xref: /openbmc/qemu/hw/net/sungem.c (revision c418f935)
1 /*
2  * QEMU model of SUN GEM ethernet controller
3  *
4  * As found in Apple ASICs among others
5  *
6  * Copyright 2016 Ben Herrenschmidt
7  * Copyright 2017 Mark Cave-Ayland
8  */
9 
10 #include "qemu/osdep.h"
11 #include "hw/pci/pci.h"
12 #include "hw/qdev-properties.h"
13 #include "migration/vmstate.h"
14 #include "qemu/log.h"
15 #include "qemu/module.h"
16 #include "net/net.h"
17 #include "net/eth.h"
18 #include "net/checksum.h"
19 #include "hw/net/mii.h"
20 #include "sysemu/sysemu.h"
21 #include "trace.h"
22 #include "qom/object.h"
23 
24 #define TYPE_SUNGEM "sungem"
25 
26 typedef struct SunGEMState SunGEMState;
27 DECLARE_INSTANCE_CHECKER(SunGEMState, SUNGEM,
28                          TYPE_SUNGEM)
29 
30 #define MAX_PACKET_SIZE 9016
31 
32 #define SUNGEM_MMIO_SIZE        0x200000
33 
34 /* Global registers */
35 #define SUNGEM_MMIO_GREG_SIZE   0x2000
36 
37 #define GREG_SEBSTATE     0x0000UL    /* SEB State Register */
38 
39 #define GREG_STAT         0x000CUL    /* Status Register */
40 #define GREG_STAT_TXINTME     0x00000001    /* TX INTME frame transferred */
41 #define GREG_STAT_TXALL       0x00000002    /* All TX frames transferred */
42 #define GREG_STAT_TXDONE      0x00000004    /* One TX frame transferred */
43 #define GREG_STAT_RXDONE      0x00000010    /* One RX frame arrived */
44 #define GREG_STAT_RXNOBUF     0x00000020    /* No free RX buffers available */
45 #define GREG_STAT_RXTAGERR    0x00000040    /* RX tag framing is corrupt */
46 #define GREG_STAT_TXMAC       0x00004000    /* TX MAC signalled interrupt */
47 #define GREG_STAT_RXMAC       0x00008000    /* RX MAC signalled interrupt */
48 #define GREG_STAT_MAC         0x00010000    /* MAC Control signalled irq */
49 #define GREG_STAT_TXNR        0xfff80000    /* == TXDMA_TXDONE reg val */
50 #define GREG_STAT_TXNR_SHIFT  19
51 
52 /* These interrupts are edge latches in the status register,
53  * reading it (or writing the corresponding bit in IACK) will
54  * clear them
55  */
56 #define GREG_STAT_LATCH       (GREG_STAT_TXALL  | GREG_STAT_TXINTME | \
57                                GREG_STAT_RXDONE | GREG_STAT_RXDONE |  \
58                                GREG_STAT_RXNOBUF | GREG_STAT_RXTAGERR)
59 
60 #define GREG_IMASK        0x0010UL    /* Interrupt Mask Register */
61 #define GREG_IACK         0x0014UL    /* Interrupt ACK Register */
62 #define GREG_STAT2        0x001CUL    /* Alias of GREG_STAT */
63 #define GREG_PCIESTAT     0x1000UL    /* PCI Error Status Register */
64 #define GREG_PCIEMASK     0x1004UL    /* PCI Error Mask Register */
65 
66 #define GREG_SWRST        0x1010UL    /* Software Reset Register */
67 #define GREG_SWRST_TXRST      0x00000001    /* TX Software Reset */
68 #define GREG_SWRST_RXRST      0x00000002    /* RX Software Reset */
69 #define GREG_SWRST_RSTOUT     0x00000004    /* Force RST# pin active */
70 
71 /* TX DMA Registers */
72 #define SUNGEM_MMIO_TXDMA_SIZE   0x1000
73 
74 #define TXDMA_KICK        0x0000UL    /* TX Kick Register */
75 
76 #define TXDMA_CFG         0x0004UL    /* TX Configuration Register */
77 #define TXDMA_CFG_ENABLE      0x00000001    /* Enable TX DMA channel */
78 #define TXDMA_CFG_RINGSZ      0x0000001e    /* TX descriptor ring size */
79 
80 #define TXDMA_DBLOW       0x0008UL    /* TX Desc. Base Low */
81 #define TXDMA_DBHI        0x000CUL    /* TX Desc. Base High */
82 #define TXDMA_PCNT        0x0024UL    /* TX FIFO Packet Counter */
83 #define TXDMA_SMACHINE    0x0028UL    /* TX State Machine Register */
84 #define TXDMA_DPLOW       0x0030UL    /* TX Data Pointer Low */
85 #define TXDMA_DPHI        0x0034UL    /* TX Data Pointer High */
86 #define TXDMA_TXDONE      0x0100UL    /* TX Completion Register */
87 #define TXDMA_FTAG        0x0108UL    /* TX FIFO Tag */
88 #define TXDMA_FSZ         0x0118UL    /* TX FIFO Size */
89 
90 /* Receive DMA Registers */
91 #define SUNGEM_MMIO_RXDMA_SIZE   0x2000
92 
93 #define RXDMA_CFG         0x0000UL    /* RX Configuration Register */
94 #define RXDMA_CFG_ENABLE      0x00000001    /* Enable RX DMA channel */
95 #define RXDMA_CFG_RINGSZ      0x0000001e    /* RX descriptor ring size */
96 #define RXDMA_CFG_FBOFF       0x00001c00    /* Offset of first data byte */
97 #define RXDMA_CFG_CSUMOFF     0x000fe000    /* Skip bytes before csum calc */
98 
99 #define RXDMA_DBLOW       0x0004UL    /* RX Descriptor Base Low */
100 #define RXDMA_DBHI        0x0008UL    /* RX Descriptor Base High */
101 #define RXDMA_PCNT        0x0018UL    /* RX FIFO Packet Counter */
102 #define RXDMA_SMACHINE    0x001CUL    /* RX State Machine Register */
103 #define RXDMA_PTHRESH     0x0020UL    /* Pause Thresholds */
104 #define RXDMA_DPLOW       0x0024UL    /* RX Data Pointer Low */
105 #define RXDMA_DPHI        0x0028UL    /* RX Data Pointer High */
106 #define RXDMA_KICK        0x0100UL    /* RX Kick Register */
107 #define RXDMA_DONE        0x0104UL    /* RX Completion Register */
108 #define RXDMA_BLANK       0x0108UL    /* RX Blanking Register */
109 #define RXDMA_FTAG        0x0110UL    /* RX FIFO Tag */
110 #define RXDMA_FSZ         0x0120UL    /* RX FIFO Size */
111 
112 /* MAC Registers */
113 #define SUNGEM_MMIO_MAC_SIZE   0x200
114 
115 #define MAC_TXRST         0x0000UL    /* TX MAC Software Reset Command */
116 #define MAC_RXRST         0x0004UL    /* RX MAC Software Reset Command */
117 #define MAC_TXSTAT        0x0010UL    /* TX MAC Status Register */
118 #define MAC_RXSTAT        0x0014UL    /* RX MAC Status Register */
119 
120 #define MAC_CSTAT         0x0018UL    /* MAC Control Status Register */
121 #define MAC_CSTAT_PTR         0xffff0000    /* Pause Time Received */
122 
123 #define MAC_TXMASK        0x0020UL    /* TX MAC Mask Register */
124 #define MAC_RXMASK        0x0024UL    /* RX MAC Mask Register */
125 #define MAC_MCMASK        0x0028UL    /* MAC Control Mask Register */
126 
127 #define MAC_TXCFG         0x0030UL    /* TX MAC Configuration Register */
128 #define MAC_TXCFG_ENAB        0x00000001    /* TX MAC Enable */
129 
130 #define MAC_RXCFG         0x0034UL    /* RX MAC Configuration Register */
131 #define MAC_RXCFG_ENAB        0x00000001    /* RX MAC Enable */
