1 /* 2 * QEMU model of Xilinx AXI-Ethernet. 3 * 4 * Copyright (c) 2011 Edgar E. Iglesias. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "hw/sysbus.h" 26 #include "qemu/log.h" 27 #include "net/net.h" 28 #include "net/checksum.h" 29 #include "qapi/qmp/qerror.h" 30 31 #include "hw/stream.h" 32 33 #define DPHY(x) 34 35 #define TYPE_XILINX_AXI_ENET "xlnx.axi-ethernet" 36 #define TYPE_XILINX_AXI_ENET_DATA_STREAM "xilinx-axienet-data-stream" 37 #define TYPE_XILINX_AXI_ENET_CONTROL_STREAM "xilinx-axienet-control-stream" 38 39 #define XILINX_AXI_ENET(obj) \ 40 OBJECT_CHECK(XilinxAXIEnet, (obj), TYPE_XILINX_AXI_ENET) 41 42 #define XILINX_AXI_ENET_DATA_STREAM(obj) \ 43 OBJECT_CHECK(XilinxAXIEnetStreamSlave, (obj),\ 44 TYPE_XILINX_AXI_ENET_DATA_STREAM) 45 46 #define XILINX_AXI_ENET_CONTROL_STREAM(obj) \ 47 OBJECT_CHECK(XilinxAXIEnetStreamSlave, (obj),\ 48 TYPE_XILINX_AXI_ENET_CONTROL_STREAM) 49 50 /* Advertisement control register. */ 51 #define ADVERTISE_10HALF 0x0020 /* Try for 10mbps half-duplex */ 52 #define ADVERTISE_10FULL 0x0040 /* Try for 10mbps full-duplex */ 53 #define ADVERTISE_100HALF 0x0080 /* Try for 100mbps half-duplex */ 54 #define ADVERTISE_100FULL 0x0100 /* Try for 100mbps full-duplex */ 55 56 #define CONTROL_PAYLOAD_WORDS 5 57 #define CONTROL_PAYLOAD_SIZE (CONTROL_PAYLOAD_WORDS * (sizeof(uint32_t))) 58 59 struct PHY { 60 uint32_t regs[32]; 61 62 int link; 63 64 unsigned int (*read)(struct PHY *phy, unsigned int req); 65 void (*write)(struct PHY *phy, unsigned int req, 66 unsigned int data); 67 }; 68 69 static unsigned int tdk_read(struct PHY *phy, unsigned int req) 70 { 71 int regnum; 72 unsigned r = 0; 73 74 regnum = req & 0x1f; 75 76 switch (regnum) { 77 case 1: 78 if (!phy->link) { 79 break; 80 } 81 /* MR1. */ 82 /* Speeds and modes. */ 83 r |= (1 << 13) | (1 << 14); 84 r |= (1 << 11) | (1 << 12); 85 r |= (1 << 5); /* Autoneg complete. */ 86 r |= (1 << 3); /* Autoneg able. */ 87 r |= (1 << 2); /* link. */ 88 r |= (1 << 1); /* link. */ 89 break; 90 case 5: 91 /* Link partner ability. 92 We are kind; always agree with whatever best mode 93 the guest advertises. */ 94 r = 1 << 14; /* Success. */ 95 /* Copy advertised modes. */ 96 r |= phy->regs[4] & (15 << 5); 97 /* Autoneg support. */ 98 r |= 1; 99 break; 100 case 17: 101 /* Marvel PHY on many xilinx boards. */ 102 r = 0x8000; /* 1000Mb */ 103 break; 104 case 18: 105 { 106 /* Diagnostics reg. */ 107 int duplex = 0; 108 int speed_100 = 0; 109 110 if (!phy->link) { 111 break; 112 } 113 114 /* Are we advertising 100 half or 100 duplex ? */ 115 speed_100 = !!(phy->regs[4] & ADVERTISE_100HALF); 116 speed_100 |= !!(phy->regs[4] & ADVERTISE_100FULL); 117 118 /* Are we advertising 10 duplex or 100 duplex ? */ 119 duplex = !!(phy->regs[4] & ADVERTISE_100FULL); 120 duplex |= !!