xref: /openbmc/qemu/hw/net/rtl8139.c (revision c39f95dc)
1 /**
2  * QEMU RTL8139 emulation
3  *
4  * Copyright (c) 2006 Igor Kovalenko
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23 
24  * Modifications:
25  *  2006-Jan-28  Mark Malakanov :   TSAD and CSCR implementation (for Windows driver)
26  *
27  *  2006-Apr-28  Juergen Lock   :   EEPROM emulation changes for FreeBSD driver
28  *                                  HW revision ID changes for FreeBSD driver
29  *
30  *  2006-Jul-01  Igor Kovalenko :   Implemented loopback mode for FreeBSD driver
31  *                                  Corrected packet transfer reassembly routine for 8139C+ mode
32  *                                  Rearranged debugging print statements
33  *                                  Implemented PCI timer interrupt (disabled by default)
34  *                                  Implemented Tally Counters, increased VM load/save version
35  *                                  Implemented IP/TCP/UDP checksum task offloading
36  *
37  *  2006-Jul-04  Igor Kovalenko :   Implemented TCP segmentation offloading
38  *                                  Fixed MTU=1500 for produced ethernet frames
39  *
40  *  2006-Jul-09  Igor Kovalenko :   Fixed TCP header length calculation while processing
41  *                                  segmentation offloading
42  *                                  Removed slirp.h dependency
43  *                                  Added rx/tx buffer reset when enabling rx/tx operation
44  *
45  *  2010-Feb-04  Frediano Ziglio:   Rewrote timer support using QEMU timer only
46  *                                  when strictly needed (required for
47  *                                  Darwin)
48  *  2011-Mar-22  Benjamin Poirier:  Implemented VLAN offloading
49  */
50 
51 /* For crc32 */
52 #include "qemu/osdep.h"
53 #include <zlib.h>
54 
55 #include "hw/hw.h"
56 #include "hw/pci/pci.h"
57 #include "sysemu/dma.h"
58 #include "qemu/timer.h"
59 #include "net/net.h"
60 #include "net/eth.h"
61 #include "hw/loader.h"
62 #include "sysemu/sysemu.h"
63 #include "qemu/iov.h"
64 
65 /* debug RTL8139 card */
66 //#define DEBUG_RTL8139 1
67 
68 #define PCI_PERIOD 30    /* 30 ns period = 33.333333 Mhz frequency */
69 
70 #define SET_MASKED(input, mask, curr) \
71     ( ( (input) & ~(mask) ) | ( (curr) & (mask) ) )
72 
73 /* arg % size for size which is a power of 2 */
74 #define MOD2(input, size) \
75     ( ( input ) & ( size - 1 )  )
76 
77 #define ETHER_TYPE_LEN 2
78 #define ETH_MTU     1500
79 
80 #define VLAN_TCI_LEN 2
81 #define VLAN_HLEN (ETHER_TYPE_LEN + VLAN_TCI_LEN)
82 
83 #if defined (DEBUG_RTL8139)
84 #  define DPRINTF(fmt, ...) \
85     do { fprintf(stderr, "RTL8139: " fmt, ## __VA_ARGS__); } while (0)
86 #else
87 static inline GCC_FMT_ATTR(1, 2) int DPRINTF(const char *fmt, ...)
88 {
89     return 0;
90 }
91 #endif
92 
93 #define TYPE_RTL8139 "rtl8139"
94 
95 #define RTL8139(obj) \
96      OBJECT_CHECK(RTL8139State, (obj), TYPE_RTL8139)
97 
98 /* Symbolic offsets to registers. */
99 enum RTL8139_registers {
100     MAC0 = 0,        /* Ethernet hardware address. */
101     MAR0 = 8,        /* Multicast filter. */
102     TxStatus0 = 0x10,/* Transmit status (Four 32bit registers). C mode only */
103                      /* Dump Tally Conter control register(64bit). C+ mode only */
104     TxAddr0 = 0x20,  /* Tx descriptors (also four 32bit). */
105     RxBuf = 0x30,
106     ChipCmd = 0x37,
107     RxBufPtr = 0x38,
108     RxBufAddr = 0x3A,
109     IntrMask = 0x3C,
110     IntrStatus = 0x3E,
111     TxConfig = 0x40,
112     RxConfig = 0x44,
113     Timer = 0x48,        /* A general-purpose counter. */
114     RxMissed = 0x4C,    /* 24 bits valid, write clears. */
115     Cfg9346 = 0x50,
116     Config0 = 0x51,
117     Config1 = 0x52,
118     FlashReg = 0x54,
119     MediaStatus = 0x58,
120     Config3 = 0x59,
121     Config4 = 0x5A,        /* absent on RTL-8139A */
122     HltClk = 0x5B,
123     MultiIntr = 0x5C,
124     PCIRevisionID = 0x5E,
125     TxSummary = 0x60, /* TSAD register. Transmit Status of All Descriptors*/
126     BasicModeCtrl = 0x62,
127     BasicModeStatus = 0x64,
128     NWayAdvert = 0x66,
129     NWayLPAR = 0x68,
130     NWayExpansion = 0x6A,
131     /* Undocumented registers, but required for proper operation. */
132     FIFOTMS = 0x70,        /* FIFO Control and test. */
133     CSCR = 0x74,        /* Chip Status and Configuration Register. */
134     PARA78 = 0x78,
135     PARA7c = 0x7c,        /* Magic transceiver parameter register. */
136     Config5 = 0xD8,        /* absent on RTL-8139A */
137     /* C+ mode */
138     TxPoll        = 0xD9,    /* Tell chip to check Tx descriptors for work */
139     RxMaxSize    = 0xDA, /* Max size of an Rx packet (8169 only) */
140     CpCmd        = 0xE0, /* C+ Command register (C+ mode only) */
141     IntrMitigate    = 0xE2,    /* rx/tx interrupt mitigation control */
142     RxRingAddrLO    = 0xE4, /* 64-bit start addr of Rx ring */
143     RxRingAddrHI    = 0xE8, /* 64-bit start addr of Rx ring */
144     TxThresh    = 0xEC, /* Early Tx threshold */
145 };
146 
147 enum ClearBitMasks {
148     MultiIntrClear = 0xF000,
149     ChipCmdClear = 0xE2,
150     Config1Clear = (1<<7)|(1<<6)|(1<<3)|(1<<2)|(1<<1),
151 };
152 
153 enum ChipCmdBits {
154     CmdReset = 0x10,
155     CmdRxEnb = 0x08,
156     CmdTxEnb = 0x04,
157     RxBufEmpty = 0x01,
158 };
159 
160 /* C+ mode */
161 enum CplusCmdBits {
162     CPlusRxVLAN   = 0x0040, /* enable receive VLAN detagging */
163     CPlusRxChkSum = 0x0020, /* enable receive checksum offloading */
164     CPlusRxEnb    = 0x0002,
165     CPlusTxEnb    = 0x0001,
166 };
167 
168 /* Interrupt register bits, using my own meaningful names. */
169 enum IntrStatusBits {
170     PCIErr = 0x8000,
171     PCSTimeout = 0x4000,
172     RxFIFOOver = 0x40,
173     RxUnderrun = 0x20, /* Packet Underrun / Link Change */
174     RxOverflow = 0x10,
175     TxErr = 0x08,
176     TxOK = 0x04,
177     RxErr = 0x02,
178     RxOK = 0x01,
179 
180     RxAckBits = RxFIFOOver | RxOverflow | RxOK,
181 };
182 
183 enum TxStatusBits {
184     TxHostOwns = 0x2000,
185     TxUnderrun = 0x4000,
186     TxStatOK = 0x8000,
187     TxOutOfWindow = 0x20000000,
188     TxAborted = 0x40000000,
189     TxCarrierLost = 0x80000000,
190 };
191 enum RxStatusBits {
192     RxMulticast = 0x8000,
193     RxPhysical = 0x4000,
194     RxBroadcast = 0x2000,
195     RxBadSymbol = 0x0020,
196     RxRunt = 0x0010,
197     RxTooLong = 0x0008,
198     RxCRCErr = 0x0004,
199     RxBadAlign = 0x0002,
200     RxStatusOK = 0x0001,
201 };
202 
203 /* Bits in RxConfig. */
204 enum rx_mode_bits {
205     AcceptErr = 0x20,
206     AcceptRunt = 0x10,
207     AcceptBroadcast = 0x08,
208     AcceptMulticast = 0x04,
209     AcceptMyPhys = 0x02,
210     AcceptAllPhys = 0x01,
211 };
212 
213 /* Bits in TxConfig. */
214 enum tx_config_bits {
215 
216         /* Interframe Gap Time. Only TxIFG96 doesn't violate IEEE 802.3 */
217         TxIFGShift = 24,
218         TxIFG84 = (0 << TxIFGShift),    /* 8.4us / 840ns (10 / 100Mbps) */
219         TxIFG88 = (1 << TxIFGShift),    /* 8.8us / 880ns (10 / 100Mbps) */
220         TxIFG92 = (2 << TxIFGShift),    /* 9.2us / 920ns (10 / 100Mbps) */
221         TxIFG96 = (3 << TxIFGShift),    /* 9.6us / 960ns (10 / 100Mbps) */
222 
223     TxLoopBack = (1 << 18) | (1 << 17), /* enable loopback test mode */
224     TxCRC = (1 << 16),    /* DISABLE appending CRC to end of Tx packets */
225     TxClearAbt = (1 << 0),    /* Clear abort (WO) */
226     TxDMAShift = 8,        /* DMA burst value (0-7) is shifted this many bits */
227     TxRetryShift = 4,    /* TXRR value (0-15) is shifted this many bits */
228 
229     TxVersionMask = 0x7C800000, /* mask out version bits 30-26, 23 */
230 };
231 
232 
233 /* Transmit Status of All Descriptors (TSAD) Register */
234 enum TSAD_bits {
235  TSAD_TOK3 = 1<<15, // TOK bit of Descriptor 3
236  TSAD_TOK2 = 1<<14, // TOK bit of Descriptor 2
237  TSAD_TOK1 = 1<<13, // TOK bit of Descriptor 1
238  TSAD_TOK0 = 1<<12, // TOK bit of Descriptor 0
239  TSAD_TUN3 = 1<<11, // TUN bit of Descriptor 3
240  TSAD_TUN2 = 1<<10, // TUN bit of Descriptor 2
241  TSAD_TUN1 = 1<<9, // TUN bit of Descriptor 1
242  TSAD_TUN0 = 1<<8, // TUN bit of Descriptor 0
243  TSAD_TABT3 = 1<<07, // TABT bit of Descriptor 3
244  TSAD_TABT2 = 1<<06, // TABT bit of Descriptor 2
245  TSAD_TABT1 = 1<<05, // TABT bit of Descriptor 1
246  TSAD_TABT0 = 1<<04, // TABT bit of Descriptor 0
247  TSAD_OWN3 = 1<<03, // OWN bit of Descriptor 3
248  TSAD_OWN2 = 1<<02, // OWN bit of Descriptor 2
249  TSAD_OWN1 = 1<<01, // OWN bit of Descriptor 1
250  TSAD_OWN0 = 1<<00, // OWN bit of Descriptor 0
251 };
252 
253 
254 /* Bits in Config1 */
255 enum Config1Bits {
256     Cfg1_PM_Enable = 0x01,
257     Cfg1_VPD_Enable = 0x02,
258     Cfg1_PIO = 0x04,
259     Cfg1_MMIO = 0x08,
260     LWAKE = 0x10,        /* not on 8139, 8139A */
261     Cfg1_Driver_Load = 0x20,
262     Cfg1_LED0 = 0x40,
263     Cfg1_LED1 = 0x80,
264     SLEEP = (1 << 1),    /* only on 8139, 8139A */
265     PWRDN = (1 << 0),    /* only on 8139, 8139A */
266 };
267 
268 /* Bits in Config3 */
269 enum Config3Bits {
270     Cfg3_FBtBEn    = (1 << 0), /* 1 = Fast Back to Back */
271     Cfg3_FuncRegEn = (1 << 1), /* 1 = enable CardBus Function registers */
272     Cfg3_CLKRUN_En = (1 << 2), /* 1 = enable CLKRUN */
273     Cfg3_CardB_En  = (1 << 3), /* 1 = enable CardBus registers */
274     Cfg3_LinkUp    = (1 << 4), /* 1 = wake up on link up */
275     Cfg3_Magic     = (1 << 5), /* 1 = wake up on Magic Packet (tm) */
276     Cfg3_PARM_En   = (1 << 6), /* 0 = software can set twister parameters */
277     Cfg3_GNTSel    = (1 << 7), /* 1 = delay 1 clock from PCI GNT signal */
278 };
279 
280 /* Bits in Config4 */
281 enum Config4Bits {
282     LWPTN = (1 << 2),    /* not on 8139, 8139A */
283 };
284 
285 /* Bits in Config5 */
286 enum Config5Bits {
287     Cfg5_PME_STS     = (1 << 0), /* 1 = PCI reset resets PME_Status */
288     Cfg5_LANWake     = (1 << 1), /* 1 = enable LANWake signal */
289     Cfg5_LDPS        = (1 << 2), /* 0 = save power when link is down */
290     Cfg5_FIFOAddrPtr = (1 << 3), /* Realtek internal SRAM testing */
291     Cfg5_UWF         = (1 << 4), /* 1 = accept unicast wakeup frame */
292     Cfg5_MWF         = (1 << 5), /* 1 = accept multicast wakeup frame */
293     Cfg5_BWF         = (1 << 6), /* 1 = accept broadcast wakeup frame */
294 };
295 
296 enum RxConfigBits {
297     /* rx fifo threshold */
298     RxCfgFIFOShift = 13,
299     RxCfgFIFONone = (7 << RxCfgFIFOShift),
300 
301     /* Max DMA burst */
302     RxCfgDMAShift = 8,
303     RxCfgDMAUnlimited = (7 << RxCfgDMAShift),
304 
305     /* rx ring buffer length */
306     RxCfgRcv8K = 0,
307     RxCfgRcv16K = (1 << 11),
308     RxCfgRcv32K = (1 << 12),
309     RxCfgRcv64K = (1 << 11) | (1 << 12),
310 
311     /* Disable packet wrap at end of Rx buffer. (not possible with 64k) */
312     RxNoWrap = (1 << 7),
313 };
314 
315 /* Twister tuning parameters from RealTek.
