xref: /openbmc/qemu/hw/net/rtl8139.c (revision d2dfe0b5)
1 /**
2  * QEMU RTL8139 emulation
3  *
4  * Copyright (c) 2006 Igor Kovalenko
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23 
24  * Modifications:
25  *  2006-Jan-28  Mark Malakanov :   TSAD and CSCR implementation (for Windows driver)
26  *
27  *  2006-Apr-28  Juergen Lock   :   EEPROM emulation changes for FreeBSD driver
28  *                                  HW revision ID changes for FreeBSD driver
29  *
30  *  2006-Jul-01  Igor Kovalenko :   Implemented loopback mode for FreeBSD driver
31  *                                  Corrected packet transfer reassembly routine for 8139C+ mode
32  *                                  Rearranged debugging print statements
33  *                                  Implemented PCI timer interrupt (disabled by default)
34  *                                  Implemented Tally Counters, increased VM load/save version
35  *                                  Implemented IP/TCP/UDP checksum task offloading
36  *
37  *  2006-Jul-04  Igor Kovalenko :   Implemented TCP segmentation offloading
38  *                                  Fixed MTU=1500 for produced ethernet frames
39  *
40  *  2006-Jul-09  Igor Kovalenko :   Fixed TCP header length calculation while processing
41  *                                  segmentation offloading
42  *                                  Removed slirp.h dependency
43  *                                  Added rx/tx buffer reset when enabling rx/tx operation
44  *
45  *  2010-Feb-04  Frediano Ziglio:   Rewrote timer support using QEMU timer only
46  *                                  when strictly needed (required for
47  *                                  Darwin)
48  *  2011-Mar-22  Benjamin Poirier:  Implemented VLAN offloading
49  */
50 
51 /* For crc32 */
52 
53 #include "qemu/osdep.h"
54 #include <zlib.h>
55 
56 #include "hw/pci/pci_device.h"
57 #include "hw/qdev-properties.h"
58 #include "migration/vmstate.h"
59 #include "sysemu/dma.h"
60 #include "qemu/module.h"
61 #include "qemu/timer.h"
62 #include "net/net.h"
63 #include "net/eth.h"
64 #include "sysemu/sysemu.h"
65 #include "qom/object.h"
66 
67 /* debug RTL8139 card */
68 //#define DEBUG_RTL8139 1
69 
70 #define PCI_PERIOD 30    /* 30 ns period = 33.333333 Mhz frequency */
71 
72 #define SET_MASKED(input, mask, curr) \
73     ( ( (input) & ~(mask) ) | ( (curr) & (mask) ) )
74 
75 /* arg % size for size which is a power of 2 */
76 #define MOD2(input, size) \
77     ( ( input ) & ( size - 1 )  )
78 
79 #define ETHER_TYPE_LEN 2
80 
81 #define VLAN_TCI_LEN 2
82 #define VLAN_HLEN (ETHER_TYPE_LEN + VLAN_TCI_LEN)
83 
84 #if defined (DEBUG_RTL8139)
85 #  define DPRINTF(fmt, ...) \
86     do { fprintf(stderr, "RTL8139: " fmt, ## __VA_ARGS__); } while (0)
87 #else
88 static inline G_GNUC_PRINTF(1, 2) int DPRINTF(const char *fmt, ...)
89 {
90     return 0;
91 }
92 #endif
93 
94 #define TYPE_RTL8139 "rtl8139"
95 
96 OBJECT_DECLARE_SIMPLE_TYPE(RTL8139State, RTL8139)
97 
98 /* Symbolic offsets to registers. */
99 enum RTL8139_registers {
100     MAC0 = 0,        /* Ethernet hardware address. */
101     MAR0 = 8,        /* Multicast filter. */
102     TxStatus0 = 0x10,/* Transmit status (Four 32bit registers). C mode only */
103                      /* Dump Tally Conter control register(64bit). C+ mode only */
104     TxAddr0 = 0x20,  /* Tx descriptors (also four 32bit). */
105     RxBuf = 0x30,
106     ChipCmd = 0x37,
107     RxBufPtr = 0x38,
108     RxBufAddr = 0x3A,
109     IntrMask = 0x3C,
110     IntrStatus = 0x3E,
111     TxConfig = 0x40,
112     RxConfig = 0x44,
113     Timer = 0x48,        /* A general-purpose counter. */
114     RxMissed = 0x4C,    /* 24 bits valid, write clears. */
115     Cfg9346 = 0x50,
116     Config0 = 0x51,
117     Config1 = 0x52,
118     FlashReg = 0x54,
119     MediaStatus = 0x58,
120     Config3 = 0x59,
121     Config4 = 0x5A,        /* absent on RTL-8139A */
122     HltClk = 0x5B,
123     MultiIntr = 0x5C,
124     PCIRevisionID = 0x5E,
125     TxSummary = 0x60, /* TSAD register. Transmit Status of All Descriptors*/
126     BasicModeCtrl = 0x62,
127     BasicModeStatus = 0x64,
128     NWayAdvert = 0x66,
129     NWayLPAR = 0x68,
130     NWayExpansion = 0x6A,
131     /* Undocumented registers, but required for proper operation. */
132     FIFOTMS = 0x70,        /* FIFO Control and test. */
133     CSCR = 0x74,        /* Chip Status and Configuration Register. */
134     PARA78 = 0x78,
135     PARA7c = 0x7c,        /* Magic transceiver parameter register. */
136     Config5 = 0xD8,        /* absent on RTL-8139A */
137     /* C+ mode */
138     TxPoll        = 0xD9,    /* Tell chip to check Tx descriptors for work */
139     RxMaxSize    = 0xDA, /* Max size of an Rx packet (8169 only) */
140     CpCmd        = 0xE0, /* C+ Command register (C+ mode only) */
141     IntrMitigate    = 0xE2,    /* rx/tx interrupt mitigation control */
142     RxRingAddrLO    = 0xE4, /* 64-bit start addr of Rx ring */
143     RxRingAddrHI    = 0xE8, /* 64-bit start addr of Rx ring */
144     TxThresh    = 0xEC, /* Early Tx threshold */
145 };
146 
147 enum ClearBitMasks {
148     MultiIntrClear = 0xF000,
149     ChipCmdClear = 0xE2,
150     Config1Clear = (1<<7)|(1<<6)|(1<<3)|(1<<2)|(1<<1),
151 };
152 
153 enum ChipCmdBits {
154     CmdReset = 0x10,
155     CmdRxEnb = 0x08,
156     CmdTxEnb = 0x04,
157     RxBufEmpty = 0x01,
158 };
159 
160 /* C+ mode */
161 enum CplusCmdBits {
162     CPlusRxVLAN   = 0x0040, /* enable receive VLAN detagging */
163     CPlusRxChkSum = 0x0020, /* enable receive checksum offloading */
164     CPlusRxEnb    = 0x0002,
165     CPlusTxEnb    = 0x0001,
166 };
167 
168 /* Interrupt register bits, using my own meaningful names. */
169 enum IntrStatusBits {
170     PCIErr = 0x8000,
171     PCSTimeout = 0x4000,
172     RxFIFOOver = 0x40,
173     RxUnderrun = 0x20, /* Packet Underrun / Link Change */
174     RxOverflow = 0x10,
175     TxErr = 0x08,
176     TxOK = 0x04,
177     RxErr = 0x02,
178     RxOK = 0x01,
179 
180     RxAckBits = RxFIFOOver | RxOverflow | RxOK,
181 };
182 
183 enum TxStatusBits {
184     TxHostOwns = 0x2000,
185     TxUnderrun = 0x4000,
186     TxStatOK = 0x8000,
187     TxOutOfWindow = 0x20000000,
188     TxAborted = 0x40000000,
189     TxCarrierLost = 0x80000000,
190 };
191 enum RxStatusBits {
192     RxMulticast = 0x8000,
193     RxPhysical = 0x4000,
194     RxBroadcast = 0x2000,
195     RxBadSymbol = 0x0020,
196     RxRunt = 0x0010,
197     RxTooLong = 0x0008,
198     RxCRCErr = 0x0004,
199     RxBadAlign = 0x0002,
200     RxStatusOK = 0x0001,
201 };
202 
203 /* Bits in RxConfig. */
204 enum rx_mode_bits {
205     AcceptErr = 0x20,
206     AcceptRunt = 0x10,
207     AcceptBroadcast = 0x08,
208     AcceptMulticast = 0x04,
209     AcceptMyPhys = 0x02,
210     AcceptAllPhys = 0x01,
211 };
212 
213 /* Bits in TxConfig. */
214 enum tx_config_bits {
215 
216         /* Interframe Gap Time. Only TxIFG96 doesn't violate IEEE 802.3 */
217         TxIFGShift = 24,
218         TxIFG84 = (0 << TxIFGShift),    /* 8.4us / 840ns (10 / 100Mbps) */
219         TxIFG88 = (1 << TxIFGShift),    /* 8.8us / 880ns (10 / 100Mbps) */
220         TxIFG92 = (2 << TxIFGShift),    /* 9.2us / 920ns (10 / 100Mbps) */
221         TxIFG96 = (3 << TxIFGShift),    /* 9.6us / 960ns (10 / 100Mbps) */
222 
223     TxLoopBack = (1 << 18) | (1 << 17), /* enable loopback test mode */
224     TxCRC = (1 << 16),    /* DISABLE appending CRC to end of Tx packets */
225     TxClearAbt = (1 << 0),    /* Clear abort (WO) */
226     TxDMAShift = 8,        /* DMA burst value (0-7) is shifted this many bits */
227     TxRetryShift = 4,    /* TXRR value (0-15) is shifted this many bits */
228 
229     TxVersionMask = 0x7C800000, /* mask out version bits 30-26, 23 */
230 };
231 
232 
233 /* Transmit Status of All Descriptors (TSAD) Register */
234 enum TSAD_bits {
235  TSAD_TOK3 = 1<<15, // TOK bit of Descriptor 3
236  TSAD_TOK2 = 1<<14, // TOK bit of Descriptor 2
237  TSAD_TOK1 = 1<<13, // TOK bit of Descriptor 1
238  TSAD_TOK0 = 1<<12, // TOK bit of Descriptor 0
239  TSAD_TUN3 = 1<<11, // TUN bit of Descriptor 3
240  TSAD_TUN2 = 1<<10, // TUN bit of Descriptor 2
241  TSAD_TUN1 = 1<<9, // TUN bit of Descriptor 1
242  TSAD_TUN0 = 1<<8, // TUN bit of Descriptor 0
243  TSAD_TABT3 = 1<<07, // TABT bit of Descriptor 3
244  TSAD_TABT2 = 1<<06, // TABT bit of Descriptor 2
245  TSAD_TABT1 = 1<<05, // TABT bit of Descriptor 1
246  TSAD_TABT0 = 1<<04, // TABT bit of Descriptor 0
247  TSAD_OWN3 = 1<<03, // OWN bit of Descriptor 3
248  TSAD_OWN2 = 1<<02, // OWN bit of Descriptor 2
249  TSAD_OWN1 = 1<<01, // OWN bit of Descriptor 1
250  TSAD_OWN0 = 1<<00, // OWN bit of Descriptor 0
251 };
252 
253 
254 /* Bits in Config1 */
255 enum Config1Bits {
256     Cfg1_PM_Enable = 0x01,
257     Cfg1_VPD_Enable = 0x02,
258     Cfg1_PIO = 0x04,
259     Cfg1_MMIO = 0x08,
260     LWAKE = 0x10,        /* not on 8139, 8139A */
261     Cfg1_Driver_Load = 0x20,
262     Cfg1_LED0 = 0x40,
263     Cfg1_LED1 = 0x80,
264     SLEEP = (1 << 1),    /* only on 8139, 8139A */
265     PWRDN = (1 << 0),    /* only on 8139, 8139A */
266 };
267 
268 /* Bits in Config3 */
269 enum Config3Bits {
270     Cfg3_FBtBEn    = (1 << 0), /* 1 = Fast Back to Back */
271     Cfg3_FuncRegEn = (1 << 1), /* 1 = enable CardBus Function registers */
272     Cfg3_CLKRUN_En = (1 << 2), /* 1 = enable CLKRUN */
273     Cfg3_CardB_En  = (1 << 3), /* 1 = enable CardBus registers */
274     Cfg3_LinkUp    = (1 << 4), /* 1 = wake up on link up */
275     Cfg3_Magic     = (1 << 5), /* 1 = wake up on Magic Packet (tm) */
276     Cfg3_PARM_En   = (1 << 6), /* 0 = software can set twister parameters */
277     Cfg3_GNTSel    = (1 << 7), /* 1 = delay 1 clock from PCI GNT signal */
278 };
279 
280 /* Bits in Config4 */
281 enum Config4Bits {
282     LWPTN = (1 << 2),    /* not on 8139, 8139A */
283 };
284 
285 /* Bits in Config5 */
286 enum Config5Bits {
287     Cfg5_PME_STS     = (1 << 0), /* 1 = PCI reset resets PME_Status */
288     Cfg5_LANWake     = (1 << 1), /* 1 = enable LANWake signal */
289     Cfg5_LDPS        = (1 << 2), /* 0 = save power when link is down */
290     Cfg5_FIFOAddrPtr = (1 << 3), /* Realtek internal SRAM testing */
291     Cfg5_UWF         = (1 << 4), /* 1 = accept unicast wakeup frame */
292     Cfg5_MWF         = (1 << 5), /* 1 = accept multicast wakeup frame */
293     Cfg5_BWF         = (1 << 6), /* 1 = accept broadcast wakeup frame */
294 };
295 
296 enum RxConfigBits {
297     /* rx fifo threshold */
298     RxCfgFIFOShift = 13,
299     RxCfgFIFONone = (7 << RxCfgFIFOShift),
300 
301     /* Max DMA burst */
302     RxCfgDMAShift = 8,
303     RxCfgDMAUnlimited = (7 << RxCfgDMAShift),
304 
305     /* rx ring buffer length */
306     RxCfgRcv8K = 0,
307     RxCfgRcv16K = (1 << 11),
308     RxCfgRcv32K = (1 << 12),
309     RxCfgRcv64K = (1 << 11) | (1 << 12),
310 
311     /* Disable packet wrap at end of Rx buffer. (not possible with 64k) */
312     RxNoWrap = (1 << 7),
313 };
314 
315 /* Twister tuning parameters from RealTek.