(phy->regs[4] & ADVERTISE_10FULL); 121 r = (speed_100 << 10) | (duplex << 11); 122 } 123 break; 124 125 default: 126 r = phy->regs[regnum]; 127 break; 128 } 129 DPHY(qemu_log("\n%s %x = reg[%d]\n", __func__, r, regnum)); 130 return r; 131 } 132 133 static void 134 tdk_write(struct PHY *phy, unsigned int req, unsigned int data) 135 { 136 int regnum; 137 138 regnum = req & 0x1f; 139 DPHY(qemu_log("%s reg[%d] = %x\n", __func__, regnum, data)); 140 switch (regnum) { 141 default: 142 phy->regs[regnum] = data; 143 break; 144 } 145 } 146 147 static void 148 tdk_init(struct PHY *phy) 149 { 150 phy->regs[0] = 0x3100; 151 /* PHY Id. */ 152 phy->regs[2] = 0x0300; 153 phy->regs[3] = 0xe400; 154 /* Autonegotiation advertisement reg. */ 155 phy->regs[4] = 0x01E1; 156 phy->link = 1; 157 158 phy->read = tdk_read; 159 phy->write = tdk_write; 160 } 161 162 struct MDIOBus { 163 /* bus. */ 164 int mdc; 165 int mdio; 166 167 /* decoder. */ 168 enum { 169 PREAMBLE, 170 SOF, 171 OPC, 172 ADDR, 173 REQ, 174 TURNAROUND, 175 DATA 176 } state; 177 unsigned int drive; 178 179 unsigned int cnt; 180 unsigned int addr; 181 unsigned int opc; 182 unsigned int req; 183 unsigned int data; 184 185 struct PHY *devs[32]; 186 }; 187 188 static void 189 mdio_attach(struct MDIOBus *bus, struct PHY *phy, unsigned int addr) 190 { 191 bus->devs[addr & 0x1f] = phy; 192 } 193 194 #ifdef USE_THIS_DEAD_CODE 195 static void 196 mdio_detach(struct MDIOBus *bus, struct PHY *phy, unsigned int addr) 197 { 198 bus->devs[addr & 0x1f] = NULL; 199 } 200 #endif 201 202 static uint16_t mdio_read_req(struct MDIOBus *bus, unsigned int addr, 203 unsigned int reg) 204 { 205 struct PHY *phy; 206 uint16_t data; 207 208 phy = bus->devs[addr]; 209 if (phy && phy->read) { 210 data = phy->read(phy, reg); 211 } else { 212 data = 0xffff; 213 } 214 DPHY(qemu_log("%s addr=%d reg=%d data=%x\n", __func__, addr, reg, data)); 215 return data; 216 } 217 218 static void mdio_write_req(struct MDIOBus *bus, unsigned int addr, 219 unsigned int reg, uint16_t data) 220 { 221 struct PHY *phy; 222 223 DPHY(qemu_log("%s addr=%d reg=%d data=%x\n", __func__, addr, reg, data)); 224 phy = bus->devs[addr]; 225 if (phy && phy->write) { 226 phy->write(phy, reg, data); 227 } 228 } 229 230 #define DENET(x) 231 232 #define R_RAF (0x000 / 4) 233 enum { 234 RAF_MCAST_REJ = (1 << 1), 235 RAF_BCAST_REJ = (1 << 2), 236 RAF_EMCF_EN = (1 << 12), 237 RAF_NEWFUNC_EN = (1 << 11) 238 }; 239 240 #define R_IS (0x00C / 4) 241 enum { 242 IS_HARD_ACCESS_COMPLETE = 1, 243 IS_AUTONEG = (1 << 1), 244 IS_RX_COMPLETE = (1 << 2), 245 IS_RX_REJECT = (1 << 3), 246 IS_TX_COMPLETE = (1 << 5), 247 IS_RX_DCM_LOCK = (1 << 6), 248 IS_MGM_RDY = (1 << 7), 249 IS_PHY_RST_DONE = (1 << 8), 250 }; 251 252 #define R_IP (0x010 / 4) 253 #define R_IE (0x014 / 4) 254 #define R_UAWL (0x020 / 4) 255 #define R_UAWU (0x024 / 4) 256 #define R_PPST (0x030 / 4) 257 enum { 258 PPST_LINKSTATUS = (1 << 0), 259 PPST_PHY_LINKSTATUS = (1 << 7), 260 }; 261 262 #define R_STATS_RX_BYTESL (0x200 / 4) 263 #define R_STATS_RX_BYTESH (0x204 / 4) 264 #define R_STATS_TX_BYTESL (0x208 / 4) 265 #define R_STATS_TX_BYTESH (0x20C / 4) 266 #define R_STATS_RXL (0x290 / 4) 267 #define R_STATS_RXH (0x294 / 4) 268 #define R_STATS_RX_BCASTL (0x2a0 / 4) 269 #define R_STATS_RX_BCASTH (0x2a4 / 4) 270 #define R_STATS_RX_MCASTL (0x2a8 / 4) 271 #define R_STATS_RX_MCASTH (0x2ac / 4) 272 273 #define R_RCW0 (0x400 / 4) 274 #define R_RCW1 (0x404 / 4) 275 enum { 276 RCW1_VLAN = (1 << 27), 277 RCW1_RX = (1 << 28), 278 RCW1_FCS = (1 << 29), 279 RCW1_JUM = (1 << 30), 280 RCW1_RST = (1 << 31), 281 }; 282 283 #define