1 /* 2 * QEMU NVM Express Controller 3 * 4 * Copyright (c) 2012, Intel Corporation 5 * 6 * Written by Keith Busch <keith.busch@intel.com> 7 * 8 * This code is licensed under the GNU GPL v2 or later. 9 */ 10 11 /** 12 * Reference Specs: http://www.nvmexpress.org, 1.4, 1.3, 1.2, 1.1, 1.0e 13 * 14 * https://nvmexpress.org/developers/nvme-specification/ 15 * 16 * 17 * Notes on coding style 18 * --------------------- 19 * While QEMU coding style prefers lowercase hexadecimals in constants, the 20 * NVMe subsystem use thes format from the NVMe specifications in the comments 21 * (i.e. 'h' suffix instead of '0x' prefix). 22 * 23 * Usage 24 * ----- 25 * See docs/system/nvme.rst for extensive documentation. 26 * 27 * Add options: 28 * -drive file=<file>,if=none,id=<drive_id> 29 * -device nvme-subsys,id=<subsys_id>,nqn=<nqn_id> 30 * -device nvme,serial=<serial>,id=<bus_name>, \ 31 * cmb_size_mb=<cmb_size_mb[optional]>, \ 32 * [pmrdev=<mem_backend_file_id>,] \ 33 * max_ioqpairs=<N[optional]>, \ 34 * aerl=<N[optional]>,aer_max_queued=<N[optional]>, \ 35 * mdts=<N[optional]>,vsl=<N[optional]>, \ 36 * zoned.zasl=<N[optional]>, \ 37 * zoned.auto_transition=<on|off[optional]>, \ 38 * sriov_max_vfs=<N[optional]> \ 39 * sriov_vq_flexible=<N[optional]> \ 40 * sriov_vi_flexible=<N[optional]> \ 41 * sriov_max_vi_per_vf=<N[optional]> \ 42 * sriov_max_vq_per_vf=<N[optional]> \ 43 * subsys=<subsys_id> 44 * -device nvme-ns,drive=<drive_id>,bus=<bus_name>,nsid=<nsid>,\ 45 * zoned=<true|false[optional]>, \ 46 * subsys=<subsys_id>,detached=<true|false[optional]> 47 * 48 * Note cmb_size_mb denotes size of CMB in MB. CMB is assumed to be at 49 * offset 0 in BAR2 and supports only WDS, RDS and SQS for now. By default, the 50 * device will use the "v1.4 CMB scheme" - use the `legacy-cmb` parameter to 51 * always enable the CMBLOC and CMBSZ registers (v1.3 behavior). 52 * 53 * Enabling pmr emulation can be achieved by pointing to memory-backend-file. 54 * For example: 55 * -object memory-backend-file,id=<mem_id>,share=on,mem-path=<file_path>, \ 56 * size=<size> .... -device nvme,...,pmrdev=<mem_id> 57 * 58 * The PMR will use BAR 4/5 exclusively. 59 * 60 * To place controller(s) and namespace(s) to a subsystem, then provide 61 * nvme-subsys device as above. 62 * 63 * nvme subsystem device parameters 64 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 65 * - `nqn` 66 * This parameter provides the `<nqn_id>` part of the string 67 * `nqn.2019-08.org.qemu:<nqn_id>` which will be reported in the SUBNQN field 68 * of subsystem controllers. Note that `<nqn_id>` should be unique per 69 * subsystem, but this is not enforced by QEMU. If not specified, it will 70 * default to the value of the `id` parameter (`<subsys_id>`). 71 * 72 * nvme device parameters 73 * ~~~~~~~~~~~~~~~~~~~~~~ 74 * - `subsys` 75 * Specifying this parameter attaches the controller to the subsystem and 76 * the SUBNQN field in the controller will report the NQN of the subsystem 77 * device. This also enables multi controller capability represented in 78 * Identify Controller data structure in CMIC (Controller Multi-path I/O and 79 * Namespace Sharing Capabilities). 80 * 81 * - `aerl` 82 * The Asynchronous Event Request Limit (AERL). Indicates the maximum number 83 * of concurrently outstanding Asynchronous Event Request commands support 84 * by the controller. This is a 0's based value. 85 * 86 * - `aer_max_queued` 87 * This is the maximum number of events that the device will enqueue for 88 * completion when there are no outstanding AERs. When the maximum number of 89 * enqueued events are reached, subsequent events will be dropped. 90 * 91 * - `mdts` 92 * Indicates the maximum data transfer size for a command that transfers data 93 * between host-accessible memory and the controller. The value is specified 94 * as a power of two (2^n) and is in units of the minimum memory page size 95 * (CAP.MPSMIN). The default value is 7 (i.e. 512 KiB). 96 * 97 * - `vsl` 98 * Indicates the maximum data size limit for the Verify command. Like `mdts`, 99 * this value is specified as a power of two (2^n) and is in units of the 100 * minimum memory page size (CAP.MPSMIN). The default value is 7 (i.e. 512 101 * KiB). 102 * 103 * - `zoned.zasl` 104 * Indicates the maximum data transfer size for the Zone Append command. Like 105 * `mdts`, the value is specified as a power of two (2^n) and is in units of 106 * the minimum memory page size (CAP.MPSMIN). The default value is 0 (i.e. 107 * defaulting to the value of `mdts`). 108 * 109 * - `zoned.auto_transition` 110 * Indicates if zones in zone state implicitly opened can be automatically 111 * transitioned to zone state closed for resource management purposes. 112 * Defaults to 'on'. 113 * 114 * - `sriov_max_vfs` 115 * Indicates the maximum number of PCIe virtual functions supported 116 * by the controller. The default value is 0. Specifying a non-zero value 117 * enables reporting of both SR-IOV and ARI capabilities by the NVMe device. 118 * Virtual function controllers will not report SR-IOV capability. 119 * 120 * NOTE: Single Root I/O Virtualization support is experimental. 121 * All the related parameters may be subject to change. 122 * 123 * - `sriov_vq_flexible` 124 * Indicates the total number of flexible queue resources assignable to all 125 * the secondary controllers. Implicitly sets the number of primary 126 * controller's private resources to `(max_ioqpairs - sriov_vq_flexible)`. 127 * 128 * - `sriov_vi_flexible` 129 * Indicates the total number of flexible interrupt resources assignable to 130 * all the secondary controllers. Implicitly sets the number of primary 131 * controller's private resources to `(msix_qsize - sriov_vi_flexible)`. 132 * 133 * - `sriov_max_vi_per_vf` 134 * Indicates the maximum number of virtual interrupt resources assignable 135 * to a secondary controller. The default 0 resolves to 136 * `(sriov_vi_flexible / sriov_max_vfs)`. 137 * 138 * - `sriov_max_vq_per_vf` 139 * Indicates the maximum number of virtual queue resources assignable to 140 * a secondary controller. The default 0 resolves to 141 * `(sriov_vq_flexible / sriov_max_vfs)`. 142 * 143 * nvme namespace device parameters 144 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 145 * - `shared` 146 * When the parent nvme device (as defined explicitly by the 'bus' parameter 147 * or implicitly by the most recently defined NvmeBus) is linked to an 148 * nvme-subsys device, the namespace will be attached to all controllers in 149 * the subsystem. If set to 'off' (the default), the namespace will remain a 150 * private namespace and may only be attached to a single controller at a 151 * time. 152 * 153 * - `detached` 154 * This parameter is only valid together with the `subsys` parameter. If left 155 * at the default value (`false/off`), the namespace will be attached to all 156 * controllers in the NVMe subsystem at boot-up. If set to `true/on`, the 157 * namespace will be available in the subsystem but not attached to any 158 * controllers. 159 * 160 * Setting `zoned` to true selects Zoned Command Set at the namespace. 161 * In this case, the following namespace properties are available to configure 162 * zoned operation: 163 * zoned.zone_size=<zone size in bytes, default: 128MiB> 164 * The number may be followed by K, M, G as in kilo-, mega- or giga-. 165 * 166 * zoned.zone_capacity=<zone capacity in bytes, default: zone size> 167 * The value 0 (default) forces zone capacity to be the same as zone 168 * size. The value of this property may not exceed zone size. 169 * 170 * zoned.descr_ext_size=<zone descriptor extension size, default 0> 171 * This value needs to be specified in 64B units. If it is zero, 172 * namespace(s) will not support zone descriptor extensions. 173 * 174 * zoned.max_active=<Maximum Active Resources (zones), default: 0> 175 * The default value means there is no limit to the number of 176 * concurrently active zones. 177 * 178 * zoned.max_open=<Maximum Open Resources (zones), default: 0> 179 * The default value means there is no limit to the number of 180 * concurrently open zones. 181 * 182 * zoned.cross_read=<enable RAZB, default: false> 183 * Setting this property to true enables Read Across Zone Boundaries. 184 */ 185 186 #include "qemu/osdep.h" 187 #include "qemu/cutils.h" 188 #include "qemu/error-report.h" 189 #include "qemu/log.h" 190 #include "qemu/units.h" 191 #include "qemu/range.h" 192 #include "qapi/error.h" 193 #include "qapi/visitor.h" 194 #include "sysemu/sysemu.h" 195 #include "sysemu/block-backend.h" 196 #include "sysemu/hostmem.h" 197 #include "hw/pci/msix.h" 198 #include "hw/pci/pcie_sriov.h" 199 #include "migration/vmstate.h" 200 201 #include "nvme.h" 202 #include "dif.h" 203 #include "trace.h" 204 205 #define NVME_MAX_IOQPAIRS 0xffff 206 #define NVME_DB_SIZE 4 207 #define NVME_SPEC_VER 0x00010400 208 #define NVME_CMB_BIR 2 209 #define NVME_PMR_BIR 4 210 #define NVME_TEMPERATURE 0x143 211 #define NVME_TEMPERATURE_WARNING 0x157 212 #define NVME_TEMPERATURE_CRITICAL 0x175 213 #define NVME_NUM_FW_SLOTS 1 214 #define NVME_DEFAULT_MAX_ZA_SIZE (128 * KiB) 215 #define NVME_MAX_VFS 127 216 #define NVME_VF_RES_GRANULARITY 1 217 #define NVME_VF_OFFSET 0x1 218 #define NVME_VF_STRIDE 1 219 220 #define NVME_GUEST_ERR(trace, fmt, ...) \ 221 do { \ 222 (trace_##trace)(__VA_ARGS__); \ 223 qemu_log_mask(LOG_GUEST_ERROR, #trace \ 224 " in %s: " fmt "\n", __func__, ## __VA_ARGS__); \ 225 } while (0) 226 227 static const bool nvme_feature_support[NVME_FID_MAX] = { 228 [NVME_ARBITRATION] = true, 229 [NVME_POWER_MANAGEMENT] = true, 230 [NVME_TEMPERATURE_THRESHOLD] = true, 231 [NVME_ERROR_RECOVERY] = true, 232 [NVME_VOLATILE_WRITE_CACHE] = true, 233 [NVME_NUMBER_OF_QUEUES] = true, 234 [NVME_INTERRUPT_COALESCING] = true, 235 [NVME_INTERRUPT_VECTOR_CONF] = true, 236 [NVME_WRITE_ATOMICITY] = true, 237 [NVME_ASYNCHRONOUS_EVENT_CONF] = true, 238 [NVME_TIMESTAMP] = true, 239 [NVME_HOST_BEHAVIOR_SUPPORT] = true, 240 [NVME_COMMAND_SET_PROFILE] = true, 241 }; 242 243 static const uint32_t nvme_feature_cap[NVME_FID_MAX] = { 244 [NVME_TEMPERATURE_THRESHOLD] = NVME_FEAT_CAP_CHANGE, 245 [NVME_ERROR_RECOVERY] = NVME_FEAT_CAP_CHANGE | NVME_FEAT_CAP_NS, 246 [NVME_VOLATILE_WRITE_CACHE] = NVME_FEAT_CAP_CHANGE, 247 [NVME_NUMBER_OF_QUEUES] = NVME_FEAT_CAP_CHANGE, 248 [NVME_ASYNCHRONOUS_EVENT_CONF] = NVME_FEAT_CAP_CHANGE, 249 [NVME_TIMESTAMP] = NVME_FEAT_CAP_CHANGE, 250 [NVME_HOST_BEHAVIOR_SUPPORT] = NVME_FEAT_CAP_CHANGE, 251 [NVME_COMMAND_SET_PROFILE] = NVME_FEAT_CAP_CHANGE, 252 }; 253 254 static const uint32_t nvme_cse_acs[256] = { 255 [NVME_ADM_CMD_DELETE_SQ] = NVME_CMD_EFF_CSUPP, 256 [NVME_ADM_CMD_CREATE_SQ] = NVME_CMD_EFF_CSUPP, 257 [NVME_ADM_CMD_GET_LOG_PAGE] = NVME_CMD_EFF_CSUPP, 258 [NVME_ADM_CMD_DELETE_CQ] = NVME_CMD_EFF_CSUPP, 259 [NVME_ADM_CMD_CREATE_CQ] = NVME_CMD_EFF_CSUPP, 260 [NVME_ADM_CMD_IDENTIFY] = NVME_CMD_EFF_CSUPP, 261 [NVME_ADM_CMD_ABORT] = NVME_CMD_EFF_CSUPP, 262 [NVME_ADM_CMD_SET_FEATURES] = NVME_CMD_EFF_CSUPP, 263 [NVME_ADM_CMD_GET_FEATURES] = NVME_CMD_EFF_CSUPP, 264 [NVME_ADM_CMD_ASYNC_EV_REQ] = NVME_CMD_EFF_CSUPP, 265 [NVME_ADM_CMD_NS_ATTACHMENT] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_NIC, 266 [NVME_ADM_CMD_VIRT_MNGMT] = NVME_CMD_EFF_CSUPP, 267 [NVME_ADM_CMD_DBBUF_CONFIG] = NVME_CMD_EFF_CSUPP, 268 [NVME_ADM_CMD_FORMAT_NVM] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, 269 }; 270 271 static const uint32_t nvme_cse_iocs_none[256]; 272 273 static const uint32_t nvme_cse_iocs_nvm[256] = { 274 [NVME_CMD_FLUSH] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, 275 [NVME_CMD_WRITE_ZEROES] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, 276 [NVME_CMD_WRITE] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, 277 [NVME_CMD_READ] = NVME_CMD_EFF_CSUPP, 278 [NVME_CMD_DSM] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, 279 [NVME_CMD_VERIFY] = NVME_CMD_EFF_CSUPP, 280 [NVME_CMD_COPY] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, 281 [NVME_CMD_COMPARE] = NVME_CMD_EFF_CSUPP, 282 }; 283 284 static const uint32_t nvme_cse_iocs_zoned[256] = { 285 [NVME_CMD_FLUSH] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, 286 [NVME_CMD_WRITE_ZEROES] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, 287 [NVME_CMD_WRITE] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, 288 [NVME_CMD_READ] = NVME_CMD_EFF_CSUPP, 289 [NVME_CMD_DSM] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, 290 [NVME_CMD_VERIFY] = NVME_CMD_EFF_CSUPP, 291 [NVME_CMD_COPY] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, 292 [NVME_CMD_COMPARE] = NVME_CMD_EFF_CSUPP, 293 [NVME_CMD_ZONE_APPEND] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, 294 [NVME_CMD_ZONE_MGMT_SEND] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, 295 [NVME_CMD_ZONE_MGMT_RECV] = NVME_CMD_EFF_CSUPP, 296 }; 297 298 static void nvme_process_sq(void *opaque); 299 static void nvme_ctrl_reset(NvmeCtrl *n, NvmeResetType rst); 300 301 static uint16_t nvme_sqid(NvmeRequest *req) 302 { 303 return le16_to_cpu(req->sq->sqid); 304 } 305 306 static void nvme_assign_zone_state(NvmeNamespace *ns, NvmeZone *zone, 307 NvmeZoneState state) 308 { 309 if (QTAILQ_IN_USE(zone, entry)) { 310 switch (nvme_get_zone_state(zone)) { 311 case NVME_ZONE_STATE_EXPLICITLY_OPEN: 312 QTAILQ_REMOVE(&ns->exp_open_zones, zone, entry); 313 break; 314 case NVME_ZONE_STATE_IMPLICITLY_OPEN: 315 QTAILQ_REMOVE(&ns->imp_open_zones, zone, entry); 316 break; 317 case NVME_ZONE_STATE_CLOSED: 318 QTAILQ_REMOVE(&ns->closed_zones, zone, entry); 319 break; 320 case NVME_ZONE_STATE_FULL: 321 QTAILQ_REMOVE(&ns->full_zones, zone, entry); 322 default: 323 ; 324 } 325 } 326 327 nvme_set_zone_state(zone, state); 328 329 switch (state) { 330 case NVME_ZONE_STATE_EXPLICITLY_OPEN: 331 QTAILQ_INSERT_TAIL(&ns->exp_open_zones, zone, entry); 332 break; 333 case NVME_ZONE_STATE_IMPLICITLY_OPEN: 334 QTAILQ_INSERT_TAIL(&ns->imp_open_zones, zone, entry); 335 break; 336 case NVME_ZONE_STATE_CLOSED: 337 QTAILQ_INSERT_TAIL(&ns->closed_zones, zone, entry); 338 break; 339 case NVME_ZONE_STATE_FULL: 340 QTAILQ_INSERT_TAIL(&ns->full_zones, zone, entry); 341 case NVME_ZONE_STATE_READ_ONLY: 342 break; 343 default: 344 zone->d.za = 0; 345 } 346 } 347 348 static uint16_t nvme_zns_check_resources(NvmeNamespace *ns, uint32_t act, 349 uint32_t opn, uint32_t zrwa) 350 { 351 if (ns->params.max_active_zones != 0 && 352 ns->nr_active_zones + act > ns->params.max_active_zones) { 353 trace_pci_nvme_err_insuff_active_res(ns->params.max_active_zones); 354 return NVME_ZONE_TOO_MANY_ACTIVE | NVME_DNR; 355 } 356 357 if (ns->params.max_open_zones != 0 && 358 ns->nr_open_zones + opn > ns->params.max_open_zones) { 359 trace_pci_nvme_err_insuff_open_res(ns->params.max_open_zones); 360 return NVME_ZONE_TOO_MANY_OPEN | NVME_DNR; 361 } 362 363 if (zrwa > ns->zns.numzrwa) { 364 return NVME_NOZRWA | NVME_DNR; 365 } 366 367 return NVME_SUCCESS; 368 } 369 370 /* 371 * Check if we can open a zone without exceeding open/active limits. 372 * AOR stands for "Active and Open Resources" (see TP 4053 section 2.5). 373 */ 374 static uint16_t nvme_aor_check(NvmeNamespace *ns, uint32_t act, uint32_t opn) 375 { 376 return nvme_zns_check_resources(ns, act, opn, 0); 377 } 378 379 static bool nvme_addr_is_cmb(NvmeCtrl *n, hwaddr addr) 380 { 381 hwaddr hi, lo; 382 383 if (!n->cmb.cmse) { 384 return false; 385 } 386 387 lo = n->params.legacy_cmb ? n->cmb.mem.addr : n->cmb.cba; 388 hi = lo + int128_get64(n->cmb.mem.size); 389 390 return addr >= lo && addr < hi; 391 } 392 393 static inline void *nvme_addr_to_cmb(NvmeCtrl *n, hwaddr addr) 394 { 395 hwaddr base = n->params.legacy_cmb ? n->cmb.mem.addr : n->cmb.cba; 396 return &n->cmb.buf[addr - base]; 397 } 398 399 static bool nvme_addr_is_pmr(NvmeCtrl *n, hwaddr addr) 400 { 401 hwaddr hi; 402 403 if (!n->pmr.cmse) { 404 return false; 405 } 406 407 hi = n->pmr.cba + int128_get64(n->pmr.dev->mr.size); 408 409 return addr >= n->pmr.cba && addr < hi; 410 } 411 412 static inline void *nvme_addr_to_pmr(NvmeCtrl *n, hwaddr addr) 413 { 414 return memory_region_get_ram_ptr(&n->pmr.dev->mr) + (addr - n->pmr.cba); 415 } 416 417 static inline bool nvme_addr_is_iomem(NvmeCtrl *n, hwaddr addr) 418 { 419 hwaddr hi, lo; 420 421 /* 422 * The purpose of this check is to guard against invalid "local" access to 423 * the iomem (i.e. controller registers). Thus, we check against the range 424 * covered by the 'bar0' MemoryRegion since that is currently composed of 425 * two subregions (the NVMe "MBAR" and the MSI-X table/pba). Note, however, 426 * that if the device model is ever changed to allow the CMB to be located 427 * in BAR0 as well, then this must be changed. 428 */ 429 lo = n->bar0.addr; 430 hi = lo + int128_get64(n->bar0.size); 431 432 return addr >= lo && addr < hi; 433 } 434 435 static int nvme_addr_read(NvmeCtrl *n, hwaddr addr, void *buf, int size) 436 { 437 hwaddr hi = addr + size - 1; 438 if (hi < addr) { 439 return 1; 440 } 441 442 if (n->bar.cmbsz && nvme_addr_is_cmb(n, addr) && nvme_addr_is_cmb(n, hi)) { 443 memcpy(buf, nvme_addr_to_cmb(n, addr), size); 444 return 0; 445 } 446 447 if (nvme_addr_is_pmr(n, addr) && nvme_addr_is_pmr(n, hi)) { 448 memcpy(buf, nvme_addr_to_pmr(n, addr), size); 449 return 0; 450 } 451 452 return pci_dma_read(&n->parent_obj, addr, buf, size); 453 } 454 455 static int nvme_addr_write(NvmeCtrl *n, hwaddr addr, const void *buf, int size) 456 { 457 hwaddr hi = addr + size - 1; 458 if (hi < addr) { 459 return 1; 460 } 461 462 if (n->bar.cmbsz && nvme_addr_is_cmb(n, addr) && nvme_addr_is_cmb(n, hi)) { 463 memcpy(nvme_addr_to_cmb(n, addr), buf, size); 464 return 0; 465 } 466 467 if (nvme_addr_is_pmr(n, addr) && nvme_addr_is_pmr(n, hi)) { 468 memcpy(nvme_addr_to_pmr(n, addr), buf, size); 469 return 0; 470 } 471 472 return pci_dma_write(&n->parent_obj, addr, buf, size); 473 } 474 475 static bool nvme_nsid_valid(NvmeCtrl *n, uint32_t nsid) 476 { 477 return nsid && 478 (nsid == NVME_NSID_BROADCAST || nsid <= NVME_MAX_NAMESPACES); 479 } 480 481 static int nvme_check_sqid(NvmeCtrl *n, uint16_t sqid) 482 { 483 return sqid < n->conf_ioqpairs + 1 && n->sq[sqid] != NULL ? 0 : -1; 484 } 485 486 static int nvme_check_cqid(NvmeCtrl *n, uint16_t cqid) 487 { 488 return cqid < n->conf_ioqpairs + 1 && n->cq[cqid] != NULL ? 0 : -1; 489 } 490 491 static void nvme_inc_cq_tail(NvmeCQueue *cq) 492 { 493 cq->tail++; 494 if (cq->tail >= cq->size) { 495 cq->tail = 0; 496 cq->phase = !cq->phase; 497 } 498 } 499 500 static void nvme_inc_sq_head(NvmeSQueue *sq) 501 { 502 sq->head = (sq->head + 1) % sq->size; 503 } 504 505 static uint8_t nvme_cq_full(NvmeCQueue *cq) 506 { 507 return (cq->tail + 1) % cq->size == cq->head; 508 } 509 510 static uint8_t nvme_sq_empty(NvmeSQueue *sq) 511 { 512 return sq->head == sq->tail; 513 } 514 515 static void nvme_irq_check(NvmeCtrl *n) 516 { 517 uint32_t intms = ldl_le_p(&n->bar.intms); 518 519 if (msix_enabled(&(n->parent_obj))) { 520 return; 521 } 522 if (~intms & n->irq_status) { 523 pci_irq_assert(&n->parent_obj); 524 } else { 525 pci_irq_deassert(&n->parent_obj); 526 } 527 } 528 529 static void nvme_irq_assert(NvmeCtrl *n, NvmeCQueue *cq) 530 { 531 if (cq->irq_enabled) { 532 if (msix_enabled(&(n->parent_obj))) { 533 trace_pci_nvme_irq_msix(cq->vector); 534 msix_notify(&(n->parent_obj), cq->vector); 535 } else { 536 trace_pci_nvme_irq_pin(); 537 assert(cq->vector < 32); 538 n->irq_status |= 1 << cq->vector; 539 nvme_irq_check(n); 540 } 541 } else { 542 trace_pci_nvme_irq_masked(); 543 } 544 } 545 546 static void nvme_irq_deassert(NvmeCtrl *n, NvmeCQueue *cq) 547 { 548 if (cq->irq_enabled) { 549 if (msix_enabled(&(n->parent_obj))) { 550 return; 551 } else { 552 assert(cq->vector < 32); 553 if (!n->cq_pending) { 554 n->irq_status &= ~(1 << cq->vector); 555 } 556 nvme_irq_check(n); 557 } 558 } 559 } 560 561 static void nvme_req_clear(NvmeRequest *req) 562 { 563 req->ns = NULL; 564 req->opaque = NULL; 565 req->aiocb = NULL; 566 memset(&req->cqe, 0x0, sizeof(req->cqe)); 567 req->status = NVME_SUCCESS; 568 } 569 570 static inline void nvme_sg_init(NvmeCtrl *n, NvmeSg *sg, bool dma) 571 { 572 if (dma) { 573 pci_dma_sglist_init(&sg->qsg, &n->parent_obj, 0); 574 sg->flags = NVME_SG_DMA; 575 } else { 576 qemu_iovec_init(&sg->iov, 0); 577 } 578 579 sg->flags |= NVME_SG_ALLOC; 580 } 581 582 static inline void nvme_sg_unmap(NvmeSg *sg) 583 { 584 if (!(sg->flags & NVME_SG_ALLOC)) { 585 return; 586 } 587 588 if (sg->flags & NVME_SG_DMA) { 589 qemu_sglist_destroy(&sg->qsg); 590 } else { 591 qemu_iovec_destroy(&sg->iov); 592 } 593 594 memset(sg, 0x0, sizeof(*sg)); 595 } 596 597 /* 598 * When metadata is transfered as extended LBAs, the DPTR mapped into `sg` 599 * holds both data and metadata. This function splits the data and metadata 600 * into two separate QSG/IOVs. 601 */ 602 static void nvme_sg_split(NvmeSg *sg, NvmeNamespace *ns, NvmeSg *data, 603 NvmeSg *mdata) 604 { 605 NvmeSg *dst = data; 606 uint32_t trans_len, count = ns->lbasz; 607 uint64_t offset = 0; 608 bool dma = sg->flags & NVME_SG_DMA; 609 size_t sge_len; 610 size_t sg_len = dma ? sg->qsg.size : sg->iov.size; 611 int sg_idx = 0; 612 613 assert(sg->flags & NVME_SG_ALLOC); 614 615 while (sg_len) { 616 sge_len = dma ? sg->qsg.sg[sg_idx].len : sg->iov.iov[sg_idx].iov_len; 617 618 trans_len = MIN(sg_len, count); 619 trans_len = MIN(trans_len, sge_len - offset); 620 621 if (dst) { 622 if (dma) { 623 qemu_sglist_add(&dst->qsg, sg->qsg.sg[sg_idx].base + offset, 624 trans_len); 625 } else { 626 qemu_iovec_add(&dst->iov, 627 sg->iov.iov[sg_idx].iov_base + offset, 628 trans_len); 629 } 630 } 631 632 sg_len -= trans_len; 633 count -= trans_len; 634 offset += trans_len; 635 636 if (count == 0) { 637 dst = (dst == data) ? mdata : data; 638 count = (dst == data) ? ns->lbasz : ns->lbaf.ms; 639 } 640 641 if (sge_len == offset) { 642 offset = 0; 643 sg_idx++; 644 } 645 } 646 } 647 648 static uint16_t nvme_map_addr_cmb(NvmeCtrl *n, QEMUIOVector *iov, hwaddr addr, 649 size_t len) 650 { 651 if (!len) { 652 return NVME_SUCCESS; 653 } 654 655 trace_pci_nvme_map_addr_cmb(addr, len); 656 657 if (!nvme_addr_is_cmb(n, addr) || !nvme_addr_is_cmb(n, addr + len - 1)) { 658 return NVME_DATA_TRAS_ERROR; 659 } 660 661 qemu_iovec_add(iov, nvme_addr_to_cmb(n, addr), len); 662 663 return NVME_SUCCESS; 664 } 665 666 static uint16_t nvme_map_addr_pmr(NvmeCtrl *n, QEMUIOVector *iov, hwaddr addr, 667 size_t len) 668 { 669 if (!len) { 670 return NVME_SUCCESS; 671 } 672 673 if (!nvme_addr_is_pmr(n, addr) || !nvme_addr_is_pmr(n, addr + len - 1)) { 674 return NVME_DATA_TRAS_ERROR; 675 } 676 677 qemu_iovec_add(iov, nvme_addr_to_pmr(n, addr), len); 678 679 return NVME_SUCCESS; 680 } 681 682 static uint16_t nvme_map_addr(NvmeCtrl *n, NvmeSg *sg, hwaddr addr, size_t len) 683 { 684 bool cmb = false, pmr = false; 685 686 if (!len) { 687 return NVME_SUCCESS; 688 } 689 690 trace_pci_nvme_map_addr(addr, len); 691 692 if (nvme_addr_is_iomem(n, addr)) { 693 return NVME_DATA_TRAS_ERROR; 694 } 695 696 if (nvme_addr_is_cmb(n, addr)) { 697 cmb = true; 698 } else if (nvme_addr_is_pmr(n, addr)) { 699 pmr = true; 700 } 701 702 if (cmb || pmr) { 703 if (sg->flags & NVME_SG_DMA) { 704 return NVME_INVALID_USE_OF_CMB | NVME_DNR; 705 } 706 707 if (sg->iov.niov + 1 > IOV_MAX) { 708 goto max_mappings_exceeded; 709 } 710 711 if (cmb) { 712 return nvme_map_addr_cmb(n, &sg->iov, addr, len); 713 } else { 714 return nvme_map_addr_pmr(n, &sg->iov, addr, len); 715 } 716 } 717 718 if (!(sg->flags & NVME_SG_DMA)) { 719 return NVME_INVALID_USE_OF_CMB | NVME_DNR; 720 } 721 722 if (sg->qsg.nsg + 1 > IOV_MAX) { 723 goto max_mappings_exceeded; 724 } 725 726 qemu_sglist_add(&sg->qsg, addr, len); 727 728 return NVME_SUCCESS; 729 730 max_mappings_exceeded: 731 NVME_GUEST_ERR(pci_nvme_ub_too_many_mappings, 732 "number of mappings exceed 1024"); 733 return NVME_INTERNAL_DEV_ERROR | NVME_DNR; 734 } 735 736 static inline bool nvme_addr_is_dma(NvmeCtrl *n, hwaddr addr) 737 { 738 return !(nvme_addr_is_cmb(n, addr) || nvme_addr_is_pmr(n, addr)); 739 } 740 741 static uint16_t nvme_map_prp(NvmeCtrl *n, NvmeSg *sg, uint64_t prp1, 742 uint64_t prp2, uint32_t len) 743 { 744 hwaddr trans_len = n->page_size - (prp1 % n->page_size); 745 trans_len = MIN(len, trans_len); 746 int num_prps = (len >> n->page_bits) + 1; 747 uint16_t status; 748 int ret; 749 750 trace_pci_nvme_map_prp(trans_len, len, prp1, prp2, num_prps); 751 752 nvme_sg_init(n, sg, nvme_addr_is_dma(n, prp1)); 753 754 status = nvme_map_addr(n, sg, prp1, trans_len); 755 if (status) { 756 goto unmap; 757 } 758 759 len -= trans_len; 760 if (len) { 761 if (len > n->page_size) { 762 uint64_t prp_list[n->max_prp_ents]; 763 uint32_t nents, prp_trans; 764 int i = 0; 765 766 /* 767 * The first PRP list entry, pointed to by PRP2 may contain offset. 768 * Hence, we need to calculate the number of entries in based on 769 * that offset. 770 */ 771 nents = (n->page_size - (prp2 & (n->page_size - 1))) >> 3; 772 prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t); 773 ret = nvme_addr_read(n, prp2, (void *)prp_list, prp_trans); 774 if (ret) { 775 trace_pci_nvme_err_addr_read(prp2); 776 status = NVME_DATA_TRAS_ERROR; 777 goto unmap; 778 } 779 while (len != 0) { 780 uint64_t prp_ent = le64_to_cpu(prp_list[i]); 781 782 if (i == nents - 1 && len > n->page_size) { 783 if (unlikely(prp_ent & (n->page_size - 1))) { 784 trace_pci_nvme_err_invalid_prplist_ent(prp_ent); 785 status = NVME_INVALID_PRP_OFFSET | NVME_DNR; 786 goto unmap; 787 } 788 789 i = 0; 790 nents = (len + n->page_size - 1) >> n->page_bits; 791 nents = MIN(nents, n->max_prp_ents); 792 prp_trans = nents * sizeof(uint64_t); 793 ret = nvme_addr_read(n, prp_ent, (void *)prp_list, 794 prp_trans); 795 if (ret) { 796 trace_pci_nvme_err_addr_read(prp_ent); 797 status = NVME_DATA_TRAS_ERROR; 798 goto unmap; 799 } 800 prp_ent = le64_to_cpu(prp_list[i]); 801 } 802 803 if (unlikely(prp_ent & (n->page_size - 1))) { 804 trace_pci_nvme_err_invalid_prplist_ent(prp_ent); 805 status = NVME_INVALID_PRP_OFFSET | NVME_DNR; 806 goto unmap; 807 } 808 809 trans_len = MIN(len, n->page_size); 810 status = nvme_map_addr(n, sg, prp_ent, trans_len); 811 if (status) { 812 goto unmap; 813 } 814 815 len -= trans_len; 816 i++; 817 } 818 } else { 819 if (unlikely(prp2 & (n->page_size - 1))) { 820 trace_pci_nvme_err_invalid_prp2_align(prp2); 821 status = NVME_INVALID_PRP_OFFSET | NVME_DNR; 822 goto unmap; 823 } 824 status = nvme_map_addr(n, sg, prp2, len); 825 if (status) { 826 goto unmap; 827 } 828 } 829 } 830 831 return NVME_SUCCESS; 832 833 unmap: 834 nvme_sg_unmap(sg); 835 return status; 836 } 837 838 /* 839 * Map 'nsgld' data descriptors from 'segment'. The function will subtract the 840 * number of bytes mapped in len. 841 */ 842 static uint16_t nvme_map_sgl_data(NvmeCtrl *n, NvmeSg *sg, 843 NvmeSglDescriptor *segment, uint64_t nsgld, 844 size_t *len, NvmeCmd *cmd) 845 { 846 dma_addr_t addr, trans_len; 847 uint32_t dlen; 848 uint16_t status; 849 850 for (int i = 0; i < nsgld; i++) { 851 uint8_t type = NVME_SGL_TYPE(segment[i].type); 852 853 switch (type) { 854 case NVME_SGL_DESCR_TYPE_DATA_BLOCK: 855 break; 856 case NVME_SGL_DESCR_TYPE_SEGMENT: 857 case NVME_SGL_DESCR_TYPE_LAST_SEGMENT: 858 return NVME_INVALID_NUM_SGL_DESCRS | NVME_DNR; 859 default: 860 return NVME_SGL_DESCR_TYPE_INVALID | NVME_DNR; 861 } 862 863 dlen = le32_to_cpu(segment[i].len); 864 865 if (!dlen) { 866 continue; 867 } 868 869 if (*len == 0) { 870 /* 871 * All data has been mapped, but the SGL contains additional 872 * segments and/or descriptors. The controller might accept 873 * ignoring the rest of the SGL. 874 */ 875 uint32_t sgls = le32_to_cpu(n->id_ctrl.sgls); 876 if (sgls & NVME_CTRL_SGLS_EXCESS_LENGTH) { 877 break; 878 } 879 880 trace_pci_nvme_err_invalid_sgl_excess_length(dlen); 881 return NVME_DATA_SGL_LEN_INVALID | NVME_DNR; 882 } 883 884 trans_len = MIN(*len, dlen); 885 886 addr = le64_to_cpu(segment[i].addr); 887 888 if (UINT64_MAX - addr < dlen) { 889 return NVME_DATA_SGL_LEN_INVALID | NVME_DNR; 890 } 891 892 status = nvme_map_addr(n, sg, addr, trans_len); 893 if (status) { 894 return status; 895 } 896 897 *len -= trans_len; 898 } 899 900 return NVME_SUCCESS; 901 } 902 903 static uint16_t nvme_map_sgl(NvmeCtrl *n, NvmeSg *sg, NvmeSglDescriptor sgl, 904 size_t len, NvmeCmd *cmd) 905 { 906 /* 907 * Read the segment in chunks of 256 descriptors (one 4k page) to avoid 908 * dynamically allocating a potentially huge SGL. The spec allows the SGL 909 * to be larger (as in number of bytes required to describe the SGL 910 * descriptors and segment chain) than the command transfer size, so it is 911 * not bounded by MDTS. 912 */ 913 const int SEG_CHUNK_SIZE = 256; 914 915 NvmeSglDescriptor segment[SEG_CHUNK_SIZE], *sgld, *last_sgld; 916 uint64_t nsgld; 917 uint32_t seg_len; 918 uint16_t status; 919 hwaddr addr; 920 int ret; 921 922 sgld = &sgl; 923 addr = le64_to_cpu(sgl.addr); 924 925 trace_pci_nvme_map_sgl(NVME_SGL_TYPE(sgl.type), len); 926 927 nvme_sg_init(n, sg, nvme_addr_is_dma(n, addr)); 928 929 /* 930 * If the entire transfer can be described with a single data block it can 931 * be mapped directly. 