xref: /openbmc/qemu/hw/net/rtl8139.c (revision fb6051e7)
1 /**
2  * QEMU RTL8139 emulation
3  *
4  * Copyright (c) 2006 Igor Kovalenko
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23 
24  * Modifications:
25  *  2006-Jan-28  Mark Malakanov :   TSAD and CSCR implementation (for Windows driver)
26  *
27  *  2006-Apr-28  Juergen Lock   :   EEPROM emulation changes for FreeBSD driver
28  *                                  HW revision ID changes for FreeBSD driver
29  *
30  *  2006-Jul-01  Igor Kovalenko :   Implemented loopback mode for FreeBSD driver
31  *                                  Corrected packet transfer reassembly routine for 8139C+ mode
32  *                                  Rearranged debugging print statements
33  *                                  Implemented PCI timer interrupt (disabled by default)
34  *                                  Implemented Tally Counters, increased VM load/save version
35  *                                  Implemented IP/TCP/UDP checksum task offloading
36  *
37  *  2006-Jul-04  Igor Kovalenko :   Implemented TCP segmentation offloading
38  *                                  Fixed MTU=1500 for produced ethernet frames
39  *
40  *  2006-Jul-09  Igor Kovalenko :   Fixed TCP header length calculation while processing
41  *                                  segmentation offloading
42  *                                  Removed slirp.h dependency
43  *                                  Added rx/tx buffer reset when enabling rx/tx operation
44  *
45  *  2010-Feb-04  Frediano Ziglio:   Rewrote timer support using QEMU timer only
46  *                                  when strictly needed (required for
47  *                                  Darwin)
48  *  2011-Mar-22  Benjamin Poirier:  Implemented VLAN offloading
49  */
50 
51 /* For crc32 */
52 
53 #include "qemu/osdep.h"
54 #include <zlib.h>
55 
56 #include "hw/pci/pci_device.h"
57 #include "hw/qdev-properties.h"
58 #include "migration/vmstate.h"
59 #include "sysemu/dma.h"
60 #include "qemu/module.h"
61 #include "qemu/timer.h"
62 #include "net/net.h"
63 #include "net/eth.h"
64 #include "sysemu/sysemu.h"
65 #include "qom/object.h"
66 
67 /* debug RTL8139 card */
68 //#define DEBUG_RTL8139 1
69 
70 #define PCI_PERIOD 30    /* 30 ns period = 33.333333 Mhz frequency */
71 
72 #define SET_MASKED(input, mask, curr) \
73     ( ( (input) & ~(mask) ) | ( (curr) & (mask) ) )
74 
75 /* arg % size for size which is a power of 2 */
76 #define MOD2(input, size) \
77     ( ( input ) & ( size - 1 )  )
78 
79 #define ETHER_TYPE_LEN 2
80 
81 #define VLAN_TCI_LEN 2
82 #define VLAN_HLEN (ETHER_TYPE_LEN + VLAN_TCI_LEN)
83 
84 #if defined (DEBUG_RTL8139)
85 #  define DPRINTF(fmt, ...) \
86     do { fprintf(stderr, "RTL8139: " fmt, ## __VA_ARGS__); } while (0)
87 #else
88 static inline G_GNUC_PRINTF(1, 2) int DPRINTF(const char *fmt, ...)
89 {
90     return 0;
91 }
92 #endif
93 
94 #define TYPE_RTL8139 "rtl8139"
95 
96 OBJECT_DECLARE_SIMPLE_TYPE(RTL8139State, RTL8139)
97 
98 /* Symbolic offsets to registers. */
99 enum RTL8139_registers {
100     MAC0 = 0,        /* Ethernet hardware address. */
101     MAR0 = 8,        /* Multicast filter. */
102     TxStatus0 = 0x10,/* Transmit status (Four 32bit registers). C mode only */
103                      /* Dump Tally Counter control register(64bit). C+ mode only */
104     TxAddr0 = 0x20,  /* Tx descriptors (also four 32bit). */
105     RxBuf = 0x30,
106     ChipCmd = 0x37,
107     RxBufPtr = 0x38,
108     RxBufAddr = 0x3A,
109     IntrMask = 0x3C,
110     IntrStatus = 0x3E,
111     TxConfig = 0x40,
112     RxConfig = 0x44,
113     Timer = 0x48,        /* A general-purpose counter. */
114     RxMissed = 0x4C,    /* 24 bits valid, write clears. */
115     Cfg9346 = 0x50,
116     Config0 = 0x51,
117     Config1 = 0x52,
118     FlashReg = 0x54,
119     MediaStatus = 0x58,
120     Config3 = 0x59,
121     Config4 = 0x5A,        /* absent on RTL-8139A */
122     HltClk = 0x5B,
123     MultiIntr = 0x5C,
124     PCIRevisionID = 0x5E,
125     TxSummary = 0x60, /* TSAD register. Transmit Status of All Descriptors*/
126     BasicModeCtrl = 0x62,
127     BasicModeStatus = 0x64,
128     NWayAdvert = 0x66,
129     NWayLPAR = 0x68,
130     NWayExpansion = 0x6A,
131     /* Undocumented registers, but required for proper operation. */
132     FIFOTMS = 0x70,        /* FIFO Control and test. */
133     CSCR = 0x74,        /* Chip Status and Configuration Register. */
134     PARA78 = 0x78,
135     PARA7c = 0x7c,        /* Magic transceiver parameter register. */
136     Config5 = 0xD8,        /* absent on RTL-8139A */
137     /* C+ mode */
138     TxPoll        = 0xD9,    /* Tell chip to check Tx descriptors for work */
139     RxMaxSize    = 0xDA, /* Max size of an Rx packet (8169 only) */
140     CpCmd        = 0xE0, /* C+ Command register (C+ mode only) */
141     IntrMitigate    = 0xE2,    /* rx/tx interrupt mitigation control */
142     RxRingAddrLO    = 0xE4, /* 64-bit start addr of Rx ring */
143     RxRingAddrHI    = 0xE8, /* 64-bit start addr of Rx ring */
144     TxThresh    = 0xEC, /* Early Tx threshold */
145 };
146 
147 enum ClearBitMasks {
148     MultiIntrClear = 0xF000,
149     ChipCmdClear = 0xE2,
150     Config1Clear = (1<<7)|(1<<6)|(1<<3)|(1<<2)|(1<<1),
151 };
152 
153 enum ChipCmdBits {
154     CmdReset = 0x10,
155     CmdRxEnb = 0x08,
156     CmdTxEnb = 0x04,
157     RxBufEmpty = 0x01,
158 };
159 
160 /* C+ mode */
161 enum CplusCmdBits {
162     CPlusRxVLAN   = 0x0040, /* enable receive VLAN detagging */
163     CPlusRxChkSum = 0x0020, /* enable receive checksum offloading */
164     CPlusRxEnb    = 0x0002,
165     CPlusTxEnb    = 0x0001,
166 };
167 
168 /* Interrupt register bits, using my own meaningful names. */
169 enum IntrStatusBits {
170     PCIErr = 0x8000,
171     PCSTimeout = 0x4000,
172     RxFIFOOver = 0x40,
173     RxUnderrun = 0x20, /* Packet Underrun / Link Change */
174     RxOverflow = 0x10,
175     TxErr = 0x08,
176     TxOK = 0x04,
177     RxErr = 0x02,
178     RxOK = 0x01,
179 
180     RxAckBits = RxFIFOOver | RxOverflow | RxOK,
181 };
182 
183 enum TxStatusBits {
184     TxHostOwns = 0x2000,
185     TxUnderrun = 0x4000,
186     TxStatOK = 0x8000,
187     TxOutOfWindow = 0x20000000,
188     TxAborted = 0x40000000,
189     TxCarrierLost = 0x80000000,
190 };
191 enum RxStatusBits {
192     RxMulticast = 0x8000,
193     RxPhysical = 0x4000,
194     RxBroadcast = 0x2000,
195     RxBadSymbol = 0x0020,
196     RxRunt = 0x0010,
197     RxTooLong = 0x0008,
198     RxCRCErr = 0x0004,
199     RxBadAlign = 0x0002,
200     RxStatusOK = 0x0001,
201 };
202 
203 /* Bits in RxConfig. */
204 enum rx_mode_bits {
205     AcceptErr = 0x20,
206     AcceptRunt = 0x10,
207     AcceptBroadcast = 0x08,
208     AcceptMulticast = 0x04,
209     AcceptMyPhys = 0x02,
210     AcceptAllPhys = 0x01,
211 };
212 
213 /* Bits in TxConfig. */
214 enum tx_config_bits {
215 
216         /* Interframe Gap Time. Only TxIFG96 doesn't violate IEEE 802.3 */
217         TxIFGShift = 24,
218         TxIFG84 = (0 << TxIFGShift),    /* 8.4us / 840ns (10 / 100Mbps) */
219         TxIFG88 = (1 << TxIFGShift),    /* 8.8us / 880ns (10 / 100Mbps) */
220         TxIFG92 = (2 << TxIFGShift),    /* 9.2us / 920ns (10 / 100Mbps) */
221         TxIFG96 = (3 << TxIFGShift),    /* 9.6us / 960ns (10 / 100Mbps) */
222 
223     TxLoopBack = (1 << 18) | (1 << 17), /* enable loopback test mode */
224     TxCRC = (1 << 16),    /* DISABLE appending CRC to end of Tx packets */
225     TxClearAbt = (1 << 0),    /* Clear abort (WO) */
226     TxDMAShift = 8,        /* DMA burst value (0-7) is shifted this many bits */
227     TxRetryShift = 4,    /* TXRR value (0-15) is shifted this many bits */
228 
229     TxVersionMask = 0x7C800000, /* mask out version bits 30-26, 23 */
230 };
231 
232 
233 /* Transmit Status of All Descriptors (TSAD) Register */
234 enum TSAD_bits {
235  TSAD_TOK3 = 1<<15, // TOK bit of Descriptor 3
236  TSAD_TOK2 = 1<<14, // TOK bit of Descriptor 2
237  TSAD_TOK1 = 1<<13, // TOK bit of Descriptor 1
238  TSAD_TOK0 = 1<<12, // TOK bit of Descriptor 0
239  TSAD_TUN3 = 1<<11, // TUN bit of Descriptor 3
240  TSAD_TUN2 = 1<<10, // TUN bit of Descriptor 2
241  TSAD_TUN1 = 1<<9, // TUN bit of Descriptor 1
242  TSAD_TUN0 = 1<<8, // TUN bit of Descriptor 0
243  TSAD_TABT3 = 1<<07, // TABT bit of Descriptor 3
244  TSAD_TABT2 = 1<<06, // TABT bit of Descriptor 2
245  TSAD_TABT1 = 1<<05, // TABT bit of Descriptor 1
246  TSAD_TABT0 = 1<<04, // TABT bit of Descriptor 0
247  TSAD_OWN3 = 1<<03, // OWN bit of Descriptor 3
248  TSAD_OWN2 = 1<<02, // OWN bit of Descriptor 2
249  TSAD_OWN1 = 1<<01, // OWN bit of Descriptor 1
250  TSAD_OWN0 = 1<<00, // OWN bit of Descriptor 0
251 };
252 
253 
254 /* Bits in Config1 */
255 enum Config1Bits {
256     Cfg1_PM_Enable = 0x01,
257     Cfg1_VPD_Enable = 0x02,
258     Cfg1_PIO = 0x04,
259     Cfg1_MMIO = 0x08,
260     LWAKE = 0x10,        /* not on 8139, 8139A */
261     Cfg1_Driver_Load = 0x20,
262     Cfg1_LED0 = 0x40,
263     Cfg1_LED1 = 0x80,
264     SLEEP = (1 << 1),    /* only on 8139, 8139A */
265     PWRDN = (1 << 0),    /* only on 8139, 8139A */
266 };
267 
268 /* Bits in Config3 */
269 enum Config3Bits {
270     Cfg3_FBtBEn    = (1 << 0), /* 1 = Fast Back to Back */
271     Cfg3_FuncRegEn = (1 << 1), /* 1 = enable CardBus Function registers */
272     Cfg3_CLKRUN_En = (1 << 2), /* 1 = enable CLKRUN */
273     Cfg3_CardB_En  = (1 << 3), /* 1 = enable CardBus registers */
274     Cfg3_LinkUp    = (1 << 4), /* 1 = wake up on link up */
275     Cfg3_Magic     = (1 << 5), /* 1 = wake up on Magic Packet (tm) */
276     Cfg3_PARM_En   = (1 << 6), /* 0 = software can set twister parameters */
277     Cfg3_GNTSel    = (1 << 7), /* 1 = delay 1 clock from PCI GNT signal */
278 };
279 
280 /* Bits in Config4 */
281 enum Config4Bits {
282     LWPTN = (1 << 2),    /* not on 8139, 8139A */
283 };
284 
285 /* Bits in Config5 */
286 enum Config5Bits {
287     Cfg5_PME_STS     = (1 << 0), /* 1 = PCI reset resets PME_Status */
288     Cfg5_LANWake     = (1 << 1), /* 1 = enable LANWake signal */
289     Cfg5_LDPS        = (1 << 2), /* 0 = save power when link is down */
290     Cfg5_FIFOAddrPtr = (1 << 3), /* Realtek internal SRAM testing */
291     Cfg5_UWF         = (1 << 4), /* 1 = accept unicast wakeup frame */
292     Cfg5_MWF         = (1 << 5), /* 1 = accept multicast wakeup frame */
293     Cfg5_BWF         = (1 << 6), /* 1 = accept broadcast wakeup frame */
294 };
295 
296 enum RxConfigBits {
297     /* rx fifo threshold */
298     RxCfgFIFOShift = 13,
299     RxCfgFIFONone = (7 << RxCfgFIFOShift),
300 
301     /* Max DMA burst */
302     RxCfgDMAShift = 8,
303     RxCfgDMAUnlimited = (7 << RxCfgDMAShift),
304 
305     /* rx ring buffer length */
306     RxCfgRcv8K = 0,
307     RxCfgRcv16K = (1 << 11),
308     RxCfgRcv32K = (1 << 12),
309     RxCfgRcv64K = (1 << 11) | (1 << 12),
310 
311     /* Disable packet wrap at end of Rx buffer. (not possible with 64k) */
312     RxNoWrap = (1 << 7),
313 };
314 
315 /* Twister tuning parameters from RealTek.