R_TC (0x408 / 4) 284 enum { 285 TC_VLAN = (1 << 27), 286 TC_TX = (1 << 28), 287 TC_FCS = (1 << 29), 288 TC_JUM = (1 << 30), 289 TC_RST = (1 << 31), 290 }; 291 292 #define R_EMMC (0x410 / 4) 293 enum { 294 EMMC_LINKSPEED_10MB = (0 << 30), 295 EMMC_LINKSPEED_100MB = (1 << 30), 296 EMMC_LINKSPEED_1000MB = (2 << 30), 297 }; 298 299 #define R_PHYC (0x414 / 4) 300 301 #define R_MC (0x500 / 4) 302 #define MC_EN (1 << 6) 303 304 #define R_MCR (0x504 / 4) 305 #define R_MWD (0x508 / 4) 306 #define R_MRD (0x50c / 4) 307 #define R_MIS (0x600 / 4) 308 #define R_MIP (0x620 / 4) 309 #define R_MIE (0x640 / 4) 310 #define R_MIC (0x640 / 4) 311 312 #define R_UAW0 (0x700 / 4) 313 #define R_UAW1 (0x704 / 4) 314 #define R_FMI (0x708 / 4) 315 #define R_AF0 (0x710 / 4) 316 #define R_AF1 (0x714 / 4) 317 #define R_MAX (0x34 / 4) 318 319 /* Indirect registers. */ 320 struct TEMAC { 321 struct MDIOBus mdio_bus; 322 struct PHY phy; 323 324 void *parent; 325 }; 326 327 typedef struct XilinxAXIEnetStreamSlave XilinxAXIEnetStreamSlave; 328 typedef struct XilinxAXIEnet XilinxAXIEnet; 329 330 struct XilinxAXIEnetStreamSlave { 331 Object parent; 332 333 struct XilinxAXIEnet *enet; 334 } ; 335 336 struct XilinxAXIEnet { 337 SysBusDevice busdev; 338 MemoryRegion iomem; 339 qemu_irq irq; 340 StreamSlave *tx_data_dev; 341 StreamSlave *tx_control_dev; 342 XilinxAXIEnetStreamSlave rx_data_dev; 343 XilinxAXIEnetStreamSlave rx_control_dev; 344 NICState *nic; 345 NICConf conf; 346 347 348 uint32_t c_rxmem; 349 uint32_t c_txmem; 350 uint32_t c_phyaddr; 351 352 struct TEMAC TEMAC; 353 354 /* MII regs. */ 355 union { 356 uint32_t regs[4]; 357 struct { 358 uint32_t mc; 359 uint32_t mcr; 360 uint32_t mwd; 361 uint32_t mrd; 362 }; 363 } mii; 364 365 struct { 366 uint64_t rx_bytes; 367 uint64_t tx_bytes; 368 369 uint64_t rx; 370 uint64_t rx_bcast; 371 uint64_t rx_mcast; 372 } stats; 373 374 /* Receive configuration words. */ 375 uint32_t rcw[2]; 376 /* Transmit config. */ 377 uint32_t tc; 378 uint32_t emmc; 379 uint32_t phyc; 380 381 /* Unicast Address Word. */ 382 uint32_t uaw[2]; 383 /* Unicast address filter used with extended mcast. */ 384 uint32_t ext_uaw[2]; 385 uint32_t fmi; 386 387 uint32_t regs[R_MAX]; 388 389 /* Multicast filter addrs. */ 390 uint32_t maddr[4][2]; 391 /* 32K x 1 lookup filter. */ 392 uint32_t ext_mtable[1024]; 393 394 uint32_t hdr[CONTROL_PAYLOAD_WORDS]; 395 396 uint8_t *rxmem; 397 uint32_t rxsize; 398 uint32_t rxpos; 399 400 uint8_t rxapp[CONTROL_PAYLOAD_SIZE]; 401 uint32_t rxappsize; 402 }; 403 404 static void axienet_rx_reset(XilinxAXIEnet *s) 405 { 406 s->rcw[1] = RCW1_JUM | RCW1_FCS | RCW1_RX | RCW1_VLAN; 407 } 408 409 static void axienet_tx_reset(XilinxAXIEnet *s) 410 { 411 s->tc = TC_JUM | TC_TX | TC_VLAN; 412 } 413 414 static inline int axienet_rx_resetting(XilinxAXIEnet *s) 415 { 416 return s->rcw[1] & RCW1_RST; 417 } 418 419 static inline int axienet_rx_enabled(XilinxAXIEnet *s) 420 { 421 return s->rcw[1] & RCW1_RX; 422 } 423 424 static inline int axienet_extmcf_enabled(XilinxAXIEnet *s) 425 { 426 return !!(s->regs[R_RAF] & RAF_EMCF_EN); 427 } 428 429 static inline int axienet_newfunc_enabled(XilinxAXIEnet *s) 430 { 431 return !!