316    Completely undocumented, but required to tune bad links on some boards. */
317 /*
318 enum CSCRBits {
319     CSCR_LinkOKBit = 0x0400,
320     CSCR_LinkChangeBit = 0x0800,
321     CSCR_LinkStatusBits = 0x0f000,
322     CSCR_LinkDownOffCmd = 0x003c0,
323     CSCR_LinkDownCmd = 0x0f3c0,
324 */
325 enum CSCRBits {
326     CSCR_Testfun = 1<<15, /* 1 = Auto-neg speeds up internal timer, WO, def 0 */
327     CSCR_LD  = 1<<9,  /* Active low TPI link disable signal. When low, TPI still transmits link pulses and TPI stays in good link state. def 1*/
328     CSCR_HEART_BIT = 1<<8,  /* 1 = HEART BEAT enable, 0 = HEART BEAT disable. HEART BEAT function is only valid in 10Mbps mode. def 1*/
329     CSCR_JBEN = 1<<7,  /* 1 = enable jabber function. 0 = disable jabber function, def 1*/
330     CSCR_F_LINK_100 = 1<<6, /* Used to login force good link in 100Mbps for diagnostic purposes. 1 = DISABLE, 0 = ENABLE. def 1*/
331     CSCR_F_Connect  = 1<<5,  /* Assertion of this bit forces the disconnect function to be bypassed. def 0*/
332     CSCR_Con_status = 1<<3, /* This bit indicates the status of the connection. 1 = valid connected link detected; 0 = disconnected link detected. RO def 0*/
333     CSCR_Con_status_En = 1<<2, /* Assertion of this bit configures LED1 pin to indicate connection status. def 0*/
334     CSCR_PASS_SCR = 1<<0, /* Bypass Scramble, def 0*/
335 };
336 
337 enum Cfg9346Bits {
338     Cfg9346_Normal = 0x00,
339     Cfg9346_Autoload = 0x40,
340     Cfg9346_Programming = 0x80,
341     Cfg9346_ConfigWrite = 0xC0,
342 };
343 
344 typedef enum {
345     CH_8139 = 0,
346     CH_8139_K,
347     CH_8139A,
348     CH_8139A_G,
349     CH_8139B,
350     CH_8130,
351     CH_8139C,
352     CH_8100,
353     CH_8100B_8139D,
354     CH_8101,
355 } chip_t;
356 
357 enum chip_flags {
358     HasHltClk = (1 << 0),
359     HasLWake = (1 << 1),
360 };
361 
362 #define HW_REVID(b30, b29, b28, b27, b26, b23, b22) \
363     (b30<<30 | b29<<29 | b28<<28 | b27<<27 | b26<<26 | b23<<23 | b22<<22)
364 #define HW_REVID_MASK    HW_REVID(1, 1, 1, 1, 1, 1, 1)
365 
366 #define RTL8139_PCI_REVID_8139      0x10
367 #define RTL8139_PCI_REVID_8139CPLUS 0x20
368 
369 #define RTL8139_PCI_REVID           RTL8139_PCI_REVID_8139CPLUS
370 
371 /* Size is 64 * 16bit words */
372 #define EEPROM_9346_ADDR_BITS 6
373 #define EEPROM_9346_SIZE  (1 << EEPROM_9346_ADDR_BITS)
374 #define EEPROM_9346_ADDR_MASK (EEPROM_9346_SIZE - 1)
375 
376 enum Chip9346Operation
377 {
378     Chip9346_op_mask = 0xc0,          /* 10 zzzzzz */
379     Chip9346_op_read = 0x80,          /* 10 AAAAAA */
380     Chip9346_op_write = 0x40,         /* 01 AAAAAA D(15)..D(0) */
381     Chip9346_op_ext_mask = 0xf0,      /* 11 zzzzzz */
382     Chip9346_op_write_enable = 0x30,  /* 00 11zzzz */
383     Chip9346_op_write_all = 0x10,     /* 00 01zzzz */
384     Chip9346_op_write_disable = 0x00, /* 00 00zzzz */
385 };
386 
387 enum Chip9346Mode
388 {
389     Chip9346_none = 0,
390     Chip9346_enter_command_mode,
391     Chip9346_read_command,
392     Chip9346_data_read,      /* from output register */
393     Chip9346_data_write,     /* to input register, then to contents at specified address */
394     Chip9346_data_write_all, /* to input register, then filling contents */
395 };
396 
397 typedef struct EEprom9346
398 {
399     uint16_t contents[EEPROM_9346_SIZE];
400     int      mode;
401     uint32_t tick;
402     uint8_t  address;
403     uint16_t input;
404     uint16_t output;
405 
406     uint8_t eecs;
407     uint8_t eesk;
408     uint8_t eedi;
409     uint8_t eedo;
410 } EEprom9346;
411 
412 typedef struct RTL8139TallyCounters
413 {
414     /* Tally counters */
415     uint64_t   TxOk;
416     uint64_t   RxOk;
417     uint64_t   TxERR;
418     uint32_t   RxERR;
419     uint16_t   MissPkt;
420     uint16_t   FAE;
421     uint32_t   Tx1Col;
422     uint32_t   TxMCol;
423     uint64_t   RxOkPhy;
424     uint64_t   RxOkBrd;
425     uint32_t   RxOkMul;
426     uint16_t   TxAbt;
427     uint16_t   TxUndrn;
428 } RTL8139TallyCounters;
429 
430 /* Clears all tally counters */
431 static void RTL8139TallyCounters_clear(RTL8139TallyCounters* counters);
432 
433 typedef struct RTL8139State {
434     /*< private >*/
435     PCIDevice parent_obj;
436     /*< public >*/
437 
438     uint8_t phys[8]; /* mac address */
439     uint8_t mult[8]; /* multicast mask array */
440 
441     uint32_t TxStatus[4]; /* TxStatus0 in C mode*/ /* also DTCCR[0] and DTCCR[1] in C+ mode */
442     uint32_t TxAddr[4];   /* TxAddr0 */
443     uint32_t RxBuf;       /* Receive buffer */
444     uint32_t RxBufferSize;/* internal variable, receive ring buffer size in C mode */
445     uint32_t RxBufPtr;
446     uint32_t RxBufAddr;
447 
448     uint16_t IntrStatus;
449     uint16_t IntrMask;
450 
451     uint32_t TxConfig;
452     uint32_t RxConfig;
453     uint32_t RxMissed;
454 
455     uint16_t CSCR;
456 
457     uint8_t  Cfg9346;
458     uint8_t  Config0;
459     uint8_t  Config1;
460     uint8_t  Config3;
461     uint8_t  Config4;
462     uint8_t  Config5;
463 
464     uint8_t  clock_enabled;
465     uint8_t  bChipCmdState;
466 
467     uint16_t MultiIntr;
468 
469     uint16_t BasicModeCtrl;
470     uint16_t BasicModeStatus;
471     uint16_t NWayAdvert;
472     uint16_t NWayLPAR;
473     uint16_t NWayExpansion;
474 
475     uint16_t CpCmd;
476     uint8_t  TxThresh;
477 
478     NICState *nic;
479     NICConf conf;
480 
481     /* C ring mode */
482     uint32_t   currTxDesc;
483 
484     /* C+ mode */
485     uint32_t   cplus_enabled;
486 
487     uint32_t   currCPlusRxDesc;
488     uint32_t   currCPlusTxDesc;
489 
490     uint32_t   RxRingAddrLO;
491     uint32_t   RxRingAddrHI;
492 
493     EEprom9346 eeprom;
494 
495     uint32_t   TCTR;
496     uint32_t   TimerInt;
497     int64_t    TCTR_base;
498 
499     /* Tally counters */
500     RTL8139TallyCounters tally_counters;
501 
502     /* Non-persistent data */
503     uint8_t   *cplus_txbuffer;
504     int        cplus_txbuffer_len;
505     int        cplus_txbuffer_offset;
506 
507     /* PCI interrupt timer */
508     QEMUTimer *timer;
509 
510     MemoryRegion bar_io;
511     MemoryRegion bar_mem;
512 
513     /* Support migration to/from old versions */
514     int rtl8139_mmio_io_addr_dummy;
515 } RTL8139State;
516 
517 /* Writes tally counters to memory via DMA */
518 static void RTL8139TallyCounters_dma_write(RTL8139State *s, dma_addr_t tc_addr);
519 
520 static void rtl8139_set_next_tctr_time(RTL8139State *s);
521 
522 static void prom9346_decode_command(EEprom9346 *eeprom, uint8_t command)
523 {
524     DPRINTF("eeprom command 0x%02x\n", command);
525 
526     switch (command & Chip9346_op_mask)
527     {
528         case Chip9346_op_read:
529         {
530             eeprom->address = command & EEPROM_9346_ADDR_MASK;
531             eeprom->output = eeprom->contents[eeprom->address];
532             eeprom->eedo = 0;
533             eeprom->tick = 0;
534             eeprom->mode = Chip9346_data_read;
535             DPRINTF("eeprom read from address 0x%02x data=0x%04x\n",
536                 eeprom->address, eeprom->output);
537         }
538         break;
539 
540         case Chip9346_op_write:
541         {
542             eeprom->address = command & EEPROM_9346_ADDR_MASK;
543             eeprom->input = 0;
544             eeprom->tick = 0;
545             eeprom->mode = Chip9346_none; /* Chip9346_data_write */
546             DPRINTF("eeprom begin write to address 0x%02x\n",
547                 eeprom->address);
548         }
549         break;
550         default:
551             eeprom->mode = Chip9346_none;
552             switch (command & Chip9346_op_ext_mask)
553             {
554                 case Chip9346_op_write_enable:
555                     DPRINTF("eeprom write enabled\n");
556                     break;
557                 case Chip9346_op_write_all:
558                     DPRINTF("eeprom begin write all\n");
559                     break;
560                 case Chip9346_op_write_disable:
561                     DPRINTF("eeprom write disabled\n");
562                     break;
563             }
564             break;
565     }
566 }
567 
568 static void prom9346_shift_clock(EEprom9346 *eeprom)
569 {
570     int bit = eeprom->eedi?1:0;
571 
572     ++ eeprom->tick;
573 
574     DPRINTF("eeprom: tick %d eedi=%d eedo=%d\n", eeprom->tick, eeprom->eedi,
575         eeprom->eedo);
576 
577     switch (eeprom->mode)
578     {
579         case Chip9346_enter_command_mode:
580             if (bit)
581             {
582                 eeprom->mode = Chip9346_read_command;
583                 eeprom->tick = 0;
584                 eeprom->input = 0;
585                 DPRINTF("eeprom: +++ synchronized, begin command read\n");
586             }
587             break;
588 
589         case Chip9346_read_command:
590             eeprom->input = (eeprom->input << 1) | (bit & 1);
591             if (eeprom->tick == 8)
592             {
593                 prom9346_decode_command(eeprom, eeprom->input & 0xff);
594             }
595             break;
596 
597         case Chip9346_data_read:
598             eeprom->eedo = (eeprom->output & 0x8000)?1:0;
599             eeprom->output <<= 1;
600             if (eeprom->tick == 16)
601             {
602 #if 1
603         // the FreeBSD drivers (rl and re) don't explicitly toggle
604         // CS between reads (or does setting Cfg9346 to 0 count too?),
605         // so we need to enter wait-for-command state here
606                 eeprom->mode = Chip9346_enter_command_mode;
607                 eeprom->input = 0;
608                 eeprom->tick = 0;
609 
610                 DPRINTF("eeprom: +++ end of read, awaiting next command\n");
611 #else
612         // original behaviour
613                 ++eeprom->address;
614                 eeprom->address &= EEPROM_9346_ADDR_MASK;
615                 eeprom->output = eeprom->contents[eeprom->address];
616                 eeprom->tick = 0;
617 
618                 DPRINTF("eeprom: +++ read next address 0x%02x data=0x%04x\n",
619                     eeprom->address, eeprom->output);
620 #endif
621             }
622             break;
623 
624         case Chip9346_data_write:
625             eeprom->input = (eeprom->input << 1) | (bit & 1);
626             if (eeprom->tick == 16)
627             {
628                 DPRINTF("eeprom write to address 0x%02x data=0x%04x\n",
629                     eeprom->address, eeprom->input);
630 
631                 eeprom->contents[eeprom->address] = eeprom->input;
632                 eeprom->mode = Chip9346_none; /* waiting for next command after CS cycle */
633                 eeprom->tick = 0;
634                 eeprom->input = 0;
635             }
636             break;
637 
638         case Chip9346_data_write_all:
639             eeprom->input = (eeprom->input << 1) | (bit & 1);
640             if (eeprom->tick == 16)
641             {
642                 int i;
643                 for (i = 0; i < EEPROM_9346_SIZE; i++)
644                 {
645                     eeprom->contents[i] = eeprom->input;
646                 }
647                 DPRINTF("eeprom filled with data=0x%04x\n", eeprom->input);
648 
649                 eeprom->mode = Chip9346_enter_command_mode;
