LOG_FDP_CONFS: 5166 return nvme_fdp_confs(n, lspi, len, off, req); 5167 case NVME_LOG_FDP_RUH_USAGE: 5168 return nvme_fdp_ruh_usage(n, lspi, dw10, dw12, len, off, req); 5169 case NVME_LOG_FDP_STATS: 5170 return nvme_fdp_stats(n, lspi, len, off, req); 5171 case NVME_LOG_FDP_EVENTS: 5172 return nvme_fdp_events(n, lspi, len, off, req); 5173 default: 5174 trace_pci_nvme_err_invalid_log_page(nvme_cid(req), lid); 5175 return NVME_INVALID_FIELD | NVME_DNR; 5176 } 5177 } 5178 5179 static void nvme_free_cq(NvmeCQueue *cq, NvmeCtrl *n) 5180 { 5181 PCIDevice *pci = PCI_DEVICE(n); 5182 uint16_t offset = (cq->cqid << 3) + (1 << 2); 5183 5184 n->cq[cq->cqid] = NULL; 5185 qemu_bh_delete(cq->bh); 5186 if (cq->ioeventfd_enabled) { 5187 memory_region_del_eventfd(&n->iomem, 5188 0x1000 + offset, 4, false, 0, &cq->notifier); 5189 event_notifier_set_handler(&cq->notifier, NULL); 5190 event_notifier_cleanup(&cq->notifier); 5191 } 5192 if (msix_enabled(pci)) { 5193 msix_vector_unuse(pci, cq->vector); 5194 } 5195 if (cq->cqid) { 5196 g_free(cq); 5197 } 5198 } 5199 5200 static uint16_t nvme_del_cq(NvmeCtrl *n, NvmeRequest *req) 5201 { 5202 NvmeDeleteQ *c = (NvmeDeleteQ *)&req->cmd; 5203 NvmeCQueue *cq; 5204 uint16_t qid = le16_to_cpu(c->qid); 5205 5206 if (unlikely(!qid || nvme_check_cqid(n, qid))) { 5207 trace_pci_nvme_err_invalid_del_cq_cqid(qid); 5208 return NVME_INVALID_CQID | NVME_DNR; 5209 } 5210 5211 cq = n->cq[qid]; 5212 if (unlikely(!QTAILQ_EMPTY(&cq->sq_list))) { 5213 trace_pci_nvme_err_invalid_del_cq_notempty(qid); 5214 return NVME_INVALID_QUEUE_DEL; 5215 } 5216 5217 if (cq->irq_enabled && cq->tail != cq->head) { 5218 n->cq_pending--; 5219 } 5220 5221 nvme_irq_deassert(n, cq); 5222 trace_pci_nvme_del_cq(qid); 5223 nvme_free_cq(cq, n); 5224 return NVME_SUCCESS; 5225 } 5226 5227 static void nvme_init_cq(NvmeCQueue *cq, NvmeCtrl *n, uint64_t dma_addr, 5228 uint16_t cqid, uint16_t vector, uint16_t size, 5229 uint16_t irq_enabled) 5230 { 5231 PCIDevice *pci = PCI_DEVICE(n); 5232 5233 if (msix_enabled(pci)) { 5234 msix_vector_use(pci, vector); 5235 } 5236 cq->ctrl = n; 5237 cq->cqid = cqid; 5238 cq->size = size; 5239 cq->dma_addr = dma_addr; 5240 cq->phase = 1; 5241 cq->irq_enabled = irq_enabled; 5242 cq->vector = vector; 5243 cq->head = cq->tail = 0; 5244 QTAILQ_INIT(&cq->req_list); 5245 QTAILQ_INIT(&cq->sq_list); 5246 if (n->dbbuf_enabled) { 5247 cq->db_addr = n->dbbuf_dbs + (cqid << 3) + (1 << 2); 5248 cq->ei_addr = n->dbbuf_eis + (cqid << 3) + (1 << 2); 5249 5250 if (n->params.ioeventfd && cqid != 0) { 5251 if (!nvme_init_cq_ioeventfd(cq)) { 5252 cq->ioeventfd_enabled = true; 5253 } 5254 } 5255 } 5256 n->cq[cqid] = cq; 5257 cq->bh = qemu_bh_new_guarded(nvme_post_cqes, cq, 5258 &DEVICE(cq->ctrl)->mem_reentrancy_guard); 5259 } 5260 5261 static uint16_t nvme_create_cq(NvmeCtrl *n, NvmeRequest *req) 5262 { 5263 NvmeCQueue *cq; 5264 NvmeCreateCq *c = (NvmeCreateCq *)&req->cmd; 5265 uint16_t cqid = le16_to_cpu(c->cqid); 5266 uint16_t vector = le16_to_cpu(c->irq_vector); 5267 uint16_t qsize = le16_to_cpu(c->qsize); 5268 uint16_t qflags = le16_to_cpu(c->cq_flags); 5269 uint64_t prp1 = le64_to_cpu(c->prp1); 5270 5271 trace_pci_nvme_create_cq(prp1, cqid, vector, qsize, qflags, 5272 NVME_CQ_FLAGS_IEN(qflags) != 0); 5273 5274 if (unlikely(!cqid || cqid > n->conf_ioqpairs || n->cq[cqid] != NULL)) { 5275 trace_pci_nvme_err_invalid_create_cq_cqid(cqid); 5276 return NVME_INVALID_QID | NVME_DNR; 5277 } 5278 if (unlikely(!qsize || qsize > NVME_CAP_MQES(ldq_le_p(&n->bar.cap)))) { 5279 trace_pci_nvme_err_invalid_create_cq_size(qsize); 5280 return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR; 5281 } 5282 if (unlikely(prp1 & (n->page_size - 1))) { 5283 trace_pci_nvme_err_invalid_create_cq_addr(prp1); 5284 return NVME_INVALID_PRP_OFFSET | NVME_DNR; 5285 } 5286 if (unlikely(!msix_enabled(PCI_DEVICE(n)) && vector)) { 5287 trace_pci_nvme_err_invalid_create_cq_vector(vector); 5288 return NVME_INVALID_IRQ_VECTOR | NVME_DNR; 5289 } 5290 if (unlikely(vector >= n->conf_msix_qsize)) { 5291 trace_pci_nvme_err_invalid_create_cq_vector(vector); 5292 return NVME_INVALID_IRQ_VECTOR | NVME_DNR; 5293 } 5294 if (unlikely(!(NVME_CQ_FLAGS_PC(qflags)))) { 5295 trace_pci_nvme_err_invalid_create_cq_qflags(NVME_CQ_FLAGS_PC(qflags)); 5296 return NVME_INVALID_FIELD | NVME_DNR; 5297 } 5298 5299 cq = g_malloc0(sizeof(*cq)); 5300 nvme_init_cq(cq, n, prp1, cqid, vector, qsize + 1, 5301 NVME_CQ_FLAGS_IEN(qflags)); 5302 5303 /* 5304 * It is only required to set qs_created when creating a completion queue; 5305 * creating a submission queue without a matching completion queue will 5306 * fail. 5307 */ 5308 n->qs_created = true; 5309 return NVME_SUCCESS; 5310 } 5311 5312 static uint16_t nvme_rpt_empty_id_struct(NvmeCtrl *n, NvmeRequest *req) 5313 { 5314 uint8_t id[NVME_IDENTIFY_DATA_SIZE] = {}; 5315 5316 return nvme_c2h(n, id, sizeof(id), req); 5317 } 5318 5319 static uint16_t nvme_identify_ctrl(NvmeCtrl *n, NvmeRequest *req) 5320 { 5321 trace_pci_nvme_identify_ctrl(); 5322 5323 return nvme_c2h(n, (uint8_t *)&n->id_ctrl, sizeof(n->id_ctrl), req); 5324 } 5325 5326 static uint16_t nvme_identify_ctrl_csi(NvmeCtrl *n, NvmeRequest *req) 5327 { 5328 NvmeIdentify *c = (NvmeIdentify *)&req->cmd; 5329 uint8_t id[NVME_IDENTIFY_DATA_SIZE] = {}; 5330 NvmeIdCtrlNvm *id_nvm = (NvmeIdCtrlNvm *)&id; 5331 5332 trace_pci_nvme_identify_ctrl_csi(c->csi); 5333 5334 switch (c->csi) { 5335 case NVME_CSI_NVM: 5336 id_nvm->vsl = n->params.vsl; 5337 id_nvm->dmrsl = cpu_to_le32(n->dmrsl); 5338 break; 5339 5340 case NVME_CSI_ZONED: 5341 ((NvmeIdCtrlZoned *)&id)->zasl = n->params.zasl; 5342 break; 5343 5344 default: 5345 return NVME_INVALID_FIELD | NVME_DNR; 5346 } 5347 5348 return nvme_c2h(n, id, sizeof(id), req); 5349 } 5350 5351 static uint16_t nvme_identify_ns(NvmeCtrl *n, NvmeRequest *req, bool active) 5352 { 5353 NvmeNamespace *ns; 5354 NvmeIdentify *c = (NvmeIdentify *)&req->cmd; 5355 uint32_t nsid = le32_to_cpu(c->nsid); 5356 5357 trace_pci_nvme_identify_ns(nsid); 5358 5359 if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) { 5360 return NVME_INVALID_NSID | NVME_DNR; 5361 } 5362 5363 ns = nvme_ns(n, nsid); 5364 if (unlikely(!ns)) { 5365 if (!active) { 5366 ns = nvme_subsys_ns(n->subsys, nsid); 5367 if (!ns) { 5368 return nvme_rpt_empty_id_struct(n, req); 5369 } 5370 } else { 5371 return nvme_rpt_empty_id_struct(n, req); 5372 } 5373 } 5374 5375 if (active || ns->csi == NVME_CSI_NVM) { 5376 return nvme_c2h(n, (uint8_t *)&ns->id_ns, sizeof(NvmeIdNs), req); 5377 } 5378 5379 return NVME_INVALID_CMD_SET | NVME_DNR; 5380 } 5381 5382 static uint16_t nvme_identify_ctrl_list(NvmeCtrl *n, NvmeRequest *req, 5383 bool attached) 5384 { 5385 NvmeIdentify *c = (NvmeIdentify *)&req->cmd; 5386 uint32_t nsid = le32_to_cpu(c->nsid); 5387 uint16_t min_id = le16_to_cpu(c->ctrlid); 5388 uint16_t list[NVME_CONTROLLER_LIST_SIZE] = {}; 5389 uint16_t *ids = &list[1]; 5390 NvmeNamespace *ns; 5391 NvmeCtrl *ctrl; 5392 int cntlid, nr_ids = 0; 5393 5394 trace_pci_nvme_identify_ctrl_list(c->cns, min_id); 5395 5396 if (!n->subsys) { 5397 return NVME_INVALID_FIELD | NVME_DNR; 5398 } 5399 5400 if (attached) { 5401 if (nsid == NVME_NSID_BROADCAST) { 5402 return NVME_INVALID_FIELD | NVME_DNR; 5403 } 5404 5405 ns = nvme_subsys_ns(n->subsys, nsid); 5406 if (!ns) { 5407 return NVME_INVALID_FIELD | NVME_DNR; 5408 } 5409 } 5410 5411 for (cntlid = min_id; cntlid < ARRAY_SIZE(n->subsys->ctrls); cntlid++) { 5412 ctrl = nvme_subsys_ctrl(n->subsys, cntlid); 5413 if (!ctrl) { 5414 continue; 5415 } 5416 5417 if (attached && !nvme_ns(ctrl, nsid)) { 5418 continue; 5419 } 5420 5421 ids[nr_ids++] = cntlid; 5422 } 5423 5424 list[0] = nr_ids; 5425 5426 return nvme_c2h(n, (uint8_t *)list, sizeof(list), req); 5427 } 5428 5429 static uint16_t nvme_identify_pri_ctrl_cap(NvmeCtrl *n, NvmeRequest *req) 5430 { 5431 trace_pci_nvme_identify_pri_ctrl_cap(le16_to_cpu(n->pri_ctrl_cap.cntlid)); 5432 5433 return nvme_c2h(n, (uint8_t *)&n->pri_ctrl_cap, 5434 sizeof(NvmePriCtrlCap), req); 5435 } 5436 5437 static uint16_t nvme_identify_sec_ctrl_list(NvmeCtrl *n, NvmeRequest *req) 5438 { 5439 NvmeIdentify *c = (NvmeIdentify *)&req->cmd; 5440 uint16_t pri_ctrl_id = le16_to_cpu(n->pri_ctrl_cap.cntlid); 5441 uint16_t min_id = le16_to_cpu(c->ctrlid); 5442 uint8_t num_sec_ctrl = n->sec_ctrl_list.numcntl; 5443 NvmeSecCtrlList list = {0}; 5444 uint8_t i; 5445 5446 for (i = 0; i < num_sec_ctrl; i++) { 5447 if (n->sec_ctrl_list.sec[i].scid >= min_id) { 5448 list.numcntl = num_sec_ctrl - i; 5449 memcpy(&list.sec, n->sec_ctrl_list.sec + i, 5450 list.numcntl * sizeof(NvmeSecCtrlEntry)); 5451 break; 5452 } 5453 } 5454 5455 trace_pci_nvme_identify_sec_ctrl_list(pri_ctrl_id, list.numcntl); 5456 5457 return nvme_c2h(n, (uint8_t *)&list, sizeof(list), req); 5458 } 5459 5460 static uint16_t nvme_identify_ns_csi(NvmeCtrl *n, NvmeRequest *req, 5461 bool active) 5462 { 5463 NvmeNamespace *ns; 5464 NvmeIdentify *c = (NvmeIdentify *)&req->cmd; 5465 uint32_t nsid = le32_to_cpu(c->nsid); 5466 5467 trace_pci_nvme_identify_ns_csi(nsid, c->csi); 5468 5469 if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) { 5470 return NVME_INVALID_NSID | NVME_DNR; 5471 } 5472 5473 ns = nvme_ns(n, nsid); 5474 if (unlikely(!ns)) { 5475 if (!active) { 5476 ns = nvme_subsys_ns(n->subsys, nsid); 5477 if (!ns) { 5478 return nvme_rpt_empty_id_struct(n, req); 5479 } 5480 } else { 5481 return nvme_rpt_empty_id_struct(n, req); 5482 } 5483 } 5484 5485 if (c->csi == NVME_CSI_NVM) { 5486 return nvme_c2h(n, (uint8_t *)&ns->id_ns_nvm, sizeof(NvmeIdNsNvm), 5487 req); 5488 } else if (c->csi == NVME_CSI_ZONED && ns->csi == NVME_CSI_ZONED) { 5489 return nvme_c2h(n, (uint8_t *)ns->id_ns_zoned, sizeof(NvmeIdNsZoned), 5490 req); 5491 } 5492 5493 return NVME_INVALID_FIELD | NVME_DNR; 5494 } 5495 5496 static uint16_t nvme_identify_nslist(NvmeCtrl *n, NvmeRequest *req, 5497 bool active) 5498 { 5499 NvmeNamespace *ns; 5500 NvmeIdentify *c = (NvmeIdentify *)&req->cmd; 5501 uint32_t min_nsid = le32_to_cpu(c->nsid); 5502 uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {}; 5503 static const int data_len = sizeof(list); 5504 uint32_t *list_ptr = (uint32_t *)list; 5505 int i, j = 0; 5506 5507 trace_pci_nvme_identify_nslist(min_nsid); 5508 5509 /* 5510 * Both FFFFFFFFh (NVME_NSID_BROADCAST) and FFFFFFFFEh are invalid values 5511 * since the Active Namespace ID List should return namespaces with ids 5512 * *higher* than the NSID specified in the command. This is also specified 5513 * in the spec (NVM Express v1.3d, Section 5.15.4). 5514 */ 5515 if (min_nsid >= NVME_NSID_BROADCAST - 1) { 5516 return NVME_INVALID_NSID | NVME_DNR; 5517 } 5518 5519 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { 5520 ns = nvme_ns(n, i); 5521 if (!ns) { 5522 if (!active) { 5523 ns = nvme_subsys_ns(n->subsys, i); 5524 if (!ns) { 5525 continue; 5526 } 5527 } else { 5528 continue; 5529 } 5530 } 5531 if (ns->params.nsid <= min_nsid) { 5532 continue; 5533 } 5534 list_ptr[j++] = cpu_to_le32(ns->params.nsid); 5535 if (j == data_len / sizeof(uint32_t)) { 5536 break; 5537 } 5538 } 5539 5540 return nvme_c2h(n, list, data_len, req); 5541 } 5542 5543 static uint16_t nvme_identify_nslist_csi(NvmeCtrl *n, NvmeRequest *req, 5544 bool active) 5545 { 5546 NvmeNamespace *ns; 5547 NvmeIdentify *c = (NvmeIdentify *)&req->cmd; 5548 uint32_t min_nsid = le32_to_cpu(c->nsid); 5549 uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {}; 5550 static const int data_len = sizeof(list); 5551 uint32_t *list_ptr = (uint32_t *)list; 5552 int i, j = 0; 5553 5554 trace_pci_nvme_identify_nslist_csi(min_nsid, c->csi); 5555 5556 /* 5557 * Same as in nvme_identify_nslist(), FFFFFFFFh/FFFFFFFFEh are invalid. 