(s->regs[R_RAF] & RAF_NEWFUNC_EN); 432 } 433 434 static void xilinx_axienet_reset(DeviceState *d) 435 { 436 XilinxAXIEnet *s = XILINX_AXI_ENET(d); 437 438 axienet_rx_reset(s); 439 axienet_tx_reset(s); 440 441 s->regs[R_PPST] = PPST_LINKSTATUS | PPST_PHY_LINKSTATUS; 442 s->regs[R_IS] = IS_AUTONEG | IS_RX_DCM_LOCK | IS_MGM_RDY | IS_PHY_RST_DONE; 443 444 s->emmc = EMMC_LINKSPEED_100MB; 445 } 446 447 static void enet_update_irq(XilinxAXIEnet *s) 448 { 449 s->regs[R_IP] = s->regs[R_IS] & s->regs[R_IE]; 450 qemu_set_irq(s->irq, !!s->regs[R_IP]); 451 } 452 453 static uint64_t enet_read(void *opaque, hwaddr addr, unsigned size) 454 { 455 XilinxAXIEnet *s = opaque; 456 uint32_t r = 0; 457 addr >>= 2; 458 459 switch (addr) { 460 case R_RCW0: 461 case R_RCW1: 462 r = s->rcw[addr & 1]; 463 break; 464 465 case R_TC: 466 r = s->tc; 467 break; 468 469 case R_EMMC: 470 r = s->emmc; 471 break; 472 473 case R_PHYC: 474 r = s->phyc; 475 break; 476 477 case R_MCR: 478 r = s->mii.regs[addr & 3] | (1 << 7); /* Always ready. */ 479 break; 480 481 case R_STATS_RX_BYTESL: 482 case R_STATS_RX_BYTESH: 483 r = s->stats.rx_bytes >> (32 * (addr & 1)); 484 break; 485 486 case R_STATS_TX_BYTESL: 487 case R_STATS_TX_BYTESH: 488 r = s->stats.tx_bytes >> (32 * (addr & 1)); 489 break; 490 491 case R_STATS_RXL: 492 case R_STATS_RXH: 493 r = s->stats.rx >> (32 * (addr & 1)); 494 break; 495 case R_STATS_RX_BCASTL: 496 case R_STATS_RX_BCASTH: 497 r = s->stats.rx_bcast >> (32 * (addr & 1)); 498 break; 499 case R_STATS_RX_MCASTL: 500 case R_STATS_RX_MCASTH: 501 r = s->stats.rx_mcast >> (32 * (addr & 1)); 502 break; 503 504 case R_MC: 505 case R_MWD: 506 case R_MRD: 507 r = s->mii.regs[addr & 3]; 508 break; 509 510 case R_UAW0: 511 case R_UAW1: 512 r = s->uaw[addr & 1]; 513 break; 514 515 case R_UAWU: 516 case R_UAWL: 517 r = s->ext_uaw[addr & 1]; 518 break; 519 520 case R_FMI: 521 r = s->fmi; 522 break; 523 524 case R_AF0: 525 case R_AF1: 526 r = s->maddr[s->fmi & 3][addr & 1]; 527 break; 528 529 case 0x8000 ... 0x83ff: 530 r = s->ext_mtable[addr - 0x8000]; 531 break; 532 533 default: 534 if (addr < ARRAY_SIZE(s->regs)) { 535 r = s->regs[addr]; 536 } 537 DENET(qemu_log("%s addr=" TARGET_FMT_plx " v=%x\n", 538 __func__, addr * 4, r)); 539 break; 540 } 541 return r; 542 } 543 544 static void enet_write(void *opaque, hwaddr addr, 545 uint64_t value, unsigned size) 546 { 547 XilinxAXIEnet *s = opaque; 548 struct TEMAC *t = &s->TEMAC; 549 550 addr >>= 2; 551 switch (addr) { 552 case R_RCW0: 553 case R_RCW1: 554 s->rcw[addr & 1] = value; 555 if ((addr & 1) && value & RCW1_RST) { 556 axienet_rx_reset(s); 557 } else { 558 qemu_flush_queued_packets(qemu_get_queue(s->nic)); 559 } 560 break; 561 562 case R_TC: 563 s->tc = value; 564 if (value & TC_RST) { 565 axienet_tx_reset(s); 566 } 567 break; 568 569 case R_EMMC: 570 s->emmc = value; 571 break; 572 573 case R_PHYC: 574 s->phyc = value; 575 break; 576 577 case R_MC: 578 value &= ((1 << 7) - 1); 579 580 /* Enable the MII. */ 581 if (value & MC_EN) { 582 unsigned int miiclkdiv = value & ((1 << 6) - 1); 583 if (!miiclkdiv) { 584 qemu_log("AXIENET: MDIO enabled but MDIOCLK is zero!