132 #define MAC_RXCFG_SFCS        0x00000004    /* Strip FCS */
133 #define MAC_RXCFG_PROM        0x00000008    /* Promiscuous Mode */
134 #define MAC_RXCFG_PGRP        0x00000010    /* Promiscuous Group */
135 #define MAC_RXCFG_HFE         0x00000020    /* Hash Filter Enable */
136 
137 #define MAC_XIFCFG        0x003CUL    /* XIF Configuration Register */
138 #define MAC_XIFCFG_LBCK       0x00000002    /* Loopback TX to RX */
139 
140 #define MAC_MINFSZ        0x0050UL    /* MinFrameSize Register */
141 #define MAC_MAXFSZ        0x0054UL    /* MaxFrameSize Register */
142 #define MAC_ADDR0         0x0080UL    /* MAC Address 0 Register */
143 #define MAC_ADDR1         0x0084UL    /* MAC Address 1 Register */
144 #define MAC_ADDR2         0x0088UL    /* MAC Address 2 Register */
145 #define MAC_ADDR3         0x008CUL    /* MAC Address 3 Register */
146 #define MAC_ADDR4         0x0090UL    /* MAC Address 4 Register */
147 #define MAC_ADDR5         0x0094UL    /* MAC Address 5 Register */
148 #define MAC_HASH0         0x00C0UL    /* Hash Table 0 Register */
149 #define MAC_PATMPS        0x0114UL    /* Peak Attempts Register */
150 #define MAC_SMACHINE      0x0134UL    /* State Machine Register */
151 
152 /* MIF Registers */
153 #define SUNGEM_MMIO_MIF_SIZE   0x20
154 
155 #define MIF_FRAME         0x000CUL    /* MIF Frame/Output Register */
156 #define MIF_FRAME_OP          0x30000000    /* OPcode */
157 #define MIF_FRAME_PHYAD       0x0f800000    /* PHY ADdress */
158 #define MIF_FRAME_REGAD       0x007c0000    /* REGister ADdress */
159 #define MIF_FRAME_TALSB       0x00010000    /* Turn Around LSB */
160 #define MIF_FRAME_DATA        0x0000ffff    /* Instruction Payload */
161 
162 #define MIF_CFG           0x0010UL    /* MIF Configuration Register */
163 #define MIF_CFG_MDI0          0x00000100    /* MDIO_0 present or read-bit */
164 #define MIF_CFG_MDI1          0x00000200    /* MDIO_1 present or read-bit */
165 
166 #define MIF_STATUS        0x0018UL    /* MIF Status Register */
167 #define MIF_SMACHINE      0x001CUL    /* MIF State Machine Register */
168 
169 /* PCS/Serialink Registers */
170 #define SUNGEM_MMIO_PCS_SIZE   0x60
171 #define PCS_MIISTAT       0x0004UL    /* PCS MII Status Register */
172 #define PCS_ISTAT         0x0018UL    /* PCS Interrupt Status Reg */
173 #define PCS_SSTATE        0x005CUL    /* Serialink State Register */
174 
175 /* Descriptors */
176 struct gem_txd {
177     uint64_t control_word;
178     uint64_t buffer;
179 };
180 
181 #define TXDCTRL_BUFSZ     0x0000000000007fffULL  /* Buffer Size */
182 #define TXDCTRL_CSTART    0x00000000001f8000ULL  /* CSUM Start Offset */
183 #define TXDCTRL_COFF      0x000000001fe00000ULL  /* CSUM Stuff Offset */
184 #define TXDCTRL_CENAB     0x0000000020000000ULL  /* CSUM Enable */
185 #define TXDCTRL_EOF       0x0000000040000000ULL  /* End of Frame */
186 #define TXDCTRL_SOF       0x0000000080000000ULL  /* Start of Frame */
187 #define TXDCTRL_INTME     0x0000000100000000ULL  /* "Interrupt Me" */
188 
189 struct gem_rxd {
190     uint64_t status_word;
191     uint64_t buffer;
192 };
193 
194 #define RXDCTRL_HPASS     0x1000000000000000ULL  /* Passed Hash Filter */
195 #define RXDCTRL_ALTMAC    0x2000000000000000ULL  /* Matched ALT MAC */
196 
197 
198 struct SunGEMState {
199     PCIDevice pdev;
200 
201     MemoryRegion sungem;
202     MemoryRegion greg;
203     MemoryRegion txdma;
204     MemoryRegion rxdma;
205     MemoryRegion mac;
206     MemoryRegion mif;
207     MemoryRegion pcs;
208     NICState *nic;
209     NICConf conf;
210     uint32_t phy_addr;
211 
212     uint32_t gregs[SUNGEM_MMIO_GREG_SIZE >> 2];
213     uint32_t txdmaregs[SUNGEM_MMIO_TXDMA_SIZE >> 2];
214     uint32_t rxdmaregs[SUNGEM_MMIO_RXDMA_SIZE >> 2];
215     uint32_t macregs[SUNGEM_MMIO_MAC_SIZE >> 2];
216     uint32_t mifregs[SUNGEM_MMIO_MIF_SIZE >> 2];
217     uint32_t pcsregs[SUNGEM_MMIO_PCS_SIZE >> 2];
218 
219     /* Cache some useful things */
220     uint32_t rx_mask;
221     uint32_t tx_mask;
222 
223     /* Current tx packet */
224     uint8_t tx_data[MAX_PACKET_SIZE];
225     uint32_t tx_size;
226     uint64_t tx_first_ctl;
227 };
228 
229 
230 static void sungem_eval_irq(SunGEMState *s)
231 {
232     uint32_t stat, mask;
233 
234     mask = s->gregs[GREG_IMASK >> 2];
235     stat = s->gregs[GREG_STAT >> 2] & ~GREG_STAT_TXNR;
236     if (stat & ~mask) {
237         pci_set_irq(PCI_DEVICE(s), 1);
238     } else {
239         pci_set_irq(PCI_DEVICE(s), 0);
240     }
241 }
242 
243 static void sungem_update_status(SunGEMState *s, uint32_t bits, bool val)
244 {
245     uint32_t stat;
246 
247     stat = s->gregs[GREG_STAT >> 2];
248     if (val) {
249         stat |= bits;
250     } else {
251         stat &= ~bits;
252     }
253     s->gregs[GREG_STAT >> 2] = stat;
254     sungem_eval_irq(s);
255 }
256 
257 static void sungem_eval_cascade_irq(SunGEMState *s)
258 {
259     uint32_t stat, mask;
260 
261     mask = s->macregs[MAC_TXSTAT >> 2];
262     stat = s->macregs[MAC_TXMASK >> 2];
263     if (stat & ~mask) {
264         sungem_update_status(s, GREG_STAT_TXMAC, true);
265     } else {
266         sungem_update_status(s, GREG_STAT_TXMAC, false);
267     }
268 
269     mask = s->macregs[MAC_RXSTAT >> 2];
270     stat = s->macregs[MAC_RXMASK >> 2];
271     if (stat & ~mask) {
272         sungem_update_status(s, GREG_STAT_RXMAC, true);
273     } else {
274         sungem_update_status(s, GREG_STAT_RXMAC, false);
275     }
276 
277     mask = s->macregs[MAC_CSTAT >> 2];
278     stat = s->macregs[MAC_MCMASK >> 2] & ~MAC_CSTAT_PTR;
279     if (stat & ~mask) {
280         sungem_update_status(s, GREG_STAT_MAC, true);
281     } else {
282         sungem_update_status(s, GREG_STAT_MAC, false);
283     }
284 }
285 
286 static void sungem_do_tx_csum(SunGEMState *s)
287 {
288     uint16_t start, off;
289     uint32_t csum;
290 
291     start = (s->tx_first_ctl & TXDCTRL_CSTART) >> 15;
292     off = (s->tx_first_ctl & TXDCTRL_COFF) >> 21;
293 
294     trace_sungem_tx_checksum(start, off);
295 
296     if (start > (s->tx_size - 2) || off > (s->tx_size - 2)) {
297         trace_sungem_tx_checksum_oob();
298         return;
299     }
300 