650                 eeprom->tick = 0;
651                 eeprom->input = 0;
652             }
653             break;
654 
655         default:
656             break;
657     }
658 }
659 
660 static int prom9346_get_wire(RTL8139State *s)
661 {
662     EEprom9346 *eeprom = &s->eeprom;
663     if (!eeprom->eecs)
664         return 0;
665 
666     return eeprom->eedo;
667 }
668 
669 /* FIXME: This should be merged into/replaced by eeprom93xx.c.  */
670 static void prom9346_set_wire(RTL8139State *s, int eecs, int eesk, int eedi)
671 {
672     EEprom9346 *eeprom = &s->eeprom;
673     uint8_t old_eecs = eeprom->eecs;
674     uint8_t old_eesk = eeprom->eesk;
675 
676     eeprom->eecs = eecs;
677     eeprom->eesk = eesk;
678     eeprom->eedi = eedi;
679 
680     DPRINTF("eeprom: +++ wires CS=%d SK=%d DI=%d DO=%d\n", eeprom->eecs,
681         eeprom->eesk, eeprom->eedi, eeprom->eedo);
682 
683     if (!old_eecs && eecs)
684     {
685         /* Synchronize start */
686         eeprom->tick = 0;
687         eeprom->input = 0;
688         eeprom->output = 0;
689         eeprom->mode = Chip9346_enter_command_mode;
690 
691         DPRINTF("=== eeprom: begin access, enter command mode\n");
692     }
693 
694     if (!eecs)
695     {
696         DPRINTF("=== eeprom: end access\n");
697         return;
698     }
699 
700     if (!old_eesk && eesk)
701     {
702         /* SK front rules */
703         prom9346_shift_clock(eeprom);
704     }
705 }
706 
707 static void rtl8139_update_irq(RTL8139State *s)
708 {
709     PCIDevice *d = PCI_DEVICE(s);
710     int isr;
711     isr = (s->IntrStatus & s->IntrMask) & 0xffff;
712 
713     DPRINTF("Set IRQ to %d (%04x %04x)\n", isr ? 1 : 0, s->IntrStatus,
714         s->IntrMask);
715 
716     pci_set_irq(d, (isr != 0));
717 }
718 
719 static int rtl8139_RxWrap(RTL8139State *s)
720 {
721     /* wrapping enabled; assume 1.5k more buffer space if size < 65536 */
722     return (s->RxConfig & (1 << 7));
723 }
724 
725 static int rtl8139_receiver_enabled(RTL8139State *s)
726 {
727     return s->bChipCmdState & CmdRxEnb;
728 }
729 
730 static int rtl8139_transmitter_enabled(RTL8139State *s)
731 {
732     return s->bChipCmdState & CmdTxEnb;
733 }
734 
735 static int rtl8139_cp_receiver_enabled(RTL8139State *s)
736 {
737     return s->CpCmd & CPlusRxEnb;
738 }
739 
740 static int rtl8139_cp_transmitter_enabled(RTL8139State *s)
741 {
742     return s->CpCmd & CPlusTxEnb;
743 }
744 
745 static void rtl8139_write_buffer(RTL8139State *s, const void *buf, int size)
746 {
747     PCIDevice *d = PCI_DEVICE(s);
748 
749     if (s->RxBufAddr + size > s->RxBufferSize)
750     {
751         int wrapped = MOD2(s->RxBufAddr + size, s->RxBufferSize);
752 
753         /* write packet data */
754         if (wrapped && !(s->RxBufferSize < 65536 && rtl8139_RxWrap(s)))
755         {
756             DPRINTF(">>> rx packet wrapped in buffer at %d\n", size - wrapped);
757 
758             if (size > wrapped)
759             {
760                 pci_dma_write(d, s->RxBuf + s->RxBufAddr,
761                               buf, size-wrapped);
762             }
763 
764             /* reset buffer pointer */
765             s->RxBufAddr = 0;
766 
767             pci_dma_write(d, s->RxBuf + s->RxBufAddr,
768                           buf + (size-wrapped), wrapped);
769 
770             s->RxBufAddr = wrapped;
771 
772             return;
773         }
774     }
775 
776     /* non-wrapping path or overwrapping enabled */
777     pci_dma_write(d, s->RxBuf + s->RxBufAddr, buf, size);
778 
779     s->RxBufAddr += size;
780 }
781 
782 #define MIN_BUF_SIZE 60
783 static inline dma_addr_t rtl8139_addr64(uint32_t low, uint32_t high)
784 {
785     return low | ((uint64_t)high << 32);
786 }
787 
788 /* Workaround for buggy guest driver such as linux who allocates rx
789  * rings after the receiver were enabled. */
790 static bool rtl8139_cp_rx_valid(RTL8139State *s)
791 {
792     return !(s->RxRingAddrLO == 0 && s->RxRingAddrHI == 0);
793 }
794 
795 static int rtl8139_can_receive(NetClientState *nc)
796 {
797     RTL8139State *s = qemu_get_nic_opaque(nc);
798     int avail;
799 
800     /* Receive (drop) packets if card is disabled.  */
801     if (!s->clock_enabled)
802       return 1;
803     if (!rtl8139_receiver_enabled(s))
804       return 1;
805 
806     if (rtl8139_cp_receiver_enabled(s) && rtl8139_cp_rx_valid(s)) {
807         /* ??? Flow control not implemented in c+ mode.
808            This is a hack to work around slirp deficiencies anyway.  */
809         return 1;
810     } else {
811         avail = MOD2(s->RxBufferSize + s->RxBufPtr - s->RxBufAddr,
812                      s->RxBufferSize);
813         return (avail == 0 || avail >= 1514 || (s->IntrMask & RxOverflow));
814     }
815 }
816 
817 static ssize_t rtl8139_do_receive(NetClientState *nc, const uint8_t *buf, size_t size_, int do_interrupt)
818 {
819     RTL8139State *s = qemu_get_nic_opaque(nc);
820     PCIDevice *d = PCI_DEVICE(s);
821     /* size is the length of the buffer passed to the driver */
822     int size = size_;
823     const uint8_t *dot1q_buf = NULL;
824 
825     uint32_t packet_header = 0;
826 
827     uint8_t buf1[MIN_BUF_SIZE + VLAN_HLEN];
828     static const uint8_t broadcast_macaddr[6] =
829         { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
830 
831     DPRINTF(">>> received len=%d\n", size);
832 
833     /* test if board clock is stopped */
834     if (!s->clock_enabled)
835     {
836         DPRINTF("stopped ==========================\n");
837         return -1;
838     }
839 
840     /* first check if receiver is enabled */
841 
842     if (!rtl8139_receiver_enabled(s))
843     {
844         DPRINTF("receiver disabled ================\n");
845         return -1;
846     }
847 
848     /* XXX: check this */
849     if (s->RxConfig & AcceptAllPhys) {
850         /* promiscuous: receive all */
851         DPRINTF(">>> packet received in promiscuous mode\n");
852 
853     } else {
854         if (!memcmp(buf,  broadcast_macaddr, 6)) {
855             /* broadcast address */
856             if (!(s->RxConfig & AcceptBroadcast))
857             {
858                 DPRINTF(">>> broadcast packet rejected\n");
859 
860                 /* update tally counter */
861                 ++s->tally_counters.RxERR;
862 
863                 return size;
864             }
865 
866             packet_header |= RxBroadcast;
867 
868             DPRINTF(">>> broadcast packet received\n");
869 
870             /* update tally counter */
871             ++s->tally_counters.RxOkBrd;
872 
873         } else if (buf[0] & 0x01) {
874             /* multicast */
875             if (!(s->RxConfig & AcceptMulticast))
876             {
877                 DPRINTF(">>> multicast packet rejected\n");
878 
879                 /* update tally counter */
880                 ++s->tally_counters.RxERR;
881 
882                 return size;
883             }
884 
885             int mcast_idx = compute_mcast_idx(buf);
886 
887             if (!(s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))))
888             {
889                 DPRINTF(">>> multicast address mismatch\n");
890 
891                 /* update tally counter */
892                 ++s->tally_counters.RxERR;
893 
894                 return size;
895             }
896 
897             packet_header |= RxMulticast;
898 
899             DPRINTF(">>> multicast packet received\n");
900 
901             /* update tally counter */
902             ++s->tally_counters.RxOkMul;
903 
904         } else if (s->phys[0] == buf[0] &&
905                    s->phys[1] == buf[1] &&
906                    s->phys[2] == buf[2] &&
907                    s->phys[3] == buf[3] &&
908                    s->phys[4] == buf[4] &&
909                    s->phys[5] == buf[5]) {
910             /* match */
911             if (!(s->RxConfig & AcceptMyPhys))
912             {
913                 DPRINTF(">>> rejecting physical address matching packet\n");
914 
915                 /* update tally counter */
916                 ++s->tally_counters.RxERR;
917 
918                 return size;
919             }
920 
921             packet_header |= RxPhysical;
922 
923             DPRINTF(">>> physical address matching packet received\n");
924 
925             /* update tally counter */
926             ++s->tally_counters.RxOkPhy;
927 
928         } else {
929 
930             DPRINTF(">>> unknown packet\n");
931 
932             /* update tally counter */
933             ++s->tally_counters.RxERR;
934 
935             return size;
936         }
937     }
938 
939     /* if too small buffer, then expand it
940      * Include some tailroom in case a vlan tag is later removed. */
941     if (size < MIN_BUF_SIZE + VLAN_HLEN) {
942         memcpy(buf1, buf, size);
943         memset(buf1 + size, 0, MIN_BUF_SIZE + VLAN_HLEN - size);
944         buf = buf1;
945         if (size < MIN_BUF_SIZE) {
946             size = MIN_BUF_SIZE;
947         }
948     }
949 
950     if (rtl8139_cp_receiver_enabled(s))
951     {
952         if (!rtl8139_cp_rx_valid(s)) {
953             return size;
954         }
955 
956         DPRINTF("in C+ Rx mode ================\n");
957 
958         /* begin C+ receiver mode */
959 
960 /* w0 ownership flag */
961 #define CP_RX_OWN (1<<31)
962 /* w0 end of ring flag */
963 #define CP_RX_EOR (1<<30)
964 /* w0 bits 0...12 : buffer size */
965 #define CP_RX_BUFFER_SIZE_MASK ((1<<13) - 1)
966 /* w1 tag available flag */
967 #define CP_RX_TAVA (1<<16)
968 /* w1 bits 0...15 : VLAN tag */
969 #define CP_RX_VLAN_TAG_MASK ((1<<16) - 1)
970 /* w2 low  32bit of Rx buffer ptr */
971 /* w3 high 32bit of Rx buffer ptr */
972 
973         int descriptor = s->currCPlusRxDesc;
974         dma_addr_t cplus_rx_ring_desc;
975 
976         cplus_rx_ring_desc = rtl8139_addr64(s->RxRingAddrLO, s->RxRingAddrHI);
977         cplus_rx_ring_desc += 16 * descriptor;
978 
979         DPRINTF("+++ C+ mode reading RX descriptor %d from host memory at "
980             "%08x %08x = "DMA_ADDR_FMT"\n", descriptor, s->RxRingAddrHI,
981             s->RxRingAddrLO, cplus_rx_ring_desc);
982 
983         uint32_t val, rxdw0,rxdw1,rxbufLO,rxbufHI;
984 
985         pci_dma_read(d, cplus_rx_ring_desc, &val, 4);
986         rxdw0 = le32_to_cpu(val);
987         pci_dma_read(d, cplus_rx_ring_desc+4, &val, 4);
988         rxdw1 = le32_to_cpu(val);
989         pci_dma_read(d, cplus_rx_ring_desc+8, &val, 4);
990         rxbufLO = le32_to_cpu(val);
991         pci_dma_read(d, cplus_rx_ring_desc+12, &val, 4);
992         rxbufHI = le32_to_cpu(val);
993 
994         DPRINTF("+++ C+ mode RX descriptor %d %08x %08x %08x %08x\n",
995             descriptor, rxdw0, rxdw1, rxbufLO, rxbufHI);
996 
997         if (!(rxdw0 & CP_RX_OWN))
998         {
999             DPRINTF("C+ Rx mode : descriptor %d is owned by host\n",
1000                 descriptor);
1001 
1002             s->IntrStatus |= RxOverflow;
1003             ++s->RxMissed;
1004 
1005             /* update tally counter */
1006             ++s->tally_counters.RxERR;
1007             ++s->tally_counters.MissPkt;
1008 
1009             rtl8139_update_irq(s);
1010             return size_;
1011         }
1012 
1013         uint32_t rx_space = rxdw0 & CP_RX_BUFFER_SIZE_MASK;
1014 
