1 /* 2 * QEMU model of Xilinx AXI-Ethernet. 3 * 4 * Copyright (c) 2011 Edgar E. Iglesias. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "hw/sysbus.h" 27 #include "qemu/log.h" 28 #include "net/net.h" 29 #include "net/checksum.h" 30 31 #include "hw/stream.h" 32 33 #define DPHY(x) 34 35 #define TYPE_XILINX_AXI_ENET "xlnx.axi-ethernet" 36 #define TYPE_XILINX_AXI_ENET_DATA_STREAM "xilinx-axienet-data-stream" 37 #define TYPE_XILINX_AXI_ENET_CONTROL_STREAM "xilinx-axienet-control-stream" 38 39 #define XILINX_AXI_ENET(obj) \ 40 OBJECT_CHECK(XilinxAXIEnet, (obj), TYPE_XILINX_AXI_ENET) 41 42 #define XILINX_AXI_ENET_DATA_STREAM(obj) \ 43 OBJECT_CHECK(XilinxAXIEnetStreamSlave, (obj),\ 44 TYPE_XILINX_AXI_ENET_DATA_STREAM) 45 46 #define XILINX_AXI_ENET_CONTROL_STREAM(obj) \ 47 OBJECT_CHECK(XilinxAXIEnetStreamSlave, (obj),\ 48 TYPE_XILINX_AXI_ENET_CONTROL_STREAM) 49 50 /* Advertisement control register. */ 51 #define ADVERTISE_10HALF 0x0020 /* Try for 10mbps half-duplex */ 52 #define ADVERTISE_10FULL 0x0040 /* Try for 10mbps full-duplex */ 53 #define ADVERTISE_100HALF 0x0080 /* Try for 100mbps half-duplex */ 54 #define ADVERTISE_100FULL 0x0100 /* Try for 100mbps full-duplex */ 55 56 #define CONTROL_PAYLOAD_WORDS 5 57 #define CONTROL_PAYLOAD_SIZE (CONTROL_PAYLOAD_WORDS * (sizeof(uint32_t))) 58 59 struct PHY { 60 uint32_t regs[32]; 61 62 int link; 63 64 unsigned int (*read)(struct PHY *phy, unsigned int req); 65 void (*write)(struct PHY *phy, unsigned int req, 66 unsigned int data); 67 }; 68 69 static unsigned int tdk_read(struct PHY *phy, unsigned int req) 70 { 71 int regnum; 72 unsigned r = 0; 73 74 regnum = req & 0x1f; 75 76 switch (regnum) { 77 case 1: 78 if (!phy->link) { 79 break; 80 } 81 /* MR1. */ 82 /* Speeds and modes. */ 83 r |= (1 << 13) | (1 << 14); 84 r |= (1 << 11) | (1 << 12); 85 r |= (1 << 5); /* Autoneg complete. */ 86 r |= (1 << 3); /* Autoneg able. */ 87 r |= (1 << 2); /* link. */ 88 r |= (1 << 1); /* link. */ 89 break; 90 case 5: 91 /* Link partner ability. 92 We are kind; always agree with whatever best mode 93 the guest advertises. */ 94 r = 1 << 14; /* Success. */ 95 /* Copy advertised modes. */ 96 r |= phy->regs[4] & (15 << 5); 97 /* Autoneg support. */ 98 r |= 1; 99 break; 100 case 17: 101 /* Marvell PHY on many xilinx boards. */ 102 r = 0x8000; /* 1000Mb */ 103 break; 104 case 18: 105 { 106 /* Diagnostics reg. */ 107 int duplex = 0; 108 int speed_100 = 0; 109 110 if (!phy->link) { 111 break; 112 } 113 114 /* Are we advertising 100 half or 100 duplex ? */ 115 speed_100 = !!(phy->regs[4] & ADVERTISE_100HALF); 116 speed_100 |= !!(phy->regs[4] & ADVERTISE_100FULL); 117 118 /* Are we advertising 10 duplex or 100 duplex ? */ 119 duplex = !!(phy->regs[4] & ADVERTISE_100FULL); 120 duplex |= !!