301     csum = net_raw_checksum(s->tx_data + start, s->tx_size - start);
302     stw_be_p(s->tx_data + off, csum);
303 }
304 
305 static void sungem_send_packet(SunGEMState *s, const uint8_t *buf,
306                                int size)
307 {
308     NetClientState *nc = qemu_get_queue(s->nic);
309 
310     if (s->macregs[MAC_XIFCFG >> 2] & MAC_XIFCFG_LBCK) {
311         nc->info->receive(nc, buf, size);
312     } else {
313         qemu_send_packet(nc, buf, size);
314     }
315 }
316 
317 static void sungem_process_tx_desc(SunGEMState *s, struct gem_txd *desc)
318 {
319     PCIDevice *d = PCI_DEVICE(s);
320     uint32_t len;
321 
322     /* If it's a start of frame, discard anything we had in the
323      * buffer and start again. This should be an error condition
324      * if we had something ... for now we ignore it
325      */
326     if (desc->control_word & TXDCTRL_SOF) {
327         if (s->tx_first_ctl) {
328             trace_sungem_tx_unfinished();
329         }
330         s->tx_size = 0;
331         s->tx_first_ctl = desc->control_word;
332     }
333 
334     /* Grab data size */
335     len = desc->control_word & TXDCTRL_BUFSZ;
336 
337     /* Clamp it to our max size */
338     if ((s->tx_size + len) > MAX_PACKET_SIZE) {
339         trace_sungem_tx_overflow();
340         len = MAX_PACKET_SIZE - s->tx_size;
341     }
342 
343     /* Read the data */
344     pci_dma_read(d, desc->buffer, &s->tx_data[s->tx_size], len);
345     s->tx_size += len;
346 
347     /* If end of frame, send packet */
348     if (desc->control_word & TXDCTRL_EOF) {
349         trace_sungem_tx_finished(s->tx_size);
350 
351         /* Handle csum */
352         if (s->tx_first_ctl & TXDCTRL_CENAB) {
353             sungem_do_tx_csum(s);
354         }
355 
356         /* Send it */
357         sungem_send_packet(s, s->tx_data, s->tx_size);
358 
359         /* No more pending packet */
360         s->tx_size = 0;
361         s->tx_first_ctl = 0;
362     }
363 }
364 
365 static void sungem_tx_kick(SunGEMState *s)
366 {
367     PCIDevice *d = PCI_DEVICE(s);
368     uint32_t comp, kick;
369     uint32_t txdma_cfg, txmac_cfg, ints;
370     uint64_t dbase;
371 
372     trace_sungem_tx_kick();
373 
374     /* Check that both TX MAC and TX DMA are enabled. We don't
375      * handle DMA-less direct FIFO operations (we don't emulate
376      * the FIFO at all).
377      *
378      * A write to TXDMA_KICK while DMA isn't enabled can happen
379      * when the driver is resetting the pointer.
380      */
381     txdma_cfg = s->txdmaregs[TXDMA_CFG >> 2];
382     txmac_cfg = s->macregs[MAC_TXCFG >> 2];
383     if (!(txdma_cfg & TXDMA_CFG_ENABLE) ||
384         !(txmac_cfg & MAC_TXCFG_ENAB)) {
385         trace_sungem_tx_disabled();
386         return;
387     }
388 
389     /* XXX Test min frame size register ? */
390     /* XXX Test max frame size register ? */
391 
392     dbase = s->txdmaregs[TXDMA_DBHI >> 2];
393     dbase = (dbase << 32) | s->txdmaregs[TXDMA_DBLOW >> 2];
394 
395     comp = s->txdmaregs[TXDMA_TXDONE >> 2] & s->tx_mask;
396     kick = s->txdmaregs[TXDMA_KICK >> 2] & s->tx_mask;
397 
398     trace_sungem_tx_process(comp, kick, s->tx_mask + 1);
399 
400     /* This is rather primitive for now, we just send everything we
401      * can in one go, like e1000. Ideally we should do the sending
402      * from some kind of background task
403      */
404     while (comp != kick) {
405         struct gem_txd desc;
406 
407         /* Read the next descriptor */
408         pci_dma_read(d, dbase + comp * sizeof(desc), &desc, sizeof(desc));
409 
410         /* Byteswap descriptor */
411         desc.control_word = le64_to_cpu(desc.control_word);
412         desc.buffer = le64_to_cpu(desc.buffer);
413         trace_sungem_tx_desc(comp, desc.control_word, desc.buffer);
414 
415         /* Send it for processing */
416         sungem_process_tx_desc(s, &desc);
417 
418         /* Interrupt */
419         ints = GREG_STAT_TXDONE;
420         if (desc.control_word & TXDCTRL_INTME) {
421             ints |= GREG_STAT_TXINTME;
422         }
423         sungem_update_status(s, ints, true);
424 
425         /* Next ! */
426         comp = (comp + 1) & s->tx_mask;
427         s->txdmaregs[TXDMA_TXDONE >> 2] = comp;
428     }
429 
430     /* We sent everything, set status/irq bit */
431     sungem_update_status(s, GREG_STAT_TXALL, true);
432 }
433 
434 static bool sungem_rx_full(SunGEMState *s, uint32_t kick, uint32_t done)
435 {
436     return kick == ((done + 1) & s->rx_mask);
437 }
438 
439 static bool sungem_can_receive(NetClientState *nc)
440 {
441     SunGEMState *s = qemu_get_nic_opaque(nc);
442     uint32_t kick, done, rxdma_cfg, rxmac_cfg;
443     bool full;
444 
445     rxmac_cfg = s->macregs[MAC_RXCFG >> 2];
446     rxdma_cfg = s->rxdmaregs[RXDMA_CFG >> 2];
447 
448     /* If MAC disabled, can't receive */
449     if ((rxmac_cfg & MAC_RXCFG_ENAB) == 0) {
450         trace_sungem_rx_mac_disabled();
451         return false;
452     }
453     if ((rxdma_cfg & RXDMA_CFG_ENABLE) == 0) {
454         trace_sungem_rx_txdma_disabled();
455         return false;
456     }
457 
458     /* Check RX availability */
459     kick = s->rxdmaregs[RXDMA_KICK >> 2];
460     done = s->rxdmaregs[RXDMA_DONE >> 2];
461     full = sungem_rx_full(s, kick, done);
462 
463     trace_sungem_rx_check(!full, kick, done);
464 
465     return !full;
466 }
467 
468 enum {
469         rx_no_match,
470         rx_match_promisc,
471         rx_match_bcast,
472         rx_match_allmcast,
473         rx_match_mcast,
474         rx_match_mac,
475         rx_match_altmac,
476 };
477 
478 static int sungem_check_rx_mac(SunGEMState *s, const uint8_t *mac, uint32_t crc)
479 {
480     uint32_t rxcfg = s->macregs[MAC_RXCFG >> 2];
481     uint32_t mac0, mac1, mac2;
482 
483     /* Promisc enabled ? */
484     if (rxcfg & MAC_RXCFG_PROM) {
485         return rx_match_promisc;
486     }
487 
488     /* Format MAC address into dwords */
489     mac0 = (mac[4] << 8) | mac[5];
490     mac1 = (mac[2] << 8) | mac[3];
491     mac2 = (mac[0] << 8) | mac[1];
492 
493     trace_sungem_rx_mac_check(mac0, mac1, mac2);
494 
495     /* Is this a broadcast frame ? */
496     if (mac0 == 0xffff && mac1 == 0xffff && mac2 == 0xffff) {