932 */ 933 if (NVME_SGL_TYPE(sgl.type) == NVME_SGL_DESCR_TYPE_DATA_BLOCK) { 934 status = nvme_map_sgl_data(n, sg, sgld, 1, &len, cmd); 935 if (status) { 936 goto unmap; 937 } 938 939 goto out; 940 } 941 942 for (;;) { 943 switch (NVME_SGL_TYPE(sgld->type)) { 944 case NVME_SGL_DESCR_TYPE_SEGMENT: 945 case NVME_SGL_DESCR_TYPE_LAST_SEGMENT: 946 break; 947 default: 948 return NVME_INVALID_SGL_SEG_DESCR | NVME_DNR; 949 } 950 951 seg_len = le32_to_cpu(sgld->len); 952 953 /* check the length of the (Last) Segment descriptor */ 954 if (!seg_len || seg_len & 0xf) { 955 return NVME_INVALID_SGL_SEG_DESCR | NVME_DNR; 956 } 957 958 if (UINT64_MAX - addr < seg_len) { 959 return NVME_DATA_SGL_LEN_INVALID | NVME_DNR; 960 } 961 962 nsgld = seg_len / sizeof(NvmeSglDescriptor); 963 964 while (nsgld > SEG_CHUNK_SIZE) { 965 if (nvme_addr_read(n, addr, segment, sizeof(segment))) { 966 trace_pci_nvme_err_addr_read(addr); 967 status = NVME_DATA_TRAS_ERROR; 968 goto unmap; 969 } 970 971 status = nvme_map_sgl_data(n, sg, segment, SEG_CHUNK_SIZE, 972 &len, cmd); 973 if (status) { 974 goto unmap; 975 } 976 977 nsgld -= SEG_CHUNK_SIZE; 978 addr += SEG_CHUNK_SIZE * sizeof(NvmeSglDescriptor); 979 } 980 981 ret = nvme_addr_read(n, addr, segment, nsgld * 982 sizeof(NvmeSglDescriptor)); 983 if (ret) { 984 trace_pci_nvme_err_addr_read(addr); 985 status = NVME_DATA_TRAS_ERROR; 986 goto unmap; 987 } 988 989 last_sgld = &segment[nsgld - 1]; 990 991 /* 992 * If the segment ends with a Data Block, then we are done. 993 */ 994 if (NVME_SGL_TYPE(last_sgld->type) == NVME_SGL_DESCR_TYPE_DATA_BLOCK) { 995 status = nvme_map_sgl_data(n, sg, segment, nsgld, &len, cmd); 996 if (status) { 997 goto unmap; 998 } 999 1000 goto out; 1001 } 1002 1003 /* 1004 * If the last descriptor was not a Data Block, then the current 1005 * segment must not be a Last Segment. 1006 */ 1007 if (NVME_SGL_TYPE(sgld->type) == NVME_SGL_DESCR_TYPE_LAST_SEGMENT) { 1008 status = NVME_INVALID_SGL_SEG_DESCR | NVME_DNR; 1009 goto unmap; 1010 } 1011 1012 sgld = last_sgld; 1013 addr = le64_to_cpu(sgld->addr); 1014 1015 /* 1016 * Do not map the last descriptor; it will be a Segment or Last Segment 1017 * descriptor and is handled by the next iteration. 1018 */ 1019 status = nvme_map_sgl_data(n, sg, segment, nsgld - 1, &len, cmd); 1020 if (status) { 1021 goto unmap; 1022 } 1023 } 1024 1025 out: 1026 /* if there is any residual left in len, the SGL was too short */ 1027 if (len) { 1028 status = NVME_DATA_SGL_LEN_INVALID | NVME_DNR; 1029 goto unmap; 1030 } 1031 1032 return NVME_SUCCESS; 1033 1034 unmap: 1035 nvme_sg_unmap(sg); 1036 return status; 1037 } 1038 1039 uint16_t nvme_map_dptr(NvmeCtrl *n, NvmeSg *sg, size_t len, 1040 NvmeCmd *cmd) 1041 { 1042 uint64_t prp1, prp2; 1043 1044 switch (NVME_CMD_FLAGS_PSDT(cmd->flags)) { 1045 case NVME_PSDT_PRP: 1046 prp1 = le64_to_cpu(cmd->dptr.prp1); 1047 prp2 = le64_to_cpu(cmd->dptr.prp2); 1048 1049 return nvme_map_prp(n, sg, prp1, prp2, len); 1050 case NVME_PSDT_SGL_MPTR_CONTIGUOUS: 1051 case NVME_PSDT_SGL_MPTR_SGL: 1052 return nvme_map_sgl(n, sg, cmd->dptr.sgl, len, cmd); 1053 default: 1054 return NVME_INVALID_FIELD; 1055 } 1056 } 1057 1058 static uint16_t nvme_map_mptr(NvmeCtrl *n, NvmeSg *sg, size_t len, 1059 NvmeCmd *cmd) 1060 { 1061 int psdt = NVME_CMD_FLAGS_PSDT(cmd->flags); 1062 hwaddr mptr = le64_to_cpu(cmd->mptr); 1063 uint16_t status; 1064 1065 if (psdt == NVME_PSDT_SGL_MPTR_SGL) { 1066 NvmeSglDescriptor sgl; 1067 1068 if (nvme_addr_read(n, mptr, &sgl, sizeof(sgl))) { 1069 return NVME_DATA_TRAS_ERROR; 1070 } 1071 1072 status = nvme_map_sgl(n, sg, sgl, len, cmd); 1073 if (status && (status & 0x7ff) == NVME_DATA_SGL_LEN_INVALID) { 1074 status = NVME_MD_SGL_LEN_INVALID | NVME_DNR; 1075 } 1076 1077 return status; 1078 } 1079 1080 nvme_sg_init(n, sg, nvme_addr_is_dma(n, mptr)); 1081 status = nvme_map_addr(n, sg, mptr, len); 1082 if (status) { 1083 nvme_sg_unmap(sg); 1084 } 1085 1086 return status; 1087 } 1088 1089 static uint16_t nvme_map_data(NvmeCtrl *n, uint32_t nlb, NvmeRequest *req) 1090 { 1091 NvmeNamespace *ns = req->ns; 1092 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; 1093 bool pi = !!NVME_ID_NS_DPS_TYPE(ns->id_ns.dps); 1094 bool pract = !!(le16_to_cpu(rw->control) & NVME_RW_PRINFO_PRACT); 1095 size_t len = nvme_l2b(ns, nlb); 1096 uint16_t status; 1097 1098 if (nvme_ns_ext(ns) && 1099 !(pi && pract && ns->lbaf.ms == nvme_pi_tuple_size(ns))) { 1100 NvmeSg sg; 1101 1102 len += nvme_m2b(ns, nlb); 1103 1104 status = nvme_map_dptr(n, &sg, len, &req->cmd); 1105 if (status) { 1106 return status; 1107 } 1108 1109 nvme_sg_init(n, &req->sg, sg.flags & NVME_SG_DMA); 1110 nvme_sg_split(&sg, ns, &req->sg, NULL); 1111 nvme_sg_unmap(&sg); 1112 1113 return NVME_SUCCESS; 1114 } 1115 1116 return nvme_map_dptr(n, &req->sg, len, &req->cmd); 1117 } 1118 1119 static uint16_t nvme_map_mdata(NvmeCtrl *n, uint32_t nlb, NvmeRequest *req) 1120 { 1121 NvmeNamespace *ns = req->ns; 1122 size_t len = nvme_m2b(ns, nlb); 1123 uint16_t status; 1124 1125 if (nvme_ns_ext(ns)) { 1126 NvmeSg sg; 1127 1128 len += nvme_l2b(ns, nlb); 1129 1130 status = nvme_map_dptr(n, &sg, len, &req->cmd); 1131 if (status) { 1132 return status; 1133 } 1134 1135 nvme_sg_init(n, &req->sg, sg.flags & NVME_SG_DMA); 1136 nvme_sg_split(&sg, ns, NULL, &req->sg); 1137 nvme_sg_unmap(&sg); 1138 1139 return NVME_SUCCESS; 1140 } 1141 1142 return nvme_map_mptr(n, &req->sg, len, &req->cmd); 1143 } 1144 1145 static uint16_t nvme_tx_interleaved(NvmeCtrl *n, NvmeSg *sg, uint8_t *ptr, 1146 uint32_t len, uint32_t bytes, 1147 int32_t skip_bytes, int64_t offset, 1148 NvmeTxDirection dir) 1149 { 1150 hwaddr addr; 1151 uint32_t trans_len, count = bytes; 1152 bool dma = sg->flags & NVME_SG_DMA; 1153 int64_t sge_len; 1154 int sg_idx = 0; 1155 int ret; 1156 1157 assert(sg->flags & NVME_SG_ALLOC); 1158 1159 while (len) { 1160 sge_len = dma ? sg->qsg.sg[sg_idx].len : sg->iov.iov[sg_idx].iov_len; 1161 1162 if (sge_len - offset < 0) { 1163 offset -= sge_len; 1164 sg_idx++; 1165 continue; 1166 } 1167 1168 if (sge_len == offset) { 1169 offset = 0; 1170 sg_idx++; 1171 continue; 1172 } 1173 1174 trans_len = MIN(len, count); 1175 trans_len = MIN(trans_len, sge_len - offset); 1176 1177 if (dma) { 1178 addr = sg->qsg.sg[sg_idx].base + offset; 1179 } else { 1180 addr = (hwaddr)(uintptr_t)sg->iov.iov[sg_idx].iov_base + offset; 1181 } 1182 1183 if (dir == NVME_TX_DIRECTION_TO_DEVICE) { 1184 ret = nvme_addr_read(n, addr, ptr, trans_len); 1185 } else { 1186 ret = nvme_addr_write(n, addr, ptr, trans_len); 1187 } 1188 1189 if (ret) { 1190 return NVME_DATA_TRAS_ERROR; 1191 } 1192 1193 ptr += trans_len; 1194 len -= trans_len; 1195 count -= trans_len; 1196 offset += trans_len; 1197 1198 if (count == 0) { 1199 count = bytes; 1200 offset += skip_bytes; 1201 } 1202 } 1203 1204 return NVME_SUCCESS; 1205 } 1206 1207 static uint16_t nvme_tx(NvmeCtrl *n, NvmeSg *sg, void *ptr, uint32_t len, 1208 NvmeTxDirection dir) 1209 { 1210 assert(sg->flags & NVME_SG_ALLOC); 1211 1212 if (sg->flags & NVME_SG_DMA) { 1213 const MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED; 1214 dma_addr_t residual; 1215 1216 if (dir == NVME_TX_DIRECTION_TO_DEVICE) { 1217 dma_buf_write(ptr, len, &residual, &sg->qsg, attrs); 1218 } else { 1219 dma_buf_read(ptr, len, &residual, &sg->qsg, attrs); 1220 } 1221 1222 if (unlikely(residual)) { 1223 trace_pci_nvme_err_invalid_dma(); 1224 return NVME_INVALID_FIELD | NVME_DNR; 1225 } 1226 } else { 1227 size_t bytes; 1228 1229 if (dir == NVME_TX_DIRECTION_TO_DEVICE) { 1230 bytes = qemu_iovec_to_buf(&sg->iov, 0, ptr, len); 1231 } else { 1232 bytes = qemu_iovec_from_buf(&sg->iov, 0, ptr, len); 1233 } 1234 1235 if (unlikely(bytes != len)) { 1236 trace_pci_nvme_err_invalid_dma(); 1237 return NVME_INVALID_FIELD | NVME_DNR; 1238 } 1239 } 1240 1241 return NVME_SUCCESS; 1242 } 1243 1244 static inline uint16_t nvme_c2h(NvmeCtrl *n, void *ptr, uint32_t len, 1245 NvmeRequest *req) 1246 { 1247 uint16_t status; 1248 1249 status = nvme_map_dptr(n, &req->sg, len, &req->cmd); 1250 if (status) { 1251 return status; 1252 } 1253 1254 return nvme_tx(n, &req->sg, ptr, len, NVME_TX_DIRECTION_FROM_DEVICE); 1255 } 1256 1257 static inline uint16_t nvme_h2c(NvmeCtrl *n, void *ptr, uint32_t len, 1258 NvmeRequest *req) 1259 { 1260 uint16_t status; 1261 1262 status = nvme_map_dptr(n, &req->sg, len, &req->cmd); 1263 if (status) { 1264 return status; 1265 } 1266 1267 return nvme_tx(n, &req->sg, ptr, len, NVME_TX_DIRECTION_TO_DEVICE); 1268 } 1269 1270 uint16_t nvme_bounce_data(NvmeCtrl *n, void *ptr, uint32_t len, 1271 NvmeTxDirection dir, NvmeRequest *req) 1272 { 1273 NvmeNamespace *ns = req->ns; 1274 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; 1275 bool pi = !!NVME_ID_NS_DPS_TYPE(ns->id_ns.dps); 1276 bool pract = !!(le16_to_cpu(rw->control) & NVME_RW_PRINFO_PRACT); 1277 1278 if (nvme_ns_ext(ns) && 1279 !(pi && pract && ns->lbaf.ms == nvme_pi_tuple_size(ns))) { 1280 return nvme_tx_interleaved(n, &req->sg, ptr, len, ns->lbasz, 1281 ns->lbaf.ms, 0, dir); 1282 } 1283 1284 return nvme_tx(n, &req->sg, ptr, len, dir); 1285 } 1286 1287 uint16_t nvme_bounce_mdata(NvmeCtrl *n, void *ptr, uint32_t len, 1288 NvmeTxDirection dir, NvmeRequest *req) 1289 { 1290 NvmeNamespace *ns = req->ns; 1291 uint16_t status; 1292 1293 if (nvme_ns_ext(ns)) { 1294 return nvme_tx_interleaved(n, &req->sg, ptr, len, ns->lbaf.ms, 1295 ns->lbasz, ns->lbasz, dir); 1296 } 1297 1298 nvme_sg_unmap(&req->sg); 1299 1300 status = nvme_map_mptr(n, &req->sg, len, &req->cmd); 1301 if (status) { 1302 return status; 1303 } 1304 1305 return nvme_tx(n, &req->sg, ptr, len, dir); 1306 } 1307 1308 static inline void nvme_blk_read(BlockBackend *blk, int64_t offset, 1309 BlockCompletionFunc *cb, NvmeRequest *req) 1310 { 1311 assert(req->sg.flags & NVME_SG_ALLOC); 1312 1313 if (req->sg.flags & NVME_SG_DMA) { 1314 req->aiocb = dma_blk_read(blk, &req->sg.qsg, offset, BDRV_SECTOR_SIZE, 1315 cb, req); 1316 } else { 1317 req->aiocb = blk_aio_preadv(blk, offset, &req->sg.iov, 0, cb, req); 1318 } 1319 } 1320 1321 static inline void nvme_blk_write(BlockBackend *blk, int64_t offset, 1322 BlockCompletionFunc *cb, NvmeRequest *req) 1323 { 1324 assert(req->sg.flags & NVME_SG_ALLOC); 1325 1326 if (req->sg.flags & NVME_SG_DMA) { 1327 req->aiocb = dma_blk_write(blk, &req->sg.qsg, offset, BDRV_SECTOR_SIZE, 1328 cb, req); 1329 } else { 1330 req->aiocb = blk_aio_pwritev(blk, offset, &req->sg.iov, 0, cb, req); 1331 } 1332 } 1333 1334 static void nvme_update_cq_head(NvmeCQueue *cq) 1335 { 1336 pci_dma_read(&cq->ctrl->parent_obj, cq->db_addr, &cq->head, 1337 sizeof(cq->head)); 1338 trace_pci_nvme_shadow_doorbell_cq(cq->cqid, cq->head); 1339 } 1340 1341 static void nvme_post_cqes(void *opaque) 1342 { 1343 NvmeCQueue *cq = opaque; 1344 NvmeCtrl *n = cq->ctrl; 1345 NvmeRequest *req, *next; 1346 bool pending = cq->head != cq->tail; 1347 int ret; 1348 1349 QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) { 1350 NvmeSQueue *sq; 1351 hwaddr addr; 1352 1353 if (n->dbbuf_enabled) { 1354 nvme_update_cq_head(cq); 1355 } 1356 1357 if (nvme_cq_full(cq)) { 1358 break; 1359 } 1360 1361 sq = req->sq; 1362 req->cqe.status = cpu_to_le16((req->status << 1) | cq->phase); 1363 req->cqe.sq_id = cpu_to_le16(sq->sqid); 1364 req->cqe.sq_head = cpu_to_le16(sq->head); 1365 addr = cq->dma_addr + cq->tail * n->cqe_size; 1366 ret = pci_dma_write(&n->parent_obj, addr, (void *)&req->cqe, 1367 sizeof(req->cqe)); 1368 if (ret) { 1369 trace_pci_nvme_err_addr_write(addr); 1370 trace_pci_nvme_err_cfs(); 1371 stl_le_p(&n->bar.csts, NVME_CSTS_FAILED); 1372 break; 1373 } 1374 QTAILQ_REMOVE(&cq->req_list, req, entry); 1375 nvme_inc_cq_tail(cq); 1376 nvme_sg_unmap(&req->sg); 1377 QTAILQ_INSERT_TAIL(&sq->req_list, req, entry); 1378 } 1379 if (cq->tail != cq->head) { 1380 if (cq->irq_enabled && !pending) { 1381 n->cq_pending++; 1382 } 1383 1384 nvme_irq_assert(n, cq); 1385 } 1386 } 1387 1388 static void nvme_enqueue_req_completion(NvmeCQueue *cq, NvmeRequest *req) 1389 { 1390 assert(cq->cqid == req->sq->cqid); 1391 trace_pci_nvme_enqueue_req_completion(nvme_cid(req), cq->cqid, 1392 le32_to_cpu(req->cqe.result), 1393 le32_to_cpu(req->cqe.dw1), 1394 req->status); 1395 1396 if (req->status) { 1397 trace_pci_nvme_err_req_status(nvme_cid(req), nvme_nsid(req->ns), 1398 req->status, req->cmd.opcode); 1399 } 1400 1401 QTAILQ_REMOVE(&req->sq->out_req_list, req, entry); 1402 QTAILQ_INSERT_TAIL(&cq->req_list, req, entry); 1403 1404 qemu_bh_schedule(cq->bh); 1405 } 1406 1407 static void nvme_process_aers(void *opaque) 1408 { 1409 NvmeCtrl *n = opaque; 1410 NvmeAsyncEvent *event, *next; 1411 1412 trace_pci_nvme_process_aers(n->aer_queued); 1413 1414 QTAILQ_FOREACH_SAFE(event, &n->aer_queue, entry, next) { 1415 NvmeRequest *req; 1416 NvmeAerResult *result; 1417 1418 /* can't post cqe if there is nothing to complete */ 1419 if (!n->outstanding_aers) { 1420 trace_pci_nvme_no_outstanding_aers(); 1421 break; 1422 } 1423 1424 /* ignore if masked (cqe posted, but event not cleared) */ 1425 if (n->aer_mask & (1 << event->result.event_type)) { 1426 trace_pci_nvme_aer_masked(event->result.event_type, n->aer_mask); 1427 continue; 1428 } 1429 1430 QTAILQ_REMOVE(&n->aer_queue, event, entry); 1431 n->aer_queued--; 1432 1433 n->aer_mask |= 1 << event->result.event_type; 1434 n->outstanding_aers--; 1435 1436 req = n->aer_reqs[n->outstanding_aers]; 1437 1438 result = (NvmeAerResult *) &req->cqe.result; 1439 result->event_type = event->result.event_type; 1440 result->event_info = event->result.event_info; 1441 result->log_page = event->result.log_page; 1442 g_free(event); 1443 1444 trace_pci_nvme_aer_post_cqe(result->event_type, result->event_info, 1445 result->log_page); 1446 1447 nvme_enqueue_req_completion(&n->admin_cq, req); 1448 } 1449 } 1450 1451 static void nvme_enqueue_event(NvmeCtrl *n, uint8_t event_type, 1452 uint8_t event_info, uint8_t log_page) 1453 { 1454 NvmeAsyncEvent *event; 1455 1456 trace_pci_nvme_enqueue_event(event_type, event_info, log_page); 1457 1458 if (n->aer_queued == n->params.aer_max_queued) { 1459 trace_pci_nvme_enqueue_event_noqueue(n->aer_queued); 1460 return; 1461 } 1462 1463 event = g_new(NvmeAsyncEvent, 1); 1464 event->result = (NvmeAerResult) { 1465 .event_type = event_type, 1466 .event_info = event_info, 1467 .log_page = log_page, 1468 }; 1469 1470 QTAILQ_INSERT_TAIL(&n->aer_queue, event, entry); 1471 n->aer_queued++; 1472 1473 nvme_process_aers(n); 1474 } 1475 1476 static void nvme_smart_event(NvmeCtrl *n, uint8_t event) 1477 { 1478 uint8_t aer_info; 1479 1480 /* Ref SPEC <Asynchronous Event Information 0x2013 SMART / Health Status> */ 1481 if (!(NVME_AEC_SMART(n->features.async_config) & event)) { 1482 return; 1483 } 1484 1485 switch (event) { 1486 case NVME_SMART_SPARE: 1487 aer_info = NVME_AER_INFO_SMART_SPARE_THRESH; 1488 break; 1489 case NVME_SMART_TEMPERATURE: 1490 aer_info = NVME_AER_INFO_SMART_TEMP_THRESH; 1491 break; 1492 case NVME_SMART_RELIABILITY: 1493 case NVME_SMART_MEDIA_READ_ONLY: 1494 case NVME_SMART_FAILED_VOLATILE_MEDIA: 1495 case NVME_SMART_PMR_UNRELIABLE: 1496 aer_info = NVME_AER_INFO_SMART_RELIABILITY; 1497 break; 1498 default: 1499 return; 1500 } 1501 1502 nvme_enqueue_event(n, NVME_AER_TYPE_SMART, aer_info, NVME_LOG_SMART_INFO); 1503 } 1504 1505 static void nvme_clear_events(NvmeCtrl *n, uint8_t event_type) 1506 { 1507 n->aer_mask &= ~(1 << event_type); 1508 if (!QTAILQ_EMPTY(&n->aer_queue)) { 1509 nvme_process_aers(n); 1510 } 1511 } 1512 1513 static inline uint16_t nvme_check_mdts(NvmeCtrl *n, size_t len) 1514 { 1515 uint8_t mdts = n->params.mdts; 1516 1517 if (mdts && len > n->page_size << mdts) { 1518 trace_pci_nvme_err_mdts(len); 1519 return NVME_INVALID_FIELD | NVME_DNR; 1520 } 1521 1522 return NVME_SUCCESS; 1523 } 1524 1525 static inline uint16_t nvme_check_bounds(NvmeNamespace *ns, uint64_t slba, 1526 uint32_t nlb) 1527 { 1528 uint64_t nsze = le64_to_cpu(ns->id_ns.nsze); 1529 1530 if (unlikely(UINT64_MAX - slba < nlb || slba + nlb > nsze)) { 1531 trace_pci_nvme_err_invalid_lba_range(slba, nlb, nsze); 1532 return NVME_LBA_RANGE | NVME_DNR; 1533 } 1534 1535 return NVME_SUCCESS; 1536 } 1537 1538 static int nvme_block_status_all(NvmeNamespace *ns, uint64_t slba, 1539 uint32_t nlb, int flags) 1540 { 1541 BlockDriverState *bs = blk_bs(ns->blkconf.blk); 1542 1543 int64_t pnum = 0, bytes = nvme_l2b(ns, nlb); 1544 int64_t offset = nvme_l2b(ns, slba); 1545 int ret; 1546 1547 /* 1548 * `pnum` holds the number of bytes after offset that shares the same 1549 * allocation status as the byte at offset. If `pnum` is different from 1550 * `bytes`, we should check the allocation status of the next range and 1551 * continue this until all bytes have been checked. 1552 */ 1553 do { 1554 bytes -= pnum; 1555 1556 ret = bdrv_block_status(bs, offset, bytes, &pnum, NULL, NULL); 1557 if (ret < 0) { 1558 return ret; 1559 } 1560 1561 1562 trace_pci_nvme_block_status(offset, bytes, pnum, ret, 1563 !!(ret & BDRV_BLOCK_ZERO)); 1564 1565 if (!(ret & flags)) { 1566 return 1; 1567 } 1568 1569 offset += pnum; 1570 } while (pnum != bytes); 1571 1572 return 0; 1573 } 1574 1575 static uint16_t nvme_check_dulbe(NvmeNamespace *ns, uint64_t slba, 1576 uint32_t nlb) 1577 { 1578 int ret; 1579 Error *err = NULL; 1580 1581 ret = nvme_block_status_all(ns, slba, nlb, BDRV_BLOCK_DATA); 1582 if (ret) { 1583 if (ret < 0) { 1584 error_setg_errno(&err, -ret, "unable to get block status"); 1585 error_report_err(err); 1586 1587 return NVME_INTERNAL_DEV_ERROR; 1588 } 1589 1590 return NVME_DULB; 1591 } 1592 1593 return NVME_SUCCESS; 1594 } 1595 1596 static void nvme_aio_err(NvmeRequest *req, int ret) 1597 { 1598 uint16_t status = NVME_SUCCESS; 1599 Error *local_err = NULL; 1600 1601 switch (req->cmd.opcode) { 1602 case NVME_CMD_READ: 1603 status = NVME_UNRECOVERED_READ; 1604 break; 1605 case NVME_CMD_FLUSH: 1606 case NVME_CMD_WRITE: 1607 case NVME_CMD_WRITE_ZEROES: 1608 case NVME_CMD_ZONE_APPEND: 1609 status = NVME_WRITE_FAULT; 1610 break; 1611 default: 1612 status = NVME_INTERNAL_DEV_ERROR; 1613 break; 1614 } 1615 1616 trace_pci_nvme_err_aio(nvme_cid(req), strerror(-ret), status); 1617 1618 error_setg_errno(&local_err, -ret, "aio failed"); 1619 error_report_err(local_err); 1620 1621 /* 1622 * Set the command status code to the first encountered error but allow a 1623 * subsequent Internal Device Error to trump it. 1624 */ 1625 if (req->status && status != NVME_INTERNAL_DEV_ERROR) { 1626 return; 1627 } 1628 1629 req->status = status; 1630 } 1631 1632 static inline uint32_t nvme_zone_idx(NvmeNamespace *ns, uint64_t slba) 1633 { 1634 return ns->zone_size_log2 > 0 ? slba >> ns->zone_size_log2 : 1635 slba / ns->zone_size; 1636 } 1637 1638 static inline NvmeZone *nvme_get_zone_by_slba(NvmeNamespace *ns, uint64_t slba) 1639 { 1640 uint32_t zone_idx = nvme_zone_idx(ns, slba); 1641 1642 if (zone_idx >= ns->num_zones) { 1643 return NULL; 1644 } 1645 1646 return &ns->zone_array[zone_idx]; 1647 } 1648 1649 static uint16_t nvme_check_zone_state_for_write(NvmeZone *zone) 1650 { 1651 uint64_t zslba = zone->d.zslba; 1652 1653 switch (nvme_get_zone_state(zone)) { 1654 case NVME_ZONE_STATE_EMPTY: 1655 case NVME_ZONE_STATE_IMPLICITLY_OPEN: 1656 case NVME_ZONE_STATE_EXPLICITLY_OPEN: 1657 case NVME_ZONE_STATE_CLOSED: 1658 return NVME_SUCCESS; 1659 case NVME_ZONE_STATE_FULL: 1660 trace_pci_nvme_err_zone_is_full(zslba); 1661 return NVME_ZONE_FULL; 1662 case NVME_ZONE_STATE_OFFLINE: 1663 trace_pci_nvme_err_zone_is_offline(zslba); 1664 return NVME_ZONE_OFFLINE; 1665 case NVME_ZONE_STATE_READ_ONLY: 1666 trace_pci_nvme_err_zone_is_read_only(zslba); 1667 return NVME_ZONE_READ_ONLY; 1668 default: 1669 assert(false); 1670 } 1671 1672 return NVME_INTERNAL_DEV_ERROR; 1673 } 1674 1675 static uint16_t nvme_check_zone_write(NvmeNamespace *ns, NvmeZone *zone, 1676 uint64_t slba, uint32_t nlb) 1677 { 1678 uint64_t zcap = nvme_zone_wr_boundary(zone); 1679 uint16_t status; 1680 1681 status = nvme_check_zone_state_for_write(zone); 1682 if (status) { 1683 return status; 1684 } 1685 1686 if (zone->d.za & NVME_ZA_ZRWA_VALID) { 1687 uint64_t ezrwa = zone->w_ptr + 2 * ns->zns.zrwas; 1688 1689 if (slba < zone->w_ptr || slba + nlb > ezrwa) { 1690 trace_pci_nvme_err_zone_invalid_write(slba, zone->w_ptr); 1691 return NVME_ZONE_INVALID_WRITE; 1692 } 1693 } else { 1694 if (unlikely(slba != zone->w_ptr)) { 1695 trace_pci_nvme_err_write_not_at_wp(slba, zone->d.zslba, 1696 zone->w_ptr); 1697 return NVME_ZONE_INVALID_WRITE; 1698 } 1699 } 1700 1701 if (unlikely((slba + nlb) > zcap)) { 1702 trace_pci_nvme_err_zone_boundary(slba, nlb, zcap); 1703 return NVME_ZONE_BOUNDARY_ERROR; 1704 } 1705 1706 return NVME_SUCCESS; 1707 } 1708 1709 static uint16_t nvme_check_zone_state_for_read(NvmeZone *zone) 1710 { 1711 switch (nvme_get_zone_state(zone)) { 1712 case NVME_ZONE_STATE_EMPTY: 1713 case NVME_ZONE_STATE_IMPLICITLY_OPEN: 1714 case NVME_ZONE_STATE_EXPLICITLY_OPEN: 1715 case NVME_ZONE_STATE_FULL: 1716 case NVME_ZONE_STATE_CLOSED: 1717 case NVME_ZONE_STATE_READ_ONLY: 1718 return NVME_SUCCESS; 1719 case NVME_ZONE_STATE_OFFLINE: 1720 trace_pci_nvme_err_zone_is_offline(zone->d.zslba); 1721 return NVME_ZONE_OFFLINE; 1722 default: 1723 assert(false); 1724 } 1725 1726 return NVME_INTERNAL_DEV_ERROR; 1727 } 1728 1729 static uint16_t nvme_check_zone_read(NvmeNamespace *ns, uint64_t slba, 1730 uint32_t nlb) 1731 { 1732 NvmeZone *zone; 1733 uint64_t bndry, end; 1734 uint16_t status; 1735 1736 zone = nvme_get_zone_by_slba(ns, slba); 1737 assert(zone); 1738 1739 bndry = nvme_zone_rd_boundary(ns, zone); 1740 end = slba + nlb; 1741 1742 status = nvme_check_zone_state_for_read(zone); 1743 if (status) { 1744 ; 1745 } else if (unlikely(end > bndry)) { 1746 if (!ns->params.cross_zone_read) { 1747 status = NVME_ZONE_BOUNDARY_ERROR; 1748 } else { 1749 /* 1750 * Read across zone boundary - check that all subsequent 1751 * zones that are being read have an appropriate state. 1752 */ 1753 do { 1754 zone++; 1755 status = nvme_check_zone_state_for_read(zone); 1756 if (status) { 1757 break; 1758 } 1759 } while (end > nvme_zone_rd_boundary(ns, zone)); 1760 } 1761 } 1762 1763 return status; 1764 } 1765 1766 static uint16_t nvme_zrm_finish(NvmeNamespace *ns, NvmeZone *zone) 1767 { 1768 switch (nvme_get_zone_state(zone)) { 1769 case NVME_ZONE_STATE_FULL: 1770 return NVME_SUCCESS; 1771 1772 case NVME_ZONE_STATE_IMPLICITLY_OPEN: 1773 case NVME_ZONE_STATE_EXPLICITLY_OPEN: 1774 nvme_aor_dec_open(ns); 1775 /* fallthrough */ 1776 case NVME_ZONE_STATE_CLOSED: 1777 nvme_aor_dec_active(ns); 1778 1779 if (zone->d.za & NVME_ZA_ZRWA_VALID) { 1780 zone->d.za &= ~NVME_ZA_ZRWA_VALID; 1781 if (ns->params.numzrwa) { 1782 ns->zns.numzrwa++; 1783 } 1784 } 1785 1786 /* fallthrough */ 1787 case NVME_ZONE_STATE_EMPTY: 1788 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_FULL); 1789 return NVME_SUCCESS; 1790 1791 default: 1792 return NVME_ZONE_INVAL_TRANSITION; 1793 } 1794 } 1795 1796 static uint16_t nvme_zrm_close(NvmeNamespace *ns, NvmeZone *zone) 1797 { 1798 switch (nvme_get_zone_state(zone)) { 1799 case NVME_ZONE_STATE_EXPLICITLY_OPEN: 1800 case NVME_ZONE_STATE_IMPLICITLY_OPEN: 1801 nvme_aor_dec_open(ns); 1802 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_CLOSED); 1803 /* fall through */ 1804 case NVME_ZONE_STATE_CLOSED: 1805 return NVME_SUCCESS; 1806 1807 default: 1808 return NVME_ZONE_INVAL_TRANSITION; 1809 } 1810 } 1811 1812 static uint16_t nvme_zrm_reset(NvmeNamespace *ns, NvmeZone *zone) 1813 { 1814 switch (nvme_get_zone_state(zone)) { 1815 case NVME_ZONE_STATE_EXPLICITLY_OPEN: 1816 case NVME_ZONE_STATE_IMPLICITLY_OPEN: 1817 nvme_aor_dec_open(ns); 1818 /* fallthrough */ 1819 case NVME_ZONE_STATE_CLOSED: 1820 nvme_aor_dec_active(ns); 1821 1822 if (zone->d.za & NVME_ZA_ZRWA_VALID) { 1823 if (ns->params.numzrwa) { 1824 ns->zns.numzrwa++; 1825 } 1826 } 1827 1828 /* fallthrough */ 1829 case NVME_ZONE_STATE_FULL: 1830 zone->w_ptr = zone->d.zslba; 1831 zone->d.wp = zone->w_ptr; 1832 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_EMPTY); 1833 /* fallthrough */ 1834 case NVME_ZONE_STATE_EMPTY: 1835 return NVME_SUCCESS; 1836 1837 default: 1838 return NVME_ZONE_INVAL_TRANSITION; 1839 } 1840 } 1841 1842 static void nvme_zrm_auto_transition_zone(NvmeNamespace *ns) 1843 { 1844 NvmeZone *zone; 1845 1846 if (ns->params.max_open_zones && 1847 ns->nr_open_zones == ns->params.max_open_zones) { 1848 zone = QTAILQ_FIRST(&ns->imp_open_zones); 1849 if (zone) { 1850 /* 1851 * Automatically close this implicitly open zone. 1852 */ 1853 QTAILQ_REMOVE(&ns->imp_open_zones, zone, entry); 1854 nvme_zrm_close(ns, zone); 1855 } 1856 } 1857 } 1858 1859 enum { 1860 NVME_ZRM_AUTO = 1 << 0, 1861 NVME_ZRM_ZRWA = 1 << 1, 1862 }; 1863 1864 static uint16_t nvme_zrm_open_flags(NvmeCtrl *n, NvmeNamespace *ns, 1865 NvmeZone *zone, int flags) 1866 { 1867 int act = 0; 1868 uint16_t status; 1869 1870 switch (nvme_get_zone_state(zone)) { 1871 case NVME_ZONE_STATE_EMPTY: 1872 act = 1; 1873 1874 /* fallthrough */ 1875 1876 case NVME_ZONE_STATE_CLOSED: 1877 if (n->params.auto_transition_zones) { 1878 nvme_zrm_auto_transition_zone(ns); 1879 } 1880 status = nvme_zns_check_resources(ns, act, 1, 1881 (flags & NVME_ZRM_ZRWA) ? 