xref: /openbmc/qemu/hw/net/sungem.c (revision bfe7bf85)
1 /*
2  * QEMU model of SUN GEM ethernet controller
3  *
4  * As found in Apple ASICs among others
5  *
6  * Copyright 2016 Ben Herrenschmidt
7  * Copyright 2017 Mark Cave-Ayland
8  */
9 
10 #include "qemu/osdep.h"
11 #include "hw/pci/pci_device.h"
12 #include "hw/qdev-properties.h"
13 #include "migration/vmstate.h"
14 #include "qemu/log.h"
15 #include "qemu/module.h"
16 #include "net/net.h"
17 #include "net/eth.h"
18 #include "net/checksum.h"
19 #include "hw/net/mii.h"
20 #include "sysemu/sysemu.h"
21 #include "trace.h"
22 #include "qom/object.h"
23 
24 #define TYPE_SUNGEM "sungem"
25 
26 OBJECT_DECLARE_SIMPLE_TYPE(SunGEMState, SUNGEM)
27 
28 #define MAX_PACKET_SIZE 9016
29 
30 #define SUNGEM_MMIO_SIZE        0x200000
31 
32 /* Global registers */
33 #define SUNGEM_MMIO_GREG_SIZE   0x2000
34 
35 #define GREG_SEBSTATE     0x0000UL    /* SEB State Register */
36 
37 #define GREG_STAT         0x000CUL    /* Status Register */
38 #define GREG_STAT_TXINTME     0x00000001    /* TX INTME frame transferred */
39 #define GREG_STAT_TXALL       0x00000002    /* All TX frames transferred */
40 #define GREG_STAT_TXDONE      0x00000004    /* One TX frame transferred */
41 #define GREG_STAT_RXDONE      0x00000010    /* One RX frame arrived */
42 #define GREG_STAT_RXNOBUF     0x00000020    /* No free RX buffers available */
43 #define GREG_STAT_RXTAGERR    0x00000040    /* RX tag framing is corrupt */
44 #define GREG_STAT_TXMAC       0x00004000    /* TX MAC signalled interrupt */
45 #define GREG_STAT_RXMAC       0x00008000    /* RX MAC signalled interrupt */
46 #define GREG_STAT_MAC         0x00010000    /* MAC Control signalled irq */
47 #define GREG_STAT_TXNR        0xfff80000    /* == TXDMA_TXDONE reg val */
48 #define GREG_STAT_TXNR_SHIFT  19
49 
50 /* These interrupts are edge latches in the status register,
51  * reading it (or writing the corresponding bit in IACK) will
52  * clear them
53  */
54 #define GREG_STAT_LATCH       (GREG_STAT_TXALL  | GREG_STAT_TXINTME | \
55                                GREG_STAT_RXDONE | GREG_STAT_RXDONE |  \
56                                GREG_STAT_RXNOBUF | GREG_STAT_RXTAGERR)
57 
58 #define GREG_IMASK        0x0010UL    /* Interrupt Mask Register */
59 #define GREG_IACK         0x0014UL    /* Interrupt ACK Register */
60 #define GREG_STAT2        0x001CUL    /* Alias of GREG_STAT */
61 #define GREG_PCIESTAT     0x1000UL    /* PCI Error Status Register */
62 #define GREG_PCIEMASK     0x1004UL    /* PCI Error Mask Register */
63 
64 #define GREG_SWRST        0x1010UL    /* Software Reset Register */
65 #define GREG_SWRST_TXRST      0x00000001    /* TX Software Reset */
66 #define GREG_SWRST_RXRST      0x00000002    /* RX Software Reset */
67 #define GREG_SWRST_RSTOUT     0x00000004    /* Force RST# pin active */
68 
69 /* TX DMA Registers */
70 #define SUNGEM_MMIO_TXDMA_SIZE   0x1000
71 
72 #define TXDMA_KICK        0x0000UL    /* TX Kick Register */
73 
74 #define TXDMA_CFG         0x0004UL    /* TX Configuration Register */
75 #define TXDMA_CFG_ENABLE      0x00000001    /* Enable TX DMA channel */
76 #define TXDMA_CFG_RINGSZ      0x0000001e    /* TX descriptor ring size */
77 
78 #define TXDMA_DBLOW       0x0008UL    /* TX Desc. Base Low */
79 #define TXDMA_DBHI        0x000CUL    /* TX Desc. Base High */
80 #define TXDMA_PCNT        0x0024UL    /* TX FIFO Packet Counter */
81 #define TXDMA_SMACHINE    0x0028UL    /* TX State Machine Register */
82 #define TXDMA_DPLOW       0x0030UL    /* TX Data Pointer Low */
83 #define TXDMA_DPHI        0x0034UL    /* TX Data Pointer High */
84 #define TXDMA_TXDONE      0x0100UL    /* TX Completion Register */
85 #define TXDMA_FTAG        0x0108UL    /* TX FIFO Tag */
86 #define TXDMA_FSZ         0x0118UL    /* TX FIFO Size */
87 
88 /* Receive DMA Registers */
89 #define SUNGEM_MMIO_RXDMA_SIZE   0x2000
90 
91 #define RXDMA_CFG         0x0000UL    /* RX Configuration Register */
92 #define RXDMA_CFG_ENABLE      0x00000001    /* Enable RX DMA channel */
93 #define RXDMA_CFG_RINGSZ      0x0000001e    /* RX descriptor ring size */
94 #define RXDMA_CFG_FBOFF       0x00001c00    /* Offset of first data byte */
95 #define RXDMA_CFG_CSUMOFF     0x000fe000    /* Skip bytes before csum calc */
96 
97 #define RXDMA_DBLOW       0x0004UL    /* RX Descriptor Base Low */
98 #define RXDMA_DBHI        0x0008UL    /* RX Descriptor Base High */
99 #define RXDMA_PCNT        0x0018UL    /* RX FIFO Packet Counter */
100 #define RXDMA_SMACHINE    0x001CUL    /* RX State Machine Register */
101 #define RXDMA_PTHRESH     0x0020UL    /* Pause Thresholds */
102 #define RXDMA_DPLOW       0x0024UL    /* RX Data Pointer Low */
103 #define RXDMA_DPHI        0x0028UL    /* RX Data Pointer High */
104 #define RXDMA_KICK        0x0100UL    /* RX Kick Register */
105 #define RXDMA_DONE        0x0104UL    /* RX Completion Register */
106 #define RXDMA_BLANK       0x0108UL    /* RX Blanking Register */
107 #define RXDMA_FTAG        0x0110UL    /* RX FIFO Tag */
108 #define RXDMA_FSZ         0x0120UL    /* RX FIFO Size */
109 
110 /* MAC Registers */
111 #define SUNGEM_MMIO_MAC_SIZE   0x200
112 
113 #define MAC_TXRST         0x0000UL    /* TX MAC Software Reset Command */
114 #define MAC_RXRST         0x0004UL    /* RX MAC Software Reset Command */
115 #define MAC_TXSTAT        0x0010UL    /* TX MAC Status Register */
116 #define MAC_RXSTAT        0x0014UL    /* RX MAC Status Register */
117 
118 #define MAC_CSTAT         0x0018UL    /* MAC Control Status Register */
119 #define MAC_CSTAT_PTR         0xffff0000    /* Pause Time Received */
120 
121 #define MAC_TXMASK        0x0020UL    /* TX MAC Mask Register */
122 #define MAC_RXMASK        0x0024UL    /* RX MAC Mask Register */
123 #define MAC_MCMASK        0x0028UL    /* MAC Control Mask Register */
124 
125 #define MAC_TXCFG         0x0030UL    /* TX MAC Configuration Register */
126 #define MAC_TXCFG_ENAB        0x00000001    /* TX MAC Enable */
127 
128 #define MAC_RXCFG         0x0034UL    /* RX MAC Configuration Register */
129 #define MAC_RXCFG_ENAB        0x00000001    /* RX MAC Enable */
130 #define MAC_RXCFG_SFCS        0x00000004    /* Strip FCS */