497         return rx_match_bcast;
498     }
499 
500     /* TODO: Implement address filter registers (or we don't care ?) */
501 
502     /* Is this a multicast frame ? */
503     if (mac[0] & 1) {
504         trace_sungem_rx_mac_multicast();
505 
506         /* Promisc group enabled ? */
507         if (rxcfg & MAC_RXCFG_PGRP) {
508             return rx_match_allmcast;
509         }
510 
511         /* TODO: Check MAC control frames (or we don't care) ? */
512 
513         /* Check hash filter (somebody check that's correct ?) */
514         if (rxcfg & MAC_RXCFG_HFE) {
515             uint32_t hash, idx;
516 
517             crc >>= 24;
518             idx = (crc >> 2) & 0x3c;
519             hash = s->macregs[(MAC_HASH0 + idx) >> 2];
520             if (hash & (1 << (15 - (crc & 0xf)))) {
521                 return rx_match_mcast;
522             }
523         }
524         return rx_no_match;
525     }
526 
527     /* Main MAC check */
528     trace_sungem_rx_mac_compare(s->macregs[MAC_ADDR0 >> 2],
529                                 s->macregs[MAC_ADDR1 >> 2],
530                                 s->macregs[MAC_ADDR2 >> 2]);
531 
532     if (mac0 == s->macregs[MAC_ADDR0 >> 2] &&
533         mac1 == s->macregs[MAC_ADDR1 >> 2] &&
534         mac2 == s->macregs[MAC_ADDR2 >> 2]) {
535         return rx_match_mac;
536     }
537 
538     /* Alt MAC check */
539     if (mac0 == s->macregs[MAC_ADDR3 >> 2] &&
540         mac1 == s->macregs[MAC_ADDR4 >> 2] &&
541         mac2 == s->macregs[MAC_ADDR5 >> 2]) {
542         return rx_match_altmac;
543     }
544 
545     return rx_no_match;
546 }
547 
548 static ssize_t sungem_receive(NetClientState *nc, const uint8_t *buf,
549                               size_t size)
550 {
551     SunGEMState *s = qemu_get_nic_opaque(nc);
552     PCIDevice *d = PCI_DEVICE(s);
553     uint32_t mac_crc, done, kick, max_fsize;
554     uint32_t fcs_size, ints, rxdma_cfg, rxmac_cfg, csum, coff;
555     uint8_t smallbuf[60];
556     struct gem_rxd desc;
557     uint64_t dbase, baddr;
558     unsigned int rx_cond;
559 
560     trace_sungem_rx_packet(size);
561 
562     rxmac_cfg = s->macregs[MAC_RXCFG >> 2];
563     rxdma_cfg = s->rxdmaregs[RXDMA_CFG >> 2];
564     max_fsize = s->macregs[MAC_MAXFSZ >> 2] & 0x7fff;
565 
566     /* If MAC or DMA disabled, can't receive */
567     if (!(rxdma_cfg & RXDMA_CFG_ENABLE) ||
568         !(rxmac_cfg & MAC_RXCFG_ENAB)) {
569         trace_sungem_rx_disabled();
570         return 0;
571     }
572 
573     /* Size adjustment for FCS */
574     if (rxmac_cfg & MAC_RXCFG_SFCS) {
575         fcs_size = 0;
576     } else {
577         fcs_size = 4;
578     }
579 
580     /* Discard frame smaller than a MAC or larger than max frame size
581      * (when accounting for FCS)
582      */
583     if (size < 6 || (size + 4) > max_fsize) {
584         trace_sungem_rx_bad_frame_size(size);
585         /* XXX Increment error statistics ? */
586         return size;
587     }
588 
589     /* We don't drop too small frames since we get them in qemu, we pad
590      * them instead. We should probably use the min frame size register
591      * but I don't want to use a variable size staging buffer and I
592      * know both MacOS and Linux use the default 64 anyway. We use 60
593      * here to account for the non-existent FCS.
594      */
595     if (size < 60) {
596         memcpy(smallbuf, buf, size);
597         memset(&smallbuf[size], 0, 60 - size);
598         buf = smallbuf;
599         size = 60;
600     }
601 
602     /* Get MAC crc */
603     mac_crc = net_crc32_le(buf, ETH_ALEN);
604 
605     /* Packet isn't for me ? */
606     rx_cond = sungem_check_rx_mac(s, buf, mac_crc);
607     if (rx_cond == rx_no_match) {
608         /* Just drop it */
609         trace_sungem_rx_unmatched();
610         return size;
611     }
612 
613     /* Get ring pointers */
614     kick = s->rxdmaregs[RXDMA_KICK >> 2] & s->rx_mask;
615     done = s->rxdmaregs[RXDMA_DONE >> 2] & s->rx_mask;
616 
617     trace_sungem_rx_process(done, kick, s->rx_mask + 1);
618 
619     /* Ring full ? Can't receive */
620     if (sungem_rx_full(s, kick, done)) {
621         trace_sungem_rx_ringfull();
622         return 0;
623     }
624 
625     /* Note: The real GEM will fetch descriptors in blocks of 4,
626      * for now we handle them one at a time, I think the driver will
627      * cope
628      */
629 
630     dbase = s->rxdmaregs[RXDMA_DBHI >> 2];
631     dbase = (dbase << 32) | s->rxdmaregs[RXDMA_DBLOW >> 2];
632 
633     /* Read the next descriptor */
634     pci_dma_read(d, dbase + done * sizeof(desc), &desc, sizeof(desc));
635 
636     trace_sungem_rx_desc(le64_to_cpu(desc.status_word),
637                          le64_to_cpu(desc.buffer));
638 
639     /* Effective buffer address */
640     baddr = le64_to_cpu(desc.buffer) & ~7ull;
641     baddr |= (rxdma_cfg & RXDMA_CFG_FBOFF) >> 10;
642 
643     /* Write buffer out */
644     pci_dma_write(d, baddr, buf, size);
645 
646     if (fcs_size) {
647         /* Should we add an FCS ? Linux doesn't ask us to strip it,
648          * however I believe nothing checks it... For now we just
649          * do nothing. It's faster this way.
650          */
651     }
652 
653     /* Calculate the checksum */
654     coff = (rxdma_cfg & RXDMA_CFG_CSUMOFF) >> 13;
655     csum = net_raw_checksum((uint8_t *)buf + coff, size - coff);
656 
657     /* Build the updated descriptor */
658     desc.status_word = (size + fcs_size) << 16;
659     desc.status_word |= ((uint64_t)(mac_crc >> 16)) << 44;
660     desc.status_word |= csum;
661     if (rx_cond == rx_match_mcast) {
662         desc.status_word |= RXDCTRL_HPASS;
663     }
664     if (rx_cond == rx_match_altmac) {
665         desc.status_word |= RXDCTRL_ALTMAC;
666     }
667     desc.status_word = cpu_to_le64(desc.status_word);
668 
669     pci_dma_write(d, dbase + done * sizeof(desc), &desc, sizeof(desc));
670 
671     done = (done + 1) & s->rx_mask;
672     s->rxdmaregs[RXDMA_DONE >> 2] = done;
673 
674     /* XXX Unconditionally set RX interrupt for now. The interrupt
675      * mitigation timer might well end up adding more overhead than
676      * helping here...