(phy->regs[4] & ADVERTISE_10FULL); 121 r = (speed_100 << 10) | (duplex << 11); 122 } 123 break; 124 125 default: 126 r = phy->regs[regnum]; 127 break; 128 } 129 DPHY(qemu_log("\n%s %x = reg[%d]\n", __func__, r, regnum)); 130 return r; 131 } 132 133 static void 134 tdk_write(struct PHY *phy, unsigned int req, unsigned int data) 135 { 136 int regnum; 137 138 regnum = req & 0x1f; 139 DPHY(qemu_log("%s reg[%d] = %x\n", __func__, regnum, data)); 140 switch (regnum) { 141 default: 142 phy->regs[regnum] = data; 143 break; 144 } 145 146 /* Unconditionally clear regs[BMCR][BMCR_RESET] */ 147 phy->regs[0] &= ~0x8000; 148 } 149 150 static void 151 tdk_init(struct PHY *phy) 152 { 153 phy->regs[0] = 0x3100; 154 /* PHY Id. */ 155 phy->regs[2] = 0x0300; 156 phy->regs[3] = 0xe400; 157 /* Autonegotiation advertisement reg. */ 158 phy->regs[4] = 0x01E1; 159 phy->link = 1; 160 161 phy->read = tdk_read; 162 phy->write = tdk_write; 163 } 164 165 struct MDIOBus { 166 /* bus. */ 167 int mdc; 168 int mdio; 169 170 /* decoder. */ 171 enum { 172 PREAMBLE, 173 SOF, 174 OPC, 175 ADDR, 176 REQ, 177 TURNAROUND, 178 DATA 179 } state; 180 unsigned int drive; 181 182 unsigned int cnt; 183 unsigned int addr; 184 unsigned int opc; 185 unsigned int req; 186 unsigned int data; 187 188 struct PHY *devs[32]; 189 }; 190 191 static void 192 mdio_attach(struct MDIOBus *bus, struct PHY *phy, unsigned int addr) 193 { 194 bus->devs[addr & 0x1f] = phy; 195 } 196 197 #ifdef USE_THIS_DEAD_CODE 198 static void 199 mdio_detach(struct MDIOBus *bus, struct PHY *phy, unsigned int addr) 200 { 201 bus->devs[addr & 0x1f] = NULL; 202 } 203 #endif 204 205 static uint16_t mdio_read_req(struct MDIOBus *bus, unsigned int addr, 206 unsigned int reg) 207 { 208 struct PHY *phy; 209 uint16_t data; 210 211 phy = bus->devs[addr]; 212 if (phy && phy->read) { 213 data = phy->read(phy, reg); 214 } else { 215 data = 0xffff; 216 } 217 DPHY(qemu_log("%s addr=%d reg=%d data=%x\n", __func__, addr, reg, data)); 218 return data; 219 } 220 221 static void mdio_write_req(struct MDIOBus *bus, unsigned int addr, 222 unsigned int reg, uint16_t data) 223 { 224 struct PHY *phy; 225 226 DPHY(qemu_log("%s addr=%d reg=%d data=%x\n", __func__, addr, reg, data)); 227 phy = bus->devs[addr]; 228 if (phy && phy->write) { 229 phy->write(phy, reg, data); 230 } 231 } 232 233 #define DENET(x) 234 235 #define R_RAF (0x000 / 4) 236 enum { 237 RAF_MCAST_REJ = (1 << 1), 238 RAF_BCAST_REJ = (1 << 2), 239 RAF_EMCF_EN = (1 << 12), 240 RAF_NEWFUNC_EN = (1 << 11) 241 }; 242 243 #define R_IS (0x00C / 4) 244 enum { 245 IS_HARD_ACCESS_COMPLETE = 1, 246 IS_AUTONEG = (1 << 1), 247 IS_RX_COMPLETE = (1 << 2), 248 IS_RX_REJECT = (1 << 3), 249 IS_TX_COMPLETE = (1 << 5), 250 IS_RX_DCM_LOCK = (1 << 6), 251 IS_MGM_RDY = (1 << 7), 252 IS_PHY_RST_DONE = (1 << 8), 253 }; 254 255 #define R_IP (0x010 / 4) 256 #define R_IE (0x014 / 4) 257 #define R_UAWL (0x020 / 4) 258 #define R_UAWU (0x024 / 4) 259 #define R_PPST (0x030 / 4) 260 enum { 261 PPST_LINKSTATUS = (1 << 0), 262 PPST_PHY_LINKSTATUS = (1 << 7), 263 }; 264 265 #define R_STATS_RX_BYTESL (0x200 / 4) 266 #define R_STATS_RX_BYTESH (0x204 / 4) 267 #define R_STATS_TX_BYTESL (0x208 / 4) 268 #define R_STATS_TX_BYTESH (0x20C / 4) 269 #define R_STATS_RXL (0x290 / 4) 270 #define R_STATS_RXH (0x294 / 4) 271 #define R_STATS_RX_BCASTL (0x2a0 / 4) 272 #define R_STATS_RX_BCASTH (0x2a4 / 4) 273 #define R_STATS_RX_MCASTL (0x2a8 / 4) 274 #define R_STATS_RX_MCASTH (0x2ac / 4) 275 276 #define R_RCW0 (0x400 / 4) 277 #define R_RCW1 (0x404 / 4) 278 enum { 279 RCW1_VLAN = (1 << 27), 280 RCW1_RX = (1 << 28), 281 RCW1_FCS = (1 << 29), 282 RCW1_JUM = (1 << 30), 283 RCW1_RST = (1 << 31), 284 }; 285 286 #define R_TC (0x408 / 4) 287 enum { 288 