316    Completely undocumented, but required to tune bad links on some boards. */
317 /*
318 enum CSCRBits {
319     CSCR_LinkOKBit = 0x0400,
320     CSCR_LinkChangeBit = 0x0800,
321     CSCR_LinkStatusBits = 0x0f000,
322     CSCR_LinkDownOffCmd = 0x003c0,
323     CSCR_LinkDownCmd = 0x0f3c0,
324 */
325 enum CSCRBits {
326     CSCR_Testfun = 1<<15, /* 1 = Auto-neg speeds up internal timer, WO, def 0 */
327     CSCR_LD  = 1<<9,  /* Active low TPI link disable signal. When low, TPI still transmits link pulses and TPI stays in good link state. def 1*/
328     CSCR_HEART_BIT = 1<<8,  /* 1 = HEART BEAT enable, 0 = HEART BEAT disable. HEART BEAT function is only valid in 10Mbps mode. def 1*/
329     CSCR_JBEN = 1<<7,  /* 1 = enable jabber function. 0 = disable jabber function, def 1*/
330     CSCR_F_LINK_100 = 1<<6, /* Used to login force good link in 100Mbps for diagnostic purposes. 1 = DISABLE, 0 = ENABLE. def 1*/
331     CSCR_F_Connect  = 1<<5,  /* Assertion of this bit forces the disconnect function to be bypassed. def 0*/
332     CSCR_Con_status = 1<<3, /* This bit indicates the status of the connection. 1 = valid connected link detected; 0 = disconnected link detected. RO def 0*/
333     CSCR_Con_status_En = 1<<2, /* Assertion of this bit configures LED1 pin to indicate connection status. def 0*/
334     CSCR_PASS_SCR = 1<<0, /* Bypass Scramble, def 0*/
335 };
336 
337 enum Cfg9346Bits {
338     Cfg9346_Normal = 0x00,
339     Cfg9346_Autoload = 0x40,
340     Cfg9346_Programming = 0x80,
341     Cfg9346_ConfigWrite = 0xC0,
342 };
343 
344 typedef enum {
345     CH_8139 = 0,
346     CH_8139_K,
347     CH_8139A,
348     CH_8139A_G,
349     CH_8139B,
350     CH_8130,
351     CH_8139C,
352     CH_8100,
353     CH_8100B_8139D,
354     CH_8101,
355 } chip_t;
356 
357 enum chip_flags {
358     HasHltClk = (1 << 0),
359     HasLWake = (1 << 1),
360 };
361 
362 #define HW_REVID(b30, b29, b28, b27, b26, b23, b22) \
363     (b30<<30 | b29<<29 | b28<<28 | b27<<27 | b26<<26 | b23<<23 | b22<<22)
364 #define HW_REVID_MASK    HW_REVID(1, 1, 1, 1, 1, 1, 1)
365 
366 #define RTL8139_PCI_REVID_8139      0x10
367 #define RTL8139_PCI_REVID_8139CPLUS 0x20
368 
369 #define RTL8139_PCI_REVID           RTL8139_PCI_REVID_8139CPLUS
370 
371 /* Size is 64 * 16bit words */
372 #define EEPROM_9346_ADDR_BITS 6
373 #define EEPROM_9346_SIZE  (1 << EEPROM_9346_ADDR_BITS)
374 #define EEPROM_9346_ADDR_MASK (EEPROM_9346_SIZE - 1)
375 
376 enum Chip9346Operation
377 {
378     Chip9346_op_mask = 0xc0,          /* 10 zzzzzz */
379     Chip9346_op_read = 0x80,          /* 10 AAAAAA */
380     Chip9346_op_write = 0x40,         /* 01 AAAAAA D(15)..D(0) */
381     Chip9346_op_ext_mask = 0xf0,      /* 11 zzzzzz */
382     Chip9346_op_write_enable = 0x30,  /* 00 11zzzz */
383     Chip9346_op_write_all = 0x10,     /* 00 01zzzz */
384     Chip9346_op_write_disable = 0x00, /* 00 00zzzz */
385 };
386 
387 enum Chip9346Mode
388 {
389     Chip9346_none = 0,
390     Chip9346_enter_command_mode,
391     Chip9346_read_command,
392     Chip9346_data_read,      /* from output register */
393     Chip9346_data_write,     /* to input register, then to contents at specified address */
394     Chip9346_data_write_all, /* to input register, then filling contents */
395 };
396 
397 typedef struct EEprom9346
398 {
399     uint16_t contents[EEPROM_9346_SIZE];
400     int      mode;
401     uint32_t tick;
402     uint8_t  address;
403     uint16_t input;
404     uint16_t output;
405 
406     uint8_t eecs;
407     uint8_t eesk;
408     uint8_t eedi;
409     uint8_t eedo;
410 } EEprom9346;
411 
412 typedef struct RTL8139TallyCounters
413 {
414     /* Tally counters */
415     uint64_t   TxOk;
416     uint64_t   RxOk;
417     uint64_t   TxERR;
418     uint32_t   RxERR;
419     uint16_t   MissPkt;
420     uint16_t   FAE;
421     uint32_t   Tx1Col;
422     uint32_t   TxMCol;
423     uint64_t   RxOkPhy;
424     uint64_t   RxOkBrd;
425     uint32_t   RxOkMul;
426     uint16_t   TxAbt;
427     uint16_t   TxUndrn;
428 } RTL8139TallyCounters;
429 
430 /* Clears all tally counters */
431 static void RTL8139TallyCounters_clear(RTL8139TallyCounters* counters);
432 
433 struct RTL8139State {
434     /*< private >*/
435     PCIDevice parent_obj;
436     /*< public >*/
437 
438     uint8_t phys[8]; /* mac address */
439     uint8_t mult[8]; /* multicast mask array */
440 
441     uint32_t TxStatus[4]; /* TxStatus0 in C mode*/ /* also DTCCR[0] and DTCCR[1] in C+ mode */
442     uint32_t TxAddr[4];   /* TxAddr0 */
443     uint32_t RxBuf;       /* Receive buffer */
444     uint32_t RxBufferSize;/* internal variable, receive ring buffer size in C mode */
445     uint32_t RxBufPtr;
446     uint32_t RxBufAddr;
447 
448     uint16_t IntrStatus;
449     uint16_t IntrMask;
450 
451     uint32_t TxConfig;
452     uint32_t RxConfig;
453     uint32_t RxMissed;
454 
455     uint16_t CSCR;
456 
457     uint8_t  Cfg9346;
458     uint8_t  Config0;
459     uint8_t  Config1;
460     uint8_t  Config3;
461     uint8_t  Config4;
462     uint8_t  Config5;
463 
464     uint8_t  clock_enabled;
465     uint8_t  bChipCmdState;
466 
467     uint16_t MultiIntr;
468 
469     uint16_t BasicModeCtrl;
470     uint16_t BasicModeStatus;
471     uint16_t NWayAdvert;
472     uint16_t NWayLPAR;
473     uint16_t NWayExpansion;
474 
475     uint16_t CpCmd;
476     uint8_t  TxThresh;
477 
478     NICState *nic;
479     NICConf conf;
480 
481     /* C ring mode */
482     uint32_t   currTxDesc;
483 
484     /* C+ mode */
485     uint32_t   cplus_enabled;
486 
487     uint32_t   currCPlusRxDesc;
488     uint32_t   currCPlusTxDesc;
489 
490     uint32_t   RxRingAddrLO;
491     uint32_t   RxRingAddrHI;
492 
493     EEprom9346 eeprom;
494 
495     uint32_t   TCTR;
496     uint32_t   TimerInt;
497     int64_t    TCTR_base;
498 
499     /* Tally counters */
500     RTL8139TallyCounters tally_counters;
501 
502     /* Non-persistent data */
503     uint8_t   *cplus_txbuffer;
504     int        cplus_txbuffer_len;
505     int        cplus_txbuffer_offset;
506 
507     /* PCI interrupt timer */
508     QEMUTimer *timer;
509 
510     MemoryRegion bar_io;
511     MemoryRegion bar_mem;
512 
513     /* Support migration to/from old versions */
514     int rtl8139_mmio_io_addr_dummy;
515 };
516 
517 /* Writes tally counters to memory via DMA */
518 static void RTL8139TallyCounters_dma_write(RTL8139State *s, dma_addr_t tc_addr);
519 
520 static void rtl8139_set_next_tctr_time(RTL8139State *s);
521 
522 static void prom9346_decode_command(EEprom9346 *eeprom, uint8_t command)
523 {
524     DPRINTF("eeprom command 0x%02x\n", command);
525 
526     switch (command & Chip9346_op_mask)
527     {
528         case Chip9346_op_read:
529         {
530             eeprom->address = command & EEPROM_9346_ADDR_MASK;
531             eeprom->output = eeprom->contents[eeprom->address];
532             eeprom->eedo = 0;
533             eeprom->tick = 0;
534             eeprom->mode = Chip9346_data_read;
535             DPRINTF("eeprom read from address 0x%02x data=0x%04x\n",
536                 eeprom->address, eeprom->output);
537         }
538         break;
539 
540         case Chip9346_op_write:
541         {
542             eeprom->address = command & EEPROM_9346_ADDR_MASK;
543             eeprom->input = 0;
544             eeprom->tick = 0;
545             eeprom->mode = Chip9346_none; /* Chip9346_data_write */
546             DPRINTF("eeprom begin write to address 0x%02x\n",
547                 eeprom->address);
548         }
549         break;
550         default:
551             eeprom->mode = Chip9346_none;
552             switch (command & Chip9346_op_ext_mask)
553             {
554                 case Chip9346_op_write_enable:
555                     DPRINTF("eeprom write enabled\n");
556                     break;
557                 case Chip9346_op_write_all:
558                     DPRINTF("eeprom begin write all\n");
559                     break;
560                 case Chip9346_op_write_disable:
561                     DPRINTF("eeprom write disabled\n");
562                     break;
563             }
564             break;
565     }
566 }
567 
568 static void prom9346_shift_clock(EEprom9346 *eeprom)
569 {
570     int bit = eeprom->eedi?1:0;
571 
572     ++ eeprom->tick;
573 
574     DPRINTF("eeprom: tick %d eedi=%d eedo=%d\n", eeprom->tick, eeprom->eedi,
575         eeprom->eedo);
576 
577     switch (eeprom->mode)
578     {
579         case Chip9346_enter_command_mode:
580             if (bit)
581             {
582                 eeprom->mode = Chip9346_read_command;
583                 eeprom->tick = 0;
584                 eeprom->input = 0;
585                 DPRINTF("eeprom: +++ synchronized, begin command read\n");
586             }
587             break;
588 
589         case Chip9346_read_command:
590             eeprom->input = (eeprom->input << 1) | (bit & 1);
591             if (eeprom->tick == 8)
592             {
593                 prom9346_decode_command(eeprom, eeprom->input & 0xff);
594             }
595             break;
596 
597         case Chip9346_data_read:
598             eeprom->eedo = (eeprom->output & 0x8000)?1:0;
599             eeprom->output <<= 1;
600             if (eeprom->tick == 16)
601             {
602 #if 1
603         // the FreeBSD drivers (rl and re) don't explicitly toggle
604         // CS between reads (or does setting Cfg9346 to 0 count too?),
605         // so we need to enter wait-for-command state here
606                 eeprom->mode = Chip9346_enter_command_mode;
607                 eeprom->input = 0;
608                 eeprom->tick = 0;
609 
610                 DPRINTF("eeprom: +++ end of read, awaiting next command\n");
611 #else
612         // original behaviour
613                 ++eeprom->address;
614                 eeprom->address &= EEPROM_9346_ADDR_MASK;
615                 eeprom->output = eeprom->contents[eeprom->address];
616                 eeprom->tick = 0;
617 
618                 DPRINTF("eeprom: +++ read next address 0x%02x data=0x%04x\n",
619                     eeprom->address, eeprom->output);
620 #endif
621             }
622             break;
623 
624         case Chip9346_data_write:
625             eeprom->input = (eeprom->input << 1) | (bit & 1);
626             if (eeprom->tick == 16)
627             {
628                 DPRINTF("eeprom write to address 0x%02x data=0x%04x\n",
629                     eeprom->address, eeprom->input);
630 
631                 eeprom->contents[eeprom->address] = eeprom->input;
632                 eeprom->mode = Chip9346_none; /* waiting for next command after CS cycle */
633                 eeprom->tick = 0;
634                 eeprom->input = 0;
635             }
636             break;
637 
638         case Chip9346_data_write_all:
639             eeprom->input = (eeprom->input << 1) | (bit & 1);
640             if (eeprom->tick == 16)
641             {
642                 int i;
643                 for (i = 0; i < EEPROM_9346_SIZE; i++)
644                 {
645                     eeprom->contents[i] = eeprom->input;
646                 }
647                 DPRINTF("eeprom filled with data=0x%04x\n", eeprom->input);
648 
649                 eeprom->mode = Chip9346_enter_command_mode;
650                 eeprom->tick = 0;
651                 eeprom->input = 0;
652             }
653             break;
654 
655         default:
656             break;
657     }
658 }
659 
660 static int prom9346_get_wire(RTL8139State *s)
661 {
662     EEprom9346 *eeprom = &s->eeprom;
663     if (!eeprom->eecs)
664         return 0;
665 
666     return eeprom->eedo;
667 }
668 
669 /* FIXME: This should be merged into/replaced by eeprom93xx.c.  */
670 static void prom9346_set_wire(RTL8139State *s, int eecs, int eesk, int eedi)
671 {
672     EEprom9346 *eeprom = &s->eeprom;
673     uint8_t old_eecs = eeprom->eecs;
674     uint8_t old_eesk = eeprom->eesk;
675 
676     eeprom->eecs = eecs;
677     eeprom->eesk = eesk;
678     eeprom->eedi = eedi;
679 
680     DPRINTF("eeprom: +++ wires CS=%d SK=%d DI=%d DO=%d\n", eeprom->eecs,
681         eeprom->eesk, eeprom->eedi, eeprom->eedo);
682 
683     if (!old_eecs && eecs)
684     {
685         /* Synchronize start */
686         eeprom->tick = 0;
687         eeprom->input = 0;
688         eeprom->output = 0;
689         eeprom->mode = Chip9346_enter_command_mode;
690 
691         DPRINTF("=== eeprom: begin access, enter command mode\n");
692     }
693 
694     if (!eecs)
695     {
696         DPRINTF("=== eeprom: end access\n");
697         return;
698     }
699 
700     if (!old_eesk && eesk)
701     {
702         /* SK front rules */
703         prom9346_shift_clock(eeprom);
704     }
705 }
706 
707 static void rtl8139_update_irq(RTL8139State *s)
708 {
709     PCIDevice *d = PCI_DEVICE(s);
710     int isr;
711     isr = (s->IntrStatus & s->IntrMask) & 0xffff;
712 
713     DPRINTF("Set IRQ to %d (%04x %04x)\n", isr ? 1 : 0, s->IntrStatus,
714         s->IntrMask);
715 
716     pci_set_irq(d, (isr != 0));
717 }
718 
719 static int rtl8139_RxWrap(RTL8139State *s)
720 {
721     /* wrapping enabled; assume 1.5k more buffer space if size < 65536 */
722     return (s->RxConfig & (1 << 7));
723 }
724 
725 static int rtl8139_receiver_enabled(RTL8139State *s)
726 {
727     return s->bChipCmdState & CmdRxEnb;
728 }
729 
730 static int rtl8139_transmitter_enabled(RTL8139State *s)
731 {
732     return s->bChipCmdState & CmdTxEnb;
733 }
734 
735 static int rtl8139_cp_receiver_enabled(RTL8139State *s)
736 {
737     return s->CpCmd & CPlusRxEnb;
738 }
739 
740 static int rtl8139_cp_transmitter_enabled(RTL8139State *s)
741 {
742     return s->CpCmd & CPlusTxEnb;
743 }
744 
745 static void rtl8139_write_buffer(RTL8139State *s, const void *buf, int size)
746 {
747     PCIDevice *d = PCI_DEVICE(s);
748 
749     if (s->RxBufAddr + size > s->RxBufferSize)
750     {
751         int wrapped = MOD2(s->RxBufAddr + size, s->RxBufferSize);
752 
753         /* write packet data */
754         if (wrapped && !(s->RxBufferSize < 65536 && rtl8139_RxWrap(s)))
755         {
756             DPRINTF(">>> rx packet wrapped in buffer at %d\n", size - wrapped);
757 
758             if (size > wrapped)
759             {
760                 pci_dma_write(d, s->RxBuf + s->RxBufAddr,
761                               buf, size-wrapped);
762             }
763 
764             /* reset buffer pointer */
765             s->RxBufAddr = 0;
766 
767             pci_dma_write(d, s->RxBuf + s->RxBufAddr,
768                           buf + (size-wrapped), wrapped);
769 
770             s->RxBufAddr = wrapped;
771 
772             return;
773         }
774     }
775 
776     /* non-wrapping path or overwrapping enabled */
777     pci_dma_write(d, s->RxBuf + s->RxBufAddr, buf, size);
778 
779     s->RxBufAddr += size;
780 }
781 
782 #define MIN_BUF_SIZE 60
783 static inline dma_addr_t rtl8139_addr64(uint32_t low, uint32_t high)
784 {
785     return low | ((uint64_t)high << 32);
786 }
787 
788 /* Workaround for buggy guest driver such as linux who allocates rx
789  * rings after the receiver were enabled. */
790 static bool rtl8139_cp_rx_valid(RTL8139State *s)
791 {
792     return !(s->RxRingAddrLO == 0 && s->RxRingAddrHI == 0);
793 }
794 
795 static bool rtl8139_can_receive(NetClientState *nc)
796 {
797     RTL8139State *s = qemu_get_nic_opaque(nc);
798     int avail;
799 
800     /* Receive (drop) packets if card is disabled.  */
801     if (!s->clock_enabled) {
802         return true;
803     }
804     if (!rtl8139_receiver_enabled(s)) {
805         return true;
806     }
807 
808     if (rtl8139_cp_receiver_enabled(s) && rtl8139_cp_rx_valid(s)) {
809         /* ??? Flow control not implemented in c+ mode.