1 : 0); 1882 if (status) { 1883 return status; 1884 } 1885 1886 if (act) { 1887 nvme_aor_inc_active(ns); 1888 } 1889 1890 nvme_aor_inc_open(ns); 1891 1892 if (flags & NVME_ZRM_AUTO) { 1893 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_IMPLICITLY_OPEN); 1894 return NVME_SUCCESS; 1895 } 1896 1897 /* fallthrough */ 1898 1899 case NVME_ZONE_STATE_IMPLICITLY_OPEN: 1900 if (flags & NVME_ZRM_AUTO) { 1901 return NVME_SUCCESS; 1902 } 1903 1904 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_EXPLICITLY_OPEN); 1905 1906 /* fallthrough */ 1907 1908 case NVME_ZONE_STATE_EXPLICITLY_OPEN: 1909 if (flags & NVME_ZRM_ZRWA) { 1910 ns->zns.numzrwa--; 1911 1912 zone->d.za |= NVME_ZA_ZRWA_VALID; 1913 } 1914 1915 return NVME_SUCCESS; 1916 1917 default: 1918 return NVME_ZONE_INVAL_TRANSITION; 1919 } 1920 } 1921 1922 static inline uint16_t nvme_zrm_auto(NvmeCtrl *n, NvmeNamespace *ns, 1923 NvmeZone *zone) 1924 { 1925 return nvme_zrm_open_flags(n, ns, zone, NVME_ZRM_AUTO); 1926 } 1927 1928 static void nvme_advance_zone_wp(NvmeNamespace *ns, NvmeZone *zone, 1929 uint32_t nlb) 1930 { 1931 zone->d.wp += nlb; 1932 1933 if (zone->d.wp == nvme_zone_wr_boundary(zone)) { 1934 nvme_zrm_finish(ns, zone); 1935 } 1936 } 1937 1938 static void nvme_zoned_zrwa_implicit_flush(NvmeNamespace *ns, NvmeZone *zone, 1939 uint32_t nlbc) 1940 { 1941 uint16_t nzrwafgs = DIV_ROUND_UP(nlbc, ns->zns.zrwafg); 1942 1943 nlbc = nzrwafgs * ns->zns.zrwafg; 1944 1945 trace_pci_nvme_zoned_zrwa_implicit_flush(zone->d.zslba, nlbc); 1946 1947 zone->w_ptr += nlbc; 1948 1949 nvme_advance_zone_wp(ns, zone, nlbc); 1950 } 1951 1952 static void nvme_finalize_zoned_write(NvmeNamespace *ns, NvmeRequest *req) 1953 { 1954 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; 1955 NvmeZone *zone; 1956 uint64_t slba; 1957 uint32_t nlb; 1958 1959 slba = le64_to_cpu(rw->slba); 1960 nlb = le16_to_cpu(rw->nlb) + 1; 1961 zone = nvme_get_zone_by_slba(ns, slba); 1962 assert(zone); 1963 1964 if (zone->d.za & NVME_ZA_ZRWA_VALID) { 1965 uint64_t ezrwa = zone->w_ptr + ns->zns.zrwas - 1; 1966 uint64_t elba = slba + nlb - 1; 1967 1968 if (elba > ezrwa) { 1969 nvme_zoned_zrwa_implicit_flush(ns, zone, elba - ezrwa); 1970 } 1971 1972 return; 1973 } 1974 1975 nvme_advance_zone_wp(ns, zone, nlb); 1976 } 1977 1978 static inline bool nvme_is_write(NvmeRequest *req) 1979 { 1980 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; 1981 1982 return rw->opcode == NVME_CMD_WRITE || 1983 rw->opcode == NVME_CMD_ZONE_APPEND || 1984 rw->opcode == NVME_CMD_WRITE_ZEROES; 1985 } 1986 1987 static AioContext *nvme_get_aio_context(BlockAIOCB *acb) 1988 { 1989 return qemu_get_aio_context(); 1990 } 1991 1992 static void nvme_misc_cb(void *opaque, int ret) 1993 { 1994 NvmeRequest *req = opaque; 1995 1996 trace_pci_nvme_misc_cb(nvme_cid(req)); 1997 1998 if (ret) { 1999 nvme_aio_err(req, ret); 2000 } 2001 2002 nvme_enqueue_req_completion(nvme_cq(req), req); 2003 } 2004 2005 void nvme_rw_complete_cb(void *opaque, int ret) 2006 { 2007 NvmeRequest *req = opaque; 2008 NvmeNamespace *ns = req->ns; 2009 BlockBackend *blk = ns->blkconf.blk; 2010 BlockAcctCookie *acct = &req->acct; 2011 BlockAcctStats *stats = blk_get_stats(blk); 2012 2013 trace_pci_nvme_rw_complete_cb(nvme_cid(req), blk_name(blk)); 2014 2015 if (ret) { 2016 block_acct_failed(stats, acct); 2017 nvme_aio_err(req, ret); 2018 } else { 2019 block_acct_done(stats, acct); 2020 } 2021 2022 if (ns->params.zoned && nvme_is_write(req)) { 2023 nvme_finalize_zoned_write(ns, req); 2024 } 2025 2026 nvme_enqueue_req_completion(nvme_cq(req), req); 2027 } 2028 2029 static void nvme_rw_cb(void *opaque, int ret) 2030 { 2031 NvmeRequest *req = opaque; 2032 NvmeNamespace *ns = req->ns; 2033 2034 BlockBackend *blk = ns->blkconf.blk; 2035 2036 trace_pci_nvme_rw_cb(nvme_cid(req), blk_name(blk)); 2037 2038 if (ret) { 2039 goto out; 2040 } 2041 2042 if (ns->lbaf.ms) { 2043 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; 2044 uint64_t slba = le64_to_cpu(rw->slba); 2045 uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1; 2046 uint64_t offset = nvme_moff(ns, slba); 2047 2048 if (req->cmd.opcode == NVME_CMD_WRITE_ZEROES) { 2049 size_t mlen = nvme_m2b(ns, nlb); 2050 2051 req->aiocb = blk_aio_pwrite_zeroes(blk, offset, mlen, 2052 BDRV_REQ_MAY_UNMAP, 2053 nvme_rw_complete_cb, req); 2054 return; 2055 } 2056 2057 if (nvme_ns_ext(ns) || req->cmd.mptr) { 2058 uint16_t status; 2059 2060 nvme_sg_unmap(&req->sg); 2061 status = nvme_map_mdata(nvme_ctrl(req), nlb, req); 2062 if (status) { 2063 ret = -EFAULT; 2064 goto out; 2065 } 2066 2067 if (req->cmd.opcode == NVME_CMD_READ) { 2068 return nvme_blk_read(blk, offset, nvme_rw_complete_cb, req); 2069 } 2070 2071 return nvme_blk_write(blk, offset, nvme_rw_complete_cb, req); 2072 } 2073 } 2074 2075 out: 2076 nvme_rw_complete_cb(req, ret); 2077 } 2078 2079 static void nvme_verify_cb(void *opaque, int ret) 2080 { 2081 NvmeBounceContext *ctx = opaque; 2082 NvmeRequest *req = ctx->req; 2083 NvmeNamespace *ns = req->ns; 2084 BlockBackend *blk = ns->blkconf.blk; 2085 BlockAcctCookie *acct = &req->acct; 2086 BlockAcctStats *stats = blk_get_stats(blk); 2087 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; 2088 uint64_t slba = le64_to_cpu(rw->slba); 2089 uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control)); 2090 uint16_t apptag = le16_to_cpu(rw->apptag); 2091 uint16_t appmask = le16_to_cpu(rw->appmask); 2092 uint64_t reftag = le32_to_cpu(rw->reftag); 2093 uint64_t cdw3 = le32_to_cpu(rw->cdw3); 2094 uint16_t status; 2095 2096 reftag |= cdw3 << 32; 2097 2098 trace_pci_nvme_verify_cb(nvme_cid(req), prinfo, apptag, appmask, reftag); 2099 2100 if (ret) { 2101 block_acct_failed(stats, acct); 2102 nvme_aio_err(req, ret); 2103 goto out; 2104 } 2105 2106 block_acct_done(stats, acct); 2107 2108 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) { 2109 status = nvme_dif_mangle_mdata(ns, ctx->mdata.bounce, 2110 ctx->mdata.iov.size, slba); 2111 if (status) { 2112 req->status = status; 2113 goto out; 2114 } 2115 2116 req->status = nvme_dif_check(ns, ctx->data.bounce, ctx->data.iov.size, 2117 ctx->mdata.bounce, ctx->mdata.iov.size, 2118 prinfo, slba, apptag, appmask, &reftag); 2119 } 2120 2121 out: 2122 qemu_iovec_destroy(&ctx->data.iov); 2123 g_free(ctx->data.bounce); 2124 2125 qemu_iovec_destroy(&ctx->mdata.iov); 2126 g_free(ctx->mdata.bounce); 2127 2128 g_free(ctx); 2129 2130 nvme_enqueue_req_completion(nvme_cq(req), req); 2131 } 2132 2133 2134 static void nvme_verify_mdata_in_cb(void *opaque, int ret) 2135 { 2136 NvmeBounceContext *ctx = opaque; 2137 NvmeRequest *req = ctx->req; 2138 NvmeNamespace *ns = req->ns; 2139 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; 2140 uint64_t slba = le64_to_cpu(rw->slba); 2141 uint32_t nlb = le16_to_cpu(rw->nlb) + 1; 2142 size_t mlen = nvme_m2b(ns, nlb); 2143 uint64_t offset = nvme_moff(ns, slba); 2144 BlockBackend *blk = ns->blkconf.blk; 2145 2146 trace_pci_nvme_verify_mdata_in_cb(nvme_cid(req), blk_name(blk)); 2147 2148 if (ret) { 2149 goto out; 2150 } 2151 2152 ctx->mdata.bounce = g_malloc(mlen); 2153 2154 qemu_iovec_reset(&ctx->mdata.iov); 2155 qemu_iovec_add(&ctx->mdata.iov, ctx->mdata.bounce, mlen); 2156 2157 req->aiocb = blk_aio_preadv(blk, offset, &ctx->mdata.iov, 0, 2158 nvme_verify_cb, ctx); 2159 return; 2160 2161 out: 2162 nvme_verify_cb(ctx, ret); 2163 } 2164 2165 struct nvme_compare_ctx { 2166 struct { 2167 QEMUIOVector iov; 2168 uint8_t *bounce; 2169 } data; 2170 2171 struct { 2172 QEMUIOVector iov; 2173 uint8_t *bounce; 2174 } mdata; 2175 }; 2176 2177 static void nvme_compare_mdata_cb(void *opaque, int ret) 2178 { 2179 NvmeRequest *req = opaque; 2180 NvmeNamespace *ns = req->ns; 2181 NvmeCtrl *n = nvme_ctrl(req); 2182 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; 2183 uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control)); 2184 uint16_t apptag = le16_to_cpu(rw->apptag); 2185 uint16_t appmask = le16_to_cpu(rw->appmask); 2186 uint64_t reftag = le32_to_cpu(rw->reftag); 2187 uint64_t cdw3 = le32_to_cpu(rw->cdw3); 2188 struct nvme_compare_ctx *ctx = req->opaque; 2189 g_autofree uint8_t *buf = NULL; 2190 BlockBackend *blk = ns->blkconf.blk; 2191 BlockAcctCookie *acct = &req->acct; 2192 BlockAcctStats *stats = blk_get_stats(blk); 2193 uint16_t status = NVME_SUCCESS; 2194 2195 reftag |= cdw3 << 32; 2196 2197 trace_pci_nvme_compare_mdata_cb(nvme_cid(req)); 2198 2199 if (ret) { 2200 block_acct_failed(stats, acct); 2201 nvme_aio_err(req, ret); 2202 goto out; 2203 } 2204 2205 buf = g_malloc(ctx->mdata.iov.size); 2206 2207 status = nvme_bounce_mdata(n, buf, ctx->mdata.iov.size, 2208 NVME_TX_DIRECTION_TO_DEVICE, req); 2209 if (status) { 2210 req->status = status; 2211 goto out; 2212 } 2213 2214 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) { 2215 uint64_t slba = le64_to_cpu(rw->slba); 2216 uint8_t *bufp; 2217 uint8_t *mbufp = ctx->mdata.bounce; 2218 uint8_t *end = mbufp + ctx->mdata.iov.size; 2219 int16_t pil = 0; 2220 2221 status = nvme_dif_check(ns, ctx->data.bounce, ctx->data.iov.size, 2222 ctx->mdata.bounce, ctx->mdata.iov.size, prinfo, 2223 slba, apptag, appmask, &reftag); 2224 if (status) { 2225 req->status = status; 2226 goto out; 2227 } 2228 2229 /* 2230 * When formatted with protection information, do not compare the DIF 2231 * tuple. 2232 */ 2233 if (!(ns->id_ns.dps & NVME_ID_NS_DPS_FIRST_EIGHT)) { 2234 pil = ns->lbaf.ms - nvme_pi_tuple_size(ns); 2235 } 2236 2237 for (bufp = buf; mbufp < end; bufp += ns->lbaf.ms, mbufp += ns->lbaf.ms) { 2238 if (memcmp(bufp + pil, mbufp + pil, ns->lbaf.ms - pil)) { 2239 req->status = NVME_CMP_FAILURE; 2240 goto out; 2241 } 2242 } 2243 2244 goto out; 2245 } 2246 2247 if (memcmp(buf, ctx->mdata.bounce, ctx->mdata.iov.size)) { 2248 req->status = NVME_CMP_FAILURE; 2249 goto out; 2250 } 2251 2252 block_acct_done(stats, acct); 2253 2254 out: 2255 qemu_iovec_destroy(&ctx->data.iov); 2256 g_free(ctx->data.bounce); 2257 2258 qemu_iovec_destroy(&ctx->mdata.iov); 2259 g_free(ctx->mdata.bounce); 2260 2261 g_free(ctx); 2262 2263 nvme_enqueue_req_completion(nvme_cq(req), req); 2264 } 2265 2266 static void nvme_compare_data_cb(void *opaque, int ret) 2267 { 2268 NvmeRequest *req = opaque; 2269 NvmeCtrl *n = nvme_ctrl(req); 2270 NvmeNamespace *ns = req->ns; 2271 BlockBackend *blk = ns->blkconf.blk; 2272 BlockAcctCookie *acct = &req->acct; 2273 BlockAcctStats *stats = blk_get_stats(blk); 2274 2275 struct nvme_compare_ctx *ctx = req->opaque; 2276 g_autofree uint8_t *buf = NULL; 2277 uint16_t status; 2278 2279 trace_pci_nvme_compare_data_cb(nvme_cid(req)); 2280 2281 if (ret) { 2282 block_acct_failed(stats, acct); 2283 nvme_aio_err(req, ret); 2284 goto out; 2285 } 2286 2287 buf = g_malloc(ctx->data.iov.size); 2288 2289 status = nvme_bounce_data(n, buf, ctx->data.iov.size, 2290 NVME_TX_DIRECTION_TO_DEVICE, req); 2291 if (status) { 2292 req->status = status; 2293 goto out; 2294 } 2295 2296 if (memcmp(buf, ctx->data.bounce, ctx->data.iov.size)) { 2297 req->status = NVME_CMP_FAILURE; 2298 goto out; 2299 } 2300 2301 if (ns->lbaf.ms) { 2302 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; 2303 uint64_t slba = le64_to_cpu(rw->slba); 2304 uint32_t nlb = le16_to_cpu(rw->nlb) + 1; 2305 size_t mlen = nvme_m2b(ns, nlb); 2306 uint64_t offset = nvme_moff(ns, slba); 2307 2308 ctx->mdata.bounce = g_malloc(mlen); 2309 2310 qemu_iovec_init(&ctx->mdata.iov, 1); 2311 qemu_iovec_add(&ctx->mdata.iov, ctx->mdata.bounce, mlen); 2312 2313 req->aiocb = blk_aio_preadv(blk, offset, &ctx->mdata.iov, 0, 2314 nvme_compare_mdata_cb, req); 2315 return; 2316 } 2317 2318 block_acct_done(stats, acct); 2319 2320 out: 2321 qemu_iovec_destroy(&ctx->data.iov); 2322 g_free(ctx->data.bounce); 2323 g_free(ctx); 2324 2325 nvme_enqueue_req_completion(nvme_cq(req), req); 2326 } 2327 2328 typedef struct NvmeDSMAIOCB { 2329 BlockAIOCB common; 2330 BlockAIOCB *aiocb; 2331 NvmeRequest *req; 2332 QEMUBH *bh; 2333 int ret; 2334 2335 NvmeDsmRange *range; 2336 unsigned int nr; 2337 unsigned int idx; 2338 } NvmeDSMAIOCB; 2339 2340 static void nvme_dsm_cancel(BlockAIOCB *aiocb) 2341 { 2342 NvmeDSMAIOCB *iocb = container_of(aiocb, NvmeDSMAIOCB, common); 2343 2344 /* break nvme_dsm_cb loop */ 2345 iocb->idx = iocb->nr; 2346 iocb->ret = -ECANCELED; 2347 2348 if (iocb->aiocb) { 2349 blk_aio_cancel_async(iocb->aiocb); 2350 iocb->aiocb = NULL; 2351 } else { 2352 /* 2353 * We only reach this if nvme_dsm_cancel() has already been called or 2354 * the command ran to completion and nvme_dsm_bh is scheduled to run. 2355 */ 2356 assert(iocb->idx == iocb->nr); 2357 } 2358 } 2359 2360 static const AIOCBInfo nvme_dsm_aiocb_info = { 2361 .aiocb_size = sizeof(NvmeDSMAIOCB), 2362 .cancel_async = nvme_dsm_cancel, 2363 }; 2364 2365 static void nvme_dsm_bh(void *opaque) 2366 { 2367 NvmeDSMAIOCB *iocb = opaque; 2368 2369 iocb->common.cb(iocb->common.opaque, iocb->ret); 2370 2371 qemu_bh_delete(iocb->bh); 2372 iocb->bh = NULL; 2373 qemu_aio_unref(iocb); 2374 } 2375 2376 static void nvme_dsm_cb(void *opaque, int ret); 2377 2378 static void nvme_dsm_md_cb(void *opaque, int ret) 2379 { 2380 NvmeDSMAIOCB *iocb = opaque; 2381 NvmeRequest *req = iocb->req; 2382 NvmeNamespace *ns = req->ns; 2383 NvmeDsmRange *range; 2384 uint64_t slba; 2385 uint32_t nlb; 2386 2387 if (ret < 0) { 2388 iocb->ret = ret; 2389 goto done; 2390 } 2391 2392 if (!ns->lbaf.ms) { 2393 nvme_dsm_cb(iocb, 0); 2394 return; 2395 } 2396 2397 range = &iocb->range[iocb->idx - 1]; 2398 slba = le64_to_cpu(range->slba); 2399 nlb = le32_to_cpu(range->nlb); 2400 2401 /* 2402 * Check that all block were discarded (zeroed); otherwise we do not zero 2403 * the metadata. 2404 */ 2405 2406 ret = nvme_block_status_all(ns, slba, nlb, BDRV_BLOCK_ZERO); 2407 if (ret) { 2408 if (ret < 0) { 2409 iocb->ret = ret; 2410 goto done; 2411 } 2412 2413 nvme_dsm_cb(iocb, 0); 2414 return; 2415 } 2416 2417 iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk, nvme_moff(ns, slba), 2418 nvme_m2b(ns, nlb), BDRV_REQ_MAY_UNMAP, 2419 nvme_dsm_cb, iocb); 2420 return; 2421 2422 done: 2423 iocb->aiocb = NULL; 2424 qemu_bh_schedule(iocb->bh); 2425 } 2426 2427 static void nvme_dsm_cb(void *opaque, int ret) 2428 { 2429 NvmeDSMAIOCB *iocb = opaque; 2430 NvmeRequest *req = iocb->req; 2431 NvmeCtrl *n = nvme_ctrl(req); 2432 NvmeNamespace *ns = req->ns; 2433 NvmeDsmRange *range; 2434 uint64_t slba; 2435 uint32_t nlb; 2436 2437 if (ret < 0) { 2438 iocb->ret = ret; 2439 goto done; 2440 } 2441 2442 next: 2443 if (iocb->idx == iocb->nr) { 2444 goto done; 2445 } 2446 2447 range = &iocb->range[iocb->idx++]; 2448 slba = le64_to_cpu(range->slba); 2449 nlb = le32_to_cpu(range->nlb); 2450 2451 trace_pci_nvme_dsm_deallocate(slba, nlb); 2452 2453 if (nlb > n->dmrsl) { 2454 trace_pci_nvme_dsm_single_range_limit_exceeded(nlb, n->dmrsl); 2455 goto next; 2456 } 2457 2458 if (nvme_check_bounds(ns, slba, nlb)) { 2459 trace_pci_nvme_err_invalid_lba_range(slba, nlb, 2460 ns->id_ns.nsze); 2461 goto next; 2462 } 2463 2464 iocb->aiocb = blk_aio_pdiscard(ns->blkconf.blk, nvme_l2b(ns, slba), 2465 nvme_l2b(ns, nlb), 2466 nvme_dsm_md_cb, iocb); 2467 return; 2468 2469 done: 2470 iocb->aiocb = NULL; 2471 qemu_bh_schedule(iocb->bh); 2472 } 2473 2474 static uint16_t nvme_dsm(NvmeCtrl *n, NvmeRequest *req) 2475 { 2476 NvmeNamespace *ns = req->ns; 2477 NvmeDsmCmd *dsm = (NvmeDsmCmd *) &req->cmd; 2478 uint32_t attr = le32_to_cpu(dsm->attributes); 2479 uint32_t nr = (le32_to_cpu(dsm->nr) & 0xff) + 1; 2480 uint16_t status = NVME_SUCCESS; 2481 2482 trace_pci_nvme_dsm(nr, attr); 2483 2484 if (attr & NVME_DSMGMT_AD) { 2485 NvmeDSMAIOCB *iocb = blk_aio_get(&nvme_dsm_aiocb_info, ns->blkconf.blk, 2486 nvme_misc_cb, req); 2487 2488 iocb->req = req; 2489 iocb->bh = qemu_bh_new(nvme_dsm_bh, iocb); 2490 iocb->ret = 0; 2491 iocb->range = g_new(NvmeDsmRange, nr); 2492 iocb->nr = nr; 2493 iocb->idx = 0; 2494 2495 status = nvme_h2c(n, (uint8_t *)iocb->range, sizeof(NvmeDsmRange) * nr, 2496 req); 2497 if (status) { 2498 return status; 2499 } 2500 2501 req->aiocb = &iocb->common; 2502 nvme_dsm_cb(iocb, 0); 2503 2504 return NVME_NO_COMPLETE; 2505 } 2506 2507 return status; 2508 } 2509 2510 static uint16_t nvme_verify(NvmeCtrl *n, NvmeRequest *req) 2511 { 2512 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; 2513 NvmeNamespace *ns = req->ns; 2514 BlockBackend *blk = ns->blkconf.blk; 2515 uint64_t slba = le64_to_cpu(rw->slba); 2516 uint32_t nlb = le16_to_cpu(rw->nlb) + 1; 2517 size_t len = nvme_l2b(ns, nlb); 2518 int64_t offset = nvme_l2b(ns, slba); 2519 uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control)); 2520 uint32_t reftag = le32_to_cpu(rw->reftag); 2521 NvmeBounceContext *ctx = NULL; 2522 uint16_t status; 2523 2524 trace_pci_nvme_verify(nvme_cid(req), nvme_nsid(ns), slba, nlb); 2525 2526 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) { 2527 status = nvme_check_prinfo(ns, prinfo, slba, reftag); 2528 if (status) { 2529 return status; 2530 } 2531 2532 if (prinfo & NVME_PRINFO_PRACT) { 2533 return NVME_INVALID_PROT_INFO | NVME_DNR; 2534 } 2535 } 2536 2537 if (len > n->page_size << n->params.vsl) { 2538 return NVME_INVALID_FIELD | NVME_DNR; 2539 } 2540 2541 status = nvme_check_bounds(ns, slba, nlb); 2542 if (status) { 2543 return status; 2544 } 2545 2546 if (NVME_ERR_REC_DULBE(ns->features.err_rec)) { 2547 status = nvme_check_dulbe(ns, slba, nlb); 2548 if (status) { 2549 return status; 2550 } 2551 } 2552 2553 ctx = g_new0(NvmeBounceContext, 1); 2554 ctx->req = req; 2555 2556 ctx->data.bounce = g_malloc(len); 2557 2558 qemu_iovec_init(&ctx->data.iov, 1); 2559 qemu_iovec_add(&ctx->data.iov, ctx->data.bounce, len); 2560 2561 block_acct_start(blk_get_stats(blk), &req->acct, ctx->data.iov.size, 2562 BLOCK_ACCT_READ); 2563 2564 req->aiocb = blk_aio_preadv(ns->blkconf.blk, offset, &ctx->data.iov, 0, 2565 nvme_verify_mdata_in_cb, ctx); 2566 return NVME_NO_COMPLETE; 2567 } 2568 2569 typedef struct NvmeCopyAIOCB { 2570 BlockAIOCB common; 2571 BlockAIOCB *aiocb; 2572 NvmeRequest *req; 2573 QEMUBH *bh; 2574 int ret; 2575 2576 void *ranges; 2577 unsigned int format; 2578 int nr; 2579 int idx; 2580 2581 uint8_t *bounce; 2582 QEMUIOVector iov; 2583 struct { 2584 BlockAcctCookie read; 2585 BlockAcctCookie write; 2586 } acct; 2587 2588 uint64_t reftag; 2589 uint64_t slba; 2590 2591 NvmeZone *zone; 2592 } NvmeCopyAIOCB; 2593 2594 static void nvme_copy_cancel(BlockAIOCB *aiocb) 2595 { 2596 NvmeCopyAIOCB *iocb = container_of(aiocb, NvmeCopyAIOCB, common); 2597 2598 iocb->ret = -ECANCELED; 2599 2600 if (iocb->aiocb) { 2601 blk_aio_cancel_async(iocb->aiocb); 2602 iocb->aiocb = NULL; 2603 } 2604 } 2605 2606 static const AIOCBInfo nvme_copy_aiocb_info = { 2607 .aiocb_size = sizeof(NvmeCopyAIOCB), 2608 .cancel_async = nvme_copy_cancel, 2609 }; 2610 2611 static void nvme_copy_bh(void *opaque) 2612 { 2613 NvmeCopyAIOCB *iocb = opaque; 2614 NvmeRequest *req = iocb->req; 2615 NvmeNamespace *ns = req->ns; 2616 BlockAcctStats *stats = blk_get_stats(ns->blkconf.blk); 2617 2618 if (iocb->idx != iocb->nr) { 2619 req->cqe.result = cpu_to_le32(iocb->idx); 2620 } 2621 2622 qemu_iovec_destroy(&iocb->iov); 2623 g_free(iocb->bounce); 2624 2625 qemu_bh_delete(iocb->bh); 2626 iocb->bh = NULL; 2627 2628 if (iocb->ret < 0) { 2629 block_acct_failed(stats, &iocb->acct.read); 2630 block_acct_failed(stats, &iocb->acct.write); 2631 } else { 2632 block_acct_done(stats, &iocb->acct.read); 2633 block_acct_done(stats, &iocb->acct.write); 2634 } 2635 2636 iocb->common.cb(iocb->common.opaque, iocb->ret); 2637 qemu_aio_unref(iocb); 2638 } 2639 2640 static void nvme_copy_cb(void *opaque, int ret); 2641 2642 static void nvme_copy_source_range_parse_format0(void *ranges, int idx, 2643 uint64_t *slba, uint32_t *nlb, 2644 uint16_t *apptag, 2645 uint16_t *appmask, 2646 uint64_t *reftag) 2647 { 2648 NvmeCopySourceRangeFormat0 *_ranges = ranges; 2649 2650 if (slba) { 2651 *slba = le64_to_cpu(_ranges[idx].slba); 2652 } 2653 2654 if (nlb) { 2655 *nlb = le16_to_cpu(_ranges[idx].nlb) + 1; 2656 } 2657 2658 if (apptag) { 2659 *apptag = le16_to_cpu(_ranges[idx].apptag); 2660 } 2661 2662 if (appmask) { 2663 *appmask = le16_to_cpu(_ranges[idx].appmask); 2664 } 2665 2666 if (reftag) { 2667 *reftag = le32_to_cpu(_ranges[idx].reftag); 2668 } 2669 } 2670 2671 static void nvme_copy_source_range_parse_format1(void *ranges, int idx, 2672 uint64_t *slba, uint32_t *nlb, 2673 uint16_t *apptag, 2674 uint16_t *appmask, 2675 uint64_t *reftag) 2676 { 2677 NvmeCopySourceRangeFormat1 *_ranges = ranges; 2678 2679 if (slba) { 2680 *slba = le64_to_cpu(_ranges[idx].slba); 2681 } 2682 2683 if (nlb) { 2684 *nlb = le16_to_cpu(_ranges[idx].nlb) + 1; 2685 } 2686 2687 if (apptag) { 2688 *apptag = le16_to_cpu(_ranges[idx].apptag); 2689 } 2690 2691 if (appmask) { 2692 *appmask = le16_to_cpu(_ranges[idx].appmask); 2693 } 2694 2695 if (reftag) { 2696 *reftag = 0; 2697 2698 *reftag |= (uint64_t)_ranges[idx].sr[4] << 40; 2699 *reftag |= (uint64_t)_ranges[idx].sr[5] << 32; 2700 *reftag |= (uint64_t)_ranges[idx].sr[6] << 24; 2701 *reftag |= (uint64_t)_ranges[idx].sr[7] << 16; 2702 *reftag |= (uint64_t)_ranges[idx].sr[8] << 8; 2703 *reftag |= (uint64_t)_ranges[idx].sr[9]; 2704 } 2705 } 2706 2707 static void nvme_copy_source_range_parse(void *ranges, int idx, uint8_t format, 2708 uint64_t *slba, uint32_t *nlb, 2709 uint16_t *apptag, uint16_t *appmask, 2710 uint64_t *reftag) 2711 { 2712 switch (format) { 2713 case NVME_COPY_FORMAT_0: 2714 nvme_copy_source_range_parse_format0(ranges, idx, slba, nlb, apptag, 2715 appmask, reftag); 2716 break; 2717 2718 case NVME_COPY_FORMAT_1: 2719 nvme_copy_source_range_parse_format1(ranges, idx, slba, nlb, apptag, 2720 appmask, reftag); 2721 break; 2722 2723 default: 2724 abort(); 2725 } 2726 } 2727 2728 static void nvme_copy_out_completed_cb(void *opaque, int ret) 2729 { 2730 NvmeCopyAIOCB *iocb = opaque; 2731 NvmeRequest *req = iocb->req; 2732 NvmeNamespace *ns = req->ns; 2733 uint32_t nlb; 2734 2735 nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, NULL, 2736 &nlb, NULL, NULL, NULL); 2737 2738 if (ret < 0) { 2739 iocb->ret = ret; 2740 goto out; 2741 } else if (iocb->ret < 0) { 2742 goto out; 2743 } 2744 2745 if (ns->params.zoned) { 2746 nvme_advance_zone_wp(ns, iocb->zone, nlb); 2747 } 2748 2749 iocb->idx++; 2750 iocb->slba += nlb; 2751 out: 2752 nvme_copy_cb(iocb, iocb->ret); 2753 } 2754 2755 static void nvme_copy_out_cb(void *opaque, int ret) 2756 { 2757 NvmeCopyAIOCB *iocb = opaque; 2758 NvmeRequest *req = iocb->req; 2759 NvmeNamespace *ns = req->ns; 2760 uint32_t nlb; 2761 size_t mlen; 2762 uint8_t *mbounce; 2763 2764 if (ret < 0) { 2765 iocb->ret = ret; 2766 goto out; 2767 } else if (iocb->ret < 0) { 2768 goto out; 2769 } 2770 2771 if (!ns->lbaf.ms) { 2772 nvme_copy_out_completed_cb(iocb, 0); 2773 return; 2774 } 2775 2776 nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, NULL, 2777 &nlb, NULL, NULL, NULL); 2778 2779 mlen = nvme_m2b(ns, nlb); 2780 mbounce = iocb->bounce + nvme_l2b(ns, nlb); 2781 2782 qemu_iovec_reset(&iocb->iov); 2783 qemu_iovec_add(&iocb->iov, mbounce, mlen); 2784 2785 iocb->aiocb = blk_aio_pwritev(ns->blkconf.blk, nvme_moff(ns, iocb->slba), 2786 &iocb->iov, 0, nvme_copy_out_completed_cb, 2787 iocb); 2788 2789 return; 2790 2791 out: 2792 nvme_copy_cb(iocb, ret); 2793 } 2794 2795 static void nvme_copy_in_completed_cb(void *opaque, int ret) 2796 { 2797 NvmeCopyAIOCB *iocb = opaque; 2798 NvmeRequest *req = iocb->req; 2799 NvmeNamespace *ns = req->ns; 2800 uint32_t nlb; 2801 uint64_t slba; 2802 uint16_t apptag, appmask; 2803 uint64_t reftag; 2804 size_t len; 2805 uint16_t status; 2806 2807 if (ret < 0) { 2808 iocb->ret = ret; 2809 goto out; 2810 } else if (iocb->ret < 0) { 2811 goto out; 2812 } 2813 2814 nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, &slba, 2815 &nlb, &apptag, &appmask, &reftag); 2816 len = nvme_l2b(ns, nlb); 2817 2818 trace_pci_nvme_copy_out(iocb->slba, nlb); 2819 2820 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) { 2821 NvmeCopyCmd *copy = (NvmeCopyCmd *)&req->cmd; 2822 2823 uint16_t prinfor = ((copy->control[0] >> 4) & 0xf); 2824 uint16_t prinfow = ((copy->control[2] >> 2) & 0xf); 2825 2826 size_t mlen = nvme_m2b(ns, nlb); 2827 uint8_t *mbounce = iocb->bounce + nvme_l2b(ns, nlb); 2828 2829 status = nvme_dif_mangle_mdata(ns, mbounce, mlen, slba); 2830 if (status) { 2831 goto invalid; 2832 } 2833 status = nvme_dif_check(ns, iocb->bounce, len, mbounce, mlen, prinfor, 2834 slba, apptag, appmask, &reftag); 2835 if (status) { 2836 goto invalid; 2837 } 2838 2839 apptag = le16_to_cpu(copy->apptag); 2840 appmask = le16_to_cpu(copy->appmask); 2841 2842 if (prinfow & NVME_PRINFO_PRACT) { 2843 status = nvme_check_prinfo(ns, prinfow, iocb->slba, iocb->reftag); 2844 if (status) { 2845 goto invalid; 2846 } 2847 2848 nvme_dif_pract_generate_dif(ns, iocb->bounce, len, mbounce, mlen, 2849 apptag, &iocb->reftag); 2850 } else { 2851 status = nvme_dif_check(ns, iocb->bounce, len, mbounce, mlen, 2852 prinfow, iocb->slba, apptag, appmask, 2853 &iocb->reftag); 2854 if (status) { 2855 goto invalid; 2856 } 2857 } 2858 } 2859 2860 status = nvme_check_bounds(ns, iocb->slba, nlb); 2861 if (status) { 2862 goto invalid; 2863 } 2864 2865 if (ns->params.zoned) { 2866 status = nvme_check_zone_write(ns, iocb->zone, iocb->slba, nlb); 2867 if (status) { 2868 goto invalid; 2869 } 2870 2871 if (!(iocb->zone->d.za & NVME_ZA_ZRWA_VALID)) { 2872 iocb->zone->w_ptr += nlb; 2873 } 2874 } 2875 2876 qemu_iovec_reset(&iocb->iov); 2877 qemu_iovec_add(&iocb->iov, iocb->bounce, len); 2878 2879 iocb->aiocb = blk_aio_pwritev(ns->blkconf.blk, nvme_l2b(ns, iocb->slba), 2880 &iocb->iov, 0, nvme_copy_out_cb, iocb); 2881 2882 return; 2883 2884 invalid: 2885 req->status = status; 2886 iocb->aiocb = NULL; 2887 if (iocb->bh) { 2888 qemu_bh_schedule(iocb->bh); 2889 } 2890 2891 return; 2892 2893 out: 2894 nvme_copy_cb(iocb, ret); 2895 } 2896 2897 static void nvme_copy_in_cb(void *opaque, int ret) 2898 { 2899 NvmeCopyAIOCB *iocb = opaque; 2900 NvmeRequest *req = iocb->req; 2901 NvmeNamespace *ns = req->ns; 2902 uint64_t slba; 2903 uint32_t nlb; 2904 2905 if (ret < 0) { 2906 iocb->ret = ret; 2907 goto out; 2908 } else if (iocb->ret < 0) { 2909 goto out; 2910 } 2911 2912 if (!ns->lbaf.ms) { 2913 nvme_copy_in_completed_cb(iocb, 0); 2914 return; 2915 } 2916 2917 nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, &slba, 2918 &nlb, NULL, NULL, NULL); 2919 2920 qemu_iovec_reset(&iocb->iov); 2921 qemu_iovec_add(&iocb->iov, iocb->bounce + nvme_l2b(ns, nlb), 2922 nvme_m2b(ns, nlb)); 2923 2924 iocb->aiocb = blk_aio_preadv(ns->blkconf.blk, nvme_moff(ns, slba), 2925 &iocb->iov, 0, nvme_copy_in_completed_cb, 2926 iocb); 2927 return; 2928 2929 out: 2930 nvme_copy_cb(iocb, iocb->ret); 2931 } 2932 2933 static void nvme_copy_cb(void *opaque, int ret) 2934 { 2935 NvmeCopyAIOCB *iocb = opaque; 2936 NvmeRequest *req = iocb->req; 2937 NvmeNamespace *ns = req->ns; 2938 uint64_t slba; 2939 uint32_t nlb; 2940 size_t len; 2941 uint16_t status; 2942 2943 if (ret < 0) { 2944 iocb->ret = ret; 2945 goto done; 2946 } else if (iocb->ret < 0) { 2947 goto done; 2948 } 2949 2950 if (iocb->idx == iocb->nr) { 2951 goto done; 2952 } 2953 2954 nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, &slba, 2955 &nlb, NULL, NULL, NULL); 2956 len = nvme_l2b(ns, nlb); 2957 2958 trace_pci_nvme_copy_source_range(slba, nlb); 2959 2960 if (nlb > le16_to_cpu(ns->id_ns.mssrl)) { 2961 status = NVME_CMD_SIZE_LIMIT | NVME_DNR; 2962 goto invalid; 2963 } 2964 2965 status = nvme_check_bounds(ns, slba, nlb); 2966 if (status) { 2967 goto invalid; 2968 } 2969 2970 if (NVME_ERR_REC_DULBE(ns->features.err_rec)) { 2971 status = nvme_check_dulbe(ns, slba, nlb); 2972 if (status) { 2973 goto invalid; 2974 } 2975 } 2976 2977 if (ns->params.zoned) { 2978 status = nvme_check_zone_read(ns, slba, nlb); 2979 if (status) { 2980 goto invalid; 2981 } 2982 } 2983 2984 qemu_iovec_reset(&iocb->iov); 2985 qemu_iovec_add(&iocb->iov, iocb->bounce, len); 2986 2987 iocb->aiocb = blk_aio_preadv(ns->blkconf.blk, nvme_l2b(ns, slba), 2988 &iocb->iov, 0, nvme_copy_in_cb, iocb); 2989 return; 2990 2991 invalid: 2992 req->status = status; 2993 done: 2994 iocb->aiocb = NULL; 2995 if (iocb->bh) { 2996 qemu_bh_schedule(iocb->bh); 2997 } 2998 } 2999 3000 3001 static uint16_t nvme_copy(NvmeCtrl *n, NvmeRequest *req) 3002 { 3003 NvmeNamespace *ns = req->ns; 3004 NvmeCopyCmd *copy = (NvmeCopyCmd *)&req->cmd; 3005 NvmeCopyAIOCB *iocb = blk_aio_get(&nvme_copy_aiocb_info, ns->blkconf.blk, 3006 nvme_misc_cb, req); 3007 uint16_t nr = copy->nr + 1; 3008 uint8_t format = copy->control[0] & 0xf; 3009 uint16_t prinfor = ((copy->control[0] >> 4) & 0xf); 3010 uint16_t prinfow = ((copy->control[2] >> 2) & 0xf); 3011 size_t len = sizeof(NvmeCopySourceRangeFormat0); 3012 3013 uint16_t status; 3014 3015 trace_pci_nvme_copy(nvme_cid(req), nvme_nsid(ns), nr, format); 3016 3017 iocb->ranges = NULL; 3018 iocb->zone = NULL; 3019 3020 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps) && 3021 ((prinfor & NVME_PRINFO_PRACT) != (prinfow & NVME_PRINFO_PRACT))) { 3022 status = NVME_INVALID_FIELD | NVME_DNR; 3023 goto invalid; 3024 } 3025 3026 if (!