131 #define MAC_RXCFG_PROM        0x00000008    /* Promiscuous Mode */
132 #define MAC_RXCFG_PGRP        0x00000010    /* Promiscuous Group */
133 #define MAC_RXCFG_HFE         0x00000020    /* Hash Filter Enable */
134 
135 #define MAC_XIFCFG        0x003CUL    /* XIF Configuration Register */
136 #define MAC_XIFCFG_LBCK       0x00000002    /* Loopback TX to RX */
137 
138 #define MAC_MINFSZ        0x0050UL    /* MinFrameSize Register */
139 #define MAC_MAXFSZ        0x0054UL    /* MaxFrameSize Register */
140 #define MAC_ADDR0         0x0080UL    /* MAC Address 0 Register */
141 #define MAC_ADDR1         0x0084UL    /* MAC Address 1 Register */
142 #define MAC_ADDR2         0x0088UL    /* MAC Address 2 Register */
143 #define MAC_ADDR3         0x008CUL    /* MAC Address 3 Register */
144 #define MAC_ADDR4         0x0090UL    /* MAC Address 4 Register */
145 #define MAC_ADDR5         0x0094UL    /* MAC Address 5 Register */
146 #define MAC_HASH0         0x00C0UL    /* Hash Table 0 Register */
147 #define MAC_PATMPS        0x0114UL    /* Peak Attempts Register */
148 #define MAC_SMACHINE      0x0134UL    /* State Machine Register */
149 
150 /* MIF Registers */
151 #define SUNGEM_MMIO_MIF_SIZE   0x20
152 
153 #define MIF_FRAME         0x000CUL    /* MIF Frame/Output Register */
154 #define MIF_FRAME_OP          0x30000000    /* OPcode */
155 #define MIF_FRAME_PHYAD       0x0f800000    /* PHY ADdress */
156 #define MIF_FRAME_REGAD       0x007c0000    /* REGister ADdress */
157 #define MIF_FRAME_TALSB       0x00010000    /* Turn Around LSB */
158 #define MIF_FRAME_DATA        0x0000ffff    /* Instruction Payload */
159 
160 #define MIF_CFG           0x0010UL    /* MIF Configuration Register */
161 #define MIF_CFG_MDI0          0x00000100    /* MDIO_0 present or read-bit */
162 #define MIF_CFG_MDI1          0x00000200    /* MDIO_1 present or read-bit */
163 
164 #define MIF_STATUS        0x0018UL    /* MIF Status Register */
165 #define MIF_SMACHINE      0x001CUL    /* MIF State Machine Register */
166 
167 /* PCS/Serialink Registers */
168 #define SUNGEM_MMIO_PCS_SIZE   0x60
169 #define PCS_MIISTAT       0x0004UL    /* PCS MII Status Register */
170 #define PCS_ISTAT         0x0018UL    /* PCS Interrupt Status Reg */
171 #define PCS_SSTATE        0x005CUL    /* Serialink State Register */
172 
173 /* Descriptors */
174 struct gem_txd {
175     uint64_t control_word;
176     uint64_t buffer;
177 };
178 
179 #define TXDCTRL_BUFSZ     0x0000000000007fffULL  /* Buffer Size */
180 #define TXDCTRL_CSTART    0x00000000001f8000ULL  /* CSUM Start Offset */
181 #define TXDCTRL_COFF      0x000000001fe00000ULL  /* CSUM Stuff Offset */
182 #define TXDCTRL_CENAB     0x0000000020000000ULL  /* CSUM Enable */
183 #define TXDCTRL_EOF       0x0000000040000000ULL  /* End of Frame */
184 #define TXDCTRL_SOF       0x0000000080000000ULL  /* Start of Frame */
185 #define TXDCTRL_INTME     0x0000000100000000ULL  /* "Interrupt Me" */
186 
187 struct gem_rxd {
188     uint64_t status_word;
189     uint64_t buffer;
190 };
191 
192 #define RXDCTRL_HPASS     0x1000000000000000ULL  /* Passed Hash Filter */
193 #define RXDCTRL_ALTMAC    0x2000000000000000ULL  /* Matched ALT MAC */
194 
195 
196 struct SunGEMState {
197     PCIDevice pdev;
198 
199     MemoryRegion sungem;
200     MemoryRegion greg;
201     MemoryRegion txdma;
202     MemoryRegion rxdma;
203     MemoryRegion mac;
204     MemoryRegion mif;
205     MemoryRegion pcs;
206     NICState *nic;
207     NICConf conf;
208     uint32_t phy_addr;
209 
210     uint32_t gregs[SUNGEM_MMIO_GREG_SIZE >> 2];
211     uint32_t txdmaregs[SUNGEM_MMIO_TXDMA_SIZE >> 2];
212     uint32_t rxdmaregs[SUNGEM_MMIO_RXDMA_SIZE >> 2];
213     uint32_t macregs[SUNGEM_MMIO_MAC_SIZE >> 2];
214     uint32_t mifregs[SUNGEM_MMIO_MIF_SIZE >> 2];
215     uint32_t pcsregs[SUNGEM_MMIO_PCS_SIZE >> 2];
216 
217     /* Cache some useful things */
218     uint32_t rx_mask;
219     uint32_t tx_mask;
220 
221     /* Current tx packet */
222     uint8_t tx_data[MAX_PACKET_SIZE];
223     uint32_t tx_size;
224     uint64_t tx_first_ctl;
225 };
226 
227 
228 static void sungem_eval_irq(SunGEMState *s)
229 {
230     uint32_t stat, mask;
231 
232     mask = s->gregs[GREG_IMASK >> 2];
233     stat = s->gregs[GREG_STAT >> 2] & ~GREG_STAT_TXNR;
234     if (stat & ~mask) {
235         pci_set_irq(PCI_DEVICE(s), 1);
236     } else {
237         pci_set_irq(PCI_DEVICE(s), 0);
238     }
239 }
240 
241 static void sungem_update_status(SunGEMState *s, uint32_t bits, bool val)
242 {
243     uint32_t stat;
244 
245     stat = s->gregs[GREG_STAT >> 2];
246     if (val) {
247         stat |= bits;
248     } else {
249         stat &= ~bits;
250     }
251     s->gregs[GREG_STAT >> 2] = stat;
252     sungem_eval_irq(s);
253 }
254 
255 static void sungem_eval_cascade_irq(SunGEMState *s)
256 {
257     uint32_t stat, mask;
258 
259     mask = s->macregs[MAC_TXSTAT >> 2];
260     stat = s->macregs[MAC_TXMASK >> 2];
261     if (stat & ~mask) {
262         sungem_update_status(s, GREG_STAT_TXMAC, true);
263     } else {
264         sungem_update_status(s, GREG_STAT_TXMAC, false);
265     }
266 
267     mask = s->macregs[MAC_RXSTAT >> 2];
268     stat = s->macregs[MAC_RXMASK >> 2];
269     if (stat & ~mask) {
270         sungem_update_status(s, GREG_STAT_RXMAC, true);
271     } else {
272         sungem_update_status(s, GREG_STAT_RXMAC, false);
273     }
274 
275     mask = s->macregs[MAC_CSTAT >> 2];
276     stat = s->macregs[MAC_MCMASK >> 2] & ~MAC_CSTAT_PTR;
277     if (stat & ~mask) {
278         sungem_update_status(s, GREG_STAT_MAC, true);
279     } else {
280         sungem_update_status(s, GREG_STAT_MAC, false);
281     }
282 }
283 
284 static void sungem_do_tx_csum(SunGEMState *s)
285 {
286     uint16_t start, off;
287     uint32_t csum;
288 
289     start = (s->tx_first_ctl & TXDCTRL_CSTART) >> 15;
290     off = (s->tx_first_ctl & TXDCTRL_COFF) >> 21;
291 
292     trace_sungem_tx_checksum(start, off);
293 
294     if (start > (s->tx_size - 2) || off > (s->tx_size - 2)) {
295         trace_sungem_tx_checksum_oob();
296         return;
297     }
298 
299     csum = net_raw_checksum(s->tx_data + start, s->tx_size - start);