810            This is a hack to work around slirp deficiencies anyway.  */
811         return true;
812     }
813 
814     avail = MOD2(s->RxBufferSize + s->RxBufPtr - s->RxBufAddr,
815                  s->RxBufferSize);
816     return avail == 0 || avail >= 1514 || (s->IntrMask & RxOverflow);
817 }
818 
819 static ssize_t rtl8139_do_receive(NetClientState *nc, const uint8_t *buf, size_t size_, int do_interrupt)
820 {
821     RTL8139State *s = qemu_get_nic_opaque(nc);
822     PCIDevice *d = PCI_DEVICE(s);
823     /* size is the length of the buffer passed to the driver */
824     size_t size = size_;
825     const uint8_t *dot1q_buf = NULL;
826 
827     uint32_t packet_header = 0;
828 
829     uint8_t buf1[MIN_BUF_SIZE + VLAN_HLEN];
830     static const uint8_t broadcast_macaddr[6] =
831         { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
832 
833     DPRINTF(">>> received len=%zu\n", size);
834 
835     /* test if board clock is stopped */
836     if (!s->clock_enabled)
837     {
838         DPRINTF("stopped ==========================\n");
839         return -1;
840     }
841 
842     /* first check if receiver is enabled */
843 
844     if (!rtl8139_receiver_enabled(s))
845     {
846         DPRINTF("receiver disabled ================\n");
847         return -1;
848     }
849 
850     /* XXX: check this */
851     if (s->RxConfig & AcceptAllPhys) {
852         /* promiscuous: receive all */
853         DPRINTF(">>> packet received in promiscuous mode\n");
854 
855     } else {
856         if (!memcmp(buf,  broadcast_macaddr, 6)) {
857             /* broadcast address */
858             if (!(s->RxConfig & AcceptBroadcast))
859             {
860                 DPRINTF(">>> broadcast packet rejected\n");
861 
862                 /* update tally counter */
863                 ++s->tally_counters.RxERR;
864 
865                 return size;
866             }
867 
868             packet_header |= RxBroadcast;
869 
870             DPRINTF(">>> broadcast packet received\n");
871 
872             /* update tally counter */
873             ++s->tally_counters.RxOkBrd;
874 
875         } else if (buf[0] & 0x01) {
876             /* multicast */
877             if (!(s->RxConfig & AcceptMulticast))
878             {
879                 DPRINTF(">>> multicast packet rejected\n");
880 
881                 /* update tally counter */
882                 ++s->tally_counters.RxERR;
883 
884                 return size;
885             }
886 
887             int mcast_idx = net_crc32(buf, ETH_ALEN) >> 26;
888 
889             if (!(s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))))
890             {
891                 DPRINTF(">>> multicast address mismatch\n");
892 
893                 /* update tally counter */
894                 ++s->tally_counters.RxERR;
895 
896                 return size;
897             }
898 
899             packet_header |= RxMulticast;
900 
901             DPRINTF(">>> multicast packet received\n");
902 
903             /* update tally counter */
904             ++s->tally_counters.RxOkMul;
905 
906         } else if (s->phys[0] == buf[0] &&
907                    s->phys[1] == buf[1] &&
908                    s->phys[2] == buf[2] &&
909                    s->phys[3] == buf[3] &&
910                    s->phys[4] == buf[4] &&
911                    s->phys[5] == buf[5]) {
912             /* match */
913             if (!(s->RxConfig & AcceptMyPhys))
914             {
915                 DPRINTF(">>> rejecting physical address matching packet\n");
916 
917                 /* update tally counter */
918                 ++s->tally_counters.RxERR;
919 
920                 return size;
921             }
922 
923             packet_header |= RxPhysical;
924 
925             DPRINTF(">>> physical address matching packet received\n");
926 
927             /* update tally counter */
928             ++s->tally_counters.RxOkPhy;
929 
930         } else {
931 
932             DPRINTF(">>> unknown packet\n");
933 
934             /* update tally counter */
935             ++s->tally_counters.RxERR;
936 
937             return size;
938         }
939     }
940 
941     /* if too small buffer, then expand it
942      * Include some tailroom in case a vlan tag is later removed. */
943     if (size < MIN_BUF_SIZE + VLAN_HLEN) {
944         memcpy(buf1, buf, size);
945         memset(buf1 + size, 0, MIN_BUF_SIZE + VLAN_HLEN - size);
946         buf = buf1;
947         if (size < MIN_BUF_SIZE) {
948             size = MIN_BUF_SIZE;
949         }
950     }
951 
952     if (rtl8139_cp_receiver_enabled(s))
953     {
954         if (!rtl8139_cp_rx_valid(s)) {
955             return size;
956         }
957 
958         DPRINTF("in C+ Rx mode ================\n");
959 
960         /* begin C+ receiver mode */
961 
962 /* w0 ownership flag */
963 #define CP_RX_OWN (1<<31)
964 /* w0 end of ring flag */
965 #define CP_RX_EOR (1<<30)
966 /* w0 bits 0...12 : buffer size */
967 #define CP_RX_BUFFER_SIZE_MASK ((1<<13) - 1)
968 /* w1 tag available flag */
969 #define CP_RX_TAVA (1<<16)
970 /* w1 bits 0...15 : VLAN tag */
971 #define CP_RX_VLAN_TAG_MASK ((1<<16) - 1)
972 /* w2 low  32bit of Rx buffer ptr */
973 /* w3 high 32bit of Rx buffer ptr */
974 
975         int descriptor = s->currCPlusRxDesc;
976         dma_addr_t cplus_rx_ring_desc;
977 
978         cplus_rx_ring_desc = rtl8139_addr64(s->RxRingAddrLO, s->RxRingAddrHI);
979         cplus_rx_ring_desc += 16 * descriptor;
980 
981         DPRINTF("+++ C+ mode reading RX descriptor %d from host memory at "
982             "%08x %08x = "DMA_ADDR_FMT"\n", descriptor, s->RxRingAddrHI,
983             s->RxRingAddrLO, cplus_rx_ring_desc);
984 
985         uint32_t val, rxdw0,rxdw1,rxbufLO,rxbufHI;
986 
987         pci_dma_read(d, cplus_rx_ring_desc, &val, 4);
988         rxdw0 = le32_to_cpu(val);
989         pci_dma_read(d, cplus_rx_ring_desc+4, &val, 4);
990         rxdw1 = le32_to_cpu(val);
991         pci_dma_read(d, cplus_rx_ring_desc+8, &val, 4);
992         rxbufLO = le32_to_cpu(val);
993         pci_dma_read(d, cplus_rx_ring_desc+12, &val, 4);
994         rxbufHI = le32_to_cpu(val);
995 
996         DPRINTF("+++ C+ mode RX descriptor %d %08x %08x %08x %08x\n",
997             descriptor, rxdw0, rxdw1, rxbufLO, rxbufHI);
998 
999         if (!(rxdw0 & CP_RX_OWN))
1000         {
1001             DPRINTF("C+ Rx mode : descriptor %d is owned by host\n",
1002                 descriptor);
1003 
1004             s->IntrStatus |= RxOverflow;
1005             ++s->RxMissed;
1006 
1007             /* update tally counter */
1008             ++s->tally_counters.RxERR;
1009             ++s->tally_counters.MissPkt;
1010 
1011             rtl8139_update_irq(s);
1012             return size_;
1013         }
1014 
1015         uint32_t rx_space = rxdw0 & CP_RX_BUFFER_SIZE_MASK;
1016 
1017         /* write VLAN info to descriptor variables. */
1018         if (s->CpCmd & CPlusRxVLAN &&
1019             lduw_be_p(&buf[ETH_ALEN * 2]) == ETH_P_VLAN) {
1020             dot1q_buf = &buf[ETH_ALEN * 2];
1021             size -= VLAN_HLEN;
1022             /* if too small buffer, use the tailroom added duing expansion */
1023             if (size < MIN_BUF_SIZE) {
1024                 size = MIN_BUF_SIZE;
1025             }
1026 
1027             rxdw1 &= ~CP_RX_VLAN_TAG_MASK;
1028             /* BE + ~le_to_cpu()~ + cpu_to_le() = BE */
1029             rxdw1 |= CP_RX_TAVA | lduw_le_p(&dot1q_buf[ETHER_TYPE_LEN]);
1030 
1031             DPRINTF("C+ Rx mode : extracted vlan tag with tci: ""%u\n",
1032                 lduw_be_p(&dot1q_buf[ETHER_TYPE_LEN]));
1033         } else {
1034             /* reset VLAN tag flag */
1035             rxdw1 &= ~CP_RX_TAVA;
1036         }
1037 
1038         /* TODO: scatter the packet over available receive ring descriptors space */
1039 
1040         if (size+4 > rx_space)
1041         {
1042             DPRINTF("C+ Rx mode : descriptor %d size %d received %zu + 4\n",
1043                 descriptor, rx_space, size);
1044 
1045             s->IntrStatus |= RxOverflow;
1046             ++s->RxMissed;
1047 
1048             /* update tally counter */
1049             ++s->tally_counters.RxERR;
1050             ++s->tally_counters.MissPkt;
1051 
1052             rtl8139_update_irq(s);
1053             return size_;
1054         }
1055 
1056         dma_addr_t rx_addr = rtl8139_addr64(rxbufLO, rxbufHI);
1057 
1058         /* receive/copy to target memory */
1059         if (dot1q_buf) {
1060             pci_dma_write(d, rx_addr, buf, 2 * ETH_ALEN);
1061             pci_dma_write(d, rx_addr + 2 * ETH_ALEN,
1062                           buf + 2 * ETH_ALEN + VLAN_HLEN,
1063                           size - 2 * ETH_ALEN);
1064         } else {
1065             pci_dma_write(d, rx_addr, buf, size);
1066         }
1067 
1068         if (s->CpCmd & CPlusRxChkSum)
1069         {
1070             /* do some packet checksumming */
1071         }
1072 
1073         /* write checksum */
1074         val = cpu_to_le32(crc32(0, buf, size_));
1075         pci_dma_write(d, rx_addr+size, (uint8_t *)&val, 4);
1076 
1077 /* first segment of received packet flag */
1078 #define CP_RX_STATUS_FS (1<<29)
1079 /* last segment of received packet flag */
1080 #define CP_RX_STATUS_LS (1<<28)
1081 /* multicast packet flag */
1082 #define CP_RX_STATUS_MAR (1<<26)
1083 /* physical-matching packet flag */
1084 #define CP_RX_STATUS_PAM (1<<25)
1085 /* broadcast packet flag */
1086 #define CP_RX_STATUS_BAR (1<<24)
1087 /* runt packet flag */
1088 #define CP_RX_STATUS_RUNT (1<<19)
1089 /* crc error flag */
1090 #define CP_RX_STATUS_CRC (1<<18)
1091 /* IP checksum error flag */
1092 #define CP_RX_STATUS_IPF (1<<15)
1093 /* UDP checksum error flag */
1094 #define CP_RX_STATUS_UDPF (1<<14)
1095 /* TCP checksum error flag */
1096 #define CP_RX_STATUS_TCPF (1<<13)
1097 
1098         /* transfer ownership to target */
1099         rxdw0 &= ~CP_RX_OWN;
1100 
1101         /* set first segment bit */
1102         rxdw0 |= CP_RX_STATUS_FS;
1103 
1104         /* set last segment bit */
1105         rxdw0 |= CP_RX_STATUS_LS;
1106 
1107         /* set received packet type flags */
1108         if (packet_header & RxBroadcast)
1109             rxdw0 |= CP_RX_STATUS_BAR;
1110         if (packet_header & RxMulticast)
1111             rxdw0 |= CP_RX_STATUS_MAR;
1112         if (packet_header & RxPhysical)
1113             rxdw0 |= CP_RX_STATUS_PAM;
1114 
1115         /* set received size */
1116         rxdw0 &= ~CP_RX_BUFFER_SIZE_MASK;
1117         rxdw0 |= (size+4);
1118 
1119         /* update ring data */
1120         val = cpu_to_le32(rxdw0);
1121         pci_dma_write(d, cplus_rx_ring_desc, (uint8_t *)&val, 4);
1122         val = cpu_to_le32(rxdw1);
1123         pci_dma_write(d, cplus_rx_ring_desc+4, (uint8_t *)&val, 4);
1124 
1125         /* update tally counter */
1126         ++s->tally_counters.RxOk;
1127 
1128         /* seek to next Rx descriptor */
1129         if (rxdw0 & CP_RX_EOR)
1130         {
1131             s->currCPlusRxDesc = 0;
1132         }
1133         else
1134         {
1135             ++s->currCPlusRxDesc;
1136         }
1137 
1138         DPRINTF("done C+ Rx mode ----------------\n");
1139 
1140     }
1141     else
1142     {
1143         DPRINTF("in ring Rx mode ================\n");
1144 
1145         /* begin ring receiver mode */
1146         int avail = MOD2(s->RxBufferSize + s->RxBufPtr - s->RxBufAddr, s->RxBufferSize);
1147 
1148         /* if receiver buffer is empty then avail == 0 */
1149 
1150 #define RX_ALIGN(x) (((x) + 3) & ~0x3)
1151 
1152         if (avail != 0 && RX_ALIGN(size + 8) >= avail)
1153         {
1154             DPRINTF("rx overflow: rx buffer length %d head 0x%04x "
1155                 "read 0x%04x === available 0x%04x need 0x%04zx\n",
1156                 s->RxBufferSize, s->RxBufAddr, s->RxBufPtr, avail, size + 8);
1157 
1158             s->IntrStatus |= RxOverflow;
1159             ++s->RxMissed;
1160             rtl8139_update_irq(s);
1161             return 0;
1162         }
1163 
1164         packet_header |= RxStatusOK;
1165 
1166         packet_header |= (((size+4) << 16) & 0xffff0000);
1167 
1168         /* write header */
1169         uint32_t val = cpu_to_le32(packet_header);
1170 
1171         rtl8139_write_buffer(s, (uint8_t *)&val, 4);
1172 
1173         rtl8139_write_buffer(s, buf, size);
1174 
1175         /* write checksum */
1176         val = cpu_to_le32(crc32(0, buf, size));
1177         rtl8139_write_buffer(s, (uint8_t *)&val, 4);
1178 
1179         /* correct buffer write pointer */
1180         s->RxBufAddr = MOD2(RX_ALIGN(s->RxBufAddr), s->RxBufferSize);
1181 
1182         /* now we can signal we have received something */
1183 
1184         DPRINTF("received: rx buffer length %d head 0x%04x read 0x%04x\n",
1185             s->RxBufferSize, s->RxBufAddr, s->RxBufPtr);
1186     }
1187 
1188     s->IntrStatus |= RxOK;
1189 
1190     if (do_interrupt)
1191     {
1192         rtl8139_update_irq(s);
1193     }
1194 
1195     return size_;
1196 }
1197 
1198 static ssize_t rtl8139_receive(NetClientState *nc, const uint8_t *buf, size_t size)
1199 {
1200     return rtl8139_do_receive(nc, buf, size, 1);
1201 }
1202 
1203 static void rtl8139_reset_rxring(RTL8139State *s, uint32_t bufferSize)
1204 {
1205     s->RxBufferSize = bufferSize;
1206     s->RxBufPtr  = 0;
1207     s->RxBufAddr = 0;
1208 }
1209 
1210 static void rtl8139_reset_phy(RTL8139State *s)
1211 {
1212     s->BasicModeStatus  = 0x7809;
1213     s->BasicModeStatus |= 0x0020; /* autonegotiation completed */
1214     /* preserve link state */