(n->id_ctrl.ocfs & (1 << format))) { 3027 trace_pci_nvme_err_copy_invalid_format(format); 3028 status = NVME_INVALID_FIELD | NVME_DNR; 3029 goto invalid; 3030 } 3031 3032 if (nr > ns->id_ns.msrc + 1) { 3033 status = NVME_CMD_SIZE_LIMIT | NVME_DNR; 3034 goto invalid; 3035 } 3036 3037 if ((ns->pif == 0x0 && format != 0x0) || 3038 (ns->pif != 0x0 && format != 0x1)) { 3039 status = NVME_INVALID_FORMAT | NVME_DNR; 3040 goto invalid; 3041 } 3042 3043 if (ns->pif) { 3044 len = sizeof(NvmeCopySourceRangeFormat1); 3045 } 3046 3047 iocb->format = format; 3048 iocb->ranges = g_malloc_n(nr, len); 3049 status = nvme_h2c(n, (uint8_t *)iocb->ranges, len * nr, req); 3050 if (status) { 3051 goto invalid; 3052 } 3053 3054 iocb->slba = le64_to_cpu(copy->sdlba); 3055 3056 if (ns->params.zoned) { 3057 iocb->zone = nvme_get_zone_by_slba(ns, iocb->slba); 3058 if (!iocb->zone) { 3059 status = NVME_LBA_RANGE | NVME_DNR; 3060 goto invalid; 3061 } 3062 3063 status = nvme_zrm_auto(n, ns, iocb->zone); 3064 if (status) { 3065 goto invalid; 3066 } 3067 } 3068 3069 iocb->req = req; 3070 iocb->bh = qemu_bh_new(nvme_copy_bh, iocb); 3071 iocb->ret = 0; 3072 iocb->nr = nr; 3073 iocb->idx = 0; 3074 iocb->reftag = le32_to_cpu(copy->reftag); 3075 iocb->reftag |= (uint64_t)le32_to_cpu(copy->cdw3) << 32; 3076 iocb->bounce = g_malloc_n(le16_to_cpu(ns->id_ns.mssrl), 3077 ns->lbasz + ns->lbaf.ms); 3078 3079 qemu_iovec_init(&iocb->iov, 1); 3080 3081 block_acct_start(blk_get_stats(ns->blkconf.blk), &iocb->acct.read, 0, 3082 BLOCK_ACCT_READ); 3083 block_acct_start(blk_get_stats(ns->blkconf.blk), &iocb->acct.write, 0, 3084 BLOCK_ACCT_WRITE); 3085 3086 req->aiocb = &iocb->common; 3087 nvme_copy_cb(iocb, 0); 3088 3089 return NVME_NO_COMPLETE; 3090 3091 invalid: 3092 g_free(iocb->ranges); 3093 qemu_aio_unref(iocb); 3094 return status; 3095 } 3096 3097 static uint16_t nvme_compare(NvmeCtrl *n, NvmeRequest *req) 3098 { 3099 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; 3100 NvmeNamespace *ns = req->ns; 3101 BlockBackend *blk = ns->blkconf.blk; 3102 uint64_t slba = le64_to_cpu(rw->slba); 3103 uint32_t nlb = le16_to_cpu(rw->nlb) + 1; 3104 uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control)); 3105 size_t data_len = nvme_l2b(ns, nlb); 3106 size_t len = data_len; 3107 int64_t offset = nvme_l2b(ns, slba); 3108 struct nvme_compare_ctx *ctx = NULL; 3109 uint16_t status; 3110 3111 trace_pci_nvme_compare(nvme_cid(req), nvme_nsid(ns), slba, nlb); 3112 3113 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps) && (prinfo & NVME_PRINFO_PRACT)) { 3114 return NVME_INVALID_PROT_INFO | NVME_DNR; 3115 } 3116 3117 if (nvme_ns_ext(ns)) { 3118 len += nvme_m2b(ns, nlb); 3119 } 3120 3121 status = nvme_check_mdts(n, len); 3122 if (status) { 3123 return status; 3124 } 3125 3126 status = nvme_check_bounds(ns, slba, nlb); 3127 if (status) { 3128 return status; 3129 } 3130 3131 if (NVME_ERR_REC_DULBE(ns->features.err_rec)) { 3132 status = nvme_check_dulbe(ns, slba, nlb); 3133 if (status) { 3134 return status; 3135 } 3136 } 3137 3138 status = nvme_map_dptr(n, &req->sg, len, &req->cmd); 3139 if (status) { 3140 return status; 3141 } 3142 3143 ctx = g_new(struct nvme_compare_ctx, 1); 3144 ctx->data.bounce = g_malloc(data_len); 3145 3146 req->opaque = ctx; 3147 3148 qemu_iovec_init(&ctx->data.iov, 1); 3149 qemu_iovec_add(&ctx->data.iov, ctx->data.bounce, data_len); 3150 3151 block_acct_start(blk_get_stats(blk), &req->acct, data_len, 3152 BLOCK_ACCT_READ); 3153 req->aiocb = blk_aio_preadv(blk, offset, &ctx->data.iov, 0, 3154 nvme_compare_data_cb, req); 3155 3156 return NVME_NO_COMPLETE; 3157 } 3158 3159 typedef struct NvmeFlushAIOCB { 3160 BlockAIOCB common; 3161 BlockAIOCB *aiocb; 3162 NvmeRequest *req; 3163 QEMUBH *bh; 3164 int ret; 3165 3166 NvmeNamespace *ns; 3167 uint32_t nsid; 3168 bool broadcast; 3169 } NvmeFlushAIOCB; 3170 3171 static void nvme_flush_cancel(BlockAIOCB *acb) 3172 { 3173 NvmeFlushAIOCB *iocb = container_of(acb, NvmeFlushAIOCB, common); 3174 3175 iocb->ret = -ECANCELED; 3176 3177 if (iocb->aiocb) { 3178 blk_aio_cancel_async(iocb->aiocb); 3179 } 3180 } 3181 3182 static const AIOCBInfo nvme_flush_aiocb_info = { 3183 .aiocb_size = sizeof(NvmeFlushAIOCB), 3184 .cancel_async = nvme_flush_cancel, 3185 .get_aio_context = nvme_get_aio_context, 3186 }; 3187 3188 static void nvme_flush_ns_cb(void *opaque, int ret) 3189 { 3190 NvmeFlushAIOCB *iocb = opaque; 3191 NvmeNamespace *ns = iocb->ns; 3192 3193 if (ret < 0) { 3194 iocb->ret = ret; 3195 goto out; 3196 } else if (iocb->ret < 0) { 3197 goto out; 3198 } 3199 3200 if (ns) { 3201 trace_pci_nvme_flush_ns(iocb->nsid); 3202 3203 iocb->ns = NULL; 3204 iocb->aiocb = blk_aio_flush(ns->blkconf.blk, nvme_flush_ns_cb, iocb); 3205 return; 3206 } 3207 3208 out: 3209 iocb->aiocb = NULL; 3210 qemu_bh_schedule(iocb->bh); 3211 } 3212 3213 static void nvme_flush_bh(void *opaque) 3214 { 3215 NvmeFlushAIOCB *iocb = opaque; 3216 NvmeRequest *req = iocb->req; 3217 NvmeCtrl *n = nvme_ctrl(req); 3218 int i; 3219 3220 if (iocb->ret < 0) { 3221 goto done; 3222 } 3223 3224 if (iocb->broadcast) { 3225 for (i = iocb->nsid + 1; i <= NVME_MAX_NAMESPACES; i++) { 3226 iocb->ns = nvme_ns(n, i); 3227 if (iocb->ns) { 3228 iocb->nsid = i; 3229 break; 3230 } 3231 } 3232 } 3233 3234 if (!iocb->ns) { 3235 goto done; 3236 } 3237 3238 nvme_flush_ns_cb(iocb, 0); 3239 return; 3240 3241 done: 3242 qemu_bh_delete(iocb->bh); 3243 iocb->bh = NULL; 3244 3245 iocb->common.cb(iocb->common.opaque, iocb->ret); 3246 3247 qemu_aio_unref(iocb); 3248 3249 return; 3250 } 3251 3252 static uint16_t nvme_flush(NvmeCtrl *n, NvmeRequest *req) 3253 { 3254 NvmeFlushAIOCB *iocb; 3255 uint32_t nsid = le32_to_cpu(req->cmd.nsid); 3256 uint16_t status; 3257 3258 iocb = qemu_aio_get(&nvme_flush_aiocb_info, NULL, nvme_misc_cb, req); 3259 3260 iocb->req = req; 3261 iocb->bh = qemu_bh_new(nvme_flush_bh, iocb); 3262 iocb->ret = 0; 3263 iocb->ns = NULL; 3264 iocb->nsid = 0; 3265 iocb->broadcast = (nsid == NVME_NSID_BROADCAST); 3266 3267 if (!iocb->broadcast) { 3268 if (!nvme_nsid_valid(n, nsid)) { 3269 status = NVME_INVALID_NSID | NVME_DNR; 3270 goto out; 3271 } 3272 3273 iocb->ns = nvme_ns(n, nsid); 3274 if (!iocb->ns) { 3275 status = NVME_INVALID_FIELD | NVME_DNR; 3276 goto out; 3277 } 3278 3279 iocb->nsid = nsid; 3280 } 3281 3282 req->aiocb = &iocb->common; 3283 qemu_bh_schedule(iocb->bh); 3284 3285 return NVME_NO_COMPLETE; 3286 3287 out: 3288 qemu_bh_delete(iocb->bh); 3289 iocb->bh = NULL; 3290 qemu_aio_unref(iocb); 3291 3292 return status; 3293 } 3294 3295 static uint16_t nvme_read(NvmeCtrl *n, NvmeRequest *req) 3296 { 3297 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; 3298 NvmeNamespace *ns = req->ns; 3299 uint64_t slba = le64_to_cpu(rw->slba); 3300 uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1; 3301 uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control)); 3302 uint64_t data_size = nvme_l2b(ns, nlb); 3303 uint64_t mapped_size = data_size; 3304 uint64_t data_offset; 3305 BlockBackend *blk = ns->blkconf.blk; 3306 uint16_t status; 3307 3308 if (nvme_ns_ext(ns)) { 3309 mapped_size += nvme_m2b(ns, nlb); 3310 3311 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) { 3312 bool pract = prinfo & NVME_PRINFO_PRACT; 3313 3314 if (pract && ns->lbaf.ms == nvme_pi_tuple_size(ns)) { 3315 mapped_size = data_size; 3316 } 3317 } 3318 } 3319 3320 trace_pci_nvme_read(nvme_cid(req), nvme_nsid(ns), nlb, mapped_size, slba); 3321 3322 status = nvme_check_mdts(n, mapped_size); 3323 if (status) { 3324 goto invalid; 3325 } 3326 3327 status = nvme_check_bounds(ns, slba, nlb); 3328 if (status) { 3329 goto invalid; 3330 } 3331 3332 if (ns->params.zoned) { 3333 status = nvme_check_zone_read(ns, slba, nlb); 3334 if (status) { 3335 trace_pci_nvme_err_zone_read_not_ok(slba, nlb, status); 3336 goto invalid; 3337 } 3338 } 3339 3340 if (NVME_ERR_REC_DULBE(ns->features.err_rec)) { 3341 status = nvme_check_dulbe(ns, slba, nlb); 3342 if (status) { 3343 goto invalid; 3344 } 3345 } 3346 3347 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) { 3348 return nvme_dif_rw(n, req); 3349 } 3350 3351 status = nvme_map_data(n, nlb, req); 3352 if (status) { 3353 goto invalid; 3354 } 3355 3356 data_offset = nvme_l2b(ns, slba); 3357 3358 block_acct_start(blk_get_stats(blk), &req->acct, data_size, 3359 BLOCK_ACCT_READ); 3360 nvme_blk_read(blk, data_offset, nvme_rw_cb, req); 3361 return NVME_NO_COMPLETE; 3362 3363 invalid: 3364 block_acct_invalid(blk_get_stats(blk), BLOCK_ACCT_READ); 3365 return status | NVME_DNR; 3366 } 3367 3368 static uint16_t nvme_do_write(NvmeCtrl *n, NvmeRequest *req, bool append, 3369 bool wrz) 3370 { 3371 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; 3372 NvmeNamespace *ns = req->ns; 3373 uint64_t slba = le64_to_cpu(rw->slba); 3374 uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1; 3375 uint16_t ctrl = le16_to_cpu(rw->control); 3376 uint8_t prinfo = NVME_RW_PRINFO(ctrl); 3377 uint64_t data_size = nvme_l2b(ns, nlb); 3378 uint64_t mapped_size = data_size; 3379 uint64_t data_offset; 3380 NvmeZone *zone; 3381 NvmeZonedResult *res = (NvmeZonedResult *)&req->cqe; 3382 BlockBackend *blk = ns->blkconf.blk; 3383 uint16_t status; 3384 3385 if (nvme_ns_ext(ns)) { 3386 mapped_size += nvme_m2b(ns, nlb); 3387 3388 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) { 3389 bool pract = prinfo & NVME_PRINFO_PRACT; 3390 3391 if (pract && ns->lbaf.ms == nvme_pi_tuple_size(ns)) { 3392 mapped_size -= nvme_m2b(ns, nlb); 3393 } 3394 } 3395 } 3396 3397 trace_pci_nvme_write(nvme_cid(req), nvme_io_opc_str(rw->opcode), 3398 nvme_nsid(ns), nlb, mapped_size, slba); 3399 3400 if (!wrz) { 3401 status = nvme_check_mdts(n, mapped_size); 3402 if (status) { 3403 goto invalid; 3404 } 3405 } 3406 3407 status = nvme_check_bounds(ns, slba, nlb); 3408 if (status) { 3409 goto invalid; 3410 } 3411 3412 if (ns->params.zoned) { 3413 zone = nvme_get_zone_by_slba(ns, slba); 3414 assert(zone); 3415 3416 if (append) { 3417 bool piremap = !!(ctrl & NVME_RW_PIREMAP); 3418 3419 if (unlikely(zone->d.za & NVME_ZA_ZRWA_VALID)) { 3420 return NVME_INVALID_ZONE_OP | NVME_DNR; 3421 } 3422 3423 if (unlikely(slba != zone->d.zslba)) { 3424 trace_pci_nvme_err_append_not_at_start(slba, zone->d.zslba); 3425 status = NVME_INVALID_FIELD; 3426 goto invalid; 3427 } 3428 3429 if (n->params.zasl && 3430 data_size > (uint64_t)n->page_size << n->params.zasl) { 3431 trace_pci_nvme_err_zasl(data_size); 3432 return NVME_INVALID_FIELD | NVME_DNR; 3433 } 3434 3435 slba = zone->w_ptr; 3436 rw->slba = cpu_to_le64(slba); 3437 res->slba = cpu_to_le64(slba); 3438 3439 switch (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) { 3440 case NVME_ID_NS_DPS_TYPE_1: 3441 if (!piremap) { 3442 return NVME_INVALID_PROT_INFO | NVME_DNR; 3443 } 3444 3445 /* fallthrough */ 3446 3447 case NVME_ID_NS_DPS_TYPE_2: 3448 if (piremap) { 3449 uint32_t reftag = le32_to_cpu(rw->reftag); 3450 rw->reftag = cpu_to_le32(reftag + (slba - zone->d.zslba)); 3451 } 3452 3453 break; 3454 3455 case NVME_ID_NS_DPS_TYPE_3: 3456 if (piremap) { 3457 return NVME_INVALID_PROT_INFO | NVME_DNR; 3458 } 3459 3460 break; 3461 } 3462 } 3463 3464 status = nvme_check_zone_write(ns, zone, slba, nlb); 3465 if (status) { 3466 goto invalid; 3467 } 3468 3469 status = nvme_zrm_auto(n, ns, zone); 3470 if (status) { 3471 goto invalid; 3472 } 3473 3474 if (!(zone->d.za & NVME_ZA_ZRWA_VALID)) { 3475 zone->w_ptr += nlb; 3476 } 3477 } 3478 3479 data_offset = nvme_l2b(ns, slba); 3480 3481 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) { 3482 return nvme_dif_rw(n, req); 3483 } 3484 3485 if (!wrz) { 3486 status = nvme_map_data(n, nlb, req); 3487 if (status) { 3488 goto invalid; 3489 } 3490 3491 block_acct_start(blk_get_stats(blk), &req->acct, data_size, 3492 BLOCK_ACCT_WRITE); 3493 nvme_blk_write(blk, data_offset, nvme_rw_cb, req); 3494 } else { 3495 req->aiocb = blk_aio_pwrite_zeroes(blk, data_offset, data_size, 3496 BDRV_REQ_MAY_UNMAP, nvme_rw_cb, 3497 req); 3498 } 3499 3500 return NVME_NO_COMPLETE; 3501 3502 invalid: 3503 block_acct_invalid(blk_get_stats(blk), BLOCK_ACCT_WRITE); 3504 return status | NVME_DNR; 3505 } 3506 3507 static inline uint16_t nvme_write(NvmeCtrl *n, NvmeRequest *req) 3508 { 3509 return nvme_do_write(n, req, false, false); 3510 } 3511 3512 static inline uint16_t nvme_write_zeroes(NvmeCtrl *n, NvmeRequest *req) 3513 { 3514 return nvme_do_write(n, req, false, true); 3515 } 3516 3517 static inline uint16_t nvme_zone_append(NvmeCtrl *n, NvmeRequest *req) 3518 { 3519 return nvme_do_write(n, req, true, false); 3520 } 3521 3522 static uint16_t nvme_get_mgmt_zone_slba_idx(NvmeNamespace *ns, NvmeCmd *c, 3523 uint64_t *slba, uint32_t *zone_idx) 3524 { 3525 uint32_t dw10 = le32_to_cpu(c->cdw10); 3526 uint32_t dw11 = le32_to_cpu(c->cdw11); 3527 3528 if (!ns->params.zoned) { 3529 trace_pci_nvme_err_invalid_opc(c->opcode); 3530 return NVME_INVALID_OPCODE | NVME_DNR; 3531 } 3532 3533 *slba = ((uint64_t)dw11) << 32 | dw10; 3534 if (unlikely(*slba >= ns->id_ns.nsze)) { 3535 trace_pci_nvme_err_invalid_lba_range(*slba, 0, ns->id_ns.nsze); 3536 *slba = 0; 3537 return NVME_LBA_RANGE | NVME_DNR; 3538 } 3539 3540 *zone_idx = nvme_zone_idx(ns, *slba); 3541 assert(*zone_idx < ns->num_zones); 3542 3543 return NVME_SUCCESS; 3544 } 3545 3546 typedef uint16_t (*op_handler_t)(NvmeNamespace *, NvmeZone *, NvmeZoneState, 3547 NvmeRequest *); 3548 3549 enum NvmeZoneProcessingMask { 3550 NVME_PROC_CURRENT_ZONE = 0, 3551 NVME_PROC_OPENED_ZONES = 1 << 0, 3552 NVME_PROC_CLOSED_ZONES = 1 << 1, 3553 NVME_PROC_READ_ONLY_ZONES = 1 << 2, 3554 NVME_PROC_FULL_ZONES = 1 << 3, 3555 }; 3556 3557 static uint16_t nvme_open_zone(NvmeNamespace *ns, NvmeZone *zone, 3558 NvmeZoneState state, NvmeRequest *req) 3559 { 3560 NvmeZoneSendCmd *cmd = (NvmeZoneSendCmd *)&req->cmd; 3561 int flags = 0; 3562 3563 if (cmd->zsflags & NVME_ZSFLAG_ZRWA_ALLOC) { 3564 uint16_t ozcs = le16_to_cpu(ns->id_ns_zoned->ozcs); 3565 3566 if (!(ozcs & NVME_ID_NS_ZONED_OZCS_ZRWASUP)) { 3567 return NVME_INVALID_ZONE_OP | NVME_DNR; 3568 } 3569 3570 if (zone->w_ptr % ns->zns.zrwafg) { 3571 return NVME_NOZRWA | NVME_DNR; 3572 } 3573 3574 flags = NVME_ZRM_ZRWA; 3575 } 3576 3577 return nvme_zrm_open_flags(nvme_ctrl(req), ns, zone, flags); 3578 } 3579 3580 static uint16_t nvme_close_zone(NvmeNamespace *ns, NvmeZone *zone, 3581 NvmeZoneState state, NvmeRequest *req) 3582 { 3583 return nvme_zrm_close(ns, zone); 3584 } 3585 3586 static uint16_t nvme_finish_zone(NvmeNamespace *ns, NvmeZone *zone, 3587 NvmeZoneState state, NvmeRequest *req) 3588 { 3589 return nvme_zrm_finish(ns, zone); 3590 } 3591 3592 static uint16_t nvme_offline_zone(NvmeNamespace *ns, NvmeZone *zone, 3593 NvmeZoneState state, NvmeRequest *req) 3594 { 3595 switch (state) { 3596 case NVME_ZONE_STATE_READ_ONLY: 3597 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_OFFLINE); 3598 /* fall through */ 3599 case NVME_ZONE_STATE_OFFLINE: 3600 return NVME_SUCCESS; 3601 default: 3602 return NVME_ZONE_INVAL_TRANSITION; 3603 } 3604 } 3605 3606 static uint16_t nvme_set_zd_ext(NvmeNamespace *ns, NvmeZone *zone) 3607 { 3608 uint16_t status; 3609 uint8_t state = nvme_get_zone_state(zone); 3610 3611 if (state == NVME_ZONE_STATE_EMPTY) { 3612 status = nvme_aor_check(ns, 1, 0); 3613 if (status) { 3614 return status; 3615 } 3616 nvme_aor_inc_active(ns); 3617 zone->d.za |= NVME_ZA_ZD_EXT_VALID; 3618 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_CLOSED); 3619 return NVME_SUCCESS; 3620 } 3621 3622 return NVME_ZONE_INVAL_TRANSITION; 3623 } 3624 3625 static uint16_t nvme_bulk_proc_zone(NvmeNamespace *ns, NvmeZone *zone, 3626 enum NvmeZoneProcessingMask proc_mask, 3627 op_handler_t op_hndlr, NvmeRequest *req) 3628 { 3629 uint16_t status = NVME_SUCCESS; 3630 NvmeZoneState zs = nvme_get_zone_state(zone); 3631 bool proc_zone; 3632 3633 switch (zs) { 3634 case NVME_ZONE_STATE_IMPLICITLY_OPEN: 3635 case NVME_ZONE_STATE_EXPLICITLY_OPEN: 3636 proc_zone = proc_mask & NVME_PROC_OPENED_ZONES; 3637 break; 3638 case NVME_ZONE_STATE_CLOSED: 3639 proc_zone = proc_mask & NVME_PROC_CLOSED_ZONES; 3640 break; 3641 case NVME_ZONE_STATE_READ_ONLY: 3642 proc_zone = proc_mask & NVME_PROC_READ_ONLY_ZONES; 3643 break; 3644 case NVME_ZONE_STATE_FULL: 3645 proc_zone = proc_mask & NVME_PROC_FULL_ZONES; 3646 break; 3647 default: 3648 proc_zone = false; 3649 } 3650 3651 if (proc_zone) { 3652 status = op_hndlr(ns, zone, zs, req); 3653 } 3654 3655 return status; 3656 } 3657 3658 static uint16_t nvme_do_zone_op(NvmeNamespace *ns, NvmeZone *zone, 3659 enum NvmeZoneProcessingMask proc_mask, 3660 op_handler_t op_hndlr, NvmeRequest *req) 3661 { 3662 NvmeZone *next; 3663 uint16_t status = NVME_SUCCESS; 3664 int i; 3665 3666 if (!proc_mask) { 3667 status = op_hndlr(ns, zone, nvme_get_zone_state(zone), req); 3668 } else { 3669 if (proc_mask & NVME_PROC_CLOSED_ZONES) { 3670 QTAILQ_FOREACH_SAFE(zone, &ns->closed_zones, entry, next) { 3671 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr, 3672 req); 3673 if (status && status != NVME_NO_COMPLETE) { 3674 goto out; 3675 } 3676 } 3677 } 3678 if (proc_mask & NVME_PROC_OPENED_ZONES) { 3679 QTAILQ_FOREACH_SAFE(zone, &ns->imp_open_zones, entry, next) { 3680 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr, 3681 req); 3682 if (status && status != NVME_NO_COMPLETE) { 3683 goto out; 3684 } 3685 } 3686 3687 QTAILQ_FOREACH_SAFE(zone, &ns->exp_open_zones, entry, next) { 3688 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr, 3689 req); 3690 if (status && status != NVME_NO_COMPLETE) { 3691 goto out; 3692 } 3693 } 3694 } 3695 if (proc_mask & NVME_PROC_FULL_ZONES) { 3696 QTAILQ_FOREACH_SAFE(zone, &ns->full_zones, entry, next) { 3697 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr, 3698 req); 3699 if (status && status != NVME_NO_COMPLETE) { 3700 goto out; 3701 } 3702 } 3703 } 3704 3705 if (proc_mask & NVME_PROC_READ_ONLY_ZONES) { 3706 for (i = 0; i < ns->num_zones; i++, zone++) { 3707 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr, 3708 req); 3709 if (status && status != NVME_NO_COMPLETE) { 3710 goto out; 3711 } 3712 } 3713 } 3714 } 3715 3716 out: 3717 return status; 3718 } 3719 3720 typedef struct NvmeZoneResetAIOCB { 3721 BlockAIOCB common; 3722 BlockAIOCB *aiocb; 3723 NvmeRequest *req; 3724 QEMUBH *bh; 3725 int ret; 3726 3727 bool all; 3728 int idx; 3729 NvmeZone *zone; 3730 } NvmeZoneResetAIOCB; 3731 3732 static void nvme_zone_reset_cancel(BlockAIOCB *aiocb) 3733 { 3734 NvmeZoneResetAIOCB *iocb = container_of(aiocb, NvmeZoneResetAIOCB, common); 3735 NvmeRequest *req = iocb->req; 3736 NvmeNamespace *ns = req->ns; 3737 3738 iocb->idx = ns->num_zones; 3739 3740 iocb->ret = -ECANCELED; 3741 3742 if (iocb->aiocb) { 3743 blk_aio_cancel_async(iocb->aiocb); 3744 iocb->aiocb = NULL; 3745 } 3746 } 3747 3748 static const AIOCBInfo nvme_zone_reset_aiocb_info = { 3749 .aiocb_size = sizeof(NvmeZoneResetAIOCB), 3750 .cancel_async = nvme_zone_reset_cancel, 3751 }; 3752 3753 static void nvme_zone_reset_bh(void *opaque) 3754 { 3755 NvmeZoneResetAIOCB *iocb = opaque; 3756 3757 iocb->common.cb(iocb->common.opaque, iocb->ret); 3758 3759 qemu_bh_delete(iocb->bh); 3760 iocb->bh = NULL; 3761 qemu_aio_unref(iocb); 3762 } 3763 3764 static void nvme_zone_reset_cb(void *opaque, int ret); 3765 3766 static void nvme_zone_reset_epilogue_cb(void *opaque, int ret) 3767 { 3768 NvmeZoneResetAIOCB *iocb = opaque; 3769 NvmeRequest *req = iocb->req; 3770 NvmeNamespace *ns = req->ns; 3771 int64_t moff; 3772 int count; 3773 3774 if (ret < 0) { 3775 nvme_zone_reset_cb(iocb, ret); 3776 return; 3777 } 3778 3779 if (!ns->lbaf.ms) { 3780 nvme_zone_reset_cb(iocb, 0); 3781 return; 3782 } 3783 3784 moff = nvme_moff(ns, iocb->zone->d.zslba); 3785 count = nvme_m2b(ns, ns->zone_size); 3786 3787 iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk, moff, count, 3788 BDRV_REQ_MAY_UNMAP, 3789 nvme_zone_reset_cb, iocb); 3790 return; 3791 } 3792 3793 static void nvme_zone_reset_cb(void *opaque, int ret) 3794 { 3795 NvmeZoneResetAIOCB *iocb = opaque; 3796 NvmeRequest *req = iocb->req; 3797 NvmeNamespace *ns = req->ns; 3798 3799 if (ret < 0) { 3800 iocb->ret = ret; 3801 goto done; 3802 } 3803 3804 if (iocb->zone) { 3805 nvme_zrm_reset(ns, iocb->zone); 3806 3807 if (!iocb->all) { 3808 goto done; 3809 } 3810 } 3811 3812 while (iocb->idx < ns->num_zones) { 3813 NvmeZone *zone = &ns->zone_array[iocb->idx++]; 3814 3815 switch (nvme_get_zone_state(zone)) { 3816 case NVME_ZONE_STATE_EMPTY: 3817 if (!iocb->all) { 3818 goto done; 3819 } 3820 3821 continue; 3822 3823 case NVME_ZONE_STATE_EXPLICITLY_OPEN: 3824 case NVME_ZONE_STATE_IMPLICITLY_OPEN: 3825 case NVME_ZONE_STATE_CLOSED: 3826 case NVME_ZONE_STATE_FULL: 3827 iocb->zone = zone; 3828 break; 3829 3830 default: 3831 continue; 3832 } 3833 3834 trace_pci_nvme_zns_zone_reset(zone->d.zslba); 3835 3836 iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk, 3837 nvme_l2b(ns, zone->d.zslba), 3838 nvme_l2b(ns, ns->zone_size), 3839 BDRV_REQ_MAY_UNMAP, 3840 nvme_zone_reset_epilogue_cb, 3841 iocb); 3842 return; 3843 } 3844 3845 done: 3846 iocb->aiocb = NULL; 3847 if (iocb->bh) { 3848 qemu_bh_schedule(iocb->bh); 3849 } 3850 } 3851 3852 static uint16_t nvme_zone_mgmt_send_zrwa_flush(NvmeCtrl *n, NvmeZone *zone, 3853 uint64_t elba, NvmeRequest *req) 3854 { 3855 NvmeNamespace *ns = req->ns; 3856 uint16_t ozcs = le16_to_cpu(ns->id_ns_zoned->ozcs); 3857 uint64_t wp = zone->d.wp; 3858 uint32_t nlb = elba - wp + 1; 3859 uint16_t status; 3860 3861 3862 if (!(ozcs & NVME_ID_NS_ZONED_OZCS_ZRWASUP)) { 3863 return NVME_INVALID_ZONE_OP | NVME_DNR; 3864 } 3865 3866 if (!(zone->d.za & NVME_ZA_ZRWA_VALID)) { 3867 return NVME_INVALID_FIELD | NVME_DNR; 3868 } 3869 3870 if (elba < wp || elba > wp + ns->zns.zrwas) { 3871 return NVME_ZONE_BOUNDARY_ERROR | NVME_DNR; 3872 } 3873 3874 if (nlb % ns->zns.zrwafg) { 3875 return NVME_INVALID_FIELD | NVME_DNR; 3876 } 3877 3878 status = nvme_zrm_auto(n, ns, zone); 3879 if (status) { 3880 return status; 3881 } 3882 3883 zone->w_ptr += nlb; 3884 3885 nvme_advance_zone_wp(ns, zone, nlb); 3886 3887 return NVME_SUCCESS; 3888 } 3889 3890 static uint16_t nvme_zone_mgmt_send(NvmeCtrl *n, NvmeRequest *req) 3891 { 3892 NvmeZoneSendCmd *cmd = (NvmeZoneSendCmd *)&req->cmd; 3893 NvmeNamespace *ns = req->ns; 3894 NvmeZone *zone; 3895 NvmeZoneResetAIOCB *iocb; 3896 uint8_t *zd_ext; 3897 uint64_t slba = 0; 3898 uint32_t zone_idx = 0; 3899 uint16_t status; 3900 uint8_t action = cmd->zsa; 3901 bool all; 3902 enum NvmeZoneProcessingMask proc_mask = NVME_PROC_CURRENT_ZONE; 3903 3904 all = cmd->zsflags & NVME_ZSFLAG_SELECT_ALL; 3905 3906 req->status = NVME_SUCCESS; 3907 3908 if (!all) { 3909 status = nvme_get_mgmt_zone_slba_idx(ns, &req->cmd, &slba, &zone_idx); 3910 if (status) { 3911 return status; 3912 } 3913 } 3914 3915 zone = &ns->zone_array[zone_idx]; 3916 if (slba != zone->d.zslba && action != NVME_ZONE_ACTION_ZRWA_FLUSH) { 3917 trace_pci_nvme_err_unaligned_zone_cmd(action, slba, zone->d.zslba); 3918 return NVME_INVALID_FIELD | NVME_DNR; 3919 } 3920 3921 switch (action) { 3922 3923 case NVME_ZONE_ACTION_OPEN: 3924 if (all) { 3925 proc_mask = NVME_PROC_CLOSED_ZONES; 3926 } 3927 trace_pci_nvme_open_zone(slba, zone_idx, all); 3928 status = nvme_do_zone_op(ns, zone, proc_mask, nvme_open_zone, req); 3929 break; 3930 3931 case NVME_ZONE_ACTION_CLOSE: 3932 if (all) { 3933 proc_mask = NVME_PROC_OPENED_ZONES; 3934 } 3935 trace_pci_nvme_close_zone(slba, zone_idx, all); 3936 status = nvme_do_zone_op(ns, zone, proc_mask, nvme_close_zone, req); 3937 break; 3938 3939 case NVME_ZONE_ACTION_FINISH: 3940 if (all) { 3941 proc_mask = NVME_PROC_OPENED_ZONES | NVME_PROC_CLOSED_ZONES; 3942 } 3943 trace_pci_nvme_finish_zone(slba, zone_idx, all); 3944 status = nvme_do_zone_op(ns, zone, proc_mask, nvme_finish_zone, req); 3945 break; 3946 3947 case NVME_ZONE_ACTION_RESET: 3948 trace_pci_nvme_reset_zone(slba, zone_idx, all); 3949 3950 iocb = blk_aio_get(&nvme_zone_reset_aiocb_info, ns->blkconf.blk, 3951 nvme_misc_cb, req); 3952 3953 iocb->req = req; 3954 iocb->bh = qemu_bh_new(nvme_zone_reset_bh, iocb); 3955 iocb->ret = 0; 3956 iocb->all = all; 3957 iocb->idx = zone_idx; 3958 iocb->zone = NULL; 3959 3960 req->aiocb = &iocb->common; 3961 nvme_zone_reset_cb(iocb, 0); 3962 3963 return NVME_NO_COMPLETE; 3964 3965 case NVME_ZONE_ACTION_OFFLINE: 3966 if (all) { 3967 proc_mask = NVME_PROC_READ_ONLY_ZONES; 3968 } 3969 trace_pci_nvme_offline_zone(slba, zone_idx, all); 3970 status = nvme_do_zone_op(ns, zone, proc_mask, nvme_offline_zone, req); 3971 break; 3972 3973 case NVME_ZONE_ACTION_SET_ZD_EXT: 3974 trace_pci_nvme_set_descriptor_extension(slba, zone_idx); 3975 if (all || !ns->params.zd_extension_size) { 3976 return NVME_INVALID_FIELD | NVME_DNR; 3977 } 3978 zd_ext = nvme_get_zd_extension(ns, zone_idx); 3979 status = nvme_h2c(n, zd_ext, ns->params.zd_extension_size, req); 3980 if (status) { 3981 trace_pci_nvme_err_zd_extension_map_error(zone_idx); 3982 return status; 3983 } 3984 3985 status = nvme_set_zd_ext(ns, zone); 3986 if (status == NVME_SUCCESS) { 3987 trace_pci_nvme_zd_extension_set(zone_idx); 3988 return status; 3989 } 3990 break; 3991 3992 case NVME_ZONE_ACTION_ZRWA_FLUSH: 3993 if (all) { 3994 return NVME_INVALID_FIELD | NVME_DNR; 3995 } 3996 3997 return nvme_zone_mgmt_send_zrwa_flush(n, zone, slba, req); 3998 3999 default: 4000 trace_pci_nvme_err_invalid_mgmt_action(action); 4001 status = NVME_INVALID_FIELD; 4002 } 4003 4004 if (status == NVME_ZONE_INVAL_TRANSITION) { 4005 trace_pci_nvme_err_invalid_zone_state_transition(action, slba, 4006 zone->d.za); 4007 } 4008 if (status) { 4009 status |= NVME_DNR; 4010 } 4011 4012 return status; 4013 } 4014 4015 static bool nvme_zone_matches_filter(uint32_t zafs, NvmeZone *zl) 4016 { 4017 NvmeZoneState zs = nvme_get_zone_state(zl); 4018 4019 switch (zafs) { 4020 case NVME_ZONE_REPORT_ALL: 4021 return true; 4022 case NVME_ZONE_REPORT_EMPTY: 4023 return zs == NVME_ZONE_STATE_EMPTY; 4024 case NVME_ZONE_REPORT_IMPLICITLY_OPEN: 4025 return zs == NVME_ZONE_STATE_IMPLICITLY_OPEN; 4026 case NVME_ZONE_REPORT_EXPLICITLY_OPEN: 4027 return zs == NVME_ZONE_STATE_EXPLICITLY_OPEN; 4028 case NVME_ZONE_REPORT_CLOSED: 4029 return zs == NVME_ZONE_STATE_CLOSED; 4030 case NVME_ZONE_REPORT_FULL: 4031 return zs == NVME_ZONE_STATE_FULL; 4032 case NVME_ZONE_REPORT_READ_ONLY: 4033 return zs == NVME_ZONE_STATE_READ_ONLY; 4034 case NVME_ZONE_REPORT_OFFLINE: 4035 return