300     stw_be_p(s->tx_data + off, csum);
301 }
302 
303 static void sungem_send_packet(SunGEMState *s, const uint8_t *buf,
304                                int size)
305 {
306     NetClientState *nc = qemu_get_queue(s->nic);
307 
308     if (s->macregs[MAC_XIFCFG >> 2] & MAC_XIFCFG_LBCK) {
309         qemu_receive_packet(nc, buf, size);
310     } else {
311         qemu_send_packet(nc, buf, size);
312     }
313 }
314 
315 static void sungem_process_tx_desc(SunGEMState *s, struct gem_txd *desc)
316 {
317     PCIDevice *d = PCI_DEVICE(s);
318     uint32_t len;
319 
320     /* If it's a start of frame, discard anything we had in the
321      * buffer and start again. This should be an error condition
322      * if we had something ... for now we ignore it
323      */
324     if (desc->control_word & TXDCTRL_SOF) {
325         if (s->tx_first_ctl) {
326             trace_sungem_tx_unfinished();
327         }
328         s->tx_size = 0;
329         s->tx_first_ctl = desc->control_word;
330     }
331 
332     /* Grab data size */
333     len = desc->control_word & TXDCTRL_BUFSZ;
334 
335     /* Clamp it to our max size */
336     if ((s->tx_size + len) > MAX_PACKET_SIZE) {
337         trace_sungem_tx_overflow();
338         len = MAX_PACKET_SIZE - s->tx_size;
339     }
340 
341     /* Read the data */
342     pci_dma_read(d, desc->buffer, &s->tx_data[s->tx_size], len);
343     s->tx_size += len;
344 
345     /* If end of frame, send packet */
346     if (desc->control_word & TXDCTRL_EOF) {
347         trace_sungem_tx_finished(s->tx_size);
348 
349         /* Handle csum */
350         if (s->tx_first_ctl & TXDCTRL_CENAB) {
351             sungem_do_tx_csum(s);
352         }
353 
354         /* Send it */
355         sungem_send_packet(s, s->tx_data, s->tx_size);
356 
357         /* No more pending packet */
358         s->tx_size = 0;
359         s->tx_first_ctl = 0;
360     }
361 }
362 
363 static void sungem_tx_kick(SunGEMState *s)
364 {
365     PCIDevice *d = PCI_DEVICE(s);
366     uint32_t comp, kick;
367     uint32_t txdma_cfg, txmac_cfg, ints;
368     uint64_t dbase;
369 
370     trace_sungem_tx_kick();
371 
372     /* Check that both TX MAC and TX DMA are enabled. We don't
373      * handle DMA-less direct FIFO operations (we don't emulate
374      * the FIFO at all).
375      *
376      * A write to TXDMA_KICK while DMA isn't enabled can happen
377      * when the driver is resetting the pointer.
378      */
379     txdma_cfg = s->txdmaregs[TXDMA_CFG >> 2];
380     txmac_cfg = s->macregs[MAC_TXCFG >> 2];
381     if (!(txdma_cfg & TXDMA_CFG_ENABLE) ||
382         !(txmac_cfg & MAC_TXCFG_ENAB)) {
383         trace_sungem_tx_disabled();
384         return;
385     }
386 
387     /* XXX Test min frame size register ? */
388     /* XXX Test max frame size register ? */
389 
390     dbase = s->txdmaregs[TXDMA_DBHI >> 2];
391     dbase = (dbase << 32) | s->txdmaregs[TXDMA_DBLOW >> 2];
392 
393     comp = s->txdmaregs[TXDMA_TXDONE >> 2] & s->tx_mask;
394     kick = s->txdmaregs[TXDMA_KICK >> 2] & s->tx_mask;
395 
396     trace_sungem_tx_process(comp, kick, s->tx_mask + 1);
397 
398     /* This is rather primitive for now, we just send everything we
399      * can in one go, like e1000. Ideally we should do the sending
400      * from some kind of background task
401      */
402     while (comp != kick) {
403         struct gem_txd desc;
404 
405         /* Read the next descriptor */
406         pci_dma_read(d, dbase + comp * sizeof(desc), &desc, sizeof(desc));
407 
408         /* Byteswap descriptor */
409         desc.control_word = le64_to_cpu(desc.control_word);
410         desc.buffer = le64_to_cpu(desc.buffer);
411         trace_sungem_tx_desc(comp, desc.control_word, desc.buffer);
412 
413         /* Send it for processing */
414         sungem_process_tx_desc(s, &desc);
415 
416         /* Interrupt */
417         ints = GREG_STAT_TXDONE;
418         if (desc.control_word & TXDCTRL_INTME) {
419             ints |= GREG_STAT_TXINTME;
420         }
421         sungem_update_status(s, ints, true);
422 
423         /* Next ! */
424         comp = (comp + 1) & s->tx_mask;
425         s->txdmaregs[TXDMA_TXDONE >> 2] = comp;
426     }
427 
428     /* We sent everything, set status/irq bit */
429     sungem_update_status(s, GREG_STAT_TXALL, true);
430 }
431 
432 static bool sungem_rx_full(SunGEMState *s, uint32_t kick, uint32_t done)
433 {
434     return kick == ((done + 1) & s->rx_mask);
435 }
436 
437 static bool sungem_can_receive(NetClientState *nc)
438 {
439     SunGEMState *s = qemu_get_nic_opaque(nc);
440     uint32_t kick, done, rxdma_cfg, rxmac_cfg;
441     bool full;
442 
443     rxmac_cfg = s->macregs[MAC_RXCFG >> 2];
444     rxdma_cfg = s->rxdmaregs[RXDMA_CFG >> 2];
445 
446     /* If MAC disabled, can't receive */
447     if ((rxmac_cfg & MAC_RXCFG_ENAB) == 0) {
448         trace_sungem_rx_mac_disabled();
449         return false;
450     }
451     if ((rxdma_cfg & RXDMA_CFG_ENABLE) == 0) {
452         trace_sungem_rx_txdma_disabled();
453         return false;
454     }
455 
456     /* Check RX availability */
457     kick = s->rxdmaregs[RXDMA_KICK >> 2];
458     done = s->rxdmaregs[RXDMA_DONE >> 2];
459     full = sungem_rx_full(s, kick, done);
460 
461     trace_sungem_rx_check(!full, kick, done);
462 
463     return !full;
464 }
465 
466 enum {
467         rx_no_match,
468         rx_match_promisc,
469         rx_match_bcast,
470         rx_match_allmcast,
471         rx_match_mcast,
472         rx_match_mac,
473         rx_match_altmac,
474 };
475 
476 static int sungem_check_rx_mac(SunGEMState *s, const uint8_t *mac, uint32_t crc)
477 {
478     uint32_t rxcfg = s->macregs[MAC_RXCFG >> 2];
479     uint32_t mac0, mac1, mac2;
480 
481     /* Promisc enabled ? */
482     if (rxcfg & MAC_RXCFG_PROM) {
483         return rx_match_promisc;
484     }
485 
486     /* Format MAC address into dwords */
487     mac0 = (mac[4] << 8) | mac[5];
488     mac1 = (mac[2] << 8) | mac[3];
489     mac2 = (mac[0] << 8) | mac[1];
490 
491     trace_sungem_rx_mac_check(mac0, mac1, mac2);
492 
493     /* Is this a broadcast frame ? */
494     if (mac0 == 0xffff && mac1 == 0xffff && mac2 == 0xffff) {