1215     s->BasicModeStatus |= qemu_get_queue(s->nic)->link_down ? 0 : 0x04;
1216 
1217     s->NWayAdvert    = 0x05e1; /* all modes, full duplex */
1218     s->NWayLPAR      = 0x05e1; /* all modes, full duplex */
1219     s->NWayExpansion = 0x0001; /* autonegotiation supported */
1220 
1221     s->CSCR = CSCR_F_LINK_100 | CSCR_HEART_BIT | CSCR_LD;
1222 }
1223 
1224 static void rtl8139_reset(DeviceState *d)
1225 {
1226     RTL8139State *s = RTL8139(d);
1227     int i;
1228 
1229     /* restore MAC address */
1230     memcpy(s->phys, s->conf.macaddr.a, 6);
1231     qemu_format_nic_info_str(qemu_get_queue(s->nic), s->phys);
1232 
1233     /* reset interrupt mask */
1234     s->IntrStatus = 0;
1235     s->IntrMask = 0;
1236 
1237     rtl8139_update_irq(s);
1238 
1239     /* mark all status registers as owned by host */
1240     for (i = 0; i < 4; ++i)
1241     {
1242         s->TxStatus[i] = TxHostOwns;
1243     }
1244 
1245     s->currTxDesc = 0;
1246     s->currCPlusRxDesc = 0;
1247     s->currCPlusTxDesc = 0;
1248 
1249     s->RxRingAddrLO = 0;
1250     s->RxRingAddrHI = 0;
1251 
1252     s->RxBuf = 0;
1253 
1254     rtl8139_reset_rxring(s, 8192);
1255 
1256     /* ACK the reset */
1257     s->TxConfig = 0;
1258 
1259 #if 0
1260 //    s->TxConfig |= HW_REVID(1, 0, 0, 0, 0, 0, 0); // RTL-8139  HasHltClk
1261     s->clock_enabled = 0;
1262 #else
1263     s->TxConfig |= HW_REVID(1, 1, 1, 0, 1, 1, 0); // RTL-8139C+ HasLWake
1264     s->clock_enabled = 1;
1265 #endif
1266 
1267     s->bChipCmdState = CmdReset; /* RxBufEmpty bit is calculated on read from ChipCmd */;
1268 
1269     /* set initial state data */
1270     s->Config0 = 0x0; /* No boot ROM */
1271     s->Config1 = 0xC; /* IO mapped and MEM mapped registers available */
1272     s->Config3 = 0x1; /* fast back-to-back compatible */
1273     s->Config5 = 0x0;
1274 
1275     s->CpCmd   = 0x0; /* reset C+ mode */
1276     s->cplus_enabled = 0;
1277 
1278 //    s->BasicModeCtrl = 0x3100; // 100Mbps, full duplex, autonegotiation
1279 //    s->BasicModeCtrl = 0x2100; // 100Mbps, full duplex
1280     s->BasicModeCtrl = 0x1000; // autonegotiation
1281 
1282     rtl8139_reset_phy(s);
1283 
1284     /* also reset timer and disable timer interrupt */
1285     s->TCTR = 0;
1286     s->TimerInt = 0;
1287     s->TCTR_base = 0;
1288     rtl8139_set_next_tctr_time(s);
1289 
1290     /* reset tally counters */
1291     RTL8139TallyCounters_clear(&s->tally_counters);
1292 }
1293 
1294 static void RTL8139TallyCounters_clear(RTL8139TallyCounters* counters)
1295 {
1296     counters->TxOk = 0;
1297     counters->RxOk = 0;
1298     counters->TxERR = 0;
1299     counters->RxERR = 0;
1300     counters->MissPkt = 0;
1301     counters->FAE = 0;
1302     counters->Tx1Col = 0;
1303     counters->TxMCol = 0;
1304     counters->RxOkPhy = 0;
1305     counters->RxOkBrd = 0;
1306     counters->RxOkMul = 0;
1307     counters->TxAbt = 0;
1308     counters->TxUndrn = 0;
1309 }
1310 
1311 static void RTL8139TallyCounters_dma_write(RTL8139State *s, dma_addr_t tc_addr)
1312 {
1313     PCIDevice *d = PCI_DEVICE(s);
1314     RTL8139TallyCounters *tally_counters = &s->tally_counters;
1315     uint16_t val16;
1316     uint32_t val32;
1317     uint64_t val64;
1318 
1319     val64 = cpu_to_le64(tally_counters->TxOk);
1320     pci_dma_write(d, tc_addr + 0,     (uint8_t *)&val64, 8);
1321 
1322     val64 = cpu_to_le64(tally_counters->RxOk);
1323     pci_dma_write(d, tc_addr + 8,     (uint8_t *)&val64, 8);
1324 
1325     val64 = cpu_to_le64(tally_counters->TxERR);
1326     pci_dma_write(d, tc_addr + 16,    (uint8_t *)&val64, 8);
1327 
1328     val32 = cpu_to_le32(tally_counters->RxERR);
1329     pci_dma_write(d, tc_addr + 24,    (uint8_t *)&val32, 4);
1330 
1331     val16 = cpu_to_le16(tally_counters->MissPkt);
1332     pci_dma_write(d, tc_addr + 28,    (uint8_t *)&val16, 2);
1333 
1334     val16 = cpu_to_le16(tally_counters->FAE);
1335     pci_dma_write(d, tc_addr + 30,    (uint8_t *)&val16, 2);
1336 
1337     val32 = cpu_to_le32(tally_counters->Tx1Col);
1338     pci_dma_write(d, tc_addr + 32,    (uint8_t *)&val32, 4);
1339 
1340     val32 = cpu_to_le32(tally_counters->TxMCol);
1341     pci_dma_write(d, tc_addr + 36,    (uint8_t *)&val32, 4);
1342 
1343     val64 = cpu_to_le64(tally_counters->RxOkPhy);
1344     pci_dma_write(d, tc_addr + 40,    (uint8_t *)&val64, 8);
1345 
1346     val64 = cpu_to_le64(tally_counters->RxOkBrd);
1347     pci_dma_write(d, tc_addr + 48,    (uint8_t *)&val64, 8);
1348 
1349     val32 = cpu_to_le32(tally_counters->RxOkMul);
1350     pci_dma_write(d, tc_addr + 56,    (uint8_t *)&val32, 4);
1351 
1352     val16 = cpu_to_le16(tally_counters->TxAbt);
1353     pci_dma_write(d, tc_addr + 60,    (uint8_t *)&val16, 2);
1354 
1355     val16 = cpu_to_le16(tally_counters->TxUndrn);
1356     pci_dma_write(d, tc_addr + 62,    (uint8_t *)&val16, 2);
1357 }
1358 
1359 static void rtl8139_ChipCmd_write(RTL8139State *s, uint32_t val)
1360 {
1361     DeviceState *d = DEVICE(s);
1362 
1363     val &= 0xff;
1364 
1365     DPRINTF("ChipCmd write val=0x%08x\n", val);
1366 
1367     if (val & CmdReset)
1368     {
1369         DPRINTF("ChipCmd reset\n");
1370         rtl8139_reset(d);
1371     }
1372     if (val & CmdRxEnb)
1373     {
1374         DPRINTF("ChipCmd enable receiver\n");
1375 
1376         s->currCPlusRxDesc = 0;
1377     }
1378     if (val & CmdTxEnb)
1379     {
1380         DPRINTF("ChipCmd enable transmitter\n");
1381 
1382         s->currCPlusTxDesc = 0;
1383     }
1384 
1385     /* mask unwritable bits */
1386     val = SET_MASKED(val, 0xe3, s->bChipCmdState);
1387 
1388     /* Deassert reset pin before next read */
1389     val &= ~CmdReset;
1390 
1391     s->bChipCmdState = val;
1392 }
1393 
1394 static int rtl8139_RxBufferEmpty(RTL8139State *s)
1395 {
1396     int unread = MOD2(s->RxBufferSize + s->RxBufAddr - s->RxBufPtr, s->RxBufferSize);
1397 
1398     if (unread != 0)
1399     {
1400         DPRINTF("receiver buffer data available 0x%04x\n", unread);
1401         return 0;
1402     }
1403 
1404     DPRINTF("receiver buffer is empty\n");
1405 
1406     return 1;
1407 }
1408 
1409 static uint32_t rtl8139_ChipCmd_read(RTL8139State *s)
1410 {
1411     uint32_t ret = s->bChipCmdState;
1412 
1413     if (rtl8139_RxBufferEmpty(s))
1414         ret |= RxBufEmpty;
1415 
1416     DPRINTF("ChipCmd read val=0x%04x\n", ret);
1417 
1418     return ret;
1419 }
1420 
1421 static void rtl8139_CpCmd_write(RTL8139State *s, uint32_t val)
1422 {
1423     val &= 0xffff;
1424 
1425     DPRINTF("C+ command register write(w) val=0x%04x\n", val);
1426 
1427     s->cplus_enabled = 1;
1428 
1429     /* mask unwritable bits */
1430     val = SET_MASKED(val, 0xff84, s->CpCmd);
1431 
1432     s->CpCmd = val;
1433 }
1434 
1435 static uint32_t rtl8139_CpCmd_read(RTL8139State *s)
1436 {
1437     uint32_t ret = s->CpCmd;
1438 
1439     DPRINTF("C+ command register read(w) val=0x%04x\n", ret);
1440 
1441     return ret;
1442 }
1443 
1444 static void rtl8139_IntrMitigate_write(RTL8139State *s, uint32_t val)
1445 {
1446     DPRINTF("C+ IntrMitigate register write(w) val=0x%04x\n", val);
1447 }
1448 
1449 static uint32_t rtl8139_IntrMitigate_read(RTL8139State *s)
1450 {
1451     uint32_t ret = 0;
1452 
1453     DPRINTF("C+ IntrMitigate register read(w) val=0x%04x\n", ret);
1454 
1455     return ret;
1456 }
1457 
1458 static int rtl8139_config_writable(RTL8139State *s)
1459 {
1460     if ((s->Cfg9346 & Chip9346_op_mask) == Cfg9346_ConfigWrite)
1461     {
1462         return 1;
1463     }
1464 
1465     DPRINTF("Configuration registers are write-protected\n");
1466 
1467     return 0;
1468 }
1469 
1470 static void rtl8139_BasicModeCtrl_write(RTL8139State *s, uint32_t val)
1471 {
1472     val &= 0xffff;
1473 
1474     DPRINTF("BasicModeCtrl register write(w) val=0x%04x\n", val);
1475 
1476     /* mask unwritable bits */
1477     uint32_t mask = 0xccff;
1478 
1479     if (1 || !rtl8139_config_writable(s))
1480     {
1481         /* Speed setting and autonegotiation enable bits are read-only */
1482         mask |= 0x3000;
1483         /* Duplex mode setting is read-only */
1484         mask |= 0x0100;
1485     }
1486 
1487     if (val & 0x8000) {
1488         /* Reset PHY */
1489         rtl8139_reset_phy(s);
1490     }
1491 
1492     val = SET_MASKED(val, mask, s->BasicModeCtrl);
1493 
1494     s->BasicModeCtrl = val;
1495 }
1496 
1497 static uint32_t rtl8139_BasicModeCtrl_read(RTL8139State *s)
1498 {
1499     uint32_t ret = s->BasicModeCtrl;
1500 
1501     DPRINTF("BasicModeCtrl register read(w) val=0x%04x\n", ret);
1502 
1503     return ret;
1504 }
1505 
1506 static void rtl8139_BasicModeStatus_write(RTL8139State *s, uint32_t val)
1507 {
1508     val &= 0xffff;
1509 
1510     DPRINTF("BasicModeStatus register write(w) val=0x%04x\n", val);
1511 
1512     /* mask unwritable bits */
1513     val = SET_MASKED(val, 0xff3f, s->BasicModeStatus);
1514 
1515     s->BasicModeStatus = val;
1516 }
1517 
1518 static uint32_t rtl8139_BasicModeStatus_read(RTL8139State *s)
1519 {
1520     uint32_t ret = s->BasicModeStatus;
1521 
1522     DPRINTF("BasicModeStatus register read(w) val=0x%04x\n", ret);
1523 
1524     return ret;
1525 }
1526 
1527 static void rtl8139_Cfg9346_write(RTL8139State *s, uint32_t val)
1528 {
1529     DeviceState *d = DEVICE(s);
1530 
1531     val &= 0xff;
1532 
1533     DPRINTF("Cfg9346 write val=0x%02x\n", val);
1534 
1535     /* mask unwritable bits */
1536     val = SET_MASKED(val, 0x31, s->Cfg9346);
1537 
1538     uint32_t opmode = val & 0xc0;
1539     uint32_t eeprom_val = val & 0xf;
1540 
1541     if (opmode == 0x80) {
1542         /* eeprom access */
1543         int eecs = (eeprom_val & 0x08)?1:0;
1544         int eesk = (eeprom_val & 0x04)?1:0;
1545         int eedi = (eeprom_val & 0x02)?1:0;
1546         prom9346_set_wire(s, eecs, eesk, eedi);
1547     } else if (opmode == 0x40) {
1548         /* Reset.  */
1549         val = 0;
1550         rtl8139_reset(d);
1551     }
1552 
1553     s->Cfg9346 = val;
1554 }
1555 
1556 static uint32_t rtl8139_Cfg9346_read(RTL8139State *s)
1557 {
1558     uint32_t ret = s->Cfg9346;
1559 
1560     uint32_t opmode = ret & 0xc0;
1561 
1562     if (opmode == 0x80)
1563     {
1564         /* eeprom access */
1565         int eedo = prom9346_get_wire(s);
1566         if (eedo)
1567         {
1568             ret |=  0x01;
1569         }
1570         else
1571         {
1572             ret &= ~0x01;
1573         }
1574     }
1575 
1576     DPRINTF("Cfg9346 read val=0x%02x\n", ret);
1577 
1578     return ret;
1579 }
1580 
1581 static void rtl8139_Config0_write(RTL8139State *s, uint32_t val)
1582 {
1583     val &= 0xff;
1584 
1585     DPRINTF("Config0 write val=0x%02x\n", val);
1586 
1587     if (!rtl8139_config_writable(s)) {
1588         return;
1589     }
1590 
1591     /* mask unwritable bits */
1592     val = SET_MASKED(val, 0xf8, s->Config0);
1593 
1594     s->Config0 = val;
1595 }
1596 
1597 static uint32_t rtl8139_Config0_read(RTL8139State *s)
1598 {
1599     uint32_t ret = s->Config0;
1600 
1601     DPRINTF("Config0 read val=0x%02x\n", ret);
1602 
1603     return ret;
1604 }
1605 
1606 static void rtl8139_Config1_write(RTL8139State *s, uint32_t val)
1607 {
1608     val &= 0xff;
1609 
1610     DPRINTF("Config1 write val=0x%02x\n", val);
1611 
1612     if (!rtl8139_config_writable(s)) {
1613         return;
1614     }
1615 
1616     /* mask unwritable bits */
1617     val = SET_MASKED(val, 0xC, s->Config1);
1618 
1619     s->Config1 = val;
1620 }
1621 
1622 static uint32_t rtl8139_Config1_read(RTL8139State *s)
1623 {
1624     uint32_t ret = s->Config1;
1625 
1626     DPRINTF("Config1 read val=0x%02x\n", ret);
1627 
1628     return ret;
1629 }
1630 
1631 static void rtl8139_Config3_write(RTL8139State *s, uint32_t val)
1632 {
1633     val &= 0xff;
1634 
1635     DPRINTF("Config3 write val=0x%02x\n", val);
1636 
1637     if (!rtl8139_config_writable(s)) {
1638         return;
1639     }
1640 
1641     /* mask unwritable bits */
1642     val = SET_MASKED(val, 0x8F, s->Config3);
1643 
1644     s->Config3 = val;
1645 }
1646 
1647 static uint32_t rtl8139_Config3_read(RTL8139State *s)
1648 {
1649     uint32_t ret = s->Config3;
1650 
1651     DPRINTF("Config3 read val=0x%02x\n", ret);
1652 
1653     return ret;
1654 }
1655 
1656 static void rtl8139_Config4_write(RTL8139State *s, uint32_t val)
1657 {
1658     val &= 0xff;
1659 
1660     DPRINTF("Config4 write val=0x%02x\n", val);
1661 
1662     if (!rtl8139_config_writable(s)) {
1663         return;
1664     }
1665 
1666     /* mask unwritable bits */
1667     val = SET_MASKED(val, 0x0a, s->Config4);
1668 
1669     s->Config4 = val;
1670 }
1671 
1672 static uint32_t rtl8139_Config4_read(RTL8139State *s)
1673 {
1674     uint32_t ret = s->Config4;
1675 
1676     DPRINTF("Config4 read val=0x%02x\n", ret);
1677 
1678     return ret;
1679 }
1680 
1681 static void rtl8139_Config5_write(RTL8139State *s, uint32_t val)
1682 {
1683     val &= 0xff;
1684 
1685     DPRINTF("Config5 write val=0x%02x\n", val);
1686 
1687     /* mask unwritable bits */
1688     val = SET_MASKED(val, 0x80, s->Config5);
1689 
1690     s->Config5 = val;
1691 }
1692 
1693 static uint32_t rtl8139_Config5_read(RTL8139State *s)
1694 {
1695     uint32_t ret = s->Config5;
1696 
1697     DPRINTF("Config5 read val=0x%02x\n", ret);
1698 
1699     return ret;
1700 }
1701 
1702 static void rtl8139_TxConfig_write(RTL8139State *s, uint32_t val)
1703 {
1704     if (!rtl8139_transmitter_enabled(s))
1705     {
1706         DPRINTF("transmitter disabled; no TxConfig write val=0x%08x\n", val);
1707         return;
1708     }
1709 
1710     DPRINTF("TxConfig write val=0x%08x\n", val);