\n"); 585 } 586 } 587 s->mii.mc = value; 588 break; 589 590 case R_MCR: { 591 unsigned int phyaddr = (value >> 24) & 0x1f; 592 unsigned int regaddr = (value >> 16) & 0x1f; 593 unsigned int op = (value >> 14) & 3; 594 unsigned int initiate = (value >> 11) & 1; 595 596 if (initiate) { 597 if (op == 1) { 598 mdio_write_req(&t->mdio_bus, phyaddr, regaddr, s->mii.mwd); 599 } else if (op == 2) { 600 s->mii.mrd = mdio_read_req(&t->mdio_bus, phyaddr, regaddr); 601 } else { 602 qemu_log("AXIENET: invalid MDIOBus OP=%d\n", op); 603 } 604 } 605 s->mii.mcr = value; 606 break; 607 } 608 609 case R_MWD: 610 case R_MRD: 611 s->mii.regs[addr & 3] = value; 612 break; 613 614 615 case R_UAW0: 616 case R_UAW1: 617 s->uaw[addr & 1] = value; 618 break; 619 620 case R_UAWL: 621 case R_UAWU: 622 s->ext_uaw[addr & 1] = value; 623 break; 624 625 case R_FMI: 626 s->fmi = value; 627 break; 628 629 case R_AF0: 630 case R_AF1: 631 s->maddr[s->fmi & 3][addr & 1] = value; 632 break; 633 634 case R_IS: 635 s->regs[addr] &= ~value; 636 break; 637 638 case 0x8000 ... 0x83ff: 639 s->ext_mtable[addr - 0x8000] = value; 640 break; 641 642 default: 643 DENET(qemu_log("%s addr=" TARGET_FMT_plx " v=%x\n", 644 __func__, addr * 4, (unsigned)value)); 645 if (addr < ARRAY_SIZE(s->regs)) { 646 s->regs[addr] = value; 647 } 648 break; 649 } 650 enet_update_irq(s); 651 } 652 653 static const MemoryRegionOps enet_ops = { 654 .read = enet_read, 655 .write = enet_write, 656 .endianness = DEVICE_LITTLE_ENDIAN, 657 }; 658 659 static int eth_can_rx(NetClientState *nc) 660 { 661 XilinxAXIEnet *s = qemu_get_nic_opaque(nc); 662 663 /* RX enabled? */ 664 return !s->rxsize && !axienet_rx_resetting(s) && axienet_rx_enabled(s); 665 } 666 667 static int enet_match_addr(const uint8_t *buf, uint32_t f0, uint32_t f1) 668 { 669 int match = 1; 670 671 if (memcmp(buf, &f0, 4)) { 672 match = 0; 673 } 674 675 if (buf[4] != (f1 & 0xff) || buf[5] != ((f1 >> 8) & 0xff)) { 676 match = 0; 677 } 678 679 return match; 680 } 681 682 static void axienet_eth_rx_notify(void *opaque) 683 { 684 XilinxAXIEnet *s = XILINX_AXI_ENET(opaque); 685 686 while (s->rxappsize && stream_can_push(s->tx_control_dev, 687 axienet_eth_rx_notify, s)) { 688 size_t ret = stream_push(s->tx_control_dev, 689 (void *)s->rxapp + CONTROL_PAYLOAD_SIZE 690 - s->rxappsize, s->rxappsize); 691 s->rxappsize -= ret; 692 } 693 694 while (s->rxsize && stream_can_push(s->tx_data_dev, 695 axienet_eth_rx_notify, s)) { 696 size_t ret = stream_push(s->tx_data_dev, (void *)s->rxmem + s->rxpos, 697 s->rxsize); 698 s->rxsize -= ret; 699 s->rxpos += ret; 700 if (!s->rxsize) { 701 s->regs[R_IS] |= IS_RX_COMPLETE; 702 } 703 } 704 enet_update_irq(s); 705 } 706 707 static ssize_t eth_rx(NetClientState *nc, const uint8_t *buf, size_t size) 708 { 709 XilinxAXIEnet *s = qemu_get_nic_opaque(nc); 710 static const unsigned char sa_bcast[6] = {0xff, 0xff, 0xff, 711 0xff, 0xff, 0xff}; 712 static const unsigned char sa_ipmcast[3] = {0x01, 0x00, 0x52}; 713 uint32_t app[CONTROL_PAYLOAD_WORDS] = {0}; 714 int promisc = s->fmi & (1 << 31); 715 int unicast, broadcast, multicast, ip_multicast = 0; 716 uint32_t csum32; 717 uint16_t csum16; 718 int i; 719 720 DENET(qemu_log("%s: %zd bytes\n", __func__, size)); 721 722 unicast = ~buf[0] & 0x1; 723 broadcast = memcmp(buf, sa_bcast, 6) == 0; 724 multicast = !unicast && !broadcast; 725 if (multicast && (memcmp(sa_ipmcast, buf, sizeof sa_ipmcast) == 0)) { 726 ip_multicast = 1; 727 } 728 729 /* Jumbo or vlan sizes ? */ 730 if (!