zs == NVME_ZONE_STATE_OFFLINE; 4036 default: 4037 return false; 4038 } 4039 } 4040 4041 static uint16_t nvme_zone_mgmt_recv(NvmeCtrl *n, NvmeRequest *req) 4042 { 4043 NvmeCmd *cmd = (NvmeCmd *)&req->cmd; 4044 NvmeNamespace *ns = req->ns; 4045 /* cdw12 is zero-based number of dwords to return. Convert to bytes */ 4046 uint32_t data_size = (le32_to_cpu(cmd->cdw12) + 1) << 2; 4047 uint32_t dw13 = le32_to_cpu(cmd->cdw13); 4048 uint32_t zone_idx, zra, zrasf, partial; 4049 uint64_t max_zones, nr_zones = 0; 4050 uint16_t status; 4051 uint64_t slba; 4052 NvmeZoneDescr *z; 4053 NvmeZone *zone; 4054 NvmeZoneReportHeader *header; 4055 void *buf, *buf_p; 4056 size_t zone_entry_sz; 4057 int i; 4058 4059 req->status = NVME_SUCCESS; 4060 4061 status = nvme_get_mgmt_zone_slba_idx(ns, cmd, &slba, &zone_idx); 4062 if (status) { 4063 return status; 4064 } 4065 4066 zra = dw13 & 0xff; 4067 if (zra != NVME_ZONE_REPORT && zra != NVME_ZONE_REPORT_EXTENDED) { 4068 return NVME_INVALID_FIELD | NVME_DNR; 4069 } 4070 if (zra == NVME_ZONE_REPORT_EXTENDED && !ns->params.zd_extension_size) { 4071 return NVME_INVALID_FIELD | NVME_DNR; 4072 } 4073 4074 zrasf = (dw13 >> 8) & 0xff; 4075 if (zrasf > NVME_ZONE_REPORT_OFFLINE) { 4076 return NVME_INVALID_FIELD | NVME_DNR; 4077 } 4078 4079 if (data_size < sizeof(NvmeZoneReportHeader)) { 4080 return NVME_INVALID_FIELD | NVME_DNR; 4081 } 4082 4083 status = nvme_check_mdts(n, data_size); 4084 if (status) { 4085 return status; 4086 } 4087 4088 partial = (dw13 >> 16) & 0x01; 4089 4090 zone_entry_sz = sizeof(NvmeZoneDescr); 4091 if (zra == NVME_ZONE_REPORT_EXTENDED) { 4092 zone_entry_sz += ns->params.zd_extension_size; 4093 } 4094 4095 max_zones = (data_size - sizeof(NvmeZoneReportHeader)) / zone_entry_sz; 4096 buf = g_malloc0(data_size); 4097 4098 zone = &ns->zone_array[zone_idx]; 4099 for (i = zone_idx; i < ns->num_zones; i++) { 4100 if (partial && nr_zones >= max_zones) { 4101 break; 4102 } 4103 if (nvme_zone_matches_filter(zrasf, zone++)) { 4104 nr_zones++; 4105 } 4106 } 4107 header = (NvmeZoneReportHeader *)buf; 4108 header->nr_zones = cpu_to_le64(nr_zones); 4109 4110 buf_p = buf + sizeof(NvmeZoneReportHeader); 4111 for (; zone_idx < ns->num_zones && max_zones > 0; zone_idx++) { 4112 zone = &ns->zone_array[zone_idx]; 4113 if (nvme_zone_matches_filter(zrasf, zone)) { 4114 z = (NvmeZoneDescr *)buf_p; 4115 buf_p += sizeof(NvmeZoneDescr); 4116 4117 z->zt = zone->d.zt; 4118 z->zs = zone->d.zs; 4119 z->zcap = cpu_to_le64(zone->d.zcap); 4120 z->zslba = cpu_to_le64(zone->d.zslba); 4121 z->za = zone->d.za; 4122 4123 if (nvme_wp_is_valid(zone)) { 4124 z->wp = cpu_to_le64(zone->d.wp); 4125 } else { 4126 z->wp = cpu_to_le64(~0ULL); 4127 } 4128 4129 if (zra == NVME_ZONE_REPORT_EXTENDED) { 4130 if (zone->d.za & NVME_ZA_ZD_EXT_VALID) { 4131 memcpy(buf_p, nvme_get_zd_extension(ns, zone_idx), 4132 ns->params.zd_extension_size); 4133 } 4134 buf_p += ns->params.zd_extension_size; 4135 } 4136 4137 max_zones--; 4138 } 4139 } 4140 4141 status = nvme_c2h(n, (uint8_t *)buf, data_size, req); 4142 4143 g_free(buf); 4144 4145 return status; 4146 } 4147 4148 static uint16_t nvme_io_cmd(NvmeCtrl *n, NvmeRequest *req) 4149 { 4150 NvmeNamespace *ns; 4151 uint32_t nsid = le32_to_cpu(req->cmd.nsid); 4152 4153 trace_pci_nvme_io_cmd(nvme_cid(req), nsid, nvme_sqid(req), 4154 req->cmd.opcode, nvme_io_opc_str(req->cmd.opcode)); 4155 4156 if (!nvme_nsid_valid(n, nsid)) { 4157 return NVME_INVALID_NSID | NVME_DNR; 4158 } 4159 4160 /* 4161 * In the base NVM command set, Flush may apply to all namespaces 4162 * (indicated by NSID being set to FFFFFFFFh). But if that feature is used 4163 * along with TP 4056 (Namespace Types), it may be pretty screwed up. 4164 * 4165 * If NSID is indeed set to FFFFFFFFh, we simply cannot associate the 4166 * opcode with a specific command since we cannot determine a unique I/O 4167 * command set. Opcode 0h could have any other meaning than something 4168 * equivalent to flushing and say it DOES have completely different 4169 * semantics in some other command set - does an NSID of FFFFFFFFh then 4170 * mean "for all namespaces, apply whatever command set specific command 4171 * that uses the 0h opcode?" Or does it mean "for all namespaces, apply 4172 * whatever command that uses the 0h opcode if, and only if, it allows NSID 4173 * to be FFFFFFFFh"? 4174 * 4175 * Anyway (and luckily), for now, we do not care about this since the 4176 * device only supports namespace types that includes the NVM Flush command 4177 * (NVM and Zoned), so always do an NVM Flush. 4178 */ 4179 if (req->cmd.opcode == NVME_CMD_FLUSH) { 4180 return nvme_flush(n, req); 4181 } 4182 4183 ns = nvme_ns(n, nsid); 4184 if (unlikely(!ns)) { 4185 return NVME_INVALID_FIELD | NVME_DNR; 4186 } 4187 4188 if (!(ns->iocs[req->cmd.opcode] & NVME_CMD_EFF_CSUPP)) { 4189 trace_pci_nvme_err_invalid_opc(req->cmd.opcode); 4190 return NVME_INVALID_OPCODE | NVME_DNR; 4191 } 4192 4193 if (ns->status) { 4194 return ns->status; 4195 } 4196 4197 if (NVME_CMD_FLAGS_FUSE(req->cmd.flags)) { 4198 return NVME_INVALID_FIELD; 4199 } 4200 4201 req->ns = ns; 4202 4203 switch (req->cmd.opcode) { 4204 case NVME_CMD_WRITE_ZEROES: 4205 return nvme_write_zeroes(n, req); 4206 case NVME_CMD_ZONE_APPEND: 4207 return nvme_zone_append(n, req); 4208 case NVME_CMD_WRITE: 4209 return nvme_write(n, req); 4210 case NVME_CMD_READ: 4211 return nvme_read(n, req); 4212 case NVME_CMD_COMPARE: 4213 return nvme_compare(n, req); 4214 case NVME_CMD_DSM: 4215 return nvme_dsm(n, req); 4216 case NVME_CMD_VERIFY: 4217 return nvme_verify(n, req); 4218 case NVME_CMD_COPY: 4219 return nvme_copy(n, req); 4220 case NVME_CMD_ZONE_MGMT_SEND: 4221 return nvme_zone_mgmt_send(n, req); 4222 case NVME_CMD_ZONE_MGMT_RECV: 4223 return nvme_zone_mgmt_recv(n, req); 4224 default: 4225 assert(false); 4226 } 4227 4228 return NVME_INVALID_OPCODE | NVME_DNR; 4229 } 4230 4231 static void nvme_cq_notifier(EventNotifier *e) 4232 { 4233 NvmeCQueue *cq = container_of(e, NvmeCQueue, notifier); 4234 NvmeCtrl *n = cq->ctrl; 4235 4236 if (!event_notifier_test_and_clear(e)) { 4237 return; 4238 } 4239 4240 nvme_update_cq_head(cq); 4241 4242 if (cq->tail == cq->head) { 4243 if (cq->irq_enabled) { 4244 n->cq_pending--; 4245 } 4246 4247 nvme_irq_deassert(n, cq); 4248 } 4249 4250 qemu_bh_schedule(cq->bh); 4251 } 4252 4253 static int nvme_init_cq_ioeventfd(NvmeCQueue *cq) 4254 { 4255 NvmeCtrl *n = cq->ctrl; 4256 uint16_t offset = (cq->cqid << 3) + (1 << 2); 4257 int ret; 4258 4259 ret = event_notifier_init(&cq->notifier, 0); 4260 if (ret < 0) { 4261 return ret; 4262 } 4263 4264 event_notifier_set_handler(&cq->notifier, nvme_cq_notifier); 4265 memory_region_add_eventfd(&n->iomem, 4266 0x1000 + offset, 4, false, 0, &cq->notifier); 4267 4268 return 0; 4269 } 4270 4271 static void nvme_sq_notifier(EventNotifier *e) 4272 { 4273 NvmeSQueue *sq = container_of(e, NvmeSQueue, notifier); 4274 4275 if (!event_notifier_test_and_clear(e)) { 4276 return; 4277 } 4278 4279 nvme_process_sq(sq); 4280 } 4281 4282 static int nvme_init_sq_ioeventfd(NvmeSQueue *sq) 4283 { 4284 NvmeCtrl *n = sq->ctrl; 4285 uint16_t offset = sq->sqid << 3; 4286 int ret; 4287 4288 ret = event_notifier_init(&sq->notifier, 0); 4289 if (ret < 0) { 4290 return ret; 4291 } 4292 4293 event_notifier_set_handler(&sq->notifier, nvme_sq_notifier); 4294 memory_region_add_eventfd(&n->iomem, 4295 0x1000 + offset, 4, false, 0, &sq->notifier); 4296 4297 return 0; 4298 } 4299 4300 static void nvme_free_sq(NvmeSQueue *sq, NvmeCtrl *n) 4301 { 4302 uint16_t offset = sq->sqid << 3; 4303 4304 n->sq[sq->sqid] = NULL; 4305 qemu_bh_delete(sq->bh); 4306 if (sq->ioeventfd_enabled) { 4307 memory_region_del_eventfd(&n->iomem, 4308 0x1000 + offset, 4, false, 0, &sq->notifier); 4309 event_notifier_set_handler(&sq->notifier, NULL); 4310 event_notifier_cleanup(&sq->notifier); 4311 } 4312 g_free(sq->io_req); 4313 if (sq->sqid) { 4314 g_free(sq); 4315 } 4316 } 4317 4318 static uint16_t nvme_del_sq(NvmeCtrl *n, NvmeRequest *req) 4319 { 4320 NvmeDeleteQ *c = (NvmeDeleteQ *)&req->cmd; 4321 NvmeRequest *r, *next; 4322 NvmeSQueue *sq; 4323 NvmeCQueue *cq; 4324 uint16_t qid = le16_to_cpu(c->qid); 4325 4326 if (unlikely(!qid || nvme_check_sqid(n, qid))) { 4327 trace_pci_nvme_err_invalid_del_sq(qid); 4328 return NVME_INVALID_QID | NVME_DNR; 4329 } 4330 4331 trace_pci_nvme_del_sq(qid); 4332 4333 sq = n->sq[qid]; 4334 while (!QTAILQ_EMPTY(&sq->out_req_list)) { 4335 r = QTAILQ_FIRST(&sq->out_req_list); 4336 assert(r->aiocb); 4337 blk_aio_cancel(r->aiocb); 4338 } 4339 4340 assert(QTAILQ_EMPTY(&sq->out_req_list)); 4341 4342 if (!nvme_check_cqid(n, sq->cqid)) { 4343 cq = n->cq[sq->cqid]; 4344 QTAILQ_REMOVE(&cq->sq_list, sq, entry); 4345 4346 nvme_post_cqes(cq); 4347 QTAILQ_FOREACH_SAFE(r, &cq->req_list, entry, next) { 4348 if (r->sq == sq) { 4349 QTAILQ_REMOVE(&cq->req_list, r, entry); 4350 QTAILQ_INSERT_TAIL(&sq->req_list, r, entry); 4351 } 4352 } 4353 } 4354 4355 nvme_free_sq(sq, n); 4356 return NVME_SUCCESS; 4357 } 4358 4359 static void nvme_init_sq(NvmeSQueue *sq, NvmeCtrl *n, uint64_t dma_addr, 4360 uint16_t sqid, uint16_t cqid, uint16_t size) 4361 { 4362 int i; 4363 NvmeCQueue *cq; 4364 4365 sq->ctrl = n; 4366 sq->dma_addr = dma_addr; 4367 sq->sqid = sqid; 4368 sq->size = size; 4369 sq->cqid = cqid; 4370 sq->head = sq->tail = 0; 4371 sq->io_req = g_new0(NvmeRequest, sq->size); 4372 4373 QTAILQ_INIT(&sq->req_list); 4374 QTAILQ_INIT(&sq->out_req_list); 4375 for (i = 0; i < sq->size; i++) { 4376 sq->io_req[i].sq = sq; 4377 QTAILQ_INSERT_TAIL(&(sq->req_list), &sq->io_req[i], entry); 4378 } 4379 4380 sq->bh = qemu_bh_new(nvme_process_sq, sq); 4381 4382 if (n->dbbuf_enabled) { 4383 sq->db_addr = n->dbbuf_dbs + (sqid << 3); 4384 sq->ei_addr = n->dbbuf_eis + (sqid << 3); 4385 4386 if (n->params.ioeventfd && sq->sqid != 0) { 4387 if (!nvme_init_sq_ioeventfd(sq)) { 4388 sq->ioeventfd_enabled = true; 4389 } 4390 } 4391 } 4392 4393 assert(n->cq[cqid]); 4394 cq = n->cq[cqid]; 4395 QTAILQ_INSERT_TAIL(&(cq->sq_list), sq, entry); 4396 n->sq[sqid] = sq; 4397 } 4398 4399 static uint16_t nvme_create_sq(NvmeCtrl *n, NvmeRequest *req) 4400 { 4401 NvmeSQueue *sq; 4402 NvmeCreateSq *c = (NvmeCreateSq *)&req->cmd; 4403 4404 uint16_t cqid = le16_to_cpu(c->cqid); 4405 uint16_t sqid = le16_to_cpu(c->sqid); 4406 uint16_t qsize = le16_to_cpu(c->qsize); 4407 uint16_t qflags = le16_to_cpu(c->sq_flags); 4408 uint64_t prp1 = le64_to_cpu(c->prp1); 4409 4410 trace_pci_nvme_create_sq(prp1, sqid, cqid, qsize, qflags); 4411 4412 if (unlikely(!cqid || nvme_check_cqid(n, cqid))) { 4413 trace_pci_nvme_err_invalid_create_sq_cqid(cqid); 4414 return NVME_INVALID_CQID | NVME_DNR; 4415 } 4416 if (unlikely(!sqid || sqid > n->conf_ioqpairs || n->sq[sqid] != NULL)) { 4417 trace_pci_nvme_err_invalid_create_sq_sqid(sqid); 4418 return NVME_INVALID_QID | NVME_DNR; 4419 } 4420 if (unlikely(!qsize || qsize > NVME_CAP_MQES(ldq_le_p(&n->bar.cap)))) { 4421 trace_pci_nvme_err_invalid_create_sq_size(qsize); 4422 return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR; 4423 } 4424 if (unlikely(prp1 & (n->page_size - 1))) { 4425 trace_pci_nvme_err_invalid_create_sq_addr(prp1); 4426 return NVME_INVALID_PRP_OFFSET | NVME_DNR; 4427 } 4428 if (unlikely(!(NVME_SQ_FLAGS_PC(qflags)))) { 4429 trace_pci_nvme_err_invalid_create_sq_qflags(NVME_SQ_FLAGS_PC(qflags)); 4430 return NVME_INVALID_FIELD | NVME_DNR; 4431 } 4432 sq = g_malloc0(sizeof(*sq)); 4433 nvme_init_sq(sq, n, prp1, sqid, cqid, qsize + 1); 4434 return NVME_SUCCESS; 4435 } 4436 4437 struct nvme_stats { 4438 uint64_t units_read; 4439 uint64_t units_written; 4440 uint64_t read_commands; 4441 uint64_t write_commands; 4442 }; 4443 4444 static void nvme_set_blk_stats(NvmeNamespace *ns, struct nvme_stats *stats) 4445 { 4446 BlockAcctStats *s = blk_get_stats(ns->blkconf.blk); 4447 4448 stats->units_read += s->nr_bytes[BLOCK_ACCT_READ] >> BDRV_SECTOR_BITS; 4449 stats->units_written += s->nr_bytes[BLOCK_ACCT_WRITE] >> BDRV_SECTOR_BITS; 4450 stats->read_commands += s->nr_ops[BLOCK_ACCT_READ]; 4451 stats->write_commands += s->nr_ops[BLOCK_ACCT_WRITE]; 4452 } 4453 4454 static uint16_t nvme_smart_info(NvmeCtrl *n, uint8_t rae, uint32_t buf_len, 4455 uint64_t off, NvmeRequest *req) 4456 { 4457 uint32_t nsid = le32_to_cpu(req->cmd.nsid); 4458 struct nvme_stats stats = { 0 }; 4459 NvmeSmartLog smart = { 0 }; 4460 uint32_t trans_len; 4461 NvmeNamespace *ns; 4462 time_t current_ms; 4463 4464 if (off >= sizeof(smart)) { 4465 return NVME_INVALID_FIELD | NVME_DNR; 4466 } 4467 4468 if (nsid != 0xffffffff) { 4469 ns = nvme_ns(n, nsid); 4470 if (!ns) { 4471 return NVME_INVALID_NSID | NVME_DNR; 4472 } 4473 nvme_set_blk_stats(ns, &stats); 4474 } else { 4475 int i; 4476 4477 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { 4478 ns = nvme_ns(n, i); 4479 if (!ns) { 4480 continue; 4481 } 4482 nvme_set_blk_stats(ns, &stats); 4483 } 4484 } 4485 4486 trans_len = MIN(sizeof(smart) - off, buf_len); 4487 smart.critical_warning = n->smart_critical_warning; 4488 4489 smart.data_units_read[0] = cpu_to_le64(DIV_ROUND_UP(stats.units_read, 4490 1000)); 4491 smart.data_units_written[0] = cpu_to_le64(DIV_ROUND_UP(stats.units_written, 4492 1000)); 4493 smart.host_read_commands[0] = cpu_to_le64(stats.read_commands); 4494 smart.host_write_commands[0] = cpu_to_le64(stats.write_commands); 4495 4496 smart.temperature = cpu_to_le16(n->temperature); 4497 4498 if ((n->temperature >= n->features.temp_thresh_hi) || 4499 (n->temperature <= n->features.temp_thresh_low)) { 4500 smart.critical_warning |= NVME_SMART_TEMPERATURE; 4501 } 4502 4503 current_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL); 4504 smart.power_on_hours[0] = 4505 cpu_to_le64((((current_ms - n->starttime_ms) / 1000) / 60) / 60); 4506 4507 if (!rae) { 4508 nvme_clear_events(n, NVME_AER_TYPE_SMART); 4509 } 4510 4511 return nvme_c2h(n, (uint8_t *) &smart + off, trans_len, req); 4512 } 4513 4514 static uint16_t nvme_fw_log_info(NvmeCtrl *n, uint32_t buf_len, uint64_t off, 4515 NvmeRequest *req) 4516 { 4517 uint32_t trans_len; 4518 NvmeFwSlotInfoLog fw_log = { 4519 .afi = 0x1, 4520 }; 4521 4522 if (off >= sizeof(fw_log)) { 4523 return NVME_INVALID_FIELD | NVME_DNR; 4524 } 4525 4526 strpadcpy((char *)&fw_log.frs1, sizeof(fw_log.frs1), "1.0", ' '); 4527 trans_len = MIN(sizeof(fw_log) - off, buf_len); 4528 4529 return nvme_c2h(n, (uint8_t *) &fw_log + off, trans_len, req); 4530 } 4531 4532 static uint16_t nvme_error_info(NvmeCtrl *n, uint8_t rae, uint32_t buf_len, 4533 uint64_t off, NvmeRequest *req) 4534 { 4535 uint32_t trans_len; 4536 NvmeErrorLog errlog; 4537 4538 if (off >= sizeof(errlog)) { 4539 return NVME_INVALID_FIELD | NVME_DNR; 4540 } 4541 4542 if (!rae) { 4543 nvme_clear_events(n, NVME_AER_TYPE_ERROR); 4544 } 4545 4546 memset(&errlog, 0x0, sizeof(errlog)); 4547 trans_len = MIN(sizeof(errlog) - off, buf_len); 4548 4549 return nvme_c2h(n, (uint8_t *)&errlog, trans_len, req); 4550 } 4551 4552 static uint16_t nvme_changed_nslist(NvmeCtrl *n, uint8_t rae, uint32_t buf_len, 4553 uint64_t off, NvmeRequest *req) 4554 { 4555 uint32_t nslist[1024]; 4556 uint32_t trans_len; 4557 int i = 0; 4558 uint32_t nsid; 4559 4560 if (off >= sizeof(nslist)) { 4561 trace_pci_nvme_err_invalid_log_page_offset(off, sizeof(nslist)); 4562 return NVME_INVALID_FIELD | NVME_DNR; 4563 } 4564 4565 memset(nslist, 0x0, sizeof(nslist)); 4566 trans_len = MIN(sizeof(nslist) - off, buf_len); 4567 4568 while ((nsid = find_first_bit(n->changed_nsids, NVME_CHANGED_NSID_SIZE)) != 4569 NVME_CHANGED_NSID_SIZE) { 4570 /* 4571 * If more than 1024 namespaces, the first entry in the log page should 4572 * be set to FFFFFFFFh and the others to 0 as spec. 4573 */ 4574 if (i == ARRAY_SIZE(nslist)) { 4575 memset(nslist, 0x0, sizeof(nslist)); 4576 nslist[0] = 0xffffffff; 4577 break; 4578 } 4579 4580 nslist[i++] = nsid; 4581 clear_bit(nsid, n->changed_nsids); 4582 } 4583 4584 /* 4585 * Remove all the remaining list entries in case returns directly due to 4586 * more than 1024 namespaces. 4587 */ 4588 if (nslist[0] == 0xffffffff) { 4589 bitmap_zero(n->changed_nsids, NVME_CHANGED_NSID_SIZE); 4590 } 4591 4592 if (!rae) { 4593 nvme_clear_events(n, NVME_AER_TYPE_NOTICE); 4594 } 4595 4596 return nvme_c2h(n, ((uint8_t *)nslist) + off, trans_len, req); 4597 } 4598 4599 static uint16_t nvme_cmd_effects(NvmeCtrl *n, uint8_t csi, uint32_t buf_len, 4600 uint64_t off, NvmeRequest *req) 4601 { 4602 NvmeEffectsLog log = {}; 4603 const uint32_t *src_iocs = NULL; 4604 uint32_t trans_len; 4605 4606 if (off >= sizeof(log)) { 4607 trace_pci_nvme_err_invalid_log_page_offset(off, sizeof(log)); 4608 return NVME_INVALID_FIELD | NVME_DNR; 4609 } 4610 4611 switch (NVME_CC_CSS(ldl_le_p(&n->bar.cc))) { 4612 case NVME_CC_CSS_NVM: 4613 src_iocs = nvme_cse_iocs_nvm; 4614 /* fall through */ 4615 case NVME_CC_CSS_ADMIN_ONLY: 4616 break; 4617 case NVME_CC_CSS_CSI: 4618 switch (csi) { 4619 case NVME_CSI_NVM: 4620 src_iocs = nvme_cse_iocs_nvm; 4621 break; 4622 case NVME_CSI_ZONED: 4623 src_iocs = nvme_cse_iocs_zoned; 4624 break; 4625 } 4626 } 4627 4628 memcpy(log.acs, nvme_cse_acs, sizeof(nvme_cse_acs)); 4629 4630 if (src_iocs) { 4631 memcpy(log.iocs, src_iocs, sizeof(log.iocs)); 4632 } 4633 4634 trans_len = MIN(sizeof(log) - off, buf_len); 4635 4636 return nvme_c2h(n, ((uint8_t *)&log) + off, trans_len, req); 4637 } 4638 4639 static uint16_t nvme_get_log(NvmeCtrl *n, NvmeRequest *req) 4640 { 4641 NvmeCmd *cmd = &req->cmd; 4642 4643 uint32_t dw10 = le32_to_cpu(cmd->cdw10); 4644 uint32_t dw11 = le32_to_cpu(cmd->cdw11); 4645 uint32_t dw12 = le32_to_cpu(cmd->cdw12); 4646 uint32_t dw13 = le32_to_cpu(cmd->cdw13); 4647 uint8_t lid = dw10 & 0xff; 4648 uint8_t lsp = (dw10 >> 8) & 0xf; 4649 uint8_t rae = (dw10 >> 15) & 0x1; 4650 uint8_t csi = le32_to_cpu(cmd->cdw14) >> 24; 4651 uint32_t numdl, numdu; 4652 uint64_t off, lpol, lpou; 4653 size_t len; 4654 uint16_t status; 4655 4656 numdl = (dw10 >> 16); 4657 numdu = (dw11 & 0xffff); 4658 lpol = dw12; 4659 lpou = dw13; 4660 4661 len = (((numdu << 16) | numdl) + 1) << 2; 4662 off = (lpou << 32ULL) | lpol; 4663 4664 if (off & 0x3) { 4665 return NVME_INVALID_FIELD | NVME_DNR; 4666 } 4667 4668 trace_pci_nvme_get_log(nvme_cid(req), lid, lsp, rae, len, off); 4669 4670 status = nvme_check_mdts(n, len); 4671 if (status) { 4672 return status; 4673 } 4674 4675 switch (lid) { 4676 case NVME_LOG_ERROR_INFO: 4677 return nvme_error_info(n, rae, len, off, req); 4678 case NVME_LOG_SMART_INFO: 4679 return nvme_smart_info(n, rae, len, off, req); 4680 case NVME_LOG_FW_SLOT_INFO: 4681 return nvme_fw_log_info(n, len, off, req); 4682 case NVME_LOG_CHANGED_NSLIST: 4683 return nvme_changed_nslist(n, rae, len, off, req); 4684 case NVME_LOG_CMD_EFFECTS: 4685 return nvme_cmd_effects(n, csi, len, off, req); 4686 default: 4687 trace_pci_nvme_err_invalid_log_page(nvme_cid(req), lid); 4688 return NVME_INVALID_FIELD | NVME_DNR; 4689 } 4690 } 4691 4692 static void nvme_free_cq(NvmeCQueue *cq, NvmeCtrl *n) 4693 { 4694 uint16_t offset = (cq->cqid << 3) + (1 << 2); 4695 4696 n->cq[cq->cqid] = NULL; 4697 qemu_bh_delete(cq->bh); 4698 if (cq->ioeventfd_enabled) { 4699 memory_region_del_eventfd(&n->iomem, 4700 0x1000 + offset, 4, false, 0, &cq->notifier); 4701 event_notifier_set_handler(&cq->notifier, NULL); 4702 event_notifier_cleanup(&cq->notifier); 4703 } 4704 if (msix_enabled(&n->parent_obj)) { 4705 msix_vector_unuse(&n->parent_obj, cq->vector); 4706 } 4707 if (cq->cqid) { 4708 g_free(cq); 4709 } 4710 } 4711 4712 static uint16_t nvme_del_cq(NvmeCtrl *n, NvmeRequest *req) 4713 { 4714 NvmeDeleteQ *c = (NvmeDeleteQ *)&req->cmd; 4715 NvmeCQueue *cq; 4716 uint16_t qid = le16_to_cpu(c->qid); 4717 4718 if (unlikely(!qid || nvme_check_cqid(n, qid))) { 4719 trace_pci_nvme_err_invalid_del_cq_cqid(qid); 4720 return NVME_INVALID_CQID | NVME_DNR; 4721 } 4722 4723 cq = n->cq[qid]; 4724 if (unlikely(!QTAILQ_EMPTY(&cq->sq_list))) { 4725 trace_pci_nvme_err_invalid_del_cq_notempty(qid); 4726 return NVME_INVALID_QUEUE_DEL; 4727 } 4728 4729 if (cq->irq_enabled && cq->tail != cq->head) { 4730 n->cq_pending--; 4731 } 4732 4733 nvme_irq_deassert(n, cq); 4734 trace_pci_nvme_del_cq(qid); 4735 nvme_free_cq(cq, n); 4736 return NVME_SUCCESS; 4737 } 4738 4739 static void nvme_init_cq(NvmeCQueue *cq, NvmeCtrl *n, uint64_t dma_addr, 4740 uint16_t cqid, uint16_t vector, uint16_t size, 4741 uint16_t irq_enabled) 4742 { 4743 int ret; 4744 4745 if (msix_enabled(&n->parent_obj)) { 4746 ret = msix_vector_use(&n->parent_obj, vector); 4747 assert(ret == 0); 4748 } 4749 cq->ctrl = n; 4750 cq->cqid = cqid; 4751 cq->size = size; 4752 cq->dma_addr = dma_addr; 4753 cq->phase = 1; 4754 cq->irq_enabled = irq_enabled; 4755 cq->vector = vector; 4756 cq->head = cq->tail = 0; 4757 QTAILQ_INIT(&cq->req_list); 4758 QTAILQ_INIT(&cq->sq_list); 4759 if (n->dbbuf_enabled) { 4760 cq->db_addr = n->dbbuf_dbs + (cqid << 3) + (1 << 2); 4761 cq->ei_addr = n->dbbuf_eis + (cqid << 3) + (1 << 2); 4762 4763 if (n->params.ioeventfd && cqid != 0) { 4764 if (!nvme_init_cq_ioeventfd(cq)) { 4765 cq->ioeventfd_enabled = true; 4766 } 4767 } 4768 } 4769 n->cq[cqid] = cq; 4770 cq->bh = qemu_bh_new(nvme_post_cqes, cq); 4771 } 4772 4773 static uint16_t nvme_create_cq(NvmeCtrl *n, NvmeRequest *req) 4774 { 4775 NvmeCQueue *cq; 4776 NvmeCreateCq *c = (NvmeCreateCq *)&req->cmd; 4777 uint16_t cqid = le16_to_cpu(c->cqid); 4778 uint16_t vector = le16_to_cpu(c->irq_vector); 4779 uint16_t qsize = le16_to_cpu(c->qsize); 4780 uint16_t qflags = le16_to_cpu(c->cq_flags); 4781 uint64_t prp1 = le64_to_cpu(c->prp1); 4782 4783 trace_pci_nvme_create_cq(prp1, cqid, vector, qsize, qflags, 4784 NVME_CQ_FLAGS_IEN(qflags) != 0); 4785 4786 if (unlikely(!cqid || cqid > n->conf_ioqpairs || n->cq[cqid] != NULL)) { 4787 trace_pci_nvme_err_invalid_create_cq_cqid(cqid); 4788 return NVME_INVALID_QID | NVME_DNR; 4789 } 4790 if (unlikely(!qsize || qsize > NVME_CAP_MQES(ldq_le_p(&n->bar.cap)))) { 4791 trace_pci_nvme_err_invalid_create_cq_size(qsize); 4792 return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR; 4793 } 4794 if (unlikely(prp1 & (n->page_size - 1))) { 4795 trace_pci_nvme_err_invalid_create_cq_addr(prp1); 4796 return NVME_INVALID_PRP_OFFSET | NVME_DNR; 4797 } 4798 if (unlikely(!msix_enabled(&n->parent_obj) && vector)) { 4799 trace_pci_nvme_err_invalid_create_cq_vector(vector); 4800 return NVME_INVALID_IRQ_VECTOR | NVME_DNR; 4801 } 4802 if (unlikely(vector >= n->conf_msix_qsize)) { 4803 trace_pci_nvme_err_invalid_create_cq_vector(vector); 4804 return NVME_INVALID_IRQ_VECTOR | NVME_DNR; 4805 } 4806 if (unlikely(!(NVME_CQ_FLAGS_PC(qflags)))) { 4807 trace_pci_nvme_err_invalid_create_cq_qflags(NVME_CQ_FLAGS_PC(qflags)); 4808 return NVME_INVALID_FIELD | NVME_DNR; 4809 } 4810 4811 cq = g_malloc0(sizeof(*cq)); 4812 nvme_init_cq(cq, n, prp1, cqid, vector, qsize + 1, 4813 NVME_CQ_FLAGS_IEN(qflags)); 4814 4815 /* 4816 * It is only required to set qs_created when creating a completion queue; 4817 * creating a submission queue without a matching completion queue will 4818 * fail. 4819 */ 4820 n->qs_created = true; 4821 return NVME_SUCCESS; 4822 } 4823 4824 static uint16_t nvme_rpt_empty_id_struct(NvmeCtrl *n, NvmeRequest *req) 4825 { 4826 uint8_t id[NVME_IDENTIFY_DATA_SIZE] = {}; 4827 4828 return nvme_c2h(n, id, sizeof(id), req); 4829 } 4830 4831 static uint16_t nvme_identify_ctrl(NvmeCtrl *n, NvmeRequest *req) 4832 { 4833 trace_pci_nvme_identify_ctrl(); 4834 4835 return nvme_c2h(n, (uint8_t *)&n->id_ctrl, sizeof(n->id_ctrl), req); 4836 } 4837 4838 static uint16_t nvme_identify_ctrl_csi(NvmeCtrl *n, NvmeRequest *req) 4839 { 4840 NvmeIdentify *c = (NvmeIdentify *)&req->cmd; 4841 uint8_t id[NVME_IDENTIFY_DATA_SIZE] = {}; 4842 NvmeIdCtrlNvm *id_nvm = (NvmeIdCtrlNvm *)&id; 4843 4844 trace_pci_nvme_identify_ctrl_csi(c->csi); 4845 4846 switch (c->csi) { 4847 case NVME_CSI_NVM: 4848 id_nvm->vsl = n->params.vsl; 4849 id_nvm->dmrsl = cpu_to_le32(n->dmrsl); 4850 break; 4851 4852 case NVME_CSI_ZONED: 4853 ((NvmeIdCtrlZoned *)&id)->zasl = n->params.zasl; 4854 break; 4855 4856 default: 4857 return NVME_INVALID_FIELD | NVME_DNR; 4858 } 4859 4860 return nvme_c2h(n, id, sizeof(id), req); 4861 } 4862 4863 static uint16_t nvme_identify_ns(NvmeCtrl *n, NvmeRequest *req, bool active) 4864 { 4865 NvmeNamespace *ns; 4866 NvmeIdentify *c = (NvmeIdentify *)&req->cmd; 4867 uint32_t nsid = le32_to_cpu(c->nsid); 4868 4869 trace_pci_nvme_identify_ns(nsid); 4870 4871 if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) { 4872 return NVME_INVALID_NSID | NVME_DNR; 4873 } 4874 4875 ns = nvme_ns(n, nsid); 4876 if (unlikely(!ns)) { 4877 if (!active) { 4878 ns = nvme_subsys_ns(n->subsys, nsid); 4879 if (!ns) { 4880 return nvme_rpt_empty_id_struct(n, req); 4881 } 4882 } else { 4883 return nvme_rpt_empty_id_struct(n, req); 4884 } 4885 } 4886 4887 if (active || ns->csi == NVME_CSI_NVM) { 4888 return nvme_c2h(n, (uint8_t *)&ns->id_ns, sizeof(NvmeIdNs), req); 4889 } 4890 4891 return NVME_INVALID_CMD_SET | NVME_DNR; 4892 } 4893 4894 static uint16_t nvme_identify_ctrl_list(NvmeCtrl *n, NvmeRequest *req, 4895 bool attached) 4896 { 4897 NvmeIdentify *c = (NvmeIdentify *)&req->cmd; 4898 uint32_t nsid = le32_to_cpu(c->nsid); 4899 uint16_t min_id = le16_to_cpu(c->ctrlid); 4900 uint16_t list[NVME_CONTROLLER_LIST_SIZE] = {}; 4901 uint16_t *ids = &list[1]; 4902 NvmeNamespace *ns; 4903 NvmeCtrl *ctrl; 4904 int cntlid, nr_ids = 0; 4905 4906 trace_pci_nvme_identify_ctrl_list(c->cns, min_id); 4907 4908 if (!n->subsys) { 4909 return NVME_INVALID_FIELD | NVME_DNR; 4910 } 4911 4912 if (attached) { 4913 if (nsid == NVME_NSID_BROADCAST) { 4914 return NVME_INVALID_FIELD | NVME_DNR; 4915 } 4916 4917 ns = nvme_subsys_ns(n->subsys, nsid); 4918 if (!ns) { 4919 return NVME_INVALID_FIELD | NVME_DNR; 4920 } 4921 } 4922 4923 for (cntlid = min_id; cntlid < ARRAY_SIZE(n->subsys->ctrls); cntlid++) { 4924 ctrl = nvme_subsys_ctrl(n->subsys, cntlid); 4925 if (!ctrl) { 4926 continue; 4927 } 4928 4929 if (attached && !nvme_ns(ctrl, nsid)) { 4930 continue; 4931 } 4932 4933 ids[nr_ids++] = cntlid; 4934 } 4935 4936 list[0] = nr_ids; 4937 4938 return nvme_c2h(n, (uint8_t *)list, sizeof(list), req); 4939 } 4940 4941 static uint16_t nvme_identify_pri_ctrl_cap(NvmeCtrl *n, NvmeRequest *req) 4942 { 4943 trace_pci_nvme_identify_pri_ctrl_cap(le16_to_cpu(n->pri_ctrl_cap.cntlid)); 4944 4945 return nvme_c2h(n, (uint8_t *)&n->pri_ctrl_cap, 4946 sizeof(NvmePriCtrlCap), req); 4947 } 4948 4949 static uint16_t nvme_identify_sec_ctrl_list(NvmeCtrl *n, NvmeRequest *req) 4950 { 4951 NvmeIdentify *c = (NvmeIdentify *)&req->cmd; 4952 uint16_t pri_ctrl_id = le16_to_cpu(n->pri_ctrl_cap.cntlid); 4953 uint16_t min_id = le16_to_cpu(c->ctrlid); 4954 uint8_t num_sec_ctrl = n->sec_ctrl_list.numcntl; 4955 NvmeSecCtrlList list = {0}; 4956 uint8_t i; 4957 4958 for (i = 0; i < num_sec_ctrl; i++) { 4959 if (n->sec_ctrl_list.sec[i].scid >= min_id) { 4960 list.numcntl = num_sec_ctrl - i; 4961 memcpy(&list.sec, n->sec_ctrl_list.sec + i, 4962 list.numcntl * sizeof(NvmeSecCtrlEntry)); 4963 break; 4964 } 4965 } 4966 4967 trace_pci_nvme_identify_sec_ctrl_list(pri_ctrl_id, list.numcntl); 4968 4969 return nvme_c2h(n, (uint8_t *)&list, sizeof(list), req); 4970 } 4971 4972 static uint16_t nvme_identify_ns_csi(NvmeCtrl *n, NvmeRequest *req, 4973 bool active) 4974 { 4975 NvmeNamespace *ns; 4976 NvmeIdentify *c = (NvmeIdentify *)&req->cmd; 4977 uint32_t nsid = le32_to_cpu(c->nsid); 4978 4979 trace_pci_nvme_identify_ns_csi(nsid, c->csi); 4980 4981 if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) { 4982 return NVME_INVALID_NSID | NVME_DNR; 4983 } 4984 4985 ns = nvme_ns(n, nsid); 4986 if (unlikely(!ns)) { 4987 if (!active) { 4988 ns = nvme_subsys_ns(n->subsys, nsid); 4989 if (!ns) { 4990 return nvme_rpt_empty_id_struct(n, req); 4991 } 4992 } else { 4993 return nvme_rpt_empty_id_struct(n, req); 4994 } 4995 } 4996 4997 if (c->csi == NVME_CSI_NVM) { 4998 return nvme_c2h(n, (uint8_t *)&ns->id_ns_nvm, sizeof(NvmeIdNsNvm), 4999 req); 5000 } else if (c->csi == NVME_CSI_ZONED && ns->csi == NVME_CSI_ZONED) { 5001 return nvme_c2h(n, (uint8_t *)ns->id_ns_zoned, sizeof(NvmeIdNsZoned), 5002 req); 5003 } 5004 5005 return NVME_INVALID_FIELD | NVME_DNR; 5006 } 5007 5008 static uint16_t nvme_identify_nslist(NvmeCtrl *n, NvmeRequest *req, 5009 bool active) 5010 { 5011 NvmeNamespace *ns; 5012 NvmeIdentify *c = (NvmeIdentify *)&req->cmd; 5013 uint32_t min_nsid = le32_to_cpu(c->nsid); 5014 uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {}; 5015 static const int data_len = sizeof(list); 5016 uint32_t *list_ptr = (uint32_t *)list; 5017 int i, j = 0; 5018 5019 trace_pci_nvme_identify_nslist(min_nsid); 5020 5021 /* 5022 * Both FFFFFFFFh (NVME_NSID_BROADCAST) and FFFFFFFFEh are invalid values 5023 * since the Active Namespace ID List should return namespaces with ids 5024 * *higher* than the NSID specified in the command. This is also specified 5025 * in the spec (NVM Express v1.3d, Section 5.15.4). 