1711 
1712     val = SET_MASKED(val, TxVersionMask | 0x8070f80f, s->TxConfig);
1713 
1714     s->TxConfig = val;
1715 }
1716 
1717 static void rtl8139_TxConfig_writeb(RTL8139State *s, uint32_t val)
1718 {
1719     DPRINTF("RTL8139C TxConfig via write(b) val=0x%02x\n", val);
1720 
1721     uint32_t tc = s->TxConfig;
1722     tc &= 0xFFFFFF00;
1723     tc |= (val & 0x000000FF);
1724     rtl8139_TxConfig_write(s, tc);
1725 }
1726 
1727 static uint32_t rtl8139_TxConfig_read(RTL8139State *s)
1728 {
1729     uint32_t ret = s->TxConfig;
1730 
1731     DPRINTF("TxConfig read val=0x%04x\n", ret);
1732 
1733     return ret;
1734 }
1735 
1736 static void rtl8139_RxConfig_write(RTL8139State *s, uint32_t val)
1737 {
1738     DPRINTF("RxConfig write val=0x%08x\n", val);
1739 
1740     /* mask unwritable bits */
1741     val = SET_MASKED(val, 0xf0fc0040, s->RxConfig);
1742 
1743     s->RxConfig = val;
1744 
1745     /* reset buffer size and read/write pointers */
1746     rtl8139_reset_rxring(s, 8192 << ((s->RxConfig >> 11) & 0x3));
1747 
1748     DPRINTF("RxConfig write reset buffer size to %d\n", s->RxBufferSize);
1749 }
1750 
1751 static uint32_t rtl8139_RxConfig_read(RTL8139State *s)
1752 {
1753     uint32_t ret = s->RxConfig;
1754 
1755     DPRINTF("RxConfig read val=0x%08x\n", ret);
1756 
1757     return ret;
1758 }
1759 
1760 static void rtl8139_transfer_frame(RTL8139State *s, uint8_t *buf, int size,
1761     int do_interrupt, const uint8_t *dot1q_buf)
1762 {
1763     struct iovec *iov = NULL;
1764     struct iovec vlan_iov[3];
1765 
1766     if (!size)
1767     {
1768         DPRINTF("+++ empty ethernet frame\n");
1769         return;
1770     }
1771 
1772     if (dot1q_buf && size >= ETH_ALEN * 2) {
1773         iov = (struct iovec[3]) {
1774             { .iov_base = buf, .iov_len = ETH_ALEN * 2 },
1775             { .iov_base = (void *) dot1q_buf, .iov_len = VLAN_HLEN },
1776             { .iov_base = buf + ETH_ALEN * 2,
1777                 .iov_len = size - ETH_ALEN * 2 },
1778         };
1779 
1780         memcpy(vlan_iov, iov, sizeof(vlan_iov));
1781         iov = vlan_iov;
1782     }
1783 
1784     if (TxLoopBack == (s->TxConfig & TxLoopBack))
1785     {
1786         size_t buf2_size;
1787         uint8_t *buf2;
1788 
1789         if (iov) {
1790             buf2_size = iov_size(iov, 3);
1791             buf2 = g_malloc(buf2_size);
1792             iov_to_buf(iov, 3, 0, buf2, buf2_size);
1793             buf = buf2;
1794         }
1795 
1796         DPRINTF("+++ transmit loopback mode\n");
1797         qemu_receive_packet(qemu_get_queue(s->nic), buf, size);
1798 
1799         if (iov) {
1800             g_free(buf2);
1801         }
1802     }
1803     else
1804     {
1805         if (iov) {
1806             qemu_sendv_packet(qemu_get_queue(s->nic), iov, 3);
1807         } else {
1808             qemu_send_packet(qemu_get_queue(s->nic), buf, size);
1809         }
1810     }
1811 }
1812 
1813 static int rtl8139_transmit_one(RTL8139State *s, int descriptor)
1814 {
1815     if (!rtl8139_transmitter_enabled(s))
1816     {
1817         DPRINTF("+++ cannot transmit from descriptor %d: transmitter "
1818             "disabled\n", descriptor);
1819         return 0;
1820     }
1821 
1822     if (s->TxStatus[descriptor] & TxHostOwns)
1823     {
1824         DPRINTF("+++ cannot transmit from descriptor %d: owned by host "
1825             "(%08x)\n", descriptor, s->TxStatus[descriptor]);
1826         return 0;
1827     }
1828 
1829     DPRINTF("+++ transmitting from descriptor %d\n", descriptor);
1830 
1831     PCIDevice *d = PCI_DEVICE(s);
1832     int txsize = s->TxStatus[descriptor] & 0x1fff;
1833     uint8_t txbuffer[0x2000];
1834 
1835     DPRINTF("+++ transmit reading %d bytes from host memory at 0x%08x\n",
1836         txsize, s->TxAddr[descriptor]);
1837 
1838     pci_dma_read(d, s->TxAddr[descriptor], txbuffer, txsize);
1839 
1840     /* Mark descriptor as transferred */
1841     s->TxStatus[descriptor] |= TxHostOwns;
1842     s->TxStatus[descriptor] |= TxStatOK;
1843 
1844     rtl8139_transfer_frame(s, txbuffer, txsize, 0, NULL);
1845 
1846     DPRINTF("+++ transmitted %d bytes from descriptor %d\n", txsize,
1847         descriptor);
1848 
1849     /* update interrupt */
1850     s->IntrStatus |= TxOK;
1851     rtl8139_update_irq(s);
1852 
1853     return 1;
1854 }
1855 
1856 #define TCP_HEADER_CLEAR_FLAGS(tcp, off) ((tcp)->th_offset_flags &= cpu_to_be16(~TCP_FLAGS_ONLY(off)))
1857 
1858 /* produces ones' complement sum of data */
1859 static uint16_t ones_complement_sum(uint8_t *data, size_t len)
1860 {
1861     uint32_t result = 0;
1862 
1863     for (; len > 1; data+=2, len-=2)
1864     {
1865         result += *(uint16_t*)data;
1866     }
1867 
1868     /* add the remainder byte */
1869     if (len)
1870     {
1871         uint8_t odd[2] = {*data, 0};
1872         result += *(uint16_t*)odd;
1873     }
1874 
1875     while (result>>16)
1876         result = (result & 0xffff) + (result >> 16);
1877 
1878     return result;
1879 }
1880 
1881 static uint16_t ip_checksum(void *data, size_t len)
1882 {
1883     return ~ones_complement_sum((uint8_t*)data, len);
1884 }
1885 
1886 static int rtl8139_cplus_transmit_one(RTL8139State *s)
1887 {
1888     if (!rtl8139_transmitter_enabled(s))
1889     {
1890         DPRINTF("+++ C+ mode: transmitter disabled\n");
1891         return 0;
1892     }
1893 
1894     if (!rtl8139_cp_transmitter_enabled(s))
1895     {
1896         DPRINTF("+++ C+ mode: C+ transmitter disabled\n");
1897         return 0 ;
1898     }
1899 
1900     PCIDevice *d = PCI_DEVICE(s);
1901     int descriptor = s->currCPlusTxDesc;
1902 
1903     dma_addr_t cplus_tx_ring_desc = rtl8139_addr64(s->TxAddr[0], s->TxAddr[1]);
1904 
1905     /* Normal priority ring */
1906     cplus_tx_ring_desc += 16 * descriptor;
1907 
1908     DPRINTF("+++ C+ mode reading TX descriptor %d from host memory at "
1909         "%08x %08x = 0x"DMA_ADDR_FMT"\n", descriptor, s->TxAddr[1],
1910         s->TxAddr[0], cplus_tx_ring_desc);
1911 
1912     uint32_t val, txdw0,txdw1,txbufLO,txbufHI;
1913 
1914     pci_dma_read(d, cplus_tx_ring_desc,    (uint8_t *)&val, 4);
1915     txdw0 = le32_to_cpu(val);
1916     pci_dma_read(d, cplus_tx_ring_desc+4,  (uint8_t *)&val, 4);
1917     txdw1 = le32_to_cpu(val);
1918     pci_dma_read(d, cplus_tx_ring_desc+8,  (uint8_t *)&val, 4);
1919     txbufLO = le32_to_cpu(val);
1920     pci_dma_read(d, cplus_tx_ring_desc+12, (uint8_t *)&val, 4);
1921     txbufHI = le32_to_cpu(val);
1922 
1923     DPRINTF("+++ C+ mode TX descriptor %d %08x %08x %08x %08x\n", descriptor,
1924         txdw0, txdw1, txbufLO, txbufHI);
1925 
1926 /* w0 ownership flag */
1927 #define CP_TX_OWN (1<<31)
1928 /* w0 end of ring flag */
1929 #define CP_TX_EOR (1<<30)
1930 /* first segment of received packet flag */
1931 #define CP_TX_FS (1<<29)
1932 /* last segment of received packet flag */
1933 #define CP_TX_LS (1<<28)
1934 /* large send packet flag */
1935 #define CP_TX_LGSEN (1<<27)
1936 /* large send MSS mask, bits 16...26 */
1937 #define CP_TC_LGSEN_MSS_SHIFT 16
1938 #define CP_TC_LGSEN_MSS_MASK ((1 << 11) - 1)
1939 
1940 /* IP checksum offload flag */
1941 #define CP_TX_IPCS (1<<18)
1942 /* UDP checksum offload flag */
1943 #define CP_TX_UDPCS (1<<17)
1944 /* TCP checksum offload flag */
1945 #define CP_TX_TCPCS (1<<16)
1946 
1947 /* w0 bits 0...15 : buffer size */
1948 #define CP_TX_BUFFER_SIZE (1<<16)
1949 #define CP_TX_BUFFER_SIZE_MASK (CP_TX_BUFFER_SIZE - 1)
1950 /* w1 add tag flag */
1951 #define CP_TX_TAGC (1<<17)
1952 /* w1 bits 0...15 : VLAN tag (big endian) */
1953 #define CP_TX_VLAN_TAG_MASK ((1<<16) - 1)
1954 /* w2 low  32bit of Rx buffer ptr */
1955 /* w3 high 32bit of Rx buffer ptr */
1956 
1957 /* set after transmission */
1958 /* FIFO underrun flag */
1959 #define CP_TX_STATUS_UNF (1<<25)
1960 /* transmit error summary flag, valid if set any of three below */
1961 #define CP_TX_STATUS_TES (1<<23)
1962 /* out-of-window collision flag */
1963 #define CP_TX_STATUS_OWC (1<<22)
1964 /* link failure flag */
1965 #define CP_TX_STATUS_LNKF (1<<21)
1966 /* excessive collisions flag */
1967 #define CP_TX_STATUS_EXC (1<<20)
1968 
1969     if (!(txdw0 & CP_TX_OWN))
1970     {
1971         DPRINTF("C+ Tx mode : descriptor %d is owned by host\n", descriptor);
1972         return 0 ;
1973     }
1974 
1975     DPRINTF("+++ C+ Tx mode : transmitting from descriptor %d\n", descriptor);
1976 
1977     if (txdw0 & CP_TX_FS)
1978     {
1979         DPRINTF("+++ C+ Tx mode : descriptor %d is first segment "
1980             "descriptor\n", descriptor);
1981 
1982         /* reset internal buffer offset */
1983         s->cplus_txbuffer_offset = 0;
1984     }
1985 
1986     int txsize = txdw0 & CP_TX_BUFFER_SIZE_MASK;
1987     dma_addr_t tx_addr = rtl8139_addr64(txbufLO, txbufHI);
1988 
1989     /* make sure we have enough space to assemble the packet */
1990     if (!s->cplus_txbuffer)
1991     {
1992         s->cplus_txbuffer_len = CP_TX_BUFFER_SIZE;
1993         s->cplus_txbuffer = g_malloc(s->cplus_txbuffer_len);
1994         s->cplus_txbuffer_offset = 0;
1995 
1996         DPRINTF("+++ C+ mode transmission buffer allocated space %d\n",
1997             s->cplus_txbuffer_len);
1998     }
1999 
2000     if (s->cplus_txbuffer_offset + txsize >= s->cplus_txbuffer_len)
2001     {
2002         /* The spec didn't tell the maximum size, stick to CP_TX_BUFFER_SIZE */
2003         txsize = s->cplus_txbuffer_len - s->cplus_txbuffer_offset;
2004         DPRINTF("+++ C+ mode transmission buffer overrun, truncated descriptor"
2005                 "length to %d\n", txsize);
2006     }
2007 
2008     /* append more data to the packet */
2009 
2010     DPRINTF("+++ C+ mode transmit reading %d bytes from host memory at "
2011             DMA_ADDR_FMT" to offset %d\n", txsize, tx_addr,
2012             s->cplus_txbuffer_offset);
2013 
2014     pci_dma_read(d, tx_addr,
2015                  s->cplus_txbuffer + s->cplus_txbuffer_offset, txsize);
2016     s->cplus_txbuffer_offset += txsize;
2017 
2018     /* seek to next Rx descriptor */
2019     if (txdw0 & CP_TX_EOR)
2020     {
2021         s->currCPlusTxDesc = 0;
2022     }
2023     else
2024     {
2025         ++s->currCPlusTxDesc;
2026         if (s->currCPlusTxDesc >= 64)
2027             s->currCPlusTxDesc = 0;
2028     }
2029 
2030     /* Build the Tx Status Descriptor */
2031     uint32_t tx_status = txdw0;
2032 
2033     /* transfer ownership to target */
2034     tx_status &= ~CP_TX_OWN;
2035 
2036     /* reset error indicator bits */
2037     tx_status &= ~CP_TX_STATUS_UNF;
2038     tx_status &= ~CP_TX_STATUS_TES;
2039     tx_status &= ~CP_TX_STATUS_OWC;
2040     tx_status &= ~CP_TX_STATUS_LNKF;
2041     tx_status &= ~CP_TX_STATUS_EXC;
2042 
2043     /* update ring data */
2044     val = cpu_to_le32(tx_status);
2045     pci_dma_write(d, cplus_tx_ring_desc, (uint8_t *)&val, 4);
2046 
2047     /* Now decide if descriptor being processed is holding the last segment of packet */
2048     if (txdw0 & CP_TX_LS)
2049     {
2050         uint8_t dot1q_buffer_space[VLAN_HLEN];
2051         uint16_t *dot1q_buffer;
2052 
2053         DPRINTF("+++ C+ Tx mode : descriptor %d is last segment descriptor\n",
2054             descriptor);
2055 
2056         /* can transfer fully assembled packet */
2057 
2058         uint8_t *saved_buffer  = s->cplus_txbuffer;
2059         int      saved_size    = s->cplus_txbuffer_offset;
2060         int      saved_buffer_len = s->cplus_txbuffer_len;
2061 
2062         /* create vlan tag */
2063         if (txdw1 & CP_TX_TAGC) {
2064             /* the vlan tag is in BE byte order in the descriptor
2065              * BE + le_to_cpu() + ~swap()~ = cpu */
2066             DPRINTF("+++ C+ Tx mode : inserting vlan tag with ""tci: %u\n",
2067                 bswap16(txdw1 & CP_TX_VLAN_TAG_MASK));
2068 
2069             dot1q_buffer = (uint16_t *) dot1q_buffer_space;
2070             dot1q_buffer[0] = cpu_to_be16(ETH_P_VLAN);
2071             /* BE + le_to_cpu() + ~cpu_to_le()~ = BE */
2072             dot1q_buffer[1] = cpu_to_le16(txdw1 & CP_TX_VLAN_TAG_MASK);
2073         } else {
2074             dot1q_buffer = NULL;
2075         }
2076 
2077         /* reset the card space to protect from recursive call */
2078         s->cplus_txbuffer = NULL;
2079         s->cplus_txbuffer_offset = 0;
2080         s->cplus_txbuffer_len = 0;
2081 
2082         if (txdw0 & (CP_TX_IPCS | CP_TX_UDPCS | CP_TX_TCPCS | CP_TX_LGSEN))
2083         {
2084             DPRINTF("+++ C+ mode offloaded task checksum\n");
2085 
2086             /* Large enough for Ethernet and IP headers? */
2087             if (saved_size < ETH_HLEN + sizeof(struct ip_header)) {
2088                 goto skip_offload;
2089             }
2090 
2091             /* ip packet header */
2092             struct ip_header *ip = NULL;
2093             int hlen = 0;
2094             uint8_t  ip_protocol = 0;
2095             uint16_t ip_data_len = 0;
2096 
2097             uint8_t *eth_payload_data = NULL;
2098             size_t   eth_payload_len  = 0;
2099 
2100             int proto = be16_to_cpu(*(uint16_t *)(saved_buffer + 12));
2101             if (proto != ETH_P_IP)
2102             {
2103                 goto skip_offload;
2104             }
2105 
2106             DPRINTF("+++ C+ mode has IP packet\n");
2107 
2108             /* Note on memory alignment: eth_payload_data is 16-bit aligned
2109              * since saved_buffer is allocated with g_malloc() and ETH_HLEN is
2110              * even.  32-bit accesses must use ldl/stl wrappers to avoid
2111              * unaligned accesses.