316    Completely undocumented, but required to tune bad links on some boards. */
317 /*
318 enum CSCRBits {
319     CSCR_LinkOKBit = 0x0400,
320     CSCR_LinkChangeBit = 0x0800,
321     CSCR_LinkStatusBits = 0x0f000,
322     CSCR_LinkDownOffCmd = 0x003c0,
323     CSCR_LinkDownCmd = 0x0f3c0,
324 */
325 enum CSCRBits {
326     CSCR_Testfun = 1<<15, /* 1 = Auto-neg speeds up internal timer, WO, def 0 */
327     CSCR_LD  = 1<<9,  /* Active low TPI link disable signal. When low, TPI still transmits link pulses and TPI stays in good link state. def 1*/
328     CSCR_HEART_BIT = 1<<8,  /* 1 = HEART BEAT enable, 0 = HEART BEAT disable. HEART BEAT function is only valid in 10Mbps mode. def 1*/
329     CSCR_JBEN = 1<<7,  /* 1 = enable jabber function. 0 = disable jabber function, def 1*/
330     CSCR_F_LINK_100 = 1<<6, /* Used to login force good link in 100Mbps for diagnostic purposes. 1 = DISABLE, 0 = ENABLE. def 1*/
331     CSCR_F_Connect  = 1<<5,  /* Assertion of this bit forces the disconnect function to be bypassed. def 0*/
332     CSCR_Con_status = 1<<3, /* This bit indicates the status of the connection. 1 = valid connected link detected; 0 = disconnected link detected. RO def 0*/
333     CSCR_Con_status_En = 1<<2, /* Assertion of this bit configures LED1 pin to indicate connection status. def 0*/
334     CSCR_PASS_SCR = 1<<0, /* Bypass Scramble, def 0*/
335 };
336 
337 enum Cfg9346Bits {
338     Cfg9346_Normal = 0x00,
339     Cfg9346_Autoload = 0x40,
340     Cfg9346_Programming = 0x80,
341     Cfg9346_ConfigWrite = 0xC0,
342 };
343 
344 typedef enum {
345     CH_8139 = 0,
346     CH_8139_K,
347     CH_8139A,
348     CH_8139A_G,
349     CH_8139B,
350     CH_8130,
351     CH_8139C,
352     CH_8100,
353     CH_8100B_8139D,
354     CH_8101,
355 } chip_t;
356 
357 enum chip_flags {
358     HasHltClk = (1 << 0),
359     HasLWake = (1 << 1),
360 };
361 
362 #define HW_REVID(b30, b29, b28, b27, b26, b23, b22) \
363     (b30<<30 | b29<<29 | b28<<28 | b27<<27 | b26<<26 | b23<<23 | b22<<22)
364 #define HW_REVID_MASK    HW_REVID(1, 1, 1, 1, 1, 1, 1)
365 
366 #define RTL8139_PCI_REVID_8139      0x10
367 #define RTL8139_PCI_REVID_8139CPLUS 0x20
368 
369 #define RTL8139_PCI_REVID           RTL8139_PCI_REVID_8139CPLUS
370 
371 /* Size is 64 * 16bit words */
372 #define EEPROM_9346_ADDR_BITS 6
373 #define EEPROM_9346_SIZE  (1 << EEPROM_9346_ADDR_BITS)
374 #define EEPROM_9346_ADDR_MASK (EEPROM_9346_SIZE - 1)
375 
376 enum Chip9346Operation
377 {
378     Chip9346_op_mask = 0xc0,          /* 10 zzzzzz */
379     Chip9346_op_read = 0x80,          /* 10 AAAAAA */
380     Chip9346_op_write = 0x40,         /* 01 AAAAAA D(15)..D(0) */
381     Chip9346_op_ext_mask = 0xf0,      /* 11 zzzzzz */
382     Chip9346_op_write_enable = 0x30,  /* 00 11zzzz */
383     Chip9346_op_write_all = 0x10,     /* 00 01zzzz */
384     Chip9346_op_write_disable = 0x00, /* 00 00zzzz */
385 };
386 
387 enum Chip9346Mode
388 {
389     Chip9346_none = 0,
390     Chip9346_enter_command_mode,
391     Chip9346_read_command,
392     Chip9346_data_read,      /* from output register */
393     Chip9346_data_write,     /* to input register, then to contents at specified address */
394     Chip9346_data_write_all, /* to input register, then filling contents */
395 };
396 
397 typedef struct EEprom9346
398 {
399     uint16_t contents[EEPROM_9346_SIZE];
400     int      mode;
401     uint32_t tick;
402     uint8_t  address;
403     uint16_t input;
404     uint16_t output;
405 
406     uint8_t eecs;
407     uint8_t eesk;
408     uint8_t eedi;
409     uint8_t eedo;
410 } EEprom9346;
411 
412 typedef struct RTL8139TallyCounters
413 {
414     /* Tally counters */
415     uint64_t   TxOk;
416     uint64_t   RxOk;
417     uint64_t   TxERR;
418     uint32_t   RxERR;
419     uint16_t   MissPkt;
420     uint16_t   FAE;
421     uint32_t   Tx1Col;
422     uint32_t   TxMCol;
423     uint64_t   RxOkPhy;
424     uint64_t   RxOkBrd;
425     uint32_t   RxOkMul;
426     uint16_t   TxAbt;
427     uint16_t   TxUndrn;
428 } RTL8139TallyCounters;
429 
430 /* Clears all tally counters */
431 static void RTL8139TallyCounters_clear(RTL8139TallyCounters* counters);
432 
433 struct RTL8139State {
434     /*< private >*/
435     PCIDevice parent_obj;
436     /*< public >*/
437 
438     uint8_t phys[8]; /* mac address */
439     uint8_t mult[8]; /* multicast mask array */
440 
441     uint32_t TxStatus[4]; /* TxStatus0 in C mode*/ /* also DTCCR[0] and DTCCR[1] in C+ mode */
442     uint32_t TxAddr[4];   /* TxAddr0 */
443     uint32_t RxBuf;       /* Receive buffer */
444     uint32_t RxBufferSize;/* internal variable, receive ring buffer size in C mode */
445     uint32_t RxBufPtr;
446     uint32_t RxBufAddr;
447 
448     uint16_t IntrStatus;
449     uint16_t IntrMask;
450 
451     uint32_t TxConfig;
452     uint32_t RxConfig;
453     uint32_t RxMissed;
454 
455     uint16_t CSCR;
456 
457     uint8_t  Cfg9346;
458     uint8_t  Config0;
459     uint8_t  Config1;
460     uint8_t  Config3;
461     uint8_t  Config4;
462     uint8_t  Config5;
463 
464     uint8_t  clock_enabled;
465     uint8_t  bChipCmdState;
466 
467     uint16_t MultiIntr;
468 
469     uint16_t BasicModeCtrl;
470     uint16_t BasicModeStatus;
471     uint16_t NWayAdvert;
472     uint16_t NWayLPAR;
473     uint16_t NWayExpansion;
474 
475     uint16_t CpCmd;
476     uint8_t  TxThresh;
477 
478     NICState *nic;
479     NICConf conf;
480 
481     /* C ring mode */
482     uint32_t   currTxDesc;
483 
484     /* C+ mode */
485     uint32_t   cplus_enabled;
486 
487     uint32_t   currCPlusRxDesc;
488     uint32_t   currCPlusTxDesc;
489 
490     uint32_t   RxRingAddrLO;
491     uint32_t   RxRingAddrHI;
492 
493     EEprom9346 eeprom;
494 
495     uint32_t   TCTR;
496     uint32_t   TimerInt;
497     int64_t    TCTR_base;
498 
499     /* Tally counters */
500     RTL8139TallyCounters tally_counters;
501 
502     /* Non-persistent data */
503     uint8_t   *cplus_txbuffer;
504     int        cplus_txbuffer_len;
505     int        cplus_txbuffer_offset;
506 
507     /* PCI interrupt timer */
508     QEMUTimer *timer;
509 
510     MemoryRegion bar_io;
511     MemoryRegion bar_mem;
512 
513     /* Support migration to/from old versions */
514     int rtl8139_mmio_io_addr_dummy;
515 };
516 
517 /* Writes tally counters to memory via DMA */
518 static void RTL8139TallyCounters_dma_write(RTL8139State *s, dma_addr_t tc_addr);
519 
520 static void rtl8139_set_next_tctr_time(RTL8139State *s);
521 
522 static void prom9346_decode_command(EEprom9346 *eeprom, uint8_t command)
523 {
524     DPRINTF("eeprom command 0x%02x\n", command);
525 
526     switch (command & Chip9346_op_mask)
527     {
528         case Chip9346_op_read:
529         {
530             eeprom->address = command & EEPROM_9346_ADDR_MASK;
531             eeprom->output = eeprom->contents[eeprom->address];
532             eeprom->eedo = 0;
533             eeprom->tick = 0;
534             eeprom->mode = Chip9346_data_read;
535             DPRINTF("eeprom read from address 0x%02x data=0x%04x\n",
536                 eeprom->address, eeprom->output);
537         }
538         break;
539 
540         case Chip9346_op_write:
541         {
542             eeprom->address = command & EEPROM_9346_ADDR_MASK;
543             eeprom->input = 0;
544             eeprom->tick = 0;
545             eeprom->mode = Chip9346_none; /* Chip9346_data_write */
546             DPRINTF("eeprom begin write to address 0x%02x\n",
547                 eeprom->address);
548         }
549         break;
550         default:
551             eeprom->mode = Chip9346_none;
552             switch (command & Chip9346_op_ext_mask)
553             {
554                 case Chip9346_op_write_enable:
555                     DPRINTF("eeprom write enabled\n");
556                     break;
557                 case Chip9346_op_write_all:
558                     DPRINTF("eeprom begin write all\n");
559                     break;
560                 case Chip9346_op_write_disable:
561                     DPRINTF("eeprom write disabled\n");
562                     break;
563             }
564             break;
565     }
566 }
567 
568 static void prom9346_shift_clock(EEprom9346 *eeprom)
569 {
570     int bit = eeprom->eedi?1:0;
571 
572     ++ eeprom->tick;
573 
574     DPRINTF("eeprom: tick %d eedi=%d eedo=%d\n", eeprom->tick, eeprom->eedi,
575         eeprom->eedo);
576 
577     switch (eeprom->mode)
578     {
579         case Chip9346_enter_command_mode:
580             if (bit)
581             {
582                 eeprom->mode = Chip9346_read_command;
583                 eeprom->tick = 0;
584                 eeprom->input = 0;
585                 DPRINTF("eeprom: +++ synchronized, begin command read\n");
586             }
587             break;
588 
589         case Chip9346_read_command:
590             eeprom->input = (eeprom->input << 1) | (bit & 1);
591             if (eeprom->tick == 8)
592             {
593                 prom9346_decode_command(eeprom, eeprom->input & 0xff);
594             }
595             break;
596 
597         case Chip9346_data_read:
598             eeprom->eedo = (eeprom->output & 0x8000)?1:0;
599             eeprom->output <<= 1;
600             if (eeprom->tick == 16)
601             {
602 #if 1
603         // the FreeBSD drivers (rl and re) don't explicitly toggle
604         // CS between reads (or does setting Cfg9346 to 0 count too?),
605         // so we need to enter wait-for-command state here
606                 eeprom->mode = Chip9346_enter_command_mode;
607                 eeprom->input = 0;
608                 eeprom->tick = 0;
609 
610                 DPRINTF("eeprom: +++ end of read, awaiting next command\n");
611 #else
612         // original behaviour
613                 ++eeprom->address;
614                 eeprom->address &= EEPROM_9346_ADDR_MASK;
615                 eeprom->output = eeprom->contents[eeprom->address];
616                 eeprom->tick = 0;
617 
618                 DPRINTF("eeprom: +++ read next address 0x%02x data=0x%04x\n",
619                     eeprom->address, eeprom->output);
620 #endif
621             }
622             break;
623 
624         case Chip9346_data_write:
625             eeprom->input = (eeprom->input << 1) | (bit & 1);
626             if (eeprom->tick == 16)
627             {
628                 DPRINTF("eeprom write to address 0x%02x data=0x%04x\n",
629                     eeprom->address, eeprom->input);
630 
631                 eeprom->contents[eeprom->address] = eeprom->input;
632                 eeprom->mode = Chip9346_none; /* waiting for next command after CS cycle */
633                 eeprom->tick = 0;
634                 eeprom->input = 0;
635             }
636             break;
637 
638         case Chip9346_data_write_all:
639             eeprom->input = (eeprom->input << 1) | (bit & 1);
640             if (eeprom->tick == 16)
641             {
642                 int i;
643                 for (i = 0; i < EEPROM_9346_SIZE; i++)
644                 {
645                     eeprom->contents[i] = eeprom->input;
646                 }
647                 DPRINTF("eeprom filled with data=0x%04x\n", eeprom->input);
648 
649                 eeprom->mode = Chip9346_enter_command_mode;
650                 eeprom->tick = 0;
651                 eeprom->input = 0;
652             }
653             break;
654 
655         default:
656             break;
657     }
658 }
659 
660 static int prom9346_get_wire(RTL8139State *s)
661 {
662     EEprom9346 *eeprom = &s->eeprom;
663     if (!eeprom->eecs)
664         return 0;
665 
666     return eeprom->eedo;
667 }
668 
669 /* FIXME: This should be merged into/replaced by eeprom93xx.c.  */
670 static void prom9346_set_wire(RTL8139State *s, int eecs, int eesk, int eedi)
671 {
672     EEprom9346 *eeprom = &s->eeprom;
673     uint8_t old_eecs = eeprom->eecs;
674     uint8_t old_eesk = eeprom->eesk;
675 
676     eeprom->eecs = eecs;
677     eeprom->eesk = eesk;
678     eeprom->eedi = eedi;
679 
680     DPRINTF("eeprom: +++ wires CS=%d SK=%d DI=%d DO=%d\n", eeprom->eecs,
681         eeprom->eesk, eeprom->eedi, eeprom->eedo);
682 
683     if (!old_eecs && eecs)
684     {
685         /* Synchronize start */
686         eeprom->tick = 0;
687         eeprom->input = 0;
688         eeprom->output = 0;
689         eeprom->mode = Chip9346_enter_command_mode;
690 
691         DPRINTF("=== eeprom: begin access, enter command mode\n");
692     }
693 
694     if (!eecs)
695     {
696         DPRINTF("=== eeprom: end access\n");
697         return;
698     }
699 
700     if (!old_eesk && eesk)
701     {
702         /* SK front rules */
703         prom9346_shift_clock(eeprom);
704     }
705 }
706 
707 static void rtl8139_update_irq(RTL8139State *s)
708 {
709     PCIDevice *d = PCI_DEVICE(s);
710     int isr;
711     isr = (s->IntrStatus & s->IntrMask) & 0xffff;
712 
713     DPRINTF("Set IRQ to %d (%04x %04x)\n", isr ? 1 : 0, s->IntrStatus,
714         s->IntrMask);
715 
716     pci_set_irq(d, (isr != 0));
717 }
718 
719 static int rtl8139_RxWrap(RTL8139State *s)
720 {
721     /* wrapping enabled; assume 1.5k more buffer space if size < 65536 */
722     return (s->RxConfig & (1 << 7));
723 }
724 
725 static int rtl8139_receiver_enabled(RTL8139State *s)
726 {
727     return s->bChipCmdState & CmdRxEnb;
728 }
729 
730 static int rtl8139_transmitter_enabled(RTL8139State *s)
731 {
732     return s->bChipCmdState & CmdTxEnb;
733 }
734 
735 static int rtl8139_cp_receiver_enabled(RTL8139State *s)
736 {
737     return s->CpCmd & CPlusRxEnb;
738 }
739 
740 static int rtl8139_cp_transmitter_enabled(RTL8139State *s)
741 {
742     return s->CpCmd & CPlusTxEnb;
743 }
744 
745 static void rtl8139_write_buffer(RTL8139State *s, const void *buf, int size)
746 {
747     PCIDevice *d = PCI_DEVICE(s);
748 
749     if (s->RxBufAddr + size > s->RxBufferSize)
750     {
751         int wrapped = MOD2(s->RxBufAddr + size, s->RxBufferSize);
752 
753         /* write packet data */
754         if (wrapped && !(s->RxBufferSize < 65536 && rtl8139_RxWrap(s)))
755         {
756             DPRINTF(">>> rx packet wrapped in buffer at %d\n", size - wrapped);
757 
758             if (size > wrapped)
759             {
760                 pci_dma_write(d, s->RxBuf + s->RxBufAddr,
761                               buf, size-wrapped);
762             }
763 
764             /* reset buffer pointer */
765             s->RxBufAddr = 0;
766 
767             pci_dma_write(d, s->RxBuf + s->RxBufAddr,
768                           buf + (size-wrapped), wrapped);
769 
770             s->RxBufAddr = wrapped;
771 
772             return;
773         }
774     }
775 
776     /* non-wrapping path or overwrapping enabled */
777     pci_dma_write(d, s->RxBuf + s->RxBufAddr, buf, size);
778 
779     s->RxBufAddr += size;
780 }
781 
782 #define MIN_BUF_SIZE 60
783 static inline dma_addr_t rtl8139_addr64(uint32_t low, uint32_t high)
784 {
785     return low | ((uint64_t)high << 32);
786 }
787 
788 /* Workaround for buggy guest driver such as linux who allocates rx
789  * rings after the receiver were enabled. */
790 static bool rtl8139_cp_rx_valid(RTL8139State *s)
791 {
792     return !(s->RxRingAddrLO == 0 && s->RxRingAddrHI == 0);
793 }
794 
795 static bool rtl8139_can_receive(NetClientState *nc)
796 {
797     RTL8139State *s = qemu_get_nic_opaque(nc);
798     int avail;
799 
800     /* Receive (drop) packets if card is disabled.  */
801     if (!s->clock_enabled) {
802         return true;
803     }
804     if (!rtl8139_receiver_enabled(s)) {
805         return true;
806     }
807 
808     if (rtl8139_cp_receiver_enabled(s) && rtl8139_cp_rx_valid(s)) {
809         /* ??? Flow control not implemented in c+ mode.