677      */
678     ints = GREG_STAT_RXDONE;
679     if (sungem_rx_full(s, kick, done)) {
680         ints |= GREG_STAT_RXNOBUF;
681     }
682     sungem_update_status(s, ints, true);
683 
684     return size;
685 }
686 
687 static void sungem_set_link_status(NetClientState *nc)
688 {
689     /* We don't do anything for now as I believe none of the OSes
690      * drivers use the MIF autopoll feature nor the PHY interrupt
691      */
692 }
693 
694 static void sungem_update_masks(SunGEMState *s)
695 {
696     uint32_t sz;
697 
698     sz = 1 << (((s->rxdmaregs[RXDMA_CFG >> 2] & RXDMA_CFG_RINGSZ) >> 1) + 5);
699     s->rx_mask = sz - 1;
700 
701     sz = 1 << (((s->txdmaregs[TXDMA_CFG >> 2] & TXDMA_CFG_RINGSZ) >> 1) + 5);
702     s->tx_mask = sz - 1;
703 }
704 
705 static void sungem_reset_rx(SunGEMState *s)
706 {
707     trace_sungem_rx_reset();
708 
709     /* XXX Do RXCFG */
710     /* XXX Check value */
711     s->rxdmaregs[RXDMA_FSZ >> 2] = 0x140;
712     s->rxdmaregs[RXDMA_DONE >> 2] = 0;
713     s->rxdmaregs[RXDMA_KICK >> 2] = 0;
714     s->rxdmaregs[RXDMA_CFG >> 2] = 0x1000010;
715     s->rxdmaregs[RXDMA_PTHRESH >> 2] = 0xf8;
716     s->rxdmaregs[RXDMA_BLANK >> 2] = 0;
717 
718     sungem_update_masks(s);
719 }
720 
721 static void sungem_reset_tx(SunGEMState *s)
722 {
723     trace_sungem_tx_reset();
724 
725     /* XXX Do TXCFG */
726     /* XXX Check value */
727     s->txdmaregs[TXDMA_FSZ >> 2] = 0x90;
728     s->txdmaregs[TXDMA_TXDONE >> 2] = 0;
729     s->txdmaregs[TXDMA_KICK >> 2] = 0;
730     s->txdmaregs[TXDMA_CFG >> 2] = 0x118010;
731 
732     sungem_update_masks(s);
733 
734     s->tx_size = 0;
735     s->tx_first_ctl = 0;
736 }
737 
738 static void sungem_reset_all(SunGEMState *s, bool pci_reset)
739 {
740     trace_sungem_reset(pci_reset);
741 
742     sungem_reset_rx(s);
743     sungem_reset_tx(s);
744 
745     s->gregs[GREG_IMASK >> 2] = 0xFFFFFFF;
746     s->gregs[GREG_STAT >> 2] = 0;
747     if (pci_reset) {
748         uint8_t *ma = s->conf.macaddr.a;
749 
750         s->gregs[GREG_SWRST >> 2] = 0;
751         s->macregs[MAC_ADDR0 >> 2] = (ma[4] << 8) | ma[5];
752         s->macregs[MAC_ADDR1 >> 2] = (ma[2] << 8) | ma[3];
753         s->macregs[MAC_ADDR2 >> 2] = (ma[0] << 8) | ma[1];
754     } else {
755         s->gregs[GREG_SWRST >> 2] &= GREG_SWRST_RSTOUT;
756     }
757     s->mifregs[MIF_CFG >> 2] = MIF_CFG_MDI0;
758 }
759 
760 static void sungem_mii_write(SunGEMState *s, uint8_t phy_addr,
761                              uint8_t reg_addr, uint16_t val)
762 {
763     trace_sungem_mii_write(phy_addr, reg_addr, val);
764 
765     /* XXX TODO */
766 }
767 
768 static uint16_t __sungem_mii_read(SunGEMState *s, uint8_t phy_addr,
769                                   uint8_t reg_addr)
770 {
771     if (phy_addr != s->phy_addr) {
772         return 0xffff;
773     }
774     /* Primitive emulation of a BCM5201 to please the driver,
775      * ID is 0x00406210. TODO: Do a gigabit PHY like BCM5400
776      */
777     switch (reg_addr) {
778     case MII_BMCR:
779         return 0;
780     case MII_PHYID1:
781         return 0x0040;
782     case MII_PHYID2:
783         return 0x6210;
784     case MII_BMSR:
785         if (qemu_get_queue(s->nic)->link_down) {
786             return MII_BMSR_100TX_FD  | MII_BMSR_AUTONEG;
787         } else {
788             return MII_BMSR_100TX_FD | MII_BMSR_AN_COMP |
789                     MII_BMSR_AUTONEG | MII_BMSR_LINK_ST;
790         }
791     case MII_ANLPAR:
792     case MII_ANAR:
793         return MII_ANLPAR_TXFD;
794     case 0x18: /* 5201 AUX status */
795         return 3; /* 100FD */
796     default:
797         return 0;
798     };
799 }
800 static uint16_t sungem_mii_read(SunGEMState *s, uint8_t phy_addr,
801                                 uint8_t reg_addr)
802 {
803     uint16_t val;
804 
805     val = __sungem_mii_read(s, phy_addr, reg_addr);
806 
807     trace_sungem_mii_read(phy_addr, reg_addr, val);
808 
809     return val;
810 }
811 
812 static uint32_t sungem_mii_op(SunGEMState *s, uint32_t val)
813 {
814     uint8_t phy_addr, reg_addr, op;
815 
816     /* Ignore not start of frame */
817     if ((val >> 30) != 1) {
818         trace_sungem_mii_invalid_sof(val >> 30);
819         return 0xffff;
820     }
821     phy_addr = (val & MIF_FRAME_PHYAD) >> 23;
822     reg_addr = (val & MIF_FRAME_REGAD) >> 18;
823     op = (val & MIF_FRAME_OP) >> 28;
824     switch (op) {
825     case 1:
826         sungem_mii_write(s, phy_addr, reg_addr, val & MIF_FRAME_DATA);
827         return val | MIF_FRAME_TALSB;
828     case 2:
829         return sungem_mii_read(s, phy_addr, reg_addr) | MIF_FRAME_TALSB;
830     default:
831         trace_sungem_mii_invalid_op(op);
832     }
833     return 0xffff | MIF_FRAME_TALSB;
834 }
835 
836 static void sungem_mmio_greg_write(void *opaque, hwaddr addr, uint64_t val,
837                                    unsigned size)
838 {
839     SunGEMState *s = opaque;
840 
841     if (!(addr < 0x20) && !(addr >= 0x1000 && addr <= 0x1010)) {
842         qemu_log_mask(LOG_GUEST_ERROR,
843                       "Write to unknown GREG register 0x%"HWADDR_PRIx"\n",
844                       addr);
845         return;
846     }
847 
848     trace_sungem_mmio_greg_write(addr, val);
849 
850     /* Pre-write filter */
851     switch (addr) {
852     /* Read only registers */
853     case GREG_SEBSTATE:
854     case GREG_STAT:
855     case GREG_STAT2:
856     case GREG_PCIESTAT:
857         return; /* No actual write */
858     case GREG_IACK:
859         val &= GREG_STAT_LATCH;
860         s->gregs[GREG_STAT >> 2] &= ~val;
861         sungem_eval_irq(s);
862         return; /* No actual write */
863     case GREG_PCIEMASK:
864         val &= 0x7;
865         break;
866     }
867 
868     s->gregs[addr  >> 2] = val;
869 
870     /* Post write action */
871     switch (addr) {
872     case GREG_IMASK:
873         /* Re-evaluate interrupt */
874         sungem_eval_irq(s);
875         break;
876     case GREG_SWRST:
877         switch (val & (GREG_SWRST_TXRST | GREG_SWRST_RXRST)) {
878         case GREG_SWRST_RXRST:
879             sungem_reset_rx(s);
880             break;
881         case GREG_SWRST_TXRST:
882             sungem_reset_tx(s);
883             break;