5558 */ 5559 if (min_nsid >= NVME_NSID_BROADCAST - 1) { 5560 return NVME_INVALID_NSID | NVME_DNR; 5561 } 5562 5563 if (c->csi != NVME_CSI_NVM && c->csi != NVME_CSI_ZONED) { 5564 return NVME_INVALID_FIELD | NVME_DNR; 5565 } 5566 5567 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { 5568 ns = nvme_ns(n, i); 5569 if (!ns) { 5570 if (!active) { 5571 ns = nvme_subsys_ns(n->subsys, i); 5572 if (!ns) { 5573 continue; 5574 } 5575 } else { 5576 continue; 5577 } 5578 } 5579 if (ns->params.nsid <= min_nsid || c->csi != ns->csi) { 5580 continue; 5581 } 5582 list_ptr[j++] = cpu_to_le32(ns->params.nsid); 5583 if (j == data_len / sizeof(uint32_t)) { 5584 break; 5585 } 5586 } 5587 5588 return nvme_c2h(n, list, data_len, req); 5589 } 5590 5591 static uint16_t nvme_identify_ns_descr_list(NvmeCtrl *n, NvmeRequest *req) 5592 { 5593 NvmeNamespace *ns; 5594 NvmeIdentify *c = (NvmeIdentify *)&req->cmd; 5595 uint32_t nsid = le32_to_cpu(c->nsid); 5596 uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {}; 5597 uint8_t *pos = list; 5598 struct { 5599 NvmeIdNsDescr hdr; 5600 uint8_t v[NVME_NIDL_UUID]; 5601 } QEMU_PACKED uuid = {}; 5602 struct { 5603 NvmeIdNsDescr hdr; 5604 uint64_t v; 5605 } QEMU_PACKED eui64 = {}; 5606 struct { 5607 NvmeIdNsDescr hdr; 5608 uint8_t v; 5609 } QEMU_PACKED csi = {}; 5610 5611 trace_pci_nvme_identify_ns_descr_list(nsid); 5612 5613 if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) { 5614 return NVME_INVALID_NSID | NVME_DNR; 5615 } 5616 5617 ns = nvme_ns(n, nsid); 5618 if (unlikely(!ns)) { 5619 return NVME_INVALID_FIELD | NVME_DNR; 5620 } 5621 5622 if (!qemu_uuid_is_null(&ns->params.uuid)) { 5623 uuid.hdr.nidt = NVME_NIDT_UUID; 5624 uuid.hdr.nidl = NVME_NIDL_UUID; 5625 memcpy(uuid.v, ns->params.uuid.data, NVME_NIDL_UUID); 5626 memcpy(pos, &uuid, sizeof(uuid)); 5627 pos += sizeof(uuid); 5628 } 5629 5630 if (ns->params.eui64) { 5631 eui64.hdr.nidt = NVME_NIDT_EUI64; 5632 eui64.hdr.nidl = NVME_NIDL_EUI64; 5633 eui64.v = cpu_to_be64(ns->params.eui64); 5634 memcpy(pos, &eui64, sizeof(eui64)); 5635 pos += sizeof(eui64); 5636 } 5637 5638 csi.hdr.nidt = NVME_NIDT_CSI; 5639 csi.hdr.nidl = NVME_NIDL_CSI; 5640 csi.v = ns->csi; 5641 memcpy(pos, &csi, sizeof(csi)); 5642 pos += sizeof(csi); 5643 5644 return nvme_c2h(n, list, sizeof(list), req); 5645 } 5646 5647 static uint16_t nvme_identify_cmd_set(NvmeCtrl *n, NvmeRequest *req) 5648 { 5649 uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {}; 5650 static const int data_len = sizeof(list); 5651 5652 trace_pci_nvme_identify_cmd_set(); 5653 5654 NVME_SET_CSI(*list, NVME_CSI_NVM); 5655 NVME_SET_CSI(*list, NVME_CSI_ZONED); 5656 5657 return nvme_c2h(n, list, data_len, req); 5658 } 5659 5660 static uint16_t nvme_identify(NvmeCtrl *n, NvmeRequest *req) 5661 { 5662 NvmeIdentify *c = (NvmeIdentify *)&req->cmd; 5663 5664 trace_pci_nvme_identify(nvme_cid(req), c->cns, le16_to_cpu(c->ctrlid), 5665 c->csi); 5666 5667 switch (c->cns) { 5668 case NVME_ID_CNS_NS: 5669 return nvme_identify_ns(n, req, true); 5670 case NVME_ID_CNS_NS_PRESENT: 5671 return nvme_identify_ns(n, req, false); 5672 case NVME_ID_CNS_NS_ATTACHED_CTRL_LIST: 5673 return nvme_identify_ctrl_list(n, req, true); 5674 case NVME_ID_CNS_CTRL_LIST: 5675 return nvme_identify_ctrl_list(n, req, false); 5676 case NVME_ID_CNS_PRIMARY_CTRL_CAP: 5677 return nvme_identify_pri_ctrl_cap(n, req); 5678 case NVME_ID_CNS_SECONDARY_CTRL_LIST: 5679 return nvme_identify_sec_ctrl_list(n, req); 5680 case NVME_ID_CNS_CS_NS: 5681 return nvme_identify_ns_csi(n, req, true); 5682 case NVME_ID_CNS_CS_NS_PRESENT: 5683 return nvme_identify_ns_csi(n, req, false); 5684 case NVME_ID_CNS_CTRL: 5685 return nvme_identify_ctrl(n, req); 5686 case NVME_ID_CNS_CS_CTRL: 5687 return nvme_identify_ctrl_csi(n, req); 5688 case NVME_ID_CNS_NS_ACTIVE_LIST: 5689 return nvme_identify_nslist(n, req, true); 5690 case NVME_ID_CNS_NS_PRESENT_LIST: 5691 return nvme_identify_nslist(n, req, false); 5692 case NVME_ID_CNS_CS_NS_ACTIVE_LIST: 5693 return nvme_identify_nslist_csi(n, req, true); 5694 case NVME_ID_CNS_CS_NS_PRESENT_LIST: 5695 return nvme_identify_nslist_csi(n, req, false); 5696 case NVME_ID_CNS_NS_DESCR_LIST: 5697 return nvme_identify_ns_descr_list(n, req); 5698 case NVME_ID_CNS_IO_COMMAND_SET: 5699 return nvme_identify_cmd_set(n, req); 5700 default: 5701 trace_pci_nvme_err_invalid_identify_cns(le32_to_cpu(c->cns)); 5702 return NVME_INVALID_FIELD | NVME_DNR; 5703 } 5704 } 5705 5706 static uint16_t nvme_abort(NvmeCtrl *n, NvmeRequest *req) 5707 { 5708 uint16_t sqid = le32_to_cpu(req->cmd.cdw10) & 0xffff; 5709 5710 req->cqe.result = 1; 5711 if (nvme_check_sqid(n, sqid)) { 5712 return NVME_INVALID_FIELD | NVME_DNR; 5713 } 5714 5715 return NVME_SUCCESS; 5716 } 5717 5718 static inline void nvme_set_timestamp(NvmeCtrl *n, uint64_t ts) 5719 { 5720 trace_pci_nvme_setfeat_timestamp(ts); 5721 5722 n->host_timestamp = le64_to_cpu(ts); 5723 n->timestamp_set_qemu_clock_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL); 5724 } 5725 5726 static inline uint64_t nvme_get_timestamp(const NvmeCtrl *n) 5727 { 5728 uint64_t current_time = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL); 5729 uint64_t elapsed_time = current_time - n->timestamp_set_qemu_clock_ms; 5730 5731 union nvme_timestamp { 5732 struct { 5733 uint64_t timestamp:48; 5734 uint64_t sync:1; 5735 uint64_t origin:3; 5736 uint64_t rsvd1:12; 5737 }; 5738 uint64_t all; 5739 }; 5740 5741 union nvme_timestamp ts; 5742 ts.all = 0; 5743 ts.timestamp = n->host_timestamp + elapsed_time; 5744 5745 /* If the host timestamp is non-zero, set the timestamp origin */ 5746 ts.origin = n->host_timestamp ? 0x01 : 0x00; 5747 5748 trace_pci_nvme_getfeat_timestamp(ts.all); 5749 5750 return cpu_to_le64(ts.all); 5751 } 5752 5753 static uint16_t nvme_get_feature_timestamp(NvmeCtrl *n, NvmeRequest *req) 5754 { 5755 uint64_t timestamp = nvme_get_timestamp(n); 5756 5757 return nvme_c2h(n, (uint8_t *)×tamp, sizeof(timestamp), req); 5758 } 5759 5760 static int nvme_get_feature_fdp(NvmeCtrl *n, uint32_t endgrpid, 5761 uint32_t *result) 5762 { 5763 *result = 0; 5764 5765 if (!n->subsys || !n->subsys->endgrp.fdp.enabled) { 5766 return NVME_INVALID_FIELD | NVME_DNR; 5767 } 5768 5769 *result = FIELD_DP16(0, FEAT_FDP, FDPE, 1); 5770 *result = FIELD_DP16(*result, FEAT_FDP, CONF_NDX, 0); 5771 5772 return NVME_SUCCESS; 5773 } 5774 5775 static uint16_t nvme_get_feature_fdp_events(NvmeCtrl *n, NvmeNamespace *ns, 5776 NvmeRequest *req, uint32_t *result) 5777 { 5778 NvmeCmd *cmd = &req->cmd; 5779 uint32_t cdw11 = le32_to_cpu(cmd->cdw11); 5780 uint16_t ph = cdw11 & 0xffff; 5781 uint8_t noet = (cdw11 >> 16) & 0xff; 5782 uint16_t ruhid, ret; 5783 uint32_t nentries = 0; 5784 uint8_t s_events_ndx = 0; 5785 size_t s_events_siz = sizeof(NvmeFdpEventDescr) * noet; 5786 g_autofree NvmeFdpEventDescr *s_events = g_malloc0(s_events_siz); 5787 NvmeRuHandle *ruh; 5788 NvmeFdpEventDescr *s_event; 5789 5790 if (!n->subsys || !n->subsys->endgrp.fdp.enabled) { 5791 return NVME_FDP_DISABLED | NVME_DNR; 5792 } 5793 5794 if (!nvme_ph_valid(ns, ph)) { 5795 return NVME_INVALID_FIELD | NVME_DNR; 5796 } 5797 5798 ruhid = ns->fdp.phs[ph]; 5799 ruh = &n->subsys->endgrp.fdp.ruhs[ruhid]; 5800 5801 assert(ruh); 5802 5803 if (unlikely(noet == 0)) { 5804 return NVME_INVALID_FIELD | NVME_DNR; 5805 } 5806 5807 for (uint8_t event_type = 0; event_type < FDP_EVT_MAX; event_type++) { 5808 uint8_t shift = nvme_fdp_evf_shifts[event_type]; 5809 if (!shift && event_type) { 5810 /* 5811 * only first entry (event_type == 0) has a shift value of 0 5812 * other entries are simply unpopulated. 5813 */ 5814 continue; 5815 } 5816 5817 nentries++; 5818 5819 s_event = &s_events[s_events_ndx]; 5820 s_event->evt = event_type; 5821 s_event->evta = (ruh->event_filter >> shift) & 0x1; 5822 5823 /* break if all `noet` entries are filled */ 5824 if ((++s_events_ndx) == noet) { 5825 break; 5826 } 5827 } 5828 5829 ret = nvme_c2h(n, s_events, s_events_siz, req); 5830 if (ret) { 5831 return ret; 5832 } 5833 5834 *result = nentries; 5835 return NVME_SUCCESS; 5836 } 5837 5838 static uint16_t nvme_get_feature(NvmeCtrl *n, NvmeRequest *req) 5839 { 5840 NvmeCmd *cmd = &req->cmd; 5841 uint32_t dw10 = le32_to_cpu(cmd->cdw10); 5842 uint32_t dw11 = le32_to_cpu(cmd->cdw11); 5843 uint32_t nsid = le32_to_cpu(cmd->nsid); 5844 uint32_t result; 5845 uint8_t fid = NVME_GETSETFEAT_FID(dw10); 5846 NvmeGetFeatureSelect sel = NVME_GETFEAT_SELECT(dw10); 5847 uint16_t iv; 5848 NvmeNamespace *ns; 5849 int i; 5850 uint16_t endgrpid = 0, ret = NVME_SUCCESS; 5851 5852 static const uint32_t nvme_feature_default[NVME_FID_MAX] = { 5853 [NVME_ARBITRATION] = NVME_ARB_AB_NOLIMIT, 5854 }; 5855 5856 trace_pci_nvme_getfeat(nvme_cid(req), nsid, fid, sel, dw11); 5857 5858 if (!nvme_feature_support[fid]) { 5859 return NVME_INVALID_FIELD | NVME_DNR; 5860 } 5861 5862 if (nvme_feature_cap[fid] & NVME_FEAT_CAP_NS) { 5863 if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) { 5864 /* 5865 * The Reservation Notification Mask and Reservation Persistence 5866 * features require a status code of Invalid Field in Command when 5867 * NSID is FFFFFFFFh. Since the device does not support those 5868 * features we can always return Invalid Namespace or Format as we 5869 * should do for all other features. 5870 */ 5871 return NVME_INVALID_NSID | NVME_DNR; 5872 } 5873 5874 if (!nvme_ns(n, nsid)) { 5875 return NVME_INVALID_FIELD | NVME_DNR; 5876 } 5877 } 5878 5879 switch (sel) { 5880 case NVME_GETFEAT_SELECT_CURRENT: 5881 break; 5882 case NVME_GETFEAT_SELECT_SAVED: 5883 /* no features are saveable by the controller; fallthrough */ 5884 case NVME_GETFEAT_SELECT_DEFAULT: 5885 goto defaults; 5886 case NVME_GETFEAT_SELECT_CAP: 5887 result = nvme_feature_cap[fid]; 5888 goto out; 5889 } 5890 5891 switch (fid) { 5892 case NVME_TEMPERATURE_THRESHOLD: 5893 result = 0; 5894 5895 /* 5896 * The controller only implements the Composite Temperature sensor, so 5897 * return 0 for all other sensors. 5898 */ 5899 if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) { 5900 goto out; 5901 } 5902 5903 switch (NVME_TEMP_THSEL(dw11)) { 5904 case NVME_TEMP_THSEL_OVER: 5905 result = n->features.temp_thresh_hi; 5906 goto out; 5907 case NVME_TEMP_THSEL_UNDER: 5908 result = n->features.temp_thresh_low; 5909 goto out; 5910 } 5911 5912 return NVME_INVALID_FIELD | NVME_DNR; 5913 case NVME_ERROR_RECOVERY: 5914 if (!nvme_nsid_valid(n, nsid)) { 5915 return NVME_INVALID_NSID | NVME_DNR; 5916 } 5917 5918 ns = nvme_ns(n, nsid); 5919 if (unlikely(!ns)) { 5920 return NVME_INVALID_FIELD | NVME_DNR; 5921 } 5922 5923 result = ns->features.err_rec; 5924 goto out; 5925 case NVME_VOLATILE_WRITE_CACHE: 5926 result = 0; 5927 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { 5928 ns = nvme_ns(n, i); 5929 if (!ns) { 5930 continue; 5931 } 5932 5933 result = blk_enable_write_cache(ns->blkconf.blk); 5934 if (result) { 5935 break; 5936 } 5937 } 5938 trace_pci_nvme_getfeat_vwcache(result ? "enabled" : "disabled"); 5939 goto out; 5940 case NVME_ASYNCHRONOUS_EVENT_CONF: 5941 result = n->features.async_config; 5942 goto out; 5943 case NVME_TIMESTAMP: 5944 return nvme_get_feature_timestamp(n, req); 5945 case NVME_HOST_BEHAVIOR_SUPPORT: 5946 return nvme_c2h(n, (uint8_t *)&n->features.hbs, 5947 sizeof(n->features.hbs), req); 5948 case NVME_FDP_MODE: 5949 endgrpid = dw11 & 0xff; 5950 5951 if (endgrpid != 0x1) { 5952 return NVME_INVALID_FIELD | NVME_DNR; 5953 } 5954 5955 ret = nvme_get_feature_fdp(n, endgrpid, &result); 5956 if (ret) { 5957 return ret; 5958 } 5959 goto out; 5960 case NVME_FDP_EVENTS: 5961 if (!nvme_nsid_valid(n, nsid)) { 5962 return NVME_INVALID_NSID | NVME_DNR; 5963 } 5964 5965 ns = nvme_ns(n, nsid); 5966 if (unlikely(!ns)) { 5967 return NVME_INVALID_FIELD | NVME_DNR; 5968 } 5969 5970 ret = nvme_get_feature_fdp_events(n, ns, req, &result); 5971 if (ret) { 5972 return ret; 5973 } 5974 goto out; 5975 default: 5976 break; 5977 } 5978 5979 defaults: 5980 switch (fid) { 5981 case NVME_TEMPERATURE_THRESHOLD: 5982 result = 0; 5983 5984 if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) { 5985 break; 5986 } 5987 5988 if (NVME_TEMP_THSEL(dw11) == NVME_TEMP_THSEL_OVER) { 5989 result = NVME_TEMPERATURE_WARNING; 5990 } 5991 5992 break; 5993 case NVME_NUMBER_OF_QUEUES: 5994 result = (n->conf_ioqpairs - 1) | ((n->conf_ioqpairs - 1) << 16); 5995 trace_pci_nvme_getfeat_numq(result); 5996 break; 5997 case NVME_INTERRUPT_VECTOR_CONF: 5998 iv = dw11 & 0xffff; 5999 if (iv >= n->conf_ioqpairs + 1) { 6000 return NVME_INVALID_FIELD | NVME_DNR; 6001 } 6002 6003 result = iv; 6004 if (iv == n->admin_cq.vector) { 6005 result |= NVME_INTVC_NOCOALESCING; 6006 } 6007 break; 6008 case NVME_FDP_MODE: 6009 endgrpid = dw11 & 0xff; 6010 6011 if (endgrpid != 0x1) { 6012 return