810            This is a hack to work around slirp deficiencies anyway.  */
811         return true;
812     }
813 
814     avail = MOD2(s->RxBufferSize + s->RxBufPtr - s->RxBufAddr,
815                  s->RxBufferSize);
816     return avail == 0 || avail >= 1514 || (s->IntrMask & RxOverflow);
817 }
818 
819 static ssize_t rtl8139_do_receive(NetClientState *nc, const uint8_t *buf, size_t size_, int do_interrupt)
820 {
821     RTL8139State *s = qemu_get_nic_opaque(nc);
822     PCIDevice *d = PCI_DEVICE(s);
823     /* size is the length of the buffer passed to the driver */
824     size_t size = size_;
825     const uint8_t *dot1q_buf = NULL;
826 
827     uint32_t packet_header = 0;
828 
829     static const uint8_t broadcast_macaddr[6] =
830         { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
831 
832     DPRINTF(">>> received len=%zu\n", size);
833 
834     /* test if board clock is stopped */
835     if (!s->clock_enabled)
836     {
837         DPRINTF("stopped ==========================\n");
838         return -1;
839     }
840 
841     /* first check if receiver is enabled */
842 
843     if (!rtl8139_receiver_enabled(s))
844     {
845         DPRINTF("receiver disabled ================\n");
846         return -1;
847     }
848 
849     /* XXX: check this */
850     if (s->RxConfig & AcceptAllPhys) {
851         /* promiscuous: receive all */
852         DPRINTF(">>> packet received in promiscuous mode\n");
853 
854     } else {
855         if (!memcmp(buf,  broadcast_macaddr, 6)) {
856             /* broadcast address */
857             if (!(s->RxConfig & AcceptBroadcast))
858             {
859                 DPRINTF(">>> broadcast packet rejected\n");
860 
861                 /* update tally counter */
862                 ++s->tally_counters.RxERR;
863 
864                 return size;
865             }
866 
867             packet_header |= RxBroadcast;
868 
869             DPRINTF(">>> broadcast packet received\n");
870 
871             /* update tally counter */
872             ++s->tally_counters.RxOkBrd;
873 
874         } else if (buf[0] & 0x01) {
875             /* multicast */
876             if (!(s->RxConfig & AcceptMulticast))
877             {
878                 DPRINTF(">>> multicast packet rejected\n");
879 
880                 /* update tally counter */
881                 ++s->tally_counters.RxERR;
882 
883                 return size;
884             }
885 
886             int mcast_idx = net_crc32(buf, ETH_ALEN) >> 26;
887 
888             if (!(s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))))
889             {
890                 DPRINTF(">>> multicast address mismatch\n");
891 
892                 /* update tally counter */
893                 ++s->tally_counters.RxERR;
894 
895                 return size;
896             }
897 
898             packet_header |= RxMulticast;
899 
900             DPRINTF(">>> multicast packet received\n");
901 
902             /* update tally counter */
903             ++s->tally_counters.RxOkMul;
904 
905         } else if (s->phys[0] == buf[0] &&
906                    s->phys[1] == buf[1] &&
907                    s->phys[2] == buf[2] &&
908                    s->phys[3] == buf[3] &&
909                    s->phys[4] == buf[4] &&
910                    s->phys[5] == buf[5]) {
911             /* match */
912             if (!(s->RxConfig & AcceptMyPhys))
913             {
914                 DPRINTF(">>> rejecting physical address matching packet\n");
915 
916                 /* update tally counter */
917                 ++s->tally_counters.RxERR;
918 
919                 return size;
920             }
921 
922             packet_header |= RxPhysical;
923 
924             DPRINTF(">>> physical address matching packet received\n");
925 
926             /* update tally counter */
927             ++s->tally_counters.RxOkPhy;
928 
929         } else {
930 
931             DPRINTF(">>> unknown packet\n");
932 
933             /* update tally counter */
934             ++s->tally_counters.RxERR;
935 
936             return size;
937         }
938     }
939 
940     if (rtl8139_cp_receiver_enabled(s))
941     {
942         if (!rtl8139_cp_rx_valid(s)) {
943             return size;
944         }
945 
946         DPRINTF("in C+ Rx mode ================\n");
947 
948         /* begin C+ receiver mode */
949 
950 /* w0 ownership flag */
951 #define CP_RX_OWN (1<<31)
952 /* w0 end of ring flag */
953 #define CP_RX_EOR (1<<30)
954 /* w0 bits 0...12 : buffer size */
955 #define CP_RX_BUFFER_SIZE_MASK ((1<<13) - 1)
956 /* w1 tag available flag */
957 #define CP_RX_TAVA (1<<16)
958 /* w1 bits 0...15 : VLAN tag */
959 #define CP_RX_VLAN_TAG_MASK ((1<<16) - 1)
960 /* w2 low  32bit of Rx buffer ptr */
961 /* w3 high 32bit of Rx buffer ptr */
962 
963         int descriptor = s->currCPlusRxDesc;
964         dma_addr_t cplus_rx_ring_desc;
965 
966         cplus_rx_ring_desc = rtl8139_addr64(s->RxRingAddrLO, s->RxRingAddrHI);
967         cplus_rx_ring_desc += 16 * descriptor;
968 
969         DPRINTF("+++ C+ mode reading RX descriptor %d from host memory at "
970             "%08x %08x = "DMA_ADDR_FMT"\n", descriptor, s->RxRingAddrHI,
971             s->RxRingAddrLO, cplus_rx_ring_desc);
972 
973         uint32_t val, rxdw0,rxdw1,rxbufLO,rxbufHI;
974 
975         pci_dma_read(d, cplus_rx_ring_desc, &val, 4);
976         rxdw0 = le32_to_cpu(val);
977         pci_dma_read(d, cplus_rx_ring_desc+4, &val, 4);
978         rxdw1 = le32_to_cpu(val);
979         pci_dma_read(d, cplus_rx_ring_desc+8, &val, 4);
980         rxbufLO = le32_to_cpu(val);
981         pci_dma_read(d, cplus_rx_ring_desc+12, &val, 4);
982         rxbufHI = le32_to_cpu(val);
983 
984         DPRINTF("+++ C+ mode RX descriptor %d %08x %08x %08x %08x\n",
985             descriptor, rxdw0, rxdw1, rxbufLO, rxbufHI);
986 
987         if (!(rxdw0 & CP_RX_OWN))
988         {
989             DPRINTF("C+ Rx mode : descriptor %d is owned by host\n",
990                 descriptor);
991 
992             s->IntrStatus |= RxOverflow;
993             ++s->RxMissed;
994 
995             /* update tally counter */
996             ++s->tally_counters.RxERR;
997             ++s->tally_counters.MissPkt;
998 
999             rtl8139_update_irq(s);
1000             return size_;
1001         }
1002 
1003         uint32_t rx_space = rxdw0 & CP_RX_BUFFER_SIZE_MASK;
1004 
1005         /* write VLAN info to descriptor variables. */
1006         if (s->CpCmd & CPlusRxVLAN &&
1007             lduw_be_p(&buf[ETH_ALEN * 2]) == ETH_P_VLAN) {
1008             dot1q_buf = &buf[ETH_ALEN * 2];
1009             size -= VLAN_HLEN;
1010             /* if too small buffer, use the tailroom added duing expansion */
1011             if (size < MIN_BUF_SIZE) {
1012                 size = MIN_BUF_SIZE;
1013             }
1014 
1015             rxdw1 &= ~CP_RX_VLAN_TAG_MASK;
1016             /* BE + ~le_to_cpu()~ + cpu_to_le() = BE */
1017             rxdw1 |= CP_RX_TAVA | lduw_le_p(&dot1q_buf[ETHER_TYPE_LEN]);
1018 
1019             DPRINTF("C+ Rx mode : extracted vlan tag with tci: ""%u\n",
1020                 lduw_be_p(&dot1q_buf[ETHER_TYPE_LEN]));
1021         } else {
1022             /* reset VLAN tag flag */
1023             rxdw1 &= ~CP_RX_TAVA;
1024         }
1025 
1026         /* TODO: scatter the packet over available receive ring descriptors space */
1027 
1028         if (size+4 > rx_space)
1029         {
1030             DPRINTF("C+ Rx mode : descriptor %d size %d received %zu + 4\n",
1031                 descriptor, rx_space, size);
1032 
1033             s->IntrStatus |= RxOverflow;
1034             ++s->RxMissed;
1035 
1036             /* update tally counter */
1037             ++s->tally_counters.RxERR;
1038             ++s->tally_counters.MissPkt;
1039 
1040             rtl8139_update_irq(s);
1041             return size_;
1042         }
1043 
1044         dma_addr_t rx_addr = rtl8139_addr64(rxbufLO, rxbufHI);
1045 
1046         /* receive/copy to target memory */
1047         if (dot1q_buf) {
1048             pci_dma_write(d, rx_addr, buf, 2 * ETH_ALEN);
1049             pci_dma_write(d, rx_addr + 2 * ETH_ALEN,
1050                           buf + 2 * ETH_ALEN + VLAN_HLEN,
1051                           size - 2 * ETH_ALEN);
1052         } else {
1053             pci_dma_write(d, rx_addr, buf, size);
1054         }
1055 
1056         if (s->CpCmd & CPlusRxChkSum)
1057         {
1058             /* do some packet checksumming */
1059         }
1060 
1061         /* write checksum */
1062         val = cpu_to_le32(crc32(0, buf, size_));
1063         pci_dma_write(d, rx_addr+size, (uint8_t *)&val, 4);
1064 
1065 /* first segment of received packet flag */
1066 #define CP_RX_STATUS_FS (1<<29)
1067 /* last segment of received packet flag */
1068 #define CP_RX_STATUS_LS (1<<28)
1069 /* multicast packet flag */
1070 #define CP_RX_STATUS_MAR (1<<26)
1071 /* physical-matching packet flag */
1072 #define CP_RX_STATUS_PAM (1<<25)
1073 /* broadcast packet flag */
1074 #define CP_RX_STATUS_BAR (1<<24)
1075 /* runt packet flag */
1076 #define CP_RX_STATUS_RUNT (1<<19)
1077 /* crc error flag */
1078 #define CP_RX_STATUS_CRC (1<<18)
1079 /* IP checksum error flag */
1080 #define CP_RX_STATUS_IPF (1<<15)
1081 /* UDP checksum error flag */
1082 #define CP_RX_STATUS_UDPF (1<<14)
1083 /* TCP checksum error flag */
1084 #define CP_RX_STATUS_TCPF (1<<13)
1085 
1086         /* transfer ownership to target */
1087         rxdw0 &= ~CP_RX_OWN;
1088 
1089         /* set first segment bit */
1090         rxdw0 |= CP_RX_STATUS_FS;
1091 
1092         /* set last segment bit */
1093         rxdw0 |= CP_RX_STATUS_LS;
1094 
1095         /* set received packet type flags */
1096         if (packet_header & RxBroadcast)
1097             rxdw0 |= CP_RX_STATUS_BAR;
1098         if (packet_header & RxMulticast)
1099             rxdw0 |= CP_RX_STATUS_MAR;
1100         if (packet_header & RxPhysical)
1101             rxdw0 |= CP_RX_STATUS_PAM;
1102 
1103         /* set received size */
1104         rxdw0 &= ~CP_RX_BUFFER_SIZE_MASK;
1105         rxdw0 |= (size+4);
1106 
1107         /* update ring data */
1108         val = cpu_to_le32(rxdw0);
1109         pci_dma_write(d, cplus_rx_ring_desc, (uint8_t *)&val, 4);
1110         val = cpu_to_le32(rxdw1);
1111         pci_dma_write(d, cplus_rx_ring_desc+4, (uint8_t *)&val, 4);
1112 
1113         /* update tally counter */
1114         ++s->tally_counters.RxOk;
1115 
1116         /* seek to next Rx descriptor */
1117         if (rxdw0 & CP_RX_EOR)
1118         {
1119             s->currCPlusRxDesc = 0;
1120         }
1121         else
1122         {
1123             ++s->currCPlusRxDesc;
1124         }
1125 
1126         DPRINTF("done C+ Rx mode ----------------\n");
1127 
1128     }
1129     else
1130     {
1131         DPRINTF("in ring Rx mode ================\n");
1132 
1133         /* begin ring receiver mode */
1134         int avail = MOD2(s->RxBufferSize + s->RxBufPtr - s->RxBufAddr, s->RxBufferSize);
1135 
1136         /* if receiver buffer is empty then avail == 0 */
1137 
1138 #define RX_ALIGN(x) (((x) + 3) & ~0x3)
1139 
1140         if (avail != 0 && RX_ALIGN(size + 8) >= avail)
1141         {
1142             DPRINTF("rx overflow: rx buffer length %d head 0x%04x "
1143                 "read 0x%04x === available 0x%04x need 0x%04zx\n",
1144                 s->RxBufferSize, s->RxBufAddr, s->RxBufPtr, avail, size + 8);
1145 
1146             s->IntrStatus |= RxOverflow;
1147             ++s->RxMissed;
1148             rtl8139_update_irq(s);
1149             return 0;
1150         }
1151 
1152         packet_header |= RxStatusOK;
1153 
1154         packet_header |= (((size+4) << 16) & 0xffff0000);
1155 
1156         /* write header */
1157         uint32_t val = cpu_to_le32(packet_header);
1158 
1159         rtl8139_write_buffer(s, (uint8_t *)&val, 4);
1160 
1161         rtl8139_write_buffer(s, buf, size);
1162 
1163         /* write checksum */
1164         val = cpu_to_le32(crc32(0, buf, size));
1165         rtl8139_write_buffer(s, (uint8_t *)&val, 4);
1166 
1167         /* correct buffer write pointer */
1168         s->RxBufAddr = MOD2(RX_ALIGN(s->RxBufAddr), s->RxBufferSize);
1169 
1170         /* now we can signal we have received something */
1171 
1172         DPRINTF("received: rx buffer length %d head 0x%04x read 0x%04x\n",
1173             s->RxBufferSize, s->RxBufAddr, s->RxBufPtr);
1174     }
1175 
1176     s->IntrStatus |= RxOK;
1177 
1178     if (do_interrupt)
1179     {
1180         rtl8139_update_irq(s);
1181     }
1182 
1183     return size_;
1184 }
1185 
1186 static ssize_t rtl8139_receive(NetClientState *nc, const uint8_t *buf, size_t size)
1187 {
1188     return rtl8139_do_receive(nc, buf, size, 1);
1189 }
1190 
1191 static void rtl8139_reset_rxring(RTL8139State *s, uint32_t bufferSize)
1192 {
1193     s->RxBufferSize = bufferSize;
1194     s->RxBufPtr  = 0;
1195     s->RxBufAddr = 0;
1196 }
1197 
1198 static void rtl8139_reset_phy(RTL8139State *s)
1199 {
1200     s->BasicModeStatus  = 0x7809;
1201     s->BasicModeStatus |= 0x0020; /* autonegotiation completed */
1202     /* preserve link state */
1203     s->BasicModeStatus |= qemu_get_queue(s->nic)->link_down ? 0 : 0x04;
1204 
1205     s->NWayAdvert    = 0x05e1; /* all modes, full duplex */
1206     s->NWayLPAR      = 0x05e1; /* all modes, full duplex */
1207     s->NWayExpansion = 0x0001; /* autonegotiation supported */
1208 