TC_VLAN = (1 << 27), 289 TC_TX = (1 << 28), 290 TC_FCS = (1 << 29), 291 TC_JUM = (1 << 30), 292 TC_RST = (1 << 31), 293 }; 294 295 #define R_EMMC (0x410 / 4) 296 enum { 297 EMMC_LINKSPEED_10MB = (0 << 30), 298 EMMC_LINKSPEED_100MB = (1 << 30), 299 EMMC_LINKSPEED_1000MB = (2 << 30), 300 }; 301 302 #define R_PHYC (0x414 / 4) 303 304 #define R_MC (0x500 / 4) 305 #define MC_EN (1 << 6) 306 307 #define R_MCR (0x504 / 4) 308 #define R_MWD (0x508 / 4) 309 #define R_MRD (0x50c / 4) 310 #define R_MIS (0x600 / 4) 311 #define R_MIP (0x620 / 4) 312 #define R_MIE (0x640 / 4) 313 #define R_MIC (0x640 / 4) 314 315 #define R_UAW0 (0x700 / 4) 316 #define R_UAW1 (0x704 / 4) 317 #define R_FMI (0x708 / 4) 318 #define R_AF0 (0x710 / 4) 319 #define R_AF1 (0x714 / 4) 320 #define R_MAX (0x34 / 4) 321 322 /* Indirect registers. */ 323 struct TEMAC { 324 struct MDIOBus mdio_bus; 325 struct PHY phy; 326 327 void *parent; 328 }; 329 330 typedef struct XilinxAXIEnetStreamSlave XilinxAXIEnetStreamSlave; 331 typedef struct XilinxAXIEnet XilinxAXIEnet; 332 333 struct XilinxAXIEnetStreamSlave { 334 Object parent; 335 336 struct XilinxAXIEnet *enet; 337 } ; 338 339 struct XilinxAXIEnet { 340 SysBusDevice busdev; 341 MemoryRegion iomem; 342 qemu_irq irq; 343 StreamSlave *tx_data_dev; 344 StreamSlave *tx_control_dev; 345 XilinxAXIEnetStreamSlave rx_data_dev; 346 XilinxAXIEnetStreamSlave rx_control_dev; 347 NICState *nic; 348 NICConf conf; 349 350 351 uint32_t c_rxmem; 352 uint32_t c_txmem; 353 uint32_t c_phyaddr; 354 355 struct TEMAC TEMAC; 356 357 /* MII regs. */ 358 union { 359 uint32_t regs[4]; 360 struct { 361 uint32_t mc; 362 uint32_t mcr; 363 uint32_t mwd; 364 uint32_t mrd; 365 }; 366 } mii; 367 368 struct { 369 uint64_t rx_bytes; 370 uint64_t tx_bytes; 371 372 uint64_t rx; 373 uint64_t rx_bcast; 374 uint64_t rx_mcast; 375 } stats; 376 377 /* Receive configuration words. */ 378 uint32_t rcw[2]; 379 /* Transmit config. */ 380 uint32_t tc; 381 uint32_t emmc; 382 uint32_t phyc; 383 384 /* Unicast Address Word. */ 385 uint32_t uaw[2]; 386 /* Unicast address filter used with extended mcast. */ 387 uint32_t ext_uaw[2]; 388 uint32_t fmi; 389 390 uint32_t regs[R_MAX]; 391 392 /* Multicast filter addrs. */ 393 uint32_t maddr[4][2]; 394 /* 32K x 1 lookup filter. */ 395 uint32_t ext_mtable[1024]; 396 397 uint32_t hdr[CONTROL_PAYLOAD_WORDS]; 398 399 uint8_t *rxmem; 400 uint32_t rxsize; 401 uint32_t rxpos; 402 403 uint8_t rxapp[CONTROL_PAYLOAD_SIZE]; 404 uint32_t rxappsize; 405 406 /* Whether axienet_eth_rx_notify should flush incoming queue. */ 407 bool need_flush; 408 }; 409 410 static void axienet_rx_reset(XilinxAXIEnet *s) 411 { 412 s->rcw[1] = RCW1_JUM | RCW1_FCS | RCW1_RX | RCW1_VLAN; 413 } 414 415 static void axienet_tx_reset(XilinxAXIEnet *s) 416 { 417 s->tc = TC_JUM | TC_TX | TC_VLAN; 418 } 419 420 static inline int axienet_rx_resetting(XilinxAXIEnet *s) 421 { 422 return s->rcw[1] & RCW1_RST; 423 } 424 425 static inline int axienet_rx_enabled(XilinxAXIEnet *s) 426 { 427 return s->rcw[1] & RCW1_RX; 428 } 429 430 static inline int axienet_extmcf_enabled(XilinxAXIEnet *s) 431 { 432 return !!(s->regs[R_RAF] & RAF_EMCF_EN); 433 } 434 435 static inline int axienet_newfunc_enabled(XilinxAXIEnet *s) 436 { 437 return !!