495         return rx_match_bcast;
496     }
497 
498     /* TODO: Implement address filter registers (or we don't care ?) */
499 
500     /* Is this a multicast frame ? */
501     if (mac[0] & 1) {
502         trace_sungem_rx_mac_multicast();
503 
504         /* Promisc group enabled ? */
505         if (rxcfg & MAC_RXCFG_PGRP) {
506             return rx_match_allmcast;
507         }
508 
509         /* TODO: Check MAC control frames (or we don't care) ? */
510 
511         /* Check hash filter (somebody check that's correct ?) */
512         if (rxcfg & MAC_RXCFG_HFE) {
513             uint32_t hash, idx;
514 
515             crc >>= 24;
516             idx = (crc >> 2) & 0x3c;
517             hash = s->macregs[(MAC_HASH0 + idx) >> 2];
518             if (hash & (1 << (15 - (crc & 0xf)))) {
519                 return rx_match_mcast;
520             }
521         }
522         return rx_no_match;
523     }
524 
525     /* Main MAC check */
526     trace_sungem_rx_mac_compare(s->macregs[MAC_ADDR0 >> 2],
527                                 s->macregs[MAC_ADDR1 >> 2],
528                                 s->macregs[MAC_ADDR2 >> 2]);
529 
530     if (mac0 == s->macregs[MAC_ADDR0 >> 2] &&
531         mac1 == s->macregs[MAC_ADDR1 >> 2] &&
532         mac2 == s->macregs[MAC_ADDR2 >> 2]) {
533         return rx_match_mac;
534     }
535 
536     /* Alt MAC check */
537     if (mac0 == s->macregs[MAC_ADDR3 >> 2] &&
538         mac1 == s->macregs[MAC_ADDR4 >> 2] &&
539         mac2 == s->macregs[MAC_ADDR5 >> 2]) {
540         return rx_match_altmac;
541     }
542 
543     return rx_no_match;
544 }
545 
546 static ssize_t sungem_receive(NetClientState *nc, const uint8_t *buf,
547                               size_t size)
548 {
549     SunGEMState *s = qemu_get_nic_opaque(nc);
550     PCIDevice *d = PCI_DEVICE(s);
551     uint32_t mac_crc, done, kick, max_fsize;
552     uint32_t fcs_size, ints, rxdma_cfg, rxmac_cfg, csum, coff;
553     uint8_t smallbuf[60];
554     struct gem_rxd desc;
555     uint64_t dbase, baddr;
556     unsigned int rx_cond;
557 
558     trace_sungem_rx_packet(size);
559 
560     rxmac_cfg = s->macregs[MAC_RXCFG >> 2];
561     rxdma_cfg = s->rxdmaregs[RXDMA_CFG >> 2];
562     max_fsize = s->macregs[MAC_MAXFSZ >> 2] & 0x7fff;
563 
564     /* If MAC or DMA disabled, can't receive */
565     if (!(rxdma_cfg & RXDMA_CFG_ENABLE) ||
566         !(rxmac_cfg & MAC_RXCFG_ENAB)) {
567         trace_sungem_rx_disabled();
568         return 0;
569     }
570 
571     /* Size adjustment for FCS */
572     if (rxmac_cfg & MAC_RXCFG_SFCS) {
573         fcs_size = 0;
574     } else {
575         fcs_size = 4;
576     }
577 
578     /* Discard frame smaller than a MAC or larger than max frame size
579      * (when accounting for FCS)
580      */
581     if (size < 6 || (size + 4) > max_fsize) {
582         trace_sungem_rx_bad_frame_size(size);
583         /* XXX Increment error statistics ? */
584         return size;
585     }
586 
587     /* We don't drop too small frames since we get them in qemu, we pad
588      * them instead. We should probably use the min frame size register
589      * but I don't want to use a variable size staging buffer and I
590      * know both MacOS and Linux use the default 64 anyway. We use 60
591      * here to account for the non-existent FCS.
592      */
593     if (size < 60) {
594         memcpy(smallbuf, buf, size);
595         memset(&smallbuf[size], 0, 60 - size);
596         buf = smallbuf;
597         size = 60;
598     }
599 
600     /* Get MAC crc */
601     mac_crc = net_crc32_le(buf, ETH_ALEN);
602 
603     /* Packet isn't for me ? */
604     rx_cond = sungem_check_rx_mac(s, buf, mac_crc);
605     if (rx_cond == rx_no_match) {
606         /* Just drop it */
607         trace_sungem_rx_unmatched();
608         return size;
609     }
610 
611     /* Get ring pointers */
612     kick = s->rxdmaregs[RXDMA_KICK >> 2] & s->rx_mask;
613     done = s->rxdmaregs[RXDMA_DONE >> 2] & s->rx_mask;
614 
615     trace_sungem_rx_process(done, kick, s->rx_mask + 1);
616 
617     /* Ring full ? Can't receive */
618     if (sungem_rx_full(s, kick, done)) {
619         trace_sungem_rx_ringfull();
620         return 0;
621     }
622 
623     /* Note: The real GEM will fetch descriptors in blocks of 4,
624      * for now we handle them one at a time, I think the driver will
625      * cope
626      */
627 
628     dbase = s->rxdmaregs[RXDMA_DBHI >> 2];
629     dbase = (dbase << 32) | s->rxdmaregs[RXDMA_DBLOW >> 2];
630 
631     /* Read the next descriptor */
632     pci_dma_read(d, dbase + done * sizeof(desc), &desc, sizeof(desc));
633 
634     trace_sungem_rx_desc(le64_to_cpu(desc.status_word),
635                          le64_to_cpu(desc.buffer));
636 
637     /* Effective buffer address */
638     baddr = le64_to_cpu(desc.buffer) & ~7ull;
639     baddr |= (rxdma_cfg & RXDMA_CFG_FBOFF) >> 10;
640 
641     /* Write buffer out */
642     pci_dma_write(d, baddr, buf, size);
643 
644     if (fcs_size) {
645         /* Should we add an FCS ? Linux doesn't ask us to strip it,
646          * however I believe nothing checks it... For now we just
647          * do nothing. It's faster this way.
648          */
649     }
650 
651     /* Calculate the checksum */
652     coff = (rxdma_cfg & RXDMA_CFG_CSUMOFF) >> 13;
653     csum = net_raw_checksum((uint8_t *)buf + coff, size - coff);
654 
655     /* Build the updated descriptor */
656     desc.status_word = (size + fcs_size) << 16;
657     desc.status_word |= ((uint64_t)(mac_crc >> 16)) << 44;
658     desc.status_word |= csum;
659     if (rx_cond == rx_match_mcast) {
660         desc.status_word |= RXDCTRL_HPASS;
661     }
662     if (rx_cond == rx_match_altmac) {
663         desc.status_word |= RXDCTRL_ALTMAC;
664     }
665     desc.status_word = cpu_to_le64(desc.status_word);
666 
667     pci_dma_write(d, dbase + done * sizeof(desc), &desc, sizeof(desc));
668 
669     done = (done + 1) & s->rx_mask;
670     s->rxdmaregs[RXDMA_DONE >> 2] = done;
671 
672     /* XXX Unconditionally set RX interrupt for now. The interrupt
673      * mitigation timer might well end up adding more overhead than
674      * helping here...