1209     s->CSCR = CSCR_F_LINK_100 | CSCR_HEART_BIT | CSCR_LD;
1210 }
1211 
1212 static void rtl8139_reset(DeviceState *d)
1213 {
1214     RTL8139State *s = RTL8139(d);
1215     int i;
1216 
1217     /* restore MAC address */
1218     memcpy(s->phys, s->conf.macaddr.a, 6);
1219     qemu_format_nic_info_str(qemu_get_queue(s->nic), s->phys);
1220 
1221     /* reset interrupt mask */
1222     s->IntrStatus = 0;
1223     s->IntrMask = 0;
1224 
1225     rtl8139_update_irq(s);
1226 
1227     /* mark all status registers as owned by host */
1228     for (i = 0; i < 4; ++i)
1229     {
1230         s->TxStatus[i] = TxHostOwns;
1231     }
1232 
1233     s->currTxDesc = 0;
1234     s->currCPlusRxDesc = 0;
1235     s->currCPlusTxDesc = 0;
1236 
1237     s->RxRingAddrLO = 0;
1238     s->RxRingAddrHI = 0;
1239 
1240     s->RxBuf = 0;
1241 
1242     rtl8139_reset_rxring(s, 8192);
1243 
1244     /* ACK the reset */
1245     s->TxConfig = 0;
1246 
1247 #if 0
1248 //    s->TxConfig |= HW_REVID(1, 0, 0, 0, 0, 0, 0); // RTL-8139  HasHltClk
1249     s->clock_enabled = 0;
1250 #else
1251     s->TxConfig |= HW_REVID(1, 1, 1, 0, 1, 1, 0); // RTL-8139C+ HasLWake
1252     s->clock_enabled = 1;
1253 #endif
1254 
1255     s->bChipCmdState = CmdReset; /* RxBufEmpty bit is calculated on read from ChipCmd */;
1256 
1257     /* set initial state data */
1258     s->Config0 = 0x0; /* No boot ROM */
1259     s->Config1 = 0xC; /* IO mapped and MEM mapped registers available */
1260     s->Config3 = 0x1; /* fast back-to-back compatible */
1261     s->Config5 = 0x0;
1262 
1263     s->CpCmd   = 0x0; /* reset C+ mode */
1264     s->cplus_enabled = 0;
1265 
1266 //    s->BasicModeCtrl = 0x3100; // 100Mbps, full duplex, autonegotiation
1267 //    s->BasicModeCtrl = 0x2100; // 100Mbps, full duplex
1268     s->BasicModeCtrl = 0x1000; // autonegotiation
1269 
1270     rtl8139_reset_phy(s);
1271 
1272     /* also reset timer and disable timer interrupt */
1273     s->TCTR = 0;
1274     s->TimerInt = 0;
1275     s->TCTR_base = 0;
1276     rtl8139_set_next_tctr_time(s);
1277 
1278     /* reset tally counters */
1279     RTL8139TallyCounters_clear(&s->tally_counters);
1280 }
1281 
1282 static void RTL8139TallyCounters_clear(RTL8139TallyCounters* counters)
1283 {
1284     counters->TxOk = 0;
1285     counters->RxOk = 0;
1286     counters->TxERR = 0;
1287     counters->RxERR = 0;
1288     counters->MissPkt = 0;
1289     counters->FAE = 0;
1290     counters->Tx1Col = 0;
1291     counters->TxMCol = 0;
1292     counters->RxOkPhy = 0;
1293     counters->RxOkBrd = 0;
1294     counters->RxOkMul = 0;
1295     counters->TxAbt = 0;
1296     counters->TxUndrn = 0;
1297 }
1298 
1299 static void RTL8139TallyCounters_dma_write(RTL8139State *s, dma_addr_t tc_addr)
1300 {
1301     PCIDevice *d = PCI_DEVICE(s);
1302     RTL8139TallyCounters *tally_counters = &s->tally_counters;
1303     uint16_t val16;
1304     uint32_t val32;
1305     uint64_t val64;
1306 
1307     val64 = cpu_to_le64(tally_counters->TxOk);
1308     pci_dma_write(d, tc_addr + 0,     (uint8_t *)&val64, 8);
1309 
1310     val64 = cpu_to_le64(tally_counters->RxOk);
1311     pci_dma_write(d, tc_addr + 8,     (uint8_t *)&val64, 8);
1312 
1313     val64 = cpu_to_le64(tally_counters->TxERR);
1314     pci_dma_write(d, tc_addr + 16,    (uint8_t *)&val64, 8);
1315 
1316     val32 = cpu_to_le32(tally_counters->RxERR);
1317     pci_dma_write(d, tc_addr + 24,    (uint8_t *)&val32, 4);
1318 
1319     val16 = cpu_to_le16(tally_counters->MissPkt);
1320     pci_dma_write(d, tc_addr + 28,    (uint8_t *)&val16, 2);
1321 
1322     val16 = cpu_to_le16(tally_counters->FAE);
1323     pci_dma_write(d, tc_addr + 30,    (uint8_t *)&val16, 2);
1324 
1325     val32 = cpu_to_le32(tally_counters->Tx1Col);
1326     pci_dma_write(d, tc_addr + 32,    (uint8_t *)&val32, 4);
1327 
1328     val32 = cpu_to_le32(tally_counters->TxMCol);
1329     pci_dma_write(d, tc_addr + 36,    (uint8_t *)&val32, 4);
1330 
1331     val64 = cpu_to_le64(tally_counters->RxOkPhy);
1332     pci_dma_write(d, tc_addr + 40,    (uint8_t *)&val64, 8);
1333 
1334     val64 = cpu_to_le64(tally_counters->RxOkBrd);
1335     pci_dma_write(d, tc_addr + 48,    (uint8_t *)&val64, 8);
1336 
1337     val32 = cpu_to_le32(tally_counters->RxOkMul);
1338     pci_dma_write(d, tc_addr + 56,    (uint8_t *)&val32, 4);
1339 
1340     val16 = cpu_to_le16(tally_counters->TxAbt);
1341     pci_dma_write(d, tc_addr + 60,    (uint8_t *)&val16, 2);
1342 
1343     val16 = cpu_to_le16(tally_counters->TxUndrn);
1344     pci_dma_write(d, tc_addr + 62,    (uint8_t *)&val16, 2);
1345 }
1346 
1347 static void rtl8139_ChipCmd_write(RTL8139State *s, uint32_t val)
1348 {
1349     DeviceState *d = DEVICE(s);
1350 
1351     val &= 0xff;
1352 
1353     DPRINTF("ChipCmd write val=0x%08x\n", val);
1354 
1355     if (val & CmdReset)
1356     {
1357         DPRINTF("ChipCmd reset\n");
1358         rtl8139_reset(d);
1359     }
1360     if (val & CmdRxEnb)
1361     {
1362         DPRINTF("ChipCmd enable receiver\n");
1363 
1364         s->currCPlusRxDesc = 0;
1365     }
1366     if (val & CmdTxEnb)
1367     {
1368         DPRINTF("ChipCmd enable transmitter\n");
1369 
1370         s->currCPlusTxDesc = 0;
1371     }
1372 
1373     /* mask unwritable bits */
1374     val = SET_MASKED(val, 0xe3, s->bChipCmdState);
1375 
1376     /* Deassert reset pin before next read */
1377     val &= ~CmdReset;
1378 
1379     s->bChipCmdState = val;
1380 }
1381 
1382 static int rtl8139_RxBufferEmpty(RTL8139State *s)
1383 {
1384     int unread = MOD2(s->RxBufferSize + s->RxBufAddr - s->RxBufPtr, s->RxBufferSize);
1385 
1386     if (unread != 0)
1387     {
1388         DPRINTF("receiver buffer data available 0x%04x\n", unread);
1389         return 0;
1390     }
1391 
1392     DPRINTF("receiver buffer is empty\n");
1393 
1394     return 1;
1395 }
1396 
1397 static uint32_t rtl8139_ChipCmd_read(RTL8139State *s)
1398 {
1399     uint32_t ret = s->bChipCmdState;
1400 
1401     if (rtl8139_RxBufferEmpty(s))
1402         ret |= RxBufEmpty;
1403 
1404     DPRINTF("ChipCmd read val=0x%04x\n", ret);
1405 
1406     return ret;
1407 }
1408 
1409 static void rtl8139_CpCmd_write(RTL8139State *s, uint32_t val)
1410 {
1411     val &= 0xffff;
1412 
1413     DPRINTF("C+ command register write(w) val=0x%04x\n", val);
1414 
1415     s->cplus_enabled = 1;
1416 
1417     /* mask unwritable bits */
1418     val = SET_MASKED(val, 0xff84, s->CpCmd);
1419 
1420     s->CpCmd = val;
1421 }
1422 
1423 static uint32_t rtl8139_CpCmd_read(RTL8139State *s)
1424 {
1425     uint32_t ret = s->CpCmd;
1426 
1427     DPRINTF("C+ command register read(w) val=0x%04x\n", ret);
1428 
1429     return ret;
1430 }
1431 
1432 static void rtl8139_IntrMitigate_write(RTL8139State *s, uint32_t val)
1433 {
1434     DPRINTF("C+ IntrMitigate register write(w) val=0x%04x\n", val);
1435 }
1436 
1437 static uint32_t rtl8139_IntrMitigate_read(RTL8139State *s)
1438 {
1439     uint32_t ret = 0;
1440 
1441     DPRINTF("C+ IntrMitigate register read(w) val=0x%04x\n", ret);
1442 
1443     return ret;
1444 }
1445 
1446 static int rtl8139_config_writable(RTL8139State *s)
1447 {
1448     if ((s->Cfg9346 & Chip9346_op_mask) == Cfg9346_ConfigWrite)
1449     {
1450         return 1;
1451     }
1452 
1453     DPRINTF("Configuration registers are write-protected\n");
1454 
1455     return 0;
1456 }
1457 
1458 static void rtl8139_BasicModeCtrl_write(RTL8139State *s, uint32_t val)
1459 {
1460     val &= 0xffff;
1461 
1462     DPRINTF("BasicModeCtrl register write(w) val=0x%04x\n", val);
1463 
1464     /* mask unwritable bits */
1465     uint32_t mask = 0xccff;
1466 
1467     if (1 || !rtl8139_config_writable(s))
1468     {
1469         /* Speed setting and autonegotiation enable bits are read-only */
1470         mask |= 0x3000;
1471         /* Duplex mode setting is read-only */
1472         mask |= 0x0100;
1473     }
1474 
1475     if (val & 0x8000) {
1476         /* Reset PHY */
1477         rtl8139_reset_phy(s);
1478     }
1479 
1480     val = SET_MASKED(val, mask, s->BasicModeCtrl);
1481 
1482     s->BasicModeCtrl = val;
1483 }
1484 
1485 static uint32_t rtl8139_BasicModeCtrl_read(RTL8139State *s)
1486 {
1487     uint32_t ret = s->BasicModeCtrl;
1488 
1489     DPRINTF("BasicModeCtrl register read(w) val=0x%04x\n", ret);
1490 
1491     return ret;
1492 }
1493 
1494 static void rtl8139_BasicModeStatus_write(RTL8139State *s, uint32_t val)
1495 {
1496     val &= 0xffff;
1497 
1498     DPRINTF("BasicModeStatus register write(w) val=0x%04x\n", val);
1499 
1500     /* mask unwritable bits */
1501     val = SET_MASKED(val, 0xff3f, s->BasicModeStatus);
1502 
1503     s->BasicModeStatus = val;
1504 }
1505 
1506 static uint32_t rtl8139_BasicModeStatus_read(RTL8139State *s)
1507 {
1508     uint32_t ret = s->BasicModeStatus;
1509 
1510     DPRINTF("BasicModeStatus register read(w) val=0x%04x\n", ret);
1511 
1512     return ret;
1513 }
1514 
1515 static void rtl8139_Cfg9346_write(RTL8139State *s, uint32_t val)
1516 {
1517     DeviceState *d = DEVICE(s);
1518 
1519     val &= 0xff;
1520 
1521     DPRINTF("Cfg9346 write val=0x%02x\n", val);
1522 
1523     /* mask unwritable bits */
1524     val = SET_MASKED(val, 0x31, s->Cfg9346);
1525 
1526     uint32_t opmode = val & 0xc0;
1527     uint32_t eeprom_val = val & 0xf;
1528 
1529     if (opmode == 0x80) {
1530         /* eeprom access */
1531         int eecs = (eeprom_val & 0x08)?1:0;
1532         int eesk = (eeprom_val & 0x04)?1:0;
1533         int eedi = (eeprom_val & 0x02)?1:0;
1534         prom9346_set_wire(s, eecs, eesk, eedi);
1535     } else if (opmode == 0x40) {
1536         /* Reset.  */
1537         val = 0;
1538         rtl8139_reset(d);
1539     }
1540 
1541     s->Cfg9346 = val;
1542 }
1543 
1544 static uint32_t rtl8139_Cfg9346_read(RTL8139State *s)
1545 {
1546     uint32_t ret = s->Cfg9346;
1547 
1548     uint32_t opmode = ret & 0xc0;
1549 
1550     if (opmode == 0x80)
1551     {
1552         /* eeprom access */
1553         int eedo = prom9346_get_wire(s);
1554         if (eedo)
1555         {
1556             ret |=  0x01;
1557         }
1558         else
1559         {
1560             ret &= ~0x01;
1561         }
1562     }
1563 
1564     DPRINTF("Cfg9346 read val=0x%02x\n", ret);
1565 
1566     return ret;
1567 }
1568 
1569 static void rtl8139_Config0_write(RTL8139State *s, uint32_t val)
1570 {
1571     val &= 0xff;
1572 
1573     DPRINTF("Config0 write val=0x%02x\n", val);
1574 
1575     if (!rtl8139_config_writable(s)) {
1576         return;
1577     }
1578 
1579     /* mask unwritable bits */
1580     val = SET_MASKED(val, 0xf8, s->Config0);
1581 
1582     s->Config0 = val;
1583 }
1584 
1585 static uint32_t rtl8139_Config0_read(RTL8139State *s)
1586 {
1587     uint32_t ret = s->Config0;
1588 
1589     DPRINTF("Config0 read val=0x%02x\n", ret);
1590 
1591     return ret;
1592 }
1593 
1594 static void rtl8139_Config1_write(RTL8139State *s, uint32_t val)
1595 {
1596     val &= 0xff;
1597 
1598     DPRINTF("Config1 write val=0x%02x\n", val);
1599 
1600     if (!rtl8139_config_writable(s)) {
1601         return;
1602     }
1603 
1604     /* mask unwritable bits */
1605     val = SET_MASKED(val, 0xC, s->Config1);
1606 
1607     s->Config1 = val;
1608 }
1609 
1610 static uint32_t rtl8139_Config1_read(RTL8139State *s)
1611 {
1612     uint32_t ret = s->Config1;
1613 
1614     DPRINTF("Config1 read val=0x%02x\n", ret);
1615 
1616     return ret;
1617 }
1618 
1619 static void rtl8139_Config3_write(RTL8139State *s, uint32_t val)
1620 {
1621     val &= 0xff;
1622 
1623     DPRINTF("Config3 write val=0x%02x\n", val);
1624 
1625     if (!rtl8139_config_writable(s)) {
1626         return;
1627     }
1628 
1629     /* mask unwritable bits */
1630     val = SET_MASKED(val, 0x8F, s->Config3);
1631 
1632     s->Config3 = val;
1633 }
1634 
1635 static uint32_t rtl8139_Config3_read(RTL8139State *s)
1636 {
1637     uint32_t ret = s->Config3;
1638 
1639     DPRINTF("Config3 read val=0x%02x\n", ret);
1640 
1641     return ret;
1642 }
1643 
1644 static void rtl8139_Config4_write(RTL8139State *s, uint32_t val)
1645 {
1646     val &= 0xff;
1647 
1648     DPRINTF("Config4 write val=0x%02x\n", val);
1649 
1650     if (!rtl8139_config_writable(s)) {
1651         return;
1652     }
1653 
1654     /* mask unwritable bits */
1655     val = SET_MASKED(val, 0x0a, s->Config4);
1656 
1657     s->Config4 = val;
1658 }
1659 
1660 static uint32_t rtl8139_Config4_read(RTL8139State *s)
1661 {
1662     uint32_t ret = s->Config4;
1663 
1664     DPRINTF("Config4 read val=0x%02x\n", ret);
1665 
1666     return ret;
1667 }
1668 
1669 static void rtl8139_Config5_write(RTL8139State *s, uint32_t val)
1670 {
1671     val &= 0xff;
1672 
1673     DPRINTF("Config5 write val=0x%02x\n", val);
1674 
1675     /* mask unwritable bits */
1676     val = SET_MASKED(val, 0x80, s->Config5);
1677 
1678     s->Config5 = val;
1679 }
1680 
1681 static uint32_t rtl8139_Config5_read(RTL8139State *s)
1682 {
1683     uint32_t ret = s->Config5;
1684 
1685     DPRINTF("Config5 read val=0x%02x\n", ret);
1686 
1687     return ret;
1688 }
1689 
1690 static void rtl8139_TxConfig_write(RTL8139State *s, uint32_t val)
1691 {
1692     if (!rtl8139_transmitter_enabled(s))
1693     {
1694         DPRINTF("transmitter disabled; no TxConfig write val=0x%08x\n", val);
1695         return;
1696     }
1697 
1698     DPRINTF("TxConfig write val=0x%08x\n", val);
1699 
1700     val = SET_MASKED(val, TxVersionMask | 0x8070f80f, s->TxConfig);
1701 
1702     s->TxConfig = val;
1703 }
1704 