(s->regs[R_RAF] & RAF_NEWFUNC_EN); 438 } 439 440 static void xilinx_axienet_reset(DeviceState *d) 441 { 442 XilinxAXIEnet *s = XILINX_AXI_ENET(d); 443 444 axienet_rx_reset(s); 445 axienet_tx_reset(s); 446 447 s->regs[R_PPST] = PPST_LINKSTATUS | PPST_PHY_LINKSTATUS; 448 s->regs[R_IS] = IS_AUTONEG | IS_RX_DCM_LOCK | IS_MGM_RDY | IS_PHY_RST_DONE; 449 450 s->emmc = EMMC_LINKSPEED_100MB; 451 } 452 453 static void enet_update_irq(XilinxAXIEnet *s) 454 { 455 s->regs[R_IP] = s->regs[R_IS] & s->regs[R_IE]; 456 qemu_set_irq(s->irq, !!s->regs[R_IP]); 457 } 458 459 static uint64_t enet_read(void *opaque, hwaddr addr, unsigned size) 460 { 461 XilinxAXIEnet *s = opaque; 462 uint32_t r = 0; 463 addr >>= 2; 464 465 switch (addr) { 466 case R_RCW0: 467 case R_RCW1: 468 r = s->rcw[addr & 1]; 469 break; 470 471 case R_TC: 472 r = s->tc; 473 break; 474 475 case R_EMMC: 476 r = s->emmc; 477 break; 478 479 case R_PHYC: 480 r = s->phyc; 481 break; 482 483 case R_MCR: 484 r = s->mii.regs[addr & 3] | (1 << 7); /* Always ready. */ 485 break; 486 487 case R_STATS_RX_BYTESL: 488 case R_STATS_RX_BYTESH: 489 r = s->stats.rx_bytes >> (32 * (addr & 1)); 490 break; 491 492 case R_STATS_TX_BYTESL: 493 case R_STATS_TX_BYTESH: 494 r = s->stats.tx_bytes >> (32 * (addr & 1)); 495 break; 496 497 case R_STATS_RXL: 498 case R_STATS_RXH: 499 r = s->stats.rx >> (32 * (addr & 1)); 500 break; 501 case R_STATS_RX_BCASTL: 502 case R_STATS_RX_BCASTH: 503 r = s->stats.rx_bcast >> (32 * (addr & 1)); 504 break; 505 case R_STATS_RX_MCASTL: 506 case R_STATS_RX_MCASTH: 507 r = s->stats.rx_mcast >> (32 * (addr & 1)); 508 break; 509 510 case R_MC: 511 case R_MWD: 512 case R_MRD: 513 r = s->mii.regs[addr & 3]; 514 break; 515 516 case R_UAW0: 517 case R_UAW1: 518 r = s->uaw[addr & 1]; 519 break; 520 521 case R_UAWU: 522 case R_UAWL: 523 r = s->ext_uaw[addr & 1]; 524 break; 525 526 case R_FMI: 527 r = s->fmi; 528 break; 529 530 case R_AF0: 531 case R_AF1: 532 r = s->maddr[s->fmi & 3][addr & 1]; 533 break; 534 535 case 0x8000 ... 0x83ff: 536 r = s->ext_mtable[addr - 0x8000]; 537 break; 538 539 default: 540 if (addr < ARRAY_SIZE(s->regs)) { 541 r = s->regs[addr]; 542 } 543 DENET(qemu_log("%s addr=" TARGET_FMT_plx " v=%x\n", 544 __func__, addr * 4, r)); 545 break; 546 } 547 return r; 548 } 549 550 static void enet_write(void *opaque, hwaddr addr, 551 uint64_t value, unsigned size) 552 { 553 XilinxAXIEnet *s = opaque; 554 struct TEMAC *t = &s->TEMAC; 555 556 addr >>= 2; 557 switch (addr) { 558 case R_RCW0: 559 case R_RCW1: 560 s->rcw[addr & 1] = value; 561 if ((addr & 1) && value & RCW1_RST) { 562 axienet_rx_reset(s); 563 } else { 564 qemu_flush_queued_packets(qemu_get_queue(s->nic)); 565 } 566 break; 567 568 case R_TC: 569 s->tc = value; 570 if (value & TC_RST) { 571 axienet_tx_reset(s); 572 } 573 break; 574 575 case R_EMMC: 576 s->emmc = value; 577 break; 578 579 case R_PHYC: 580 s->phyc = value; 581 break; 582 583 case R_MC: 584 value &= ((1 << 7) - 1); 585 586 /* Enable the MII. */ 587 if (value & MC_EN) { 588 unsigned int miiclkdiv = value & ((1 << 6) - 1); 589 if (!miiclkdiv) { 590 qemu_log("AXIENET: MDIO enabled but MDIOCLK is zero!