1015         /* write VLAN info to descriptor variables. */
1016         if (s->CpCmd & CPlusRxVLAN &&
1017             lduw_be_p(&buf[ETH_ALEN * 2]) == ETH_P_VLAN) {
1018             dot1q_buf = &buf[ETH_ALEN * 2];
1019             size -= VLAN_HLEN;
1020             /* if too small buffer, use the tailroom added duing expansion */
1021             if (size < MIN_BUF_SIZE) {
1022                 size = MIN_BUF_SIZE;
1023             }
1024 
1025             rxdw1 &= ~CP_RX_VLAN_TAG_MASK;
1026             /* BE + ~le_to_cpu()~ + cpu_to_le() = BE */
1027             rxdw1 |= CP_RX_TAVA | lduw_le_p(&dot1q_buf[ETHER_TYPE_LEN]);
1028 
1029             DPRINTF("C+ Rx mode : extracted vlan tag with tci: ""%u\n",
1030                 lduw_be_p(&dot1q_buf[ETHER_TYPE_LEN]));
1031         } else {
1032             /* reset VLAN tag flag */
1033             rxdw1 &= ~CP_RX_TAVA;
1034         }
1035 
1036         /* TODO: scatter the packet over available receive ring descriptors space */
1037 
1038         if (size+4 > rx_space)
1039         {
1040             DPRINTF("C+ Rx mode : descriptor %d size %d received %d + 4\n",
1041                 descriptor, rx_space, size);
1042 
1043             s->IntrStatus |= RxOverflow;
1044             ++s->RxMissed;
1045 
1046             /* update tally counter */
1047             ++s->tally_counters.RxERR;
1048             ++s->tally_counters.MissPkt;
1049 
1050             rtl8139_update_irq(s);
1051             return size_;
1052         }
1053 
1054         dma_addr_t rx_addr = rtl8139_addr64(rxbufLO, rxbufHI);
1055 
1056         /* receive/copy to target memory */
1057         if (dot1q_buf) {
1058             pci_dma_write(d, rx_addr, buf, 2 * ETH_ALEN);
1059             pci_dma_write(d, rx_addr + 2 * ETH_ALEN,
1060                           buf + 2 * ETH_ALEN + VLAN_HLEN,
1061                           size - 2 * ETH_ALEN);
1062         } else {
1063             pci_dma_write(d, rx_addr, buf, size);
1064         }
1065 
1066         if (s->CpCmd & CPlusRxChkSum)
1067         {
1068             /* do some packet checksumming */
1069         }
1070 
1071         /* write checksum */
1072         val = cpu_to_le32(crc32(0, buf, size_));
1073         pci_dma_write(d, rx_addr+size, (uint8_t *)&val, 4);
1074 
1075 /* first segment of received packet flag */
1076 #define CP_RX_STATUS_FS (1<<29)
1077 /* last segment of received packet flag */
1078 #define CP_RX_STATUS_LS (1<<28)
1079 /* multicast packet flag */
1080 #define CP_RX_STATUS_MAR (1<<26)
1081 /* physical-matching packet flag */
1082 #define CP_RX_STATUS_PAM (1<<25)
1083 /* broadcast packet flag */
1084 #define CP_RX_STATUS_BAR (1<<24)
1085 /* runt packet flag */
1086 #define CP_RX_STATUS_RUNT (1<<19)
1087 /* crc error flag */
1088 #define CP_RX_STATUS_CRC (1<<18)
1089 /* IP checksum error flag */
1090 #define CP_RX_STATUS_IPF (1<<15)
1091 /* UDP checksum error flag */
1092 #define CP_RX_STATUS_UDPF (1<<14)
1093 /* TCP checksum error flag */
1094 #define CP_RX_STATUS_TCPF (1<<13)
1095 
1096         /* transfer ownership to target */
1097         rxdw0 &= ~CP_RX_OWN;
1098 
1099         /* set first segment bit */
1100         rxdw0 |= CP_RX_STATUS_FS;
1101 
1102         /* set last segment bit */
1103         rxdw0 |= CP_RX_STATUS_LS;
1104 
1105         /* set received packet type flags */
1106         if (packet_header & RxBroadcast)
1107             rxdw0 |= CP_RX_STATUS_BAR;
1108         if (packet_header & RxMulticast)
1109             rxdw0 |= CP_RX_STATUS_MAR;
1110         if (packet_header & RxPhysical)
1111             rxdw0 |= CP_RX_STATUS_PAM;
1112 
1113         /* set received size */
1114         rxdw0 &= ~CP_RX_BUFFER_SIZE_MASK;
1115         rxdw0 |= (size+4);
1116 
1117         /* update ring data */
1118         val = cpu_to_le32(rxdw0);
1119         pci_dma_write(d, cplus_rx_ring_desc, (uint8_t *)&val, 4);
1120         val = cpu_to_le32(rxdw1);
1121         pci_dma_write(d, cplus_rx_ring_desc+4, (uint8_t *)&val, 4);
1122 
1123         /* update tally counter */
1124         ++s->tally_counters.RxOk;
1125 
1126         /* seek to next Rx descriptor */
1127         if (rxdw0 & CP_RX_EOR)
1128         {
1129             s->currCPlusRxDesc = 0;
1130         }
1131         else
1132         {
1133             ++s->currCPlusRxDesc;
1134         }
1135 
1136         DPRINTF("done C+ Rx mode ----------------\n");
1137 
1138     }
1139     else
1140     {
1141         DPRINTF("in ring Rx mode ================\n");
1142 
1143         /* begin ring receiver mode */
1144         int avail = MOD2(s->RxBufferSize + s->RxBufPtr - s->RxBufAddr, s->RxBufferSize);
1145 
1146         /* if receiver buffer is empty then avail == 0 */
1147 
1148 #define RX_ALIGN(x) (((x) + 3) & ~0x3)
1149 
1150         if (avail != 0 && RX_ALIGN(size + 8) >= avail)
1151         {
1152             DPRINTF("rx overflow: rx buffer length %d head 0x%04x "
1153                 "read 0x%04x === available 0x%04x need 0x%04x\n",
1154                 s->RxBufferSize, s->RxBufAddr, s->RxBufPtr, avail, size + 8);
1155 
1156             s->IntrStatus |= RxOverflow;
1157             ++s->RxMissed;
1158             rtl8139_update_irq(s);
1159             return 0;
1160         }
1161 
1162         packet_header |= RxStatusOK;
1163 
1164         packet_header |= (((size+4) << 16) & 0xffff0000);
1165 
1166         /* write header */
1167         uint32_t val = cpu_to_le32(packet_header);
1168 
1169         rtl8139_write_buffer(s, (uint8_t *)&val, 4);
1170 
1171         rtl8139_write_buffer(s, buf, size);
1172 
1173         /* write checksum */
1174         val = cpu_to_le32(crc32(0, buf, size));
1175         rtl8139_write_buffer(s, (uint8_t *)&val, 4);
1176 
1177         /* correct buffer write pointer */
1178         s->RxBufAddr = MOD2(RX_ALIGN(s->RxBufAddr), s->RxBufferSize);
1179 
1180         /* now we can signal we have received something */
1181 
1182         DPRINTF("received: rx buffer length %d head 0x%04x read 0x%04x\n",
1183             s->RxBufferSize, s->RxBufAddr, s->RxBufPtr);
1184     }
1185 
1186     s->IntrStatus |= RxOK;
1187 
1188     if (do_interrupt)
1189     {
1190         rtl8139_update_irq(s);
1191     }
1192 
1193     return size_;
1194 }
1195 
1196 static ssize_t rtl8139_receive(NetClientState *nc, const uint8_t *buf, size_t size)
1197 {
1198     return rtl8139_do_receive(nc, buf, size, 1);
1199 }
1200 
1201 static void rtl8139_reset_rxring(RTL8139State *s, uint32_t bufferSize)
1202 {
1203     s->RxBufferSize = bufferSize;
1204     s->RxBufPtr  = 0;
1205     s->RxBufAddr = 0;
1206 }
1207 
1208 static void rtl8139_reset_phy(RTL8139State *s)
1209 {
1210     s->BasicModeStatus  = 0x7809;
1211     s->BasicModeStatus |= 0x0020; /* autonegotiation completed */
1212     /* preserve link state */
1213     s->BasicModeStatus |= qemu_get_queue(s->nic)->link_down ? 0 : 0x04;
1214 
1215     s->NWayAdvert    = 0x05e1; /* all modes, full duplex */
1216     s->NWayLPAR      = 0x05e1; /* all modes, full duplex */
1217     s->NWayExpansion = 0x0001; /* autonegotiation supported */
1218 
1219     s->CSCR = CSCR_F_LINK_100 | CSCR_HEART_BIT | CSCR_LD;
1220 }
1221 
1222 static void rtl8139_reset(DeviceState *d)
1223 {
1224     RTL8139State *s = RTL8139(d);
1225     int i;
1226 
1227     /* restore MAC address */
1228     memcpy(s->phys, s->conf.macaddr.a, 6);
1229     qemu_format_nic_info_str(qemu_get_queue(s->nic), s->phys);
1230 
1231     /* reset interrupt mask */
1232     s->IntrStatus = 0;
1233     s->IntrMask = 0;
1234 
1235     rtl8139_update_irq(s);
1236 
1237     /* mark all status registers as owned by host */
1238     for (i = 0; i < 4; ++i)
1239     {
1240         s->TxStatus[i] = TxHostOwns;
1241     }
1242 
1243     s->currTxDesc = 0;
1244     s->currCPlusRxDesc = 0;
1245     s->currCPlusTxDesc = 0;
1246 
1247     s->RxRingAddrLO = 0;
1248     s->RxRingAddrHI = 0;
1249 
1250     s->RxBuf = 0;
1251 
1252     rtl8139_reset_rxring(s, 8192);
1253 
1254     /* ACK the reset */
1255     s->TxConfig = 0;
1256 
1257 #if 0
1258 //    s->TxConfig |= HW_REVID(1, 0, 0, 0, 0, 0, 0); // RTL-8139  HasHltClk
1259     s->clock_enabled = 0;
1260 #else
1261     s->TxConfig |= HW_REVID(1, 1, 1, 0, 1, 1, 0); // RTL-8139C+ HasLWake
1262     s->clock_enabled = 1;
1263 #endif
1264 
1265     s->bChipCmdState = CmdReset; /* RxBufEmpty bit is calculated on read from ChipCmd */;
1266 
1267     /* set initial state data */
1268     s->Config0 = 0x0; /* No boot ROM */
1269     s->Config1 = 0xC; /* IO mapped and MEM mapped registers available */
1270     s->Config3 = 0x1; /* fast back-to-back compatible */
1271     s->Config5 = 0x0;
1272 
1273     s->CpCmd   = 0x0; /* reset C+ mode */
1274     s->cplus_enabled = 0;
1275 
1276 //    s->BasicModeCtrl = 0x3100; // 100Mbps, full duplex, autonegotiation
1277 //    s->BasicModeCtrl = 0x2100; // 100Mbps, full duplex
1278     s->BasicModeCtrl = 0x1000; // autonegotiation
1279 
1280     rtl8139_reset_phy(s);
1281 
1282     /* also reset timer and disable timer interrupt */
1283     s->TCTR = 0;
1284     s->TimerInt = 0;
1285     s->TCTR_base = 0;
1286     rtl8139_set_next_tctr_time(s);
1287 
1288     /* reset tally counters */
1289     RTL8139TallyCounters_clear(&s->tally_counters);
1290 }
1291 
1292 static void RTL8139TallyCounters_clear(RTL8139TallyCounters* counters)
1293 {
1294     counters->TxOk = 0;
1295     counters->RxOk = 0;
1296     counters->TxERR = 0;
1297     counters->RxERR = 0;
1298     counters->MissPkt = 0;
1299     counters->FAE = 0;
1300     counters->Tx1Col = 0;
1301     counters->TxMCol = 0;
1302     counters->RxOkPhy = 0;
1303     counters->RxOkBrd = 0;
1304     counters->RxOkMul = 0;
1305     counters->TxAbt = 0;
1306     counters->TxUndrn = 0;
1307 }
1308 
1309 static void RTL8139TallyCounters_dma_write(RTL8139State *s, dma_addr_t tc_addr)
1310 {
1311     PCIDevice *d = PCI_DEVICE(s);
1312     RTL8139TallyCounters *tally_counters = &s->tally_counters;
1313     uint16_t val16;
1314     uint32_t val32;
1315     uint64_t val64;
1316 
1317     val64 = cpu_to_le64(tally_counters->TxOk);
1318     pci_dma_write(d, tc_addr + 0,     (uint8_t *)&val64, 8);
1319 
1320     val64 = cpu_to_le64(tally_counters->RxOk);
1321     pci_dma_write(d, tc_addr + 8,     (uint8_t *)&val64, 8);
1322 
1323     val64 = cpu_to_le64(tally_counters->TxERR);
1324     pci_dma_write(d, tc_addr + 16,    (uint8_t *)&val64, 8);
1325 
1326     val32 = cpu_to_le32(tally_counters->RxERR);
1327     pci_dma_write(d, tc_addr + 24,    (uint8_t *)&val32, 4);
1328 
1329     val16 = cpu_to_le16(tally_counters->MissPkt);
1330     pci_dma_write(d, tc_addr + 28,    (uint8_t *)&val16, 2);
1331 
1332     val16 = cpu_to_le16(tally_counters->FAE);
1333     pci_dma_write(d, tc_addr + 30,    (uint8_t *)&val16, 2);
1334 
1335     val32 = cpu_to_le32(tally_counters->Tx1Col);
1336     pci_dma_write(d, tc_addr + 32,    (uint8_t *)&val32, 4);
1337 
1338     val32 = cpu_to_le32(tally_counters->TxMCol);
1339     pci_dma_write(d, tc_addr + 36,    (uint8_t *)&val32, 4);
1340 
1341     val64 = cpu_to_le64(tally_counters->RxOkPhy);
1342     pci_dma_write(d, tc_addr + 40,    (uint8_t *)&val64, 8);
1343 
1344     val64 = cpu_to_le64(tally_counters->RxOkBrd);
1345     pci_dma_write(d, tc_addr + 48,    (uint8_t *)&val64, 8);
1346 
1347     val32 = cpu_to_le32(tally_counters->RxOkMul);