NVME_INVALID_FIELD | NVME_DNR; 6013 } 6014 6015 ret = nvme_get_feature_fdp(n, endgrpid, &result); 6016 if (ret) { 6017 return ret; 6018 } 6019 goto out; 6020 6021 break; 6022 default: 6023 result = nvme_feature_default[fid]; 6024 break; 6025 } 6026 6027 out: 6028 req->cqe.result = cpu_to_le32(result); 6029 return ret; 6030 } 6031 6032 static uint16_t nvme_set_feature_timestamp(NvmeCtrl *n, NvmeRequest *req) 6033 { 6034 uint16_t ret; 6035 uint64_t timestamp; 6036 6037 ret = nvme_h2c(n, (uint8_t *)×tamp, sizeof(timestamp), req); 6038 if (ret) { 6039 return ret; 6040 } 6041 6042 nvme_set_timestamp(n, timestamp); 6043 6044 return NVME_SUCCESS; 6045 } 6046 6047 static uint16_t nvme_set_feature_fdp_events(NvmeCtrl *n, NvmeNamespace *ns, 6048 NvmeRequest *req) 6049 { 6050 NvmeCmd *cmd = &req->cmd; 6051 uint32_t cdw11 = le32_to_cpu(cmd->cdw11); 6052 uint16_t ph = cdw11 & 0xffff; 6053 uint8_t noet = (cdw11 >> 16) & 0xff; 6054 uint16_t ret, ruhid; 6055 uint8_t enable = le32_to_cpu(cmd->cdw12) & 0x1; 6056 uint8_t event_mask = 0; 6057 unsigned int i; 6058 g_autofree uint8_t *events = g_malloc0(noet); 6059 NvmeRuHandle *ruh = NULL; 6060 6061 assert(ns); 6062 6063 if (!n->subsys || !n->subsys->endgrp.fdp.enabled) { 6064 return NVME_FDP_DISABLED | NVME_DNR; 6065 } 6066 6067 if (!nvme_ph_valid(ns, ph)) { 6068 return NVME_INVALID_FIELD | NVME_DNR; 6069 } 6070 6071 ruhid = ns->fdp.phs[ph]; 6072 ruh = &n->subsys->endgrp.fdp.ruhs[ruhid]; 6073 6074 ret = nvme_h2c(n, events, noet, req); 6075 if (ret) { 6076 return ret; 6077 } 6078 6079 for (i = 0; i < noet; i++) { 6080 event_mask |= (1 << nvme_fdp_evf_shifts[events[i]]); 6081 } 6082 6083 if (enable) { 6084 ruh->event_filter |= event_mask; 6085 } else { 6086 ruh->event_filter = ruh->event_filter & ~event_mask; 6087 } 6088 6089 return NVME_SUCCESS; 6090 } 6091 6092 static uint16_t nvme_set_feature(NvmeCtrl *n, NvmeRequest *req) 6093 { 6094 NvmeNamespace *ns = NULL; 6095 6096 NvmeCmd *cmd = &req->cmd; 6097 uint32_t dw10 = le32_to_cpu(cmd->cdw10); 6098 uint32_t dw11 = le32_to_cpu(cmd->cdw11); 6099 uint32_t nsid = le32_to_cpu(cmd->nsid); 6100 uint8_t fid = NVME_GETSETFEAT_FID(dw10); 6101 uint8_t save = NVME_SETFEAT_SAVE(dw10); 6102 uint16_t status; 6103 int i; 6104 6105 trace_pci_nvme_setfeat(nvme_cid(req), nsid, fid, save, dw11); 6106 6107 if (save && !(nvme_feature_cap[fid] & NVME_FEAT_CAP_SAVE)) { 6108 return NVME_FID_NOT_SAVEABLE | NVME_DNR; 6109 } 6110 6111 if (!nvme_feature_support[fid]) { 6112 return NVME_INVALID_FIELD | NVME_DNR; 6113 } 6114 6115 if (nvme_feature_cap[fid] & NVME_FEAT_CAP_NS) { 6116 if (nsid != NVME_NSID_BROADCAST) { 6117 if (!nvme_nsid_valid(n, nsid)) { 6118 return NVME_INVALID_NSID | NVME_DNR; 6119 } 6120 6121 ns = nvme_ns(n, nsid); 6122 if (unlikely(!ns)) { 6123 return NVME_INVALID_FIELD | NVME_DNR; 6124 } 6125 } 6126 } else if (nsid && nsid != NVME_NSID_BROADCAST) { 6127 if (!nvme_nsid_valid(n, nsid)) { 6128 return NVME_INVALID_NSID | NVME_DNR; 6129 } 6130 6131 return NVME_FEAT_NOT_NS_SPEC | NVME_DNR; 6132 } 6133 6134 if (!(nvme_feature_cap[fid] & NVME_FEAT_CAP_CHANGE)) { 6135 return NVME_FEAT_NOT_CHANGEABLE | NVME_DNR; 6136 } 6137 6138 switch (fid) { 6139 case NVME_TEMPERATURE_THRESHOLD: 6140 if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) { 6141 break; 6142 } 6143 6144 switch (NVME_TEMP_THSEL(dw11)) { 6145 case NVME_TEMP_THSEL_OVER: 6146 n->features.temp_thresh_hi = NVME_TEMP_TMPTH(dw11); 6147 break; 6148 case NVME_TEMP_THSEL_UNDER: 6149 n->features.temp_thresh_low = NVME_TEMP_TMPTH(dw11); 6150 break; 6151 default: 6152 return NVME_INVALID_FIELD | NVME_DNR; 6153 } 6154 6155 if ((n->temperature >= n->features.temp_thresh_hi) || 6156 (n->temperature <= n->features.temp_thresh_low)) { 6157 nvme_smart_event(n, NVME_SMART_TEMPERATURE); 6158 } 6159 6160 break; 6161 case NVME_ERROR_RECOVERY: 6162 if (nsid == NVME_NSID_BROADCAST) { 6163 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { 6164 ns = nvme_ns(n, i); 6165 6166 if (!ns) { 6167 continue; 6168 } 6169 6170 if (NVME_ID_NS_NSFEAT_DULBE(ns->id_ns.nsfeat)) { 6171 ns->features.err_rec = dw11; 6172 } 6173 } 6174 6175 break; 6176 } 6177 6178 assert(ns); 6179 if (NVME_ID_NS_NSFEAT_DULBE(ns->id_ns.nsfeat)) { 6180 ns->features.err_rec = dw11; 6181 } 6182 break; 6183 case NVME_VOLATILE_WRITE_CACHE: 6184 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { 6185 ns = nvme_ns(n, i); 6186 if (!ns) { 6187 continue; 6188 } 6189 6190 if (!(dw11 & 0x1) && blk_enable_write_cache(ns->blkconf.blk)) { 6191 blk_flush(ns->blkconf.blk); 6192 } 6193 6194 blk_set_enable_write_cache(ns->blkconf.blk, dw11 & 1); 6195 } 6196 6197 break; 6198 6199 case NVME_NUMBER_OF_QUEUES: 6200 if (n->qs_created) { 6201 return NVME_CMD_SEQ_ERROR | NVME_DNR; 6202 } 6203 6204 /* 6205 * NVMe v1.3, Section 5.21.1.7: FFFFh is not an allowed value for NCQR 6206 * and NSQR. 6207 */ 6208 if ((dw11 & 0xffff) == 0xffff || ((dw11 >> 16) & 0xffff) == 0xffff) { 6209 return NVME_INVALID_FIELD | NVME_DNR; 6210 } 6211 6212 trace_pci_nvme_setfeat_numq((dw11 & 0xffff) + 1, 6213 ((dw11 >> 16) & 0xffff) + 1, 6214 n->conf_ioqpairs, 6215 n->conf_ioqpairs); 6216 req->cqe.result = cpu_to_le32((n->conf_ioqpairs - 1) | 6217 ((n->conf_ioqpairs - 1) << 16)); 6218 break; 6219 case NVME_ASYNCHRONOUS_EVENT_CONF: 6220 n->features.async_config = dw11; 6221 break; 6222 case NVME_TIMESTAMP: 6223 return nvme_set_feature_timestamp(n, req); 6224 case NVME_HOST_BEHAVIOR_SUPPORT: 6225 status = nvme_h2c(n, (uint8_t *)&n->features.hbs, 6226 sizeof(n->features.hbs), req); 6227 if (status) { 6228 return status; 6229 } 6230 6231 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { 6232 ns = nvme_ns(n, i); 6233 6234 if (!ns) { 6235 continue; 6236 } 6237 6238 ns->id_ns.nlbaf = ns->nlbaf - 1; 6239 if (!n->features.hbs.lbafee) { 6240 ns->id_ns.nlbaf = MIN(ns->id_ns.nlbaf, 15); 6241 } 6242 } 6243 6244 return status; 6245 case NVME_COMMAND_SET_PROFILE: 6246 if (dw11 & 0x1ff) { 6247 trace_pci_nvme_err_invalid_iocsci(dw11 & 0x1ff); 6248 return NVME_CMD_SET_CMB_REJECTED | NVME_DNR; 6249 } 6250 break; 6251 case NVME_FDP_MODE: 6252 /* spec: abort with cmd seq err if there's one or more NS' in endgrp */ 6253 return NVME_CMD_SEQ_ERROR | NVME_DNR; 6254 case NVME_FDP_EVENTS: 6255 return nvme_set_feature_fdp_events(n, ns, req); 6256 default: 6257 return NVME_FEAT_NOT_CHANGEABLE | NVME_DNR; 6258 } 6259 return NVME_SUCCESS; 6260 } 6261 6262 static uint16_t nvme_aer(NvmeCtrl *n, NvmeRequest *req) 6263 { 6264 trace_pci_nvme_aer(nvme_cid(req)); 6265 6266 if (n->outstanding_aers > n->params.aerl) { 6267 trace_pci_nvme_aer_aerl_exceeded(); 6268 return NVME_AER_LIMIT_EXCEEDED; 6269 } 6270 6271 n->aer_reqs[n->outstanding_aers] = req; 6272 n->outstanding_aers++; 6273 6274 if (!QTAILQ_EMPTY(&n->aer_queue)) { 6275 nvme_process_aers(n); 6276 } 6277 6278 return NVME_NO_COMPLETE; 6279 } 6280 6281 static void nvme_update_dmrsl(NvmeCtrl *n) 6282 { 6283 int nsid; 6284 6285 for (nsid = 1; nsid <= NVME_MAX_NAMESPACES; nsid++) { 6286 NvmeNamespace *ns = nvme_ns(n, nsid); 6287 if (!ns) { 6288 continue; 6289 } 6290 6291 n->dmrsl = MIN_NON_ZERO(n->dmrsl, 6292 BDRV_REQUEST_MAX_BYTES / nvme_l2b(ns, 1)); 6293 } 6294 } 6295 6296 static void nvme_select_iocs_ns(NvmeCtrl *n, NvmeNamespace *ns) 6297 { 6298 uint32_t cc = ldl_le_p(&n->bar.cc); 6299 6300 ns->iocs = nvme_cse_iocs_none; 6301 switch (ns->csi) { 6302 case NVME_CSI_NVM: 6303 if (NVME_CC_CSS(cc) != NVME_CC_CSS_ADMIN_ONLY) { 6304 ns->iocs = nvme_cse_iocs_nvm; 6305 } 6306 break; 6307 case NVME_CSI_ZONED: 6308 if (NVME_CC_CSS(cc) == NVME_CC_CSS_CSI) { 6309 ns->iocs = nvme_cse_iocs_zoned; 6310 } else if (NVME_CC_CSS(cc) == NVME_CC_CSS_NVM) { 6311 ns->iocs = nvme_cse_iocs_nvm; 6312 } 6313 break; 6314 } 6315 } 6316 6317 static uint16_t nvme_ns_attachment(NvmeCtrl *n, NvmeRequest *req) 6318 { 6319 NvmeNamespace *ns; 6320 NvmeCtrl *ctrl; 6321 uint16_t list[NVME_CONTROLLER_LIST_SIZE] = {}; 6322 uint32_t nsid = le32_to_cpu(req->cmd.nsid); 6323 uint32_t dw10 = le32_to_cpu(req->cmd.cdw10); 6324 uint8_t sel = dw10 & 0xf; 6325 uint16_t *nr_ids = &list[0]; 6326 uint16_t *ids = &list[1]; 6327 uint16_t ret; 6328 int i; 6329 6330 trace_pci_nvme_ns_attachment(nvme_cid(req), dw10 & 0xf); 6331 6332 if (!nvme_nsid_valid(n, nsid)) { 6333 return NVME_INVALID_NSID | NVME_DNR; 6334 } 6335 6336 ns = nvme_subsys_ns(n->subsys, nsid); 6337 if (!ns) { 6338 return NVME_INVALID_FIELD | NVME_DNR; 6339 } 6340 6341 ret = nvme_h2c(n, (uint8_t *)list, 4096, req); 6342 if (ret) { 6343 return ret; 6344 } 6345 6346 if (!*nr_ids) { 6347 return NVME_NS_CTRL_LIST_INVALID | NVME_DNR; 6348 } 6349 6350 *nr_ids = MIN(*nr_ids, NVME_CONTROLLER_LIST_SIZE - 1); 6351 for (i = 0; i < *nr_ids; i++) { 6352 ctrl = nvme_subsys_ctrl(n->subsys, ids[i]); 6353 if (!ctrl) { 6354 return NVME_NS_CTRL_LIST_INVALID | NVME_DNR; 6355 } 6356 6357 switch (sel) { 6358 case NVME_NS_ATTACHMENT_ATTACH: 6359 if (nvme_ns(ctrl, nsid)) { 6360 return NVME_NS_ALREADY_ATTACHED | NVME_DNR; 6361 } 6362 6363 if (ns->attached && !ns->params.shared) { 6364 return NVME_NS_PRIVATE | NVME_DNR; 6365 } 6366 6367 nvme_attach_ns(ctrl, ns); 6368 nvme_select_iocs_ns(ctrl, ns); 6369 6370 break; 6371 6372 case NVME_NS_ATTACHMENT_DETACH: 6373 if (!nvme_ns(ctrl, nsid)) { 6374 return NVME_NS_NOT_ATTACHED | NVME_DNR; 6375 } 6376 6377 ctrl->namespaces[nsid] = NULL; 6378 ns->attached--; 6379 6380 nvme_update_dmrsl(ctrl); 6381 6382 break; 6383 6384 default: 6385 return NVME_INVALID_FIELD | NVME_DNR; 6386 } 6387 6388 /* 6389 * Add namespace id to the changed namespace id list for event clearing 6390 * via Get Log Page command. 6391 */ 6392 if (!test_and_set_bit(nsid, ctrl->changed_nsids)) { 6393 nvme_enqueue_event(ctrl, NVME_AER_TYPE_NOTICE, 6394 NVME_AER_INFO_NOTICE_NS_ATTR_CHANGED, 6395 NVME_LOG_CHANGED_NSLIST); 6396 } 6397 } 6398 6399 return NVME_SUCCESS; 6400 } 6401 6402 typedef struct NvmeFormatAIOCB { 6403 BlockAIOCB common; 6404 BlockAIOCB *aiocb; 6405 NvmeRequest *req; 6406 int ret; 6407 6408 NvmeNamespace *ns; 6409 uint32_t nsid; 6410 bool broadcast; 6411 int64_t offset; 6412 6413 uint8_t lbaf; 6414 uint8_t mset; 6415 uint8_t pi; 6416 uint8_t pil; 6417 } NvmeFormatAIOCB; 6418 6419 static void nvme_format_cancel(BlockAIOCB *aiocb) 6420 { 6421 NvmeFormatAIOCB *iocb = container_of(aiocb, NvmeFormatAIOCB, common); 6422 6423 iocb->ret = -ECANCELED; 6424 6425 if (iocb->aiocb) { 6426 blk_aio_cancel_async(iocb->aiocb); 6427 iocb->aiocb = NULL; 6428 } 6429 } 6430 6431 static const AIOCBInfo nvme_format_aiocb_info = { 6432 .aiocb_size = sizeof(NvmeFormatAIOCB), 6433 .cancel_async = nvme_format_cancel, 6434 .get_aio_context = nvme_get_aio_context, 6435 }; 6436 6437 static void nvme_format_set(NvmeNamespace *ns, uint8_t lbaf, uint8_t mset, 6438 uint8_t pi, uint8_t pil) 6439 { 6440 uint8_t lbafl = lbaf & 0xf; 6441 uint8_t lbafu = lbaf >> 4; 6442 6443 trace_pci_nvme_format_set(ns->params.nsid, lbaf, mset, pi, pil); 6444 6445 ns->id_ns.dps = (pil << 3) | pi; 6446 ns->id_ns.flbas = (lbafu << 5) | (mset << 4) | lbafl; 6447 6448 nvme_ns_init_format(ns); 6449 } 6450 6451 static void nvme_do_format(NvmeFormatAIOCB *iocb); 6452 6453 static void nvme_format_ns_cb(void *opaque, int ret) 6454 { 6455 NvmeFormatAIOCB *iocb = opaque; 6456 NvmeNamespace *ns = iocb->ns; 6457 int bytes; 6458 6459 if (iocb->ret < 0) { 6460 goto done; 6461 } else if (ret < 0) { 6462 iocb->ret = ret; 6463 goto done; 6464 } 6465 6466 assert(ns); 6467 6468 if (iocb->offset < ns->size) { 6469 bytes = MIN(BDRV_REQUEST_MAX_BYTES, ns->size - iocb->offset); 6470 6471 iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk, iocb->offset, 6472 bytes, BDRV_REQ_MAY_UNMAP, 6473 nvme_format_ns_cb, iocb); 6474 6475 iocb->offset += bytes; 6476 return; 6477 } 6478 6479 nvme_format_set(ns, iocb->lbaf, iocb->mset, iocb->pi, iocb->pil); 6480 ns->status = 0x0; 6481 iocb->ns = NULL; 6482 iocb->offset = 0; 6483 6484 done: 6485 nvme_do_format(iocb); 6486 } 6487 6488 static uint16_t nvme_format_check(NvmeNamespace *ns, uint8_t lbaf, uint8_t pi) 6489 { 6490 if (ns->params.zoned) { 6491 return NVME_INVALID_FORMAT | NVME_DNR; 6492 } 6493 6494 if (lbaf > ns->id_ns.nlbaf) { 6495 return NVME_INVALID_FORMAT | NVME_DNR; 6496 } 6497 6498 if (pi && (ns->id_ns.lbaf[lbaf].ms < nvme_pi_tuple_size(ns))) { 