884         case GREG_SWRST_RXRST | GREG_SWRST_TXRST:
885             sungem_reset_all(s, false);
886         }
887         break;
888     }
889 }
890 
891 static uint64_t sungem_mmio_greg_read(void *opaque, hwaddr addr, unsigned size)
892 {
893     SunGEMState *s = opaque;
894     uint32_t val;
895 
896     if (!(addr < 0x20) && !(addr >= 0x1000 && addr <= 0x1010)) {
897         qemu_log_mask(LOG_GUEST_ERROR,
898                       "Read from unknown GREG register 0x%"HWADDR_PRIx"\n",
899                       addr);
900         return 0;
901     }
902 
903     val = s->gregs[addr >> 2];
904 
905     trace_sungem_mmio_greg_read(addr, val);
906 
907     switch (addr) {
908     case GREG_STAT:
909         /* Side effect, clear bottom 7 bits */
910         s->gregs[GREG_STAT >> 2] &= ~GREG_STAT_LATCH;
911         sungem_eval_irq(s);
912 
913         /* Inject TX completion in returned value */
914         val = (val & ~GREG_STAT_TXNR) |
915                 (s->txdmaregs[TXDMA_TXDONE >> 2] << GREG_STAT_TXNR_SHIFT);
916         break;
917     case GREG_STAT2:
918         /* Return the status reg without side effect
919          * (and inject TX completion in returned value)
920          */
921         val = (s->gregs[GREG_STAT >> 2] & ~GREG_STAT_TXNR) |
922               (s->txdmaregs[TXDMA_TXDONE >> 2] << GREG_STAT_TXNR_SHIFT);
923         break;
924     }
925 
926     return val;
927 }
928 
929 static const MemoryRegionOps sungem_mmio_greg_ops = {
930     .read = sungem_mmio_greg_read,
931     .write = sungem_mmio_greg_write,
932     .endianness = DEVICE_LITTLE_ENDIAN,
933     .impl = {
934         .min_access_size = 4,
935         .max_access_size = 4,
936     },
937 };
938 
939 static void sungem_mmio_txdma_write(void *opaque, hwaddr addr, uint64_t val,
940                                     unsigned size)
941 {
942     SunGEMState *s = opaque;
943 
944     if (!(addr < 0x38) && !(addr >= 0x100 && addr <= 0x118)) {
945         qemu_log_mask(LOG_GUEST_ERROR,
946                       "Write to unknown TXDMA register 0x%"HWADDR_PRIx"\n",
947                       addr);
948         return;
949     }
950 
951     trace_sungem_mmio_txdma_write(addr, val);
952 
953     /* Pre-write filter */
954     switch (addr) {
955     /* Read only registers */
956     case TXDMA_TXDONE:
957     case TXDMA_PCNT:
958     case TXDMA_SMACHINE:
959     case TXDMA_DPLOW:
960     case TXDMA_DPHI:
961     case TXDMA_FSZ:
962     case TXDMA_FTAG:
963         return; /* No actual write */
964     }
965 
966     s->txdmaregs[addr >> 2] = val;
967 
968     /* Post write action */
969     switch (addr) {
970     case TXDMA_KICK:
971         sungem_tx_kick(s);
972         break;
973     case TXDMA_CFG:
974         sungem_update_masks(s);
975         break;
976     }
977 }
978 
979 static uint64_t sungem_mmio_txdma_read(void *opaque, hwaddr addr, unsigned size)
980 {
981     SunGEMState *s = opaque;
982     uint32_t val;
983 
984     if (!(addr < 0x38) && !(addr >= 0x100 && addr <= 0x118)) {
985         qemu_log_mask(LOG_GUEST_ERROR,
986                       "Read from unknown TXDMA register 0x%"HWADDR_PRIx"\n",
987                       addr);
988         return 0;
989     }
990 
991     val = s->txdmaregs[addr >> 2];
992 
993     trace_sungem_mmio_txdma_read(addr, val);
994 
995     return val;
996 }
997 
998 static const MemoryRegionOps sungem_mmio_txdma_ops = {
999     .read = sungem_mmio_txdma_read,
1000     .write = sungem_mmio_txdma_write,
1001     .endianness = DEVICE_LITTLE_ENDIAN,
1002     .impl = {
1003         .min_access_size = 4,
1004         .max_access_size = 4,
1005     },
1006 };
1007 
1008 static void sungem_mmio_rxdma_write(void *opaque, hwaddr addr, uint64_t val,
1009                                     unsigned size)
1010 {
1011     SunGEMState *s = opaque;
1012 
1013     if (!(addr <= 0x28) && !(addr >= 0x100 && addr <= 0x120)) {
1014         qemu_log_mask(LOG_GUEST_ERROR,
1015                       "Write to unknown RXDMA register 0x%"HWADDR_PRIx"\n",
1016                       addr);
1017         return;
1018     }
1019 
1020     trace_sungem_mmio_rxdma_write(addr, val);
1021 
1022     /* Pre-write filter */
1023     switch (addr) {
1024     /* Read only registers */
1025     case RXDMA_DONE:
1026     case RXDMA_PCNT:
1027     case RXDMA_SMACHINE:
1028     case RXDMA_DPLOW:
1029     case RXDMA_DPHI:
1030     case RXDMA_FSZ:
1031     case RXDMA_FTAG:
1032         return; /* No actual write */
1033     }
1034 
1035     s->rxdmaregs[addr >> 2] = val;
1036 
1037     /* Post write action */
1038     switch (addr) {
1039     case RXDMA_KICK:
1040         trace_sungem_rx_kick(val);
1041         break;
1042     case RXDMA_CFG:
1043         sungem_update_masks(s);
1044         if ((s->macregs[MAC_RXCFG >> 2] & MAC_RXCFG_ENAB) != 0 &&
1045             (s->rxdmaregs[RXDMA_CFG >> 2] & RXDMA_CFG_ENABLE) != 0) {
1046             qemu_flush_queued_packets(qemu_get_queue(s->nic));
1047         }
1048         break;
1049     }
1050 }
1051 
1052 static uint64_t sungem_mmio_rxdma_read(void *opaque, hwaddr addr, unsigned size)
1053 {
1054     SunGEMState *s = opaque;
1055     uint32_t val;
1056 
1057     if (!(addr <= 0x28) && !(addr >= 0x100 && addr <= 0x120)) {
1058         qemu_log_mask(LOG_GUEST_ERROR,
1059                       "Read from unknown RXDMA register 0x%"HWADDR_PRIx"\n",
1060                       addr);
1061         return 0;
1062     }
1063 
1064     val = s->rxdmaregs[addr >> 2];
1065 
1066     trace_sungem_mmio_rxdma_read(addr, val);
1067 
1068     return val;
1069 }
1070 
1071 static const MemoryRegionOps sungem_mmio_rxdma_ops = {
1072     .read = sungem_mmio_rxdma_read,
1073     .write = sungem_mmio_rxdma_write,
1074     .endianness = DEVICE_LITTLE_ENDIAN,
1075     .impl = {
1076         .min_access_size = 4,
1077         .max_access_size = 4,
1078     },
1079 };
1080 
1081 static void sungem_mmio_mac_write(void *opaque, hwaddr addr, uint64_t val,
1082                                   unsigned size)
1083 {
1084     SunGEMState *s = opaque;
1085 
1086     if (!(addr <= 0x134)) {
1087         qemu_log_mask(LOG_GUEST_ERROR,
1088                       "Write to unknown MAC register 0x%"HWADDR_PRIx"\n",
1089                       addr);