(s->rcw[1] & RCW1_JUM)) { 731 if (size > 1518 && size <= 1522 && !(s->rcw[1] & RCW1_VLAN)) { 732 return size; 733 } 734 } 735 736 /* Basic Address filters. If you want to use the extended filters 737 you'll generally have to place the ethernet mac into promiscuous mode 738 to avoid the basic filtering from dropping most frames. */ 739 if (!promisc) { 740 if (unicast) { 741 if (!enet_match_addr(buf, s->uaw[0], s->uaw[1])) { 742 return size; 743 } 744 } else { 745 if (broadcast) { 746 /* Broadcast. */ 747 if (s->regs[R_RAF] & RAF_BCAST_REJ) { 748 return size; 749 } 750 } else { 751 int drop = 1; 752 753 /* Multicast. */ 754 if (s->regs[R_RAF] & RAF_MCAST_REJ) { 755 return size; 756 } 757 758 for (i = 0; i < 4; i++) { 759 if (enet_match_addr(buf, s->maddr[i][0], s->maddr[i][1])) { 760 drop = 0; 761 break; 762 } 763 } 764 765 if (drop) { 766 return size; 767 } 768 } 769 } 770 } 771 772 /* Extended mcast filtering enabled? */ 773 if (axienet_newfunc_enabled(s) && axienet_extmcf_enabled(s)) { 774 if (unicast) { 775 if (!enet_match_addr(buf, s->ext_uaw[0], s->ext_uaw[1])) { 776 return size; 777 } 778 } else { 779 if (broadcast) { 780 /* Broadcast. ??? */ 781 if (s->regs[R_RAF] & RAF_BCAST_REJ) { 782 return size; 783 } 784 } else { 785 int idx, bit; 786 787 /* Multicast. */ 788 if (!memcmp(buf, sa_ipmcast, 3)) { 789 return size; 790 } 791 792 idx = (buf[4] & 0x7f) << 8; 793 idx |= buf[5]; 794 795 bit = 1 << (idx & 0x1f); 796 idx >>= 5; 797 798 if (!(s->ext_mtable[idx] & bit)) { 799 return size; 800 } 801 } 802 } 803 } 804 805 if (size < 12) { 806 s->regs[R_IS] |= IS_RX_REJECT; 807 enet_update_irq(s); 808 return -1; 809 } 810 811 if (size > (s->c_rxmem - 4)) { 812 size = s->c_rxmem - 4; 813 } 814 815 memcpy(s->rxmem, buf, size); 816 memset(s->rxmem + size, 0, 4); /* Clear the FCS. */ 817 818 if (s->rcw[1] & RCW1_FCS) { 819 size += 4; /* fcs is inband. */ 820 } 821 822 app[0] = 5 << 28; 823 csum32 = net_checksum_add(size - 14, (uint8_t *)s->rxmem + 14); 824 /* Fold it once. */ 825 csum32 = (csum32 & 0xffff) + (csum32 >> 16); 826 /* And twice to get rid of possible carries. */ 827 csum16 = (csum32 & 0xffff) + (csum32 >> 16); 828 app[3] = csum16; 829 app[4] = size & 0xffff; 830 831 s->stats.rx_bytes += size; 832 s->stats.rx++; 833 if (multicast) { 834 s->stats.rx_mcast++; 835 app[2] |= 1 | (ip_multicast << 1); 836 } else if (broadcast) { 837 s->stats.rx_bcast++; 838 app[2] |= 1 << 3; 839 } 840 841 /* Good frame. */ 842 app[2] |= 1 << 6; 843 844 s->rxsize = size; 845 s->rxpos = 0; 846 for (i = 0; i < ARRAY_SIZE(app); ++i) { 847 app[i] = cpu_to_le32(app[i]); 848 } 849 s->rxappsize = CONTROL_PAYLOAD_SIZE; 850 memcpy(s->rxapp, app, s->rxappsize); 851 axienet_eth_rx_notify(s); 852 853 enet_update_irq(s); 854 return size; 855 } 856 857 static void eth_cleanup(NetClientState *nc) 858 { 859 /* FIXME. */ 860 XilinxAXIEnet *s = qemu_get_nic_opaque(nc); 861 g_free(s->rxmem); 862 g_free(s); 863 } 864 865 static size_t 866 