5026 */ 5027 if (min_nsid >= NVME_NSID_BROADCAST - 1) { 5028 return NVME_INVALID_NSID | NVME_DNR; 5029 } 5030 5031 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { 5032 ns = nvme_ns(n, i); 5033 if (!ns) { 5034 if (!active) { 5035 ns = nvme_subsys_ns(n->subsys, i); 5036 if (!ns) { 5037 continue; 5038 } 5039 } else { 5040 continue; 5041 } 5042 } 5043 if (ns->params.nsid <= min_nsid) { 5044 continue; 5045 } 5046 list_ptr[j++] = cpu_to_le32(ns->params.nsid); 5047 if (j == data_len / sizeof(uint32_t)) { 5048 break; 5049 } 5050 } 5051 5052 return nvme_c2h(n, list, data_len, req); 5053 } 5054 5055 static uint16_t nvme_identify_nslist_csi(NvmeCtrl *n, NvmeRequest *req, 5056 bool active) 5057 { 5058 NvmeNamespace *ns; 5059 NvmeIdentify *c = (NvmeIdentify *)&req->cmd; 5060 uint32_t min_nsid = le32_to_cpu(c->nsid); 5061 uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {}; 5062 static const int data_len = sizeof(list); 5063 uint32_t *list_ptr = (uint32_t *)list; 5064 int i, j = 0; 5065 5066 trace_pci_nvme_identify_nslist_csi(min_nsid, c->csi); 5067 5068 /* 5069 * Same as in nvme_identify_nslist(), FFFFFFFFh/FFFFFFFFEh are invalid. 5070 */ 5071 if (min_nsid >= NVME_NSID_BROADCAST - 1) { 5072 return NVME_INVALID_NSID | NVME_DNR; 5073 } 5074 5075 if (c->csi != NVME_CSI_NVM && c->csi != NVME_CSI_ZONED) { 5076 return NVME_INVALID_FIELD | NVME_DNR; 5077 } 5078 5079 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { 5080 ns = nvme_ns(n, i); 5081 if (!ns) { 5082 if (!active) { 5083 ns = nvme_subsys_ns(n->subsys, i); 5084 if (!ns) { 5085 continue; 5086 } 5087 } else { 5088 continue; 5089 } 5090 } 5091 if (ns->params.nsid <= min_nsid || c->csi != ns->csi) { 5092 continue; 5093 } 5094 list_ptr[j++] = cpu_to_le32(ns->params.nsid); 5095 if (j == data_len / sizeof(uint32_t)) { 5096 break; 5097 } 5098 } 5099 5100 return nvme_c2h(n, list, data_len, req); 5101 } 5102 5103 static uint16_t nvme_identify_ns_descr_list(NvmeCtrl *n, NvmeRequest *req) 5104 { 5105 NvmeNamespace *ns; 5106 NvmeIdentify *c = (NvmeIdentify *)&req->cmd; 5107 uint32_t nsid = le32_to_cpu(c->nsid); 5108 uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {}; 5109 uint8_t *pos = list; 5110 struct { 5111 NvmeIdNsDescr hdr; 5112 uint8_t v[NVME_NIDL_UUID]; 5113 } QEMU_PACKED uuid = {}; 5114 struct { 5115 NvmeIdNsDescr hdr; 5116 uint64_t v; 5117 } QEMU_PACKED eui64 = {}; 5118 struct { 5119 NvmeIdNsDescr hdr; 5120 uint8_t v; 5121 } QEMU_PACKED csi = {}; 5122 5123 trace_pci_nvme_identify_ns_descr_list(nsid); 5124 5125 if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) { 5126 return NVME_INVALID_NSID | NVME_DNR; 5127 } 5128 5129 ns = nvme_ns(n, nsid); 5130 if (unlikely(!ns)) { 5131 return NVME_INVALID_FIELD | NVME_DNR; 5132 } 5133 5134 if (!qemu_uuid_is_null(&ns->params.uuid)) { 5135 uuid.hdr.nidt = NVME_NIDT_UUID; 5136 uuid.hdr.nidl = NVME_NIDL_UUID; 5137 memcpy(uuid.v, ns->params.uuid.data, NVME_NIDL_UUID); 5138 memcpy(pos, &uuid, sizeof(uuid)); 5139 pos += sizeof(uuid); 5140 } 5141 5142 if (ns->params.eui64) { 5143 eui64.hdr.nidt = NVME_NIDT_EUI64; 5144 eui64.hdr.nidl = NVME_NIDL_EUI64; 5145 eui64.v = cpu_to_be64(ns->params.eui64); 5146 memcpy(pos, &eui64, sizeof(eui64)); 5147 pos += sizeof(eui64); 5148 } 5149 5150 csi.hdr.nidt = NVME_NIDT_CSI; 5151 csi.hdr.nidl = NVME_NIDL_CSI; 5152 csi.v = ns->csi; 5153 memcpy(pos, &csi, sizeof(csi)); 5154 pos += sizeof(csi); 5155 5156 return nvme_c2h(n, list, sizeof(list), req); 5157 } 5158 5159 static uint16_t nvme_identify_cmd_set(NvmeCtrl *n, NvmeRequest *req) 5160 { 5161 uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {}; 5162 static const int data_len = sizeof(list); 5163 5164 trace_pci_nvme_identify_cmd_set(); 5165 5166 NVME_SET_CSI(*list, NVME_CSI_NVM); 5167 NVME_SET_CSI(*list, NVME_CSI_ZONED); 5168 5169 return nvme_c2h(n, list, data_len, req); 5170 } 5171 5172 static uint16_t nvme_identify(NvmeCtrl *n, NvmeRequest *req) 5173 { 5174 NvmeIdentify *c = (NvmeIdentify *)&req->cmd; 5175 5176 trace_pci_nvme_identify(nvme_cid(req), c->cns, le16_to_cpu(c->ctrlid), 5177 c->csi); 5178 5179 switch (c->cns) { 5180 case NVME_ID_CNS_NS: 5181 return nvme_identify_ns(n, req, true); 5182 case NVME_ID_CNS_NS_PRESENT: 5183 return nvme_identify_ns(n, req, false); 5184 case NVME_ID_CNS_NS_ATTACHED_CTRL_LIST: 5185 return nvme_identify_ctrl_list(n, req, true); 5186 case NVME_ID_CNS_CTRL_LIST: 5187 return nvme_identify_ctrl_list(n, req, false); 5188 case NVME_ID_CNS_PRIMARY_CTRL_CAP: 5189 return nvme_identify_pri_ctrl_cap(n, req); 5190 case NVME_ID_CNS_SECONDARY_CTRL_LIST: 5191 return nvme_identify_sec_ctrl_list(n, req); 5192 case NVME_ID_CNS_CS_NS: 5193 return nvme_identify_ns_csi(n, req, true); 5194 case NVME_ID_CNS_CS_NS_PRESENT: 5195 return nvme_identify_ns_csi(n, req, false); 5196 case NVME_ID_CNS_CTRL: 5197 return nvme_identify_ctrl(n, req); 5198 case NVME_ID_CNS_CS_CTRL: 5199 return nvme_identify_ctrl_csi(n, req); 5200 case NVME_ID_CNS_NS_ACTIVE_LIST: 5201 return nvme_identify_nslist(n, req, true); 5202 case NVME_ID_CNS_NS_PRESENT_LIST: 5203 return nvme_identify_nslist(n, req, false); 5204 case NVME_ID_CNS_CS_NS_ACTIVE_LIST: 5205 return nvme_identify_nslist_csi(n, req, true); 5206 case NVME_ID_CNS_CS_NS_PRESENT_LIST: 5207 return nvme_identify_nslist_csi(n, req, false); 5208 case NVME_ID_CNS_NS_DESCR_LIST: 5209 return nvme_identify_ns_descr_list(n, req); 5210 case NVME_ID_CNS_IO_COMMAND_SET: 5211 return nvme_identify_cmd_set(n, req); 5212 default: 5213 trace_pci_nvme_err_invalid_identify_cns(le32_to_cpu(c->cns)); 5214 return NVME_INVALID_FIELD | NVME_DNR; 5215 } 5216 } 5217 5218 static uint16_t nvme_abort(NvmeCtrl *n, NvmeRequest *req) 5219 { 5220 uint16_t sqid = le32_to_cpu(req->cmd.cdw10) & 0xffff; 5221 5222 req->cqe.result = 1; 5223 if (nvme_check_sqid(n, sqid)) { 5224 return NVME_INVALID_FIELD | NVME_DNR; 5225 } 5226 5227 return NVME_SUCCESS; 5228 } 5229 5230 static inline void nvme_set_timestamp(NvmeCtrl *n, uint64_t ts) 5231 { 5232 trace_pci_nvme_setfeat_timestamp(ts); 5233 5234 n->host_timestamp = le64_to_cpu(ts); 5235 n->timestamp_set_qemu_clock_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL); 5236 } 5237 5238 static inline uint64_t nvme_get_timestamp(const NvmeCtrl *n) 5239 { 5240 uint64_t current_time = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL); 5241 uint64_t elapsed_time = current_time - n->timestamp_set_qemu_clock_ms; 5242 5243 union nvme_timestamp { 5244 struct { 5245 uint64_t timestamp:48; 5246 uint64_t sync:1; 5247 uint64_t origin:3; 5248 uint64_t rsvd1:12; 5249 }; 5250 uint64_t all; 5251 }; 5252 5253 union nvme_timestamp ts; 5254 ts.all = 0; 5255 ts.timestamp = n->host_timestamp + elapsed_time; 5256 5257 /* If the host timestamp is non-zero, set the timestamp origin */ 5258 ts.origin = n->host_timestamp ? 0x01 : 0x00; 5259 5260 trace_pci_nvme_getfeat_timestamp(ts.all); 5261 5262 return cpu_to_le64(ts.all); 5263 } 5264 5265 static uint16_t nvme_get_feature_timestamp(NvmeCtrl *n, NvmeRequest *req) 5266 { 5267 uint64_t timestamp = nvme_get_timestamp(n); 5268 5269 return nvme_c2h(n, (uint8_t *)×tamp, sizeof(timestamp), req); 5270 } 5271 5272 static uint16_t nvme_get_feature(NvmeCtrl *n, NvmeRequest *req) 5273 { 5274 NvmeCmd *cmd = &req->cmd; 5275 uint32_t dw10 = le32_to_cpu(cmd->cdw10); 5276 uint32_t dw11 = le32_to_cpu(cmd->cdw11); 5277 uint32_t nsid = le32_to_cpu(cmd->nsid); 5278 uint32_t result; 5279 uint8_t fid = NVME_GETSETFEAT_FID(dw10); 5280 NvmeGetFeatureSelect sel = NVME_GETFEAT_SELECT(dw10); 5281 uint16_t iv; 5282 NvmeNamespace *ns; 5283 int i; 5284 5285 static const uint32_t nvme_feature_default[NVME_FID_MAX] = { 5286 [NVME_ARBITRATION] = NVME_ARB_AB_NOLIMIT, 5287 }; 5288 5289 trace_pci_nvme_getfeat(nvme_cid(req), nsid, fid, sel, dw11); 5290 5291 if (!nvme_feature_support[fid]) { 5292 return NVME_INVALID_FIELD | NVME_DNR; 5293 } 5294 5295 if (nvme_feature_cap[fid] & NVME_FEAT_CAP_NS) { 5296 if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) { 5297 /* 5298 * The Reservation Notification Mask and Reservation Persistence 5299 * features require a status code of Invalid Field in Command when 5300 * NSID is FFFFFFFFh. Since the device does not support those 5301 * features we can always return Invalid Namespace or Format as we 5302 * should do for all other features. 5303 */ 5304 return NVME_INVALID_NSID | NVME_DNR; 5305 } 5306 5307 if (!nvme_ns(n, nsid)) { 5308 return NVME_INVALID_FIELD | NVME_DNR; 5309 } 5310 } 5311 5312 switch (sel) { 5313 case NVME_GETFEAT_SELECT_CURRENT: 5314 break; 5315 case NVME_GETFEAT_SELECT_SAVED: 5316 /* no features are saveable by the controller; fallthrough */ 5317 case NVME_GETFEAT_SELECT_DEFAULT: 5318 goto defaults; 5319 case NVME_GETFEAT_SELECT_CAP: 5320 result = nvme_feature_cap[fid]; 5321 goto out; 5322 } 5323 5324 switch (fid) { 5325 case NVME_TEMPERATURE_THRESHOLD: 5326 result = 0; 5327 5328 /* 5329 * The controller only implements the Composite Temperature sensor, so 5330 * return 0 for all other sensors. 5331 */ 5332 if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) { 5333 goto out; 5334 } 5335 5336 switch (NVME_TEMP_THSEL(dw11)) { 5337 case NVME_TEMP_THSEL_OVER: 5338 result = n->features.temp_thresh_hi; 5339 goto out; 5340 case NVME_TEMP_THSEL_UNDER: 5341 result = n->features.temp_thresh_low; 5342 goto out; 5343 } 5344 5345 return NVME_INVALID_FIELD | NVME_DNR; 5346 case NVME_ERROR_RECOVERY: 5347 if (!nvme_nsid_valid(n, nsid)) { 5348 return NVME_INVALID_NSID | NVME_DNR; 5349 } 5350 5351 ns = nvme_ns(n, nsid); 5352 if (unlikely(!ns)) { 5353 return NVME_INVALID_FIELD | NVME_DNR; 5354 } 5355 5356 result = ns->features.err_rec; 5357 goto out; 5358 case NVME_VOLATILE_WRITE_CACHE: 5359 result = 0; 5360 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { 5361 ns = nvme_ns(n, i); 5362 if (!ns) { 5363 continue; 5364 } 5365 5366 result = blk_enable_write_cache(ns->blkconf.blk); 5367 if (result) { 5368 break; 5369 } 5370 } 5371 trace_pci_nvme_getfeat_vwcache(result ? "enabled" : "disabled"); 5372 goto out; 5373 case NVME_ASYNCHRONOUS_EVENT_CONF: 5374 result = n->features.async_config; 5375 goto out; 5376 case NVME_TIMESTAMP: 5377 return nvme_get_feature_timestamp(n, req); 5378 case NVME_HOST_BEHAVIOR_SUPPORT: 5379 return nvme_c2h(n, (uint8_t *)&n->features.hbs, 5380 sizeof(n->features.hbs), req); 5381 default: 5382 break; 5383 } 5384 5385 defaults: 5386 switch (fid) { 5387 case NVME_TEMPERATURE_THRESHOLD: 5388 result = 0; 5389 5390 if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) { 5391 break; 5392 } 5393 5394 if (NVME_TEMP_THSEL(dw11) == NVME_TEMP_THSEL_OVER) { 5395 result = NVME_TEMPERATURE_WARNING; 5396 } 5397 5398 break; 5399 case NVME_NUMBER_OF_QUEUES: 5400 result = (n->conf_ioqpairs - 1) | ((n->conf_ioqpairs - 1) << 16); 5401 trace_pci_nvme_getfeat_numq(result); 5402 break; 5403 case NVME_INTERRUPT_VECTOR_CONF: 5404 iv = dw11 & 0xffff; 5405 if (iv >= n->conf_ioqpairs + 1) { 5406 return NVME_INVALID_FIELD | NVME_DNR; 5407 } 5408 5409 result = iv; 5410 if (iv == n->admin_cq.vector) { 5411 result |= NVME_INTVC_NOCOALESCING; 5412 } 5413 break; 5414 default: 5415 result = nvme_feature_default[fid]; 5416 break; 5417 } 5418 5419 out: 5420 req->cqe.result = cpu_to_le32(result); 5421 return NVME_SUCCESS; 5422 } 5423 5424 static uint16_t nvme_set_feature_timestamp(NvmeCtrl *n, NvmeRequest *req) 5425 { 5426 uint16_t ret; 5427 uint64_t timestamp; 5428 5429 ret = nvme_h2c(n, (uint8_t *)×tamp, sizeof(timestamp), req); 5430 if (ret) { 5431 return ret; 5432 } 5433 5434 nvme_set_timestamp(n, timestamp); 5435 5436 return NVME_SUCCESS; 5437 } 5438 5439 static uint16_t nvme_set_feature(NvmeCtrl *n, NvmeRequest *req) 5440 { 5441 NvmeNamespace *ns = NULL; 5442 5443 NvmeCmd *cmd = &req->cmd; 5444 uint32_t dw10 = le32_to_cpu(cmd->cdw10); 5445 uint32_t dw11 = le32_to_cpu(cmd->cdw11); 5446 uint32_t nsid = le32_to_cpu(cmd->nsid); 5447 uint8_t fid = NVME_GETSETFEAT_FID(dw10); 5448 uint8_t save = NVME_SETFEAT_SAVE(dw10); 5449 uint16_t status; 5450 int i; 5451 5452 trace_pci_nvme_setfeat(nvme_cid(req), nsid, fid, save, dw11); 5453 5454 if (save && !(nvme_feature_cap[fid] & NVME_FEAT_CAP_SAVE)) { 5455 return NVME_FID_NOT_SAVEABLE | NVME_DNR; 5456 } 5457 5458 if (!nvme_feature_support[fid]) { 5459 return NVME_INVALID_FIELD | NVME_DNR; 5460 } 5461 5462 if (nvme_feature_cap[fid] & NVME_FEAT_CAP_NS) { 5463 if (nsid != NVME_NSID_BROADCAST) { 5464 if (!nvme_nsid_valid(n, nsid)) { 5465 return NVME_INVALID_NSID | NVME_DNR; 5466 } 5467 5468 ns = nvme_ns(n, nsid); 5469 if (unlikely(!ns)) { 5470 return NVME_INVALID_FIELD | NVME_DNR; 5471 } 5472 } 5473 } else if (nsid && nsid != NVME_NSID_BROADCAST) { 5474 if (!nvme_nsid_valid(n, nsid)) { 5475 return NVME_INVALID_NSID | NVME_DNR; 5476 } 5477 5478 return NVME_FEAT_NOT_NS_SPEC | NVME_DNR; 5479 } 5480 5481 if (!(nvme_feature_cap[fid] & NVME_FEAT_CAP_CHANGE)) { 5482 return NVME_FEAT_NOT_CHANGEABLE | NVME_DNR; 5483 } 5484 5485 switch (fid) { 5486 case NVME_TEMPERATURE_THRESHOLD: 5487 if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) { 5488 break; 5489 } 5490 5491 switch (NVME_TEMP_THSEL(dw11)) { 5492 case NVME_TEMP_THSEL_OVER: 5493 n->features.temp_thresh_hi = NVME_TEMP_TMPTH(dw11); 5494 break; 5495 case NVME_TEMP_THSEL_UNDER: 5496 n->features.temp_thresh_low = NVME_TEMP_TMPTH(dw11); 5497 break; 5498 default: 5499 return NVME_INVALID_FIELD | NVME_DNR; 5500 } 5501 5502 if ((n->temperature >= n->features.temp_thresh_hi) || 5503 (n->temperature <= n->features.temp_thresh_low)) { 5504 nvme_smart_event(n, NVME_SMART_TEMPERATURE); 5505 } 5506 5507 break; 5508 case NVME_ERROR_RECOVERY: 5509 if (nsid == NVME_NSID_BROADCAST) { 5510 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { 5511 ns = nvme_ns(n, i); 5512 5513 if (!ns) { 5514 continue; 5515 } 5516 5517 if (NVME_ID_NS_NSFEAT_DULBE(ns->id_ns.nsfeat)) { 5518 ns->features.err_rec = dw11; 5519 } 5520 } 5521 5522 break; 5523 } 5524 5525 assert(ns); 5526 if (NVME_ID_NS_NSFEAT_DULBE(ns->id_ns.nsfeat)) { 5527 ns->features.err_rec = dw11; 5528 } 5529 break; 5530 case NVME_VOLATILE_WRITE_CACHE: 5531 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { 5532 ns = nvme_ns(n, i); 5533 if (!ns) { 5534 continue; 5535 } 5536 5537 if (!(dw11 & 0x1) && blk_enable_write_cache(ns->blkconf.blk)) { 5538 blk_flush(ns->blkconf.blk); 5539 } 5540 5541 blk_set_enable_write_cache(ns->blkconf.blk, dw11 & 1); 5542 } 5543 5544 break; 5545 5546 case NVME_NUMBER_OF_QUEUES: 5547 if (n->qs_created) { 5548 return NVME_CMD_SEQ_ERROR | NVME_DNR; 5549 } 5550 5551 /* 5552 * NVMe v1.3, Section 5.21.1.7: FFFFh is not an allowed value for NCQR 5553 * and NSQR. 5554 */ 5555 if ((dw11 & 0xffff) == 0xffff || ((dw11 >> 16) & 0xffff) == 0xffff) { 5556 return NVME_INVALID_FIELD | NVME_DNR; 5557 } 5558 5559 trace_pci_nvme_setfeat_numq((dw11 & 0xffff) + 1, 5560 ((dw11 >> 16) & 0xffff) + 1, 5561 n->conf_ioqpairs, 5562 n->conf_ioqpairs); 5563 req->cqe.result = cpu_to_le32((n->conf_ioqpairs - 1) | 5564 ((n->conf_ioqpairs - 1) << 16)); 5565 break; 5566 case NVME_ASYNCHRONOUS_EVENT_CONF: 5567 n->features.async_config = dw11; 5568 break; 5569 case NVME_TIMESTAMP: 5570 return nvme_set_feature_timestamp(n, req); 5571 case NVME_HOST_BEHAVIOR_SUPPORT: 5572 status = nvme_h2c(n, (uint8_t *)&n->features.hbs, 5573 sizeof(n->features.hbs), req); 5574 if (status) { 5575 return status; 5576 } 5577 5578 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { 5579 ns = nvme_ns(n, i); 5580 5581 if (!ns) { 5582 continue; 5583 } 5584 5585 ns->id_ns.nlbaf = ns->nlbaf - 1; 5586 if (!n->features.hbs.lbafee) { 5587 ns->id_ns.nlbaf = MIN(ns->id_ns.nlbaf, 15); 5588 } 5589 } 5590 5591 return status; 5592 case NVME_COMMAND_SET_PROFILE: 5593 if (dw11 & 0x1ff) { 5594 trace_pci_nvme_err_invalid_iocsci(dw11 & 0x1ff); 5595 return NVME_CMD_SET_CMB_REJECTED | NVME_DNR; 5596 } 5597 break; 5598 default: 5599 return NVME_FEAT_NOT_CHANGEABLE | NVME_DNR; 5600 } 5601 return NVME_SUCCESS; 5602 } 5603 5604 static uint16_t nvme_aer(NvmeCtrl *n, NvmeRequest *req) 5605 { 5606 trace_pci_nvme_aer(nvme_cid(req)); 5607 5608 if (n->outstanding_aers > n->params.aerl) { 5609 trace_pci_nvme_aer_aerl_exceeded(); 5610 return NVME_AER_LIMIT_EXCEEDED; 5611 } 5612 5613 n->aer_reqs[n->outstanding_aers] = req; 5614 n->outstanding_aers++; 5615 5616 if (!QTAILQ_EMPTY(&n->aer_queue)) { 5617 nvme_process_aers(n); 5618 } 5619 5620 return NVME_NO_COMPLETE; 5621 } 5622 5623 static void nvme_update_dmrsl(NvmeCtrl *n) 5624 { 5625 int nsid; 5626 5627 for (nsid = 1; nsid <= NVME_MAX_NAMESPACES; nsid++) { 5628 NvmeNamespace *ns = nvme_ns(n, nsid); 5629 if (!ns) { 5630 continue; 5631 } 5632 5633 n->dmrsl = MIN_NON_ZERO(n->dmrsl, 5634 BDRV_REQUEST_MAX_BYTES / nvme_l2b(ns, 1)); 5635 } 5636 } 5637 5638 static void nvme_select_iocs_ns(NvmeCtrl *n, NvmeNamespace *ns) 5639 { 5640 uint32_t cc = ldl_le_p(&n->bar.cc); 5641 5642 ns->iocs = nvme_cse_iocs_none; 5643 switch (ns->csi) { 5644 case NVME_CSI_NVM: 5645 if (NVME_CC_CSS(cc) != NVME_CC_CSS_ADMIN_ONLY) { 5646 ns->iocs = nvme_cse_iocs_nvm; 5647 } 5648 break; 5649 case NVME_CSI_ZONED: 5650 if (NVME_CC_CSS(cc) == NVME_CC_CSS_CSI) { 5651 ns->iocs = nvme_cse_iocs_zoned; 5652 } else if (NVME_CC_CSS(cc) == NVME_CC_CSS_NVM) { 5653 ns->iocs = nvme_cse_iocs_nvm; 5654 } 5655 break; 5656 } 5657 } 5658 5659 static uint16_t nvme_ns_attachment(NvmeCtrl *n, NvmeRequest *req) 5660 { 5661 NvmeNamespace *ns; 5662 NvmeCtrl *ctrl; 5663 uint16_t list[NVME_CONTROLLER_LIST_SIZE] = {}; 5664 uint32_t nsid = le32_to_cpu(req->cmd.nsid); 5665 uint32_t dw10 = le32_to_cpu(req->cmd.cdw10); 5666 uint8_t sel = dw10 & 0xf; 5667 uint16_t *nr_ids = &list[0]; 5668 uint16_t *ids = &list[1]; 5669 uint16_t ret; 5670 int i; 5671 5672 trace_pci_nvme_ns_attachment(nvme_cid(req), dw10 & 0xf); 5673 5674 if (!nvme_nsid_valid(n, nsid)) { 5675 return NVME_INVALID_NSID | NVME_DNR; 5676 } 5677 5678 ns = nvme_subsys_ns(n->subsys, nsid); 5679 if (!ns) { 5680 return NVME_INVALID_FIELD | NVME_DNR; 5681 } 5682 5683 ret = nvme_h2c(n, (uint8_t *)list, 4096, req); 5684 if (ret) { 5685 return ret; 5686 } 5687 5688 if (!*nr_ids) { 5689 return NVME_NS_CTRL_LIST_INVALID | NVME_DNR; 5690 } 5691 5692 *nr_ids = MIN(*nr_ids, NVME_CONTROLLER_LIST_SIZE - 1); 5693 for (i = 0; i < *nr_ids; i++) { 5694 ctrl = nvme_subsys_ctrl(n->subsys, ids[i]); 5695 if (!ctrl) { 5696 return NVME_NS_CTRL_LIST_INVALID | NVME_DNR; 5697 } 5698 5699 switch (sel) { 5700 case NVME_NS_ATTACHMENT_ATTACH: 5701 if (nvme_ns(ctrl, nsid)) { 5702 return NVME_NS_ALREADY_ATTACHED | NVME_DNR; 5703 } 5704 5705 if (ns->attached && !ns->params.shared) { 5706 return NVME_NS_PRIVATE | NVME_DNR; 5707 } 5708 5709 nvme_attach_ns(ctrl, ns); 5710 nvme_select_iocs_ns(ctrl, ns); 5711 5712 break; 5713 5714 case NVME_NS_ATTACHMENT_DETACH: 5715 if (!nvme_ns(ctrl, nsid)) { 5716 return NVME_NS_NOT_ATTACHED | NVME_DNR; 5717 } 5718 5719 ctrl->namespaces[nsid] = NULL; 5720 ns->attached--; 5721 5722 nvme_update_dmrsl(ctrl); 5723 5724 break; 5725 5726 default: 5727 return NVME_INVALID_FIELD | NVME_DNR; 5728 } 5729 5730 /* 5731 * Add namespace id to the changed namespace id list for event clearing 5732 * via Get Log Page command. 5733 */ 5734 if (!test_and_set_bit(nsid, ctrl->changed_nsids)) { 5735 nvme_enqueue_event(ctrl, NVME_AER_TYPE_NOTICE, 5736 NVME_AER_INFO_NOTICE_NS_ATTR_CHANGED, 5737 NVME_LOG_CHANGED_NSLIST); 5738 } 5739 } 5740 5741 return NVME_SUCCESS; 5742 } 5743 5744 typedef struct NvmeFormatAIOCB { 5745 BlockAIOCB common; 5746 BlockAIOCB *aiocb; 5747 QEMUBH *bh; 5748 NvmeRequest *req; 5749 int ret; 5750 5751 NvmeNamespace *ns; 5752 uint32_t nsid; 5753 bool broadcast; 5754 int64_t offset; 5755 5756 uint8_t lbaf; 5757 uint8_t mset; 5758 uint8_t pi; 5759 uint8_t pil; 5760 } NvmeFormatAIOCB; 5761 5762 static void nvme_format_bh(void *opaque); 5763 5764 static void nvme_format_cancel(BlockAIOCB *aiocb) 5765 { 5766 NvmeFormatAIOCB *iocb = container_of(aiocb, NvmeFormatAIOCB, common); 5767 5768 if (iocb->aiocb) { 5769 blk_aio_cancel_async(iocb->aiocb); 5770 } 5771 } 5772 5773 static const AIOCBInfo nvme_format_aiocb_info = { 5774 .aiocb_size = sizeof(NvmeFormatAIOCB), 5775 .cancel_async = nvme_format_cancel, 5776 .get_aio_context = nvme_get_aio_context, 5777 }; 5778 5779 static void nvme_format_set(NvmeNamespace *ns, uint8_t lbaf, uint8_t mset, 5780 uint8_t pi, uint8_t pil) 5781 { 5782 uint8_t lbafl = lbaf & 0xf; 5783 uint8_t lbafu = lbaf >> 4; 5784 5785 trace_pci_nvme_format_set(ns->params.nsid, lbaf, mset, pi, pil); 5786 5787 ns->id_ns.dps = (pil << 3) | pi; 5788 ns->id_ns.flbas = (lbafu << 5) | (mset << 4) | lbafl; 5789 5790 nvme_ns_init_format(ns); 5791 } 5792 5793 static void nvme_format_ns_cb(void *opaque, int ret) 5794 { 5795 NvmeFormatAIOCB *iocb = opaque; 5796 NvmeNamespace *ns = iocb->ns; 5797 int bytes; 5798 5799 if (ret < 0) { 5800 iocb->ret = ret; 5801 goto done; 5802 } 5803 5804 assert(ns); 5805 5806 if (iocb->offset < ns->size) { 5807 bytes = MIN(BDRV_REQUEST_MAX_BYTES, ns->size - iocb->offset); 5808 5809 iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk, iocb->offset, 5810 bytes, BDRV_REQ_MAY_UNMAP, 5811 nvme_format_ns_cb, iocb); 5812 5813 iocb->offset += bytes; 5814 return; 5815 } 5816 5817 nvme_format_set(ns, iocb->lbaf, iocb->mset, iocb->pi, iocb->pil); 5818 ns->status = 0x0; 5819 iocb->ns = NULL; 5820 iocb->offset = 0; 5821 5822 done: 5823 iocb->aiocb = NULL; 5824 qemu_bh_schedule(iocb->bh); 5825 } 5826 5827 static uint16_t nvme_format_check(NvmeNamespace *ns, uint8_t lbaf, uint8_t pi) 5828 { 5829 if (ns->params.zoned) { 5830 return NVME_INVALID_FORMAT | NVME_DNR; 5831 } 5832 5833 if (lbaf > ns->id_ns.nlbaf) { 5834 return NVME_INVALID_FORMAT | NVME_DNR; 5835 } 5836 5837 if (pi && (ns->id_ns.lbaf[lbaf].ms < nvme_pi_tuple_size(ns))) { 5838 return NVME_INVALID_FORMAT | NVME_DNR; 5839 } 5840 5841 if (pi && pi > NVME_ID_NS_DPS_TYPE_3) { 5842 return NVME_INVALID_FIELD | NVME_DNR; 5843 } 5844 5845 return NVME_SUCCESS; 5846 } 5847 5848 static void nvme_format_bh(void *opaque) 5849 { 5850 NvmeFormatAIOCB *iocb = opaque; 5851 NvmeRequest *req = iocb->req; 5852 NvmeCtrl *n = nvme_ctrl(req); 5853 uint32_t dw10 = le32_to_cpu(req->cmd.cdw10); 5854 uint8_t lbaf = dw10 & 0xf; 5855 uint8_t pi = (dw10 >> 5) & 0x7; 5856 uint16_t status; 5857 int i; 5858 5859 if (iocb->ret < 0) { 5860 goto done; 5861 } 5862 5863 if (iocb->broadcast) { 5864 for (i = iocb->nsid + 1; i <= NVME_MAX_NAMESPACES; i++) { 5865 iocb->ns = nvme_ns(n, i); 5866 if (iocb->ns) { 5867 iocb->nsid = i; 5868 break; 5869 } 5870 } 5871 } 5872 5873 if (!iocb->ns) { 5874 goto done; 5875 } 5876 5877 status = nvme_format_check(iocb->ns, lbaf, pi); 5878 if (status) { 5879 req->status = status; 5880 goto done; 5881 } 5882 5883 iocb->ns->status = NVME_FORMAT_IN_PROGRESS; 5884 nvme_format_ns_cb(iocb, 0); 5885 return; 5886 5887 done: 5888 qemu_bh_delete(iocb->bh); 5889 iocb->bh = NULL; 5890 5891 iocb->common.cb(iocb->common.opaque, iocb->ret); 5892 5893 qemu_aio_unref(iocb); 5894 } 5895 5896 static uint16_t nvme_format(NvmeCtrl *n, NvmeRequest *req) 5897 { 5898 NvmeFormatAIOCB *iocb; 5899 uint32_t nsid = le32_to_cpu(req->cmd.nsid); 5900 uint32_t dw10 = le32_to_cpu(req->cmd.cdw10); 5901 uint8_t lbaf = dw10 & 0xf; 5902 uint8_t mset = (dw10 >> 4) & 0x1; 5903 uint8_t pi = (dw10 >> 5) & 0x7; 5904 uint8_t pil = (dw10 >> 8) & 0x1; 5905 uint8_t lbafu = (dw10 >> 12) & 0x3; 5906 uint16_t status; 5907 5908 iocb = qemu_aio_get(&nvme_format_aiocb_info, NULL, nvme_misc_cb, req); 5909 5910 iocb->req = req; 5911 iocb->bh = qemu_bh_new(nvme_format_bh, iocb); 5912 iocb->ret = 0; 5913 iocb->ns = NULL; 5914 iocb->nsid = 0; 5915 iocb->lbaf = lbaf; 5916 iocb->mset = mset; 5917 iocb->pi = pi; 5918 iocb->pil = pil; 5919 iocb->broadcast = (nsid == NVME_NSID_BROADCAST); 5920 iocb->offset = 0; 5921 5922 if (n->features.hbs.lbafee) { 5923 iocb->lbaf |= lbafu << 4; 5924 } 5925 5926 if (!iocb->broadcast) { 5927 if (!nvme_nsid_valid(n, nsid)) { 5928 status = NVME_INVALID_NSID | NVME_DNR; 5929 goto out; 5930 } 5931 5932 iocb->ns = nvme_ns(n, nsid); 5933 if (!iocb->ns) { 5934 status = NVME_INVALID_FIELD | NVME_DNR; 5935 goto out; 5936 } 5937 } 5938 5939 req->aiocb = &iocb->common; 5940 qemu_bh_schedule(iocb->bh); 5941 5942 return NVME_NO_COMPLETE; 5943 5944 out: 5945 qemu_bh_delete(iocb->bh); 5946 iocb->bh = NULL; 5947 qemu_aio_unref(iocb); 5948 return status; 5949 } 5950 5951 static void nvme_get_virt_res_num(NvmeCtrl *n, uint8_t rt, int *num_total, 5952 int *num_prim, int *num_sec) 5953 { 5954 *num_total = le32_to_cpu(rt ? 5955 n->pri_ctrl_cap.vifrt : n->pri_ctrl_cap.vqfrt); 5956 *num_prim = le16_to_cpu(rt ? 