6499 return NVME_INVALID_FORMAT | NVME_DNR; 6500 } 6501 6502 if (pi && pi > NVME_ID_NS_DPS_TYPE_3) { 6503 return NVME_INVALID_FIELD | NVME_DNR; 6504 } 6505 6506 return NVME_SUCCESS; 6507 } 6508 6509 static void nvme_do_format(NvmeFormatAIOCB *iocb) 6510 { 6511 NvmeRequest *req = iocb->req; 6512 NvmeCtrl *n = nvme_ctrl(req); 6513 uint32_t dw10 = le32_to_cpu(req->cmd.cdw10); 6514 uint8_t lbaf = dw10 & 0xf; 6515 uint8_t pi = (dw10 >> 5) & 0x7; 6516 uint16_t status; 6517 int i; 6518 6519 if (iocb->ret < 0) { 6520 goto done; 6521 } 6522 6523 if (iocb->broadcast) { 6524 for (i = iocb->nsid + 1; i <= NVME_MAX_NAMESPACES; i++) { 6525 iocb->ns = nvme_ns(n, i); 6526 if (iocb->ns) { 6527 iocb->nsid = i; 6528 break; 6529 } 6530 } 6531 } 6532 6533 if (!iocb->ns) { 6534 goto done; 6535 } 6536 6537 status = nvme_format_check(iocb->ns, lbaf, pi); 6538 if (status) { 6539 req->status = status; 6540 goto done; 6541 } 6542 6543 iocb->ns->status = NVME_FORMAT_IN_PROGRESS; 6544 nvme_format_ns_cb(iocb, 0); 6545 return; 6546 6547 done: 6548 iocb->common.cb(iocb->common.opaque, iocb->ret); 6549 qemu_aio_unref(iocb); 6550 } 6551 6552 static uint16_t nvme_format(NvmeCtrl *n, NvmeRequest *req) 6553 { 6554 NvmeFormatAIOCB *iocb; 6555 uint32_t nsid = le32_to_cpu(req->cmd.nsid); 6556 uint32_t dw10 = le32_to_cpu(req->cmd.cdw10); 6557 uint8_t lbaf = dw10 & 0xf; 6558 uint8_t mset = (dw10 >> 4) & 0x1; 6559 uint8_t pi = (dw10 >> 5) & 0x7; 6560 uint8_t pil = (dw10 >> 8) & 0x1; 6561 uint8_t lbafu = (dw10 >> 12) & 0x3; 6562 uint16_t status; 6563 6564 iocb = qemu_aio_get(&nvme_format_aiocb_info, NULL, nvme_misc_cb, req); 6565 6566 iocb->req = req; 6567 iocb->ret = 0; 6568 iocb->ns = NULL; 6569 iocb->nsid = 0; 6570 iocb->lbaf = lbaf; 6571 iocb->mset = mset; 6572 iocb->pi = pi; 6573 iocb->pil = pil; 6574 iocb->broadcast = (nsid == NVME_NSID_BROADCAST); 6575 iocb->offset = 0; 6576 6577 if (n->features.hbs.lbafee) { 6578 iocb->lbaf |= lbafu << 4; 6579 } 6580 6581 if (!iocb->broadcast) { 6582 if (!nvme_nsid_valid(n, nsid)) { 6583 status = NVME_INVALID_NSID | NVME_DNR; 6584 goto out; 6585 } 6586 6587 iocb->ns = nvme_ns(n, nsid); 6588 if (!iocb->ns) { 6589 status = NVME_INVALID_FIELD | NVME_DNR; 6590 goto out; 6591 } 6592 } 6593 6594 req->aiocb = &iocb->common; 6595 nvme_do_format(iocb); 6596 6597 return NVME_NO_COMPLETE; 6598 6599 out: 6600 qemu_aio_unref(iocb); 6601 6602 return status; 6603 } 6604 6605 static void nvme_get_virt_res_num(NvmeCtrl *n, uint8_t rt, int *num_total, 6606 int *num_prim, int *num_sec) 6607 { 6608 *num_total = le32_to_cpu(rt ? 6609 n->pri_ctrl_cap.vifrt : n->pri_ctrl_cap.vqfrt); 6610 *num_prim = le16_to_cpu(rt ? 6611 n->pri_ctrl_cap.virfap : n->pri_ctrl_cap.vqrfap); 6612 *num_sec = le16_to_cpu(rt ? n->pri_ctrl_cap.virfa : n->pri_ctrl_cap.vqrfa); 6613 } 6614 6615 static uint16_t nvme_assign_virt_res_to_prim(NvmeCtrl *n, NvmeRequest *req, 6616 uint16_t cntlid, uint8_t rt, 6617 int nr) 6618 { 6619 int num_total, num_prim, num_sec; 6620 6621 if (cntlid != n->cntlid) { 6622 return NVME_INVALID_CTRL_ID | NVME_DNR; 6623 } 6624 6625 nvme_get_virt_res_num(n, rt, &num_total, &num_prim, &num_sec); 6626 6627 if (nr > num_total) { 6628 return NVME_INVALID_NUM_RESOURCES | NVME_DNR; 6629 } 6630 6631 if (nr > num_total - num_sec) { 6632 return NVME_INVALID_RESOURCE_ID | NVME_DNR; 6633 } 6634 6635 if (rt) { 6636 n->next_pri_ctrl_cap.virfap = cpu_to_le16(nr); 6637 } else { 6638 n->next_pri_ctrl_cap.vqrfap = cpu_to_le16(nr); 6639 } 6640 6641 req->cqe.result = cpu_to_le32(nr); 6642 return req->status; 6643 } 6644 6645 static void nvme_update_virt_res(NvmeCtrl *n, NvmeSecCtrlEntry *sctrl, 6646 uint8_t rt, int nr) 6647 { 6648 int prev_nr, prev_total; 6649 6650 if (rt) { 6651 prev_nr = le16_to_cpu(sctrl->nvi); 6652 prev_total = le32_to_cpu(n->pri_ctrl_cap.virfa); 6653 sctrl->nvi = cpu_to_le16(nr); 6654 n->pri_ctrl_cap.virfa = cpu_to_le32(prev_total + nr - prev_nr); 6655 } else { 6656 prev_nr = le16_to_cpu(sctrl->nvq); 6657 prev_total = le32_to_cpu(n->pri_ctrl_cap.vqrfa); 6658 sctrl->nvq = cpu_to_le16(nr); 6659 n->pri_ctrl_cap.vqrfa = cpu_to_le32(prev_total + nr - prev_nr); 6660 } 6661 } 6662 6663 static uint16_t nvme_assign_virt_res_to_sec(NvmeCtrl *n, NvmeRequest *req, 6664 uint16_t cntlid, uint8_t rt, int nr) 6665 { 6666 int num_total, num_prim, num_sec, num_free, diff, limit; 6667 NvmeSecCtrlEntry *sctrl; 6668 6669 sctrl = nvme_sctrl_for_cntlid(n, cntlid); 6670 if (!sctrl) { 6671 return NVME_INVALID_CTRL_ID | NVME_DNR; 6672 } 6673 6674 if (sctrl->scs) { 6675 return NVME_INVALID_SEC_CTRL_STATE | NVME_DNR; 6676 } 6677 6678 limit = le16_to_cpu(rt ? n->pri_ctrl_cap.vifrsm : n->pri_ctrl_cap.vqfrsm); 6679 if (nr > limit) { 6680 return NVME_INVALID_NUM_RESOURCES | NVME_DNR; 6681 } 6682 6683 nvme_get_virt_res_num(n, rt, &num_total, &num_prim, &num_sec); 6684 num_free = num_total - num_prim - num_sec; 6685 diff = nr - le16_to_cpu(rt ? sctrl->nvi : sctrl->nvq); 6686 6687 if (diff > num_free) { 6688 return NVME_INVALID_RESOURCE_ID | NVME_DNR; 6689 } 6690 6691 nvme_update_virt_res(n, sctrl, rt, nr); 6692 req->cqe.result = cpu_to_le32(nr); 6693 6694 return req->status; 6695 } 6696 6697 static uint16_t nvme_virt_set_state(NvmeCtrl *n, uint16_t cntlid, bool online) 6698 { 6699 PCIDevice *pci = PCI_DEVICE(n); 6700 NvmeCtrl *sn = NULL; 6701 NvmeSecCtrlEntry *sctrl; 6702 int vf_index; 6703 6704 sctrl = nvme_sctrl_for_cntlid(n, cntlid); 6705 if (!sctrl) { 6706 return NVME_INVALID_CTRL_ID | NVME_DNR; 6707 } 6708 6709 if (!pci_is_vf(pci)) { 6710 vf_index = le16_to_cpu(sctrl->vfn) - 1; 6711 sn = NVME(pcie_sriov_get_vf_at_index(pci, vf_index)); 6712 } 6713 6714 if (online) { 6715 if (!sctrl->nvi || (le16_to_cpu(sctrl->nvq) < 2) || !sn) { 6716 return NVME_INVALID_SEC_CTRL_STATE | NVME_DNR; 6717 } 6718 6719 if (!sctrl->scs) { 6720 sctrl->scs = 0x1; 6721 nvme_ctrl_reset(sn, NVME_RESET_FUNCTION); 6722 } 6723 } else { 6724 nvme_update_virt_res(n, sctrl, NVME_VIRT_RES_INTERRUPT, 0); 6725 nvme_update_virt_res(n, sctrl, NVME_VIRT_RES_QUEUE, 0); 6726 6727 if (sctrl->scs) { 6728 sctrl->scs = 0x0; 6729 if (sn) { 6730 nvme_ctrl_reset(sn, NVME_RESET_FUNCTION); 6731 } 6732 } 6733 } 6734 6735 return NVME_SUCCESS; 6736 } 6737 6738 static uint16_t nvme_virt_mngmt(NvmeCtrl *n, NvmeRequest *req) 6739 { 6740 uint32_t dw10 = le32_to_cpu(req->cmd.cdw10); 6741 uint32_t dw11 = le32_to_cpu(req->cmd.cdw11); 6742 uint8_t act = dw10 & 0xf; 6743 uint8_t rt = (dw10 >> 8) & 0x7; 6744 uint16_t cntlid = (dw10 >> 16) & 0xffff; 6745 int nr = dw11 & 0xffff; 6746 6747 trace_pci_nvme_virt_mngmt(nvme_cid(req), act, cntlid, rt ? "VI" : "VQ", nr); 6748 6749 if (rt != NVME_VIRT_RES_QUEUE && rt != NVME_VIRT_RES_INTERRUPT) { 6750 return NVME_INVALID_RESOURCE_ID | NVME_DNR; 6751 } 6752 6753 switch (act) { 6754 case NVME_VIRT_MNGMT_ACTION_SEC_ASSIGN: 6755 return nvme_assign_virt_res_to_sec(n, req, cntlid, rt, nr); 6756 case NVME_VIRT_MNGMT_ACTION_PRM_ALLOC: 6757 return nvme_assign_virt_res_to_prim(n, req, cntlid, rt, nr); 6758 case NVME_VIRT_MNGMT_ACTION_SEC_ONLINE: 6759 return nvme_virt_set_state(n, cntlid, true); 6760 case NVME_VIRT_MNGMT_ACTION_SEC_OFFLINE: 6761 return nvme_virt_set_state(n, cntlid, false); 6762 default: 6763 return NVME_INVALID_FIELD | NVME_DNR; 6764 } 6765 } 6766 6767 static uint16_t nvme_dbbuf_config(NvmeCtrl *n, const NvmeRequest *req) 6768 { 6769 PCIDevice *pci = PCI_DEVICE(n); 6770 uint64_t dbs_addr = le64_to_cpu(req->cmd.dptr.prp1); 6771 uint64_t eis_addr = le64_to_cpu(req->cmd.dptr.prp2); 6772 int i; 6773 6774 /* Address should be page aligned */ 6775 if (dbs_addr & (n->page_size - 1) || eis_addr & (n->page_size - 1)) { 6776 return NVME_INVALID_FIELD | NVME_DNR; 6777 } 6778 6779 /* Save shadow buffer base addr for use during queue creation */ 6780 n->dbbuf_dbs = dbs_addr; 6781 n->dbbuf_eis = eis_addr; 6782 n->dbbuf_enabled = true; 6783 6784 for (i = 0; i < n->params.max_ioqpairs + 1; i++) { 6785 NvmeSQueue *sq = n->sq[i]; 6786 NvmeCQueue *cq = n->cq[i]; 6787 6788 if (sq) { 6789 /* 6790 * CAP.DSTRD is 0, so offset of ith sq db_addr is (i<<3) 6791 * nvme_process_db() uses this hard-coded way to calculate 6792 * doorbell offsets. Be consistent with that here. 6793 */ 6794 sq->db_addr = dbs_addr + (i << 3); 6795 sq->ei_addr = eis_addr + (i << 3); 6796 pci_dma_write(pci, sq->db_addr, &sq->tail, sizeof(sq->tail)); 6797 6798 if (n->params.ioeventfd && sq->sqid != 0) { 6799 if (!nvme_init_sq_ioeventfd(sq)) { 6800 sq->ioeventfd_enabled = true; 6801 } 6802 } 6803 } 6804 6805 if (cq) { 6806 /* CAP.DSTRD is 0, so offset of ith cq db_addr is (i<<3)+(1<<2) */ 6807 cq->db_addr = dbs_addr + (i << 3) + (1 << 2); 6808 cq->ei_addr = eis_addr + (i << 3) + (1 << 2); 6809 pci_dma_write(pci, cq->db_addr, &cq->head, sizeof(cq->head)); 6810 6811 if (n->params.ioeventfd && cq->cqid != 0) { 6812 if (!nvme_init_cq_ioeventfd(cq)) { 6813 cq->ioeventfd_enabled = true; 6814 } 6815 } 6816 } 6817 } 6818 6819 trace_pci_nvme_dbbuf_config(dbs_addr, eis_addr); 6820 6821 return NVME_SUCCESS; 6822 } 6823 6824 static uint16_t nvme_directive_send(NvmeCtrl *n, NvmeRequest *req) 6825 { 6826 return NVME_INVALID_FIELD | NVME_DNR; 6827 } 6828 6829 static uint16_t nvme_directive_receive(NvmeCtrl *n, NvmeRequest *req) 6830 { 6831 NvmeNamespace *ns; 6832 uint32_t dw10 = le32_to_cpu(req->cmd.cdw10); 6833 uint32_t dw11 = le32_to_cpu(req->cmd.cdw11); 6834 uint32_t nsid = le32_to_cpu(req->cmd.nsid); 6835 uint8_t doper, dtype; 6836 uint32_t numd, trans_len; 6837 NvmeDirectiveIdentify id = { 6838 .supported = 1 << NVME_DIRECTIVE_IDENTIFY, 6839 .enabled = 1 << NVME_DIRECTIVE_IDENTIFY, 6840 }; 6841 6842 numd = dw10 + 1; 6843 doper = dw11 & 0xff; 6844 dtype = (dw11 >> 8) & 0xff; 6845 6846 trans_len = MIN(sizeof(NvmeDirectiveIdentify), numd << 2); 6847 6848 if (nsid == NVME_NSID_BROADCAST || dtype != NVME_DIRECTIVE_IDENTIFY || 6849 doper != NVME_DIRECTIVE_RETURN_PARAMS) { 6850 return NVME_INVALID_FIELD | NVME_DNR; 6851 } 6852 6853 ns = nvme_ns(n, nsid); 6854 if (!ns) { 6855 return NVME_INVALID_FIELD | NVME_DNR; 6856 } 6857 6858 switch (dtype) { 6859 case NVME_DIRECTIVE_IDENTIFY: 6860 switch (doper) { 6861 case NVME_DIRECTIVE_RETURN_PARAMS: 6862 if (ns->endgrp->fdp.enabled) { 6863 id.supported |= 1 << NVME_DIRECTIVE_DATA_PLACEMENT; 6864 id.enabled |= 1 << NVME_DIRECTIVE_DATA_PLACEMENT; 6865 id.persistent |= 1 << NVME_DIRECTIVE_DATA_PLACEMENT; 6866 } 6867 6868 return nvme_c2h(n, (uint8_t *)&id, trans_len, req); 6869 6870 default: 6871 return NVME_INVALID_FIELD | NVME_DNR; 6872 } 6873 6874 default: 6875 return NVME_INVALID_FIELD; 6876 } 6877 } 6878 6879 static uint16_t nvme_admin_cmd(NvmeCtrl *n, NvmeRequest *req) 6880 { 6881 trace_pci_nvme_admin_cmd(nvme_cid(req), nvme_sqid(req), req->cmd.opcode, 6882 nvme_adm_opc_str(req->cmd.opcode)); 6883 6884 if (!(nvme_cse_acs[req->cmd.opcode] & NVME_CMD_EFF_CSUPP)) { 6885 trace_pci_nvme_err_invalid_admin_opc(req->cmd.opcode); 6886 return NVME_INVALID_OPCODE | NVME_DNR; 6887 } 6888 6889 /* SGLs shall not be used for Admin commands in NVMe over PCIe */ 6890 if (NVME_CMD_FLAGS_PSDT(req->cmd.flags) != NVME_PSDT_PRP) { 6891 return NVME_INVALID_FIELD | NVME_DNR; 6892 } 6893 6894 if (NVME_CMD_FLAGS_FUSE(req->cmd.flags)) { 6895 return NVME_INVALID_FIELD; 6896 } 6897 6898 switch (req->cmd.opcode) { 6899 case NVME_ADM_CMD_DELETE_SQ: 6900 return nvme_del_sq(n, req); 6901 case NVME_ADM_CMD_CREATE_SQ: 6902 return nvme_create_sq(n, req); 6903 case NVME_ADM_CMD_GET_LOG_PAGE: 6904 return nvme_get_log(n, req); 6905 case NVME_ADM_CMD_DELETE_CQ: 6906 return nvme_del_cq(n, req); 6907 case NVME_ADM_CMD_CREATE_CQ: 6908 return nvme_create_cq(n, req); 6909 case NVME_ADM_CMD_IDENTIFY: 6910 return nvme_identify(n, req); 6911 case NVME_ADM_CMD_ABORT: 6912 return nvme_abort(n, req); 6913 case NVME_ADM_CMD_SET_FEATURES: 6914 return nvme_set_feature(n, req); 6915 case NVME_ADM_CMD_GET_FEATURES: 6916 return nvme_get_feature(n, req); 6917 case NVME_ADM_CMD_ASYNC_EV_REQ: 6918 return nvme_aer(n, req); 6919 case NVME_ADM_CMD_NS_ATTACHMENT: 6920 return nvme_ns_attachment(n, req); 6921 case NVME_ADM_CMD_VIRT_MNGMT: 6922 return nvme_virt_mngmt(n, req); 6923 case NVME_ADM_CMD_DBBUF_CONFIG: 6924 return nvme_dbbuf_config(n, req); 6925 case NVME_ADM_CMD_FORMAT_NVM: 6926 return nvme_format(n, req); 6927 case NVME_ADM_CMD_DIRECTIVE_SEND: 6928 return nvme_directive_send(n, req); 6929 case NVME_ADM_CMD_DIRECTIVE_RECV: 6930 return nvme_directive_receive(n, req); 6931 default: 6932 assert(false); 6933 } 6934 6935 return NVME_INVALID_OPCODE | NVME_DNR; 6936 } 6937 6938 static void nvme_update_sq_eventidx(const NvmeSQueue *sq) 6939 { 6940 uint32_t v = cpu_to_le32(sq->tail); 6941 6942 trace_pci_nvme_update_sq_eventidx(sq->sqid, sq->tail); 6943 6944 pci_dma_write(PCI_DEVICE(sq->ctrl), sq->ei_addr, &v, sizeof(v)); 6945 } 6946 6947 static void nvme_update_sq_tail(NvmeSQueue *sq) 6948 { 6949 uint32_t v; 6950 6951 pci_dma_read(PCI_DEVICE(sq->ctrl), sq->db_addr, &v, sizeof(v)); 6952 6953 sq->tail = le32_to_cpu(v); 6954 6955 trace_pci_nvme_update_sq_tail(sq->sqid, sq->tail); 6956 } 6957 6958 static void nvme_process_sq(void *opaque) 6959 { 6960 NvmeSQueue *sq = opaque; 6961 NvmeCtrl *n = sq->ctrl; 6962 NvmeCQueue *cq = n->cq[sq->cqid]; 6963 6964 uint16_t status; 6965 hwaddr addr; 6966 NvmeCmd cmd; 6967 NvmeRequest *req; 6968 6969 if (n->dbbuf_enabled) { 6970 nvme_update_sq_tail(sq); 6971 } 6972 6973 while (!