675      */
676     ints = GREG_STAT_RXDONE;
677     if (sungem_rx_full(s, kick, done)) {
678         ints |= GREG_STAT_RXNOBUF;
679     }
680     sungem_update_status(s, ints, true);
681 
682     return size;
683 }
684 
685 static void sungem_set_link_status(NetClientState *nc)
686 {
687     /* We don't do anything for now as I believe none of the OSes
688      * drivers use the MIF autopoll feature nor the PHY interrupt
689      */
690 }
691 
692 static void sungem_update_masks(SunGEMState *s)
693 {
694     uint32_t sz;
695 
696     sz = 1 << (((s->rxdmaregs[RXDMA_CFG >> 2] & RXDMA_CFG_RINGSZ) >> 1) + 5);
697     s->rx_mask = sz - 1;
698 
699     sz = 1 << (((s->txdmaregs[TXDMA_CFG >> 2] & TXDMA_CFG_RINGSZ) >> 1) + 5);
700     s->tx_mask = sz - 1;
701 }
702 
703 static void sungem_reset_rx(SunGEMState *s)
704 {
705     trace_sungem_rx_reset();
706 
707     /* XXX Do RXCFG */
708     /* XXX Check value */
709     s->rxdmaregs[RXDMA_FSZ >> 2] = 0x140;
710     s->rxdmaregs[RXDMA_DONE >> 2] = 0;
711     s->rxdmaregs[RXDMA_KICK >> 2] = 0;
712     s->rxdmaregs[RXDMA_CFG >> 2] = 0x1000010;
713     s->rxdmaregs[RXDMA_PTHRESH >> 2] = 0xf8;
714     s->rxdmaregs[RXDMA_BLANK >> 2] = 0;
715 
716     sungem_update_masks(s);
717 }
718 
719 static void sungem_reset_tx(SunGEMState *s)
720 {
721     trace_sungem_tx_reset();
722 
723     /* XXX Do TXCFG */
724     /* XXX Check value */
725     s->txdmaregs[TXDMA_FSZ >> 2] = 0x90;
726     s->txdmaregs[TXDMA_TXDONE >> 2] = 0;
727     s->txdmaregs[TXDMA_KICK >> 2] = 0;
728     s->txdmaregs[TXDMA_CFG >> 2] = 0x118010;
729 
730     sungem_update_masks(s);
731 
732     s->tx_size = 0;
733     s->tx_first_ctl = 0;
734 }
735 
736 static void sungem_reset_all(SunGEMState *s, bool pci_reset)
737 {
738     trace_sungem_reset(pci_reset);
739 
740     sungem_reset_rx(s);
741     sungem_reset_tx(s);
742 
743     s->gregs[GREG_IMASK >> 2] = 0xFFFFFFF;
744     s->gregs[GREG_STAT >> 2] = 0;
745     if (pci_reset) {
746         uint8_t *ma = s->conf.macaddr.a;
747 
748         s->gregs[GREG_SWRST >> 2] = 0;
749         s->macregs[MAC_ADDR0 >> 2] = (ma[4] << 8) | ma[5];
750         s->macregs[MAC_ADDR1 >> 2] = (ma[2] << 8) | ma[3];
751         s->macregs[MAC_ADDR2 >> 2] = (ma[0] << 8) | ma[1];
752     } else {
753         s->gregs[GREG_SWRST >> 2] &= GREG_SWRST_RSTOUT;
754     }
755     s->mifregs[MIF_CFG >> 2] = MIF_CFG_MDI0;
756 }
757 
758 static void sungem_mii_write(SunGEMState *s, uint8_t phy_addr,
759                              uint8_t reg_addr, uint16_t val)
760 {
761     trace_sungem_mii_write(phy_addr, reg_addr, val);
762 
763     /* XXX TODO */
764 }
765 
766 static uint16_t __sungem_mii_read(SunGEMState *s, uint8_t phy_addr,
767                                   uint8_t reg_addr)
768 {
769     if (phy_addr != s->phy_addr) {
770         return 0xffff;
771     }
772     /* Primitive emulation of a BCM5201 to please the driver,
773      * ID is 0x00406210. TODO: Do a gigabit PHY like BCM5400
774      */
775     switch (reg_addr) {
776     case MII_BMCR:
777         return 0;
778     case MII_PHYID1:
779         return 0x0040;
780     case MII_PHYID2:
781         return 0x6210;
782     case MII_BMSR:
783         if (qemu_get_queue(s->nic)->link_down) {
784             return MII_BMSR_100TX_FD  | MII_BMSR_AUTONEG;
785         } else {
786             return MII_BMSR_100TX_FD | MII_BMSR_AN_COMP |
787                     MII_BMSR_AUTONEG | MII_BMSR_LINK_ST;
788         }
789     case MII_ANLPAR:
790     case MII_ANAR:
791         return MII_ANLPAR_TXFD;
792     case 0x18: /* 5201 AUX status */
793         return 3; /* 100FD */
794     default:
795         return 0;
796     };
797 }
798 static uint16_t sungem_mii_read(SunGEMState *s, uint8_t phy_addr,
799                                 uint8_t reg_addr)
800 {
801     uint16_t val;
802 
803     val = __sungem_mii_read(s, phy_addr, reg_addr);
804 
805     trace_sungem_mii_read(phy_addr, reg_addr, val);
806 
807     return val;
808 }
809 
810 static uint32_t sungem_mii_op(SunGEMState *s, uint32_t val)
811 {
812     uint8_t phy_addr, reg_addr, op;
813 
814     /* Ignore not start of frame */
815     if ((val >> 30) != 1) {
816         trace_sungem_mii_invalid_sof(val >> 30);
817         return 0xffff;
818     }
819     phy_addr = (val & MIF_FRAME_PHYAD) >> 23;
820     reg_addr = (val & MIF_FRAME_REGAD) >> 18;
821     op = (val & MIF_FRAME_OP) >> 28;
822     switch (op) {
823     case 1:
824         sungem_mii_write(s, phy_addr, reg_addr, val & MIF_FRAME_DATA);
825         return val | MIF_FRAME_TALSB;
826     case 2:
827         return sungem_mii_read(s, phy_addr, reg_addr) | MIF_FRAME_TALSB;
828     default:
829         trace_sungem_mii_invalid_op(op);
830     }
831     return 0xffff | MIF_FRAME_TALSB;
832 }
833 
834 static void sungem_mmio_greg_write(void *opaque, hwaddr addr, uint64_t val,
835                                    unsigned size)
836 {
837     SunGEMState *s = opaque;
838 
839     if (!(addr < 0x20) && !(addr >= 0x1000 && addr <= 0x1010)) {
840         qemu_log_mask(LOG_GUEST_ERROR,
841                       "Write to unknown GREG register 0x%"HWADDR_PRIx"\n",
842                       addr);
843         return;
844     }
845 
846     trace_sungem_mmio_greg_write(addr, val);
847 
848     /* Pre-write filter */
849     switch (addr) {
850     /* Read only registers */
851     case GREG_SEBSTATE:
852     case GREG_STAT:
853     case GREG_STAT2:
854     case GREG_PCIESTAT:
855         return; /* No actual write */
856     case GREG_IACK:
857         val &= GREG_STAT_LATCH;
858         s->gregs[GREG_STAT >> 2] &= ~val;
859         sungem_eval_irq(s);
860         return; /* No actual write */
861     case GREG_PCIEMASK:
862         val &= 0x7;
863         break;
864     }
865 
866     s->gregs[addr  >> 2] = val;
867 
868     /* Post write action */
869     switch (addr) {
870     case GREG_IMASK:
871         /* Re-evaluate interrupt */
872         sungem_eval_irq(s);
873         break;
874     case GREG_SWRST:
875         switch (val & (GREG_SWRST_TXRST | GREG_SWRST_RXRST)) {
876         case GREG_SWRST_RXRST:
877             sungem_reset_rx(s);
878             break;
879         case GREG_SWRST_TXRST:
880             sungem_reset_tx(s);
881             break;