\n"); 591 } 592 } 593 s->mii.mc = value; 594 break; 595 596 case R_MCR: { 597 unsigned int phyaddr = (value >> 24) & 0x1f; 598 unsigned int regaddr = (value >> 16) & 0x1f; 599 unsigned int op = (value >> 14) & 3; 600 unsigned int initiate = (value >> 11) & 1; 601 602 if (initiate) { 603 if (op == 1) { 604 mdio_write_req(&t->mdio_bus, phyaddr, regaddr, s->mii.mwd); 605 } else if (op == 2) { 606 s->mii.mrd = mdio_read_req(&t->mdio_bus, phyaddr, regaddr); 607 } else { 608 qemu_log("AXIENET: invalid MDIOBus OP=%d\n", op); 609 } 610 } 611 s->mii.mcr = value; 612 break; 613 } 614 615 case R_MWD: 616 case R_MRD: 617 s->mii.regs[addr & 3] = value; 618 break; 619 620 621 case R_UAW0: 622 case R_UAW1: 623 s->uaw[addr & 1] = value; 624 break; 625 626 case R_UAWL: 627 case R_UAWU: 628 s->ext_uaw[addr & 1] = value; 629 break; 630 631 case R_FMI: 632 s->fmi = value; 633 break; 634 635 case R_AF0: 636 case R_AF1: 637 s->maddr[s->fmi & 3][addr & 1] = value; 638 break; 639 640 case R_IS: 641 s->regs[addr] &= ~value; 642 break; 643 644 case 0x8000 ... 0x83ff: 645 s->ext_mtable[addr - 0x8000] = value; 646 break; 647 648 default: 649 DENET(qemu_log("%s addr=" TARGET_FMT_plx " v=%x\n", 650 __func__, addr * 4, (unsigned)value)); 651 if (addr < ARRAY_SIZE(s->regs)) { 652 s->regs[addr] = value; 653 } 654 break; 655 } 656 enet_update_irq(s); 657 } 658 659 static const MemoryRegionOps enet_ops = { 660 .read = enet_read, 661 .write = enet_write, 662 .endianness = DEVICE_LITTLE_ENDIAN, 663 }; 664 665 static int eth_can_rx(XilinxAXIEnet *s) 666 { 667 /* RX enabled? */ 668 return !s->rxsize && !axienet_rx_resetting(s) && axienet_rx_enabled(s); 669 } 670 671 static int enet_match_addr(const uint8_t *buf, uint32_t f0, uint32_t f1) 672 { 673 int match = 1; 674 675 if (memcmp(buf, &f0, 4)) { 676 match = 0; 677 } 678 679 if (buf[4] != (f1 & 0xff) || buf[5] != ((f1 >> 8) & 0xff)) { 680 match = 0; 681 } 682 683 return match; 684 } 685 686 static void axienet_eth_rx_notify(void *opaque) 687 { 688 XilinxAXIEnet *s = XILINX_AXI_ENET(opaque); 689 690 while (s->rxappsize && stream_can_push(s->tx_control_dev, 691 axienet_eth_rx_notify, s)) { 692 size_t ret = stream_push(s->tx_control_dev, 693 (void *)s->rxapp + CONTROL_PAYLOAD_SIZE 694 - s->rxappsize, s->rxappsize); 695 s->rxappsize -= ret; 696 } 697 698 while (s->rxsize && stream_can_push(s->tx_data_dev, 699 axienet_eth_rx_notify, s)) { 700 size_t ret = stream_push(s->tx_data_dev, (void *)s->rxmem + s->rxpos, 701 s->rxsize); 702 s->rxsize -= ret; 703 s->rxpos += ret; 704 if (!s->rxsize) { 705 s->regs[R_IS] |= IS_RX_COMPLETE; 706 if (s->need_flush) { 707 s->need_flush = false; 708 qemu_flush_queued_packets(qemu_get_queue(s->nic)); 709 } 710 } 711 } 712 enet_update_irq(s); 713 } 714 715 static ssize_t eth_rx(NetClientState *nc, const uint8_t *buf, size_t size) 716 { 717 XilinxAXIEnet *s = qemu_get_nic_opaque(nc); 718 static const unsigned char sa_bcast[6] = {0xff, 0xff, 0xff, 719 0xff, 0xff, 0xff}; 720 static const unsigned char sa_ipmcast[3] = {0x01, 0x00, 0x52}; 721 uint32_t app[CONTROL_PAYLOAD_WORDS] = {0}; 722 int promisc = s->fmi & (1 << 31); 723 int unicast, broadcast, multicast, ip_multicast = 0; 724 uint32_t csum32; 725 uint16_t csum16; 726 int i; 727 728 DENET(qemu_log("%s: %zd bytes\n", __func__, size)); 729 730 if (!eth_can_rx(s)) { 731 s->need_flush = true; 732 return 0; 733 } 734 735 unicast = ~buf[0] & 0x1; 736 broadcast = memcmp(buf, sa_bcast, 6) == 0; 737 multicast = !unicast && !broadcast; 738 if (multicast && (memcmp(sa_ipmcast, buf, sizeof sa_ipmcast) == 0)) { 739 ip_multicast = 1; 740 } 741 742 /* Jumbo or vlan sizes ? */ 743 if (!