1705 static void rtl8139_TxConfig_writeb(RTL8139State *s, uint32_t val)
1706 {
1707     DPRINTF("RTL8139C TxConfig via write(b) val=0x%02x\n", val);
1708 
1709     uint32_t tc = s->TxConfig;
1710     tc &= 0xFFFFFF00;
1711     tc |= (val & 0x000000FF);
1712     rtl8139_TxConfig_write(s, tc);
1713 }
1714 
1715 static uint32_t rtl8139_TxConfig_read(RTL8139State *s)
1716 {
1717     uint32_t ret = s->TxConfig;
1718 
1719     DPRINTF("TxConfig read val=0x%04x\n", ret);
1720 
1721     return ret;
1722 }
1723 
1724 static void rtl8139_RxConfig_write(RTL8139State *s, uint32_t val)
1725 {
1726     DPRINTF("RxConfig write val=0x%08x\n", val);
1727 
1728     /* mask unwritable bits */
1729     val = SET_MASKED(val, 0xf0fc0040, s->RxConfig);
1730 
1731     s->RxConfig = val;
1732 
1733     /* reset buffer size and read/write pointers */
1734     rtl8139_reset_rxring(s, 8192 << ((s->RxConfig >> 11) & 0x3));
1735 
1736     DPRINTF("RxConfig write reset buffer size to %d\n", s->RxBufferSize);
1737 }
1738 
1739 static uint32_t rtl8139_RxConfig_read(RTL8139State *s)
1740 {
1741     uint32_t ret = s->RxConfig;
1742 
1743     DPRINTF("RxConfig read val=0x%08x\n", ret);
1744 
1745     return ret;
1746 }
1747 
1748 static void rtl8139_transfer_frame(RTL8139State *s, uint8_t *buf, int size,
1749     int do_interrupt, const uint8_t *dot1q_buf)
1750 {
1751     struct iovec *iov = NULL;
1752     struct iovec vlan_iov[3];
1753 
1754     if (!size)
1755     {
1756         DPRINTF("+++ empty ethernet frame\n");
1757         return;
1758     }
1759 
1760     if (dot1q_buf && size >= ETH_ALEN * 2) {
1761         iov = (struct iovec[3]) {
1762             { .iov_base = buf, .iov_len = ETH_ALEN * 2 },
1763             { .iov_base = (void *) dot1q_buf, .iov_len = VLAN_HLEN },
1764             { .iov_base = buf + ETH_ALEN * 2,
1765                 .iov_len = size - ETH_ALEN * 2 },
1766         };
1767 
1768         memcpy(vlan_iov, iov, sizeof(vlan_iov));
1769         iov = vlan_iov;
1770     }
1771 
1772     if (TxLoopBack == (s->TxConfig & TxLoopBack))
1773     {
1774         size_t buf2_size;
1775         uint8_t *buf2;
1776 
1777         if (iov) {
1778             buf2_size = iov_size(iov, 3);
1779             buf2 = g_malloc(buf2_size);
1780             iov_to_buf(iov, 3, 0, buf2, buf2_size);
1781             buf = buf2;
1782         }
1783 
1784         DPRINTF("+++ transmit loopback mode\n");
1785         qemu_receive_packet(qemu_get_queue(s->nic), buf, size);
1786 
1787         if (iov) {
1788             g_free(buf2);
1789         }
1790     }
1791     else
1792     {
1793         if (iov) {
1794             qemu_sendv_packet(qemu_get_queue(s->nic), iov, 3);
1795         } else {
1796             qemu_send_packet(qemu_get_queue(s->nic), buf, size);
1797         }
1798     }
1799 }
1800 
1801 static int rtl8139_transmit_one(RTL8139State *s, int descriptor)
1802 {
1803     if (!rtl8139_transmitter_enabled(s))
1804     {
1805         DPRINTF("+++ cannot transmit from descriptor %d: transmitter "
1806             "disabled\n", descriptor);
1807         return 0;
1808     }
1809 
1810     if (s->TxStatus[descriptor] & TxHostOwns)
1811     {
1812         DPRINTF("+++ cannot transmit from descriptor %d: owned by host "
1813             "(%08x)\n", descriptor, s->TxStatus[descriptor]);
1814         return 0;
1815     }
1816 
1817     DPRINTF("+++ transmitting from descriptor %d\n", descriptor);
1818 
1819     PCIDevice *d = PCI_DEVICE(s);
1820     int txsize = s->TxStatus[descriptor] & 0x1fff;
1821     uint8_t txbuffer[0x2000];
1822 
1823     DPRINTF("+++ transmit reading %d bytes from host memory at 0x%08x\n",
1824         txsize, s->TxAddr[descriptor]);
1825 
1826     pci_dma_read(d, s->TxAddr[descriptor], txbuffer, txsize);
1827 
1828     /* Mark descriptor as transferred */
1829     s->TxStatus[descriptor] |= TxHostOwns;
1830     s->TxStatus[descriptor] |= TxStatOK;
1831 
1832     rtl8139_transfer_frame(s, txbuffer, txsize, 0, NULL);
1833 
1834     DPRINTF("+++ transmitted %d bytes from descriptor %d\n", txsize,
1835         descriptor);
1836 
1837     /* update interrupt */
1838     s->IntrStatus |= TxOK;
1839     rtl8139_update_irq(s);
1840 
1841     return 1;
1842 }
1843 
1844 #define TCP_HEADER_CLEAR_FLAGS(tcp, off) ((tcp)->th_offset_flags &= cpu_to_be16(~TCP_FLAGS_ONLY(off)))
1845 
1846 /* produces ones' complement sum of data */
1847 static uint16_t ones_complement_sum(uint8_t *data, size_t len)
1848 {
1849     uint32_t result = 0;
1850 
1851     for (; len > 1; data+=2, len-=2)
1852     {
1853         result += *(uint16_t*)data;
1854     }
1855 
1856     /* add the remainder byte */
1857     if (len)
1858     {
1859         uint8_t odd[2] = {*data, 0};
1860         result += *(uint16_t*)odd;
1861     }
1862 
1863     while (result>>16)
1864         result = (result & 0xffff) + (result >> 16);
1865 
1866     return result;
1867 }
1868 
1869 static uint16_t ip_checksum(void *data, size_t len)
1870 {
1871     return ~ones_complement_sum((uint8_t*)data, len);
1872 }
1873 
1874 static int rtl8139_cplus_transmit_one(RTL8139State *s)
1875 {
1876     if (!rtl8139_transmitter_enabled(s))
1877     {
1878         DPRINTF("+++ C+ mode: transmitter disabled\n");
1879         return 0;
1880     }
1881 
1882     if (!rtl8139_cp_transmitter_enabled(s))
1883     {
1884         DPRINTF("+++ C+ mode: C+ transmitter disabled\n");
1885         return 0 ;
1886     }
1887 
1888     PCIDevice *d = PCI_DEVICE(s);
1889     int descriptor = s->currCPlusTxDesc;
1890 
1891     dma_addr_t cplus_tx_ring_desc = rtl8139_addr64(s->TxAddr[0], s->TxAddr[1]);
1892 
1893     /* Normal priority ring */
1894     cplus_tx_ring_desc += 16 * descriptor;
1895 
1896     DPRINTF("+++ C+ mode reading TX descriptor %d from host memory at "
1897         "%08x %08x = 0x"DMA_ADDR_FMT"\n", descriptor, s->TxAddr[1],
1898         s->TxAddr[0], cplus_tx_ring_desc);
1899 
1900     uint32_t val, txdw0,txdw1,txbufLO,txbufHI;
1901 
1902     pci_dma_read(d, cplus_tx_ring_desc,    (uint8_t *)&val, 4);
1903     txdw0 = le32_to_cpu(val);
1904     pci_dma_read(d, cplus_tx_ring_desc+4,  (uint8_t *)&val, 4);
1905     txdw1 = le32_to_cpu(val);
1906     pci_dma_read(d, cplus_tx_ring_desc+8,  (uint8_t *)&val, 4);
1907     txbufLO = le32_to_cpu(val);
1908     pci_dma_read(d, cplus_tx_ring_desc+12, (uint8_t *)&val, 4);
1909     txbufHI = le32_to_cpu(val);
1910 
1911     DPRINTF("+++ C+ mode TX descriptor %d %08x %08x %08x %08x\n", descriptor,
1912         txdw0, txdw1, txbufLO, txbufHI);
1913 
1914 /* w0 ownership flag */
1915 #define CP_TX_OWN (1<<31)
1916 /* w0 end of ring flag */
1917 #define CP_TX_EOR (1<<30)
1918 /* first segment of received packet flag */
1919 #define CP_TX_FS (1<<29)
1920 /* last segment of received packet flag */
1921 #define CP_TX_LS (1<<28)
1922 /* large send packet flag */
1923 #define CP_TX_LGSEN (1<<27)
1924 /* large send MSS mask, bits 16...26 */
1925 #define CP_TC_LGSEN_MSS_SHIFT 16
1926 #define CP_TC_LGSEN_MSS_MASK ((1 << 11) - 1)
1927 
1928 /* IP checksum offload flag */
1929 #define CP_TX_IPCS (1<<18)
1930 /* UDP checksum offload flag */
1931 #define CP_TX_UDPCS (1<<17)
1932 /* TCP checksum offload flag */
1933 #define CP_TX_TCPCS (1<<16)
1934 
1935 /* w0 bits 0...15 : buffer size */
1936 #define CP_TX_BUFFER_SIZE (1<<16)
1937 #define CP_TX_BUFFER_SIZE_MASK (CP_TX_BUFFER_SIZE - 1)
1938 /* w1 add tag flag */
1939 #define CP_TX_TAGC (1<<17)
1940 /* w1 bits 0...15 : VLAN tag (big endian) */
1941 #define CP_TX_VLAN_TAG_MASK ((1<<16) - 1)
1942 /* w2 low  32bit of Rx buffer ptr */
1943 /* w3 high 32bit of Rx buffer ptr */
1944 
1945 /* set after transmission */
1946 /* FIFO underrun flag */
1947 #define CP_TX_STATUS_UNF (1<<25)
1948 /* transmit error summary flag, valid if set any of three below */
1949 #define CP_TX_STATUS_TES (1<<23)
1950 /* out-of-window collision flag */
1951 #define CP_TX_STATUS_OWC (1<<22)
1952 /* link failure flag */
1953 #define CP_TX_STATUS_LNKF (1<<21)
1954 /* excessive collisions flag */
1955 #define CP_TX_STATUS_EXC (1<<20)
1956 
1957     if (!(txdw0 & CP_TX_OWN))
1958     {
1959         DPRINTF("C+ Tx mode : descriptor %d is owned by host\n", descriptor);
1960         return 0 ;
1961     }
1962 
1963     DPRINTF("+++ C+ Tx mode : transmitting from descriptor %d\n", descriptor);
1964 
1965     if (txdw0 & CP_TX_FS)
1966     {
1967         DPRINTF("+++ C+ Tx mode : descriptor %d is first segment "
1968             "descriptor\n", descriptor);
1969 
1970         /* reset internal buffer offset */
1971         s->cplus_txbuffer_offset = 0;
1972     }
1973 
1974     int txsize = txdw0 & CP_TX_BUFFER_SIZE_MASK;
1975     dma_addr_t tx_addr = rtl8139_addr64(txbufLO, txbufHI);
1976 
1977     /* make sure we have enough space to assemble the packet */
1978     if (!s->cplus_txbuffer)
1979     {
1980         s->cplus_txbuffer_len = CP_TX_BUFFER_SIZE;
1981         s->cplus_txbuffer = g_malloc(s->cplus_txbuffer_len);
1982         s->cplus_txbuffer_offset = 0;
1983 
1984         DPRINTF("+++ C+ mode transmission buffer allocated space %d\n",
1985             s->cplus_txbuffer_len);
1986     }
1987 
1988     if (s->cplus_txbuffer_offset + txsize >= s->cplus_txbuffer_len)
1989     {
1990         /* The spec didn't tell the maximum size, stick to CP_TX_BUFFER_SIZE */
1991         txsize = s->cplus_txbuffer_len - s->cplus_txbuffer_offset;
1992         DPRINTF("+++ C+ mode transmission buffer overrun, truncated descriptor"
1993                 "length to %d\n", txsize);
1994     }
1995 
1996     /* append more data to the packet */
1997 
1998     DPRINTF("+++ C+ mode transmit reading %d bytes from host memory at "
1999             DMA_ADDR_FMT" to offset %d\n", txsize, tx_addr,
2000             s->cplus_txbuffer_offset);
2001 
2002     pci_dma_read(d, tx_addr,
2003                  s->cplus_txbuffer + s->cplus_txbuffer_offset, txsize);
2004     s->cplus_txbuffer_offset += txsize;
2005 
2006     /* seek to next Rx descriptor */
2007     if (txdw0 & CP_TX_EOR)
2008     {
2009         s->currCPlusTxDesc = 0;
2010     }
2011     else
2012     {
2013         ++s->currCPlusTxDesc;
2014         if (s->currCPlusTxDesc >= 64)
2015             s->currCPlusTxDesc = 0;
2016     }
2017 
2018     /* Build the Tx Status Descriptor */
2019     uint32_t tx_status = txdw0;
2020 
2021     /* transfer ownership to target */
2022     tx_status &= ~CP_TX_OWN;
2023 
2024     /* reset error indicator bits */
2025     tx_status &= ~CP_TX_STATUS_UNF;
2026     tx_status &= ~CP_TX_STATUS_TES;
2027     tx_status &= ~CP_TX_STATUS_OWC;
2028     tx_status &= ~CP_TX_STATUS_LNKF;
2029     tx_status &= ~CP_TX_STATUS_EXC;
2030 
2031     /* update ring data */
2032     val = cpu_to_le32(tx_status);
2033     pci_dma_write(d, cplus_tx_ring_desc, (uint8_t *)&val, 4);
2034 
2035     /* Now decide if descriptor being processed is holding the last segment of packet */
2036     if (txdw0 & CP_TX_LS)
2037     {
2038         uint8_t dot1q_buffer_space[VLAN_HLEN];
2039         uint16_t *dot1q_buffer;
2040 
2041         DPRINTF("+++ C+ Tx mode : descriptor %d is last segment descriptor\n",
2042             descriptor);
2043 
2044         /* can transfer fully assembled packet */
2045 
2046         uint8_t *saved_buffer  = s->cplus_txbuffer;
2047         int      saved_size    = s->cplus_txbuffer_offset;
2048         int      saved_buffer_len = s->cplus_txbuffer_len;
2049 
2050         /* create vlan tag */
2051         if (txdw1 & CP_TX_TAGC) {
2052             /* the vlan tag is in BE byte order in the descriptor
2053              * BE + le_to_cpu() + ~swap()~ = cpu */
2054             DPRINTF("+++ C+ Tx mode : inserting vlan tag with ""tci: %u\n",
2055                 bswap16(txdw1 & CP_TX_VLAN_TAG_MASK));
2056 
2057             dot1q_buffer = (uint16_t *) dot1q_buffer_space;
2058             dot1q_buffer[0] = cpu_to_be16(ETH_P_VLAN);
2059             /* BE + le_to_cpu() + ~cpu_to_le()~ = BE */
2060             dot1q_buffer[1] = cpu_to_le16(txdw1 & CP_TX_VLAN_TAG_MASK);
2061         } else {
2062             dot1q_buffer = NULL;
2063         }
2064 
2065         /* reset the card space to protect from recursive call */
2066         s->cplus_txbuffer = NULL;
2067         s->cplus_txbuffer_offset = 0;
2068         s->cplus_txbuffer_len = 0;
2069 
2070         if (txdw0 & (CP_TX_IPCS | CP_TX_UDPCS | CP_TX_TCPCS | CP_TX_LGSEN))
2071         {
2072             DPRINTF("+++ C+ mode offloaded task checksum\n");
2073 
2074             /* Large enough for Ethernet and IP headers? */
2075             if (saved_size < ETH_HLEN + sizeof(struct ip_header)) {
2076                 goto skip_offload;
2077             }
2078 
2079             /* ip packet header */
2080             struct ip_header *ip = NULL;
2081             int hlen = 0;
2082             uint8_t  ip_protocol = 0;
2083             uint16_t ip_data_len = 0;
2084 
2085             uint8_t *eth_payload_data = NULL;
2086             size_t   eth_payload_len  = 0;
2087 
2088             int proto = be16_to_cpu(*(uint16_t *)(saved_buffer + 12));
2089             if (proto != ETH_P_IP)
2090             {
2091                 goto skip_offload;
2092             }
2093 
2094             DPRINTF("+++ C+ mode has IP packet\n");
2095 
2096             /* Note on memory alignment: eth_payload_data is 16-bit aligned
2097              * since saved_buffer is allocated with g_malloc() and ETH_HLEN is
2098              * even.  32-bit accesses must use ldl/stl wrappers to avoid
2099              * unaligned accesses.