882         case GREG_SWRST_RXRST | GREG_SWRST_TXRST:
883             sungem_reset_all(s, false);
884         }
885         break;
886     }
887 }
888 
889 static uint64_t sungem_mmio_greg_read(void *opaque, hwaddr addr, unsigned size)
890 {
891     SunGEMState *s = opaque;
892     uint32_t val;
893 
894     if (!(addr < 0x20) && !(addr >= 0x1000 && addr <= 0x1010)) {
895         qemu_log_mask(LOG_GUEST_ERROR,
896                       "Read from unknown GREG register 0x%"HWADDR_PRIx"\n",
897                       addr);
898         return 0;
899     }
900 
901     val = s->gregs[addr >> 2];
902 
903     trace_sungem_mmio_greg_read(addr, val);
904 
905     switch (addr) {
906     case GREG_STAT:
907         /* Side effect, clear bottom 7 bits */
908         s->gregs[GREG_STAT >> 2] &= ~GREG_STAT_LATCH;
909         sungem_eval_irq(s);
910 
911         /* Inject TX completion in returned value */
912         val = (val & ~GREG_STAT_TXNR) |
913                 (s->txdmaregs[TXDMA_TXDONE >> 2] << GREG_STAT_TXNR_SHIFT);
914         break;
915     case GREG_STAT2:
916         /* Return the status reg without side effect
917          * (and inject TX completion in returned value)
918          */
919         val = (s->gregs[GREG_STAT >> 2] & ~GREG_STAT_TXNR) |
920               (s->txdmaregs[TXDMA_TXDONE >> 2] << GREG_STAT_TXNR_SHIFT);
921         break;
922     }
923 
924     return val;
925 }
926 
927 static const MemoryRegionOps sungem_mmio_greg_ops = {
928     .read = sungem_mmio_greg_read,
929     .write = sungem_mmio_greg_write,
930     .endianness = DEVICE_LITTLE_ENDIAN,
931     .impl = {
932         .min_access_size = 4,
933         .max_access_size = 4,
934     },
935 };
936 
937 static void sungem_mmio_txdma_write(void *opaque, hwaddr addr, uint64_t val,
938                                     unsigned size)
939 {
940     SunGEMState *s = opaque;
941 
942     if (!(addr < 0x38) && !(addr >= 0x100 && addr <= 0x118)) {
943         qemu_log_mask(LOG_GUEST_ERROR,
944                       "Write to unknown TXDMA register 0x%"HWADDR_PRIx"\n",
945                       addr);
946         return;
947     }
948 
949     trace_sungem_mmio_txdma_write(addr, val);
950 
951     /* Pre-write filter */
952     switch (addr) {
953     /* Read only registers */
954     case TXDMA_TXDONE:
955     case TXDMA_PCNT:
956     case TXDMA_SMACHINE:
957     case TXDMA_DPLOW:
958     case TXDMA_DPHI:
959     case TXDMA_FSZ:
960     case TXDMA_FTAG:
961         return; /* No actual write */
962     }
963 
964     s->txdmaregs[addr >> 2] = val;
965 
966     /* Post write action */
967     switch (addr) {
968     case TXDMA_KICK:
969         sungem_tx_kick(s);
970         break;
971     case TXDMA_CFG:
972         sungem_update_masks(s);
973         break;
974     }
975 }
976 
977 static uint64_t sungem_mmio_txdma_read(void *opaque, hwaddr addr, unsigned size)
978 {
979     SunGEMState *s = opaque;
980     uint32_t val;
981 
982     if (!(addr < 0x38) && !(addr >= 0x100 && addr <= 0x118)) {
983         qemu_log_mask(LOG_GUEST_ERROR,
984                       "Read from unknown TXDMA register 0x%"HWADDR_PRIx"\n",
985                       addr);
986         return 0;
987     }
988 
989     val = s->txdmaregs[addr >> 2];
990 
991     trace_sungem_mmio_txdma_read(addr, val);
992 
993     return val;
994 }
995 
996 static const MemoryRegionOps sungem_mmio_txdma_ops = {
997     .read = sungem_mmio_txdma_read,
998     .write = sungem_mmio_txdma_write,
999     .endianness = DEVICE_LITTLE_ENDIAN,
1000     .impl = {
1001         .min_access_size = 4,
1002         .max_access_size = 4,
1003     },
1004 };
1005 
1006 static void sungem_mmio_rxdma_write(void *opaque, hwaddr addr, uint64_t val,
1007                                     unsigned size)
1008 {
1009     SunGEMState *s = opaque;
1010 
1011     if (!(addr <= 0x28) && !(addr >= 0x100 && addr <= 0x120)) {
1012         qemu_log_mask(LOG_GUEST_ERROR,
1013                       "Write to unknown RXDMA register 0x%"HWADDR_PRIx"\n",
1014                       addr);
1015         return;
1016     }
1017 
1018     trace_sungem_mmio_rxdma_write(addr, val);
1019 
1020     /* Pre-write filter */
1021     switch (addr) {
1022     /* Read only registers */
1023     case RXDMA_DONE:
1024     case RXDMA_PCNT:
1025     case RXDMA_SMACHINE:
1026     case RXDMA_DPLOW:
1027     case RXDMA_DPHI:
1028     case RXDMA_FSZ:
1029     case RXDMA_FTAG:
1030         return; /* No actual write */
1031     }
1032 
1033     s->rxdmaregs[addr >> 2] = val;
1034 
1035     /* Post write action */
1036     switch (addr) {
1037     case RXDMA_KICK:
1038         trace_sungem_rx_kick(val);
1039         break;
1040     case RXDMA_CFG:
1041         sungem_update_masks(s);
1042         if ((s->macregs[MAC_RXCFG >> 2] & MAC_RXCFG_ENAB) != 0 &&
1043             (s->rxdmaregs[RXDMA_CFG >> 2] & RXDMA_CFG_ENABLE) != 0) {
1044             qemu_flush_queued_packets(qemu_get_queue(s->nic));
1045         }
1046         break;
1047     }
1048 }
1049 
1050 static uint64_t sungem_mmio_rxdma_read(void *opaque, hwaddr addr, unsigned size)
1051 {
1052     SunGEMState *s = opaque;
1053     uint32_t val;
1054 
1055     if (!(addr <= 0x28) && !(addr >= 0x100 && addr <= 0x120)) {
1056         qemu_log_mask(LOG_GUEST_ERROR,
1057                       "Read from unknown RXDMA register 0x%"HWADDR_PRIx"\n",
1058                       addr);
1059         return 0;
1060     }
1061 
1062     val = s->rxdmaregs[addr >> 2];
1063 
1064     trace_sungem_mmio_rxdma_read(addr, val);
1065 
1066     return val;
1067 }
1068 
1069 static const MemoryRegionOps sungem_mmio_rxdma_ops = {
1070     .read = sungem_mmio_rxdma_read,
1071     .write = sungem_mmio_rxdma_write,
1072     .endianness = DEVICE_LITTLE_ENDIAN,
1073     .impl = {
1074         .min_access_size = 4,
1075         .max_access_size = 4,
1076     },
1077 };
1078 
1079 static void sungem_mmio_mac_write(void *opaque, hwaddr addr, uint64_t val,
1080                                   unsigned size)
1081 {
1082     SunGEMState *s = opaque;
1083 
1084     if (!(addr <= 0x134)) {
1085         qemu_log_mask(LOG_GUEST_ERROR,
1086                       "Write to unknown MAC register 0x%"HWADDR_PRIx"\n",
1087                       addr);