2112              */
2113             eth_payload_data = saved_buffer + ETH_HLEN;
2114             eth_payload_len  = saved_size   - ETH_HLEN;
2115 
2116             ip = (struct ip_header*)eth_payload_data;
2117 
2118             if (IP_HEADER_VERSION(ip) != IP_HEADER_VERSION_4) {
2119                 DPRINTF("+++ C+ mode packet has bad IP version %d "
2120                     "expected %d\n", IP_HEADER_VERSION(ip),
2121                     IP_HEADER_VERSION_4);
2122                 goto skip_offload;
2123             }
2124 
2125             hlen = IP_HDR_GET_LEN(ip);
2126             if (hlen < sizeof(struct ip_header) || hlen > eth_payload_len) {
2127                 goto skip_offload;
2128             }
2129 
2130             ip_protocol = ip->ip_p;
2131 
2132             ip_data_len = be16_to_cpu(ip->ip_len);
2133             if (ip_data_len < hlen || ip_data_len > eth_payload_len) {
2134                 goto skip_offload;
2135             }
2136             ip_data_len -= hlen;
2137 
2138             if (!(txdw0 & CP_TX_LGSEN) && (txdw0 & CP_TX_IPCS))
2139             {
2140                 DPRINTF("+++ C+ mode need IP checksum\n");
2141 
2142                 ip->ip_sum = 0;
2143                 ip->ip_sum = ip_checksum(ip, hlen);
2144                 DPRINTF("+++ C+ mode IP header len=%d checksum=%04x\n",
2145                     hlen, ip->ip_sum);
2146             }
2147 
2148             if ((txdw0 & CP_TX_LGSEN) && ip_protocol == IP_PROTO_TCP)
2149             {
2150                 /* Large enough for the TCP header? */
2151                 if (ip_data_len < sizeof(tcp_header)) {
2152                     goto skip_offload;
2153                 }
2154 
2155                 int large_send_mss = (txdw0 >> CP_TC_LGSEN_MSS_SHIFT) &
2156                                      CP_TC_LGSEN_MSS_MASK;
2157                 if (large_send_mss == 0) {
2158                     goto skip_offload;
2159                 }
2160 
2161                 DPRINTF("+++ C+ mode offloaded task TSO IP data %d "
2162                     "frame data %d specified MSS=%d\n",
2163                     ip_data_len, saved_size - ETH_HLEN, large_send_mss);
2164 
2165                 int tcp_send_offset = 0;
2166 
2167                 /* maximum IP header length is 60 bytes */
2168                 uint8_t saved_ip_header[60];
2169 
2170                 /* save IP header template; data area is used in tcp checksum calculation */
2171                 memcpy(saved_ip_header, eth_payload_data, hlen);
2172 
2173                 /* a placeholder for checksum calculation routine in tcp case */
2174                 uint8_t *data_to_checksum     = eth_payload_data + hlen - 12;
2175                 //                    size_t   data_to_checksum_len = eth_payload_len  - hlen + 12;
2176 
2177                 /* pointer to TCP header */
2178                 tcp_header *p_tcp_hdr = (tcp_header*)(eth_payload_data + hlen);
2179 
2180                 int tcp_hlen = TCP_HEADER_DATA_OFFSET(p_tcp_hdr);
2181 
2182                 /* Invalid TCP data offset? */
2183                 if (tcp_hlen < sizeof(tcp_header) || tcp_hlen > ip_data_len) {
2184                     goto skip_offload;
2185                 }
2186 
2187                 int tcp_data_len = ip_data_len - tcp_hlen;
2188 
2189                 DPRINTF("+++ C+ mode TSO IP data len %d TCP hlen %d TCP "
2190                     "data len %d\n", ip_data_len, tcp_hlen, tcp_data_len);
2191 
2192                 /* note the cycle below overwrites IP header data,
2193                    but restores it from saved_ip_header before sending packet */
2194 
2195                 int is_last_frame = 0;
2196 
2197                 for (tcp_send_offset = 0; tcp_send_offset < tcp_data_len; tcp_send_offset += large_send_mss)
2198                 {
2199                     uint16_t chunk_size = large_send_mss;
2200 
2201                     /* check if this is the last frame */
2202                     if (tcp_send_offset + large_send_mss >= tcp_data_len)
2203                     {
2204                         is_last_frame = 1;
2205                         chunk_size = tcp_data_len - tcp_send_offset;
2206                     }
2207 
2208                     DPRINTF("+++ C+ mode TSO TCP seqno %08x\n",
2209                             ldl_be_p(&p_tcp_hdr->th_seq));
2210 
2211                     /* add 4 TCP pseudoheader fields */
2212                     /* copy IP source and destination fields */
2213                     memcpy(data_to_checksum, saved_ip_header + 12, 8);
2214 
2215                     DPRINTF("+++ C+ mode TSO calculating TCP checksum for "
2216                         "packet with %d bytes data\n", tcp_hlen +
2217                         chunk_size);
2218 
2219                     if (tcp_send_offset)
2220                     {
2221                         memcpy((uint8_t*)p_tcp_hdr + tcp_hlen, (uint8_t*)p_tcp_hdr + tcp_hlen + tcp_send_offset, chunk_size);
2222                     }
2223 
2224                     /* keep PUSH and FIN flags only for the last frame */
2225                     if (!is_last_frame)
2226                     {
2227                         TCP_HEADER_CLEAR_FLAGS(p_tcp_hdr, TH_PUSH | TH_FIN);
2228                     }
2229 
2230                     /* recalculate TCP checksum */
2231                     ip_pseudo_header *p_tcpip_hdr = (ip_pseudo_header *)data_to_checksum;
2232                     p_tcpip_hdr->zeros      = 0;
2233                     p_tcpip_hdr->ip_proto   = IP_PROTO_TCP;
2234                     p_tcpip_hdr->ip_payload = cpu_to_be16(tcp_hlen + chunk_size);
2235 
2236                     p_tcp_hdr->th_sum = 0;
2237 
2238                     int tcp_checksum = ip_checksum(data_to_checksum, tcp_hlen + chunk_size + 12);
2239                     DPRINTF("+++ C+ mode TSO TCP checksum %04x\n",
2240                         tcp_checksum);
2241 
2242                     p_tcp_hdr->th_sum = tcp_checksum;
2243 
2244                     /* restore IP header */
2245                     memcpy(eth_payload_data, saved_ip_header, hlen);
2246 
2247                     /* set IP data length and recalculate IP checksum */
2248                     ip->ip_len = cpu_to_be16(hlen + tcp_hlen + chunk_size);
2249 
2250                     /* increment IP id for subsequent frames */
2251                     ip->ip_id = cpu_to_be16(tcp_send_offset/large_send_mss + be16_to_cpu(ip->ip_id));
2252 
2253                     ip->ip_sum = 0;
2254                     ip->ip_sum = ip_checksum(eth_payload_data, hlen);
2255                     DPRINTF("+++ C+ mode TSO IP header len=%d "
2256                         "checksum=%04x\n", hlen, ip->ip_sum);
2257 
2258                     int tso_send_size = ETH_HLEN + hlen + tcp_hlen + chunk_size;
2259                     DPRINTF("+++ C+ mode TSO transferring packet size "
2260                         "%d\n", tso_send_size);
2261                     rtl8139_transfer_frame(s, saved_buffer, tso_send_size,
2262                         0, (uint8_t *) dot1q_buffer);
2263 
2264                     /* add transferred count to TCP sequence number */
2265                     stl_be_p(&p_tcp_hdr->th_seq,
2266                              chunk_size + ldl_be_p(&p_tcp_hdr->th_seq));
2267                 }
2268 
2269                 /* Stop sending this frame */
2270                 saved_size = 0;
2271             }
2272             else if (!(txdw0 & CP_TX_LGSEN) && (txdw0 & (CP_TX_TCPCS|CP_TX_UDPCS)))
2273             {
2274                 DPRINTF("+++ C+ mode need TCP or UDP checksum\n");
2275 
2276                 /* maximum IP header length is 60 bytes */
2277                 uint8_t saved_ip_header[60];
2278                 memcpy(saved_ip_header, eth_payload_data, hlen);
2279 
2280                 uint8_t *data_to_checksum     = eth_payload_data + hlen - 12;
2281                 //                    size_t   data_to_checksum_len = eth_payload_len  - hlen + 12;
2282 
2283                 /* add 4 TCP pseudoheader fields */
2284                 /* copy IP source and destination fields */
2285                 memcpy(data_to_checksum, saved_ip_header + 12, 8);
2286 
2287                 if ((txdw0 & CP_TX_TCPCS) && ip_protocol == IP_PROTO_TCP)
2288                 {
2289                     DPRINTF("+++ C+ mode calculating TCP checksum for "
2290                         "packet with %d bytes data\n", ip_data_len);
2291 
2292                     ip_pseudo_header *p_tcpip_hdr = (ip_pseudo_header *)data_to_checksum;
2293                     p_tcpip_hdr->zeros      = 0;
2294                     p_tcpip_hdr->ip_proto   = IP_PROTO_TCP;
2295                     p_tcpip_hdr->ip_payload = cpu_to_be16(ip_data_len);
2296 
2297                     tcp_header* p_tcp_hdr = (tcp_header *) (data_to_checksum+12);
2298 
2299                     p_tcp_hdr->th_sum = 0;
2300 
2301                     int tcp_checksum = ip_checksum(data_to_checksum, ip_data_len + 12);
2302                     DPRINTF("+++ C+ mode TCP checksum %04x\n",
2303                         tcp_checksum);
2304 
2305                     p_tcp_hdr->th_sum = tcp_checksum;
2306                 }
2307                 else if ((txdw0 & CP_TX_UDPCS) && ip_protocol == IP_PROTO_UDP)
2308                 {
2309                     DPRINTF("+++ C+ mode calculating UDP checksum for "
2310                         "packet with %d bytes data\n", ip_data_len);
2311 
2312                     ip_pseudo_header *p_udpip_hdr = (ip_pseudo_header *)data_to_checksum;
2313                     p_udpip_hdr->zeros      = 0;
2314                     p_udpip_hdr->ip_proto   = IP_PROTO_UDP;
2315                     p_udpip_hdr->ip_payload = cpu_to_be16(ip_data_len);
2316 
2317                     udp_header *p_udp_hdr = (udp_header *) (data_to_checksum+12);
2318 
2319                     p_udp_hdr->uh_sum = 0;
2320 
2321                     int udp_checksum = ip_checksum(data_to_checksum, ip_data_len + 12);
2322                     DPRINTF("+++ C+ mode UDP checksum %04x\n",
2323                         udp_checksum);
2324 
2325                     p_udp_hdr->uh_sum = udp_checksum;
2326                 }
2327 
2328                 /* restore IP header */
2329                 memcpy(eth_payload_data, saved_ip_header, hlen);
2330             }
2331         }
2332 
2333 skip_offload:
2334         /* update tally counter */
2335         ++s->tally_counters.TxOk;
2336 
2337         DPRINTF("+++ C+ mode transmitting %d bytes packet\n", saved_size);
2338 
2339         rtl8139_transfer_frame(s, saved_buffer, saved_size, 1,
2340             (uint8_t *) dot1q_buffer);
2341 
2342         /* restore card space if there was no recursion and reset offset */
2343         if (!s->cplus_txbuffer)
2344         {
2345             s->cplus_txbuffer        = saved_buffer;
2346             s->cplus_txbuffer_len    = saved_buffer_len;
2347             s->cplus_txbuffer_offset = 0;
2348         }
2349         else
2350         {
2351             g_free(saved_buffer);
2352         }
2353     }
2354     else
2355     {
2356         DPRINTF("+++ C+ mode transmission continue to next descriptor\n");
2357     }
2358 
2359     return 1;
2360 }
2361 
2362 static void rtl8139_cplus_transmit(RTL8139State *s)
2363 {
2364     int txcount = 0;
2365 
2366     while (txcount < 64 && rtl8139_cplus_transmit_one(s))
2367     {
2368         ++txcount;
2369     }
2370 
2371     /* Mark transfer completed */
2372     if (!txcount)
2373     {
2374         DPRINTF("C+ mode : transmitter queue stalled, current TxDesc = %d\n",
2375             s->currCPlusTxDesc);
2376     }
2377     else
2378     {
2379         /* update interrupt status */
2380         s->IntrStatus |= TxOK;
2381         rtl8139_update_irq(s);
2382     }
2383 }
2384 
2385 static void rtl8139_transmit(RTL8139State *s)
2386 {
2387     int descriptor = s->currTxDesc, txcount = 0;
2388 
2389     /*while*/
2390     if (rtl8139_transmit_one(s, descriptor))
2391     {
2392         ++s->currTxDesc;
2393         s->currTxDesc %= 4;
2394         ++txcount;
2395     }
2396 
2397     /* Mark transfer completed */
2398     if (!txcount)
2399     {
2400         DPRINTF("transmitter queue stalled, current TxDesc = %d\n",
2401             s->currTxDesc);
2402     }
2403 }
2404 
2405 static void rtl8139_TxStatus_write(RTL8139State *s, uint32_t txRegOffset, uint32_t val)
2406 {
2407 
2408     int descriptor = txRegOffset/4;
2409 
2410     /* handle C+ transmit mode register configuration */
2411 
2412     if (s->cplus_enabled)
2413     {
2414         DPRINTF("RTL8139C+ DTCCR write offset=0x%x val=0x%08x "
2415             "descriptor=%d\n", txRegOffset, val, descriptor);
2416 
2417         /* handle Dump Tally Counters command */
2418         s->TxStatus[descriptor] = val;
2419 
2420         if (descriptor == 0 && (val & 0x8))
2421         {
2422             hwaddr tc_addr = rtl8139_addr64(s->TxStatus[0] & ~0x3f, s->TxStatus[1]);
2423 
2424             /* dump tally counters to specified memory location */
2425             RTL8139TallyCounters_dma_write(s, tc_addr);
2426 
2427             /* mark dump completed */
2428             s->TxStatus[0] &= ~0x8;
2429         }
2430 
2431         return;
2432     }
2433 
2434     DPRINTF("TxStatus write offset=0x%x val=0x%08x descriptor=%d\n",
2435         txRegOffset, val, descriptor);
2436 
2437     /* mask only reserved bits */
2438     val &= ~0xff00c000; /* these bits are reset on write */
2439     val = SET_MASKED(val, 0x00c00000, s->TxStatus[descriptor]);
2440 
2441     s->TxStatus[descriptor] = val;
2442 
2443     /* attempt to start transmission */
2444     rtl8139_transmit(s);
2445 }
2446 
2447 static uint32_t rtl8139_TxStatus_TxAddr_read(RTL8139State *s, uint32_t regs[],
2448                                              uint32_t base, uint8_t addr,
2449                                              int size)
2450 {
2451     uint32_t reg = (addr - base) / 4;
2452     uint32_t offset = addr & 0x3;
2453     uint32_t ret = 0;
2454 
2455     if (addr & (size - 1)) {
2456         DPRINTF("not implemented read for TxStatus/TxAddr "
2457                 "addr=0x%x size=0x%x\n", addr, size);
2458         return ret;
2459     }
2460 
2461     switch (size) {
2462     case 1: /* fall through */
2463     case 2: /* fall through */
2464     case 4:
2465         ret = (regs[reg] >> offset * 8) & (((uint64_t)1 << (size * 8)) - 1);
2466         DPRINTF("TxStatus/TxAddr[%d] read addr=0x%x size=0x%x val=0x%08x\n",
2467                 reg, addr, size, ret);
2468         break;
2469     default:
2470         DPRINTF("unsupported size 0x%x of TxStatus/TxAddr reading\n", size);
2471         break;
2472     }
2473 
2474     return ret;
2475 }
2476 
2477 static uint16_t rtl8139_TSAD_read(RTL8139State *s)
2478 {
2479     uint16_t ret = 0;
2480 
2481     /* Simulate TSAD, it is read only anyway */
2482 
2483     ret = ((s->TxStatus[3] & TxStatOK  )?TSAD_TOK3:0)
2484          |((s->TxStatus[2] & TxStatOK  )?TSAD_TOK2:0)
2485          |((s->TxStatus[1] & TxStatOK  )?TSAD_TOK1:0)
2486          |((s->TxStatus[0] & TxStatOK  )?TSAD_TOK0:0)
2487 
2488          |((s->TxStatus[3] & TxUnderrun)?TSAD_TUN3:0)
2489          |((s->TxStatus[2] & TxUnderrun)?TSAD_TUN2:0)
2490          |((s->TxStatus[1] & TxUnderrun)?TSAD_TUN1:0)
2491          |((s->TxStatus[0] & TxUnderrun)?TSAD_TUN0:0)
2492 
2493          |((s->TxStatus[3] & TxAborted )?TSAD_TABT3:0)
2494          |((s->TxStatus[2] & TxAborted )?TSAD_TABT2:0)
2495          |((s->TxStatus[1] & TxAborted )?TSAD_TABT1:0)
2496          |((s->TxStatus[0] & TxAborted )?TSAD_TABT0:0)
2497 
2498          |((s->TxStatus[3] & TxHostOwns )?TSAD_OWN3:0)
2499          |((s->TxStatus[2] & TxHostOwns )?TSAD_OWN2:0)