1348     pci_dma_write(d, tc_addr + 56,    (uint8_t *)&val32, 4);
1349 
1350     val16 = cpu_to_le16(tally_counters->TxAbt);
1351     pci_dma_write(d, tc_addr + 60,    (uint8_t *)&val16, 2);
1352 
1353     val16 = cpu_to_le16(tally_counters->TxUndrn);
1354     pci_dma_write(d, tc_addr + 62,    (uint8_t *)&val16, 2);
1355 }
1356 
1357 static void rtl8139_ChipCmd_write(RTL8139State *s, uint32_t val)
1358 {
1359     DeviceState *d = DEVICE(s);
1360 
1361     val &= 0xff;
1362 
1363     DPRINTF("ChipCmd write val=0x%08x\n", val);
1364 
1365     if (val & CmdReset)
1366     {
1367         DPRINTF("ChipCmd reset\n");
1368         rtl8139_reset(d);
1369     }
1370     if (val & CmdRxEnb)
1371     {
1372         DPRINTF("ChipCmd enable receiver\n");
1373 
1374         s->currCPlusRxDesc = 0;
1375     }
1376     if (val & CmdTxEnb)
1377     {
1378         DPRINTF("ChipCmd enable transmitter\n");
1379 
1380         s->currCPlusTxDesc = 0;
1381     }
1382 
1383     /* mask unwritable bits */
1384     val = SET_MASKED(val, 0xe3, s->bChipCmdState);
1385 
1386     /* Deassert reset pin before next read */
1387     val &= ~CmdReset;
1388 
1389     s->bChipCmdState = val;
1390 }
1391 
1392 static int rtl8139_RxBufferEmpty(RTL8139State *s)
1393 {
1394     int unread = MOD2(s->RxBufferSize + s->RxBufAddr - s->RxBufPtr, s->RxBufferSize);
1395 
1396     if (unread != 0)
1397     {
1398         DPRINTF("receiver buffer data available 0x%04x\n", unread);
1399         return 0;
1400     }
1401 
1402     DPRINTF("receiver buffer is empty\n");
1403 
1404     return 1;
1405 }
1406 
1407 static uint32_t rtl8139_ChipCmd_read(RTL8139State *s)
1408 {
1409     uint32_t ret = s->bChipCmdState;
1410 
1411     if (rtl8139_RxBufferEmpty(s))
1412         ret |= RxBufEmpty;
1413 
1414     DPRINTF("ChipCmd read val=0x%04x\n", ret);
1415 
1416     return ret;
1417 }
1418 
1419 static void rtl8139_CpCmd_write(RTL8139State *s, uint32_t val)
1420 {
1421     val &= 0xffff;
1422 
1423     DPRINTF("C+ command register write(w) val=0x%04x\n", val);
1424 
1425     s->cplus_enabled = 1;
1426 
1427     /* mask unwritable bits */
1428     val = SET_MASKED(val, 0xff84, s->CpCmd);
1429 
1430     s->CpCmd = val;
1431 }
1432 
1433 static uint32_t rtl8139_CpCmd_read(RTL8139State *s)
1434 {
1435     uint32_t ret = s->CpCmd;
1436 
1437     DPRINTF("C+ command register read(w) val=0x%04x\n", ret);
1438 
1439     return ret;
1440 }
1441 
1442 static void rtl8139_IntrMitigate_write(RTL8139State *s, uint32_t val)
1443 {
1444     DPRINTF("C+ IntrMitigate register write(w) val=0x%04x\n", val);
1445 }
1446 
1447 static uint32_t rtl8139_IntrMitigate_read(RTL8139State *s)
1448 {
1449     uint32_t ret = 0;
1450 
1451     DPRINTF("C+ IntrMitigate register read(w) val=0x%04x\n", ret);
1452 
1453     return ret;
1454 }
1455 
1456 static int rtl8139_config_writable(RTL8139State *s)
1457 {
1458     if ((s->Cfg9346 & Chip9346_op_mask) == Cfg9346_ConfigWrite)
1459     {
1460         return 1;
1461     }
1462 
1463     DPRINTF("Configuration registers are write-protected\n");
1464 
1465     return 0;
1466 }
1467 
1468 static void rtl8139_BasicModeCtrl_write(RTL8139State *s, uint32_t val)
1469 {
1470     val &= 0xffff;
1471 
1472     DPRINTF("BasicModeCtrl register write(w) val=0x%04x\n", val);
1473 
1474     /* mask unwritable bits */
1475     uint32_t mask = 0xccff;
1476 
1477     if (1 || !rtl8139_config_writable(s))
1478     {
1479         /* Speed setting and autonegotiation enable bits are read-only */
1480         mask |= 0x3000;
1481         /* Duplex mode setting is read-only */
1482         mask |= 0x0100;
1483     }
1484 
1485     if (val & 0x8000) {
1486         /* Reset PHY */
1487         rtl8139_reset_phy(s);
1488     }
1489 
1490     val = SET_MASKED(val, mask, s->BasicModeCtrl);
1491 
1492     s->BasicModeCtrl = val;
1493 }
1494 
1495 static uint32_t rtl8139_BasicModeCtrl_read(RTL8139State *s)
1496 {
1497     uint32_t ret = s->BasicModeCtrl;
1498 
1499     DPRINTF("BasicModeCtrl register read(w) val=0x%04x\n", ret);
1500 
1501     return ret;
1502 }
1503 
1504 static void rtl8139_BasicModeStatus_write(RTL8139State *s, uint32_t val)
1505 {
1506     val &= 0xffff;
1507 
1508     DPRINTF("BasicModeStatus register write(w) val=0x%04x\n", val);
1509 
1510     /* mask unwritable bits */
1511     val = SET_MASKED(val, 0xff3f, s->BasicModeStatus);
1512 
1513     s->BasicModeStatus = val;
1514 }
1515 
1516 static uint32_t rtl8139_BasicModeStatus_read(RTL8139State *s)
1517 {
1518     uint32_t ret = s->BasicModeStatus;
1519 
1520     DPRINTF("BasicModeStatus register read(w) val=0x%04x\n", ret);
1521 
1522     return ret;
1523 }
1524 
1525 static void rtl8139_Cfg9346_write(RTL8139State *s, uint32_t val)
1526 {
1527     DeviceState *d = DEVICE(s);
1528 
1529     val &= 0xff;
1530 
1531     DPRINTF("Cfg9346 write val=0x%02x\n", val);
1532 
1533     /* mask unwritable bits */
1534     val = SET_MASKED(val, 0x31, s->Cfg9346);
1535 
1536     uint32_t opmode = val & 0xc0;
1537     uint32_t eeprom_val = val & 0xf;
1538 
1539     if (opmode == 0x80) {
1540         /* eeprom access */
1541         int eecs = (eeprom_val & 0x08)?1:0;
1542         int eesk = (eeprom_val & 0x04)?1:0;
1543         int eedi = (eeprom_val & 0x02)?1:0;
1544         prom9346_set_wire(s, eecs, eesk, eedi);
1545     } else if (opmode == 0x40) {
1546         /* Reset.  */
1547         val = 0;
1548         rtl8139_reset(d);
1549     }
1550 
1551     s->Cfg9346 = val;
1552 }
1553 
1554 static uint32_t rtl8139_Cfg9346_read(RTL8139State *s)
1555 {
1556     uint32_t ret = s->Cfg9346;
1557 
1558     uint32_t opmode = ret & 0xc0;
1559 
1560     if (opmode == 0x80)
1561     {
1562         /* eeprom access */
1563         int eedo = prom9346_get_wire(s);
1564         if (eedo)
1565         {
1566             ret |=  0x01;
1567         }
1568         else
1569         {
1570             ret &= ~0x01;
1571         }
1572     }
1573 
1574     DPRINTF("Cfg9346 read val=0x%02x\n", ret);
1575 
1576     return ret;
1577 }
1578 
1579 static void rtl8139_Config0_write(RTL8139State *s, uint32_t val)
1580 {
1581     val &= 0xff;
1582 
1583     DPRINTF("Config0 write val=0x%02x\n", val);
1584 
1585     if (!rtl8139_config_writable(s)) {
1586         return;
1587     }
1588 
1589     /* mask unwritable bits */
1590     val = SET_MASKED(val, 0xf8, s->Config0);
1591 
1592     s->Config0 = val;
1593 }
1594 
1595 static uint32_t rtl8139_Config0_read(RTL8139State *s)
1596 {
1597     uint32_t ret = s->Config0;
1598 
1599     DPRINTF("Config0 read val=0x%02x\n", ret);
1600 
1601     return ret;
1602 }
1603 
1604 static void rtl8139_Config1_write(RTL8139State *s, uint32_t val)
1605 {
1606     val &= 0xff;
1607 
1608     DPRINTF("Config1 write val=0x%02x\n", val);
1609 
1610     if (!rtl8139_config_writable(s)) {
1611         return;
1612     }
1613 
1614     /* mask unwritable bits */
1615     val = SET_MASKED(val, 0xC, s->Config1);
1616 
1617     s->Config1 = val;
1618 }
1619 
1620 static uint32_t rtl8139_Config1_read(RTL8139State *s)
1621 {
1622     uint32_t ret = s->Config1;
1623 
1624     DPRINTF("Config1 read val=0x%02x\n", ret);
1625 
1626     return ret;
1627 }
1628 
1629 static void rtl8139_Config3_write(RTL8139State *s, uint32_t val)
1630 {
1631     val &= 0xff;
1632 
1633     DPRINTF("Config3 write val=0x%02x\n", val);
1634 
1635     if (!rtl8139_config_writable(s)) {
1636         return;
1637     }
1638 
1639     /* mask unwritable bits */
1640     val = SET_MASKED(val, 0x8F, s->Config3);
1641 
1642     s->Config3 = val;
1643 }
1644 
1645 static uint32_t rtl8139_Config3_read(RTL8139State *s)
1646 {
1647     uint32_t ret = s->Config3;
1648 
1649     DPRINTF("Config3 read val=0x%02x\n", ret);
1650 
1651     return ret;
1652 }
1653 
1654 static void rtl8139_Config4_write(RTL8139State *s, uint32_t val)
1655 {
1656     val &= 0xff;
1657 
1658     DPRINTF("Config4 write val=0x%02x\n", val);
1659 
1660     if (!rtl8139_config_writable(s)) {
1661         return;
1662     }
1663 
1664     /* mask unwritable bits */
1665     val = SET_MASKED(val, 0x0a, s->Config4);
1666 
1667     s->Config4 = val;
1668 }
1669 
1670 static uint32_t rtl8139_Config4_read(RTL8139State *s)
1671 {
1672     uint32_t ret = s->Config4;
1673 
1674     DPRINTF("Config4 read val=0x%02x\n", ret);
1675 
1676     return ret;
1677 }
1678 
1679 static void rtl8139_Config5_write(RTL8139State *s, uint32_t val)
1680 {
1681     val &= 0xff;
1682 
1683     DPRINTF("Config5 write val=0x%02x\n", val);
1684 
1685     /* mask unwritable bits */
1686     val = SET_MASKED(val, 0x80, s->Config5);
1687 
1688     s->Config5 = val;
1689 }
1690 
1691 static uint32_t rtl8139_Config5_read(RTL8139State *s)
1692 {
1693     uint32_t ret = s->Config5;
1694 
1695     DPRINTF("Config5 read val=0x%02x\n", ret);
1696 
1697     return ret;
1698 }
1699 
1700 static void rtl8139_TxConfig_write(RTL8139State *s, uint32_t val)
1701 {
1702     if (!rtl8139_transmitter_enabled(s))
1703     {
1704         DPRINTF("transmitter disabled; no TxConfig write val=0x%08x\n", val);
1705         return;
1706     }
1707 
1708     DPRINTF("TxConfig write val=0x%08x\n", val);
1709 
1710     val = SET_MASKED(val, TxVersionMask | 0x8070f80f, s->TxConfig);
1711 
1712     s->TxConfig = val;
1713 }
1714 
1715 static void rtl8139_TxConfig_writeb(RTL8139State *s, uint32_t val)
1716 {
1717     DPRINTF("RTL8139C TxConfig via write(b) val=0x%02x\n", val);
1718 
1719     uint32_t tc = s->TxConfig;
1720     tc &= 0xFFFFFF00;
1721     tc |= (val & 0x000000FF);
1722     rtl8139_TxConfig_write(s, tc);
1723 }
1724 
1725 static uint32_t rtl8139_TxConfig_read(RTL8139State *s)
1726 {
1727     uint32_t ret = s->TxConfig;
1728 
1729     DPRINTF("TxConfig read val=0x%04x\n", ret);
1730 
1731     return ret;
1732 }
1733 
1734 static void rtl8139_RxConfig_write(RTL8139State *s, uint32_t val)
1735 {
1736     DPRINTF("RxConfig write val=0x%08x\n", val);
1737 
1738     /* mask unwritable bits */
1739     val = SET_MASKED(val, 0xf0fc0040, s->RxConfig);
1740 
1741     s->RxConfig = val;
1742 
1743     /* reset buffer size and read/write pointers */
1744     rtl8139_reset_rxring(s, 8192 << ((s->RxConfig >> 11) & 0x3));
1745 
1746     DPRINTF("RxConfig write reset buffer size to %d\n", s->RxBufferSize);
1747 }
1748 
1749 static uint32_t rtl8139_RxConfig_read(RTL8139State *s)
1750 {
1751     uint32_t ret = s->RxConfig;
1752 
1753     DPRINTF("RxConfig read val=0x%08x\n", ret);
1754 
1755     return ret;
1756 }
1757 
1758 static void rtl8139_transfer_frame(RTL8139State *s, uint8_t *buf, int size,
1759     int do_interrupt, const uint8_t *dot1q_buf)
1760 {
1761     struct iovec *iov = NULL;
1762     struct iovec vlan_iov[3];
1763 
1764     if (!size)
1765     {
1766         DPRINTF("+++ empty ethernet frame\n");
1767         return;
1768     }
1769 
1770     if (dot1q_buf && size >= ETH_ALEN * 2) {
1771         iov = (struct iovec[3]) {
1772             { .iov_base = buf, .iov_len = ETH_ALEN * 2 },
1773             { .iov_base = (void *) dot1q_buf, .iov_len = VLAN_HLEN },
1774             { .iov_base = buf + ETH_ALEN * 2,
1775                 .iov_len = size - ETH_ALEN * 2 },
1776         };
1777 
1778         memcpy(vlan_iov, iov, sizeof(vlan_iov));
1779         iov = vlan_iov;
1780     }
1781 
1782     if (TxLoopBack == (s->TxConfig & TxLoopBack))