2100              */
2101             eth_payload_data = saved_buffer + ETH_HLEN;
2102             eth_payload_len  = saved_size   - ETH_HLEN;
2103 
2104             ip = (struct ip_header*)eth_payload_data;
2105 
2106             if (IP_HEADER_VERSION(ip) != IP_HEADER_VERSION_4) {
2107                 DPRINTF("+++ C+ mode packet has bad IP version %d "
2108                     "expected %d\n", IP_HEADER_VERSION(ip),
2109                     IP_HEADER_VERSION_4);
2110                 goto skip_offload;
2111             }
2112 
2113             hlen = IP_HDR_GET_LEN(ip);
2114             if (hlen < sizeof(struct ip_header) || hlen > eth_payload_len) {
2115                 goto skip_offload;
2116             }
2117 
2118             ip_protocol = ip->ip_p;
2119 
2120             ip_data_len = be16_to_cpu(ip->ip_len);
2121             if (ip_data_len < hlen || ip_data_len > eth_payload_len) {
2122                 goto skip_offload;
2123             }
2124             ip_data_len -= hlen;
2125 
2126             if (!(txdw0 & CP_TX_LGSEN) && (txdw0 & CP_TX_IPCS))
2127             {
2128                 DPRINTF("+++ C+ mode need IP checksum\n");
2129 
2130                 ip->ip_sum = 0;
2131                 ip->ip_sum = ip_checksum(ip, hlen);
2132                 DPRINTF("+++ C+ mode IP header len=%d checksum=%04x\n",
2133                     hlen, ip->ip_sum);
2134             }
2135 
2136             if ((txdw0 & CP_TX_LGSEN) && ip_protocol == IP_PROTO_TCP)
2137             {
2138                 /* Large enough for the TCP header? */
2139                 if (ip_data_len < sizeof(tcp_header)) {
2140                     goto skip_offload;
2141                 }
2142 
2143                 int large_send_mss = (txdw0 >> CP_TC_LGSEN_MSS_SHIFT) &
2144                                      CP_TC_LGSEN_MSS_MASK;
2145                 if (large_send_mss == 0) {
2146                     goto skip_offload;
2147                 }
2148 
2149                 DPRINTF("+++ C+ mode offloaded task TSO IP data %d "
2150                     "frame data %d specified MSS=%d\n",
2151                     ip_data_len, saved_size - ETH_HLEN, large_send_mss);
2152 
2153                 int tcp_send_offset = 0;
2154 
2155                 /* maximum IP header length is 60 bytes */
2156                 uint8_t saved_ip_header[60];
2157 
2158                 /* save IP header template; data area is used in tcp checksum calculation */
2159                 memcpy(saved_ip_header, eth_payload_data, hlen);
2160 
2161                 /* a placeholder for checksum calculation routine in tcp case */
2162                 uint8_t *data_to_checksum     = eth_payload_data + hlen - 12;
2163                 //                    size_t   data_to_checksum_len = eth_payload_len  - hlen + 12;
2164 
2165                 /* pointer to TCP header */
2166                 tcp_header *p_tcp_hdr = (tcp_header*)(eth_payload_data + hlen);
2167 
2168                 int tcp_hlen = TCP_HEADER_DATA_OFFSET(p_tcp_hdr);
2169 
2170                 /* Invalid TCP data offset? */
2171                 if (tcp_hlen < sizeof(tcp_header) || tcp_hlen > ip_data_len) {
2172                     goto skip_offload;
2173                 }
2174 
2175                 int tcp_data_len = ip_data_len - tcp_hlen;
2176 
2177                 DPRINTF("+++ C+ mode TSO IP data len %d TCP hlen %d TCP "
2178                     "data len %d\n", ip_data_len, tcp_hlen, tcp_data_len);
2179 
2180                 /* note the cycle below overwrites IP header data,
2181                    but restores it from saved_ip_header before sending packet */
2182 
2183                 int is_last_frame = 0;
2184 
2185                 for (tcp_send_offset = 0; tcp_send_offset < tcp_data_len; tcp_send_offset += large_send_mss)
2186                 {
2187                     uint16_t chunk_size = large_send_mss;
2188 
2189                     /* check if this is the last frame */
2190                     if (tcp_send_offset + large_send_mss >= tcp_data_len)
2191                     {
2192                         is_last_frame = 1;
2193                         chunk_size = tcp_data_len - tcp_send_offset;
2194                     }
2195 
2196                     DPRINTF("+++ C+ mode TSO TCP seqno %08x\n",
2197                             ldl_be_p(&p_tcp_hdr->th_seq));
2198 
2199                     /* add 4 TCP pseudoheader fields */
2200                     /* copy IP source and destination fields */
2201                     memcpy(data_to_checksum, saved_ip_header + 12, 8);
2202 
2203                     DPRINTF("+++ C+ mode TSO calculating TCP checksum for "
2204                         "packet with %d bytes data\n", tcp_hlen +
2205                         chunk_size);
2206 
2207                     if (tcp_send_offset)
2208                     {
2209                         memcpy((uint8_t*)p_tcp_hdr + tcp_hlen, (uint8_t*)p_tcp_hdr + tcp_hlen + tcp_send_offset, chunk_size);
2210                     }
2211 
2212                     /* keep PUSH and FIN flags only for the last frame */
2213                     if (!is_last_frame)
2214                     {
2215                         TCP_HEADER_CLEAR_FLAGS(p_tcp_hdr, TH_PUSH | TH_FIN);
2216                     }
2217 
2218                     /* recalculate TCP checksum */
2219                     ip_pseudo_header *p_tcpip_hdr = (ip_pseudo_header *)data_to_checksum;
2220                     p_tcpip_hdr->zeros      = 0;
2221                     p_tcpip_hdr->ip_proto   = IP_PROTO_TCP;
2222                     p_tcpip_hdr->ip_payload = cpu_to_be16(tcp_hlen + chunk_size);
2223 
2224                     p_tcp_hdr->th_sum = 0;
2225 
2226                     int tcp_checksum = ip_checksum(data_to_checksum, tcp_hlen + chunk_size + 12);
2227                     DPRINTF("+++ C+ mode TSO TCP checksum %04x\n",
2228                         tcp_checksum);
2229 
2230                     p_tcp_hdr->th_sum = tcp_checksum;
2231 
2232                     /* restore IP header */
2233                     memcpy(eth_payload_data, saved_ip_header, hlen);
2234 
2235                     /* set IP data length and recalculate IP checksum */
2236                     ip->ip_len = cpu_to_be16(hlen + tcp_hlen + chunk_size);
2237 
2238                     /* increment IP id for subsequent frames */
2239                     ip->ip_id = cpu_to_be16(tcp_send_offset/large_send_mss + be16_to_cpu(ip->ip_id));
2240 
2241                     ip->ip_sum = 0;
2242                     ip->ip_sum = ip_checksum(eth_payload_data, hlen);
2243                     DPRINTF("+++ C+ mode TSO IP header len=%d "
2244                         "checksum=%04x\n", hlen, ip->ip_sum);
2245 
2246                     int tso_send_size = ETH_HLEN + hlen + tcp_hlen + chunk_size;
2247                     DPRINTF("+++ C+ mode TSO transferring packet size "
2248                         "%d\n", tso_send_size);
2249                     rtl8139_transfer_frame(s, saved_buffer, tso_send_size,
2250                         0, (uint8_t *) dot1q_buffer);
2251 
2252                     /* add transferred count to TCP sequence number */
2253                     stl_be_p(&p_tcp_hdr->th_seq,
2254                              chunk_size + ldl_be_p(&p_tcp_hdr->th_seq));
2255                 }
2256 
2257                 /* Stop sending this frame */
2258                 saved_size = 0;
2259             }
2260             else if (!(txdw0 & CP_TX_LGSEN) && (txdw0 & (CP_TX_TCPCS|CP_TX_UDPCS)))
2261             {
2262                 DPRINTF("+++ C+ mode need TCP or UDP checksum\n");
2263 
2264                 /* maximum IP header length is 60 bytes */
2265                 uint8_t saved_ip_header[60];
2266                 memcpy(saved_ip_header, eth_payload_data, hlen);
2267 
2268                 uint8_t *data_to_checksum     = eth_payload_data + hlen - 12;
2269                 //                    size_t   data_to_checksum_len = eth_payload_len  - hlen + 12;
2270 
2271                 /* add 4 TCP pseudoheader fields */
2272                 /* copy IP source and destination fields */
2273                 memcpy(data_to_checksum, saved_ip_header + 12, 8);
2274 
2275                 if ((txdw0 & CP_TX_TCPCS) && ip_protocol == IP_PROTO_TCP)
2276                 {
2277                     DPRINTF("+++ C+ mode calculating TCP checksum for "
2278                         "packet with %d bytes data\n", ip_data_len);
2279 
2280                     ip_pseudo_header *p_tcpip_hdr = (ip_pseudo_header *)data_to_checksum;
2281                     p_tcpip_hdr->zeros      = 0;
2282                     p_tcpip_hdr->ip_proto   = IP_PROTO_TCP;
2283                     p_tcpip_hdr->ip_payload = cpu_to_be16(ip_data_len);
2284 
2285                     tcp_header* p_tcp_hdr = (tcp_header *) (data_to_checksum+12);
2286 
2287                     p_tcp_hdr->th_sum = 0;
2288 
2289                     int tcp_checksum = ip_checksum(data_to_checksum, ip_data_len + 12);
2290                     DPRINTF("+++ C+ mode TCP checksum %04x\n",
2291                         tcp_checksum);
2292 
2293                     p_tcp_hdr->th_sum = tcp_checksum;
2294                 }
2295                 else if ((txdw0 & CP_TX_UDPCS) && ip_protocol == IP_PROTO_UDP)
2296                 {
2297                     DPRINTF("+++ C+ mode calculating UDP checksum for "
2298                         "packet with %d bytes data\n", ip_data_len);
2299 
2300                     ip_pseudo_header *p_udpip_hdr = (ip_pseudo_header *)data_to_checksum;
2301                     p_udpip_hdr->zeros      = 0;
2302                     p_udpip_hdr->ip_proto   = IP_PROTO_UDP;
2303                     p_udpip_hdr->ip_payload = cpu_to_be16(ip_data_len);
2304 
2305                     udp_header *p_udp_hdr = (udp_header *) (data_to_checksum+12);
2306 
2307                     p_udp_hdr->uh_sum = 0;
2308 
2309                     int udp_checksum = ip_checksum(data_to_checksum, ip_data_len + 12);
2310                     DPRINTF("+++ C+ mode UDP checksum %04x\n",
2311                         udp_checksum);
2312 
2313                     p_udp_hdr->uh_sum = udp_checksum;
2314                 }
2315 
2316                 /* restore IP header */
2317                 memcpy(eth_payload_data, saved_ip_header, hlen);
2318             }
2319         }
2320 
2321 skip_offload:
2322         /* update tally counter */
2323         ++s->tally_counters.TxOk;
2324 
2325         DPRINTF("+++ C+ mode transmitting %d bytes packet\n", saved_size);
2326 
2327         rtl8139_transfer_frame(s, saved_buffer, saved_size, 1,
2328             (uint8_t *) dot1q_buffer);
2329 
2330         /* restore card space if there was no recursion and reset offset */
2331         if (!s->cplus_txbuffer)
2332         {
2333             s->cplus_txbuffer        = saved_buffer;
2334             s->cplus_txbuffer_len    = saved_buffer_len;
2335             s->cplus_txbuffer_offset = 0;
2336         }
2337         else
2338         {
2339             g_free(saved_buffer);
2340         }
2341     }
2342     else
2343     {
2344         DPRINTF("+++ C+ mode transmission continue to next descriptor\n");
2345     }
2346 
2347     return 1;
2348 }
2349 
2350 static void rtl8139_cplus_transmit(RTL8139State *s)
2351 {
2352     int txcount = 0;
2353 
2354     while (txcount < 64 && rtl8139_cplus_transmit_one(s))
2355     {
2356         ++txcount;
2357     }
2358 
2359     /* Mark transfer completed */
2360     if (!txcount)
2361     {
2362         DPRINTF("C+ mode : transmitter queue stalled, current TxDesc = %d\n",
2363             s->currCPlusTxDesc);
2364     }
2365     else
2366     {
2367         /* update interrupt status */
2368         s->IntrStatus |= TxOK;
2369         rtl8139_update_irq(s);
2370     }
2371 }
2372 
2373 static void rtl8139_transmit(RTL8139State *s)
2374 {
2375     int descriptor = s->currTxDesc, txcount = 0;
2376 
2377     /*while*/
2378     if (rtl8139_transmit_one(s, descriptor))
2379     {
2380         ++s->currTxDesc;
2381         s->currTxDesc %= 4;
2382         ++txcount;
2383     }
2384 
2385     /* Mark transfer completed */
2386     if (!txcount)
2387     {
2388         DPRINTF("transmitter queue stalled, current TxDesc = %d\n",
2389             s->currTxDesc);
2390     }
2391 }
2392 
2393 static void rtl8139_TxStatus_write(RTL8139State *s, uint32_t txRegOffset, uint32_t val)
2394 {
2395 
2396     int descriptor = txRegOffset/4;
2397 
2398     /* handle C+ transmit mode register configuration */
2399 
2400     if (s->cplus_enabled)
2401     {
2402         DPRINTF("RTL8139C+ DTCCR write offset=0x%x val=0x%08x "
2403             "descriptor=%d\n", txRegOffset, val, descriptor);
2404 
2405         /* handle Dump Tally Counters command */
2406         s->TxStatus[descriptor] = val;
2407 
2408         if (descriptor == 0 && (val & 0x8))
2409         {
2410             hwaddr tc_addr = rtl8139_addr64(s->TxStatus[0] & ~0x3f, s->TxStatus[1]);
2411 
2412             /* dump tally counters to specified memory location */
2413             RTL8139TallyCounters_dma_write(s, tc_addr);
2414 
2415             /* mark dump completed */
2416             s->TxStatus[0] &= ~0x8;
2417         }
2418 
2419         return;
2420     }
2421 
2422     DPRINTF("TxStatus write offset=0x%x val=0x%08x descriptor=%d\n",
2423         txRegOffset, val, descriptor);
2424 
2425     /* mask only reserved bits */
2426     val &= ~0xff00c000; /* these bits are reset on write */
2427     val = SET_MASKED(val, 0x00c00000, s->TxStatus[descriptor]);
2428 
2429     s->TxStatus[descriptor] = val;
2430 
2431     /* attempt to start transmission */
2432     rtl8139_transmit(s);
2433 }
2434 
2435 static uint32_t rtl8139_TxStatus_TxAddr_read(RTL8139State *s, uint32_t regs[],
2436                                              uint32_t base, uint8_t addr,
2437                                              int size)
2438 {
2439     uint32_t reg = (addr - base) / 4;
2440     uint32_t offset = addr & 0x3;
2441     uint32_t ret = 0;
2442 
2443     if (addr & (size - 1)) {
2444         DPRINTF("not implemented read for TxStatus/TxAddr "
2445                 "addr=0x%x size=0x%x\n", addr, size);
2446         return ret;
2447     }
2448 
2449     switch (size) {
2450     case 1: /* fall through */
2451     case 2: /* fall through */
2452     case 4:
2453         ret = (regs[reg] >> offset * 8) & (((uint64_t)1 << (size * 8)) - 1);
2454         DPRINTF("TxStatus/TxAddr[%d] read addr=0x%x size=0x%x val=0x%08x\n",
2455                 reg, addr, size, ret);
2456         break;
2457     default:
2458         DPRINTF("unsupported size 0x%x of TxStatus/TxAddr reading\n", size);
2459         break;
2460     }
2461 
2462     return ret;
2463 }
2464 
2465 static uint16_t rtl8139_TSAD_read(RTL8139State *s)
2466 {
2467     uint16_t ret = 0;
2468 
2469     /* Simulate TSAD, it is read only anyway */
2470 
2471     ret = ((s->TxStatus[3] & TxStatOK  )?TSAD_TOK3:0)
2472          |((s->TxStatus[2] & TxStatOK  )?TSAD_TOK2:0)
2473          |((s->TxStatus[1] & TxStatOK  )?TSAD_TOK1:0)
2474          |((s->TxStatus[0] & TxStatOK  )?TSAD_TOK0:0)
2475 
2476          |((s->TxStatus[3] & TxUnderrun)?TSAD_TUN3:0)
2477          |((s->TxStatus[2] & TxUnderrun)?TSAD_TUN2:0)
2478          |((s->TxStatus[1] & TxUnderrun)?TSAD_TUN1:0)
2479          |((s->TxStatus[0] & TxUnderrun)?TSAD_TUN0:0)
2480 
2481          |((s->TxStatus[3] & TxAborted )?TSAD_TABT3:0)
2482          |((s->TxStatus[2] & TxAborted )?TSAD_TABT2:0)
2483          |((s->TxStatus[1] & TxAborted )?TSAD_TABT1:0)
2484          |((s->TxStatus[0] & TxAborted )?TSAD_TABT0:0)
2485 
2486          |((s->TxStatus[3] & TxHostOwns )?TSAD_OWN3:0)
2487          |((s->TxStatus[2] & TxHostOwns )?TSAD_OWN2:0)
2488          |((s->TxStatus[1] & TxHostOwns )?TSAD_OWN1:0)
2489          |((s->TxStatus[0] & TxHostOwns )?TSAD_OWN0:0) ;