1090         return;
1091     }
1092 
1093     trace_sungem_mmio_mac_write(addr, val);
1094 
1095     /* Pre-write filter */
1096     switch (addr) {
1097     /* Read only registers */
1098     case MAC_TXRST: /* Not technically read-only but will do for now */
1099     case MAC_RXRST: /* Not technically read-only but will do for now */
1100     case MAC_TXSTAT:
1101     case MAC_RXSTAT:
1102     case MAC_CSTAT:
1103     case MAC_PATMPS:
1104     case MAC_SMACHINE:
1105         return; /* No actual write */
1106     case MAC_MINFSZ:
1107         /* 10-bits implemented */
1108         val &= 0x3ff;
1109         break;
1110     }
1111 
1112     s->macregs[addr >> 2] = val;
1113 
1114     /* Post write action */
1115     switch (addr) {
1116     case MAC_TXMASK:
1117     case MAC_RXMASK:
1118     case MAC_MCMASK:
1119         sungem_eval_cascade_irq(s);
1120         break;
1121     case MAC_RXCFG:
1122         sungem_update_masks(s);
1123         if ((s->macregs[MAC_RXCFG >> 2] & MAC_RXCFG_ENAB) != 0 &&
1124             (s->rxdmaregs[RXDMA_CFG >> 2] & RXDMA_CFG_ENABLE) != 0) {
1125             qemu_flush_queued_packets(qemu_get_queue(s->nic));
1126         }
1127         break;
1128     }
1129 }
1130 
1131 static uint64_t sungem_mmio_mac_read(void *opaque, hwaddr addr, unsigned size)
1132 {
1133     SunGEMState *s = opaque;
1134     uint32_t val;
1135 
1136     if (!(addr <= 0x134)) {
1137         qemu_log_mask(LOG_GUEST_ERROR,
1138                       "Read from unknown MAC register 0x%"HWADDR_PRIx"\n",
1139                       addr);
1140         return 0;
1141     }
1142 
1143     val = s->macregs[addr >> 2];
1144 
1145     trace_sungem_mmio_mac_read(addr, val);
1146 
1147     switch (addr) {
1148     case MAC_TXSTAT:
1149         /* Side effect, clear all */
1150         s->macregs[addr >> 2] = 0;
1151         sungem_update_status(s, GREG_STAT_TXMAC, false);
1152         break;
1153     case MAC_RXSTAT:
1154         /* Side effect, clear all */
1155         s->macregs[addr >> 2] = 0;
1156         sungem_update_status(s, GREG_STAT_RXMAC, false);
1157         break;
1158     case MAC_CSTAT:
1159         /* Side effect, interrupt bits */
1160         s->macregs[addr >> 2] &= MAC_CSTAT_PTR;
1161         sungem_update_status(s, GREG_STAT_MAC, false);
1162         break;
1163     }
1164 
1165     return val;
1166 }
1167 
1168 static const MemoryRegionOps sungem_mmio_mac_ops = {
1169     .read = sungem_mmio_mac_read,
1170     .write = sungem_mmio_mac_write,
1171     .endianness = DEVICE_LITTLE_ENDIAN,
1172     .impl = {
1173         .min_access_size = 4,
1174         .max_access_size = 4,
1175     },
1176 };
1177 
1178 static void sungem_mmio_mif_write(void *opaque, hwaddr addr, uint64_t val,
1179                                   unsigned size)
1180 {
1181     SunGEMState *s = opaque;
1182 
1183     if (!(addr <= 0x1c)) {
1184         qemu_log_mask(LOG_GUEST_ERROR,
1185                       "Write to unknown MIF register 0x%"HWADDR_PRIx"\n",
1186                       addr);
1187         return;
1188     }
1189 
1190     trace_sungem_mmio_mif_write(addr, val);
1191 
1192     /* Pre-write filter */
1193     switch (addr) {
1194     /* Read only registers */
1195     case MIF_STATUS:
1196     case MIF_SMACHINE:
1197         return; /* No actual write */
1198     case MIF_CFG:
1199         /* Maintain the RO MDI bits to advertize an MDIO PHY on MDI0 */
1200         val &= ~MIF_CFG_MDI1;
1201         val |= MIF_CFG_MDI0;
1202         break;
1203     }
1204 
1205     s->mifregs[addr >> 2] = val;
1206 
1207     /* Post write action */
1208     switch (addr) {
1209     case MIF_FRAME:
1210         s->mifregs[addr >> 2] = sungem_mii_op(s, val);
1211         break;
1212     }
1213 }
1214 
1215 static uint64_t sungem_mmio_mif_read(void *opaque, hwaddr addr, unsigned size)
1216 {
1217     SunGEMState *s = opaque;
1218     uint32_t val;
1219 
1220     if (!(addr <= 0x1c)) {
1221         qemu_log_mask(LOG_GUEST_ERROR,
1222                       "Read from unknown MIF register 0x%"HWADDR_PRIx"\n",
1223                       addr);
1224         return 0;
1225     }
1226 
1227     val = s->mifregs[addr >> 2];
1228 
1229     trace_sungem_mmio_mif_read(addr, val);
1230 
1231     return val;
1232 }
1233 
1234 static const MemoryRegionOps sungem_mmio_mif_ops = {
1235     .read = sungem_mmio_mif_read,
1236     .write = sungem_mmio_mif_write,
1237     .endianness = DEVICE_LITTLE_ENDIAN,
1238     .impl = {
1239         .min_access_size = 4,
1240         .max_access_size = 4,
1241     },
1242 };
1243 
1244 static void sungem_mmio_pcs_write(void *opaque, hwaddr addr, uint64_t val,
1245                                   unsigned size)
1246 {
1247     SunGEMState *s = opaque;
1248 
1249     if (!(addr <= 0x18) && !(addr >= 0x50 && addr <= 0x5c)) {
1250         qemu_log_mask(LOG_GUEST_ERROR,
1251                       "Write to unknown PCS register 0x%"HWADDR_PRIx"\n",
1252                       addr);
1253         return;
1254     }
1255 
1256     trace_sungem_mmio_pcs_write(addr, val);
1257 
1258     /* Pre-write filter */
1259     switch (addr) {
1260     /* Read only registers */
1261     case PCS_MIISTAT:
1262     case PCS_ISTAT:
1263     case PCS_SSTATE:
1264         return; /* No actual write */
1265     }
1266 
1267     s->pcsregs[addr >> 2] = val;
1268 }
1269 
1270 static uint64_t sungem_mmio_pcs_read(void *opaque, hwaddr addr, unsigned size)
1271 {
1272     SunGEMState *s = opaque;
1273     uint32_t val;
1274 
1275     if (!(addr <= 0x18) && !(addr >= 0x50 && addr <= 0x5c)) {
1276         qemu_log_mask(LOG_GUEST_ERROR,
1277                       "Read from unknown PCS register 0x%"HWADDR_PRIx"\n",
1278                       addr);
1279         return 0;
1280     }
1281 
1282     val = s->pcsregs[addr >> 2];
1283 
1284     trace_sungem_mmio_pcs_read(addr, val);
1285 
1286     return val;
1287 }
1288 
1289 static const MemoryRegionOps sungem_mmio_pcs_ops = {
1290     .read = sungem_mmio_pcs_read,
1291     .write = sungem_mmio_pcs_write,
1292     .endianness = DEVICE_LITTLE_ENDIAN,
1293     .impl = {
1294         .min_access_size = 4,
1295         .max_access_size = 4,
1296     },
1297 };
1298 
1299 static void sungem_uninit(PCIDevice *dev)