(s->rcw[1] & RCW1_JUM)) { 744 if (size > 1518 && size <= 1522 && !(s->rcw[1] & RCW1_VLAN)) { 745 return size; 746 } 747 } 748 749 /* Basic Address filters. If you want to use the extended filters 750 you'll generally have to place the ethernet mac into promiscuous mode 751 to avoid the basic filtering from dropping most frames. */ 752 if (!promisc) { 753 if (unicast) { 754 if (!enet_match_addr(buf, s->uaw[0], s->uaw[1])) { 755 return size; 756 } 757 } else { 758 if (broadcast) { 759 /* Broadcast. */ 760 if (s->regs[R_RAF] & RAF_BCAST_REJ) { 761 return size; 762 } 763 } else { 764 int drop = 1; 765 766 /* Multicast. */ 767 if (s->regs[R_RAF] & RAF_MCAST_REJ) { 768 return size; 769 } 770 771 for (i = 0; i < 4; i++) { 772 if (enet_match_addr(buf, s->maddr[i][0], s->maddr[i][1])) { 773 drop = 0; 774 break; 775 } 776 } 777 778 if (drop) { 779 return size; 780 } 781 } 782 } 783 } 784 785 /* Extended mcast filtering enabled? */ 786 if (axienet_newfunc_enabled(s) && axienet_extmcf_enabled(s)) { 787 if (unicast) { 788 if (!enet_match_addr(buf, s->ext_uaw[0], s->ext_uaw[1])) { 789 return size; 790 } 791 } else { 792 if (broadcast) { 793 /* Broadcast. ??? */ 794 if (s->regs[R_RAF] & RAF_BCAST_REJ) { 795 return size; 796 } 797 } else { 798 int idx, bit; 799 800 /* Multicast. */ 801 if (!memcmp(buf, sa_ipmcast, 3)) { 802 return size; 803 } 804 805 idx = (buf[4] & 0x7f) << 8; 806 idx |= buf[5]; 807 808 bit = 1 << (idx & 0x1f); 809 idx >>= 5; 810 811 if (!(s->ext_mtable[idx] & bit)) { 812 return size; 813 } 814 } 815 } 816 } 817 818 if (size < 12) { 819 s->regs[R_IS] |= IS_RX_REJECT; 820 enet_update_irq(s); 821 return -1; 822 } 823 824 if (size > (s->c_rxmem - 4)) { 825 size = s->c_rxmem - 4; 826 } 827 828 memcpy(s->rxmem, buf, size); 829 memset(s->rxmem + size, 0, 4); /* Clear the FCS. */ 830 831 if (s->rcw[1] & RCW1_FCS) { 832 size += 4; /* fcs is inband. */ 833 } 834 835 app[0] = 5 << 28; 836 csum32 = net_checksum_add(size - 14, (uint8_t *)s->rxmem + 14); 837 /* Fold it once. */ 838 csum32 = (csum32 & 0xffff) + (csum32 >> 16); 839 /* And twice to get rid of possible carries. */ 840 csum16 = (csum32 & 0xffff) + (csum32 >> 16); 841 app[3] = csum16; 842 app[4] = size & 0xffff; 843 844 s->stats.rx_bytes += size; 845 s->stats.rx++; 846 if (multicast) { 847 s->stats.rx_mcast++; 848 app[2] |= 1 | (ip_multicast << 1); 849 } else if (broadcast) { 850 s->stats.rx_bcast++; 851 app[2] |= 1 << 3; 852 } 853 854 /* Good frame. */ 855 app[2] |= 1 << 6; 856 857 s->rxsize = size; 858 s->rxpos = 0; 859 for (i = 0; i < ARRAY_SIZE(app); ++i) { 860 app[i] = cpu_to_le32(app[i]); 861 } 862 s->rxappsize = CONTROL_PAYLOAD_SIZE; 863 memcpy(s->rxapp, app, s->rxappsize); 864 axienet_eth_rx_notify(s); 865 866 enet_update_irq(s); 867 return size; 868 } 869 870 static size_t 871 xilinx_axienet_control_stream_push(StreamSlave *obj, uint8_t *buf, size_t len) 872 { 873 int i; 874 XilinxAXIEnetStreamSlave *cs = XILINX_AXI_ENET_CONTROL_STREAM(obj); 