2490 
2491 
2492     DPRINTF("TSAD read val=0x%04x\n", ret);
2493 
2494     return ret;
2495 }
2496 
2497 static uint16_t rtl8139_CSCR_read(RTL8139State *s)
2498 {
2499     uint16_t ret = s->CSCR;
2500 
2501     DPRINTF("CSCR read val=0x%04x\n", ret);
2502 
2503     return ret;
2504 }
2505 
2506 static void rtl8139_TxAddr_write(RTL8139State *s, uint32_t txAddrOffset, uint32_t val)
2507 {
2508     DPRINTF("TxAddr write offset=0x%x val=0x%08x\n", txAddrOffset, val);
2509 
2510     s->TxAddr[txAddrOffset/4] = val;
2511 }
2512 
2513 static uint32_t rtl8139_TxAddr_read(RTL8139State *s, uint32_t txAddrOffset)
2514 {
2515     uint32_t ret = s->TxAddr[txAddrOffset/4];
2516 
2517     DPRINTF("TxAddr read offset=0x%x val=0x%08x\n", txAddrOffset, ret);
2518 
2519     return ret;
2520 }
2521 
2522 static void rtl8139_RxBufPtr_write(RTL8139State *s, uint32_t val)
2523 {
2524     DPRINTF("RxBufPtr write val=0x%04x\n", val);
2525 
2526     /* this value is off by 16 */
2527     s->RxBufPtr = MOD2(val + 0x10, s->RxBufferSize);
2528 
2529     /* more buffer space may be available so try to receive */
2530     qemu_flush_queued_packets(qemu_get_queue(s->nic));
2531 
2532     DPRINTF(" CAPR write: rx buffer length %d head 0x%04x read 0x%04x\n",
2533         s->RxBufferSize, s->RxBufAddr, s->RxBufPtr);
2534 }
2535 
2536 static uint32_t rtl8139_RxBufPtr_read(RTL8139State *s)
2537 {
2538     /* this value is off by 16 */
2539     uint32_t ret = s->RxBufPtr - 0x10;
2540 
2541     DPRINTF("RxBufPtr read val=0x%04x\n", ret);
2542 
2543     return ret;
2544 }
2545 
2546 static uint32_t rtl8139_RxBufAddr_read(RTL8139State *s)
2547 {
2548     /* this value is NOT off by 16 */
2549     uint32_t ret = s->RxBufAddr;
2550 
2551     DPRINTF("RxBufAddr read val=0x%04x\n", ret);
2552 
2553     return ret;
2554 }
2555 
2556 static void rtl8139_RxBuf_write(RTL8139State *s, uint32_t val)
2557 {
2558     DPRINTF("RxBuf write val=0x%08x\n", val);
2559 
2560     s->RxBuf = val;
2561 
2562     /* may need to reset rxring here */
2563 }
2564 
2565 static uint32_t rtl8139_RxBuf_read(RTL8139State *s)
2566 {
2567     uint32_t ret = s->RxBuf;
2568 
2569     DPRINTF("RxBuf read val=0x%08x\n", ret);
2570 
2571     return ret;
2572 }
2573 
2574 static void rtl8139_IntrMask_write(RTL8139State *s, uint32_t val)
2575 {
2576     DPRINTF("IntrMask write(w) val=0x%04x\n", val);
2577 
2578     /* mask unwritable bits */
2579     val = SET_MASKED(val, 0x1e00, s->IntrMask);
2580 
2581     s->IntrMask = val;
2582 
2583     rtl8139_update_irq(s);
2584 
2585 }
2586 
2587 static uint32_t rtl8139_IntrMask_read(RTL8139State *s)
2588 {
2589     uint32_t ret = s->IntrMask;
2590 
2591     DPRINTF("IntrMask read(w) val=0x%04x\n", ret);
2592 
2593     return ret;
2594 }
2595 
2596 static void rtl8139_IntrStatus_write(RTL8139State *s, uint32_t val)
2597 {
2598     DPRINTF("IntrStatus write(w) val=0x%04x\n", val);
2599 
2600 #if 0
2601 
2602     /* writing to ISR has no effect */
2603 
2604     return;
2605 
2606 #else
2607     uint16_t newStatus = s->IntrStatus & ~val;
2608 
2609     /* mask unwritable bits */
2610     newStatus = SET_MASKED(newStatus, 0x1e00, s->IntrStatus);
2611 
2612     /* writing 1 to interrupt status register bit clears it */
2613     s->IntrStatus = 0;
2614     rtl8139_update_irq(s);
2615 
2616     s->IntrStatus = newStatus;
2617     rtl8139_set_next_tctr_time(s);
2618     rtl8139_update_irq(s);
2619 
2620 #endif
2621 }
2622 
2623 static uint32_t rtl8139_IntrStatus_read(RTL8139State *s)
2624 {
2625     uint32_t ret = s->IntrStatus;
2626 
2627     DPRINTF("IntrStatus read(w) val=0x%04x\n", ret);
2628 
2629 #if 0
2630 
2631     /* reading ISR clears all interrupts */
2632     s->IntrStatus = 0;
2633 
2634     rtl8139_update_irq(s);
2635 
2636 #endif
2637 
2638     return ret;
2639 }
2640 
2641 static void rtl8139_MultiIntr_write(RTL8139State *s, uint32_t val)
2642 {
2643     DPRINTF("MultiIntr write(w) val=0x%04x\n", val);
2644 
2645     /* mask unwritable bits */
2646     val = SET_MASKED(val, 0xf000, s->MultiIntr);
2647 
2648     s->MultiIntr = val;
2649 }
2650 
2651 static uint32_t rtl8139_MultiIntr_read(RTL8139State *s)
2652 {
2653     uint32_t ret = s->MultiIntr;
2654 
2655     DPRINTF("MultiIntr read(w) val=0x%04x\n", ret);
2656 
2657     return ret;
2658 }
2659 
2660 static void rtl8139_io_writeb(void *opaque, uint8_t addr, uint32_t val)
2661 {
2662     RTL8139State *s = opaque;
2663 
2664     switch (addr)
2665     {
2666         case MAC0 ... MAC0+4:
2667             s->phys[addr - MAC0] = val;
2668             break;
2669         case MAC0+5:
2670             s->phys[addr - MAC0] = val;
2671             qemu_format_nic_info_str(qemu_get_queue(s->nic), s->phys);
2672             break;
2673         case MAC0+6 ... MAC0+7:
2674             /* reserved */
2675             break;
2676         case MAR0 ... MAR0+7:
2677             s->mult[addr - MAR0] = val;
2678             break;
2679         case ChipCmd:
2680             rtl8139_ChipCmd_write(s, val);
2681             break;
2682         case Cfg9346:
2683             rtl8139_Cfg9346_write(s, val);
2684             break;
2685         case TxConfig: /* windows driver sometimes writes using byte-lenth call */
2686             rtl8139_TxConfig_writeb(s, val);
2687             break;
2688         case Config0:
2689             rtl8139_Config0_write(s, val);
2690             break;
2691         case Config1:
2692             rtl8139_Config1_write(s, val);
2693             break;
2694         case Config3:
2695             rtl8139_Config3_write(s, val);
2696             break;
2697         case Config4:
2698             rtl8139_Config4_write(s, val);
2699             break;
2700         case Config5:
2701             rtl8139_Config5_write(s, val);
2702             break;
2703         case MediaStatus:
2704             /* ignore */
2705             DPRINTF("not implemented write(b) to MediaStatus val=0x%02x\n",
2706                 val);
2707             break;
2708 
2709         case HltClk:
2710             DPRINTF("HltClk write val=0x%08x\n", val);
2711             if (val == 'R')
2712             {
2713                 s->clock_enabled = 1;
2714             }
2715             else if (val == 'H')
2716             {
2717                 s->clock_enabled = 0;
2718             }
2719             break;
2720 
2721         case TxThresh:
2722             DPRINTF("C+ TxThresh write(b) val=0x%02x\n", val);
2723             s->TxThresh = val;
2724             break;
2725 
2726         case TxPoll:
2727             DPRINTF("C+ TxPoll write(b) val=0x%02x\n", val);
2728             if (val & (1 << 7))
2729             {
2730                 DPRINTF("C+ TxPoll high priority transmission (not "
2731                     "implemented)\n");
2732                 //rtl8139_cplus_transmit(s);
2733             }
2734             if (val & (1 << 6))
2735             {
2736                 DPRINTF("C+ TxPoll normal priority transmission\n");
2737                 rtl8139_cplus_transmit(s);
2738             }
2739 
2740             break;
2741         case RxConfig:
2742             DPRINTF("RxConfig write(b) val=0x%02x\n", val);
2743             rtl8139_RxConfig_write(s,
2744                 (rtl8139_RxConfig_read(s) & 0xFFFFFF00) | val);
2745             break;
2746         default:
2747             DPRINTF("not implemented write(b) addr=0x%x val=0x%02x\n", addr,
2748                 val);
2749             break;
2750     }
2751 }
2752 
2753 static void rtl8139_io_writew(void *opaque, uint8_t addr, uint32_t val)
2754 {
2755     RTL8139State *s = opaque;
2756 
2757     switch (addr)
2758     {
2759         case IntrMask:
2760             rtl8139_IntrMask_write(s, val);
2761             break;
2762 
2763         case IntrStatus:
2764             rtl8139_IntrStatus_write(s, val);
2765             break;
2766 
2767         case MultiIntr:
2768             rtl8139_MultiIntr_write(s, val);
2769             break;
2770 
2771         case RxBufPtr:
2772             rtl8139_RxBufPtr_write(s, val);
2773             break;
2774 
2775         case BasicModeCtrl:
2776             rtl8139_BasicModeCtrl_write(s, val);
2777             break;
2778         case BasicModeStatus:
2779             rtl8139_BasicModeStatus_write(s, val);
2780             break;
2781         case NWayAdvert:
2782             DPRINTF("NWayAdvert write(w) val=0x%04x\n", val);
2783             s->NWayAdvert = val;
2784             break;
2785         case NWayLPAR:
2786             DPRINTF("forbidden NWayLPAR write(w) val=0x%04x\n", val);
2787             break;
2788         case NWayExpansion:
2789             DPRINTF("NWayExpansion write(w) val=0x%04x\n", val);
2790             s->NWayExpansion = val;
2791             break;
2792 
2793         case CpCmd:
2794             rtl8139_CpCmd_write(s, val);
2795             break;
2796 
2797         case IntrMitigate:
2798             rtl8139_IntrMitigate_write(s, val);
2799             break;
2800 
2801         default:
2802             DPRINTF("ioport write(w) addr=0x%x val=0x%04x via write(b)\n",
2803                 addr, val);
2804 
2805             rtl8139_io_writeb(opaque, addr, val & 0xff);
2806             rtl8139_io_writeb(opaque, addr + 1, (val >> 8) & 0xff);
2807             break;
2808     }
2809 }
2810 
2811 static void rtl8139_set_next_tctr_time(RTL8139State *s)
2812 {
2813     const uint64_t ns_per_period = (uint64_t)PCI_PERIOD << 32;
2814 
2815     DPRINTF("entered rtl8139_set_next_tctr_time\n");
2816 
2817     /* This function is called at least once per period, so it is a good
2818      * place to update the timer base.
2819      *
2820      * After one iteration of this loop the value in the Timer register does
2821      * not change, but the device model is counting up by 2^32 ticks (approx.
2822      * 130 seconds).
2823      */
2824     while (s->TCTR_base + ns_per_period <= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)) {
2825         s->TCTR_base += ns_per_period;
2826     }
2827 
2828     if (!s->TimerInt) {
2829         timer_del(s->timer);
2830     } else {
2831         uint64_t delta = (uint64_t)s->TimerInt * PCI_PERIOD;
2832         if (s->TCTR_base + delta <= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)) {
2833             delta += ns_per_period;
2834         }
2835         timer_mod(s->timer, s->TCTR_base + delta);
2836     }
2837 }
2838 
2839 static void rtl8139_io_writel(void *opaque, uint8_t addr, uint32_t val)
2840 {
2841     RTL8139State *s = opaque;
2842 
2843     switch (addr)
2844     {
2845         case RxMissed:
2846             DPRINTF("RxMissed clearing on write\n");
2847             s->RxMissed = 0;
2848             break;
2849 
2850         case TxConfig:
2851             rtl8139_TxConfig_write(s, val);
2852             break;
2853 
2854         case RxConfig:
2855             rtl8139_RxConfig_write(s, val);
2856             break;
2857 
2858         case TxStatus0 ... TxStatus0+4*4-1:
2859             rtl8139_TxStatus_write(s, addr-TxStatus0, val);
2860             break;
2861 
2862         case TxAddr0 ... TxAddr0+4*4-1:
2863             rtl8139_TxAddr_write(s, addr-TxAddr0, val);
2864             break;
2865 
2866         case RxBuf:
2867             rtl8139_RxBuf_write(s, val);
2868             break;
2869 
2870         case RxRingAddrLO:
2871             DPRINTF("C+ RxRing low bits write val=0x%08x\n", val);
2872             s->RxRingAddrLO = val;
2873             break;
2874 
2875         case RxRingAddrHI:
2876             DPRINTF("C+ RxRing high bits write val=0x%08x\n", val);
2877             s->RxRingAddrHI = val;
2878             break;
2879 
2880         case Timer:
2881             DPRINTF("TCTR Timer reset on write\n");
2882             s->TCTR_base = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
2883             rtl8139_set_next_tctr_time(s);
2884             break;
2885 
2886         case FlashReg:
2887             DPRINTF("FlashReg TimerInt write val=0x%08x\n", val);
2888             if (s->TimerInt != val) {
2889                 s->TimerInt = val;
2890                 rtl8139_set_next_tctr_time(s);
2891             }
2892             break;
2893 
2894         default:
2895             DPRINTF("ioport write(l) addr=0x%x val=0x%08x via write(b)\n",
2896                 addr, val);
2897             rtl8139_io_writeb(opaque, addr, val & 0xff);
2898             rtl8139_io_writeb(opaque, addr + 1, (val >> 8) & 0xff);
2899             rtl8139_io_writeb(opaque, addr + 2, (val >> 16) & 0xff);
2900             rtl8139_io_writeb(opaque, addr + 3, (val >> 24) & 0xff);
2901             break;
2902     }
2903 }
2904 
2905 static uint32_t rtl8139_io_readb(void *opaque, uint8_t addr)
2906 {
2907     RTL8139State *s = opaque;
2908     int ret;
2909 
2910     switch (addr)
2911     {
2912         case MAC0 ... MAC0+5:
2913             ret = s->phys[addr - MAC0];
2914             break;
2915         case MAC0+6 ... MAC0+7:
2916             ret = 0;
2917             break;
2918         case MAR0 ... MAR0+7:
2919             ret = s->mult[addr - MAR0];
2920             break;
2921         case TxStatus0 ... TxStatus0+4*4-1:
2922             ret = rtl8139_TxStatus_TxAddr_read(s, s->TxStatus, TxStatus0,
2923                                                addr, 1);
2924             break;
2925         case ChipCmd:
2926             ret = rtl8139_ChipCmd_read(s);
2927             break;
2928         case Cfg9346:
2929             ret = rtl8139_Cfg9346_read(s);
2930             break;
2931         case Config0:
2932             ret = rtl8139_Config0_read(s);
2933             break;
2934         case Config1:
2935             ret = rtl8139_Config1_read(s);
2936             break;
2937         case Config3:
2938             ret = rtl8139_Config3_read(s);
2939             break;
2940         case Config4:
2941             ret = rtl8139_Config4_read(s);
2942             break;
2943         case Config5:
2944             ret = rtl8139_Config5_read(s);
2945             break;
2946 
2947         case MediaStatus:
2948             /* The LinkDown bit of MediaStatus is inverse with link status */
2949             ret = 0xd0 | (~s->BasicModeStatus & 0x04);
2950             DPRINTF("MediaStatus read 0x%x\n", ret);
2951             break;
2952 
2953         case HltClk:
2954             ret = s->clock_enabled;
2955             DPRINTF("HltClk read 0x%x\n", ret);
2956             break;
2957 
2958         case PCIRevisionID:
2959             ret = RTL8139_PCI_REVID;
2960             DPRINTF("PCI Revision ID read 0x%x\n", ret);
2961             break;
2962 
2963         case TxThresh:
2964             ret = s->TxThresh;
2965             DPRINTF("C+ TxThresh read(b) val=0x%02x\n", ret);
2966             break;
2967 
2968         case 0x43: /* Part of TxConfig register. Windows driver tries to read it */
2969             ret = s->TxConfig >> 24;
2970             DPRINTF("RTL8139C TxConfig at 0x43 read(b) val=0x%02x\n", ret);
2971             break;
2972 
2973         default:
2974             DPRINTF("not implemented read(b) addr=0x%x\n", addr);
2975             ret = 0;
2976             break;
2977     }
2978 
2979     return ret;
2980 }
2981 
2982 static uint32_t rtl8139_io_readw(void *opaque, uint8_t addr)
2983 {
2984     RTL8139State *s = opaque;
2985     uint32_t ret;
2986 
2987     switch (addr)
2988     {
2989         case TxAddr0 ... TxAddr0+4*4-1:
2990             ret = rtl8139_TxStatus_TxAddr_read(s, s->TxAddr, TxAddr0, addr, 2);
2991             break;
2992         case IntrMask:
2993             ret = rtl8139_IntrMask_read(s);
2994             break;
2995 
2996         case IntrStatus:
2997             ret = rtl8139_IntrStatus_read(s);
2998             break;
2999 
3000         case MultiIntr:
3001             ret = rtl8139_MultiIntr_read(s);
3002             break;
3003 
3004         case RxBufPtr:
3005             ret = rtl8139_RxBufPtr_read(s);
3006             break;
3007 
3008         case RxBufAddr:
3009             ret = rtl8139_RxBufAddr_read(s);
3010             break;
3011 
3012         case BasicModeCtrl:
3013             ret = rtl8139_BasicModeCtrl_read(s);
3014             break;
3015         case BasicModeStatus:
3016             ret = rtl8139_BasicModeStatus_read(s);
3017             break;
3018         case NWayAdvert:
3019             ret = s->NWayAdvert;
3020             DPRINTF("NWayAdvert read(w) val=0x%04x\n", ret);
3021             break;
3022         case NWayLPAR:
3023             ret = s->NWayLPAR;
3024             DPRINTF("NWayLPAR read(w) val=0x%04x\n", ret);
3025             break;
3026         case NWayExpansion:
3027             ret = s->NWayExpansion;
3028             DPRINTF("NWayExpansion read(w) val=0x%04x\n", ret);
3029             break;
3030 
3031         case CpCmd:
3032             ret = rtl8139_CpCmd_read(s);
3033             break;
3034 
3035         case IntrMitigate:
3036             ret = rtl8139_IntrMitigate_read(s);
3037             break;
3038 
3039         case TxSummary:
3040             ret = rtl8139_TSAD_read(s);
3041             break;
3042 
3043         case CSCR:
3044             ret = rtl8139_CSCR_read(s);
3045             break;
3046 
3047         default:
3048             DPRINTF("ioport read(w) addr=0x%x via read(b)\n", addr);
3049 
3050             ret  = rtl8139_io_readb(opaque, addr);
3051             ret |= rtl8139_io_readb(opaque, addr + 1) << 8;
3052 
3053             DPRINTF("ioport read(w) addr=0x%x val=0x%04x\n", addr, ret);
3054             break;
3055     }
3056 
3057     return ret;
3058 }
3059 
3060 static uint32_t rtl8139_io_readl(void *opaque, uint8_t addr)
3061 {
3062     RTL8139State *s = opaque;
3063     uint32_t ret;
3064 
3065     switch (addr)
3066     {
3067         case RxMissed:
3068             ret = s->RxMissed;
3069 
3070             DPRINTF("RxMissed read val=0x%08x\n", ret);
3071             break;
3072 
3073         case TxConfig:
3074             ret = rtl8139_TxConfig_read(s);
3075             break;
3076 
3077         case RxConfig:
3078             ret = rtl8139_RxConfig_read(s);
3079             break;
3080 
3081         case TxStatus0 ... TxStatus0+4*4-1:
3082             ret = rtl8139_TxStatus_TxAddr_read(s, s->TxStatus, TxStatus0,
3083                                                addr, 4);
3084             break;
3085 
3086         case TxAddr0 ... TxAddr0+4*4-1:
3087             ret = rtl8139_TxAddr_read(s, addr-TxAddr0);
3088             break;
3089 
3090         case RxBuf:
3091             ret = rtl8139_RxBuf_read(s);
3092             break;
3093 
3094         case RxRingAddrLO:
3095             ret = s->RxRingAddrLO;
3096             DPRINTF("C+ RxRing low bits read val=0x%08x\n", ret);
3097             break;
3098 
3099         case RxRingAddrHI:
3100             ret = s->RxRingAddrHI;
3101             DPRINTF("C+ RxRing high bits read val=0x%08x\n", ret);
3102             break;
3103 
3104         case Timer:
3105             ret = (qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - s->TCTR_base) /
3106                   PCI_PERIOD;
3107             DPRINTF("TCTR Timer read val=0x%08x\n", ret);
3108             break;
3109 
3110         case FlashReg:
3111             ret = s->TimerInt;
3112             DPRINTF("FlashReg TimerInt read val=0x%08x\n", ret);
3113             break;
3114 
3115         default:
3116             DPRINTF("ioport read(l) addr=0x%x via read(b)\n", addr);
3117 
3118             ret  = rtl8139_io_readb(opaque, addr);
3119             ret |= rtl8139_io_readb(opaque, addr + 1) << 8;
3120             ret |= rtl8139_io_readb(opaque, addr + 2) << 16;
3121             ret |= rtl8139_io_readb(opaque, addr + 3) << 24;
3122 
3123             DPRINTF("read(l) addr=0x%x val=%08x\n", addr, ret);
3124             break;
3125     }
3126 
3127     return ret;
3128 }
3129 
3130 /* */
3131 
3132 static int rtl8139_post_load(void *opaque, int version_id)
3133 {
3134     RTL8139State* s = opaque;
3135     rtl8139_set_next_tctr_time(s);
3136     if (version_id < 4) {
3137         s->cplus_enabled = s->CpCmd != 0;
3138     }
3139 
3140     /* nc.link_down can't be migrated, so infer link_down according
3141      * to link status bit in BasicModeStatus */
3142     qemu_get_queue(s->nic)->link_down = (s->BasicModeStatus & 0x04) == 0;
3143 
3144     return 0;
3145 }
3146 
3147 static bool rtl8139_hotplug_ready_needed(void *opaque)
3148 {
3149     return qdev_machine_modified();
3150 }
3151 
3152 static const VMStateDescription vmstate_rtl8139_hotplug_ready ={
3153     .name = "rtl8139/hotplug_ready",
3154     .version_id = 1,
3155     .minimum_version_id = 1,
3156     .needed = rtl8139_hotplug_ready_needed,
3157     .fields = (const VMStateField[]) {
3158         VMSTATE_END_OF_LIST()
3159     }
3160 };
3161 
3162 static int rtl8139_pre_save(void *opaque)
3163 {
3164     RTL8139State* s = opaque;
3165     int64_t current_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
3166 
3167     /* for migration to older versions */
3168     s->TCTR = (current_time - s->TCTR_base) / PCI_PERIOD;
3169     s->rtl8139_mmio_io_addr_dummy = 0;
3170 
3171     return 0;
3172 }
3173 
3174 static const VMStateDescription vmstate_rtl8139 = {
3175     .name = "rtl8139",
3176     .version_id = 5,
3177     .minimum_version_id = 3,
3178     .post_load = rtl8139_post_load,
3179     .pre_save  = rtl8139_pre_save,
3180     .fields = (const VMStateField[]) {
3181         VMSTATE_PCI_DEVICE(parent_obj, RTL8139State),
3182         VMSTATE_PARTIAL_BUFFER(phys, RTL8139State, 6),
3183         VMSTATE_BUFFER(mult, RTL8139State),
3184         VMSTATE_UINT32_ARRAY(TxStatus, RTL8139State, 4),
3185         VMSTATE_UINT32_ARRAY(TxAddr, RTL8139State, 4),
3186 
3187         VMSTATE_UINT32(RxBuf, RTL8139State),
3188         VMSTATE_UINT32(RxBufferSize, RTL8139State),
3189         VMSTATE_UINT32(RxBufPtr, RTL8139State),
3190         VMSTATE_UINT32(RxBufAddr, RTL8139State),
3191 
3192         VMSTATE_UINT16(IntrStatus, RTL8139State),
3193         VMSTATE_UINT16(IntrMask, RTL8139State),
3194 
3195         VMSTATE_UINT32(TxConfig, RTL8139State),
3196         VMSTATE_UINT32(RxConfig, RTL8139State),
3197         VMSTATE_UINT32(RxMissed, RTL8139State),
3198         VMSTATE_UINT16(CSCR, RTL8139State),
3199 
3200         VMSTATE_UINT8(Cfg9346, RTL8139State),
3201         VMSTATE_UINT8(Config0, RTL8139State),
3202         VMSTATE_UINT8(Config1, RTL8139State),
3203         VMSTATE_UINT8(Config3, RTL8139State),
3204         VMSTATE_UINT8(Config4, RTL8139State),
3205         VMSTATE_UINT8(Config5, RTL8139State),
3206 
3207         VMSTATE_UINT8(clock_enabled, RTL8139State),
3208         VMSTATE_UINT8(bChipCmdState, RTL8139State),
3209 
3210         VMSTATE_UINT16(MultiIntr, RTL8139State),
3211 
3212         VMSTATE_UINT16(BasicModeCtrl, RTL8139State),
3213         VMSTATE_UINT16(BasicModeStatus, RTL8139State),
3214         VMSTATE_UINT16(NWayAdvert, RTL8139State),
3215         VMSTATE_UINT16(NWayLPAR, RTL8139State),
3216         VMSTATE_UINT16(NWayExpansion, RTL8139State),
3217 
3218         VMSTATE_UINT16(CpCmd, RTL8139State),
3219         VMSTATE_UINT8(TxThresh, RTL8139State),
3220 
3221         VMSTATE_UNUSED(4),
3222         VMSTATE_MACADDR(conf.macaddr, RTL8139State),
3223         VMSTATE_INT32(rtl8139_mmio_io_addr_dummy, RTL8139State),
3224 
3225         VMSTATE_UINT32(currTxDesc, RTL8139State),
3226         VMSTATE_UINT32(currCPlusRxDesc, RTL8139State),
3227         VMSTATE_UINT32(currCPlusTxDesc, RTL8139State),
3228         VMSTATE_UINT32(RxRingAddrLO, RTL8139State),
3229         VMSTATE_UINT32(RxRingAddrHI, RTL8139State),
3230 
3231         VMSTATE_UINT16_ARRAY(eeprom.contents, RTL8139State, EEPROM_9346_SIZE),
3232         VMSTATE_INT32(eeprom.mode, RTL8139State),
3233         VMSTATE_UINT32(eeprom.tick, RTL8139State),
3234         VMSTATE_UINT8(eeprom.address, RTL8139State),
3235         VMSTATE_UINT16(eeprom.input, RTL8139State),
3236         VMSTATE_UINT16(eeprom.output, RTL8139State),
3237 
3238         VMSTATE_UINT8(eeprom.eecs, RTL8139State),
3239         VMSTATE_UINT8(eeprom.eesk, RTL8139State),
3240         VMSTATE_UINT8(eeprom.eedi, RTL8139State),
3241         VMSTATE_UINT8(eeprom.eedo, RTL8139State),
3242 
3243         VMSTATE_UINT32(TCTR, RTL8139State),
3244         VMSTATE_UINT32(TimerInt, RTL8139State),
3245         VMSTATE_INT64(TCTR_base, RTL8139State),
3246 
3247         VMSTATE_UINT64(tally_counters.TxOk, RTL8139State),
3248         VMSTATE_UINT64(tally_counters.RxOk, RTL8139State),
3249         VMSTATE_UINT64(tally_counters.TxERR, RTL8139State),
3250         VMSTATE_UINT32(tally_counters.RxERR, RTL8139State),
3251         VMSTATE_UINT16(tally_counters.MissPkt, RTL8139State),
3252         VMSTATE_UINT16(tally_counters.FAE, RTL8139State),
3253         VMSTATE_UINT32(tally_counters.Tx1Col, RTL8139State),
3254         VMSTATE_UINT32(tally_counters.TxMCol, RTL8139State),
3255         VMSTATE_UINT64(tally_counters.RxOkPhy, RTL8139State),
3256         VMSTATE_UINT64(tally_counters.RxOkBrd, RTL8139State),
3257         VMSTATE_UINT32_V(tally_counters.RxOkMul, RTL8139State, 5),
3258         VMSTATE_UINT16(tally_counters.TxAbt, RTL8139State),
3259         VMSTATE_UINT16(tally_counters.TxUndrn, RTL8139State),
3260 
3261         VMSTATE_UINT32_V(cplus_enabled, RTL8139State, 4),
3262         VMSTATE_END_OF_LIST()
3263     },
3264     .subsections = (const VMStateDescription * const []) {
3265         &vmstate_rtl8139_hotplug_ready,
3266         NULL
3267     }
3268 };
3269 
3270 /***********************************************************/
3271 /* PCI RTL8139 definitions */
3272 
3273 static void rtl8139_ioport_write(void *opaque, hwaddr addr,
3274                                  uint64_t val, unsigned size)
3275 {
3276     switch (size) {
3277     case 1:
3278         rtl8139_io_writeb(opaque, addr, val);
3279         break;
3280     case 2:
3281         rtl8139_io_writew(opaque, addr, val);
3282         break;
3283     case 4:
3284         rtl8139_io_writel(opaque, addr, val);
3285         break;
3286     }
3287 }
3288 
3289 static uint64_t rtl8139_ioport_read(void *opaque, hwaddr addr,
3290                                     unsigned size)
3291 {
3292     switch (size) {
3293     case 1:
3294         return rtl8139_io_readb(opaque, addr);
3295     case 2:
3296         return rtl8139_io_readw(opaque, addr);
3297     case 4:
3298         return rtl8139_io_readl(opaque, addr);
3299     }
3300 
3301     return -1;
3302 }
3303 
3304 static const MemoryRegionOps rtl8139_io_ops = {
3305     .read = rtl8139_ioport_read,
3306     .write = rtl8139_ioport_write,
3307     .impl = {
3308         .min_access_size = 1,
3309         .max_access_size = 4,
3310     },
3311     .endianness = DEVICE_LITTLE_ENDIAN,
3312 };
3313 
3314 static void rtl8139_timer(void *opaque)
3315 {
3316     RTL8139State *s = opaque;
3317 
3318     if (!s->clock_enabled)
3319     {
3320         DPRINTF(">>> timer: clock is not running\n");
3321         return;
3322     }
3323 
3324     s->IntrStatus |= PCSTimeout;
3325     rtl8139_update_irq(s);
3326     rtl8139_set_next_tctr_time(s);
3327 }
3328 
3329 static void pci_rtl8139_uninit(PCIDevice *dev)
3330 {
3331     RTL8139State *s = RTL8139(dev);
3332 
3333     g_free(s->cplus_txbuffer);
3334     s->cplus_txbuffer = NULL;
3335     timer_free(s->timer);
3336     qemu_del_nic(s->nic);
3337 }
3338 
3339 static void rtl8139_set_link_status(NetClientState *nc)
3340 {
3341     RTL8139State *s = qemu_get_nic_opaque(nc);
3342 
3343     if (nc->link_down) {
3344         s->BasicModeStatus &= ~0x04;
3345     } else {
3346         s->BasicModeStatus |= 0x04;
3347     }
3348 
3349     s->IntrStatus |= RxUnderrun;
3350     rtl8139_update_irq(s);
3351 }
3352 
3353 static NetClientInfo net_rtl8139_info = {
3354     .type = NET_CLIENT_DRIVER_NIC,
3355     .size = sizeof(NICState),
3356     .can_receive = rtl8139_can_receive,
3357     .receive = rtl8139_receive,
3358     .link_status_changed = rtl8139_set_link_status,
3359 };
3360 
3361 static void pci_rtl8139_realize(PCIDevice *dev, Error **errp)
3362 {
3363     RTL8139State *s = RTL8139(dev);
3364     DeviceState *d = DEVICE(dev);
3365     uint8_t *pci_conf;
3366 
3367     pci_conf = dev->config;
3368     pci_conf[PCI_INTERRUPT_PIN] = 1;    /* interrupt pin A */
3369     /* TODO: start of capability list, but no capability
3370      * list bit in status register, and offset 0xdc seems unused. */
3371     pci_conf[PCI_CAPABILITY_LIST] = 0xdc;
3372 
3373     memory_region_init_io(&s->bar_io, OBJECT(s), &rtl8139_io_ops, s,
3374                           "rtl8139", 0x100);
3375     memory_region_init_alias(&s->bar_mem, OBJECT(s), "rtl8139-mem", &s->bar_io,
3376                              0, 0x100);
3377 
3378     pci_register_bar(dev, 0, PCI_BASE_ADDRESS_SPACE_IO, &s->bar_io);
3379     pci_register_bar(dev, 1, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->bar_mem);
3380 
3381     qemu_macaddr_default_if_unset(&s->conf.macaddr);
3382 
3383     /* prepare eeprom */
3384     s->eeprom.contents[0] = 0x8129;
3385 #if 1
3386     /* PCI vendor and device ID should be mirrored here */
3387     s->eeprom.contents[1] = PCI_VENDOR_ID_REALTEK;
3388     s->eeprom.contents[2] = PCI_DEVICE_ID_REALTEK_8139;
3389 #endif
3390     s->eeprom.contents[7] = s->conf.macaddr.a[0] | s->conf.macaddr.a[1] << 8;
3391     s->eeprom.contents[8] = s->conf.macaddr.a[2] | s->conf.macaddr.a[3] << 8;
3392     s->eeprom.contents[9] = s->conf.macaddr.a[4] | s->conf.macaddr.a[5] << 8;
3393 
3394     s->nic = qemu_new_nic(&net_rtl8139_info, &s->conf,
3395                           object_get_typename(OBJECT(dev)), d->id,
3396                           &d->mem_reentrancy_guard, s);
3397     qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a);
3398 
3399     s->cplus_txbuffer = NULL;
3400     s->cplus_txbuffer_len = 0;
3401     s->cplus_txbuffer_offset = 0;
3402 
3403     s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, rtl8139_timer, s);
3404 }
3405 
3406 static void rtl8139_instance_init(Object *obj)
3407 {
3408     RTL8139State *s = RTL8139(obj);
3409 
3410     device_add_bootindex_property(obj, &s->conf.bootindex,
3411                                   "bootindex", "/ethernet-phy@0",
3412                                   DEVICE(obj));
3413 }
3414 
3415 static Property rtl8139_properties[] = {
3416     DEFINE_NIC_PROPERTIES(RTL8139State, conf),
3417     DEFINE_PROP_END_OF_LIST(),
3418 };
3419 
3420 static void rtl8139_class_init(ObjectClass *klass, void *data)
3421 {
3422     DeviceClass *dc = DEVICE_CLASS(klass);
3423     PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
3424 
3425     k->realize = pci_rtl8139_realize;
3426     k->exit = pci_rtl8139_uninit;
3427     k->romfile = "efi-rtl8139.rom";
3428     k->vendor_id = PCI_VENDOR_ID_REALTEK;
3429     k->device_id = PCI_DEVICE_ID_REALTEK_8139;
3430     k->revision = RTL8139_PCI_REVID; /* >=0x20 is for 8139C+ */
3431     k->class_id = PCI_CLASS_NETWORK_ETHERNET;
3432     dc->reset = rtl8139_reset;
3433     dc->vmsd = &vmstate_rtl8139;
3434     device_class_set_props(dc, rtl8139_properties);
3435     set_bit(DEVICE_CATEGORY_NETWORK, dc->categories);
3436 }
3437 
3438 static const TypeInfo rtl8139_info = {
3439     .name          = TYPE_RTL8139,
3440     .parent        = TYPE_PCI_DEVICE,
3441     .instance_size = sizeof(RTL8139State),
3442     .class_init    = rtl8139_class_init,
3443     .instance_init = rtl8139_instance_init,
3444     .interfaces = (InterfaceInfo[]) {
3445         { INTERFACE_CONVENTIONAL_PCI_DEVICE },
3446         { },
3447     },
3448 };
3449 
3450 static void rtl8139_register_types(void)
3451 {
3452     type_register_static(&rtl8139_info);
3453 }
3454 
3455 type_init(rtl8139_register_types)
3456