xilinx_axienet_control_stream_push(StreamSlave *obj, uint8_t *buf, size_t len) 867 { 868 int i; 869 XilinxAXIEnetStreamSlave *cs = XILINX_AXI_ENET_CONTROL_STREAM(obj); 870 XilinxAXIEnet *s = cs->enet; 871 872 if (len != CONTROL_PAYLOAD_SIZE) { 873 hw_error("AXI Enet requires %d byte control stream payload\n", 874 (int)CONTROL_PAYLOAD_SIZE); 875 } 876 877 memcpy(s->hdr, buf, len); 878 879 for (i = 0; i < ARRAY_SIZE(s->hdr); ++i) { 880 s->hdr[i] = le32_to_cpu(s->hdr[i]); 881 } 882 return len; 883 } 884 885 static size_t 886 xilinx_axienet_data_stream_push(StreamSlave *obj, uint8_t *buf, size_t size) 887 { 888 XilinxAXIEnetStreamSlave *ds = XILINX_AXI_ENET_DATA_STREAM(obj); 889 XilinxAXIEnet *s = ds->enet; 890 891 /* TX enable ? */ 892 if (!(s->tc & TC_TX)) { 893 return size; 894 } 895 896 /* Jumbo or vlan sizes ? */ 897 if (!(s->tc & TC_JUM)) { 898 if (size > 1518 && size <= 1522 && !(s->tc & TC_VLAN)) { 899 return size; 900 } 901 } 902 903 if (s->hdr[0] & 1) { 904 unsigned int start_off = s->hdr[1] >> 16; 905 unsigned int write_off = s->hdr[1] & 0xffff; 906 uint32_t tmp_csum; 907 uint16_t csum; 908 909 tmp_csum = net_checksum_add(size - start_off, 910 (uint8_t *)buf + start_off); 911 /* Accumulate the seed. */ 912 tmp_csum += s->hdr[2] & 0xffff; 913 914 /* Fold the 32bit partial checksum. */ 915 csum = net_checksum_finish(tmp_csum); 916 917 /* Writeback. */ 918 buf[write_off] = csum >> 8; 919 buf[write_off + 1] = csum & 0xff; 920 } 921 922 qemu_send_packet(qemu_get_queue(s->nic), buf, size); 923 924 s->stats.tx_bytes += size; 925 s->regs[R_IS] |= IS_TX_COMPLETE; 926 enet_update_irq(s); 927 928 return size; 929 } 930 931 static NetClientInfo net_xilinx_enet_info = { 932 .type = NET_CLIENT_OPTIONS_KIND_NIC, 933 .size = sizeof(NICState), 934 .can_receive = eth_can_rx, 935 .receive = eth_rx, 936 .cleanup = eth_cleanup, 937 }; 938 939 static void xilinx_enet_realize(DeviceState *dev, Error **errp) 940 { 941 XilinxAXIEnet *s = XILINX_AXI_ENET(dev); 942 XilinxAXIEnetStreamSlave *ds = XILINX_AXI_ENET_DATA_STREAM(&s->rx_data_dev); 943 XilinxAXIEnetStreamSlave *cs = XILINX_AXI_ENET_CONTROL_STREAM( 944 &s->rx_control_dev); 945 Error *local_errp = NULL; 946 947 object_property_add_link(OBJECT(ds), "enet", "xlnx.axi-ethernet", 948 (Object **) &ds->enet, &local_errp); 949 object_property_add_link(OBJECT(cs), "enet", "xlnx.axi-ethernet", 950 (Object **) &cs->enet, &local_errp); 951 if (local_errp) { 952 goto xilinx_enet_realize_fail; 953 } 954 object_property_set_link(OBJECT(ds), OBJECT(s), "enet", &local_errp); 955 object_property_set_link(OBJECT(cs), OBJECT(s), "enet", &local_errp); 956 if (local_errp) { 957 goto xilinx_enet_realize_fail; 958 } 959 960 qemu_macaddr_default_if_unset(&s->conf.macaddr); 961 s->nic = qemu_new_nic(&net_xilinx_enet_info, &s->conf, 962 object_get_typename(OBJECT(dev)), dev->id, s); 963 qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a); 964 965 tdk_init(&s->TEMAC.phy); 966 mdio_attach(&s->TEMAC.mdio_bus, &s->TEMAC.phy, s->c_phyaddr); 967 968 s->TEMAC.parent = s; 969 970 s->rxmem = g_malloc(s->c_rxmem); 971 return; 972 973 xilinx_enet_realize_fail: 974 if (!