5957 n->pri_ctrl_cap.virfap : n->pri_ctrl_cap.vqrfap); 5958 *num_sec = le16_to_cpu(rt ? n->pri_ctrl_cap.virfa : n->pri_ctrl_cap.vqrfa); 5959 } 5960 5961 static uint16_t nvme_assign_virt_res_to_prim(NvmeCtrl *n, NvmeRequest *req, 5962 uint16_t cntlid, uint8_t rt, 5963 int nr) 5964 { 5965 int num_total, num_prim, num_sec; 5966 5967 if (cntlid != n->cntlid) { 5968 return NVME_INVALID_CTRL_ID | NVME_DNR; 5969 } 5970 5971 nvme_get_virt_res_num(n, rt, &num_total, &num_prim, &num_sec); 5972 5973 if (nr > num_total) { 5974 return NVME_INVALID_NUM_RESOURCES | NVME_DNR; 5975 } 5976 5977 if (nr > num_total - num_sec) { 5978 return NVME_INVALID_RESOURCE_ID | NVME_DNR; 5979 } 5980 5981 if (rt) { 5982 n->next_pri_ctrl_cap.virfap = cpu_to_le16(nr); 5983 } else { 5984 n->next_pri_ctrl_cap.vqrfap = cpu_to_le16(nr); 5985 } 5986 5987 req->cqe.result = cpu_to_le32(nr); 5988 return req->status; 5989 } 5990 5991 static void nvme_update_virt_res(NvmeCtrl *n, NvmeSecCtrlEntry *sctrl, 5992 uint8_t rt, int nr) 5993 { 5994 int prev_nr, prev_total; 5995 5996 if (rt) { 5997 prev_nr = le16_to_cpu(sctrl->nvi); 5998 prev_total = le32_to_cpu(n->pri_ctrl_cap.virfa); 5999 sctrl->nvi = cpu_to_le16(nr); 6000 n->pri_ctrl_cap.virfa = cpu_to_le32(prev_total + nr - prev_nr); 6001 } else { 6002 prev_nr = le16_to_cpu(sctrl->nvq); 6003 prev_total = le32_to_cpu(n->pri_ctrl_cap.vqrfa); 6004 sctrl->nvq = cpu_to_le16(nr); 6005 n->pri_ctrl_cap.vqrfa = cpu_to_le32(prev_total + nr - prev_nr); 6006 } 6007 } 6008 6009 static uint16_t nvme_assign_virt_res_to_sec(NvmeCtrl *n, NvmeRequest *req, 6010 uint16_t cntlid, uint8_t rt, int nr) 6011 { 6012 int num_total, num_prim, num_sec, num_free, diff, limit; 6013 NvmeSecCtrlEntry *sctrl; 6014 6015 sctrl = nvme_sctrl_for_cntlid(n, cntlid); 6016 if (!sctrl) { 6017 return NVME_INVALID_CTRL_ID | NVME_DNR; 6018 } 6019 6020 if (sctrl->scs) { 6021 return NVME_INVALID_SEC_CTRL_STATE | NVME_DNR; 6022 } 6023 6024 limit = le16_to_cpu(rt ? n->pri_ctrl_cap.vifrsm : n->pri_ctrl_cap.vqfrsm); 6025 if (nr > limit) { 6026 return NVME_INVALID_NUM_RESOURCES | NVME_DNR; 6027 } 6028 6029 nvme_get_virt_res_num(n, rt, &num_total, &num_prim, &num_sec); 6030 num_free = num_total - num_prim - num_sec; 6031 diff = nr - le16_to_cpu(rt ? sctrl->nvi : sctrl->nvq); 6032 6033 if (diff > num_free) { 6034 return NVME_INVALID_RESOURCE_ID | NVME_DNR; 6035 } 6036 6037 nvme_update_virt_res(n, sctrl, rt, nr); 6038 req->cqe.result = cpu_to_le32(nr); 6039 6040 return req->status; 6041 } 6042 6043 static uint16_t nvme_virt_set_state(NvmeCtrl *n, uint16_t cntlid, bool online) 6044 { 6045 NvmeCtrl *sn = NULL; 6046 NvmeSecCtrlEntry *sctrl; 6047 int vf_index; 6048 6049 sctrl = nvme_sctrl_for_cntlid(n, cntlid); 6050 if (!sctrl) { 6051 return NVME_INVALID_CTRL_ID | NVME_DNR; 6052 } 6053 6054 if (!pci_is_vf(&n->parent_obj)) { 6055 vf_index = le16_to_cpu(sctrl->vfn) - 1; 6056 sn = NVME(pcie_sriov_get_vf_at_index(&n->parent_obj, vf_index)); 6057 } 6058 6059 if (online) { 6060 if (!sctrl->nvi || (le16_to_cpu(sctrl->nvq) < 2) || !sn) { 6061 return NVME_INVALID_SEC_CTRL_STATE | NVME_DNR; 6062 } 6063 6064 if (!sctrl->scs) { 6065 sctrl->scs = 0x1; 6066 nvme_ctrl_reset(sn, NVME_RESET_FUNCTION); 6067 } 6068 } else { 6069 nvme_update_virt_res(n, sctrl, NVME_VIRT_RES_INTERRUPT, 0); 6070 nvme_update_virt_res(n, sctrl, NVME_VIRT_RES_QUEUE, 0); 6071 6072 if (sctrl->scs) { 6073 sctrl->scs = 0x0; 6074 if (sn) { 6075 nvme_ctrl_reset(sn, NVME_RESET_FUNCTION); 6076 } 6077 } 6078 } 6079 6080 return NVME_SUCCESS; 6081 } 6082 6083 static uint16_t nvme_virt_mngmt(NvmeCtrl *n, NvmeRequest *req) 6084 { 6085 uint32_t dw10 = le32_to_cpu(req->cmd.cdw10); 6086 uint32_t dw11 = le32_to_cpu(req->cmd.cdw11); 6087 uint8_t act = dw10 & 0xf; 6088 uint8_t rt = (dw10 >> 8) & 0x7; 6089 uint16_t cntlid = (dw10 >> 16) & 0xffff; 6090 int nr = dw11 & 0xffff; 6091 6092 trace_pci_nvme_virt_mngmt(nvme_cid(req), act, cntlid, rt ? "VI" : "VQ", nr); 6093 6094 if (rt != NVME_VIRT_RES_QUEUE && rt != NVME_VIRT_RES_INTERRUPT) { 6095 return NVME_INVALID_RESOURCE_ID | NVME_DNR; 6096 } 6097 6098 switch (act) { 6099 case NVME_VIRT_MNGMT_ACTION_SEC_ASSIGN: 6100 return nvme_assign_virt_res_to_sec(n, req, cntlid, rt, nr); 6101 case NVME_VIRT_MNGMT_ACTION_PRM_ALLOC: 6102 return nvme_assign_virt_res_to_prim(n, req, cntlid, rt, nr); 6103 case NVME_VIRT_MNGMT_ACTION_SEC_ONLINE: 6104 return nvme_virt_set_state(n, cntlid, true); 6105 case NVME_VIRT_MNGMT_ACTION_SEC_OFFLINE: 6106 return nvme_virt_set_state(n, cntlid, false); 6107 default: 6108 return NVME_INVALID_FIELD | NVME_DNR; 6109 } 6110 } 6111 6112 static uint16_t nvme_dbbuf_config(NvmeCtrl *n, const NvmeRequest *req) 6113 { 6114 uint64_t dbs_addr = le64_to_cpu(req->cmd.dptr.prp1); 6115 uint64_t eis_addr = le64_to_cpu(req->cmd.dptr.prp2); 6116 int i; 6117 6118 /* Address should be page aligned */ 6119 if (dbs_addr & (n->page_size - 1) || eis_addr & (n->page_size - 1)) { 6120 return NVME_INVALID_FIELD | NVME_DNR; 6121 } 6122 6123 /* Save shadow buffer base addr for use during queue creation */ 6124 n->dbbuf_dbs = dbs_addr; 6125 n->dbbuf_eis = eis_addr; 6126 n->dbbuf_enabled = true; 6127 6128 for (i = 0; i < n->params.max_ioqpairs + 1; i++) { 6129 NvmeSQueue *sq = n->sq[i]; 6130 NvmeCQueue *cq = n->cq[i]; 6131 6132 if (sq) { 6133 /* 6134 * CAP.DSTRD is 0, so offset of ith sq db_addr is (i<<3) 6135 * nvme_process_db() uses this hard-coded way to calculate 6136 * doorbell offsets. Be consistent with that here. 6137 */ 6138 sq->db_addr = dbs_addr + (i << 3); 6139 sq->ei_addr = eis_addr + (i << 3); 6140 pci_dma_write(&n->parent_obj, sq->db_addr, &sq->tail, 6141 sizeof(sq->tail)); 6142 6143 if (n->params.ioeventfd && sq->sqid != 0) { 6144 if (!nvme_init_sq_ioeventfd(sq)) { 6145 sq->ioeventfd_enabled = true; 6146 } 6147 } 6148 } 6149 6150 if (cq) { 6151 /* CAP.DSTRD is 0, so offset of ith cq db_addr is (i<<3)+(1<<2) */ 6152 cq->db_addr = dbs_addr + (i << 3) + (1 << 2); 6153 cq->ei_addr = eis_addr + (i << 3) + (1 << 2); 6154 pci_dma_write(&n->parent_obj, cq->db_addr, &cq->head, 6155 sizeof(cq->head)); 6156 6157 if (n->params.ioeventfd && cq->cqid != 0) { 6158 if (!nvme_init_cq_ioeventfd(cq)) { 6159 cq->ioeventfd_enabled = true; 6160 } 6161 } 6162 } 6163 } 6164 6165 trace_pci_nvme_dbbuf_config(dbs_addr, eis_addr); 6166 6167 return NVME_SUCCESS; 6168 } 6169 6170 static uint16_t nvme_admin_cmd(NvmeCtrl *n, NvmeRequest *req) 6171 { 6172 trace_pci_nvme_admin_cmd(nvme_cid(req), nvme_sqid(req), req->cmd.opcode, 6173 nvme_adm_opc_str(req->cmd.opcode)); 6174 6175 if (!(nvme_cse_acs[req->cmd.opcode] & NVME_CMD_EFF_CSUPP)) { 6176 trace_pci_nvme_err_invalid_admin_opc(req->cmd.opcode); 6177 return NVME_INVALID_OPCODE | NVME_DNR; 6178 } 6179 6180 /* SGLs shall not be used for Admin commands in NVMe over PCIe */ 6181 if (NVME_CMD_FLAGS_PSDT(req->cmd.flags) != NVME_PSDT_PRP) { 6182 return NVME_INVALID_FIELD | NVME_DNR; 6183 } 6184 6185 if (NVME_CMD_FLAGS_FUSE(req->cmd.flags)) { 6186 return NVME_INVALID_FIELD; 6187 } 6188 6189 switch (req->cmd.opcode) { 6190 case NVME_ADM_CMD_DELETE_SQ: 6191 return nvme_del_sq(n, req); 6192 case NVME_ADM_CMD_CREATE_SQ: 6193 return nvme_create_sq(n, req); 6194 case NVME_ADM_CMD_GET_LOG_PAGE: 6195 return nvme_get_log(n, req); 6196 case NVME_ADM_CMD_DELETE_CQ: 6197 return nvme_del_cq(n, req); 6198 case NVME_ADM_CMD_CREATE_CQ: 6199 return nvme_create_cq(n, req); 6200 case NVME_ADM_CMD_IDENTIFY: 6201 return nvme_identify(n, req); 6202 case NVME_ADM_CMD_ABORT: 6203 return nvme_abort(n, req); 6204 case NVME_ADM_CMD_SET_FEATURES: 6205 return nvme_set_feature(n, req); 6206 case NVME_ADM_CMD_GET_FEATURES: 6207 return nvme_get_feature(n, req); 6208 case NVME_ADM_CMD_ASYNC_EV_REQ: 6209 return nvme_aer(n, req); 6210 case NVME_ADM_CMD_NS_ATTACHMENT: 6211 return nvme_ns_attachment(n, req); 6212 case NVME_ADM_CMD_VIRT_MNGMT: 6213 return nvme_virt_mngmt(n, req); 6214 case NVME_ADM_CMD_DBBUF_CONFIG: 6215 return nvme_dbbuf_config(n, req); 6216 case NVME_ADM_CMD_FORMAT_NVM: 6217 return nvme_format(n, req); 6218 default: 6219 assert(false); 6220 } 6221 6222 return NVME_INVALID_OPCODE | NVME_DNR; 6223 } 6224 6225 static void nvme_update_sq_eventidx(const NvmeSQueue *sq) 6226 { 6227 pci_dma_write(&sq->ctrl->parent_obj, sq->ei_addr, &sq->tail, 6228 sizeof(sq->tail)); 6229 trace_pci_nvme_eventidx_sq(sq->sqid, sq->tail); 6230 } 6231 6232 static void nvme_update_sq_tail(NvmeSQueue *sq) 6233 { 6234 pci_dma_read(&sq->ctrl->parent_obj, sq->db_addr, &sq->tail, 6235 sizeof(sq->tail)); 6236 trace_pci_nvme_shadow_doorbell_sq(sq->sqid, sq->tail); 6237 } 6238 6239 static void nvme_process_sq(void *opaque) 6240 { 6241 NvmeSQueue *sq = opaque; 6242 NvmeCtrl *n = sq->ctrl; 6243 NvmeCQueue *cq = n->cq[sq->cqid]; 6244 6245 uint16_t status; 6246 hwaddr addr; 6247 NvmeCmd cmd; 6248 NvmeRequest *req; 6249 6250 if (n->dbbuf_enabled) { 6251 nvme_update_sq_tail(sq); 6252 } 6253 6254 while (!(nvme_sq_empty(sq) || QTAILQ_EMPTY(&sq->req_list))) { 6255 addr = sq->dma_addr + sq->head * n->sqe_size; 6256 if (nvme_addr_read(n, addr, (void *)&cmd, sizeof(cmd))) { 6257 trace_pci_nvme_err_addr_read(addr); 6258 trace_pci_nvme_err_cfs(); 6259 stl_le_p(&n->bar.csts, NVME_CSTS_FAILED); 6260 break; 6261 } 6262 nvme_inc_sq_head(sq); 6263 6264 req = QTAILQ_FIRST(&sq->req_list); 6265 QTAILQ_REMOVE(&sq->req_list, req, entry); 6266 QTAILQ_INSERT_TAIL(&sq->out_req_list, req, entry); 6267 nvme_req_clear(req); 6268 req->cqe.cid = cmd.cid; 6269 memcpy(&req->cmd, &cmd, sizeof(NvmeCmd)); 6270 6271 status = sq->sqid ? nvme_io_cmd(n, req) : 6272 nvme_admin_cmd(n, req); 6273 if (status != NVME_NO_COMPLETE) { 6274 req->status = status; 6275 nvme_enqueue_req_completion(cq, req); 6276 } 6277 6278 if (n->dbbuf_enabled) { 6279 nvme_update_sq_eventidx(sq); 6280 nvme_update_sq_tail(sq); 6281 } 6282 } 6283 } 6284 6285 static void nvme_update_msixcap_ts(PCIDevice *pci_dev, uint32_t table_size) 6286 { 6287 uint8_t *config; 6288 6289 if (!msix_present(pci_dev)) { 6290 return; 6291 } 6292 6293 assert(table_size > 0 && table_size <= pci_dev->msix_entries_nr); 6294 6295 config = pci_dev->config + pci_dev->msix_cap; 6296 pci_set_word_by_mask(config + PCI_MSIX_FLAGS, PCI_MSIX_FLAGS_QSIZE, 6297 table_size - 1); 6298 } 6299 6300 static void nvme_activate_virt_res(NvmeCtrl *n) 6301 { 6302 PCIDevice *pci_dev = &n->parent_obj; 6303 NvmePriCtrlCap *cap = &n->pri_ctrl_cap; 6304 NvmeSecCtrlEntry *sctrl; 6305 6306 /* -1 to account for the admin queue */ 6307 if (pci_is_vf(pci_dev)) { 6308 sctrl = nvme_sctrl(n); 6309 cap->vqprt = sctrl->nvq; 6310 cap->viprt = sctrl->nvi; 6311 n->conf_ioqpairs = sctrl->nvq ? le16_to_cpu(sctrl->nvq) - 1 : 0; 6312 n->conf_msix_qsize = sctrl->nvi ? le16_to_cpu(sctrl->nvi) : 1; 6313 } else { 6314 cap->vqrfap = n->next_pri_ctrl_cap.vqrfap; 6315 cap->virfap = n->next_pri_ctrl_cap.virfap; 6316 n->conf_ioqpairs = le16_to_cpu(cap->vqprt) + 6317 le16_to_cpu(cap->vqrfap) - 1; 6318 n->conf_msix_qsize = le16_to_cpu(cap->viprt) + 6319 le16_to_cpu(cap->virfap); 6320 } 6321 } 6322 6323 static void nvme_ctrl_reset(NvmeCtrl *n, NvmeResetType rst) 6324 { 6325 PCIDevice *pci_dev = &n->parent_obj; 6326 NvmeSecCtrlEntry *sctrl; 6327 NvmeNamespace *ns; 6328 int i; 6329 6330 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { 6331 ns = nvme_ns(n, i); 6332 if (!ns) { 6333 continue; 6334 } 6335 6336 nvme_ns_drain(ns); 6337 } 6338 6339 for (i = 0; i < n->params.max_ioqpairs + 1; i++) { 6340 if (n->sq[i] != NULL) { 6341 nvme_free_sq(n->sq[i], n); 6342 } 6343 } 6344 for (i = 0; i < n->params.max_ioqpairs + 1; i++) { 6345 if (n->cq[i] != NULL) { 6346 nvme_free_cq(n->cq[i], n); 6347 } 6348 } 6349 6350 while (!QTAILQ_EMPTY(&n->aer_queue)) { 6351 NvmeAsyncEvent *event = QTAILQ_FIRST(&n->aer_queue); 6352 QTAILQ_REMOVE(&n->aer_queue, event, entry); 6353 g_free(event); 6354 } 6355 6356 if (n->params.sriov_max_vfs) { 6357 if (!pci_is_vf(pci_dev)) { 6358 for (i = 0; i < n->sec_ctrl_list.numcntl; i++) { 6359 sctrl = &n->sec_ctrl_list.sec[i]; 6360 nvme_virt_set_state(n, le16_to_cpu(sctrl->scid), false); 6361 } 6362 6363 if (rst != NVME_RESET_CONTROLLER) { 6364 pcie_sriov_pf_disable_vfs(pci_dev); 6365 } 6366 } 6367 6368 if (rst != NVME_RESET_CONTROLLER) { 6369 nvme_activate_virt_res(n); 6370 } 6371 } 6372 6373 n->aer_queued = 0; 6374 n->aer_mask = 0; 6375 n->outstanding_aers = 0; 6376 n->qs_created = false; 6377 6378 nvme_update_msixcap_ts(pci_dev, n->conf_msix_qsize); 6379 6380 if (pci_is_vf(pci_dev)) { 6381 sctrl = nvme_sctrl(n); 6382 6383 stl_le_p(&n->bar.csts, sctrl->scs ? 0 : NVME_CSTS_FAILED); 6384 } else { 6385 stl_le_p(&n->bar.csts, 0); 6386 } 6387 6388 stl_le_p(&n->bar.intms, 0); 6389 stl_le_p(&n->bar.intmc, 0); 6390 stl_le_p(&n->bar.cc, 0); 6391 6392 n->dbbuf_dbs = 0; 6393 n->dbbuf_eis = 0; 6394 n->dbbuf_enabled = false; 6395 } 6396 6397 static void nvme_ctrl_shutdown(NvmeCtrl *n) 6398 { 6399 NvmeNamespace *ns; 6400 int i; 6401 6402 if (n->pmr.dev) { 6403 memory_region_msync(&n->pmr.dev->mr, 0, n->pmr.dev->size); 6404 } 6405 6406 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { 6407 ns = nvme_ns(n, i); 6408 if (!ns) { 6409 continue; 6410 } 6411 6412 nvme_ns_shutdown(ns); 6413 } 6414 } 6415 6416 static void nvme_select_iocs(NvmeCtrl *n) 6417 { 6418 NvmeNamespace *ns; 6419 int i; 6420 6421 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { 6422 ns = nvme_ns(n, i); 6423 if (!ns) { 6424 continue; 6425 } 6426 6427 nvme_select_iocs_ns(n, ns); 6428 } 6429 } 6430 6431 static int nvme_start_ctrl(NvmeCtrl *n) 6432 { 6433 uint64_t cap = ldq_le_p(&n->bar.cap); 6434 uint32_t cc = ldl_le_p(&n->bar.cc); 6435 uint32_t aqa = ldl_le_p(&n->bar.aqa); 6436 uint64_t asq = ldq_le_p(&n->bar.asq); 6437 uint64_t acq = ldq_le_p(&n->bar.acq); 6438 uint32_t page_bits = NVME_CC_MPS(cc) + 12; 6439 uint32_t page_size = 1 << page_bits; 6440 NvmeSecCtrlEntry *sctrl = nvme_sctrl(n); 6441 6442 if (pci_is_vf(&n->parent_obj) && !sctrl->scs) { 6443 trace_pci_nvme_err_startfail_virt_state(le16_to_cpu(sctrl->nvi), 6444 le16_to_cpu(sctrl->nvq), 6445 sctrl->scs ? "ONLINE" : 6446 "OFFLINE"); 6447 return -1; 6448 } 6449 if (unlikely(n->cq[0])) { 6450 trace_pci_nvme_err_startfail_cq(); 6451 return -1; 6452 } 6453 if (unlikely(n->sq[0])) { 6454 trace_pci_nvme_err_startfail_sq(); 6455 return -1; 6456 } 6457 if (unlikely(asq & (page_size - 1))) { 6458 trace_pci_nvme_err_startfail_asq_misaligned(asq); 6459 return -1; 6460 } 6461 if (unlikely(acq & (page_size - 1))) { 6462 trace_pci_nvme_err_startfail_acq_misaligned(acq); 6463 return -1; 6464 } 6465 if (unlikely(!(NVME_CAP_CSS(cap) & (1 << NVME_CC_CSS(cc))))) { 6466 trace_pci_nvme_err_startfail_css(NVME_CC_CSS(cc)); 6467 return -1; 6468 } 6469 if (unlikely(NVME_CC_MPS(cc) < NVME_CAP_MPSMIN(cap))) { 6470 trace_pci_nvme_err_startfail_page_too_small( 6471 NVME_CC_MPS(cc), 6472 NVME_CAP_MPSMIN(cap)); 6473 return -1; 6474 } 6475 if (unlikely(NVME_CC_MPS(cc) > 6476 NVME_CAP_MPSMAX(cap))) { 6477 trace_pci_nvme_err_startfail_page_too_large( 6478 NVME_CC_MPS(cc), 6479 NVME_CAP_MPSMAX(cap)); 6480 return -1; 6481 } 6482 if (unlikely(NVME_CC_IOCQES(cc) < 6483 NVME_CTRL_CQES_MIN(n->id_ctrl.cqes))) { 6484 trace_pci_nvme_err_startfail_cqent_too_small( 6485 NVME_CC_IOCQES(cc), 6486 NVME_CTRL_CQES_MIN(cap)); 6487 return -1; 6488 } 6489 if (unlikely(NVME_CC_IOCQES(cc) > 6490 NVME_CTRL_CQES_MAX(n->id_ctrl.cqes))) { 6491 trace_pci_nvme_err_startfail_cqent_too_large( 6492 NVME_CC_IOCQES(cc), 6493 NVME_CTRL_CQES_MAX(cap)); 6494 return -1; 6495 } 6496 if (unlikely(NVME_CC_IOSQES(cc) < 6497 NVME_CTRL_SQES_MIN(n->id_ctrl.sqes))) { 6498 trace_pci_nvme_err_startfail_sqent_too_small( 6499 NVME_CC_IOSQES(cc), 6500 NVME_CTRL_SQES_MIN(cap)); 6501 return -1; 6502 } 6503 if (unlikely(NVME_CC_IOSQES(cc) > 6504 NVME_CTRL_SQES_MAX(n->id_ctrl.sqes))) { 6505 trace_pci_nvme_err_startfail_sqent_too_large( 6506 NVME_CC_IOSQES(cc), 6507 NVME_CTRL_SQES_MAX(cap)); 6508 return -1; 6509 } 6510 if (unlikely(!NVME_AQA_ASQS(aqa))) { 6511 trace_pci_nvme_err_startfail_asqent_sz_zero(); 6512 return -1; 6513 } 6514 if (unlikely(!NVME_AQA_ACQS(aqa))) { 6515 trace_pci_nvme_err_startfail_acqent_sz_zero(); 6516 return -1; 6517 } 6518 6519 n->page_bits = page_bits; 6520 n->page_size = page_size; 6521 n->max_prp_ents = n->page_size / sizeof(uint64_t); 6522 n->cqe_size = 1 << NVME_CC_IOCQES(cc); 6523 n->sqe_size = 1 << NVME_CC_IOSQES(cc); 6524 nvme_init_cq(&n->admin_cq, n, acq, 0, 0, NVME_AQA_ACQS(aqa) + 1, 1); 6525 nvme_init_sq(&n->admin_sq, n, asq, 0, 0, NVME_AQA_ASQS(aqa) + 1); 6526 6527 nvme_set_timestamp(n, 0ULL); 6528 6529 nvme_select_iocs(n); 6530 6531 return 0; 6532 } 6533 6534 static void nvme_cmb_enable_regs(NvmeCtrl *n) 6535 { 6536 uint32_t cmbloc = ldl_le_p(&n->bar.cmbloc); 6537 uint32_t cmbsz = ldl_le_p(&n->bar.cmbsz); 6538 6539 NVME_CMBLOC_SET_CDPCILS(cmbloc, 1); 6540 NVME_CMBLOC_SET_CDPMLS(cmbloc, 1); 6541 NVME_CMBLOC_SET_BIR(cmbloc, NVME_CMB_BIR); 6542 stl_le_p(&n->bar.cmbloc, cmbloc); 6543 6544 NVME_CMBSZ_SET_SQS(cmbsz, 1); 6545 NVME_CMBSZ_SET_CQS(cmbsz, 0); 6546 NVME_CMBSZ_SET_LISTS(cmbsz, 1); 6547 NVME_CMBSZ_SET_RDS(cmbsz, 1); 6548 NVME_CMBSZ_SET_WDS(cmbsz, 1); 6549 NVME_CMBSZ_SET_SZU(cmbsz, 2); /* MBs */ 6550 NVME_CMBSZ_SET_SZ(cmbsz, n->params.cmb_size_mb); 6551 stl_le_p(&n->bar.cmbsz, cmbsz); 6552 } 6553 6554 static void nvme_write_bar(NvmeCtrl *n, hwaddr offset, uint64_t data, 6555 unsigned size) 6556 { 6557 uint64_t cap = ldq_le_p(&n->bar.cap); 6558 uint32_t cc = ldl_le_p(&n->bar.cc); 6559 uint32_t intms = ldl_le_p(&n->bar.intms); 6560 uint32_t csts = ldl_le_p(&n->bar.csts); 6561 uint32_t pmrsts = ldl_le_p(&n->bar.pmrsts); 6562 6563 if (unlikely(offset & (sizeof(uint32_t) - 1))) { 6564 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_misaligned32, 6565 "MMIO write not 32-bit aligned," 6566 " offset=0x%"PRIx64"", offset); 6567 /* should be ignored, fall through for now */ 6568 } 6569 6570 if (unlikely(size < sizeof(uint32_t))) { 6571 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_toosmall, 6572 "MMIO write smaller than 32-bits," 6573 " offset=0x%"PRIx64", size=%u", 6574 offset, size); 6575 /* should be ignored, fall through for now */ 6576 } 6577 6578 switch (offset) { 6579 case NVME_REG_INTMS: 6580 if (unlikely(msix_enabled(&(n->parent_obj)))) { 6581 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix, 6582 "undefined access to interrupt mask set" 6583 " when MSI-X is enabled"); 6584 /* should be ignored, fall through for now */ 6585 } 6586 intms |= data; 6587 stl_le_p(&n->bar.intms, intms); 6588 n->bar.intmc = n->bar.intms; 6589 trace_pci_nvme_mmio_intm_set(data & 0xffffffff, intms); 6590 nvme_irq_check(n); 6591 break; 6592 case NVME_REG_INTMC: 6593 if (unlikely(msix_enabled(&(n->parent_obj)))) { 6594 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix, 6595 "undefined access to interrupt mask clr" 6596 " when MSI-X is enabled"); 6597 /* should be ignored, fall through for now */ 6598 } 6599 intms &= ~data; 6600 stl_le_p(&n->bar.intms, intms); 6601 n->bar.intmc = n->bar.intms; 6602 trace_pci_nvme_mmio_intm_clr(data & 0xffffffff, intms); 6603 nvme_irq_check(n); 6604 break; 6605 case NVME_REG_CC: 6606 stl_le_p(&n->bar.cc, data); 6607 6608 trace_pci_nvme_mmio_cfg(data & 0xffffffff); 6609 6610 if (NVME_CC_SHN(data) && !(NVME_CC_SHN(cc))) { 6611 trace_pci_nvme_mmio_shutdown_set(); 6612 nvme_ctrl_shutdown(n); 6613 csts &= ~(CSTS_SHST_MASK << CSTS_SHST_SHIFT); 6614 csts |= NVME_CSTS_SHST_COMPLETE; 6615 } else if (!NVME_CC_SHN(data) && NVME_CC_SHN(cc)) { 6616 trace_pci_nvme_mmio_shutdown_cleared(); 6617 csts &= ~(CSTS_SHST_MASK << CSTS_SHST_SHIFT); 6618 } 6619 6620 if (NVME_CC_EN(data) && !NVME_CC_EN(cc)) { 6621 if (unlikely(nvme_start_ctrl(n))) { 6622 trace_pci_nvme_err_startfail(); 6623 csts = NVME_CSTS_FAILED; 6624 } else { 6625 trace_pci_nvme_mmio_start_success(); 6626 csts = NVME_CSTS_READY; 6627 } 6628 } else if (!NVME_CC_EN(data) && NVME_CC_EN(cc)) { 6629 trace_pci_nvme_mmio_stopped(); 6630 nvme_ctrl_reset(n, NVME_RESET_CONTROLLER); 6631 6632 break; 6633 } 6634 6635 stl_le_p(&n->bar.csts, csts); 6636 6637 break; 6638 case NVME_REG_CSTS: 6639 if (data & (1 << 4)) { 6640 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ssreset_w1c_unsupported, 6641 "attempted to W1C CSTS.NSSRO" 6642 " but CAP.NSSRS is zero (not supported)"); 6643 } else if (data != 0) { 6644 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ro_csts, 6645 "attempted to set a read only bit" 6646 " of controller status"); 6647 } 6648 break; 6649 case NVME_REG_NSSR: 6650 if (data == 0x4e564d65) { 6651 trace_pci_nvme_ub_mmiowr_ssreset_unsupported(); 6652 } else { 6653 /* The spec says that writes of other values have no effect */ 6654 return; 6655 } 6656 break; 6657 case NVME_REG_AQA: 6658 stl_le_p(&n->bar.aqa, data); 6659 trace_pci_nvme_mmio_aqattr(data & 0xffffffff); 6660 break; 6661 case NVME_REG_ASQ: 6662 stn_le_p(&n->bar.asq, size, data); 6663 trace_pci_nvme_mmio_asqaddr(data); 6664 break; 6665 case NVME_REG_ASQ + 4: 6666 stl_le_p((uint8_t *)&n->bar.asq + 4, data); 6667 trace_pci_nvme_mmio_asqaddr_hi(data, ldq_le_p(&n->bar.asq)); 6668 break; 6669 case NVME_REG_ACQ: 6670 trace_pci_nvme_mmio_acqaddr(data); 6671 stn_le_p(&n->bar.acq, size, data); 6672 break; 6673 case NVME_REG_ACQ + 4: 6674 stl_le_p((uint8_t *)&n->bar.acq + 4, data); 6675 trace_pci_nvme_mmio_acqaddr_hi(data, ldq_le_p(&n->bar.acq)); 6676 break; 6677 case NVME_REG_CMBLOC: 6678 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbloc_reserved, 6679 "invalid write to reserved CMBLOC" 6680 " when CMBSZ is zero, ignored"); 6681 return; 6682 case NVME_REG_CMBSZ: 6683 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbsz_readonly, 6684 "invalid write to read only CMBSZ, ignored"); 6685 return; 6686 case NVME_REG_CMBMSC: 6687 if (!NVME_CAP_CMBS(cap)) { 6688 return; 6689 } 6690 6691 stn_le_p(&n->bar.cmbmsc, size, data); 6692 n->cmb.cmse = false; 6693 6694 if (NVME_CMBMSC_CRE(data)) { 6695 nvme_cmb_enable_regs(n); 6696 6697 if (NVME_CMBMSC_CMSE(data)) { 6698 uint64_t cmbmsc = ldq_le_p(&n->bar.cmbmsc); 6699 hwaddr cba = NVME_CMBMSC_CBA(cmbmsc) << CMBMSC_CBA_SHIFT; 6700 if (cba + int128_get64(n->cmb.mem.size) < cba) { 6701 uint32_t cmbsts = ldl_le_p(&n->bar.cmbsts); 6702 NVME_CMBSTS_SET_CBAI(cmbsts, 1); 6703 stl_le_p(&n->bar.cmbsts, cmbsts); 6704 return; 6705 } 6706 6707 n->cmb.cba = cba; 6708 n->cmb.cmse = true; 6709 } 6710 } else { 6711 n->bar.cmbsz = 0; 6712 n->bar.cmbloc = 0; 6713 } 6714 6715 return; 6716 case NVME_REG_CMBMSC + 4: 6717 stl_le_p((uint8_t *)&n->bar.cmbmsc + 4, data); 6718 return; 6719 6720 case NVME_REG_PMRCAP: 6721 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrcap_readonly, 6722 "invalid write to PMRCAP register, ignored"); 6723 return; 6724 case NVME_REG_PMRCTL: 6725 if (!NVME_CAP_PMRS(cap)) { 6726 return; 6727 } 6728 6729 stl_le_p(&n->bar.pmrctl, data); 6730 if (NVME_PMRCTL_EN(data)) { 6731 memory_region_set_enabled(&n->pmr.dev->mr, true); 6732 pmrsts = 0; 6733 } else { 6734 memory_region_set_enabled(&n->pmr.dev->mr, false); 6735 NVME_PMRSTS_SET_NRDY(pmrsts, 1); 6736 n->pmr.cmse = false; 6737 } 6738 stl_le_p(&n->bar.pmrsts, pmrsts); 6739 return; 6740 case NVME_REG_PMRSTS: 6741 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrsts_readonly, 6742 "invalid write to PMRSTS register, ignored"); 6743 return; 6744 case NVME_REG_PMREBS: 6745 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrebs_readonly, 6746 "invalid write to PMREBS register, ignored"); 6747 return; 6748 case NVME_REG_PMRSWTP: 6749 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrswtp_readonly, 6750 "invalid write to PMRSWTP register, ignored"); 6751 return; 6752 case NVME_REG_PMRMSCL: 6753 if (!NVME_CAP_PMRS(cap)) { 6754 return; 6755 } 6756 6757 stl_le_p(&n->bar.pmrmscl, data); 6758 n->pmr.cmse = false; 6759 6760 if (NVME_PMRMSCL_CMSE(data)) { 6761 uint64_t pmrmscu = ldl_le_p(&n->bar.pmrmscu); 6762 hwaddr cba = pmrmscu << 32 | 6763 (NVME_PMRMSCL_CBA(data) << PMRMSCL_CBA_SHIFT); 6764 if (cba + int128_get64(n->pmr.dev->mr.size) < cba) { 6765 NVME_PMRSTS_SET_CBAI(pmrsts, 1); 6766 stl_le_p(&n->bar.pmrsts, pmrsts); 6767 return; 6768 } 6769 6770 n->pmr.cmse = true; 6771 n->pmr.cba = cba; 6772 } 6773 6774 return; 6775 case NVME_REG_PMRMSCU: 6776 if (!NVME_CAP_PMRS(cap)) { 6777 return; 6778 } 6779 6780 stl_le_p(&n->bar.pmrmscu, data); 6781 return; 6782 default: 6783 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_invalid, 6784 "invalid MMIO write," 6785 " offset=0x%"PRIx64", data=%"PRIx64"", 6786 offset, data); 6787 break; 6788 } 6789 } 6790 6791 static uint64_t nvme_mmio_read(void *opaque, hwaddr addr, unsigned size) 6792 { 6793 NvmeCtrl *n = (NvmeCtrl *)opaque; 6794 uint8_t *ptr = (uint8_t *)&n->bar; 6795 6796 trace_pci_nvme_mmio_read(addr, size); 6797 6798 if (unlikely(addr & (sizeof(uint32_t) - 1))) { 6799 NVME_GUEST_ERR(pci_nvme_ub_mmiord_misaligned32, 6800 "MMIO read not 32-bit aligned," 6801 " offset=0x%"PRIx64"", addr); 6802 /* should RAZ, fall through for now */ 6803 } else if (unlikely(size < sizeof(uint32_t))) { 6804 NVME_GUEST_ERR(pci_nvme_ub_mmiord_toosmall, 6805 "MMIO read smaller than 32-bits," 6806 " offset=0x%"PRIx64"", addr); 6807 /* should RAZ, fall through for now */ 6808 } 6809 6810 if (addr > sizeof(n->bar) - size) { 6811 NVME_GUEST_ERR(pci_nvme_ub_mmiord_invalid_ofs, 6812 "MMIO read beyond last register," 6813 " offset=0x%"PRIx64", returning 0", addr); 6814 6815 return 0; 6816 } 6817 6818 if (pci_is_vf(&n->parent_obj) && !nvme_sctrl(n)->scs && 6819 addr != NVME_REG_CSTS) { 6820 trace_pci_nvme_err_ignored_mmio_vf_offline(addr, size); 6821 return 0; 6822 } 6823 6824 /* 6825 * When PMRWBM bit 1 is set then read from 6826 * from PMRSTS should ensure prior writes 6827 * made it to persistent media 6828 */ 6829 if (addr == NVME_REG_PMRSTS && 6830 (NVME_PMRCAP_PMRWBM(ldl_le_p(&n->bar.pmrcap)) & 0x02)) { 6831 memory_region_msync(&n->pmr.dev->mr, 0, n->pmr.dev->size); 6832 } 6833 6834 return ldn_le_p(ptr + addr, size); 6835 } 6836 6837 static void nvme_process_db(NvmeCtrl *n, hwaddr addr, int val) 6838 { 6839 uint32_t qid; 6840 6841 if (unlikely(addr & ((1 << 2) - 1))) { 6842 NVME_GUEST_ERR(pci_nvme_ub_db_wr_misaligned, 6843 "doorbell write not 32-bit aligned," 6844 " offset=0x%"PRIx64", ignoring", addr); 6845 return; 6846 } 6847 6848 if (((addr - 0x1000) >> 2) & 1) { 6849 /* Completion queue doorbell write */ 6850 6851 uint16_t new_head = val & 0xffff; 6852 int start_sqs; 6853 NvmeCQueue *cq; 6854 6855 qid = (addr - (0x1000 + (1 << 2))) >> 3; 6856 if (unlikely(nvme_check_cqid(n, qid))) { 6857 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cq, 6858 "completion queue doorbell write" 6859 " for nonexistent queue," 6860 " sqid=%"PRIu32", ignoring", qid); 6861 6862 /* 6863 * NVM Express v1.3d, Section 4.1 state: "If host software writes 6864 * an invalid value to the Submission Queue Tail Doorbell or 6865 * Completion Queue Head Doorbell regiter and an Asynchronous Event 6866 * Request command is outstanding, then an asynchronous event is 6867 * posted to the Admin Completion Queue with a status code of 6868 * Invalid Doorbell Write Value." 6869 * 6870 * Also note that the spec includes the "Invalid Doorbell Register" 6871 * status code, but nowhere does it specify when to use it. 6872 * However, it seems reasonable to use it here in a similar 6873 * fashion. 6874 */ 6875 if (n->outstanding_aers) { 6876 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR, 6877 NVME_AER_INFO_ERR_INVALID_DB_REGISTER, 6878 NVME_LOG_ERROR_INFO); 6879 } 6880 6881 return; 6882 } 6883 6884 cq = n->cq[qid]; 6885 if (unlikely(new_head >= cq->size)) { 6886 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cqhead, 6887 "completion queue doorbell write value" 6888 " beyond queue size, sqid=%"PRIu32"," 6889 " new_head=%"PRIu16", ignoring", 6890 qid, new_head); 6891 6892 if (n->outstanding_aers) { 6893 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR, 6894 NVME_AER_INFO_ERR_INVALID_DB_VALUE, 6895 NVME_LOG_ERROR_INFO); 6896 } 6897 6898 return; 6899 } 6900 6901 trace_pci_nvme_mmio_doorbell_cq(cq->cqid, new_head); 6902 6903 start_sqs = nvme_cq_full(cq) ? 