(nvme_sq_empty(sq) || QTAILQ_EMPTY(&sq->req_list))) { 6974 addr = sq->dma_addr + sq->head * n->sqe_size; 6975 if (nvme_addr_read(n, addr, (void *)&cmd, sizeof(cmd))) { 6976 trace_pci_nvme_err_addr_read(addr); 6977 trace_pci_nvme_err_cfs(); 6978 stl_le_p(&n->bar.csts, NVME_CSTS_FAILED); 6979 break; 6980 } 6981 nvme_inc_sq_head(sq); 6982 6983 req = QTAILQ_FIRST(&sq->req_list); 6984 QTAILQ_REMOVE(&sq->req_list, req, entry); 6985 QTAILQ_INSERT_TAIL(&sq->out_req_list, req, entry); 6986 nvme_req_clear(req); 6987 req->cqe.cid = cmd.cid; 6988 memcpy(&req->cmd, &cmd, sizeof(NvmeCmd)); 6989 6990 status = sq->sqid ? nvme_io_cmd(n, req) : 6991 nvme_admin_cmd(n, req); 6992 if (status != NVME_NO_COMPLETE) { 6993 req->status = status; 6994 nvme_enqueue_req_completion(cq, req); 6995 } 6996 6997 if (n->dbbuf_enabled) { 6998 nvme_update_sq_eventidx(sq); 6999 nvme_update_sq_tail(sq); 7000 } 7001 } 7002 } 7003 7004 static void nvme_update_msixcap_ts(PCIDevice *pci_dev, uint32_t table_size) 7005 { 7006 uint8_t *config; 7007 7008 if (!msix_present(pci_dev)) { 7009 return; 7010 } 7011 7012 assert(table_size > 0 && table_size <= pci_dev->msix_entries_nr); 7013 7014 config = pci_dev->config + pci_dev->msix_cap; 7015 pci_set_word_by_mask(config + PCI_MSIX_FLAGS, PCI_MSIX_FLAGS_QSIZE, 7016 table_size - 1); 7017 } 7018 7019 static void nvme_activate_virt_res(NvmeCtrl *n) 7020 { 7021 PCIDevice *pci_dev = PCI_DEVICE(n); 7022 NvmePriCtrlCap *cap = &n->pri_ctrl_cap; 7023 NvmeSecCtrlEntry *sctrl; 7024 7025 /* -1 to account for the admin queue */ 7026 if (pci_is_vf(pci_dev)) { 7027 sctrl = nvme_sctrl(n); 7028 cap->vqprt = sctrl->nvq; 7029 cap->viprt = sctrl->nvi; 7030 n->conf_ioqpairs = sctrl->nvq ? le16_to_cpu(sctrl->nvq) - 1 : 0; 7031 n->conf_msix_qsize = sctrl->nvi ? le16_to_cpu(sctrl->nvi) : 1; 7032 } else { 7033 cap->vqrfap = n->next_pri_ctrl_cap.vqrfap; 7034 cap->virfap = n->next_pri_ctrl_cap.virfap; 7035 n->conf_ioqpairs = le16_to_cpu(cap->vqprt) + 7036 le16_to_cpu(cap->vqrfap) - 1; 7037 n->conf_msix_qsize = le16_to_cpu(cap->viprt) + 7038 le16_to_cpu(cap->virfap); 7039 } 7040 } 7041 7042 static void nvme_ctrl_reset(NvmeCtrl *n, NvmeResetType rst) 7043 { 7044 PCIDevice *pci_dev = PCI_DEVICE(n); 7045 NvmeSecCtrlEntry *sctrl; 7046 NvmeNamespace *ns; 7047 int i; 7048 7049 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { 7050 ns = nvme_ns(n, i); 7051 if (!ns) { 7052 continue; 7053 } 7054 7055 nvme_ns_drain(ns); 7056 } 7057 7058 for (i = 0; i < n->params.max_ioqpairs + 1; i++) { 7059 if (n->sq[i] != NULL) { 7060 nvme_free_sq(n->sq[i], n); 7061 } 7062 } 7063 for (i = 0; i < n->params.max_ioqpairs + 1; i++) { 7064 if (n->cq[i] != NULL) { 7065 nvme_free_cq(n->cq[i], n); 7066 } 7067 } 7068 7069 while (!QTAILQ_EMPTY(&n->aer_queue)) { 7070 NvmeAsyncEvent *event = QTAILQ_FIRST(&n->aer_queue); 7071 QTAILQ_REMOVE(&n->aer_queue, event, entry); 7072 g_free(event); 7073 } 7074 7075 if (n->params.sriov_max_vfs) { 7076 if (!pci_is_vf(pci_dev)) { 7077 for (i = 0; i < n->sec_ctrl_list.numcntl; i++) { 7078 sctrl = &n->sec_ctrl_list.sec[i]; 7079 nvme_virt_set_state(n, le16_to_cpu(sctrl->scid), false); 7080 } 7081 7082 if (rst != NVME_RESET_CONTROLLER) { 7083 pcie_sriov_pf_disable_vfs(pci_dev); 7084 } 7085 } 7086 7087 if (rst != NVME_RESET_CONTROLLER) { 7088 nvme_activate_virt_res(n); 7089 } 7090 } 7091 7092 n->aer_queued = 0; 7093 n->aer_mask = 0; 7094 n->outstanding_aers = 0; 7095 n->qs_created = false; 7096 7097 nvme_update_msixcap_ts(pci_dev, n->conf_msix_qsize); 7098 7099 if (pci_is_vf(pci_dev)) { 7100 sctrl = nvme_sctrl(n); 7101 7102 stl_le_p(&n->bar.csts, sctrl->scs ? 0 : NVME_CSTS_FAILED); 7103 } else { 7104 stl_le_p(&n->bar.csts, 0); 7105 } 7106 7107 stl_le_p(&n->bar.intms, 0); 7108 stl_le_p(&n->bar.intmc, 0); 7109 stl_le_p(&n->bar.cc, 0); 7110 7111 n->dbbuf_dbs = 0; 7112 n->dbbuf_eis = 0; 7113 n->dbbuf_enabled = false; 7114 } 7115 7116 static void nvme_ctrl_shutdown(NvmeCtrl *n) 7117 { 7118 NvmeNamespace *ns; 7119 int i; 7120 7121 if (n->pmr.dev) { 7122 memory_region_msync(&n->pmr.dev->mr, 0, n->pmr.dev->size); 7123 } 7124 7125 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { 7126 ns = nvme_ns(n, i); 7127 if (!ns) { 7128 continue; 7129 } 7130 7131 nvme_ns_shutdown(ns); 7132 } 7133 } 7134 7135 static void nvme_select_iocs(NvmeCtrl *n) 7136 { 7137 NvmeNamespace *ns; 7138 int i; 7139 7140 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { 7141 ns = nvme_ns(n, i); 7142 if (!ns) { 7143 continue; 7144 } 7145 7146 nvme_select_iocs_ns(n, ns); 7147 } 7148 } 7149 7150 static int nvme_start_ctrl(NvmeCtrl *n) 7151 { 7152 uint64_t cap = ldq_le_p(&n->bar.cap); 7153 uint32_t cc = ldl_le_p(&n->bar.cc); 7154 uint32_t aqa = ldl_le_p(&n->bar.aqa); 7155 uint64_t asq = ldq_le_p(&n->bar.asq); 7156 uint64_t acq = ldq_le_p(&n->bar.acq); 7157 uint32_t page_bits = NVME_CC_MPS(cc) + 12; 7158 uint32_t page_size = 1 << page_bits; 7159 NvmeSecCtrlEntry *sctrl = nvme_sctrl(n); 7160 7161 if (pci_is_vf(PCI_DEVICE(n)) && !sctrl->scs) { 7162 trace_pci_nvme_err_startfail_virt_state(le16_to_cpu(sctrl->nvi), 7163 le16_to_cpu(sctrl->nvq)); 7164 return -1; 7165 } 7166 if (unlikely(n->cq[0])) { 7167 trace_pci_nvme_err_startfail_cq(); 7168 return -1; 7169 } 7170 if (unlikely(n->sq[0])) { 7171 trace_pci_nvme_err_startfail_sq(); 7172 return -1; 7173 } 7174 if (unlikely(asq & (page_size - 1))) { 7175 trace_pci_nvme_err_startfail_asq_misaligned(asq); 7176 return -1; 7177 } 7178 if (unlikely(acq & (page_size - 1))) { 7179 trace_pci_nvme_err_startfail_acq_misaligned(acq); 7180 return -1; 7181 } 7182 if (unlikely(!(NVME_CAP_CSS(cap) & (1 << NVME_CC_CSS(cc))))) { 7183 trace_pci_nvme_err_startfail_css(NVME_CC_CSS(cc)); 7184 return -1; 7185 } 7186 if (unlikely(NVME_CC_MPS(cc) < NVME_CAP_MPSMIN(cap))) { 7187 trace_pci_nvme_err_startfail_page_too_small( 7188 NVME_CC_MPS(cc), 7189 NVME_CAP_MPSMIN(cap)); 7190 return -1; 7191 } 7192 if (unlikely(NVME_CC_MPS(cc) > 7193 NVME_CAP_MPSMAX(cap))) { 7194 trace_pci_nvme_err_startfail_page_too_large( 7195 NVME_CC_MPS(cc), 7196 NVME_CAP_MPSMAX(cap)); 7197 return -1; 7198 } 7199 if (unlikely(NVME_CC_IOCQES(cc) < 7200 NVME_CTRL_CQES_MIN(n->id_ctrl.cqes))) { 7201 trace_pci_nvme_err_startfail_cqent_too_small( 7202 NVME_CC_IOCQES(cc), 7203 NVME_CTRL_CQES_MIN(cap)); 7204 return -1; 7205 } 7206 if (unlikely(NVME_CC_IOCQES(cc) > 7207 NVME_CTRL_CQES_MAX(n->id_ctrl.cqes))) { 7208 trace_pci_nvme_err_startfail_cqent_too_large( 7209 NVME_CC_IOCQES(cc), 7210 NVME_CTRL_CQES_MAX(cap)); 7211 return -1; 7212 } 7213 if (unlikely(NVME_CC_IOSQES(cc) < 7214 NVME_CTRL_SQES_MIN(n->id_ctrl.sqes))) { 7215 trace_pci_nvme_err_startfail_sqent_too_small( 7216 NVME_CC_IOSQES(cc), 7217 NVME_CTRL_SQES_MIN(cap)); 7218 return -1; 7219 } 7220 if (unlikely(NVME_CC_IOSQES(cc) > 7221 NVME_CTRL_SQES_MAX(n->id_ctrl.sqes))) { 7222 trace_pci_nvme_err_startfail_sqent_too_large( 7223 NVME_CC_IOSQES(cc), 7224 NVME_CTRL_SQES_MAX(cap)); 7225 return -1; 7226 } 7227 if (unlikely(!NVME_AQA_ASQS(aqa))) { 7228 trace_pci_nvme_err_startfail_asqent_sz_zero(); 7229 return -1; 7230 } 7231 if (unlikely(!NVME_AQA_ACQS(aqa))) { 7232 trace_pci_nvme_err_startfail_acqent_sz_zero(); 7233 return -1; 7234 } 7235 7236 n->page_bits = page_bits; 7237 n->page_size = page_size; 7238 n->max_prp_ents = n->page_size / sizeof(uint64_t); 7239 n->cqe_size = 1 << NVME_CC_IOCQES(cc); 7240 n->sqe_size = 1 << NVME_CC_IOSQES(cc); 7241 nvme_init_cq(&n->admin_cq, n, acq, 0, 0, NVME_AQA_ACQS(aqa) + 1, 1); 7242 nvme_init_sq(&n->admin_sq, n, asq, 0, 0, NVME_AQA_ASQS(aqa) + 1); 7243 7244 nvme_set_timestamp(n, 0ULL); 7245 7246 nvme_select_iocs(n); 7247 7248 return 0; 7249 } 7250 7251 static void nvme_cmb_enable_regs(NvmeCtrl *n) 7252 { 7253 uint32_t cmbloc = ldl_le_p(&n->bar.cmbloc); 7254 uint32_t cmbsz = ldl_le_p(&n->bar.cmbsz); 7255 7256 NVME_CMBLOC_SET_CDPCILS(cmbloc, 1); 7257 NVME_CMBLOC_SET_CDPMLS(cmbloc, 1); 7258 NVME_CMBLOC_SET_BIR(cmbloc, NVME_CMB_BIR); 7259 stl_le_p(&n->bar.cmbloc, cmbloc); 7260 7261 NVME_CMBSZ_SET_SQS(cmbsz, 1); 7262 NVME_CMBSZ_SET_CQS(cmbsz, 0); 7263 NVME_CMBSZ_SET_LISTS(cmbsz, 1); 7264 NVME_CMBSZ_SET_RDS(cmbsz, 1); 7265 NVME_CMBSZ_SET_WDS(cmbsz, 1); 7266 NVME_CMBSZ_SET_SZU(cmbsz, 2); /* MBs */ 7267 NVME_CMBSZ_SET_SZ(cmbsz, n->params.cmb_size_mb); 7268 stl_le_p(&n->bar.cmbsz, cmbsz); 7269 } 7270 7271 static void nvme_write_bar(NvmeCtrl *n, hwaddr offset, uint64_t data, 7272 unsigned size) 7273 { 7274 PCIDevice *pci = PCI_DEVICE(n); 7275 uint64_t cap = ldq_le_p(&n->bar.cap); 7276 uint32_t cc = ldl_le_p(&n->bar.cc); 7277 uint32_t intms = ldl_le_p(&n->bar.intms); 7278 uint32_t csts = ldl_le_p(&n->bar.csts); 7279 uint32_t pmrsts = ldl_le_p(&n->bar.pmrsts); 7280 7281 if (unlikely(offset & (sizeof(uint32_t) - 1))) { 7282 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_misaligned32, 7283 "MMIO write not 32-bit aligned," 7284 " offset=0x%"PRIx64"", offset); 7285 /* should be ignored, fall through for now */ 7286 } 7287 7288 if (unlikely(size < sizeof(uint32_t))) { 7289 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_toosmall, 7290 "MMIO write smaller than 32-bits," 7291 " offset=0x%"PRIx64", size=%u", 7292 offset, size); 7293 /* should be ignored, fall through for now */ 7294 } 7295 7296 switch (offset) { 7297 case NVME_REG_INTMS: 7298 if (unlikely(msix_enabled(pci))) { 7299 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix, 7300 "undefined access to interrupt mask set" 7301 " when MSI-X is enabled"); 7302 /* should be ignored, fall through for now */ 7303 } 7304 intms |= data; 7305 stl_le_p(&n->bar.intms, intms); 7306 n->bar.intmc = n->bar.intms; 7307 trace_pci_nvme_mmio_intm_set(data & 0xffffffff, intms); 7308 nvme_irq_check(n); 7309 break; 7310 case NVME_REG_INTMC: 7311 if (unlikely(msix_enabled(pci))) { 7312 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix, 7313 "undefined access to interrupt mask clr" 7314 " when MSI-X is enabled"); 7315 /* should be ignored, fall through for now */ 7316 } 7317 intms &= ~data; 7318 stl_le_p(&n->bar.intms, intms); 7319 n->bar.intmc = n->bar.intms; 7320 trace_pci_nvme_mmio_intm_clr(data & 0xffffffff, intms); 7321 nvme_irq_check(n); 7322 break; 7323 case NVME_REG_CC: 7324 stl_le_p(&n->bar.cc, data); 7325 7326 trace_pci_nvme_mmio_cfg(data & 0xffffffff); 7327 7328 if (NVME_CC_SHN(data) && !