1783     {
1784         size_t buf2_size;
1785         uint8_t *buf2;
1786 
1787         if (iov) {
1788             buf2_size = iov_size(iov, 3);
1789             buf2 = g_malloc(buf2_size);
1790             iov_to_buf(iov, 3, 0, buf2, buf2_size);
1791             buf = buf2;
1792         }
1793 
1794         DPRINTF("+++ transmit loopback mode\n");
1795         rtl8139_do_receive(qemu_get_queue(s->nic), buf, size, do_interrupt);
1796 
1797         if (iov) {
1798             g_free(buf2);
1799         }
1800     }
1801     else
1802     {
1803         if (iov) {
1804             qemu_sendv_packet(qemu_get_queue(s->nic), iov, 3);
1805         } else {
1806             qemu_send_packet(qemu_get_queue(s->nic), buf, size);
1807         }
1808     }
1809 }
1810 
1811 static int rtl8139_transmit_one(RTL8139State *s, int descriptor)
1812 {
1813     if (!rtl8139_transmitter_enabled(s))
1814     {
1815         DPRINTF("+++ cannot transmit from descriptor %d: transmitter "
1816             "disabled\n", descriptor);
1817         return 0;
1818     }
1819 
1820     if (s->TxStatus[descriptor] & TxHostOwns)
1821     {
1822         DPRINTF("+++ cannot transmit from descriptor %d: owned by host "
1823             "(%08x)\n", descriptor, s->TxStatus[descriptor]);
1824         return 0;
1825     }
1826 
1827     DPRINTF("+++ transmitting from descriptor %d\n", descriptor);
1828 
1829     PCIDevice *d = PCI_DEVICE(s);
1830     int txsize = s->TxStatus[descriptor] & 0x1fff;
1831     uint8_t txbuffer[0x2000];
1832 
1833     DPRINTF("+++ transmit reading %d bytes from host memory at 0x%08x\n",
1834         txsize, s->TxAddr[descriptor]);
1835 
1836     pci_dma_read(d, s->TxAddr[descriptor], txbuffer, txsize);
1837 
1838     /* Mark descriptor as transferred */
1839     s->TxStatus[descriptor] |= TxHostOwns;
1840     s->TxStatus[descriptor] |= TxStatOK;
1841 
1842     rtl8139_transfer_frame(s, txbuffer, txsize, 0, NULL);
1843 
1844     DPRINTF("+++ transmitted %d bytes from descriptor %d\n", txsize,
1845         descriptor);
1846 
1847     /* update interrupt */
1848     s->IntrStatus |= TxOK;
1849     rtl8139_update_irq(s);
1850 
1851     return 1;
1852 }
1853 
1854 #define TCP_HEADER_CLEAR_FLAGS(tcp, off) ((tcp)->th_offset_flags &= cpu_to_be16(~TCP_FLAGS_ONLY(off)))
1855 
1856 /* produces ones' complement sum of data */
1857 static uint16_t ones_complement_sum(uint8_t *data, size_t len)
1858 {
1859     uint32_t result = 0;
1860 
1861     for (; len > 1; data+=2, len-=2)
1862     {
1863         result += *(uint16_t*)data;
1864     }
1865 
1866     /* add the remainder byte */
1867     if (len)
1868     {
1869         uint8_t odd[2] = {*data, 0};
1870         result += *(uint16_t*)odd;
1871     }
1872 
1873     while (result>>16)
1874         result = (result & 0xffff) + (result >> 16);
1875 
1876     return result;
1877 }
1878 
1879 static uint16_t ip_checksum(void *data, size_t len)
1880 {
1881     return ~ones_complement_sum((uint8_t*)data, len);
1882 }
1883 
1884 static int rtl8139_cplus_transmit_one(RTL8139State *s)
1885 {
1886     if (!rtl8139_transmitter_enabled(s))
1887     {
1888         DPRINTF("+++ C+ mode: transmitter disabled\n");
1889         return 0;
1890     }
1891 
1892     if (!rtl8139_cp_transmitter_enabled(s))
1893     {
1894         DPRINTF("+++ C+ mode: C+ transmitter disabled\n");
1895         return 0 ;
1896     }
1897 
1898     PCIDevice *d = PCI_DEVICE(s);
1899     int descriptor = s->currCPlusTxDesc;
1900 
1901     dma_addr_t cplus_tx_ring_desc = rtl8139_addr64(s->TxAddr[0], s->TxAddr[1]);
1902 
1903     /* Normal priority ring */
1904     cplus_tx_ring_desc += 16 * descriptor;
1905 
1906     DPRINTF("+++ C+ mode reading TX descriptor %d from host memory at "
1907         "%08x %08x = 0x"DMA_ADDR_FMT"\n", descriptor, s->TxAddr[1],
1908         s->TxAddr[0], cplus_tx_ring_desc);
1909 
1910     uint32_t val, txdw0,txdw1,txbufLO,txbufHI;
1911 
1912     pci_dma_read(d, cplus_tx_ring_desc,    (uint8_t *)&val, 4);
1913     txdw0 = le32_to_cpu(val);
1914     pci_dma_read(d, cplus_tx_ring_desc+4,  (uint8_t *)&val, 4);
1915     txdw1 = le32_to_cpu(val);
1916     pci_dma_read(d, cplus_tx_ring_desc+8,  (uint8_t *)&val, 4);
1917     txbufLO = le32_to_cpu(val);
1918     pci_dma_read(d, cplus_tx_ring_desc+12, (uint8_t *)&val, 4);
1919     txbufHI = le32_to_cpu(val);
1920 
1921     DPRINTF("+++ C+ mode TX descriptor %d %08x %08x %08x %08x\n", descriptor,
1922         txdw0, txdw1, txbufLO, txbufHI);
1923 
1924 /* w0 ownership flag */
1925 #define CP_TX_OWN (1<<31)
1926 /* w0 end of ring flag */
1927 #define CP_TX_EOR (1<<30)
1928 /* first segment of received packet flag */
1929 #define CP_TX_FS (1<<29)
1930 /* last segment of received packet flag */
1931 #define CP_TX_LS (1<<28)
1932 /* large send packet flag */
1933 #define CP_TX_LGSEN (1<<27)
1934 /* large send MSS mask, bits 16...25 */
1935 #define CP_TC_LGSEN_MSS_MASK ((1 << 12) - 1)
1936 
1937 /* IP checksum offload flag */
1938 #define CP_TX_IPCS (1<<18)
1939 /* UDP checksum offload flag */
1940 #define CP_TX_UDPCS (1<<17)
1941 /* TCP checksum offload flag */
1942 #define CP_TX_TCPCS (1<<16)
1943 
1944 /* w0 bits 0...15 : buffer size */
1945 #define CP_TX_BUFFER_SIZE (1<<16)
1946 #define CP_TX_BUFFER_SIZE_MASK (CP_TX_BUFFER_SIZE - 1)
1947 /* w1 add tag flag */
1948 #define CP_TX_TAGC (1<<17)
1949 /* w1 bits 0...15 : VLAN tag (big endian) */
1950 #define CP_TX_VLAN_TAG_MASK ((1<<16) - 1)
1951 /* w2 low  32bit of Rx buffer ptr */
1952 /* w3 high 32bit of Rx buffer ptr */
1953 
1954 /* set after transmission */
1955 /* FIFO underrun flag */
1956 #define CP_TX_STATUS_UNF (1<<25)
1957 /* transmit error summary flag, valid if set any of three below */
1958 #define CP_TX_STATUS_TES (1<<23)
1959 /* out-of-window collision flag */
1960 #define CP_TX_STATUS_OWC (1<<22)
1961 /* link failure flag */
1962 #define CP_TX_STATUS_LNKF (1<<21)
1963 /* excessive collisions flag */
1964 #define CP_TX_STATUS_EXC (1<<20)
1965 
1966     if (!(txdw0 & CP_TX_OWN))
1967     {
1968         DPRINTF("C+ Tx mode : descriptor %d is owned by host\n", descriptor);
1969         return 0 ;
1970     }
1971 
1972     DPRINTF("+++ C+ Tx mode : transmitting from descriptor %d\n", descriptor);
1973 
1974     if (txdw0 & CP_TX_FS)
1975     {
1976         DPRINTF("+++ C+ Tx mode : descriptor %d is first segment "
1977             "descriptor\n", descriptor);
1978 
1979         /* reset internal buffer offset */
1980         s->cplus_txbuffer_offset = 0;
1981     }
1982 
1983     int txsize = txdw0 & CP_TX_BUFFER_SIZE_MASK;
1984     dma_addr_t tx_addr = rtl8139_addr64(txbufLO, txbufHI);
1985 
1986     /* make sure we have enough space to assemble the packet */
1987     if (!s->cplus_txbuffer)
1988     {
1989         s->cplus_txbuffer_len = CP_TX_BUFFER_SIZE;
1990         s->cplus_txbuffer = g_malloc(s->cplus_txbuffer_len);
1991         s->cplus_txbuffer_offset = 0;
1992 
1993         DPRINTF("+++ C+ mode transmission buffer allocated space %d\n",
1994             s->cplus_txbuffer_len);
1995     }
1996 
1997     if (s->cplus_txbuffer_offset + txsize >= s->cplus_txbuffer_len)
1998     {
1999         /* The spec didn't tell the maximum size, stick to CP_TX_BUFFER_SIZE */
2000         txsize = s->cplus_txbuffer_len - s->cplus_txbuffer_offset;
2001         DPRINTF("+++ C+ mode transmission buffer overrun, truncated descriptor"
2002                 "length to %d\n", txsize);
2003     }
2004 
2005     /* append more data to the packet */
2006 
2007     DPRINTF("+++ C+ mode transmit reading %d bytes from host memory at "
2008             DMA_ADDR_FMT" to offset %d\n", txsize, tx_addr,
2009             s->cplus_txbuffer_offset);
2010 
2011     pci_dma_read(d, tx_addr,
2012                  s->cplus_txbuffer + s->cplus_txbuffer_offset, txsize);
2013     s->cplus_txbuffer_offset += txsize;
2014 
2015     /* seek to next Rx descriptor */
2016     if (txdw0 & CP_TX_EOR)
2017     {
2018         s->currCPlusTxDesc = 0;
2019     }
2020     else
2021     {
2022         ++s->currCPlusTxDesc;
2023         if (s->currCPlusTxDesc >= 64)
2024             s->currCPlusTxDesc = 0;
2025     }
2026 
2027     /* transfer ownership to target */
2028     txdw0 &= ~CP_TX_OWN;
2029 
2030     /* reset error indicator bits */
2031     txdw0 &= ~CP_TX_STATUS_UNF;
2032     txdw0 &= ~CP_TX_STATUS_TES;
2033     txdw0 &= ~CP_TX_STATUS_OWC;
2034     txdw0 &= ~CP_TX_STATUS_LNKF;
2035     txdw0 &= ~CP_TX_STATUS_EXC;
2036 
2037     /* update ring data */
2038     val = cpu_to_le32(txdw0);
2039     pci_dma_write(d, cplus_tx_ring_desc, (uint8_t *)&val, 4);
2040 
2041     /* Now decide if descriptor being processed is holding the last segment of packet */
2042     if (txdw0 & CP_TX_LS)
2043     {
2044         uint8_t dot1q_buffer_space[VLAN_HLEN];
2045         uint16_t *dot1q_buffer;
2046 
2047         DPRINTF("+++ C+ Tx mode : descriptor %d is last segment descriptor\n",
2048             descriptor);
2049 
2050         /* can transfer fully assembled packet */
2051 
2052         uint8_t *saved_buffer  = s->cplus_txbuffer;
2053         int      saved_size    = s->cplus_txbuffer_offset;
2054         int      saved_buffer_len = s->cplus_txbuffer_len;
2055 
2056         /* create vlan tag */
2057         if (txdw1 & CP_TX_TAGC) {
2058             /* the vlan tag is in BE byte order in the descriptor
2059              * BE + le_to_cpu() + ~swap()~ = cpu */
2060             DPRINTF("+++ C+ Tx mode : inserting vlan tag with ""tci: %u\n",
2061                 bswap16(txdw1 & CP_TX_VLAN_TAG_MASK));
2062 
2063             dot1q_buffer = (uint16_t *) dot1q_buffer_space;
2064             dot1q_buffer[0] = cpu_to_be16(ETH_P_VLAN);
2065             /* BE + le_to_cpu() + ~cpu_to_le()~ = BE */
2066             dot1q_buffer[1] = cpu_to_le16(txdw1 & CP_TX_VLAN_TAG_MASK);
2067         } else {
2068             dot1q_buffer = NULL;
2069         }
2070 
2071         /* reset the card space to protect from recursive call */
2072         s->cplus_txbuffer = NULL;
2073         s->cplus_txbuffer_offset = 0;
2074         s->cplus_txbuffer_len = 0;
2075 
2076         if (txdw0 & (CP_TX_IPCS | CP_TX_UDPCS | CP_TX_TCPCS | CP_TX_LGSEN))
2077         {
2078             DPRINTF("+++ C+ mode offloaded task checksum\n");
2079 
2080             /* Large enough for Ethernet and IP headers? */
2081             if (saved_size < ETH_HLEN + sizeof(struct ip_header)) {
2082                 goto skip_offload;
2083             }
2084 
2085             /* ip packet header */
2086             struct ip_header *ip = NULL;
2087             int hlen = 0;
2088             uint8_t  ip_protocol = 0;
2089             uint16_t ip_data_len = 0;
2090 
2091             uint8_t *eth_payload_data = NULL;
2092             size_t   eth_payload_len  = 0;
2093 
2094             int proto = be16_to_cpu(*(uint16_t *)(saved_buffer + 12));
2095             if (proto != ETH_P_IP)
2096             {
2097                 goto skip_offload;
2098             }
2099 
2100             DPRINTF("+++ C+ mode has IP packet\n");
2101 
2102             /* Note on memory alignment: eth_payload_data is 16-bit aligned
2103              * since saved_buffer is allocated with g_malloc() and ETH_HLEN is
2104              * even.  32-bit accesses must use ldl/stl wrappers to avoid
2105              * unaligned accesses.