1300 {
1301     SunGEMState *s = SUNGEM(dev);
1302 
1303     qemu_del_nic(s->nic);
1304 }
1305 
1306 static NetClientInfo net_sungem_info = {
1307     .type = NET_CLIENT_DRIVER_NIC,
1308     .size = sizeof(NICState),
1309     .can_receive = sungem_can_receive,
1310     .receive = sungem_receive,
1311     .link_status_changed = sungem_set_link_status,
1312 };
1313 
1314 static void sungem_realize(PCIDevice *pci_dev, Error **errp)
1315 {
1316     DeviceState *dev = DEVICE(pci_dev);
1317     SunGEMState *s = SUNGEM(pci_dev);
1318     uint8_t *pci_conf;
1319 
1320     pci_conf = pci_dev->config;
1321 
1322     pci_set_word(pci_conf + PCI_STATUS,
1323                  PCI_STATUS_FAST_BACK |
1324                  PCI_STATUS_DEVSEL_MEDIUM |
1325                  PCI_STATUS_66MHZ);
1326 
1327     pci_set_word(pci_conf + PCI_SUBSYSTEM_VENDOR_ID, 0x0);
1328     pci_set_word(pci_conf + PCI_SUBSYSTEM_ID, 0x0);
1329 
1330     pci_conf[PCI_INTERRUPT_PIN] = 1; /* interrupt pin A */
1331     pci_conf[PCI_MIN_GNT] = 0x40;
1332     pci_conf[PCI_MAX_LAT] = 0x40;
1333 
1334     sungem_reset_all(s, true);
1335     memory_region_init(&s->sungem, OBJECT(s), "sungem", SUNGEM_MMIO_SIZE);
1336 
1337     memory_region_init_io(&s->greg, OBJECT(s), &sungem_mmio_greg_ops, s,
1338                           "sungem.greg", SUNGEM_MMIO_GREG_SIZE);
1339     memory_region_add_subregion(&s->sungem, 0, &s->greg);
1340 
1341     memory_region_init_io(&s->txdma, OBJECT(s), &sungem_mmio_txdma_ops, s,
1342                           "sungem.txdma", SUNGEM_MMIO_TXDMA_SIZE);
1343     memory_region_add_subregion(&s->sungem, 0x2000, &s->txdma);
1344 
1345     memory_region_init_io(&s->rxdma, OBJECT(s), &sungem_mmio_rxdma_ops, s,
1346                           "sungem.rxdma", SUNGEM_MMIO_RXDMA_SIZE);
1347     memory_region_add_subregion(&s->sungem, 0x4000, &s->rxdma);
1348 
1349     memory_region_init_io(&s->mac, OBJECT(s), &sungem_mmio_mac_ops, s,
1350                           "sungem.mac", SUNGEM_MMIO_MAC_SIZE);
1351     memory_region_add_subregion(&s->sungem, 0x6000, &s->mac);
1352 
1353     memory_region_init_io(&s->mif, OBJECT(s), &sungem_mmio_mif_ops, s,
1354                           "sungem.mif", SUNGEM_MMIO_MIF_SIZE);
1355     memory_region_add_subregion(&s->sungem, 0x6200, &s->mif);
1356 
1357     memory_region_init_io(&s->pcs, OBJECT(s), &sungem_mmio_pcs_ops, s,
1358                           "sungem.pcs", SUNGEM_MMIO_PCS_SIZE);
1359     memory_region_add_subregion(&s->sungem, 0x9000, &s->pcs);
1360 
1361     pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->sungem);
1362 
1363     qemu_macaddr_default_if_unset(&s->conf.macaddr);
1364     s->nic = qemu_new_nic(&net_sungem_info, &s->conf,
1365                           object_get_typename(OBJECT(dev)),
1366                           dev->id, s);
1367     qemu_format_nic_info_str(qemu_get_queue(s->nic),
1368                              s->conf.macaddr.a);
1369 }
1370 
1371 static void sungem_reset(DeviceState *dev)
1372 {
1373     SunGEMState *s = SUNGEM(dev);
1374 
1375     sungem_reset_all(s, true);
1376 }
1377 
1378 static void sungem_instance_init(Object *obj)
1379 {
1380     SunGEMState *s = SUNGEM(obj);
1381 
1382     device_add_bootindex_property(obj, &s->conf.bootindex,
1383                                   "bootindex", "/ethernet-phy@0",
1384                                   DEVICE(obj));
1385 }
1386 
1387 static Property sungem_properties[] = {
1388     DEFINE_NIC_PROPERTIES(SunGEMState, conf),
1389     /* Phy address should be 0 for most Apple machines except
1390      * for K2 in which case it's 1. Will be set by a machine
1391      * override.
1392      */
1393     DEFINE_PROP_UINT32("phy_addr", SunGEMState, phy_addr, 0),
1394     DEFINE_PROP_END_OF_LIST(),
1395 };
1396 
1397 static const VMStateDescription vmstate_sungem = {
1398     .name = "sungem",
1399     .version_id = 0,
1400     .minimum_version_id = 0,
1401     .fields = (VMStateField[]) {
1402         VMSTATE_PCI_DEVICE(pdev, SunGEMState),
1403         VMSTATE_MACADDR(conf.macaddr, SunGEMState),
1404         VMSTATE_UINT32(phy_addr, SunGEMState),
1405         VMSTATE_UINT32_ARRAY(gregs, SunGEMState, (SUNGEM_MMIO_GREG_SIZE >> 2)),
1406         VMSTATE_UINT32_ARRAY(txdmaregs, SunGEMState,
1407                              (SUNGEM_MMIO_TXDMA_SIZE >> 2)),
1408         VMSTATE_UINT32_ARRAY(rxdmaregs, SunGEMState,
1409                              (SUNGEM_MMIO_RXDMA_SIZE >> 2)),
1410         VMSTATE_UINT32_ARRAY(macregs, SunGEMState, (SUNGEM_MMIO_MAC_SIZE >> 2)),
1411         VMSTATE_UINT32_ARRAY(mifregs, SunGEMState, (SUNGEM_MMIO_MIF_SIZE >> 2)),
1412         VMSTATE_UINT32_ARRAY(pcsregs, SunGEMState, (SUNGEM_MMIO_PCS_SIZE >> 2)),
1413         VMSTATE_UINT32(rx_mask, SunGEMState),
1414         VMSTATE_UINT32(tx_mask, SunGEMState),
1415         VMSTATE_UINT8_ARRAY(tx_data, SunGEMState, MAX_PACKET_SIZE),
1416         VMSTATE_UINT32(tx_size, SunGEMState),
1417         VMSTATE_UINT64(tx_first_ctl, SunGEMState),
1418         VMSTATE_END_OF_LIST()
1419     }
1420 };
1421 
1422 static void sungem_class_init(ObjectClass *klass, void *data)
1423 {
1424     DeviceClass *dc = DEVICE_CLASS(klass);
1425     PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
1426 
1427     k->realize = sungem_realize;
1428     k->exit = sungem_uninit;
1429     k->vendor_id = PCI_VENDOR_ID_APPLE;
1430     k->device_id = PCI_DEVICE_ID_APPLE_UNI_N_GMAC;
1431     k->revision = 0x01;
1432     k->class_id = PCI_CLASS_NETWORK_ETHERNET;
1433     dc->vmsd = &vmstate_sungem;
1434     dc->reset = sungem_reset;
1435     device_class_set_props(dc, sungem_properties);
1436     set_bit(DEVICE_CATEGORY_NETWORK, dc->categories);
1437 }
1438 
1439 static const TypeInfo sungem_info = {
1440     .name          = TYPE_SUNGEM,
1441     .parent        = TYPE_PCI_DEVICE,
1442     .instance_size = sizeof(SunGEMState),
1443     .class_init    = sungem_class_init,
1444     .instance_init = sungem_instance_init,
1445     .interfaces = (InterfaceInfo[]) {
1446         { INTERFACE_CONVENTIONAL_PCI_DEVICE },
1447         { }
1448     }
1449 };
1450 
1451 static void sungem_register_types(void)
1452 {
1453     type_register_static(&sungem_info);
1454 }
1455 
1456 type_init(sungem_register_types)
1457