(NVME_CC_SHN(cc))) { 7329 trace_pci_nvme_mmio_shutdown_set(); 7330 nvme_ctrl_shutdown(n); 7331 csts &= ~(CSTS_SHST_MASK << CSTS_SHST_SHIFT); 7332 csts |= NVME_CSTS_SHST_COMPLETE; 7333 } else if (!NVME_CC_SHN(data) && NVME_CC_SHN(cc)) { 7334 trace_pci_nvme_mmio_shutdown_cleared(); 7335 csts &= ~(CSTS_SHST_MASK << CSTS_SHST_SHIFT); 7336 } 7337 7338 if (NVME_CC_EN(data) && !NVME_CC_EN(cc)) { 7339 if (unlikely(nvme_start_ctrl(n))) { 7340 trace_pci_nvme_err_startfail(); 7341 csts = NVME_CSTS_FAILED; 7342 } else { 7343 trace_pci_nvme_mmio_start_success(); 7344 csts = NVME_CSTS_READY; 7345 } 7346 } else if (!NVME_CC_EN(data) && NVME_CC_EN(cc)) { 7347 trace_pci_nvme_mmio_stopped(); 7348 nvme_ctrl_reset(n, NVME_RESET_CONTROLLER); 7349 7350 break; 7351 } 7352 7353 stl_le_p(&n->bar.csts, csts); 7354 7355 break; 7356 case NVME_REG_CSTS: 7357 if (data & (1 << 4)) { 7358 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ssreset_w1c_unsupported, 7359 "attempted to W1C CSTS.NSSRO" 7360 " but CAP.NSSRS is zero (not supported)"); 7361 } else if (data != 0) { 7362 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ro_csts, 7363 "attempted to set a read only bit" 7364 " of controller status"); 7365 } 7366 break; 7367 case NVME_REG_NSSR: 7368 if (data == 0x4e564d65) { 7369 trace_pci_nvme_ub_mmiowr_ssreset_unsupported(); 7370 } else { 7371 /* The spec says that writes of other values have no effect */ 7372 return; 7373 } 7374 break; 7375 case NVME_REG_AQA: 7376 stl_le_p(&n->bar.aqa, data); 7377 trace_pci_nvme_mmio_aqattr(data & 0xffffffff); 7378 break; 7379 case NVME_REG_ASQ: 7380 stn_le_p(&n->bar.asq, size, data); 7381 trace_pci_nvme_mmio_asqaddr(data); 7382 break; 7383 case NVME_REG_ASQ + 4: 7384 stl_le_p((uint8_t *)&n->bar.asq + 4, data); 7385 trace_pci_nvme_mmio_asqaddr_hi(data, ldq_le_p(&n->bar.asq)); 7386 break; 7387 case NVME_REG_ACQ: 7388 trace_pci_nvme_mmio_acqaddr(data); 7389 stn_le_p(&n->bar.acq, size, data); 7390 break; 7391 case NVME_REG_ACQ + 4: 7392 stl_le_p((uint8_t *)&n->bar.acq + 4, data); 7393 trace_pci_nvme_mmio_acqaddr_hi(data, ldq_le_p(&n->bar.acq)); 7394 break; 7395 case NVME_REG_CMBLOC: 7396 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbloc_reserved, 7397 "invalid write to reserved CMBLOC" 7398 " when CMBSZ is zero, ignored"); 7399 return; 7400 case NVME_REG_CMBSZ: 7401 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbsz_readonly, 7402 "invalid write to read only CMBSZ, ignored"); 7403 return; 7404 case NVME_REG_CMBMSC: 7405 if (!NVME_CAP_CMBS(cap)) { 7406 return; 7407 } 7408 7409 stn_le_p(&n->bar.cmbmsc, size, data); 7410 n->cmb.cmse = false; 7411 7412 if (NVME_CMBMSC_CRE(data)) { 7413 nvme_cmb_enable_regs(n); 7414 7415 if (NVME_CMBMSC_CMSE(data)) { 7416 uint64_t cmbmsc = ldq_le_p(&n->bar.cmbmsc); 7417 hwaddr cba = NVME_CMBMSC_CBA(cmbmsc) << CMBMSC_CBA_SHIFT; 7418 if (cba + int128_get64(n->cmb.mem.size) < cba) { 7419 uint32_t cmbsts = ldl_le_p(&n->bar.cmbsts); 7420 NVME_CMBSTS_SET_CBAI(cmbsts, 1); 7421 stl_le_p(&n->bar.cmbsts, cmbsts); 7422 return; 7423 } 7424 7425 n->cmb.cba = cba; 7426 n->cmb.cmse = true; 7427 } 7428 } else { 7429 n->bar.cmbsz = 0; 7430 n->bar.cmbloc = 0; 7431 } 7432 7433 return; 7434 case NVME_REG_CMBMSC + 4: 7435 stl_le_p((uint8_t *)&n->bar.cmbmsc + 4, data); 7436 return; 7437 7438 case NVME_REG_PMRCAP: 7439 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrcap_readonly, 7440 "invalid write to PMRCAP register, ignored"); 7441 return; 7442 case NVME_REG_PMRCTL: 7443 if (!NVME_CAP_PMRS(cap)) { 7444 return; 7445 } 7446 7447 stl_le_p(&n->bar.pmrctl, data); 7448 if (NVME_PMRCTL_EN(data)) { 7449 memory_region_set_enabled(&n->pmr.dev->mr, true); 7450 pmrsts = 0; 7451 } else { 7452 memory_region_set_enabled(&n->pmr.dev->mr, false); 7453 NVME_PMRSTS_SET_NRDY(pmrsts, 1); 7454 n->pmr.cmse = false; 7455 } 7456 stl_le_p(&n->bar.pmrsts, pmrsts); 7457 return; 7458 case NVME_REG_PMRSTS: 7459 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrsts_readonly, 7460 "invalid write to PMRSTS register, ignored"); 7461 return; 7462 case NVME_REG_PMREBS: 7463 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrebs_readonly, 7464 "invalid write to PMREBS register, ignored"); 7465 return; 7466 case NVME_REG_PMRSWTP: 7467 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrswtp_readonly, 7468 "invalid write to PMRSWTP register, ignored"); 7469 return; 7470 case NVME_REG_PMRMSCL: 7471 if (!NVME_CAP_PMRS(cap)) { 7472 return; 7473 } 7474 7475 stl_le_p(&n->bar.pmrmscl, data); 7476 n->pmr.cmse = false; 7477 7478 if (NVME_PMRMSCL_CMSE(data)) { 7479 uint64_t pmrmscu = ldl_le_p(&n->bar.pmrmscu); 7480 hwaddr cba = pmrmscu << 32 | 7481 (NVME_PMRMSCL_CBA(data) << PMRMSCL_CBA_SHIFT); 7482 if (cba + int128_get64(n->pmr.dev->mr.size) < cba) { 7483 NVME_PMRSTS_SET_CBAI(pmrsts, 1); 7484 stl_le_p(&n->bar.pmrsts, pmrsts); 7485 return; 7486 } 7487 7488 n->pmr.cmse = true; 7489 n->pmr.cba = cba; 7490 } 7491 7492 return; 7493 case NVME_REG_PMRMSCU: 7494 if (!NVME_CAP_PMRS(cap)) { 7495 return; 7496 } 7497 7498 stl_le_p(&n->bar.pmrmscu, data); 7499 return; 7500 default: 7501 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_invalid, 7502 "invalid MMIO write," 7503 " offset=0x%"PRIx64", data=%"PRIx64"", 7504 offset, data); 7505 break; 7506 } 7507 } 7508 7509 static uint64_t nvme_mmio_read(void *opaque, hwaddr addr, unsigned size) 7510 { 7511 NvmeCtrl *n = (NvmeCtrl *)opaque; 7512 uint8_t *ptr = (uint8_t *)&n->bar; 7513 7514 trace_pci_nvme_mmio_read(addr, size); 7515 7516 if (unlikely(addr & (sizeof(uint32_t) - 1))) { 7517 NVME_GUEST_ERR(pci_nvme_ub_mmiord_misaligned32, 7518 "MMIO read not 32-bit aligned," 7519 " offset=0x%"PRIx64"", addr); 7520 /* should RAZ, fall through for now */ 7521 } else if (unlikely(size < sizeof(uint32_t))) { 7522 NVME_GUEST_ERR(pci_nvme_ub_mmiord_toosmall, 7523 "MMIO read smaller than 32-bits," 7524 " offset=0x%"PRIx64"", addr); 7525 /* should RAZ, fall through for now */ 7526 } 7527 7528 if (addr > sizeof(n->bar) - size) { 7529 NVME_GUEST_ERR(pci_nvme_ub_mmiord_invalid_ofs, 7530 "MMIO read beyond last register," 7531 " offset=0x%"PRIx64", returning 0", addr); 7532 7533 return 0; 7534 } 7535 7536 if (pci_is_vf(PCI_DEVICE(n)) && !nvme_sctrl(n)->scs && 7537 addr != NVME_REG_CSTS) { 7538 trace_pci_nvme_err_ignored_mmio_vf_offline(addr, size); 7539 return 0; 7540 } 7541 7542 /* 7543 * When PMRWBM bit 1 is set then read from 7544 * from PMRSTS should ensure prior writes 7545 * made it to persistent media 7546 */ 7547 if (addr == NVME_REG_PMRSTS && 7548 (NVME_PMRCAP_PMRWBM(ldl_le_p(&n->bar.pmrcap)) & 0x02)) { 7549 memory_region_msync(&n->pmr.dev->mr, 0, n->pmr.dev->size); 7550 } 7551 7552 return ldn_le_p(ptr + addr, size); 7553 } 7554 7555 static void nvme_process_db(NvmeCtrl *n, hwaddr addr, int val) 7556 { 7557 PCIDevice *pci = PCI_DEVICE(n); 7558 uint32_t qid; 7559 7560 if (unlikely(addr & ((1 << 2) - 1))) { 7561 NVME_GUEST_ERR(pci_nvme_ub_db_wr_misaligned, 7562 "doorbell write not 32-bit aligned," 7563 " offset=0x%"PRIx64", ignoring", addr); 7564 return; 7565 } 7566 7567 if (((addr - 0x1000) >> 2) & 1) { 7568 /* Completion queue doorbell write */ 7569 7570 uint16_t new_head = val & 0xffff; 7571 int start_sqs; 7572 NvmeCQueue *cq; 7573 7574 qid = (addr - (0x1000 + (1 << 2))) >> 3; 7575 if (unlikely(nvme_check_cqid(n, qid))) { 7576 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cq, 7577 "completion queue doorbell write" 7578 " for nonexistent queue," 7579 " sqid=%"PRIu32", ignoring", qid); 7580 7581 /* 7582 * NVM Express v1.3d, Section 4.1 state: "If host software writes 7583 * an invalid value to the Submission Queue Tail Doorbell or 7584 * Completion Queue Head Doorbell regiter and an Asynchronous Event 7585 * Request command is outstanding, then an asynchronous event is 7586 * posted to the Admin Completion Queue with a status code of 7587 * Invalid Doorbell Write Value." 7588 * 7589 * Also note that the spec includes the "Invalid Doorbell Register" 7590 * status code, but nowhere does it specify when to use it. 7591 * However, it seems reasonable to use it here in a similar 7592 * fashion. 7593 */ 7594 if (n->outstanding_aers) { 7595 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR, 7596 NVME_AER_INFO_ERR_INVALID_DB_REGISTER, 7597 NVME_LOG_ERROR_INFO); 7598 } 7599 7600 return; 7601 } 7602 7603 cq = n->cq[qid]; 7604 if (unlikely(new_head >= cq->size)) { 7605 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cqhead, 7606 "completion queue doorbell write value" 7607 " beyond queue size, sqid=%"PRIu32"," 7608 " new_head=%"PRIu16", ignoring", 7609 qid, new_head); 7610 7611 if (n->outstanding_aers) { 7612 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR, 7613 NVME_AER_INFO_ERR_INVALID_DB_VALUE, 7614 NVME_LOG_ERROR_INFO); 7615 } 7616 7617 return; 7618 } 7619 7620 trace_pci_nvme_mmio_doorbell_cq(cq->cqid, new_head); 7621 7622 start_sqs = nvme_cq_full(cq) ? 1 : 0; 7623 cq->head = new_head; 7624 if (!qid && n->dbbuf_enabled) { 7625 pci_dma_write(pci, cq->db_addr, &cq->head, sizeof(cq->head)); 7626 } 7627 if (start_sqs) { 7628 NvmeSQueue *sq; 7629 QTAILQ_FOREACH(sq, &cq->sq_list, entry) { 7630 qemu_bh_schedule(sq->bh); 7631 } 7632 qemu_bh_schedule(cq->bh); 7633 } 7634 7635 if (cq->tail == cq->head) { 7636 if (cq->irq_enabled) { 7637 n->cq_pending--; 7638 } 7639 7640 nvme_irq_deassert(n, cq); 7641 } 7642 } else { 7643 /* Submission queue doorbell write */ 7644 7645 uint16_t new_tail = val & 0xffff; 7646 NvmeSQueue *sq; 7647 7648 qid = (addr - 0x1000) >> 3; 7649 if (unlikely(nvme_check_sqid(n, qid))) { 7650 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sq, 7651 "submission queue doorbell write" 7652 " for nonexistent queue," 7653 " sqid=%"PRIu32", ignoring", qid); 7654 7655 if (n->outstanding_aers) { 7656 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR, 7657 NVME_AER_INFO_ERR_INVALID_DB_REGISTER, 7658 NVME_LOG_ERROR_INFO); 7659 } 7660 7661 return; 7662 } 7663 7664 sq = n->sq[qid]; 7665 if (unlikely(new_tail >= sq->size)) { 7666 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sqtail, 7667 "submission queue doorbell write value" 7668 " beyond queue size, sqid=%"PRIu32"," 7669 " new_tail=%"PRIu16", ignoring", 7670 qid, new_tail); 7671 7672 if (n->outstanding_aers) { 7673 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR, 7674 NVME_AER_INFO_ERR_INVALID_DB_VALUE, 7675 NVME_LOG_ERROR_INFO); 7676 } 7677 7678 return; 7679 } 7680 7681 trace_pci_nvme_mmio_doorbell_sq(sq->sqid, new_tail); 7682 7683 sq->tail = new_tail; 7684 if (!qid && n->dbbuf_enabled) { 7685 /* 7686 * The spec states "the host shall also update the controller's 7687 * corresponding doorbell property to match the value of that entry 7688 * in the Shadow Doorbell buffer." 7689 * 7690 * Since this context is currently a VM trap, we can safely enforce 7691 * the requirement from the device side in case the host is 7692 * misbehaving. 7693 * 7694 * Note, we shouldn't have to do this, but various drivers 7695 * including ones that run on Linux, are not updating Admin Queues, 7696 * so we can't trust reading it for an appropriate sq tail. 7697 */ 7698 pci_dma_write(pci, sq->db_addr, &sq->tail, sizeof(sq->tail)); 7699 } 7700 7701 qemu_bh_schedule(sq->bh); 7702 } 7703 } 7704 7705 static void nvme_mmio_write(void *opaque, hwaddr addr, uint64_t data, 7706 unsigned size) 7707 { 7708 NvmeCtrl *n = (NvmeCtrl *)opaque; 7709 7710 trace_pci_nvme_mmio_write(addr, data, size); 7711 7712 if (pci_is_vf(PCI_DEVICE(n)) && !nvme_sctrl(n)->scs && 7713 addr != NVME_REG_CSTS) { 7714 trace_pci_nvme_err_ignored_mmio_vf_offline(addr, size); 7715 return; 7716 } 7717 7718 if (addr < sizeof(n->bar)) { 7719 nvme_write_bar(n, addr, data, size); 7720 } else { 7721 nvme_process_db(n, addr, data); 7722 } 7723 } 7724 7725 static const MemoryRegionOps nvme_mmio_ops = { 7726 .read = nvme_mmio_read, 7727 .write = nvme_mmio_write, 7728 .endianness = DEVICE_LITTLE_ENDIAN, 7729 .impl = { 7730 .min_access_size = 2, 7731 .max_access_size = 8, 7732 }, 7733 }; 7734 7735 static void nvme_cmb_write(void *opaque, hwaddr addr, uint64_t data, 7736 unsigned size) 7737 { 7738 NvmeCtrl *n = (NvmeCtrl *)opaque; 7739 stn_le_p(&n->cmb.buf[addr], size, data); 7740 } 7741 7742 static uint64_t nvme_cmb_read(void *opaque, hwaddr addr, unsigned size) 7743 { 7744 NvmeCtrl *n = (NvmeCtrl *)opaque; 7745 return ldn_le_p(&n->cmb.buf[addr], size); 7746 } 7747 7748 static const MemoryRegionOps nvme_cmb_ops = { 7749 .read = nvme_cmb_read, 7750 .write = nvme_cmb_write, 7751 .endianness = DEVICE_LITTLE_ENDIAN, 7752 .impl = { 7753 .min_access_size = 1, 7754 .max_access_size = 8, 7755 }, 7756 }; 7757 7758 static bool nvme_check_params(NvmeCtrl *n, Error **errp) 7759 { 7760 NvmeParams *params = &n->params; 7761 7762 if (params->num_queues) { 7763 warn_report("num_queues is deprecated; please use max_ioqpairs " 7764 "instead"); 7765 7766 params->max_ioqpairs = params->num_queues - 1; 7767 } 7768 7769 if (n->namespace.blkconf.blk && n->subsys) { 7770 error_setg(errp, "subsystem support is unavailable with legacy " 7771 "namespace ('drive' property)"); 