2106              */
2107             eth_payload_data = saved_buffer + ETH_HLEN;
2108             eth_payload_len  = saved_size   - ETH_HLEN;
2109 
2110             ip = (struct ip_header*)eth_payload_data;
2111 
2112             if (IP_HEADER_VERSION(ip) != IP_HEADER_VERSION_4) {
2113                 DPRINTF("+++ C+ mode packet has bad IP version %d "
2114                     "expected %d\n", IP_HEADER_VERSION(ip),
2115                     IP_HEADER_VERSION_4);
2116                 goto skip_offload;
2117             }
2118 
2119             hlen = IP_HDR_GET_LEN(ip);
2120             if (hlen < sizeof(struct ip_header) || hlen > eth_payload_len) {
2121                 goto skip_offload;
2122             }
2123 
2124             ip_protocol = ip->ip_p;
2125 
2126             ip_data_len = be16_to_cpu(ip->ip_len);
2127             if (ip_data_len < hlen || ip_data_len > eth_payload_len) {
2128                 goto skip_offload;
2129             }
2130             ip_data_len -= hlen;
2131 
2132             if (txdw0 & CP_TX_IPCS)
2133             {
2134                 DPRINTF("+++ C+ mode need IP checksum\n");
2135 
2136                 ip->ip_sum = 0;
2137                 ip->ip_sum = ip_checksum(ip, hlen);
2138                 DPRINTF("+++ C+ mode IP header len=%d checksum=%04x\n",
2139                     hlen, ip->ip_sum);
2140             }
2141 
2142             if ((txdw0 & CP_TX_LGSEN) && ip_protocol == IP_PROTO_TCP)
2143             {
2144                 /* Large enough for the TCP header? */
2145                 if (ip_data_len < sizeof(tcp_header)) {
2146                     goto skip_offload;
2147                 }
2148 
2149                 int large_send_mss = (txdw0 >> 16) & CP_TC_LGSEN_MSS_MASK;
2150 
2151                 DPRINTF("+++ C+ mode offloaded task TSO MTU=%d IP data %d "
2152                     "frame data %d specified MSS=%d\n", ETH_MTU,
2153                     ip_data_len, saved_size - ETH_HLEN, large_send_mss);
2154 
2155                 int tcp_send_offset = 0;
2156                 int send_count = 0;
2157 
2158                 /* maximum IP header length is 60 bytes */
2159                 uint8_t saved_ip_header[60];
2160 
2161                 /* save IP header template; data area is used in tcp checksum calculation */
2162                 memcpy(saved_ip_header, eth_payload_data, hlen);
2163 
2164                 /* a placeholder for checksum calculation routine in tcp case */
2165                 uint8_t *data_to_checksum     = eth_payload_data + hlen - 12;
2166                 //                    size_t   data_to_checksum_len = eth_payload_len  - hlen + 12;
2167 
2168                 /* pointer to TCP header */
2169                 tcp_header *p_tcp_hdr = (tcp_header*)(eth_payload_data + hlen);
2170 
2171                 int tcp_hlen = TCP_HEADER_DATA_OFFSET(p_tcp_hdr);
2172 
2173                 /* Invalid TCP data offset? */
2174                 if (tcp_hlen < sizeof(tcp_header) || tcp_hlen > ip_data_len) {
2175                     goto skip_offload;
2176                 }
2177 
2178                 /* ETH_MTU = ip header len + tcp header len + payload */
2179                 int tcp_data_len = ip_data_len - tcp_hlen;
2180                 int tcp_chunk_size = ETH_MTU - hlen - tcp_hlen;
2181 
2182                 DPRINTF("+++ C+ mode TSO IP data len %d TCP hlen %d TCP "
2183                     "data len %d TCP chunk size %d\n", ip_data_len,
2184                     tcp_hlen, tcp_data_len, tcp_chunk_size);
2185 
2186                 /* note the cycle below overwrites IP header data,
2187                    but restores it from saved_ip_header before sending packet */
2188 
2189                 int is_last_frame = 0;
2190 
2191                 for (tcp_send_offset = 0; tcp_send_offset < tcp_data_len; tcp_send_offset += tcp_chunk_size)
2192                 {
2193                     uint16_t chunk_size = tcp_chunk_size;
2194 
2195                     /* check if this is the last frame */
2196                     if (tcp_send_offset + tcp_chunk_size >= tcp_data_len)
2197                     {
2198                         is_last_frame = 1;
2199                         chunk_size = tcp_data_len - tcp_send_offset;
2200                     }
2201 
2202                     DPRINTF("+++ C+ mode TSO TCP seqno %08x\n",
2203                             ldl_be_p(&p_tcp_hdr->th_seq));
2204 
2205                     /* add 4 TCP pseudoheader fields */
2206                     /* copy IP source and destination fields */
2207                     memcpy(data_to_checksum, saved_ip_header + 12, 8);
2208 
2209                     DPRINTF("+++ C+ mode TSO calculating TCP checksum for "
2210                         "packet with %d bytes data\n", tcp_hlen +
2211                         chunk_size);
2212 
2213                     if (tcp_send_offset)
2214                     {
2215                         memcpy((uint8_t*)p_tcp_hdr + tcp_hlen, (uint8_t*)p_tcp_hdr + tcp_hlen + tcp_send_offset, chunk_size);
2216                     }
2217 
2218                     /* keep PUSH and FIN flags only for the last frame */
2219                     if (!is_last_frame)
2220                     {
2221                         TCP_HEADER_CLEAR_FLAGS(p_tcp_hdr, TH_PUSH | TH_FIN);
2222                     }
2223 
2224                     /* recalculate TCP checksum */
2225                     ip_pseudo_header *p_tcpip_hdr = (ip_pseudo_header *)data_to_checksum;
2226                     p_tcpip_hdr->zeros      = 0;
2227                     p_tcpip_hdr->ip_proto   = IP_PROTO_TCP;
2228                     p_tcpip_hdr->ip_payload = cpu_to_be16(tcp_hlen + chunk_size);
2229 
2230                     p_tcp_hdr->th_sum = 0;
2231 
2232                     int tcp_checksum = ip_checksum(data_to_checksum, tcp_hlen + chunk_size + 12);
2233                     DPRINTF("+++ C+ mode TSO TCP checksum %04x\n",
2234                         tcp_checksum);
2235 
2236                     p_tcp_hdr->th_sum = tcp_checksum;
2237 
2238                     /* restore IP header */
2239                     memcpy(eth_payload_data, saved_ip_header, hlen);
2240 
2241                     /* set IP data length and recalculate IP checksum */
2242                     ip->ip_len = cpu_to_be16(hlen + tcp_hlen + chunk_size);
2243 
2244                     /* increment IP id for subsequent frames */
2245                     ip->ip_id = cpu_to_be16(tcp_send_offset/tcp_chunk_size + be16_to_cpu(ip->ip_id));
2246 
2247                     ip->ip_sum = 0;
2248                     ip->ip_sum = ip_checksum(eth_payload_data, hlen);
2249                     DPRINTF("+++ C+ mode TSO IP header len=%d "
2250                         "checksum=%04x\n", hlen, ip->ip_sum);
2251 
2252                     int tso_send_size = ETH_HLEN + hlen + tcp_hlen + chunk_size;
2253                     DPRINTF("+++ C+ mode TSO transferring packet size "
2254                         "%d\n", tso_send_size);
2255                     rtl8139_transfer_frame(s, saved_buffer, tso_send_size,
2256                         0, (uint8_t *) dot1q_buffer);
2257 
2258                     /* add transferred count to TCP sequence number */
2259                     stl_be_p(&p_tcp_hdr->th_seq,
2260                              chunk_size + ldl_be_p(&p_tcp_hdr->th_seq));
2261                     ++send_count;
2262                 }
2263 
2264                 /* Stop sending this frame */
2265                 saved_size = 0;
2266             }
2267             else if (txdw0 & (CP_TX_TCPCS|CP_TX_UDPCS))
2268             {
2269                 DPRINTF("+++ C+ mode need TCP or UDP checksum\n");
2270 
2271                 /* maximum IP header length is 60 bytes */
2272                 uint8_t saved_ip_header[60];
2273                 memcpy(saved_ip_header, eth_payload_data, hlen);
2274 
2275                 uint8_t *data_to_checksum     = eth_payload_data + hlen - 12;
2276                 //                    size_t   data_to_checksum_len = eth_payload_len  - hlen + 12;
2277 
2278                 /* add 4 TCP pseudoheader fields */
2279                 /* copy IP source and destination fields */
2280                 memcpy(data_to_checksum, saved_ip_header + 12, 8);
2281 
2282                 if ((txdw0 & CP_TX_TCPCS) && ip_protocol == IP_PROTO_TCP)
2283                 {
2284                     DPRINTF("+++ C+ mode calculating TCP checksum for "
2285                         "packet with %d bytes data\n", ip_data_len);
2286 
2287                     ip_pseudo_header *p_tcpip_hdr = (ip_pseudo_header *)data_to_checksum;
2288                     p_tcpip_hdr->zeros      = 0;
2289                     p_tcpip_hdr->ip_proto   = IP_PROTO_TCP;
2290                     p_tcpip_hdr->ip_payload = cpu_to_be16(ip_data_len);
2291 
2292                     tcp_header* p_tcp_hdr = (tcp_header *) (data_to_checksum+12);
2293 
2294                     p_tcp_hdr->th_sum = 0;
2295 
2296                     int tcp_checksum = ip_checksum(data_to_checksum, ip_data_len + 12);
2297                     DPRINTF("+++ C+ mode TCP checksum %04x\n",
2298                         tcp_checksum);
2299 
2300                     p_tcp_hdr->th_sum = tcp_checksum;
2301                 }
2302                 else if ((txdw0 & CP_TX_UDPCS) && ip_protocol == IP_PROTO_UDP)
2303                 {
2304                     DPRINTF("+++ C+ mode calculating UDP checksum for "
2305                         "packet with %d bytes data\n", ip_data_len);
2306 
2307                     ip_pseudo_header *p_udpip_hdr = (ip_pseudo_header *)data_to_checksum;
2308                     p_udpip_hdr->zeros      = 0;
2309                     p_udpip_hdr->ip_proto   = IP_PROTO_UDP;
2310                     p_udpip_hdr->ip_payload = cpu_to_be16(ip_data_len);
2311 
2312                     udp_header *p_udp_hdr = (udp_header *) (data_to_checksum+12);
2313 
2314                     p_udp_hdr->uh_sum = 0;
2315 
2316                     int udp_checksum = ip_checksum(data_to_checksum, ip_data_len + 12);
2317                     DPRINTF("+++ C+ mode UDP checksum %04x\n",
2318                         udp_checksum);
2319 
2320                     p_udp_hdr->uh_sum = udp_checksum;
2321                 }
2322 
2323                 /* restore IP header */
2324                 memcpy(eth_payload_data, saved_ip_header, hlen);
2325             }
2326         }
2327 
2328 skip_offload:
2329         /* update tally counter */
2330         ++s->tally_counters.TxOk;
2331 
2332         DPRINTF("+++ C+ mode transmitting %d bytes packet\n", saved_size);
2333 
2334         rtl8139_transfer_frame(s, saved_buffer, saved_size, 1,
2335             (uint8_t *) dot1q_buffer);
2336 
2337         /* restore card space if there was no recursion and reset offset */
2338         if (!s->cplus_txbuffer)
2339         {
2340             s->cplus_txbuffer        = saved_buffer;
2341             s->cplus_txbuffer_len    = saved_buffer_len;
2342             s->cplus_txbuffer_offset = 0;
2343         }
2344         else
2345         {
2346             g_free(saved_buffer);
2347         }
2348     }
2349     else
2350     {
2351         DPRINTF("+++ C+ mode transmission continue to next descriptor\n");
2352     }
2353 
2354     return 1;
2355 }
2356 
2357 static void rtl8139_cplus_transmit(RTL8139State *s)
2358 {
2359     int txcount = 0;
2360 
2361     while (txcount < 64 && rtl8139_cplus_transmit_one(s))
2362     {
2363         ++txcount;
2364     }
2365 
2366     /* Mark transfer completed */
2367     if (!txcount)
2368     {
2369         DPRINTF("C+ mode : transmitter queue stalled, current TxDesc = %d\n",
2370             s->currCPlusTxDesc);
2371     }
2372     else
2373     {
2374         /* update interrupt status */
2375         s->IntrStatus |= TxOK;
2376         rtl8139_update_irq(s);
2377     }
2378 }
2379 
2380 static void rtl8139_transmit(RTL8139State *s)
2381 {
2382     int descriptor = s->currTxDesc, txcount = 0;
2383 
2384     /*while*/
2385     if (rtl8139_transmit_one(s, descriptor))
2386     {
2387         ++s->currTxDesc;
2388         s->currTxDesc %= 4;
2389         ++txcount;
2390     }
2391 
2392     /* Mark transfer completed */
2393     if (!txcount)
2394     {
2395         DPRINTF("transmitter queue stalled, current TxDesc = %d\n",
2396             s->currTxDesc);
2397     }
2398 }
2399 
2400 static void rtl8139_TxStatus_write(RTL8139State *s, uint32_t txRegOffset, uint32_t val)
2401 {
2402 
2403     int descriptor = txRegOffset/4;
2404 
2405     /* handle C+ transmit mode register configuration */
2406 
2407     if (s->cplus_enabled)
2408     {
2409         DPRINTF("RTL8139C+ DTCCR write offset=0x%x val=0x%08x "
2410             "descriptor=%d\n", txRegOffset, val, descriptor);
2411 
2412         /* handle Dump Tally Counters command */
2413         s->TxStatus[descriptor] = val;
2414 
2415         if (descriptor == 0 && (val & 0x8))
2416         {
2417             hwaddr tc_addr = rtl8139_addr64(s->TxStatus[0] & ~0x3f, s->TxStatus[1]);
2418 
2419             /* dump tally counters to specified memory location */