1088         return;
1089     }
1090 
1091     trace_sungem_mmio_mac_write(addr, val);
1092 
1093     /* Pre-write filter */
1094     switch (addr) {
1095     /* Read only registers */
1096     case MAC_TXRST: /* Not technically read-only but will do for now */
1097     case MAC_RXRST: /* Not technically read-only but will do for now */
1098     case MAC_TXSTAT:
1099     case MAC_RXSTAT:
1100     case MAC_CSTAT:
1101     case MAC_PATMPS:
1102     case MAC_SMACHINE:
1103         return; /* No actual write */
1104     case MAC_MINFSZ:
1105         /* 10-bits implemented */
1106         val &= 0x3ff;
1107         break;
1108     }
1109 
1110     s->macregs[addr >> 2] = val;
1111 
1112     /* Post write action */
1113     switch (addr) {
1114     case MAC_TXMASK:
1115     case MAC_RXMASK:
1116     case MAC_MCMASK:
1117         sungem_eval_cascade_irq(s);
1118         break;
1119     case MAC_RXCFG:
1120         sungem_update_masks(s);
1121         if ((s->macregs[MAC_RXCFG >> 2] & MAC_RXCFG_ENAB) != 0 &&
1122             (s->rxdmaregs[RXDMA_CFG >> 2] & RXDMA_CFG_ENABLE) != 0) {
1123             qemu_flush_queued_packets(qemu_get_queue(s->nic));
1124         }
1125         break;
1126     }
1127 }
1128 
1129 static uint64_t sungem_mmio_mac_read(void *opaque, hwaddr addr, unsigned size)
1130 {
1131     SunGEMState *s = opaque;
1132     uint32_t val;
1133 
1134     if (!(addr <= 0x134)) {
1135         qemu_log_mask(LOG_GUEST_ERROR,
1136                       "Read from unknown MAC register 0x%"HWADDR_PRIx"\n",
1137                       addr);
1138         return 0;
1139     }
1140 
1141     val = s->macregs[addr >> 2];
1142 
1143     trace_sungem_mmio_mac_read(addr, val);
1144 
1145     switch (addr) {
1146     case MAC_TXSTAT:
1147         /* Side effect, clear all */
1148         s->macregs[addr >> 2] = 0;
1149         sungem_update_status(s, GREG_STAT_TXMAC, false);
1150         break;
1151     case MAC_RXSTAT:
1152         /* Side effect, clear all */
1153         s->macregs[addr >> 2] = 0;
1154         sungem_update_status(s, GREG_STAT_RXMAC, false);
1155         break;
1156     case MAC_CSTAT:
1157         /* Side effect, interrupt bits */
1158         s->macregs[addr >> 2] &= MAC_CSTAT_PTR;
1159         sungem_update_status(s, GREG_STAT_MAC, false);
1160         break;
1161     }
1162 
1163     return val;
1164 }
1165 
1166 static const MemoryRegionOps sungem_mmio_mac_ops = {
1167     .read = sungem_mmio_mac_read,
1168     .write = sungem_mmio_mac_write,
1169     .endianness = DEVICE_LITTLE_ENDIAN,
1170     .impl = {
1171         .min_access_size = 4,
1172         .max_access_size = 4,
1173     },
1174 };
1175 
1176 static void sungem_mmio_mif_write(void *opaque, hwaddr addr, uint64_t val,
1177                                   unsigned size)
1178 {
1179     SunGEMState *s = opaque;
1180 
1181     if (!(addr <= 0x1c)) {
1182         qemu_log_mask(LOG_GUEST_ERROR,
1183                       "Write to unknown MIF register 0x%"HWADDR_PRIx"\n",
1184                       addr);
1185         return;
1186     }
1187 
1188     trace_sungem_mmio_mif_write(addr, val);
1189 
1190     /* Pre-write filter */
1191     switch (addr) {
1192     /* Read only registers */
1193     case MIF_STATUS:
1194     case MIF_SMACHINE:
1195         return; /* No actual write */
1196     case MIF_CFG:
1197         /* Maintain the RO MDI bits to advertize an MDIO PHY on MDI0 */
1198         val &= ~MIF_CFG_MDI1;
1199         val |= MIF_CFG_MDI0;
1200         break;
1201     }
1202 
1203     s->mifregs[addr >> 2] = val;
1204 
1205     /* Post write action */
1206     switch (addr) {
1207     case MIF_FRAME:
1208         s->mifregs[addr >> 2] = sungem_mii_op(s, val);
1209         break;
1210     }
1211 }
1212 
1213 static uint64_t sungem_mmio_mif_read(void *opaque, hwaddr addr, unsigned size)
1214 {
1215     SunGEMState *s = opaque;
1216     uint32_t val;
1217 
1218     if (!(addr <= 0x1c)) {
1219         qemu_log_mask(LOG_GUEST_ERROR,
1220                       "Read from unknown MIF register 0x%"HWADDR_PRIx"\n",
1221                       addr);
1222         return 0;
1223     }
1224 
1225     val = s->mifregs[addr >> 2];
1226 
1227     trace_sungem_mmio_mif_read(addr, val);
1228 
1229     return val;
1230 }
1231 
1232 static const MemoryRegionOps sungem_mmio_mif_ops = {
1233     .read = sungem_mmio_mif_read,
1234     .write = sungem_mmio_mif_write,
1235     .endianness = DEVICE_LITTLE_ENDIAN,
1236     .impl = {
1237         .min_access_size = 4,
1238         .max_access_size = 4,
1239     },
1240 };
1241 
1242 static void sungem_mmio_pcs_write(void *opaque, hwaddr addr, uint64_t val,
1243                                   unsigned size)
1244 {
1245     SunGEMState *s = opaque;
1246 
1247     if (!(addr <= 0x18) && !(addr >= 0x50 && addr <= 0x5c)) {
1248         qemu_log_mask(LOG_GUEST_ERROR,
1249                       "Write to unknown PCS register 0x%"HWADDR_PRIx"\n",
1250                       addr);
1251         return;
1252     }
1253 
1254     trace_sungem_mmio_pcs_write(addr, val);
1255 
1256     /* Pre-write filter */
1257     switch (addr) {
1258     /* Read only registers */
1259     case PCS_MIISTAT:
1260     case PCS_ISTAT:
1261     case PCS_SSTATE:
1262         return; /* No actual write */
1263     }
1264 
1265     s->pcsregs[addr >> 2] = val;
1266 }
1267 
1268 static uint64_t sungem_mmio_pcs_read(void *opaque, hwaddr addr, unsigned size)
1269 {
1270     SunGEMState *s = opaque;
1271     uint32_t val;
1272 
1273     if (!(addr <= 0x18) && !(addr >= 0x50 && addr <= 0x5c)) {
1274         qemu_log_mask(LOG_GUEST_ERROR,
1275                       "Read from unknown PCS register 0x%"HWADDR_PRIx"\n",
1276                       addr);
1277         return 0;
1278     }
1279 
1280     val = s->pcsregs[addr >> 2];
1281 
1282     trace_sungem_mmio_pcs_read(addr, val);
1283 
1284     return val;
1285 }
1286 
1287 static const MemoryRegionOps sungem_mmio_pcs_ops = {
1288     .read = sungem_mmio_pcs_read,
1289     .write = sungem_mmio_pcs_write,
1290     .endianness = DEVICE_LITTLE_ENDIAN,
1291     .impl = {
1292         .min_access_size = 4,
1293         .max_access_size = 4,
1294     },
1295 };
1296 
1297 static void sungem_uninit(PCIDevice *dev)