7772 return false; 7773 } 7774 7775 if (params->max_ioqpairs < 1 || 7776 params->max_ioqpairs > NVME_MAX_IOQPAIRS) { 7777 error_setg(errp, "max_ioqpairs must be between 1 and %d", 7778 NVME_MAX_IOQPAIRS); 7779 return false; 7780 } 7781 7782 if (params->msix_qsize < 1 || 7783 params->msix_qsize > PCI_MSIX_FLAGS_QSIZE + 1) { 7784 error_setg(errp, "msix_qsize must be between 1 and %d", 7785 PCI_MSIX_FLAGS_QSIZE + 1); 7786 return false; 7787 } 7788 7789 if (!params->serial) { 7790 error_setg(errp, "serial property not set"); 7791 return false; 7792 } 7793 7794 if (n->pmr.dev) { 7795 if (host_memory_backend_is_mapped(n->pmr.dev)) { 7796 error_setg(errp, "can't use already busy memdev: %s", 7797 object_get_canonical_path_component(OBJECT(n->pmr.dev))); 7798 return false; 7799 } 7800 7801 if (!is_power_of_2(n->pmr.dev->size)) { 7802 error_setg(errp, "pmr backend size needs to be power of 2 in size"); 7803 return false; 7804 } 7805 7806 host_memory_backend_set_mapped(n->pmr.dev, true); 7807 } 7808 7809 if (n->params.zasl > n->params.mdts) { 7810 error_setg(errp, "zoned.zasl (Zone Append Size Limit) must be less " 7811 "than or equal to mdts (Maximum Data Transfer Size)"); 7812 return false; 7813 } 7814 7815 if (!n->params.vsl) { 7816 error_setg(errp, "vsl must be non-zero"); 7817 return false; 7818 } 7819 7820 if (params->sriov_max_vfs) { 7821 if (!n->subsys) { 7822 error_setg(errp, "subsystem is required for the use of SR-IOV"); 7823 return false; 7824 } 7825 7826 if (params->sriov_max_vfs > NVME_MAX_VFS) { 7827 error_setg(errp, "sriov_max_vfs must be between 0 and %d", 7828 NVME_MAX_VFS); 7829 return false; 7830 } 7831 7832 if (params->cmb_size_mb) { 7833 error_setg(errp, "CMB is not supported with SR-IOV"); 7834 return false; 7835 } 7836 7837 if (n->pmr.dev) { 7838 error_setg(errp, "PMR is not supported with SR-IOV"); 7839 return false; 7840 } 7841 7842 if (!params->sriov_vq_flexible || !params->sriov_vi_flexible) { 7843 error_setg(errp, "both sriov_vq_flexible and sriov_vi_flexible" 7844 " must be set for the use of SR-IOV"); 7845 return false; 7846 } 7847 7848 if (params->sriov_vq_flexible < params->sriov_max_vfs * 2) { 7849 error_setg(errp, "sriov_vq_flexible must be greater than or equal" 7850 " to %d (sriov_max_vfs * 2)", params->sriov_max_vfs * 2); 7851 return false; 7852 } 7853 7854 if (params->max_ioqpairs < params->sriov_vq_flexible + 2) { 7855 error_setg(errp, "(max_ioqpairs - sriov_vq_flexible) must be" 7856 " greater than or equal to 2"); 7857 return false; 7858 } 7859 7860 if (params->sriov_vi_flexible < params->sriov_max_vfs) { 7861 error_setg(errp, "sriov_vi_flexible must be greater than or equal" 7862 " to %d (sriov_max_vfs)", params->sriov_max_vfs); 7863 return false; 7864 } 7865 7866 if (params->msix_qsize < params->sriov_vi_flexible + 1) { 7867 error_setg(errp, "(msix_qsize - sriov_vi_flexible) must be" 7868 " greater than or equal to 1"); 7869 return false; 7870 } 7871 7872 if (params->sriov_max_vi_per_vf && 7873 (params->sriov_max_vi_per_vf - 1) % NVME_VF_RES_GRANULARITY) { 7874 error_setg(errp, "sriov_max_vi_per_vf must meet:" 7875 " (sriov_max_vi_per_vf - 1) %% %d == 0 and" 7876 " sriov_max_vi_per_vf >= 1", NVME_VF_RES_GRANULARITY); 7877 return false; 7878 } 7879 7880 if (params->sriov_max_vq_per_vf && 7881 (params->sriov_max_vq_per_vf < 2 || 7882 (params->sriov_max_vq_per_vf - 1) % NVME_VF_RES_GRANULARITY)) { 7883 error_setg(errp, "sriov_max_vq_per_vf must meet:" 7884 " (sriov_max_vq_per_vf - 1) %% %d == 0 and" 7885 " sriov_max_vq_per_vf >= 2", NVME_VF_RES_GRANULARITY); 7886 return false; 7887 } 7888 } 7889 7890 return true; 7891 } 7892 7893 static void nvme_init_state(NvmeCtrl *n) 7894 { 7895 NvmePriCtrlCap *cap = &n->pri_ctrl_cap; 7896 NvmeSecCtrlList *list = &n->sec_ctrl_list; 7897 NvmeSecCtrlEntry *sctrl; 7898 PCIDevice *pci = PCI_DEVICE(n); 7899 uint8_t max_vfs; 7900 int i; 7901 7902 if (pci_is_vf(pci)) { 7903 sctrl = nvme_sctrl(n); 7904 max_vfs = 0; 7905 n->conf_ioqpairs = sctrl->nvq ? le16_to_cpu(sctrl->nvq) - 1 : 0; 7906 n->conf_msix_qsize = sctrl->nvi ? le16_to_cpu(sctrl->nvi) : 1; 7907 } else { 7908 max_vfs = n->params.sriov_max_vfs; 7909 n->conf_ioqpairs = n->params.max_ioqpairs; 7910 n->conf_msix_qsize = n->params.msix_qsize; 7911 } 7912 7913 n->sq = g_new0(NvmeSQueue *, n->params.max_ioqpairs + 1); 7914 n->cq = g_new0(NvmeCQueue *, n->params.max_ioqpairs + 1); 7915 n->temperature = NVME_TEMPERATURE; 7916 n->features.temp_thresh_hi = NVME_TEMPERATURE_WARNING; 7917 n->starttime_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL); 7918 n->aer_reqs = g_new0(NvmeRequest *, n->params.aerl + 1); 7919 QTAILQ_INIT(&n->aer_queue); 7920 7921 list->numcntl = cpu_to_le16(max_vfs); 7922 for (i = 0; i < max_vfs; i++) { 7923 sctrl = &list->sec[i]; 7924 sctrl->pcid = cpu_to_le16(n->cntlid); 7925 sctrl->vfn = cpu_to_le16(i + 1); 7926 } 7927 7928 cap->cntlid = cpu_to_le16(n->cntlid); 7929 cap->crt = NVME_CRT_VQ | NVME_CRT_VI; 7930 7931 if (pci_is_vf(pci)) { 7932 cap->vqprt = cpu_to_le16(1 + n->conf_ioqpairs); 7933 } else { 7934 cap->vqprt = cpu_to_le16(1 + n->params.max_ioqpairs - 7935 n->params.sriov_vq_flexible); 7936 cap->vqfrt = cpu_to_le32(n->params.sriov_vq_flexible); 7937 cap->vqrfap = cap->vqfrt; 7938 cap->vqgran = cpu_to_le16(NVME_VF_RES_GRANULARITY); 7939 cap->vqfrsm = n->params.sriov_max_vq_per_vf ? 7940 cpu_to_le16(n->params.sriov_max_vq_per_vf) : 7941 cap->vqfrt / MAX(max_vfs, 1); 7942 } 7943 7944 if (pci_is_vf(pci)) { 7945 cap->viprt = cpu_to_le16(n->conf_msix_qsize); 7946 } else { 7947 cap->viprt = cpu_to_le16(n->params.msix_qsize - 7948 n->params.sriov_vi_flexible); 7949 cap->vifrt = cpu_to_le32(n->params.sriov_vi_flexible); 7950 cap->virfap = cap->vifrt; 7951 cap->vigran = cpu_to_le16(NVME_VF_RES_GRANULARITY); 7952 cap->vifrsm = n->params.sriov_max_vi_per_vf ? 7953 cpu_to_le16(n->params.sriov_max_vi_per_vf) : 7954 cap->vifrt / MAX(max_vfs, 1); 7955 } 7956 } 7957 7958 static void nvme_init_cmb(NvmeCtrl *n, PCIDevice *pci_dev) 7959 { 7960 uint64_t cmb_size = n->params.cmb_size_mb * MiB; 7961 uint64_t cap = ldq_le_p(&n->bar.cap); 7962 7963 n->cmb.buf = g_malloc0(cmb_size); 7964 memory_region_init_io(&n->cmb.mem, OBJECT(n), &nvme_cmb_ops, n, 7965 "nvme-cmb", cmb_size); 7966 pci_register_bar(pci_dev, NVME_CMB_BIR, 7967 PCI_BASE_ADDRESS_SPACE_MEMORY | 7968 PCI_BASE_ADDRESS_MEM_TYPE_64 | 7969 PCI_BASE_ADDRESS_MEM_PREFETCH, &n->cmb.mem); 7970 7971 NVME_CAP_SET_CMBS(cap, 1); 7972 stq_le_p(&n->bar.cap, cap); 7973 7974 if (n->params.legacy_cmb) { 7975 nvme_cmb_enable_regs(n); 7976 n->cmb.cmse = true; 7977 } 7978 } 7979 7980 static void nvme_init_pmr(NvmeCtrl *n, PCIDevice *pci_dev) 7981 { 7982 uint32_t pmrcap = ldl_le_p(&n->bar.pmrcap); 7983 7984 NVME_PMRCAP_SET_RDS(pmrcap, 1); 7985 NVME_PMRCAP_SET_WDS(pmrcap, 1); 7986 NVME_PMRCAP_SET_BIR(pmrcap, NVME_PMR_BIR); 7987 /* Turn on bit 1 support */ 7988 NVME_PMRCAP_SET_PMRWBM(pmrcap, 0x02); 7989 NVME_PMRCAP_SET_CMSS(pmrcap, 1); 7990 stl_le_p(&n->bar.pmrcap, pmrcap); 7991 7992 pci_register_bar(pci_dev, NVME_PMR_BIR, 7993 PCI_BASE_ADDRESS_SPACE_MEMORY | 7994 PCI_BASE_ADDRESS_MEM_TYPE_64 | 7995 PCI_BASE_ADDRESS_MEM_PREFETCH, &n->pmr.dev->mr); 7996 7997 memory_region_set_enabled(&n->pmr.dev->mr, false); 7998 } 7999 8000 static uint64_t nvme_bar_size(unsigned total_queues, unsigned total_irqs, 8001 unsigned *msix_table_offset, 8002 unsigned *msix_pba_offset) 8003 { 8004 uint64_t bar_size, msix_table_size, msix_pba_size; 8005 8006 bar_size = sizeof(NvmeBar) + 2 * total_queues * NVME_DB_SIZE; 8007 bar_size = QEMU_ALIGN_UP(bar_size, 4 * KiB); 8008 8009 if (msix_table_offset) { 8010 *msix_table_offset = bar_size; 8011 } 8012 8013 msix_table_size = PCI_MSIX_ENTRY_SIZE * total_irqs; 8014 bar_size += msix_table_size; 8015 bar_size = QEMU_ALIGN_UP(bar_size, 4 * KiB); 8016 8017 if (msix_pba_offset) { 8018 *msix_pba_offset = bar_size; 8019 } 8020 8021 msix_pba_size = QEMU_ALIGN_UP(total_irqs, 64) / 8; 8022 bar_size += msix_pba_size; 8023 8024 bar_size = pow2ceil(bar_size); 8025 return bar_size; 8026 } 8027 8028 static void nvme_init_sriov(NvmeCtrl *n, PCIDevice *pci_dev, uint16_t offset) 8029 { 8030 uint16_t vf_dev_id = n->params.use_intel_id ? 8031 PCI_DEVICE_ID_INTEL_NVME : PCI_DEVICE_ID_REDHAT_NVME; 8032 NvmePriCtrlCap *cap = &n->pri_ctrl_cap; 8033 uint64_t bar_size = nvme_bar_size(le16_to_cpu(cap->vqfrsm), 8034 le16_to_cpu(cap->vifrsm), 8035 NULL, NULL); 8036 8037 pcie_sriov_pf_init(pci_dev, offset, "nvme", vf_dev_id, 8038 n->params.sriov_max_vfs, n->params.sriov_max_vfs, 8039 NVME_VF_OFFSET, NVME_VF_STRIDE); 8040 8041 pcie_sriov_pf_init_vf_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY | 8042 PCI_BASE_ADDRESS_MEM_TYPE_64, bar_size); 8043 } 8044 8045 static int nvme_add_pm_capability(PCIDevice *pci_dev, uint8_t offset) 8046 { 8047 Error *err = NULL; 8048 int ret; 8049 8050 ret = pci_add_capability(pci_dev, PCI_CAP_ID_PM, offset, 8051 PCI_PM_SIZEOF, &err); 8052 if (err) { 8053 error_report_err(err); 8054 return ret; 8055 } 8056 8057 pci_set_word(pci_dev->config + offset + PCI_PM_PMC, 8058 PCI_PM_CAP_VER_1_2); 8059 pci_set_word(pci_dev->config + offset + PCI_PM_CTRL, 8060 PCI_PM_CTRL_NO_SOFT_RESET); 8061 pci_set_word(pci_dev->wmask + offset + PCI_PM_CTRL, 8062 PCI_PM_CTRL_STATE_MASK); 8063 8064 return 0; 8065 } 8066 8067 static bool nvme_init_pci(NvmeCtrl *n, PCIDevice *pci_dev, Error **errp) 8068 { 8069 ERRP_GUARD(); 8070 uint8_t *pci_conf = pci_dev->config; 8071 uint64_t bar_size; 8072 unsigned msix_table_offset, msix_pba_offset; 8073 int ret; 8074 8075 pci_conf[PCI_INTERRUPT_PIN] = 1; 8076 pci_config_set_prog_interface(pci_conf, 0x2); 8077 8078 if (n->params.use_intel_id) { 8079 pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_INTEL); 8080 pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_NVME); 8081 } else { 8082 pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_REDHAT); 8083 pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_REDHAT_NVME); 8084 } 8085 8086 pci_config_set_class(pci_conf, PCI_CLASS_STORAGE_EXPRESS); 8087 nvme_add_pm_capability(pci_dev, 0x60); 8088 pcie_endpoint_cap_init(pci_dev, 0x80); 8089 pcie_cap_flr_init(pci_dev); 8090 if (n->params.sriov_max_vfs) { 8091 pcie_ari_init(pci_dev, 0x100, 1); 8092 } 8093 8094 /* add one to max_ioqpairs to account for the admin queue pair */ 8095 bar_size = nvme_bar_size(n->params.max_ioqpairs + 1, n->params.msix_qsize, 8096 &msix_table_offset, &msix_pba_offset); 8097 8098 memory_region_init(&n->bar0, OBJECT(n), "nvme-bar0", bar_size); 8099 memory_region_init_io(&n->iomem, OBJECT(n), &nvme_mmio_ops, n, "nvme", 8100 msix_table_offset); 8101 memory_region_add_subregion(&n->bar0, 0, &n->iomem); 8102 8103 if (pci_is_vf(pci_dev)) { 8104 pcie_sriov_vf_register_bar(pci_dev, 0, &n->bar0); 8105 } else { 8106 pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY | 8107 PCI_BASE_ADDRESS_MEM_TYPE_64, &n->bar0); 8108 } 8109 ret = msix_init(pci_dev, n->params.msix_qsize, 8110 &n->bar0, 0, msix_table_offset, 8111 &n->bar0, 0, msix_pba_offset, 0, errp); 8112 if (ret == -ENOTSUP) { 8113 /* report that msix is not supported, but do not error out */ 8114 warn_report_err(*errp); 8115 *errp = NULL; 8116 } else if (ret < 0) { 8117 /* propagate error to caller */ 8118 return false; 8119 } 8120 8121 nvme_update_msixcap_ts(pci_dev, n->conf_msix_qsize); 8122 8123 if (n->params.cmb_size_mb) { 8124 nvme_init_cmb(n, pci_dev); 8125 } 8126 8127 if (n->pmr.dev) { 8128 nvme_init_pmr(n, pci_dev); 8129 } 8130 8131 if (!pci_is_vf(pci_dev) && n->params.sriov_max_vfs) { 8132 nvme_init_sriov(n, pci_dev, 0x120); 8133 } 8134 8135 return true; 8136 } 8137 8138 static void nvme_init_subnqn(NvmeCtrl *n) 8139 { 8140 NvmeSubsystem *subsys = n->subsys; 8141 NvmeIdCtrl *id = &n->id_ctrl; 8142 8143 if (!subsys) { 8144 snprintf((char *)id->subnqn, sizeof(id->subnqn), 8145 "nqn.2019-08.org.qemu:%s", n->params.serial); 8146 } else { 8147 pstrcpy((char *)id->subnqn, sizeof(id->subnqn), (char*)subsys->subnqn); 8148 } 8149 } 8150 8151 static void nvme_init_ctrl(NvmeCtrl *n, PCIDevice *pci_dev) 8152 { 8153 NvmeIdCtrl *id = &n->id_ctrl; 8154 uint8_t *pci_conf = pci_dev->config; 8155 uint64_t cap = ldq_le_p(&n->bar.cap); 8156 NvmeSecCtrlEntry *sctrl = nvme_sctrl(n); 8157 uint32_t ctratt; 8158 8159 id->vid = cpu_to_le16(pci_get_word(pci_conf + PCI_VENDOR_ID)); 8160 id->ssvid = cpu_to_le16(pci_get_word(pci_conf + PCI_SUBSYSTEM_VENDOR_ID)); 8161 strpadcpy((char *)id->mn, sizeof(id->mn), "QEMU NVMe Ctrl", ' '); 8162 strpadcpy((char *)id->fr, sizeof(id->fr), QEMU_VERSION, ' '); 8163 strpadcpy((char *)id->sn, sizeof(id->sn), n->params.serial, ' '); 8164 8165 id->cntlid = cpu_to_le16(n->cntlid); 8166 8167 id->oaes = cpu_to_le32(NVME_OAES_NS_ATTR); 8168 ctratt = NVME_CTRATT_ELBAS; 8169 8170 id->rab = 6; 8171 8172 if (n->params.use_intel_id) { 8173 id->ieee[0] = 0xb3; 8174 id->ieee[1] = 0x02; 8175 id->ieee[2] = 0x00; 8176 } else { 8177 id->ieee[0] = 0x00; 8178 id->ieee[1] = 0x54; 8179 id->ieee[2] = 0x52; 8180 } 8181 8182 id->mdts = n->params.mdts; 8183 id->ver = cpu_to_le32(NVME_SPEC_VER); 8184 id->oacs = 8185 cpu_to_le16(NVME_OACS_NS_MGMT | NVME_OACS_FORMAT | NVME_OACS_DBBUF | 8186 NVME_OACS_DIRECTIVES); 8187 id->cntrltype = 0x1; 8188 8189 /* 8190 * Because the controller always completes the Abort command immediately, 8191 * there can never be more than one concurrently executing Abort command, 8192 * so this value is never used for anything. Note that there can easily be 8193 * many Abort commands in the queues, but they are not considered 8194 * "executing" until processed by nvme_abort. 