2500          |((s->TxStatus[1] & TxHostOwns )?TSAD_OWN1:0)
2501          |((s->TxStatus[0] & TxHostOwns )?TSAD_OWN0:0) ;
2502 
2503 
2504     DPRINTF("TSAD read val=0x%04x\n", ret);
2505 
2506     return ret;
2507 }
2508 
2509 static uint16_t rtl8139_CSCR_read(RTL8139State *s)
2510 {
2511     uint16_t ret = s->CSCR;
2512 
2513     DPRINTF("CSCR read val=0x%04x\n", ret);
2514 
2515     return ret;
2516 }
2517 
2518 static void rtl8139_TxAddr_write(RTL8139State *s, uint32_t txAddrOffset, uint32_t val)
2519 {
2520     DPRINTF("TxAddr write offset=0x%x val=0x%08x\n", txAddrOffset, val);
2521 
2522     s->TxAddr[txAddrOffset/4] = val;
2523 }
2524 
2525 static uint32_t rtl8139_TxAddr_read(RTL8139State *s, uint32_t txAddrOffset)
2526 {
2527     uint32_t ret = s->TxAddr[txAddrOffset/4];
2528 
2529     DPRINTF("TxAddr read offset=0x%x val=0x%08x\n", txAddrOffset, ret);
2530 
2531     return ret;
2532 }
2533 
2534 static void rtl8139_RxBufPtr_write(RTL8139State *s, uint32_t val)
2535 {
2536     DPRINTF("RxBufPtr write val=0x%04x\n", val);
2537 
2538     /* this value is off by 16 */
2539     s->RxBufPtr = MOD2(val + 0x10, s->RxBufferSize);
2540 
2541     /* more buffer space may be available so try to receive */
2542     qemu_flush_queued_packets(qemu_get_queue(s->nic));
2543 
2544     DPRINTF(" CAPR write: rx buffer length %d head 0x%04x read 0x%04x\n",
2545         s->RxBufferSize, s->RxBufAddr, s->RxBufPtr);
2546 }
2547 
2548 static uint32_t rtl8139_RxBufPtr_read(RTL8139State *s)
2549 {
2550     /* this value is off by 16 */
2551     uint32_t ret = s->RxBufPtr - 0x10;
2552 
2553     DPRINTF("RxBufPtr read val=0x%04x\n", ret);
2554 
2555     return ret;
2556 }
2557 
2558 static uint32_t rtl8139_RxBufAddr_read(RTL8139State *s)
2559 {
2560     /* this value is NOT off by 16 */
2561     uint32_t ret = s->RxBufAddr;
2562 
2563     DPRINTF("RxBufAddr read val=0x%04x\n", ret);
2564 
2565     return ret;
2566 }
2567 
2568 static void rtl8139_RxBuf_write(RTL8139State *s, uint32_t val)
2569 {
2570     DPRINTF("RxBuf write val=0x%08x\n", val);
2571 
2572     s->RxBuf = val;
2573 
2574     /* may need to reset rxring here */
2575 }
2576 
2577 static uint32_t rtl8139_RxBuf_read(RTL8139State *s)
2578 {
2579     uint32_t ret = s->RxBuf;
2580 
2581     DPRINTF("RxBuf read val=0x%08x\n", ret);
2582 
2583     return ret;
2584 }
2585 
2586 static void rtl8139_IntrMask_write(RTL8139State *s, uint32_t val)
2587 {
2588     DPRINTF("IntrMask write(w) val=0x%04x\n", val);
2589 
2590     /* mask unwritable bits */
2591     val = SET_MASKED(val, 0x1e00, s->IntrMask);
2592 
2593     s->IntrMask = val;
2594 
2595     rtl8139_update_irq(s);
2596 
2597 }
2598 
2599 static uint32_t rtl8139_IntrMask_read(RTL8139State *s)
2600 {
2601     uint32_t ret = s->IntrMask;
2602 
2603     DPRINTF("IntrMask read(w) val=0x%04x\n", ret);
2604 
2605     return ret;
2606 }
2607 
2608 static void rtl8139_IntrStatus_write(RTL8139State *s, uint32_t val)
2609 {
2610     DPRINTF("IntrStatus write(w) val=0x%04x\n", val);
2611 
2612 #if 0
2613 
2614     /* writing to ISR has no effect */
2615 
2616     return;
2617 
2618 #else
2619     uint16_t newStatus = s->IntrStatus & ~val;
2620 
2621     /* mask unwritable bits */
2622     newStatus = SET_MASKED(newStatus, 0x1e00, s->IntrStatus);
2623 
2624     /* writing 1 to interrupt status register bit clears it */
2625     s->IntrStatus = 0;
2626     rtl8139_update_irq(s);
2627 
2628     s->IntrStatus = newStatus;
2629     rtl8139_set_next_tctr_time(s);
2630     rtl8139_update_irq(s);
2631 
2632 #endif
2633 }
2634 
2635 static uint32_t rtl8139_IntrStatus_read(RTL8139State *s)
2636 {
2637     uint32_t ret = s->IntrStatus;
2638 
2639     DPRINTF("IntrStatus read(w) val=0x%04x\n", ret);
2640 
2641 #if 0
2642 
2643     /* reading ISR clears all interrupts */
2644     s->IntrStatus = 0;
2645 
2646     rtl8139_update_irq(s);
2647 
2648 #endif
2649 
2650     return ret;
2651 }
2652 
2653 static void rtl8139_MultiIntr_write(RTL8139State *s, uint32_t val)
2654 {
2655     DPRINTF("MultiIntr write(w) val=0x%04x\n", val);
2656 
2657     /* mask unwritable bits */
2658     val = SET_MASKED(val, 0xf000, s->MultiIntr);
2659 
2660     s->MultiIntr = val;
2661 }
2662 
2663 static uint32_t rtl8139_MultiIntr_read(RTL8139State *s)
2664 {
2665     uint32_t ret = s->MultiIntr;
2666 
2667     DPRINTF("MultiIntr read(w) val=0x%04x\n", ret);
2668 
2669     return ret;
2670 }
2671 
2672 static void rtl8139_io_writeb(void *opaque, uint8_t addr, uint32_t val)
2673 {
2674     RTL8139State *s = opaque;
2675 
2676     switch (addr)
2677     {
2678         case MAC0 ... MAC0+4:
2679             s->phys[addr - MAC0] = val;
2680             break;
2681         case MAC0+5:
2682             s->phys[addr - MAC0] = val;
2683             qemu_format_nic_info_str(qemu_get_queue(s->nic), s->phys);
2684             break;
2685         case MAC0+6 ... MAC0+7:
2686             /* reserved */
2687             break;
2688         case MAR0 ... MAR0+7:
2689             s->mult[addr - MAR0] = val;
2690             break;
2691         case ChipCmd:
2692             rtl8139_ChipCmd_write(s, val);
2693             break;
2694         case Cfg9346:
2695             rtl8139_Cfg9346_write(s, val);
2696             break;
2697         case TxConfig: /* windows driver sometimes writes using byte-lenth call */
2698             rtl8139_TxConfig_writeb(s, val);
2699             break;
2700         case Config0:
2701             rtl8139_Config0_write(s, val);
2702             break;
2703         case Config1:
2704             rtl8139_Config1_write(s, val);
2705             break;
2706         case Config3:
2707             rtl8139_Config3_write(s, val);
2708             break;
2709         case Config4:
2710             rtl8139_Config4_write(s, val);
2711             break;
2712         case Config5:
2713             rtl8139_Config5_write(s, val);
2714             break;
2715         case MediaStatus:
2716             /* ignore */
2717             DPRINTF("not implemented write(b) to MediaStatus val=0x%02x\n",
2718                 val);
2719             break;
2720 
2721         case HltClk:
2722             DPRINTF("HltClk write val=0x%08x\n", val);
2723             if (val == 'R')
2724             {
2725                 s->clock_enabled = 1;
2726             }
2727             else if (val == 'H')
2728             {
2729                 s->clock_enabled = 0;
2730             }
2731             break;
2732 
2733         case TxThresh:
2734             DPRINTF("C+ TxThresh write(b) val=0x%02x\n", val);
2735             s->TxThresh = val;
2736             break;
2737 
2738         case TxPoll:
2739             DPRINTF("C+ TxPoll write(b) val=0x%02x\n", val);
2740             if (val & (1 << 7))
2741             {
2742                 DPRINTF("C+ TxPoll high priority transmission (not "
2743                     "implemented)\n");
2744                 //rtl8139_cplus_transmit(s);
2745             }
2746             if (val & (1 << 6))
2747             {
2748                 DPRINTF("C+ TxPoll normal priority transmission\n");
2749                 rtl8139_cplus_transmit(s);
2750             }
2751 
2752             break;
2753 
2754         default:
2755             DPRINTF("not implemented write(b) addr=0x%x val=0x%02x\n", addr,
2756                 val);
2757             break;
2758     }
2759 }
2760 
2761 static void rtl8139_io_writew(void *opaque, uint8_t addr, uint32_t val)
2762 {
2763     RTL8139State *s = opaque;
2764 
2765     switch (addr)
2766     {
2767         case IntrMask:
2768             rtl8139_IntrMask_write(s, val);
2769             break;
2770 
2771         case IntrStatus:
2772             rtl8139_IntrStatus_write(s, val);
2773             break;
2774 
2775         case MultiIntr:
2776             rtl8139_MultiIntr_write(s, val);
2777             break;
2778 
2779         case RxBufPtr:
2780             rtl8139_RxBufPtr_write(s, val);
2781             break;
2782 
2783         case BasicModeCtrl:
2784             rtl8139_BasicModeCtrl_write(s, val);
2785             break;
2786         case BasicModeStatus:
2787             rtl8139_BasicModeStatus_write(s, val);
2788             break;
2789         case NWayAdvert:
2790             DPRINTF("NWayAdvert write(w) val=0x%04x\n", val);
2791             s->NWayAdvert = val;
2792             break;
2793         case NWayLPAR:
2794             DPRINTF("forbidden NWayLPAR write(w) val=0x%04x\n", val);
2795             break;
2796         case NWayExpansion:
2797             DPRINTF("NWayExpansion write(w) val=0x%04x\n", val);
2798             s->NWayExpansion = val;
2799             break;
2800 
2801         case CpCmd:
2802             rtl8139_CpCmd_write(s, val);
2803             break;
2804 
2805         case IntrMitigate:
2806             rtl8139_IntrMitigate_write(s, val);
2807             break;
2808 
2809         default:
2810             DPRINTF("ioport write(w) addr=0x%x val=0x%04x via write(b)\n",
2811                 addr, val);
2812 
2813             rtl8139_io_writeb(opaque, addr, val & 0xff);
2814             rtl8139_io_writeb(opaque, addr + 1, (val >> 8) & 0xff);
2815             break;
2816     }
2817 }
2818 
2819 static void rtl8139_set_next_tctr_time(RTL8139State *s)
2820 {
2821     const uint64_t ns_per_period = (uint64_t)PCI_PERIOD << 32;
2822 
2823     DPRINTF("entered rtl8139_set_next_tctr_time\n");
2824 
2825     /* This function is called at least once per period, so it is a good
2826      * place to update the timer base.
2827      *
2828      * After one iteration of this loop the value in the Timer register does
2829      * not change, but the device model is counting up by 2^32 ticks (approx.
2830      * 130 seconds).
2831      */
2832     while (s->TCTR_base + ns_per_period <= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)) {
2833         s->TCTR_base += ns_per_period;
2834     }
2835 
2836     if (!s->TimerInt) {
2837         timer_del(s->timer);
2838     } else {
2839         uint64_t delta = (uint64_t)s->TimerInt * PCI_PERIOD;
2840         if (s->TCTR_base + delta <= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)) {
2841             delta += ns_per_period;
2842         }
2843         timer_mod(s->timer, s->TCTR_base + delta);
2844     }
2845 }
2846 
2847 static void rtl8139_io_writel(void *opaque, uint8_t addr, uint32_t val)
2848 {
2849     RTL8139State *s = opaque;
2850 
2851     switch (addr)
2852     {
2853         case RxMissed:
2854             DPRINTF("RxMissed clearing on write\n");
2855             s->RxMissed = 0;
2856             break;
2857 
2858         case TxConfig:
2859             rtl8139_TxConfig_write(s, val);
2860             break;
2861 
2862         case RxConfig:
2863             rtl8139_RxConfig_write(s, val);
2864             break;
2865 
2866         case TxStatus0 ... TxStatus0+4*4-1:
2867             rtl8139_TxStatus_write(s, addr-TxStatus0, val);
2868             break;
2869 
2870         case TxAddr0 ... TxAddr0+4*4-1:
2871             rtl8139_TxAddr_write(s, addr-TxAddr0, val);
2872             break;
2873 
2874         case RxBuf:
2875             rtl8139_RxBuf_write(s, val);
2876             break;
2877 
2878         case RxRingAddrLO:
2879             DPRINTF("C+ RxRing low bits write val=0x%08x\n", val);
2880             s->RxRingAddrLO = val;
2881             break;
2882 
2883         case RxRingAddrHI:
2884             DPRINTF("C+ RxRing high bits write val=0x%08x\n", val);
2885             s->RxRingAddrHI = val;
2886             break;
2887 
2888         case Timer:
2889             DPRINTF("TCTR Timer reset on write\n");
2890             s->TCTR_base = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
2891             rtl8139_set_next_tctr_time(s);
2892             break;
2893 
2894         case FlashReg:
2895             DPRINTF("FlashReg TimerInt write val=0x%08x\n", val);
2896             if (s->TimerInt != val) {
2897                 s->TimerInt = val;
2898                 rtl8139_set_next_tctr_time(s);
2899             }
2900             break;
2901 
2902         default:
2903             DPRINTF("ioport write(l) addr=0x%x val=0x%08x via write(b)\n",
2904                 addr, val);
2905             rtl8139_io_writeb(opaque, addr, val & 0xff);
2906             rtl8139_io_writeb(opaque, addr + 1, (val >> 8) & 0xff);
2907             rtl8139_io_writeb(opaque, addr + 2, (val >> 16) & 0xff);
2908             rtl8139_io_writeb(opaque, addr + 3, (val >> 24) & 0xff);
2909             break;
2910     }
2911 }
2912 
2913 static uint32_t rtl8139_io_readb(void *opaque, uint8_t addr)
2914 {
2915     RTL8139State *s = opaque;
2916     int ret;
2917 
2918     switch (addr)
2919     {
2920         case MAC0 ... MAC0+5:
2921             ret = s->phys[addr - MAC0];
2922             break;
2923         case MAC0+6 ... MAC0+7:
2924             ret = 0;
2925             break;
2926         case MAR0 ... MAR0+7:
2927             ret = s->mult[addr - MAR0];
2928             break;
2929         case TxStatus0 ... TxStatus0+4*4-1:
2930             ret = rtl8139_TxStatus_TxAddr_read(s, s->TxStatus, TxStatus0,
2931                                                addr, 1);
2932             break;
2933         case ChipCmd:
2934             ret = rtl8139_ChipCmd_read(s);
2935             break;
2936         case Cfg9346:
2937             ret = rtl8139_Cfg9346_read(s);
2938             break;
2939         case Config0:
2940             ret = rtl8139_Config0_read(s);
2941             break;
2942         case Config1:
2943             ret = rtl8139_Config1_read(s);
2944             break;
2945         case Config3:
2946             ret = rtl8139_Config3_read(s);
2947             break;
2948         case Config4:
2949             ret = rtl8139_Config4_read(s);
2950             break;
2951         case Config5:
2952             ret = rtl8139_Config5_read(s);
2953             break;
2954 
2955         case MediaStatus:
2956             /* The LinkDown bit of MediaStatus is inverse with link status */
2957             ret = 0xd0 | (~s->BasicModeStatus & 0x04);
2958             DPRINTF("MediaStatus read 0x%x\n", ret);
2959             break;
2960 
2961         case HltClk:
2962             ret = s->clock_enabled;
2963             DPRINTF("HltClk read 0x%x\n", ret);
2964             break;
2965 
2966         case PCIRevisionID:
2967             ret = RTL8139_PCI_REVID;
2968             DPRINTF("PCI Revision ID read 0x%x\n", ret);
2969             break;
2970 
2971         case TxThresh:
2972             ret = s->TxThresh;
2973             DPRINTF("C+ TxThresh read(b) val=0x%02x\n", ret);
2974             break;
2975 
2976         case 0x43: /* Part of TxConfig register. Windows driver tries to read it */
2977             ret = s->TxConfig >> 24;
2978             DPRINTF("RTL8139C TxConfig at 0x43 read(b) val=0x%02x\n", ret);
2979             break;
2980 
2981         default:
2982             DPRINTF("not implemented read(b) addr=0x%x\n", addr);
2983             ret = 0;
2984             break;
2985     }
2986 
2987     return ret;
2988 }
2989 
2990 static uint32_t rtl8139_io_readw(void *opaque, uint8_t addr)
2991 {
2992     RTL8139State *s = opaque;
2993     uint32_t ret;
2994 
2995     switch (addr)
2996     {
2997         case TxAddr0 ... TxAddr0+4*4-1:
2998             ret = rtl8139_TxStatus_TxAddr_read(s, s->TxAddr, TxAddr0, addr, 2);
2999             break;
3000         case IntrMask:
3001             ret = rtl8139_IntrMask_read(s);
3002             break;
3003 
3004         case IntrStatus:
3005             ret = rtl8139_IntrStatus_read(s);
3006             break;
3007 
3008         case MultiIntr:
3009             ret = rtl8139_MultiIntr_read(s);
3010             break;
3011 
3012         case RxBufPtr:
3013             ret = rtl8139_RxBufPtr_read(s);