1298 {
1299     SunGEMState *s = SUNGEM(dev);
1300 
1301     qemu_del_nic(s->nic);
1302 }
1303 
1304 static NetClientInfo net_sungem_info = {
1305     .type = NET_CLIENT_DRIVER_NIC,
1306     .size = sizeof(NICState),
1307     .can_receive = sungem_can_receive,
1308     .receive = sungem_receive,
1309     .link_status_changed = sungem_set_link_status,
1310 };
1311 
1312 static void sungem_realize(PCIDevice *pci_dev, Error **errp)
1313 {
1314     DeviceState *dev = DEVICE(pci_dev);
1315     SunGEMState *s = SUNGEM(pci_dev);
1316     uint8_t *pci_conf;
1317 
1318     pci_conf = pci_dev->config;
1319 
1320     pci_set_word(pci_conf + PCI_STATUS,
1321                  PCI_STATUS_FAST_BACK |
1322                  PCI_STATUS_DEVSEL_MEDIUM |
1323                  PCI_STATUS_66MHZ);
1324 
1325     pci_set_word(pci_conf + PCI_SUBSYSTEM_VENDOR_ID, 0x0);
1326     pci_set_word(pci_conf + PCI_SUBSYSTEM_ID, 0x0);
1327 
1328     pci_conf[PCI_INTERRUPT_PIN] = 1; /* interrupt pin A */
1329     pci_conf[PCI_MIN_GNT] = 0x40;
1330     pci_conf[PCI_MAX_LAT] = 0x40;
1331 
1332     sungem_reset_all(s, true);
1333     memory_region_init(&s->sungem, OBJECT(s), "sungem", SUNGEM_MMIO_SIZE);
1334 
1335     memory_region_init_io(&s->greg, OBJECT(s), &sungem_mmio_greg_ops, s,
1336                           "sungem.greg", SUNGEM_MMIO_GREG_SIZE);
1337     memory_region_add_subregion(&s->sungem, 0, &s->greg);
1338 
1339     memory_region_init_io(&s->txdma, OBJECT(s), &sungem_mmio_txdma_ops, s,
1340                           "sungem.txdma", SUNGEM_MMIO_TXDMA_SIZE);
1341     memory_region_add_subregion(&s->sungem, 0x2000, &s->txdma);
1342 
1343     memory_region_init_io(&s->rxdma, OBJECT(s), &sungem_mmio_rxdma_ops, s,
1344                           "sungem.rxdma", SUNGEM_MMIO_RXDMA_SIZE);
1345     memory_region_add_subregion(&s->sungem, 0x4000, &s->rxdma);
1346 
1347     memory_region_init_io(&s->mac, OBJECT(s), &sungem_mmio_mac_ops, s,
1348                           "sungem.mac", SUNGEM_MMIO_MAC_SIZE);
1349     memory_region_add_subregion(&s->sungem, 0x6000, &s->mac);
1350 
1351     memory_region_init_io(&s->mif, OBJECT(s), &sungem_mmio_mif_ops, s,
1352                           "sungem.mif", SUNGEM_MMIO_MIF_SIZE);
1353     memory_region_add_subregion(&s->sungem, 0x6200, &s->mif);
1354 
1355     memory_region_init_io(&s->pcs, OBJECT(s), &sungem_mmio_pcs_ops, s,
1356                           "sungem.pcs", SUNGEM_MMIO_PCS_SIZE);
1357     memory_region_add_subregion(&s->sungem, 0x9000, &s->pcs);
1358 
1359     pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->sungem);
1360 
1361     qemu_macaddr_default_if_unset(&s->conf.macaddr);
1362     s->nic = qemu_new_nic(&net_sungem_info, &s->conf,
1363                           object_get_typename(OBJECT(dev)),
1364                           dev->id, s);
1365     qemu_format_nic_info_str(qemu_get_queue(s->nic),
1366                              s->conf.macaddr.a);
1367 }
1368 
1369 static void sungem_reset(DeviceState *dev)
1370 {
1371     SunGEMState *s = SUNGEM(dev);
1372 
1373     sungem_reset_all(s, true);
1374 }
1375 
1376 static void sungem_instance_init(Object *obj)
1377 {
1378     SunGEMState *s = SUNGEM(obj);
1379 
1380     device_add_bootindex_property(obj, &s->conf.bootindex,
1381                                   "bootindex", "/ethernet-phy@0",
1382                                   DEVICE(obj));
1383 }
1384 
1385 static Property sungem_properties[] = {
1386     DEFINE_NIC_PROPERTIES(SunGEMState, conf),
1387     /* Phy address should be 0 for most Apple machines except
1388      * for K2 in which case it's 1. Will be set by a machine
1389      * override.
1390      */
1391     DEFINE_PROP_UINT32("phy_addr", SunGEMState, phy_addr, 0),
1392     DEFINE_PROP_END_OF_LIST(),
1393 };
1394 
1395 static const VMStateDescription vmstate_sungem = {
1396     .name = "sungem",
1397     .version_id = 0,
1398     .minimum_version_id = 0,
1399     .fields = (VMStateField[]) {
1400         VMSTATE_PCI_DEVICE(pdev, SunGEMState),
1401         VMSTATE_MACADDR(conf.macaddr, SunGEMState),
1402         VMSTATE_UINT32(phy_addr, SunGEMState),
1403         VMSTATE_UINT32_ARRAY(gregs, SunGEMState, (SUNGEM_MMIO_GREG_SIZE >> 2)),
1404         VMSTATE_UINT32_ARRAY(txdmaregs, SunGEMState,
1405                              (SUNGEM_MMIO_TXDMA_SIZE >> 2)),
1406         VMSTATE_UINT32_ARRAY(rxdmaregs, SunGEMState,
1407                              (SUNGEM_MMIO_RXDMA_SIZE >> 2)),
1408         VMSTATE_UINT32_ARRAY(macregs, SunGEMState, (SUNGEM_MMIO_MAC_SIZE >> 2)),
1409         VMSTATE_UINT32_ARRAY(mifregs, SunGEMState, (SUNGEM_MMIO_MIF_SIZE >> 2)),
1410         VMSTATE_UINT32_ARRAY(pcsregs, SunGEMState, (SUNGEM_MMIO_PCS_SIZE >> 2)),
1411         VMSTATE_UINT32(rx_mask, SunGEMState),
1412         VMSTATE_UINT32(tx_mask, SunGEMState),
1413         VMSTATE_UINT8_ARRAY(tx_data, SunGEMState, MAX_PACKET_SIZE),
1414         VMSTATE_UINT32(tx_size, SunGEMState),
1415         VMSTATE_UINT64(tx_first_ctl, SunGEMState),
1416         VMSTATE_END_OF_LIST()
1417     }
1418 };
1419 
1420 static void sungem_class_init(ObjectClass *klass, void *data)
1421 {
1422     DeviceClass *dc = DEVICE_CLASS(klass);
1423     PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
1424 
1425     k->realize = sungem_realize;
1426     k->exit = sungem_uninit;
1427     k->vendor_id = PCI_VENDOR_ID_APPLE;
1428     k->device_id = PCI_DEVICE_ID_APPLE_UNI_N_GMAC;
1429     k->revision = 0x01;
1430     k->class_id = PCI_CLASS_NETWORK_ETHERNET;
1431     dc->vmsd = &vmstate_sungem;
1432     dc->reset = sungem_reset;
1433     device_class_set_props(dc, sungem_properties);
1434     set_bit(DEVICE_CATEGORY_NETWORK, dc->categories);
1435 }
1436 
1437 static const TypeInfo sungem_info = {
1438     .name          = TYPE_SUNGEM,
1439     .parent        = TYPE_PCI_DEVICE,
1440     .instance_size = sizeof(SunGEMState),
1441     .class_init    = sungem_class_init,
1442     .instance_init = sungem_instance_init,
1443     .interfaces = (InterfaceInfo[]) {
1444         { INTERFACE_CONVENTIONAL_PCI_DEVICE },
1445         { }
1446     }
1447 };
1448 
1449 static void sungem_register_types(void)
1450 {
1451     type_register_static(&sungem_info);
1452 }
1453 
1454 type_init(sungem_register_types)
1455