875 XilinxAXIEnet *s = cs->enet; 876 877 if (len != CONTROL_PAYLOAD_SIZE) { 878 hw_error("AXI Enet requires %d byte control stream payload\n", 879 (int)CONTROL_PAYLOAD_SIZE); 880 } 881 882 memcpy(s->hdr, buf, len); 883 884 for (i = 0; i < ARRAY_SIZE(s->hdr); ++i) { 885 s->hdr[i] = le32_to_cpu(s->hdr[i]); 886 } 887 return len; 888 } 889 890 static size_t 891 xilinx_axienet_data_stream_push(StreamSlave *obj, uint8_t *buf, size_t size) 892 { 893 XilinxAXIEnetStreamSlave *ds = XILINX_AXI_ENET_DATA_STREAM(obj); 894 XilinxAXIEnet *s = ds->enet; 895 896 /* TX enable ? */ 897 if (!(s->tc & TC_TX)) { 898 return size; 899 } 900 901 /* Jumbo or vlan sizes ? */ 902 if (!(s->tc & TC_JUM)) { 903 if (size > 1518 && size <= 1522 && !(s->tc & TC_VLAN)) { 904 return size; 905 } 906 } 907 908 if (s->hdr[0] & 1) { 909 unsigned int start_off = s->hdr[1] >> 16; 910 unsigned int write_off = s->hdr[1] & 0xffff; 911 uint32_t tmp_csum; 912 uint16_t csum; 913 914 tmp_csum = net_checksum_add(size - start_off, 915 (uint8_t *)buf + start_off); 916 /* Accumulate the seed. */ 917 tmp_csum += s->hdr[2] & 0xffff; 918 919 /* Fold the 32bit partial checksum. */ 920 csum = net_checksum_finish(tmp_csum); 921 922 /* Writeback. */ 923 buf[write_off] = csum >> 8; 924 buf[write_off + 1] = csum & 0xff; 925 } 926 927 qemu_send_packet(qemu_get_queue(s->nic), buf, size); 928 929 s->stats.tx_bytes += size; 930 s->regs[R_IS] |= IS_TX_COMPLETE; 931 enet_update_irq(s); 932 933 return size; 934 } 935 936 static NetClientInfo net_xilinx_enet_info = { 937 .type = NET_CLIENT_OPTIONS_KIND_NIC, 938 .size = sizeof(NICState), 939 .receive = eth_rx, 940 }; 941 942 static void xilinx_enet_realize(DeviceState *dev, Error **errp) 943 { 944 XilinxAXIEnet *s = XILINX_AXI_ENET(dev); 945 XilinxAXIEnetStreamSlave *ds = XILINX_AXI_ENET_DATA_STREAM(&s->rx_data_dev); 946 XilinxAXIEnetStreamSlave *cs = XILINX_AXI_ENET_CONTROL_STREAM( 947 &s->rx_control_dev); 948 Error *local_err = NULL; 949 950 object_property_add_link(OBJECT(ds), "enet", "xlnx.axi-ethernet", 951 (Object **) &ds->enet, 952 object_property_allow_set_link, 953 OBJ_PROP_LINK_UNREF_ON_RELEASE, 954 &local_err); 955 object_property_add_link(OBJECT(cs), "enet", "xlnx.axi-ethernet", 956 (Object **) &cs->enet, 957 object_property_allow_set_link, 958 OBJ_PROP_LINK_UNREF_ON_RELEASE, 959 &local_err); 960 if (local_err) { 961 goto xilinx_enet_realize_fail; 962 } 963 object_property_set_link(OBJECT(ds), OBJECT(s), "enet", &local_err); 964 object_property_set_link(OBJECT(cs), OBJECT(s), "enet", &local_err); 965 if (local_err) { 966 goto xilinx_enet_realize_fail; 967 } 968 969 qemu_macaddr_default_if_unset(&s->conf.macaddr); 970 s->nic = qemu_new_nic(&net_xilinx_enet_info, &s->conf, 971 object_get_typename(OBJECT(dev)), dev->id, s); 972 qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a); 973 974 tdk_init(&s->TEMAC.phy); 975 mdio_attach(&s->TEMAC.mdio_bus, &s->TEMAC.phy, s->c_phyaddr); 976 977 s->TEMAC.parent = s; 978 979 s->rxmem = g_malloc(s->c_rxmem); 980 return; 981 982 xilinx_enet_realize_fail: 983 if (!