8195 * 8196 * The specification recommends a value of 3 for Abort Command Limit (four 8197 * concurrently outstanding Abort commands), so lets use that though it is 8198 * inconsequential. 8199 */ 8200 id->acl = 3; 8201 id->aerl = n->params.aerl; 8202 id->frmw = (NVME_NUM_FW_SLOTS << 1) | NVME_FRMW_SLOT1_RO; 8203 id->lpa = NVME_LPA_NS_SMART | NVME_LPA_CSE | NVME_LPA_EXTENDED; 8204 8205 /* recommended default value (~70 C) */ 8206 id->wctemp = cpu_to_le16(NVME_TEMPERATURE_WARNING); 8207 id->cctemp = cpu_to_le16(NVME_TEMPERATURE_CRITICAL); 8208 8209 id->sqes = (0x6 << 4) | 0x6; 8210 id->cqes = (0x4 << 4) | 0x4; 8211 id->nn = cpu_to_le32(NVME_MAX_NAMESPACES); 8212 id->oncs = cpu_to_le16(NVME_ONCS_WRITE_ZEROES | NVME_ONCS_TIMESTAMP | 8213 NVME_ONCS_FEATURES | NVME_ONCS_DSM | 8214 NVME_ONCS_COMPARE | NVME_ONCS_COPY); 8215 8216 /* 8217 * NOTE: If this device ever supports a command set that does NOT use 0x0 8218 * as a Flush-equivalent operation, support for the broadcast NSID in Flush 8219 * should probably be removed. 8220 * 8221 * See comment in nvme_io_cmd. 8222 */ 8223 id->vwc = NVME_VWC_NSID_BROADCAST_SUPPORT | NVME_VWC_PRESENT; 8224 8225 id->ocfs = cpu_to_le16(NVME_OCFS_COPY_FORMAT_0 | NVME_OCFS_COPY_FORMAT_1); 8226 id->sgls = cpu_to_le32(NVME_CTRL_SGLS_SUPPORT_NO_ALIGN); 8227 8228 nvme_init_subnqn(n); 8229 8230 id->psd[0].mp = cpu_to_le16(0x9c4); 8231 id->psd[0].enlat = cpu_to_le32(0x10); 8232 id->psd[0].exlat = cpu_to_le32(0x4); 8233 8234 if (n->subsys) { 8235 id->cmic |= NVME_CMIC_MULTI_CTRL; 8236 ctratt |= NVME_CTRATT_ENDGRPS; 8237 8238 id->endgidmax = cpu_to_le16(0x1); 8239 8240 if (n->subsys->endgrp.fdp.enabled) { 8241 ctratt |= NVME_CTRATT_FDPS; 8242 } 8243 } 8244 8245 id->ctratt = cpu_to_le32(ctratt); 8246 8247 NVME_CAP_SET_MQES(cap, 0x7ff); 8248 NVME_CAP_SET_CQR(cap, 1); 8249 NVME_CAP_SET_TO(cap, 0xf); 8250 NVME_CAP_SET_CSS(cap, NVME_CAP_CSS_NVM); 8251 NVME_CAP_SET_CSS(cap, NVME_CAP_CSS_CSI_SUPP); 8252 NVME_CAP_SET_CSS(cap, NVME_CAP_CSS_ADMIN_ONLY); 8253 NVME_CAP_SET_MPSMAX(cap, 4); 8254 NVME_CAP_SET_CMBS(cap, n->params.cmb_size_mb ? 1 : 0); 8255 NVME_CAP_SET_PMRS(cap, n->pmr.dev ? 1 : 0); 8256 stq_le_p(&n->bar.cap, cap); 8257 8258 stl_le_p(&n->bar.vs, NVME_SPEC_VER); 8259 n->bar.intmc = n->bar.intms = 0; 8260 8261 if (pci_is_vf(pci_dev) && !sctrl->scs) { 8262 stl_le_p(&n->bar.csts, NVME_CSTS_FAILED); 8263 } 8264 } 8265 8266 static int nvme_init_subsys(NvmeCtrl *n, Error **errp) 8267 { 8268 int cntlid; 8269 8270 if (!n->subsys) { 8271 return 0; 8272 } 8273 8274 cntlid = nvme_subsys_register_ctrl(n, errp); 8275 if (cntlid < 0) { 8276 return -1; 8277 } 8278 8279 n->cntlid = cntlid; 8280 8281 return 0; 8282 } 8283 8284 void nvme_attach_ns(NvmeCtrl *n, NvmeNamespace *ns) 8285 { 8286 uint32_t nsid = ns->params.nsid; 8287 assert(nsid && nsid <= NVME_MAX_NAMESPACES); 8288 8289 n->namespaces[nsid] = ns; 8290 ns->attached++; 8291 8292 n->dmrsl = MIN_NON_ZERO(n->dmrsl, 8293 BDRV_REQUEST_MAX_BYTES / nvme_l2b(ns, 1)); 8294 } 8295 8296 static void nvme_realize(PCIDevice *pci_dev, Error **errp) 8297 { 8298 NvmeCtrl *n = NVME(pci_dev); 8299 DeviceState *dev = DEVICE(pci_dev); 8300 NvmeNamespace *ns; 8301 NvmeCtrl *pn = NVME(pcie_sriov_get_pf(pci_dev)); 8302 8303 if (pci_is_vf(pci_dev)) { 8304 /* 8305 * VFs derive settings from the parent. PF's lifespan exceeds 8306 * that of VF's, so it's safe to share params.serial. 8307 */ 8308 memcpy(&n->params, &pn->params, sizeof(NvmeParams)); 8309 n->subsys = pn->subsys; 8310 } 8311 8312 if (!nvme_check_params(n, errp)) { 8313 return; 8314 } 8315 8316 qbus_init(&n->bus, sizeof(NvmeBus), TYPE_NVME_BUS, dev, dev->id); 8317 8318 if (nvme_init_subsys(n, errp)) { 8319 return; 8320 } 8321 nvme_init_state(n); 8322 if (!nvme_init_pci(n, pci_dev, errp)) { 8323 return; 8324 } 8325 nvme_init_ctrl(n, pci_dev); 8326 8327 /* setup a namespace if the controller drive property was given */ 8328 if (n->namespace.blkconf.blk) { 8329 ns = &n->namespace; 8330 ns->params.nsid = 1; 8331 8332 if (nvme_ns_setup(ns, errp)) { 8333 return; 8334 } 8335 8336 nvme_attach_ns(n, ns); 8337 } 8338 } 8339 8340 static void nvme_exit(PCIDevice *pci_dev) 8341 { 8342 NvmeCtrl *n = NVME(pci_dev); 8343 NvmeNamespace *ns; 8344 int i; 8345 8346 nvme_ctrl_reset(n, NVME_RESET_FUNCTION); 8347 8348 if (n->subsys) { 8349 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { 8350 ns = nvme_ns(n, i); 8351 if (ns) { 8352 ns->attached--; 8353 } 8354 } 8355 8356 nvme_subsys_unregister_ctrl(n->subsys, n); 8357 } 8358 8359 g_free(n->cq); 8360 g_free(n->sq); 8361 g_free(n->aer_reqs); 8362 8363 if (n->params.cmb_size_mb) { 8364 g_free(n->cmb.buf); 8365 } 8366 8367 if (n->pmr.dev) { 8368 host_memory_backend_set_mapped(n->pmr.dev, false); 8369 } 8370 8371 if (!pci_is_vf(pci_dev) && n->params.sriov_max_vfs) { 8372 pcie_sriov_pf_exit(pci_dev); 8373 } 8374 8375 msix_uninit(pci_dev, &n->bar0, &n->bar0); 8376 memory_region_del_subregion(&n->bar0, &n->iomem); 8377 } 8378 8379 static Property nvme_props[] = { 8380 DEFINE_BLOCK_PROPERTIES(NvmeCtrl, namespace.blkconf), 8381 DEFINE_PROP_LINK("pmrdev", NvmeCtrl, pmr.dev, TYPE_MEMORY_BACKEND, 8382 HostMemoryBackend *), 8383 DEFINE_PROP_LINK("subsys", NvmeCtrl, subsys, TYPE_NVME_SUBSYS, 8384 NvmeSubsystem *), 8385 DEFINE_PROP_STRING("serial", NvmeCtrl, params.serial), 8386 DEFINE_PROP_UINT32("cmb_size_mb", NvmeCtrl, params.cmb_size_mb, 0), 8387 DEFINE_PROP_UINT32("num_queues", NvmeCtrl, params.num_queues, 0), 8388 DEFINE_PROP_UINT32("max_ioqpairs", NvmeCtrl, params.max_ioqpairs, 64), 8389 DEFINE_PROP_UINT16("msix_qsize", NvmeCtrl, params.msix_qsize, 65), 8390 DEFINE_PROP_UINT8("aerl", NvmeCtrl, params.aerl, 3), 8391 DEFINE_PROP_UINT32("aer_max_queued", NvmeCtrl, params.aer_max_queued, 64), 8392 DEFINE_PROP_UINT8("mdts", NvmeCtrl, params.mdts, 7), 8393 DEFINE_PROP_UINT8("vsl", NvmeCtrl, params.vsl, 7), 8394 DEFINE_PROP_BOOL("use-intel-id", NvmeCtrl, params.use_intel_id, false), 8395 DEFINE_PROP_BOOL("legacy-cmb", NvmeCtrl, params.legacy_cmb, false), 8396 DEFINE_PROP_BOOL("ioeventfd", NvmeCtrl, params.ioeventfd, false), 8397 DEFINE_PROP_UINT8("zoned.zasl", NvmeCtrl, params.zasl, 0), 8398 DEFINE_PROP_BOOL("zoned.auto_transition", NvmeCtrl, 8399 params.auto_transition_zones, true), 8400 DEFINE_PROP_UINT8("sriov_max_vfs", NvmeCtrl, params.sriov_max_vfs, 0), 8401 DEFINE_PROP_UINT16("sriov_vq_flexible", NvmeCtrl, 8402 params.sriov_vq_flexible, 0), 8403 DEFINE_PROP_UINT16("sriov_vi_flexible", NvmeCtrl, 8404 params.sriov_vi_flexible, 0), 8405 DEFINE_PROP_UINT8("sriov_max_vi_per_vf", NvmeCtrl, 8406 params.sriov_max_vi_per_vf, 0), 8407 DEFINE_PROP_UINT8("sriov_max_vq_per_vf", NvmeCtrl, 8408 params.sriov_max_vq_per_vf, 0), 8409 DEFINE_PROP_END_OF_LIST(), 8410 }; 8411 8412 static void nvme_get_smart_warning(Object *obj, Visitor *v, const char *name, 8413 void *opaque, Error **errp) 8414 { 8415 NvmeCtrl *n = NVME(obj); 8416 uint8_t value = n->smart_critical_warning; 8417 8418 visit_type_uint8(v, name, &value, errp); 8419 } 8420 8421 static void nvme_set_smart_warning(Object *obj, Visitor *v, const char *name, 8422 void *opaque, Error **errp) 8423 { 8424 NvmeCtrl *n = NVME(obj); 8425 uint8_t value, old_value, cap = 0, index, event; 8426 8427 if (!visit_type_uint8(v, name, &value, errp)) { 8428 return; 8429 } 8430 8431 cap = NVME_SMART_SPARE | NVME_SMART_TEMPERATURE | NVME_SMART_RELIABILITY 8432 | NVME_SMART_MEDIA_READ_ONLY | NVME_SMART_FAILED_VOLATILE_MEDIA; 8433 if (NVME_CAP_PMRS(ldq_le_p(&n->bar.cap))) { 8434 cap |= NVME_SMART_PMR_UNRELIABLE; 8435 } 8436 8437 if ((value & cap) != value) { 8438 error_setg(errp, "unsupported smart critical warning bits: 0x%x", 8439 value & ~cap); 8440 return; 8441 } 8442 8443 old_value = n->smart_critical_warning; 8444 n->smart_critical_warning = value; 8445 8446 /* only inject new bits of smart critical warning */ 8447 for (index = 0; index < NVME_SMART_WARN_MAX; index++) { 8448 event = 1 << index; 8449 if (value & ~old_value & event) 8450 nvme_smart_event(n, event); 8451 } 8452 } 8453 8454 static void nvme_pci_reset(DeviceState *qdev) 8455 { 8456 PCIDevice *pci_dev = PCI_DEVICE(qdev); 8457 NvmeCtrl *n = NVME(pci_dev); 8458 8459 trace_pci_nvme_pci_reset(); 8460 nvme_ctrl_reset(n, NVME_RESET_FUNCTION); 8461 } 8462 8463 static void nvme_sriov_pre_write_ctrl(PCIDevice *dev, uint32_t address, 8464 uint32_t val, int len) 8465 { 8466 NvmeCtrl *n = NVME(dev); 8467 NvmeSecCtrlEntry *sctrl; 8468 uint16_t sriov_cap = dev->exp.sriov_cap; 8469 uint32_t off = address - sriov_cap; 8470 int i, num_vfs; 8471 8472 if (!sriov_cap) { 8473 return; 8474 } 8475 8476 if (range_covers_byte(off, len, PCI_SRIOV_CTRL)) { 8477 if (!(val & PCI_SRIOV_CTRL_VFE)) { 8478 num_vfs = pci_get_word(dev->config + sriov_cap + PCI_SRIOV_NUM_VF); 8479 for (i = 0; i < num_vfs; i++) { 8480 sctrl = &n->sec_ctrl_list.sec[i]; 8481 nvme_virt_set_state(n, le16_to_cpu(sctrl->scid), false); 8482 } 8483 } 8484 } 8485 } 8486 8487 static void nvme_pci_write_config(PCIDevice *dev, uint32_t address, 8488 uint32_t val, int len) 8489 { 8490 nvme_sriov_pre_write_ctrl(dev, address, val, len); 8491 pci_default_write_config(dev, address, val, len); 8492 pcie_cap_flr_write_config(dev, address, val, len); 8493 } 8494 8495 static const VMStateDescription nvme_vmstate = { 8496 .name = "nvme", 8497 .unmigratable = 1, 8498 }; 8499 8500 static void nvme_class_init(ObjectClass *oc, void *data) 8501 { 8502 DeviceClass *dc = DEVICE_CLASS(oc); 8503 PCIDeviceClass *pc = PCI_DEVICE_CLASS(oc); 8504 8505 pc->realize = nvme_realize; 8506 pc->config_write = nvme_pci_write_config; 8507 pc->exit = nvme_exit; 8508 pc->class_id = PCI_CLASS_STORAGE_EXPRESS; 8509 pc->revision = 2; 8510 8511 set_bit(DEVICE_CATEGORY_STORAGE, dc->categories); 8512 dc->desc = "Non-Volatile Memory Express"; 8513 device_class_set_props(dc, nvme_props); 8514 dc->vmsd = &nvme_vmstate; 8515 dc->reset = nvme_pci_reset; 8516 } 8517 8518 static void nvme_instance_init(Object *obj) 8519 { 8520 NvmeCtrl *n = NVME(obj); 8521 8522 device_add_bootindex_property(obj, &n->namespace.blkconf.bootindex, 8523 "bootindex", "/namespace@1,0", 8524 DEVICE(obj)); 8525 8526 object_property_add(obj, "smart_critical_warning", "uint8", 8527 nvme_get_smart_warning, 8528 nvme_set_smart_warning, NULL, NULL); 8529 } 8530 8531 static const TypeInfo nvme_info = { 8532 .name = TYPE_NVME, 8533 .parent = TYPE_PCI_DEVICE, 8534 .instance_size = sizeof(NvmeCtrl), 8535 .instance_init = nvme_instance_init, 8536 .class_init = nvme_class_init, 8537 .interfaces = (InterfaceInfo[]) { 8538 { INTERFACE_PCIE_DEVICE }, 8539 { } 8540 }, 8541 }; 8542 8543 static const TypeInfo nvme_bus_info = { 8544 .name = TYPE_NVME_BUS, 8545 .parent = TYPE_BUS, 8546 .instance_size = sizeof(NvmeBus), 8547 }; 8548 8549 static void nvme_register_types(void) 8550 { 8551 type_register_static(&nvme_info); 8552 type_register_static(&nvme_bus_info); 8553 } 8554 8555 type_init(nvme_register_types) 8556