3014             break;
3015 
3016         case RxBufAddr:
3017             ret = rtl8139_RxBufAddr_read(s);
3018             break;
3019 
3020         case BasicModeCtrl:
3021             ret = rtl8139_BasicModeCtrl_read(s);
3022             break;
3023         case BasicModeStatus:
3024             ret = rtl8139_BasicModeStatus_read(s);
3025             break;
3026         case NWayAdvert:
3027             ret = s->NWayAdvert;
3028             DPRINTF("NWayAdvert read(w) val=0x%04x\n", ret);
3029             break;
3030         case NWayLPAR:
3031             ret = s->NWayLPAR;
3032             DPRINTF("NWayLPAR read(w) val=0x%04x\n", ret);
3033             break;
3034         case NWayExpansion:
3035             ret = s->NWayExpansion;
3036             DPRINTF("NWayExpansion read(w) val=0x%04x\n", ret);
3037             break;
3038 
3039         case CpCmd:
3040             ret = rtl8139_CpCmd_read(s);
3041             break;
3042 
3043         case IntrMitigate:
3044             ret = rtl8139_IntrMitigate_read(s);
3045             break;
3046 
3047         case TxSummary:
3048             ret = rtl8139_TSAD_read(s);
3049             break;
3050 
3051         case CSCR:
3052             ret = rtl8139_CSCR_read(s);
3053             break;
3054 
3055         default:
3056             DPRINTF("ioport read(w) addr=0x%x via read(b)\n", addr);
3057 
3058             ret  = rtl8139_io_readb(opaque, addr);
3059             ret |= rtl8139_io_readb(opaque, addr + 1) << 8;
3060 
3061             DPRINTF("ioport read(w) addr=0x%x val=0x%04x\n", addr, ret);
3062             break;
3063     }
3064 
3065     return ret;
3066 }
3067 
3068 static uint32_t rtl8139_io_readl(void *opaque, uint8_t addr)
3069 {
3070     RTL8139State *s = opaque;
3071     uint32_t ret;
3072 
3073     switch (addr)
3074     {
3075         case RxMissed:
3076             ret = s->RxMissed;
3077 
3078             DPRINTF("RxMissed read val=0x%08x\n", ret);
3079             break;
3080 
3081         case TxConfig:
3082             ret = rtl8139_TxConfig_read(s);
3083             break;
3084 
3085         case RxConfig:
3086             ret = rtl8139_RxConfig_read(s);
3087             break;
3088 
3089         case TxStatus0 ... TxStatus0+4*4-1:
3090             ret = rtl8139_TxStatus_TxAddr_read(s, s->TxStatus, TxStatus0,
3091                                                addr, 4);
3092             break;
3093 
3094         case TxAddr0 ... TxAddr0+4*4-1:
3095             ret = rtl8139_TxAddr_read(s, addr-TxAddr0);
3096             break;
3097 
3098         case RxBuf:
3099             ret = rtl8139_RxBuf_read(s);
3100             break;
3101 
3102         case RxRingAddrLO:
3103             ret = s->RxRingAddrLO;
3104             DPRINTF("C+ RxRing low bits read val=0x%08x\n", ret);
3105             break;
3106 
3107         case RxRingAddrHI:
3108             ret = s->RxRingAddrHI;
3109             DPRINTF("C+ RxRing high bits read val=0x%08x\n", ret);
3110             break;
3111 
3112         case Timer:
3113             ret = (qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - s->TCTR_base) /
3114                   PCI_PERIOD;
3115             DPRINTF("TCTR Timer read val=0x%08x\n", ret);
3116             break;
3117 
3118         case FlashReg:
3119             ret = s->TimerInt;
3120             DPRINTF("FlashReg TimerInt read val=0x%08x\n", ret);
3121             break;
3122 
3123         default:
3124             DPRINTF("ioport read(l) addr=0x%x via read(b)\n", addr);
3125 
3126             ret  = rtl8139_io_readb(opaque, addr);
3127             ret |= rtl8139_io_readb(opaque, addr + 1) << 8;
3128             ret |= rtl8139_io_readb(opaque, addr + 2) << 16;
3129             ret |= rtl8139_io_readb(opaque, addr + 3) << 24;
3130 
3131             DPRINTF("read(l) addr=0x%x val=%08x\n", addr, ret);
3132             break;
3133     }
3134 
3135     return ret;
3136 }
3137 
3138 /* */
3139 
3140 static int rtl8139_post_load(void *opaque, int version_id)
3141 {
3142     RTL8139State* s = opaque;
3143     rtl8139_set_next_tctr_time(s);
3144     if (version_id < 4) {
3145         s->cplus_enabled = s->CpCmd != 0;
3146     }
3147 
3148     /* nc.link_down can't be migrated, so infer link_down according
3149      * to link status bit in BasicModeStatus */
3150     qemu_get_queue(s->nic)->link_down = (s->BasicModeStatus & 0x04) == 0;
3151 
3152     return 0;
3153 }
3154 
3155 static bool rtl8139_hotplug_ready_needed(void *opaque)
3156 {
3157     return qdev_machine_modified();
3158 }
3159 
3160 static const VMStateDescription vmstate_rtl8139_hotplug_ready ={
3161     .name = "rtl8139/hotplug_ready",
3162     .version_id = 1,
3163     .minimum_version_id = 1,
3164     .needed = rtl8139_hotplug_ready_needed,
3165     .fields = (VMStateField[]) {
3166         VMSTATE_END_OF_LIST()
3167     }
3168 };
3169 
3170 static int rtl8139_pre_save(void *opaque)
3171 {
3172     RTL8139State* s = opaque;
3173     int64_t current_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
3174 
3175     /* for migration to older versions */
3176     s->TCTR = (current_time - s->TCTR_base) / PCI_PERIOD;
3177     s->rtl8139_mmio_io_addr_dummy = 0;
3178 
3179     return 0;
3180 }
3181 
3182 static const VMStateDescription vmstate_rtl8139 = {
3183     .name = "rtl8139",
3184     .version_id = 5,
3185     .minimum_version_id = 3,
3186     .post_load = rtl8139_post_load,
3187     .pre_save  = rtl8139_pre_save,
3188     .fields = (VMStateField[]) {
3189         VMSTATE_PCI_DEVICE(parent_obj, RTL8139State),
3190         VMSTATE_PARTIAL_BUFFER(phys, RTL8139State, 6),
3191         VMSTATE_BUFFER(mult, RTL8139State),
3192         VMSTATE_UINT32_ARRAY(TxStatus, RTL8139State, 4),
3193         VMSTATE_UINT32_ARRAY(TxAddr, RTL8139State, 4),
3194 
3195         VMSTATE_UINT32(RxBuf, RTL8139State),
3196         VMSTATE_UINT32(RxBufferSize, RTL8139State),
3197         VMSTATE_UINT32(RxBufPtr, RTL8139State),
3198         VMSTATE_UINT32(RxBufAddr, RTL8139State),
3199 
3200         VMSTATE_UINT16(IntrStatus, RTL8139State),
3201         VMSTATE_UINT16(IntrMask, RTL8139State),
3202 
3203         VMSTATE_UINT32(TxConfig, RTL8139State),
3204         VMSTATE_UINT32(RxConfig, RTL8139State),
3205         VMSTATE_UINT32(RxMissed, RTL8139State),
3206         VMSTATE_UINT16(CSCR, RTL8139State),
3207 
3208         VMSTATE_UINT8(Cfg9346, RTL8139State),
3209         VMSTATE_UINT8(Config0, RTL8139State),
3210         VMSTATE_UINT8(Config1, RTL8139State),
3211         VMSTATE_UINT8(Config3, RTL8139State),
3212         VMSTATE_UINT8(Config4, RTL8139State),
3213         VMSTATE_UINT8(Config5, RTL8139State),
3214 
3215         VMSTATE_UINT8(clock_enabled, RTL8139State),
3216         VMSTATE_UINT8(bChipCmdState, RTL8139State),
3217 
3218         VMSTATE_UINT16(MultiIntr, RTL8139State),
3219 
3220         VMSTATE_UINT16(BasicModeCtrl, RTL8139State),
3221         VMSTATE_UINT16(BasicModeStatus, RTL8139State),
3222         VMSTATE_UINT16(NWayAdvert, RTL8139State),
3223         VMSTATE_UINT16(NWayLPAR, RTL8139State),
3224         VMSTATE_UINT16(NWayExpansion, RTL8139State),
3225 
3226         VMSTATE_UINT16(CpCmd, RTL8139State),
3227         VMSTATE_UINT8(TxThresh, RTL8139State),
3228 
3229         VMSTATE_UNUSED(4),
3230         VMSTATE_MACADDR(conf.macaddr, RTL8139State),
3231         VMSTATE_INT32(rtl8139_mmio_io_addr_dummy, RTL8139State),
3232 
3233         VMSTATE_UINT32(currTxDesc, RTL8139State),
3234         VMSTATE_UINT32(currCPlusRxDesc, RTL8139State),
3235         VMSTATE_UINT32(currCPlusTxDesc, RTL8139State),
3236         VMSTATE_UINT32(RxRingAddrLO, RTL8139State),
3237         VMSTATE_UINT32(RxRingAddrHI, RTL8139State),
3238 
3239         VMSTATE_UINT16_ARRAY(eeprom.contents, RTL8139State, EEPROM_9346_SIZE),
3240         VMSTATE_INT32(eeprom.mode, RTL8139State),
3241         VMSTATE_UINT32(eeprom.tick, RTL8139State),
3242         VMSTATE_UINT8(eeprom.address, RTL8139State),
3243         VMSTATE_UINT16(eeprom.input, RTL8139State),
3244         VMSTATE_UINT16(eeprom.output, RTL8139State),
3245 
3246         VMSTATE_UINT8(eeprom.eecs, RTL8139State),
3247         VMSTATE_UINT8(eeprom.eesk, RTL8139State),
3248         VMSTATE_UINT8(eeprom.eedi, RTL8139State),
3249         VMSTATE_UINT8(eeprom.eedo, RTL8139State),
3250 
3251         VMSTATE_UINT32(TCTR, RTL8139State),
3252         VMSTATE_UINT32(TimerInt, RTL8139State),
3253         VMSTATE_INT64(TCTR_base, RTL8139State),
3254 
3255         VMSTATE_UINT64(tally_counters.TxOk, RTL8139State),
3256         VMSTATE_UINT64(tally_counters.RxOk, RTL8139State),
3257         VMSTATE_UINT64(tally_counters.TxERR, RTL8139State),
3258         VMSTATE_UINT32(tally_counters.RxERR, RTL8139State),
3259         VMSTATE_UINT16(tally_counters.MissPkt, RTL8139State),
3260         VMSTATE_UINT16(tally_counters.FAE, RTL8139State),
3261         VMSTATE_UINT32(tally_counters.Tx1Col, RTL8139State),
3262         VMSTATE_UINT32(tally_counters.TxMCol, RTL8139State),
3263         VMSTATE_UINT64(tally_counters.RxOkPhy, RTL8139State),
3264         VMSTATE_UINT64(tally_counters.RxOkBrd, RTL8139State),
3265         VMSTATE_UINT32_V(tally_counters.RxOkMul, RTL8139State, 5),
3266         VMSTATE_UINT16(tally_counters.TxAbt, RTL8139State),
3267         VMSTATE_UINT16(tally_counters.TxUndrn, RTL8139State),
3268 
3269         VMSTATE_UINT32_V(cplus_enabled, RTL8139State, 4),
3270         VMSTATE_END_OF_LIST()
3271     },
3272     .subsections = (const VMStateDescription*[]) {
3273         &vmstate_rtl8139_hotplug_ready,
3274         NULL
3275     }
3276 };
3277 
3278 /***********************************************************/
3279 /* PCI RTL8139 definitions */
3280 
3281 static void rtl8139_ioport_write(void *opaque, hwaddr addr,
3282                                  uint64_t val, unsigned size)
3283 {
3284     switch (size) {
3285     case 1:
3286         rtl8139_io_writeb(opaque, addr, val);
3287         break;
3288     case 2:
3289         rtl8139_io_writew(opaque, addr, val);
3290         break;
3291     case 4:
3292         rtl8139_io_writel(opaque, addr, val);
3293         break;
3294     }
3295 }
3296 
3297 static uint64_t rtl8139_ioport_read(void *opaque, hwaddr addr,
3298                                     unsigned size)
3299 {
3300     switch (size) {
3301     case 1:
3302         return rtl8139_io_readb(opaque, addr);
3303     case 2:
3304         return rtl8139_io_readw(opaque, addr);
3305     case 4:
3306         return rtl8139_io_readl(opaque, addr);
3307     }
3308 
3309     return -1;
3310 }
3311 
3312 static const MemoryRegionOps rtl8139_io_ops = {
3313     .read = rtl8139_ioport_read,
3314     .write = rtl8139_ioport_write,
3315     .impl = {
3316         .min_access_size = 1,
3317         .max_access_size = 4,
3318     },
3319     .endianness = DEVICE_LITTLE_ENDIAN,
3320 };
3321 
3322 static void rtl8139_timer(void *opaque)
3323 {
3324     RTL8139State *s = opaque;
3325 
3326     if (!s->clock_enabled)
3327     {
3328         DPRINTF(">>> timer: clock is not running\n");
3329         return;
3330     }
3331 
3332     s->IntrStatus |= PCSTimeout;
3333     rtl8139_update_irq(s);
3334     rtl8139_set_next_tctr_time(s);
3335 }
3336 
3337 static void pci_rtl8139_uninit(PCIDevice *dev)
3338 {
3339     RTL8139State *s = RTL8139(dev);
3340 
3341     g_free(s->cplus_txbuffer);
3342     s->cplus_txbuffer = NULL;
3343     timer_free(s->timer);
3344     qemu_del_nic(s->nic);
3345 }
3346 
3347 static void rtl8139_set_link_status(NetClientState *nc)
3348 {
3349     RTL8139State *s = qemu_get_nic_opaque(nc);
3350 
3351     if (nc->link_down) {
3352         s->BasicModeStatus &= ~0x04;
3353     } else {
3354         s->BasicModeStatus |= 0x04;
3355     }
3356 
3357     s->IntrStatus |= RxUnderrun;
3358     rtl8139_update_irq(s);
3359 }
3360 
3361 static NetClientInfo net_rtl8139_info = {
3362     .type = NET_CLIENT_DRIVER_NIC,
3363     .size = sizeof(NICState),
3364     .can_receive = rtl8139_can_receive,
3365     .receive = rtl8139_receive,
3366     .link_status_changed = rtl8139_set_link_status,
3367 };
3368 
3369 static void pci_rtl8139_realize(PCIDevice *dev, Error **errp)
3370 {
3371     RTL8139State *s = RTL8139(dev);
3372     DeviceState *d = DEVICE(dev);
3373     uint8_t *pci_conf;
3374 
3375     pci_conf = dev->config;
3376     pci_conf[PCI_INTERRUPT_PIN] = 1;    /* interrupt pin A */
3377     /* TODO: start of capability list, but no capability
3378      * list bit in status register, and offset 0xdc seems unused. */
3379     pci_conf[PCI_CAPABILITY_LIST] = 0xdc;
3380 
3381     memory_region_init_io(&s->bar_io, OBJECT(s), &rtl8139_io_ops, s,
3382                           "rtl8139", 0x100);
3383     memory_region_init_alias(&s->bar_mem, OBJECT(s), "rtl8139-mem", &s->bar_io,
3384                              0, 0x100);
3385 
3386     pci_register_bar(dev, 0, PCI_BASE_ADDRESS_SPACE_IO, &s->bar_io);
3387     pci_register_bar(dev, 1, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->bar_mem);
3388 
3389     qemu_macaddr_default_if_unset(&s->conf.macaddr);
3390 
3391     /* prepare eeprom */
3392     s->eeprom.contents[0] = 0x8129;
3393 #if 1
3394     /* PCI vendor and device ID should be mirrored here */
3395     s->eeprom.contents[1] = PCI_VENDOR_ID_REALTEK;
3396     s->eeprom.contents[2] = PCI_DEVICE_ID_REALTEK_8139;
3397 #endif
3398     s->eeprom.contents[7] = s->conf.macaddr.a[0] | s->conf.macaddr.a[1] << 8;
3399     s->eeprom.contents[8] = s->conf.macaddr.a[2] | s->conf.macaddr.a[3] << 8;
3400     s->eeprom.contents[9] = s->conf.macaddr.a[4] | s->conf.macaddr.a[5] << 8;
3401 
3402     s->nic = qemu_new_nic(&net_rtl8139_info, &s->conf,
3403                           object_get_typename(OBJECT(dev)), d->id, s);
3404     qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a);
3405 
3406     s->cplus_txbuffer = NULL;
3407     s->cplus_txbuffer_len = 0;
3408     s->cplus_txbuffer_offset = 0;
3409 
3410     s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, rtl8139_timer, s);
3411 }
3412 
3413 static void rtl8139_instance_init(Object *obj)
3414 {
3415     RTL8139State *s = RTL8139(obj);
3416 
3417     device_add_bootindex_property(obj, &s->conf.bootindex,
3418                                   "bootindex", "/ethernet-phy@0",
3419                                   DEVICE(obj));
3420 }
3421 
3422 static Property rtl8139_properties[] = {
3423     DEFINE_NIC_PROPERTIES(RTL8139State, conf),
3424     DEFINE_PROP_END_OF_LIST(),
3425 };
3426 
3427 static void rtl8139_class_init(ObjectClass *klass, void *data)
3428 {
3429     DeviceClass *dc = DEVICE_CLASS(klass);
3430     PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
3431 
3432     k->realize = pci_rtl8139_realize;
3433     k->exit = pci_rtl8139_uninit;
3434     k->romfile = "efi-rtl8139.rom";
3435     k->vendor_id = PCI_VENDOR_ID_REALTEK;
3436     k->device_id = PCI_DEVICE_ID_REALTEK_8139;
3437     k->revision = RTL8139_PCI_REVID; /* >=0x20 is for 8139C+ */
3438     k->class_id = PCI_CLASS_NETWORK_ETHERNET;
3439     dc->reset = rtl8139_reset;
3440     dc->vmsd = &vmstate_rtl8139;
3441     device_class_set_props(dc, rtl8139_properties);
3442     set_bit(DEVICE_CATEGORY_NETWORK, dc->categories);
3443 }
3444 
3445 static const TypeInfo rtl8139_info = {
3446     .name          = TYPE_RTL8139,
3447     .parent        = TYPE_PCI_DEVICE,
3448     .instance_size = sizeof(RTL8139State),
3449     .class_init    = rtl8139_class_init,
3450     .instance_init = rtl8139_instance_init,
3451     .interfaces = (InterfaceInfo[]) {
3452         { INTERFACE_CONVENTIONAL_PCI_DEVICE },
3453         { },
3454     },
3455 };
3456 
3457 static void rtl8139_register_types(void)
3458 {
3459     type_register_static(&rtl8139_info);
3460 }
3461 
3462 type_init(rtl8139_register_types)
3463