*errp) { 984 *errp = local_err; 985 } 986 } 987 988 static void xilinx_enet_init(Object *obj) 989 { 990 XilinxAXIEnet *s = XILINX_AXI_ENET(obj); 991 SysBusDevice *sbd = SYS_BUS_DEVICE(obj); 992 993 object_property_add_link(obj, "axistream-connected", TYPE_STREAM_SLAVE, 994 (Object **) &s->tx_data_dev, 995 qdev_prop_allow_set_link_before_realize, 996 OBJ_PROP_LINK_UNREF_ON_RELEASE, 997 &error_abort); 998 object_property_add_link(obj, "axistream-control-connected", 999 TYPE_STREAM_SLAVE, 1000 (Object **) &s->tx_control_dev, 1001 qdev_prop_allow_set_link_before_realize, 1002 OBJ_PROP_LINK_UNREF_ON_RELEASE, 1003 &error_abort); 1004 1005 object_initialize(&s->rx_data_dev, sizeof(s->rx_data_dev), 1006 TYPE_XILINX_AXI_ENET_DATA_STREAM); 1007 object_initialize(&s->rx_control_dev, sizeof(s->rx_control_dev), 1008 TYPE_XILINX_AXI_ENET_CONTROL_STREAM); 1009 object_property_add_child(OBJECT(s), "axistream-connected-target", 1010 (Object *)&s->rx_data_dev, &error_abort); 1011 object_property_add_child(OBJECT(s), "axistream-control-connected-target", 1012 (Object *)&s->rx_control_dev, &error_abort); 1013 1014 sysbus_init_irq(sbd, &s->irq); 1015 1016 memory_region_init_io(&s->iomem, OBJECT(s), &enet_ops, s, "enet", 0x40000); 1017 sysbus_init_mmio(sbd, &s->iomem); 1018 } 1019 1020 static Property xilinx_enet_properties[] = { 1021 DEFINE_PROP_UINT32("phyaddr", XilinxAXIEnet, c_phyaddr, 7), 1022 DEFINE_PROP_UINT32("rxmem", XilinxAXIEnet, c_rxmem, 0x1000), 1023 DEFINE_PROP_UINT32("txmem", XilinxAXIEnet, c_txmem, 0x1000), 1024 DEFINE_NIC_PROPERTIES(XilinxAXIEnet, conf), 1025 DEFINE_PROP_END_OF_LIST(), 1026 }; 1027 1028 static void xilinx_enet_class_init(ObjectClass *klass, void *data) 1029 { 1030 DeviceClass *dc = DEVICE_CLASS(klass); 1031 1032 dc->realize = xilinx_enet_realize; 1033 dc->props = xilinx_enet_properties; 1034 dc->reset = xilinx_axienet_reset; 1035 } 1036 1037 static void xilinx_enet_stream_class_init(ObjectClass *klass, void *data) 1038 { 1039 StreamSlaveClass *ssc = STREAM_SLAVE_CLASS(klass); 1040 1041 ssc->push = data; 1042 } 1043 1044 static const TypeInfo xilinx_enet_info = { 1045 .name = TYPE_XILINX_AXI_ENET, 1046 .parent = TYPE_SYS_BUS_DEVICE, 1047 .instance_size = sizeof(XilinxAXIEnet), 1048 .class_init = xilinx_enet_class_init, 1049 .instance_init = xilinx_enet_init, 1050 }; 1051 1052 static const TypeInfo xilinx_enet_data_stream_info = { 1053 .name = TYPE_XILINX_AXI_ENET_DATA_STREAM, 1054 .parent = TYPE_OBJECT, 1055 .instance_size = sizeof(struct XilinxAXIEnetStreamSlave), 1056 .class_init = xilinx_enet_stream_class_init, 1057 .class_data = xilinx_axienet_data_stream_push, 1058 .interfaces = (InterfaceInfo[]) { 1059 { TYPE_STREAM_SLAVE }, 1060 { } 1061 } 1062 }; 1063 1064 static const TypeInfo xilinx_enet_control_stream_info = { 1065 .name = TYPE_XILINX_AXI_ENET_CONTROL_STREAM, 1066 .parent = TYPE_OBJECT, 1067 .instance_size = sizeof(struct XilinxAXIEnetStreamSlave), 1068 .class_init = xilinx_enet_stream_class_init, 1069 .class_data = xilinx_axienet_control_stream_push, 1070 .interfaces = (InterfaceInfo[]) { 1071 { TYPE_STREAM_SLAVE }, 1072 { } 1073 } 1074 }; 1075 1076 static void xilinx_enet_register_types(void) 1077 { 1078 type_register_static(&xilinx_enet_info); 1079 type_register_static(&xilinx_enet_data_stream_info); 1080 type_register_static(&xilinx_enet_control_stream_info); 1081 } 1082 1083 type_init(xilinx_enet_register_types) 1084