*errp) { 975 *errp = local_errp; 976 } 977 } 978 979 static void xilinx_enet_init(Object *obj) 980 { 981 XilinxAXIEnet *s = XILINX_AXI_ENET(obj); 982 SysBusDevice *sbd = SYS_BUS_DEVICE(obj); 983 Error *errp = NULL; 984 985 object_property_add_link(obj, "axistream-connected", TYPE_STREAM_SLAVE, 986 (Object **) &s->tx_data_dev, &errp); 987 assert_no_error(errp); 988 object_property_add_link(obj, "axistream-control-connected", 989 TYPE_STREAM_SLAVE, 990 (Object **) &s->tx_control_dev, &errp); 991 assert_no_error(errp); 992 993 object_initialize(&s->rx_data_dev, TYPE_XILINX_AXI_ENET_DATA_STREAM); 994 object_initialize(&s->rx_control_dev, TYPE_XILINX_AXI_ENET_CONTROL_STREAM); 995 object_property_add_child(OBJECT(s), "axistream-connected-target", 996 (Object *)&s->rx_data_dev, &errp); 997 assert_no_error(errp); 998 object_property_add_child(OBJECT(s), "axistream-control-connected-target", 999 (Object *)&s->rx_control_dev, &errp); 1000 assert_no_error(errp); 1001 1002 sysbus_init_irq(sbd, &s->irq); 1003 1004 memory_region_init_io(&s->iomem, OBJECT(s), &enet_ops, s, "enet", 0x40000); 1005 sysbus_init_mmio(sbd, &s->iomem); 1006 } 1007 1008 static Property xilinx_enet_properties[] = { 1009 DEFINE_PROP_UINT32("phyaddr", XilinxAXIEnet, c_phyaddr, 7), 1010 DEFINE_PROP_UINT32("rxmem", XilinxAXIEnet, c_rxmem, 0x1000), 1011 DEFINE_PROP_UINT32("txmem", XilinxAXIEnet, c_txmem, 0x1000), 1012 DEFINE_NIC_PROPERTIES(XilinxAXIEnet, conf), 1013 DEFINE_PROP_END_OF_LIST(), 1014 }; 1015 1016 static void xilinx_enet_class_init(ObjectClass *klass, void *data) 1017 { 1018 DeviceClass *dc = DEVICE_CLASS(klass); 1019 1020 dc->realize = xilinx_enet_realize; 1021 dc->props = xilinx_enet_properties; 1022 dc->reset = xilinx_axienet_reset; 1023 } 1024 1025 static void xilinx_enet_stream_class_init(ObjectClass *klass, void *data) 1026 { 1027 StreamSlaveClass *ssc = STREAM_SLAVE_CLASS(klass); 1028 1029 ssc->push = data; 1030 } 1031 1032 static const TypeInfo xilinx_enet_info = { 1033 .name = TYPE_XILINX_AXI_ENET, 1034 .parent = TYPE_SYS_BUS_DEVICE, 1035 .instance_size = sizeof(XilinxAXIEnet), 1036 .class_init = xilinx_enet_class_init, 1037 .instance_init = xilinx_enet_init, 1038 }; 1039 1040 static const TypeInfo xilinx_enet_data_stream_info = { 1041 .name = TYPE_XILINX_AXI_ENET_DATA_STREAM, 1042 .parent = TYPE_OBJECT, 1043 .instance_size = sizeof(struct XilinxAXIEnetStreamSlave), 1044 .class_init = xilinx_enet_stream_class_init, 1045 .class_data = xilinx_axienet_data_stream_push, 1046 .interfaces = (InterfaceInfo[]) { 1047 { TYPE_STREAM_SLAVE }, 1048 { } 1049 } 1050 }; 1051 1052 static const TypeInfo xilinx_enet_control_stream_info = { 1053 .name = TYPE_XILINX_AXI_ENET_CONTROL_STREAM, 1054 .parent = TYPE_OBJECT, 1055 .instance_size = sizeof(struct XilinxAXIEnetStreamSlave), 1056 .class_init = xilinx_enet_stream_class_init, 1057 .class_data = xilinx_axienet_control_stream_push, 1058 .interfaces = (InterfaceInfo[]) { 1059 { TYPE_STREAM_SLAVE }, 1060 { } 1061 } 1062 }; 1063 1064 static void xilinx_enet_register_types(void) 1065 { 1066 type_register_static(&xilinx_enet_info); 1067 type_register_static(&xilinx_enet_data_stream_info); 1068 type_register_static(&xilinx_enet_control_stream_info); 1069 } 1070 1071 type_init(xilinx_enet_register_types) 1072