1 : 0; 6904 cq->head = new_head; 6905 if (!qid && n->dbbuf_enabled) { 6906 pci_dma_write(&n->parent_obj, cq->db_addr, &cq->head, 6907 sizeof(cq->head)); 6908 } 6909 if (start_sqs) { 6910 NvmeSQueue *sq; 6911 QTAILQ_FOREACH(sq, &cq->sq_list, entry) { 6912 qemu_bh_schedule(sq->bh); 6913 } 6914 qemu_bh_schedule(cq->bh); 6915 } 6916 6917 if (cq->tail == cq->head) { 6918 if (cq->irq_enabled) { 6919 n->cq_pending--; 6920 } 6921 6922 nvme_irq_deassert(n, cq); 6923 } 6924 } else { 6925 /* Submission queue doorbell write */ 6926 6927 uint16_t new_tail = val & 0xffff; 6928 NvmeSQueue *sq; 6929 6930 qid = (addr - 0x1000) >> 3; 6931 if (unlikely(nvme_check_sqid(n, qid))) { 6932 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sq, 6933 "submission queue doorbell write" 6934 " for nonexistent queue," 6935 " sqid=%"PRIu32", ignoring", qid); 6936 6937 if (n->outstanding_aers) { 6938 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR, 6939 NVME_AER_INFO_ERR_INVALID_DB_REGISTER, 6940 NVME_LOG_ERROR_INFO); 6941 } 6942 6943 return; 6944 } 6945 6946 sq = n->sq[qid]; 6947 if (unlikely(new_tail >= sq->size)) { 6948 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sqtail, 6949 "submission queue doorbell write value" 6950 " beyond queue size, sqid=%"PRIu32"," 6951 " new_tail=%"PRIu16", ignoring", 6952 qid, new_tail); 6953 6954 if (n->outstanding_aers) { 6955 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR, 6956 NVME_AER_INFO_ERR_INVALID_DB_VALUE, 6957 NVME_LOG_ERROR_INFO); 6958 } 6959 6960 return; 6961 } 6962 6963 trace_pci_nvme_mmio_doorbell_sq(sq->sqid, new_tail); 6964 6965 sq->tail = new_tail; 6966 if (!qid && n->dbbuf_enabled) { 6967 /* 6968 * The spec states "the host shall also update the controller's 6969 * corresponding doorbell property to match the value of that entry 6970 * in the Shadow Doorbell buffer." 6971 * 6972 * Since this context is currently a VM trap, we can safely enforce 6973 * the requirement from the device side in case the host is 6974 * misbehaving. 6975 * 6976 * Note, we shouldn't have to do this, but various drivers 6977 * including ones that run on Linux, are not updating Admin Queues, 6978 * so we can't trust reading it for an appropriate sq tail. 6979 */ 6980 pci_dma_write(&n->parent_obj, sq->db_addr, &sq->tail, 6981 sizeof(sq->tail)); 6982 } 6983 6984 qemu_bh_schedule(sq->bh); 6985 } 6986 } 6987 6988 static void nvme_mmio_write(void *opaque, hwaddr addr, uint64_t data, 6989 unsigned size) 6990 { 6991 NvmeCtrl *n = (NvmeCtrl *)opaque; 6992 6993 trace_pci_nvme_mmio_write(addr, data, size); 6994 6995 if (pci_is_vf(&n->parent_obj) && !nvme_sctrl(n)->scs && 6996 addr != NVME_REG_CSTS) { 6997 trace_pci_nvme_err_ignored_mmio_vf_offline(addr, size); 6998 return; 6999 } 7000 7001 if (addr < sizeof(n->bar)) { 7002 nvme_write_bar(n, addr, data, size); 7003 } else { 7004 nvme_process_db(n, addr, data); 7005 } 7006 } 7007 7008 static const MemoryRegionOps nvme_mmio_ops = { 7009 .read = nvme_mmio_read, 7010 .write = nvme_mmio_write, 7011 .endianness = DEVICE_LITTLE_ENDIAN, 7012 .impl = { 7013 .min_access_size = 2, 7014 .max_access_size = 8, 7015 }, 7016 }; 7017 7018 static void nvme_cmb_write(void *opaque, hwaddr addr, uint64_t data, 7019 unsigned size) 7020 { 7021 NvmeCtrl *n = (NvmeCtrl *)opaque; 7022 stn_le_p(&n->cmb.buf[addr], size, data); 7023 } 7024 7025 static uint64_t nvme_cmb_read(void *opaque, hwaddr addr, unsigned size) 7026 { 7027 NvmeCtrl *n = (NvmeCtrl *)opaque; 7028 return ldn_le_p(&n->cmb.buf[addr], size); 7029 } 7030 7031 static const MemoryRegionOps nvme_cmb_ops = { 7032 .read = nvme_cmb_read, 7033 .write = nvme_cmb_write, 7034 .endianness = DEVICE_LITTLE_ENDIAN, 7035 .impl = { 7036 .min_access_size = 1, 7037 .max_access_size = 8, 7038 }, 7039 }; 7040 7041 static void nvme_check_constraints(NvmeCtrl *n, Error **errp) 7042 { 7043 NvmeParams *params = &n->params; 7044 7045 if (params->num_queues) { 7046 warn_report("num_queues is deprecated; please use max_ioqpairs " 7047 "instead"); 7048 7049 params->max_ioqpairs = params->num_queues - 1; 7050 } 7051 7052 if (n->namespace.blkconf.blk && n->subsys) { 7053 error_setg(errp, "subsystem support is unavailable with legacy " 7054 "namespace ('drive' property)"); 7055 return; 7056 } 7057 7058 if (params->max_ioqpairs < 1 || 7059 params->max_ioqpairs > NVME_MAX_IOQPAIRS) { 7060 error_setg(errp, "max_ioqpairs must be between 1 and %d", 7061 NVME_MAX_IOQPAIRS); 7062 return; 7063 } 7064 7065 if (params->msix_qsize < 1 || 7066 params->msix_qsize > PCI_MSIX_FLAGS_QSIZE + 1) { 7067 error_setg(errp, "msix_qsize must be between 1 and %d", 7068 PCI_MSIX_FLAGS_QSIZE + 1); 7069 return; 7070 } 7071 7072 if (!params->serial) { 7073 error_setg(errp, "serial property not set"); 7074 return; 7075 } 7076 7077 if (n->pmr.dev) { 7078 if (host_memory_backend_is_mapped(n->pmr.dev)) { 7079 error_setg(errp, "can't use already busy memdev: %s", 7080 object_get_canonical_path_component(OBJECT(n->pmr.dev))); 7081 return; 7082 } 7083 7084 if (!is_power_of_2(n->pmr.dev->size)) { 7085 error_setg(errp, "pmr backend size needs to be power of 2 in size"); 7086 return; 7087 } 7088 7089 host_memory_backend_set_mapped(n->pmr.dev, true); 7090 } 7091 7092 if (n->params.zasl > n->params.mdts) { 7093 error_setg(errp, "zoned.zasl (Zone Append Size Limit) must be less " 7094 "than or equal to mdts (Maximum Data Transfer Size)"); 7095 return; 7096 } 7097 7098 if (!n->params.vsl) { 7099 error_setg(errp, "vsl must be non-zero"); 7100 return; 7101 } 7102 7103 if (params->sriov_max_vfs) { 7104 if (!n->subsys) { 7105 error_setg(errp, "subsystem is required for the use of SR-IOV"); 7106 return; 7107 } 7108 7109 if (params->sriov_max_vfs > NVME_MAX_VFS) { 7110 error_setg(errp, "sriov_max_vfs must be between 0 and %d", 7111 NVME_MAX_VFS); 7112 return; 7113 } 7114 7115 if (params->cmb_size_mb) { 7116 error_setg(errp, "CMB is not supported with SR-IOV"); 7117 return; 7118 } 7119 7120 if (n->pmr.dev) { 7121 error_setg(errp, "PMR is not supported with SR-IOV"); 7122 return; 7123 } 7124 7125 if (!params->sriov_vq_flexible || !params->sriov_vi_flexible) { 7126 error_setg(errp, "both sriov_vq_flexible and sriov_vi_flexible" 7127 " must be set for the use of SR-IOV"); 7128 return; 7129 } 7130 7131 if (params->sriov_vq_flexible < params->sriov_max_vfs * 2) { 7132 error_setg(errp, "sriov_vq_flexible must be greater than or equal" 7133 " to %d (sriov_max_vfs * 2)", params->sriov_max_vfs * 2); 7134 return; 7135 } 7136 7137 if (params->max_ioqpairs < params->sriov_vq_flexible + 2) { 7138 error_setg(errp, "(max_ioqpairs - sriov_vq_flexible) must be" 7139 " greater than or equal to 2"); 7140 return; 7141 } 7142 7143 if (params->sriov_vi_flexible < params->sriov_max_vfs) { 7144 error_setg(errp, "sriov_vi_flexible must be greater than or equal" 7145 " to %d (sriov_max_vfs)", params->sriov_max_vfs); 7146 return; 7147 } 7148 7149 if (params->msix_qsize < params->sriov_vi_flexible + 1) { 7150 error_setg(errp, "(msix_qsize - sriov_vi_flexible) must be" 7151 " greater than or equal to 1"); 7152 return; 7153 } 7154 7155 if (params->sriov_max_vi_per_vf && 7156 (params->sriov_max_vi_per_vf - 1) % NVME_VF_RES_GRANULARITY) { 7157 error_setg(errp, "sriov_max_vi_per_vf must meet:" 7158 " (sriov_max_vi_per_vf - 1) %% %d == 0 and" 7159 " sriov_max_vi_per_vf >= 1", NVME_VF_RES_GRANULARITY); 7160 return; 7161 } 7162 7163 if (params->sriov_max_vq_per_vf && 7164 (params->sriov_max_vq_per_vf < 2 || 7165 (params->sriov_max_vq_per_vf - 1) % NVME_VF_RES_GRANULARITY)) { 7166 error_setg(errp, "sriov_max_vq_per_vf must meet:" 7167 " (sriov_max_vq_per_vf - 1) %% %d == 0 and" 7168 " sriov_max_vq_per_vf >= 2", NVME_VF_RES_GRANULARITY); 7169 return; 7170 } 7171 } 7172 } 7173 7174 static void nvme_init_state(NvmeCtrl *n) 7175 { 7176 NvmePriCtrlCap *cap = &n->pri_ctrl_cap; 7177 NvmeSecCtrlList *list = &n->sec_ctrl_list; 7178 NvmeSecCtrlEntry *sctrl; 7179 uint8_t max_vfs; 7180 int i; 7181 7182 if (pci_is_vf(&n->parent_obj)) { 7183 sctrl = nvme_sctrl(n); 7184 max_vfs = 0; 7185 n->conf_ioqpairs = sctrl->nvq ? le16_to_cpu(sctrl->nvq) - 1 : 0; 7186 n->conf_msix_qsize = sctrl->nvi ? le16_to_cpu(sctrl->nvi) : 1; 7187 } else { 7188 max_vfs = n->params.sriov_max_vfs; 7189 n->conf_ioqpairs = n->params.max_ioqpairs; 7190 n->conf_msix_qsize = n->params.msix_qsize; 7191 } 7192 7193 n->sq = g_new0(NvmeSQueue *, n->params.max_ioqpairs + 1); 7194 n->cq = g_new0(NvmeCQueue *, n->params.max_ioqpairs + 1); 7195 n->temperature = NVME_TEMPERATURE; 7196 n->features.temp_thresh_hi = NVME_TEMPERATURE_WARNING; 7197 n->starttime_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL); 7198 n->aer_reqs = g_new0(NvmeRequest *, n->params.aerl + 1); 7199 QTAILQ_INIT(&n->aer_queue); 7200 7201 list->numcntl = cpu_to_le16(max_vfs); 7202 for (i = 0; i < max_vfs; i++) { 7203 sctrl = &list->sec[i]; 7204 sctrl->pcid = cpu_to_le16(n->cntlid); 7205 sctrl->vfn = cpu_to_le16(i + 1); 7206 } 7207 7208 cap->cntlid = cpu_to_le16(n->cntlid); 7209 cap->crt = NVME_CRT_VQ | NVME_CRT_VI; 7210 7211 if (pci_is_vf(&n->parent_obj)) { 7212 cap->vqprt = cpu_to_le16(1 + n->conf_ioqpairs); 7213 } else { 7214 cap->vqprt = cpu_to_le16(1 + n->params.max_ioqpairs - 7215 n->params.sriov_vq_flexible); 7216 cap->vqfrt = cpu_to_le32(n->params.sriov_vq_flexible); 7217 cap->vqrfap = cap->vqfrt; 7218 cap->vqgran = cpu_to_le16(NVME_VF_RES_GRANULARITY); 7219 cap->vqfrsm = n->params.sriov_max_vq_per_vf ? 7220 cpu_to_le16(n->params.sriov_max_vq_per_vf) : 7221 cap->vqfrt / MAX(max_vfs, 1); 7222 } 7223 7224 if (pci_is_vf(&n->parent_obj)) { 7225 cap->viprt = cpu_to_le16(n->conf_msix_qsize); 7226 } else { 7227 cap->viprt = cpu_to_le16(n->params.msix_qsize - 7228 n->params.sriov_vi_flexible); 7229 cap->vifrt = cpu_to_le32(n->params.sriov_vi_flexible); 7230 cap->virfap = cap->vifrt; 7231 cap->vigran = cpu_to_le16(NVME_VF_RES_GRANULARITY); 7232 cap->vifrsm = n->params.sriov_max_vi_per_vf ? 7233 cpu_to_le16(n->params.sriov_max_vi_per_vf) : 7234 cap->vifrt / MAX(max_vfs, 1); 7235 } 7236 } 7237 7238 static void nvme_init_cmb(NvmeCtrl *n, PCIDevice *pci_dev) 7239 { 7240 uint64_t cmb_size = n->params.cmb_size_mb * MiB; 7241 uint64_t cap = ldq_le_p(&n->bar.cap); 7242 7243 n->cmb.buf = g_malloc0(cmb_size); 7244 memory_region_init_io(&n->cmb.mem, OBJECT(n), &nvme_cmb_ops, n, 7245 "nvme-cmb", cmb_size); 7246 pci_register_bar(pci_dev, NVME_CMB_BIR, 7247 PCI_BASE_ADDRESS_SPACE_MEMORY | 7248 PCI_BASE_ADDRESS_MEM_TYPE_64 | 7249 PCI_BASE_ADDRESS_MEM_PREFETCH, &n->cmb.mem); 7250 7251 NVME_CAP_SET_CMBS(cap, 1); 7252 stq_le_p(&n->bar.cap, cap); 7253 7254 if (n->params.legacy_cmb) { 7255 nvme_cmb_enable_regs(n); 7256 n->cmb.cmse = true; 7257 } 7258 } 7259 7260 static void nvme_init_pmr(NvmeCtrl *n, PCIDevice *pci_dev) 7261 { 7262 uint32_t pmrcap = ldl_le_p(&n->bar.pmrcap); 7263 7264 NVME_PMRCAP_SET_RDS(pmrcap, 1); 7265 NVME_PMRCAP_SET_WDS(pmrcap, 1); 7266 NVME_PMRCAP_SET_BIR(pmrcap, NVME_PMR_BIR); 7267 /* Turn on bit 1 support */ 7268 NVME_PMRCAP_SET_PMRWBM(pmrcap, 0x02); 7269 NVME_PMRCAP_SET_CMSS(pmrcap, 1); 7270 stl_le_p(&n->bar.pmrcap, pmrcap); 7271 7272 pci_register_bar(pci_dev, NVME_PMR_BIR, 7273 PCI_BASE_ADDRESS_SPACE_MEMORY | 7274 PCI_BASE_ADDRESS_MEM_TYPE_64 | 7275 PCI_BASE_ADDRESS_MEM_PREFETCH, &n->pmr.dev->mr); 7276 7277 memory_region_set_enabled(&n->pmr.dev->mr, false); 7278 } 7279 7280 static uint64_t nvme_bar_size(unsigned total_queues, unsigned total_irqs, 7281 unsigned *msix_table_offset, 7282 unsigned *msix_pba_offset) 7283 { 7284 uint64_t bar_size, msix_table_size, msix_pba_size; 7285 7286 bar_size = sizeof(NvmeBar) + 2 * total_queues * NVME_DB_SIZE; 7287 bar_size = QEMU_ALIGN_UP(bar_size, 4 * KiB); 7288 7289 if (msix_table_offset) { 7290 *msix_table_offset = bar_size; 7291 } 7292 7293 msix_table_size = PCI_MSIX_ENTRY_SIZE * total_irqs; 7294 bar_size += msix_table_size; 7295 bar_size = QEMU_ALIGN_UP(bar_size, 4 * KiB); 7296 7297 if (msix_pba_offset) { 7298 *msix_pba_offset = bar_size; 7299 } 7300 7301 msix_pba_size = QEMU_ALIGN_UP(total_irqs, 64) / 8; 7302 bar_size += msix_pba_size; 7303 7304 bar_size = pow2ceil(bar_size); 7305 return bar_size; 7306 } 7307 7308 static void nvme_init_sriov(NvmeCtrl *n, PCIDevice *pci_dev, uint16_t offset) 7309 { 7310 uint16_t vf_dev_id = n->params.use_intel_id ? 7311 PCI_DEVICE_ID_INTEL_NVME : PCI_DEVICE_ID_REDHAT_NVME; 7312 NvmePriCtrlCap *cap = &n->pri_ctrl_cap; 7313 uint64_t bar_size = nvme_bar_size(le16_to_cpu(cap->vqfrsm), 7314 le16_to_cpu(cap->vifrsm), 7315 NULL, NULL); 7316 7317 pcie_sriov_pf_init(pci_dev, offset, "nvme", vf_dev_id, 7318 n->params.sriov_max_vfs, n->params.sriov_max_vfs, 7319 NVME_VF_OFFSET, NVME_VF_STRIDE); 7320 7321 pcie_sriov_pf_init_vf_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY | 7322 PCI_BASE_ADDRESS_MEM_TYPE_64, bar_size); 7323 } 7324 7325 static int nvme_add_pm_capability(PCIDevice *pci_dev, uint8_t offset) 7326 { 7327 Error *err = NULL; 7328 int ret; 7329 7330 ret = pci_add_capability(pci_dev, PCI_CAP_ID_PM, offset, 7331 PCI_PM_SIZEOF, &err); 7332 if (err) { 7333 error_report_err(err); 7334 return ret; 7335 } 7336 7337 pci_set_word(pci_dev->config + offset + PCI_PM_PMC, 7338 PCI_PM_CAP_VER_1_2); 7339 pci_set_word(pci_dev->config + offset + PCI_PM_CTRL, 7340 PCI_PM_CTRL_NO_SOFT_RESET); 7341 pci_set_word(pci_dev->wmask + offset + PCI_PM_CTRL, 7342 PCI_PM_CTRL_STATE_MASK); 7343 7344 return 0; 7345 } 7346 7347 static int nvme_init_pci(NvmeCtrl *n, PCIDevice *pci_dev, Error **errp) 7348 { 7349 uint8_t *pci_conf = pci_dev->config; 7350 uint64_t bar_size; 7351 unsigned msix_table_offset, msix_pba_offset; 7352 int ret; 7353 7354 Error *err = NULL; 7355 7356 pci_conf[PCI_INTERRUPT_PIN] = 1; 7357 pci_config_set_prog_interface(pci_conf, 0x2); 7358 7359 if (n->params.use_intel_id) { 7360 pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_INTEL); 7361 pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_NVME); 7362 } else { 7363 pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_REDHAT); 7364 pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_REDHAT_NVME); 7365 } 7366 7367 pci_config_set_class(pci_conf, PCI_CLASS_STORAGE_EXPRESS); 7368 nvme_add_pm_capability(pci_dev, 0x60); 7369 pcie_endpoint_cap_init(pci_dev, 0x80); 7370 pcie_cap_flr_init(pci_dev); 7371 if (n->params.sriov_max_vfs) { 7372 pcie_ari_init(pci_dev, 0x100, 1); 7373 } 7374 7375 /* add one to max_ioqpairs to account for the admin queue pair */ 7376 bar_size = nvme_bar_size(n->params.max_ioqpairs + 1, n->params.msix_qsize, 7377 &msix_table_offset, &msix_pba_offset); 7378 7379 memory_region_init(&n->bar0, OBJECT(n), "nvme-bar0", bar_size); 7380 memory_region_init_io(&n->iomem, OBJECT(n), &nvme_mmio_ops, n, "nvme", 7381 msix_table_offset); 7382 memory_region_add_subregion(&n->bar0, 0, &n->iomem); 7383 7384 if (pci_is_vf(pci_dev)) { 7385 pcie_sriov_vf_register_bar(pci_dev, 0, &n->bar0); 7386 } else { 7387 pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY | 7388 PCI_BASE_ADDRESS_MEM_TYPE_64, &n->bar0); 7389 } 7390 ret = msix_init(pci_dev, n->params.msix_qsize, 7391 &n->bar0, 0, msix_table_offset, 7392 &n->bar0, 0, msix_pba_offset, 0, &err); 7393 if (ret < 0) { 7394 if (ret == -ENOTSUP) { 7395 warn_report_err(err); 7396 } else { 7397 error_propagate(errp, err); 7398 return ret; 7399 } 7400 } 7401 7402 nvme_update_msixcap_ts(pci_dev, n->conf_msix_qsize); 7403 7404 if (n->params.cmb_size_mb) { 7405 nvme_init_cmb(n, pci_dev); 7406 } 7407 7408 if (n->pmr.dev) { 7409 nvme_init_pmr(n, pci_dev); 7410 } 7411 7412 if (!pci_is_vf(pci_dev) && n->params.sriov_max_vfs) { 7413 nvme_init_sriov(n, pci_dev, 0x120); 7414 } 7415 7416 return 0; 7417 } 7418 7419 static void nvme_init_subnqn(NvmeCtrl *n) 7420 { 7421 NvmeSubsystem *subsys = n->subsys; 7422 NvmeIdCtrl *id = &n->id_ctrl; 7423 7424 if (!subsys) { 7425 snprintf((char *)id->subnqn, sizeof(id->subnqn), 7426 "nqn.2019-08.org.qemu:%s", n->params.serial); 7427 } else { 7428 pstrcpy((char *)id->subnqn, sizeof(id->subnqn), (char*)subsys->subnqn); 7429 } 7430 } 7431 7432 static void nvme_init_ctrl(NvmeCtrl *n, PCIDevice *pci_dev) 7433 { 7434 NvmeIdCtrl *id = &n->id_ctrl; 7435 uint8_t *pci_conf = pci_dev->config; 7436 uint64_t cap = ldq_le_p(&n->bar.cap); 7437 NvmeSecCtrlEntry *sctrl = nvme_sctrl(n); 7438 7439 id->vid = cpu_to_le16(pci_get_word(pci_conf + PCI_VENDOR_ID)); 7440 id->ssvid = cpu_to_le16(pci_get_word(pci_conf + PCI_SUBSYSTEM_VENDOR_ID)); 7441 strpadcpy((char *)id->mn, sizeof(id->mn), "QEMU NVMe Ctrl", ' '); 7442 strpadcpy((char *)id->fr, sizeof(id->fr), QEMU_VERSION, ' '); 7443 strpadcpy((char *)id->sn, sizeof(id->sn), n->params.serial, ' '); 7444 7445 id->cntlid = cpu_to_le16(n->cntlid); 7446 7447 id->oaes = cpu_to_le32(NVME_OAES_NS_ATTR); 7448 id->ctratt |= cpu_to_le32(NVME_CTRATT_ELBAS); 7449 7450 id->rab = 6; 7451 7452 if (n->params.use_intel_id) { 7453 id->ieee[0] = 0xb3; 7454 id->ieee[1] = 0x02; 7455 id->ieee[2] = 0x00; 7456 } else { 7457 id->ieee[0] = 0x00; 7458 id->ieee[1] = 0x54; 7459 id->ieee[2] = 0x52; 7460 } 7461 7462 id->mdts = n->params.mdts; 7463 id->ver = cpu_to_le32(NVME_SPEC_VER); 7464 id->oacs = 7465 cpu_to_le16(NVME_OACS_NS_MGMT | NVME_OACS_FORMAT | NVME_OACS_DBBUF); 7466 id->cntrltype = 0x1; 7467 7468 /* 7469 * Because the controller always completes the Abort command immediately, 7470 * there can never be more than one concurrently executing Abort command, 7471 * so this value is never used for anything. Note that there can easily be 7472 * many Abort commands in the queues, but they are not considered 7473 * "executing" until processed by nvme_abort. 7474 * 7475 * The specification recommends a value of 3 for Abort Command Limit (four 7476 * concurrently outstanding Abort commands), so lets use that though it is 7477 * inconsequential. 7478 */ 7479 id->acl = 3; 7480 id->aerl = n->params.aerl; 7481 id->frmw = (NVME_NUM_FW_SLOTS << 1) | NVME_FRMW_SLOT1_RO; 7482 id->lpa = NVME_LPA_NS_SMART | NVME_LPA_CSE | NVME_LPA_EXTENDED; 7483 7484 /* recommended default value (~70 C) */ 7485 id->wctemp = cpu_to_le16(NVME_TEMPERATURE_WARNING); 7486 id->cctemp = cpu_to_le16(NVME_TEMPERATURE_CRITICAL); 7487 7488 id->sqes = (0x6 << 4) | 0x6; 7489 id->cqes = (0x4 << 4) | 0x4; 7490 id->nn = cpu_to_le32(NVME_MAX_NAMESPACES); 7491 id->oncs = cpu_to_le16(NVME_ONCS_WRITE_ZEROES | NVME_ONCS_TIMESTAMP | 7492 NVME_ONCS_FEATURES | NVME_ONCS_DSM | 7493 NVME_ONCS_COMPARE | NVME_ONCS_COPY); 7494 7495 /* 7496 * NOTE: If this device ever supports a command set that does NOT use 0x0 7497 * as a Flush-equivalent operation, support for the broadcast NSID in Flush 7498 * should probably be removed. 7499 * 7500 * See comment in nvme_io_cmd. 7501 */ 7502 id->vwc = NVME_VWC_NSID_BROADCAST_SUPPORT | NVME_VWC_PRESENT; 7503 7504 id->ocfs = cpu_to_le16(NVME_OCFS_COPY_FORMAT_0 | NVME_OCFS_COPY_FORMAT_1); 7505 id->sgls = cpu_to_le32(NVME_CTRL_SGLS_SUPPORT_NO_ALIGN); 7506 7507 nvme_init_subnqn(n); 7508 7509 id->psd[0].mp = cpu_to_le16(0x9c4); 7510 id->psd[0].enlat = cpu_to_le32(0x10); 7511 id->psd[0].exlat = cpu_to_le32(0x4); 7512 7513 if (n->subsys) { 7514 id->cmic |= NVME_CMIC_MULTI_CTRL; 7515 } 7516 7517 NVME_CAP_SET_MQES(cap, 0x7ff); 7518 NVME_CAP_SET_CQR(cap, 1); 7519 NVME_CAP_SET_TO(cap, 0xf); 7520 NVME_CAP_SET_CSS(cap, NVME_CAP_CSS_NVM); 7521 NVME_CAP_SET_CSS(cap, NVME_CAP_CSS_CSI_SUPP); 7522 NVME_CAP_SET_CSS(cap, NVME_CAP_CSS_ADMIN_ONLY); 7523 NVME_CAP_SET_MPSMAX(cap, 4); 7524 NVME_CAP_SET_CMBS(cap, n->params.cmb_size_mb ? 1 : 0); 7525 NVME_CAP_SET_PMRS(cap, n->pmr.dev ? 1 : 0); 7526 stq_le_p(&n->bar.cap, cap); 7527 7528 stl_le_p(&n->bar.vs, NVME_SPEC_VER); 7529 n->bar.intmc = n->bar.intms = 0; 7530 7531 if (pci_is_vf(&n->parent_obj) && !sctrl->scs) { 7532 stl_le_p(&n->bar.csts, NVME_CSTS_FAILED); 7533 } 7534 } 7535 7536 static int nvme_init_subsys(NvmeCtrl *n, Error **errp) 7537 { 7538 int cntlid; 7539 7540 if (!n->subsys) { 7541 return 0; 7542 } 7543 7544 cntlid = nvme_subsys_register_ctrl(n, errp); 7545 if (cntlid < 0) { 7546 return -1; 7547 } 7548 7549 n->cntlid = cntlid; 7550 7551 return 0; 7552 } 7553 7554 void nvme_attach_ns(NvmeCtrl *n, NvmeNamespace *ns) 7555 { 7556 uint32_t nsid = ns->params.nsid; 7557 assert(nsid && nsid <= NVME_MAX_NAMESPACES); 7558 7559 n->namespaces[nsid] = ns; 7560 ns->attached++; 7561 7562 n->dmrsl = MIN_NON_ZERO(n->dmrsl, 7563 BDRV_REQUEST_MAX_BYTES / nvme_l2b(ns, 1)); 7564 } 7565 7566 static void nvme_realize(PCIDevice *pci_dev, Error **errp) 7567 { 7568 NvmeCtrl *n = NVME(pci_dev); 7569 NvmeNamespace *ns; 7570 Error *local_err = NULL; 7571 NvmeCtrl *pn = NVME(pcie_sriov_get_pf(pci_dev)); 7572 7573 if (pci_is_vf(pci_dev)) { 7574 /* 7575 * VFs derive settings from the parent. PF's lifespan exceeds 7576 * that of VF's, so it's safe to share params.serial. 7577 */ 7578 memcpy(&n->params, &pn->params, sizeof(NvmeParams)); 7579 n->subsys = pn->subsys; 7580 } 7581 7582 nvme_check_constraints(n, &local_err); 7583 if (local_err) { 7584 error_propagate(errp, local_err); 7585 return; 7586 } 7587 7588 qbus_init(&n->bus, sizeof(NvmeBus), TYPE_NVME_BUS, 7589 &pci_dev->qdev, n->parent_obj.qdev.id); 7590 7591 if (nvme_init_subsys(n, errp)) { 7592 error_propagate(errp, local_err); 7593 return; 7594 } 7595 nvme_init_state(n); 7596 if (nvme_init_pci(n, pci_dev, errp)) { 7597 return; 7598 } 7599 nvme_init_ctrl(n, pci_dev); 7600 7601 /* setup a namespace if the controller drive property was given */ 7602 if (n->namespace.blkconf.blk) { 7603 ns = &n->namespace; 7604 ns->params.nsid = 1; 7605 7606 if (nvme_ns_setup(ns, errp)) { 7607 return; 7608 } 7609 7610 nvme_attach_ns(n, ns); 7611 } 7612 } 7613 7614 static void nvme_exit(PCIDevice *pci_dev) 7615 { 7616 NvmeCtrl *n = NVME(pci_dev); 7617 NvmeNamespace *ns; 7618 int i; 7619 7620 nvme_ctrl_reset(n, NVME_RESET_FUNCTION); 7621 7622 if (n->subsys) { 7623 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { 7624 ns = nvme_ns(n, i); 7625 if (ns) { 7626 ns->attached--; 7627 } 7628 } 7629 7630 nvme_subsys_unregister_ctrl(n->subsys, n); 7631 } 7632 7633 g_free(n->cq); 7634 g_free(n->sq); 7635 g_free(n->aer_reqs); 7636 7637 if (n->params.cmb_size_mb) { 7638 g_free(n->cmb.buf); 7639 } 7640 7641 if (n->pmr.dev) { 7642 host_memory_backend_set_mapped(n->pmr.dev, false); 7643 } 7644 7645 if (!pci_is_vf(pci_dev) && n->params.sriov_max_vfs) { 7646 pcie_sriov_pf_exit(pci_dev); 7647 } 7648 7649 msix_uninit(pci_dev, &n->bar0, &n->bar0); 7650 memory_region_del_subregion(&n->bar0, &n->iomem); 7651 } 7652 7653 static Property nvme_props[] = { 7654 DEFINE_BLOCK_PROPERTIES(NvmeCtrl, namespace.blkconf), 7655 DEFINE_PROP_LINK("pmrdev", NvmeCtrl, pmr.dev, TYPE_MEMORY_BACKEND, 7656 HostMemoryBackend *), 7657 DEFINE_PROP_LINK("subsys", NvmeCtrl, subsys, TYPE_NVME_SUBSYS, 7658 NvmeSubsystem *), 7659 DEFINE_PROP_STRING("serial", NvmeCtrl, params.serial), 7660 DEFINE_PROP_UINT32("cmb_size_mb", NvmeCtrl, params.cmb_size_mb, 0), 7661 DEFINE_PROP_UINT32("num_queues", NvmeCtrl, params.num_queues, 0), 7662 DEFINE_PROP_UINT32("max_ioqpairs", NvmeCtrl, params.max_ioqpairs, 64), 7663 DEFINE_PROP_UINT16("msix_qsize", NvmeCtrl, params.msix_qsize, 65), 7664 DEFINE_PROP_UINT8("aerl", NvmeCtrl, params.aerl, 3), 7665 DEFINE_PROP_UINT32("aer_max_queued", NvmeCtrl, params.aer_max_queued, 64), 7666 DEFINE_PROP_UINT8("mdts", NvmeCtrl, params.mdts, 7), 7667 DEFINE_PROP_UINT8("vsl", NvmeCtrl, params.vsl, 7), 7668 DEFINE_PROP_BOOL("use-intel-id", NvmeCtrl, params.use_intel_id, false), 7669 DEFINE_PROP_BOOL("legacy-cmb", NvmeCtrl, params.legacy_cmb, false), 7670 DEFINE_PROP_BOOL("ioeventfd", NvmeCtrl, params.ioeventfd, false), 7671 DEFINE_PROP_UINT8("zoned.zasl", NvmeCtrl, params.zasl, 0), 7672 DEFINE_PROP_BOOL("zoned.auto_transition", NvmeCtrl, 7673 params.auto_transition_zones, true), 7674 DEFINE_PROP_UINT8("sriov_max_vfs", NvmeCtrl, params.sriov_max_vfs, 0), 7675 DEFINE_PROP_UINT16("sriov_vq_flexible", NvmeCtrl, 7676 params.sriov_vq_flexible, 0), 7677 DEFINE_PROP_UINT16("sriov_vi_flexible", NvmeCtrl, 7678 params.sriov_vi_flexible, 0), 7679 DEFINE_PROP_UINT8("sriov_max_vi_per_vf", NvmeCtrl, 7680 params.sriov_max_vi_per_vf, 0), 7681 DEFINE_PROP_UINT8("sriov_max_vq_per_vf", NvmeCtrl, 7682 params.sriov_max_vq_per_vf, 0), 7683 DEFINE_PROP_END_OF_LIST(), 7684 }; 7685 7686 static void nvme_get_smart_warning(Object *obj, Visitor *v, const char *name, 7687 void *opaque, Error **errp) 7688 { 7689 NvmeCtrl *n = NVME(obj); 7690 uint8_t value = n->smart_critical_warning; 7691 7692 visit_type_uint8(v, name, &value, errp); 7693 } 7694 7695 static void nvme_set_smart_warning(Object *obj, Visitor *v, const char *name, 7696 void *opaque, Error **errp) 7697 { 7698 NvmeCtrl *n = NVME(obj); 7699 uint8_t value, old_value, cap = 0, index, event; 7700 7701 if (!visit_type_uint8(v, name, &value, errp)) { 7702 return; 7703 } 7704 7705 cap = NVME_SMART_SPARE | NVME_SMART_TEMPERATURE | NVME_SMART_RELIABILITY 7706 | NVME_SMART_MEDIA_READ_ONLY | NVME_SMART_FAILED_VOLATILE_MEDIA; 7707 if (NVME_CAP_PMRS(ldq_le_p(&n->bar.cap))) { 7708 cap |= NVME_SMART_PMR_UNRELIABLE; 7709 } 7710 7711 if ((value & cap) != value) { 7712 error_setg(errp, "unsupported smart critical warning bits: 0x%x", 7713 value & ~cap); 7714 return; 7715 } 7716 7717 old_value = n->smart_critical_warning; 7718 n->smart_critical_warning = value; 7719 7720 /* only inject new bits of smart critical warning */ 7721 for (index = 0; index < NVME_SMART_WARN_MAX; index++) { 7722 event = 1 << index; 7723 if (value & ~old_value & event) 7724 nvme_smart_event(n, event); 7725 } 7726 } 7727 7728 static void nvme_pci_reset(DeviceState *qdev) 7729 { 7730 PCIDevice *pci_dev = PCI_DEVICE(qdev); 7731 NvmeCtrl *n = NVME(pci_dev); 7732 7733 trace_pci_nvme_pci_reset(); 7734 nvme_ctrl_reset(n, NVME_RESET_FUNCTION); 7735 } 7736 7737 static void nvme_sriov_pre_write_ctrl(PCIDevice *dev, uint32_t address, 7738 uint32_t val, int len) 7739 { 7740 NvmeCtrl *n = NVME(dev); 7741 NvmeSecCtrlEntry *sctrl; 7742 uint16_t sriov_cap = dev->exp.sriov_cap; 7743 uint32_t off = address - sriov_cap; 7744 int i, num_vfs; 7745 7746 if (!sriov_cap) { 7747 return; 7748 } 7749 7750 if (range_covers_byte(off, len, PCI_SRIOV_CTRL)) { 7751 if (!(val & PCI_SRIOV_CTRL_VFE)) { 7752 num_vfs = pci_get_word(dev->config + sriov_cap + PCI_SRIOV_NUM_VF); 7753 for (i = 0; i < num_vfs; i++) { 7754 sctrl = &n->sec_ctrl_list.sec[i]; 7755 nvme_virt_set_state(n, le16_to_cpu(sctrl->scid), false); 7756 } 7757 } 7758 } 7759 } 7760 7761 static void nvme_pci_write_config(PCIDevice *dev, uint32_t address, 7762 uint32_t val, int len) 7763 { 7764 nvme_sriov_pre_write_ctrl(dev, address, val, len); 7765 pci_default_write_config(dev, address, val, len); 7766 pcie_cap_flr_write_config(dev, address, val, len); 7767 } 7768 7769 static const VMStateDescription nvme_vmstate = { 7770 .name = "nvme", 7771 .unmigratable = 1, 7772 }; 7773 7774 static void nvme_class_init(ObjectClass *oc, void *data) 7775 { 7776 DeviceClass *dc = DEVICE_CLASS(oc); 7777 PCIDeviceClass *pc = PCI_DEVICE_CLASS(oc); 7778 7779 pc->realize = nvme_realize; 7780 pc->config_write = nvme_pci_write_config; 7781 pc->exit = nvme_exit; 7782 pc->class_id = PCI_CLASS_STORAGE_EXPRESS; 7783 pc->revision = 2; 7784 7785 set_bit(DEVICE_CATEGORY_STORAGE, dc->categories); 7786 dc->desc = "Non-Volatile Memory Express"; 7787 device_class_set_props(dc, nvme_props); 7788 dc->vmsd = &nvme_vmstate; 7789 dc->reset = nvme_pci_reset; 7790 } 7791 7792 static void nvme_instance_init(Object *obj) 7793 { 7794 NvmeCtrl *n = NVME(obj); 7795 7796 device_add_bootindex_property(obj, &n->namespace.blkconf.bootindex, 7797 "bootindex", "/namespace@1,0", 7798 DEVICE(obj)); 7799 7800 object_property_add(obj, "smart_critical_warning", "uint8", 7801 nvme_get_smart_warning, 7802 nvme_set_smart_warning, NULL, NULL); 7803 } 7804 7805 static const TypeInfo nvme_info = { 7806 .name = TYPE_NVME, 7807 .parent = TYPE_PCI_DEVICE, 7808 .instance_size = sizeof(NvmeCtrl), 7809 .instance_init = nvme_instance_init, 7810 .class_init = nvme_class_init, 7811 .interfaces = (InterfaceInfo[]) { 7812 { INTERFACE_PCIE_DEVICE }, 7813 { } 7814 }, 7815 }; 7816 7817 static const TypeInfo nvme_bus_info = { 7818 .name = TYPE_NVME_BUS, 7819 .parent = TYPE_BUS, 7820 .instance_size = sizeof(NvmeBus), 7821 }; 7822 7823 static void nvme_register_types(void) 7824 { 7825 type_register_static(&nvme_info); 7826 type_register_static(&nvme_bus_info); 7827 } 7828 7829 type_init(nvme_register_types) 7830