2420             RTL8139TallyCounters_dma_write(s, tc_addr);
2421 
2422             /* mark dump completed */
2423             s->TxStatus[0] &= ~0x8;
2424         }
2425 
2426         return;
2427     }
2428 
2429     DPRINTF("TxStatus write offset=0x%x val=0x%08x descriptor=%d\n",
2430         txRegOffset, val, descriptor);
2431 
2432     /* mask only reserved bits */
2433     val &= ~0xff00c000; /* these bits are reset on write */
2434     val = SET_MASKED(val, 0x00c00000, s->TxStatus[descriptor]);
2435 
2436     s->TxStatus[descriptor] = val;
2437 
2438     /* attempt to start transmission */
2439     rtl8139_transmit(s);
2440 }
2441 
2442 static uint32_t rtl8139_TxStatus_TxAddr_read(RTL8139State *s, uint32_t regs[],
2443                                              uint32_t base, uint8_t addr,
2444                                              int size)
2445 {
2446     uint32_t reg = (addr - base) / 4;
2447     uint32_t offset = addr & 0x3;
2448     uint32_t ret = 0;
2449 
2450     if (addr & (size - 1)) {
2451         DPRINTF("not implemented read for TxStatus/TxAddr "
2452                 "addr=0x%x size=0x%x\n", addr, size);
2453         return ret;
2454     }
2455 
2456     switch (size) {
2457     case 1: /* fall through */
2458     case 2: /* fall through */
2459     case 4:
2460         ret = (regs[reg] >> offset * 8) & (((uint64_t)1 << (size * 8)) - 1);
2461         DPRINTF("TxStatus/TxAddr[%d] read addr=0x%x size=0x%x val=0x%08x\n",
2462                 reg, addr, size, ret);
2463         break;
2464     default:
2465         DPRINTF("unsupported size 0x%x of TxStatus/TxAddr reading\n", size);
2466         break;
2467     }
2468 
2469     return ret;
2470 }
2471 
2472 static uint16_t rtl8139_TSAD_read(RTL8139State *s)
2473 {
2474     uint16_t ret = 0;
2475 
2476     /* Simulate TSAD, it is read only anyway */
2477 
2478     ret = ((s->TxStatus[3] & TxStatOK  )?TSAD_TOK3:0)
2479          |((s->TxStatus[2] & TxStatOK  )?TSAD_TOK2:0)
2480          |((s->TxStatus[1] & TxStatOK  )?TSAD_TOK1:0)
2481          |((s->TxStatus[0] & TxStatOK  )?TSAD_TOK0:0)
2482 
2483          |((s->TxStatus[3] & TxUnderrun)?TSAD_TUN3:0)
2484          |((s->TxStatus[2] & TxUnderrun)?TSAD_TUN2:0)
2485          |((s->TxStatus[1] & TxUnderrun)?TSAD_TUN1:0)
2486          |((s->TxStatus[0] & TxUnderrun)?TSAD_TUN0:0)
2487 
2488          |((s->TxStatus[3] & TxAborted )?TSAD_TABT3:0)
2489          |((s->TxStatus[2] & TxAborted )?TSAD_TABT2:0)
2490          |((s->TxStatus[1] & TxAborted )?TSAD_TABT1:0)
2491          |((s->TxStatus[0] & TxAborted )?TSAD_TABT0:0)
2492 
2493          |((s->TxStatus[3] & TxHostOwns )?TSAD_OWN3:0)
2494          |((s->TxStatus[2] & TxHostOwns )?TSAD_OWN2:0)
2495          |((s->TxStatus[1] & TxHostOwns )?TSAD_OWN1:0)
2496          |((s->TxStatus[0] & TxHostOwns )?TSAD_OWN0:0) ;
2497 
2498 
2499     DPRINTF("TSAD read val=0x%04x\n", ret);
2500 
2501     return ret;
2502 }
2503 
2504 static uint16_t rtl8139_CSCR_read(RTL8139State *s)
2505 {
2506     uint16_t ret = s->CSCR;
2507 
2508     DPRINTF("CSCR read val=0x%04x\n", ret);
2509 
2510     return ret;
2511 }
2512 
2513 static void rtl8139_TxAddr_write(RTL8139State *s, uint32_t txAddrOffset, uint32_t val)
2514 {
2515     DPRINTF("TxAddr write offset=0x%x val=0x%08x\n", txAddrOffset, val);
2516 
2517     s->TxAddr[txAddrOffset/4] = val;
2518 }
2519 
2520 static uint32_t rtl8139_TxAddr_read(RTL8139State *s, uint32_t txAddrOffset)
2521 {
2522     uint32_t ret = s->TxAddr[txAddrOffset/4];
2523 
2524     DPRINTF("TxAddr read offset=0x%x val=0x%08x\n", txAddrOffset, ret);
2525 
2526     return ret;
2527 }
2528 
2529 static void rtl8139_RxBufPtr_write(RTL8139State *s, uint32_t val)
2530 {
2531     DPRINTF("RxBufPtr write val=0x%04x\n", val);
2532 
2533     /* this value is off by 16 */
2534     s->RxBufPtr = MOD2(val + 0x10, s->RxBufferSize);
2535 
2536     /* more buffer space may be available so try to receive */
2537     qemu_flush_queued_packets(qemu_get_queue(s->nic));
2538 
2539     DPRINTF(" CAPR write: rx buffer length %d head 0x%04x read 0x%04x\n",
2540         s->RxBufferSize, s->RxBufAddr, s->RxBufPtr);
2541 }
2542 
2543 static uint32_t rtl8139_RxBufPtr_read(RTL8139State *s)
2544 {
2545     /* this value is off by 16 */
2546     uint32_t ret = s->RxBufPtr - 0x10;
2547 
2548     DPRINTF("RxBufPtr read val=0x%04x\n", ret);
2549 
2550     return ret;
2551 }
2552 
2553 static uint32_t rtl8139_RxBufAddr_read(RTL8139State *s)
2554 {
2555     /* this value is NOT off by 16 */
2556     uint32_t ret = s->RxBufAddr;
2557 
2558     DPRINTF("RxBufAddr read val=0x%04x\n", ret);
2559 
2560     return ret;
2561 }
2562 
2563 static void rtl8139_RxBuf_write(RTL8139State *s, uint32_t val)
2564 {
2565     DPRINTF("RxBuf write val=0x%08x\n", val);
2566 
2567     s->RxBuf = val;
2568 
2569     /* may need to reset rxring here */
2570 }
2571 
2572 static uint32_t rtl8139_RxBuf_read(RTL8139State *s)
2573 {
2574     uint32_t ret = s->RxBuf;
2575 
2576     DPRINTF("RxBuf read val=0x%08x\n", ret);
2577 
2578     return ret;
2579 }
2580 
2581 static void rtl8139_IntrMask_write(RTL8139State *s, uint32_t val)
2582 {
2583     DPRINTF("IntrMask write(w) val=0x%04x\n", val);
2584 
2585     /* mask unwritable bits */
2586     val = SET_MASKED(val, 0x1e00, s->IntrMask);
2587 
2588     s->IntrMask = val;
2589 
2590     rtl8139_update_irq(s);
2591 
2592 }
2593 
2594 static uint32_t rtl8139_IntrMask_read(RTL8139State *s)
2595 {
2596     uint32_t ret = s->IntrMask;
2597 
2598     DPRINTF("IntrMask read(w) val=0x%04x\n", ret);
2599 
2600     return ret;
2601 }
2602 
2603 static void rtl8139_IntrStatus_write(RTL8139State *s, uint32_t val)
2604 {
2605     DPRINTF("IntrStatus write(w) val=0x%04x\n", val);
2606 
2607 #if 0
2608 
2609     /* writing to ISR has no effect */
2610 
2611     return;
2612 
2613 #else
2614     uint16_t newStatus = s->IntrStatus & ~val;
2615 
2616     /* mask unwritable bits */
2617     newStatus = SET_MASKED(newStatus, 0x1e00, s->IntrStatus);
2618 
2619     /* writing 1 to interrupt status register bit clears it */
2620     s->IntrStatus = 0;
2621     rtl8139_update_irq(s);
2622 
2623     s->IntrStatus = newStatus;
2624     rtl8139_set_next_tctr_time(s);
2625     rtl8139_update_irq(s);
2626 
2627 #endif
2628 }
2629 
2630 static uint32_t rtl8139_IntrStatus_read(RTL8139State *s)
2631 {
2632     uint32_t ret = s->IntrStatus;
2633 
2634     DPRINTF("IntrStatus read(w) val=0x%04x\n", ret);
2635 
2636 #if 0
2637 
2638     /* reading ISR clears all interrupts */
2639     s->IntrStatus = 0;
2640 
2641     rtl8139_update_irq(s);
2642 
2643 #endif
2644 
2645     return ret;
2646 }
2647 
2648 static void rtl8139_MultiIntr_write(RTL8139State *s, uint32_t val)
2649 {
2650     DPRINTF("MultiIntr write(w) val=0x%04x\n", val);
2651 
2652     /* mask unwritable bits */
2653     val = SET_MASKED(val, 0xf000, s->MultiIntr);
2654 
2655     s->MultiIntr = val;
2656 }
2657 
2658 static uint32_t rtl8139_MultiIntr_read(RTL8139State *s)
2659 {
2660     uint32_t ret = s->MultiIntr;
2661 
2662     DPRINTF("MultiIntr read(w) val=0x%04x\n", ret);
2663 
2664     return ret;
2665 }
2666 
2667 static void rtl8139_io_writeb(void *opaque, uint8_t addr, uint32_t val)
2668 {
2669     RTL8139State *s = opaque;
2670 
2671     switch (addr)
2672     {
2673         case MAC0 ... MAC0+4:
2674             s->phys[addr - MAC0] = val;
2675             break;
2676         case MAC0+5:
2677             s->phys[addr - MAC0] = val;
2678             qemu_format_nic_info_str(qemu_get_queue(s->nic), s->phys);
2679             break;
2680         case MAC0+6 ... MAC0+7:
2681             /* reserved */
2682             break;
2683         case MAR0 ... MAR0+7:
2684             s->mult[addr - MAR0] = val;
2685             break;
2686         case ChipCmd:
2687             rtl8139_ChipCmd_write(s, val);
2688             break;
2689         case Cfg9346:
2690             rtl8139_Cfg9346_write(s, val);
2691             break;
2692         case TxConfig: /* windows driver sometimes writes using byte-lenth call */
2693             rtl8139_TxConfig_writeb(s, val);
2694             break;
2695         case Config0:
2696             rtl8139_Config0_write(s, val);
2697             break;
2698         case Config1:
2699             rtl8139_Config1_write(s, val);
2700             break;
2701         case Config3:
2702             rtl8139_Config3_write(s, val);
2703             break;
2704         case Config4:
2705             rtl8139_Config4_write(s, val);
2706             break;
2707         case Config5:
2708             rtl8139_Config5_write(s, val);
2709             break;
2710         case MediaStatus:
2711             /* ignore */
2712             DPRINTF("not implemented write(b) to MediaStatus val=0x%02x\n",
2713                 val);
2714             break;
2715 
2716         case HltClk:
2717             DPRINTF("HltClk write val=0x%08x\n", val);
2718             if (val == 'R')
2719             {
2720                 s->clock_enabled = 1;
2721             }
2722             else if (val == 'H')
2723             {
2724                 s->clock_enabled = 0;
2725             }
2726             break;
2727 
2728         case TxThresh:
2729             DPRINTF("C+ TxThresh write(b) val=0x%02x\n", val);
2730             s->TxThresh = val;
2731             break;
2732 
2733         case TxPoll:
2734             DPRINTF("C+ TxPoll write(b) val=0x%02x\n", val);
2735             if (val & (1 << 7))
2736             {
2737                 DPRINTF("C+ TxPoll high priority transmission (not "
2738                     "implemented)\n");
2739                 //rtl8139_cplus_transmit(s);
2740             }
2741             if (val & (1 << 6))
2742             {
2743                 DPRINTF("C+ TxPoll normal priority transmission\n");
2744                 rtl8139_cplus_transmit(s);
2745             }
2746 
2747             break;
2748 
2749         default:
2750             DPRINTF("not implemented write(b) addr=0x%x val=0x%02x\n", addr,
2751                 val);
2752             break;
2753     }
2754 }
2755 
2756 static void rtl8139_io_writew(void *opaque, uint8_t addr, uint32_t val)
2757 {
2758     RTL8139State *s = opaque;
2759 
2760     switch (addr)
2761     {
2762         case IntrMask:
2763             rtl8139_IntrMask_write(s, val);
2764             break;
2765 
2766         case IntrStatus:
2767             rtl8139_IntrStatus_write(s, val);
2768             break;
2769 
2770         case MultiIntr:
2771             rtl8139_MultiIntr_write(s, val);
2772             break;
2773 
2774         case RxBufPtr:
2775             rtl8139_RxBufPtr_write(s, val);
2776             break;
2777 
2778         case BasicModeCtrl:
2779             rtl8139_BasicModeCtrl_write(s, val);
2780             break;
2781         case BasicModeStatus:
2782             rtl8139_BasicModeStatus_write(s, val);
2783             break;
2784         case NWayAdvert:
2785             DPRINTF("NWayAdvert write(w) val=0x%04x\n", val);
2786             s->NWayAdvert = val;
2787             break;
2788         case NWayLPAR:
2789             DPRINTF("forbidden NWayLPAR write(w) val=0x%04x\n", val);
2790             break;
2791         case NWayExpansion:
2792             DPRINTF("NWayExpansion write(w) val=0x%04x\n", val);
2793             s->NWayExpansion = val;
2794             break;
2795 
2796         case CpCmd:
2797             rtl8139_CpCmd_write(s, val);
2798             break;
2799 
2800         case IntrMitigate:
2801             rtl8139_IntrMitigate_write(s, val);
2802             break;
2803 
2804         default:
2805             DPRINTF("ioport write(w) addr=0x%x val=0x%04x via write(b)\n",
2806                 addr, val);
2807 
2808             rtl8139_io_writeb(opaque, addr, val & 0xff);
2809             rtl8139_io_writeb(opaque, addr + 1, (val >> 8) & 0xff);
2810             break;
2811     }
2812 }
2813 
2814 static void rtl8139_set_next_tctr_time(RTL8139State *s)
2815 {
2816     const uint64_t ns_per_period = (uint64_t)PCI_PERIOD << 32;
2817 
2818     DPRINTF("entered rtl8139_set_next_tctr_time\n");
2819 
2820     /* This function is called at least once per period, so it is a good
2821      * place to update the timer base.
2822      *
2823      * After one iteration of this loop the value in the Timer register does
2824      * not change, but the device model is counting up by 2^32 ticks (approx.
2825      * 130 seconds).
2826      */
2827     while (s->TCTR_base + ns_per_period <= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)) {
2828         s->TCTR_base += ns_per_period;
2829     }
2830 
2831     if (!s->TimerInt) {
2832         timer_del(s->timer);
2833     } else {
2834         uint64_t delta = (uint64_t)s->TimerInt * PCI_PERIOD;
2835         if (s->TCTR_base + delta <= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)) {
2836             delta += ns_per_period;
2837         }
2838         timer_mod(s->timer, s->TCTR_base + delta);
2839     }
2840 }
2841 
2842 static void rtl8139_io_writel(void *opaque, uint8_t addr, uint32_t val)
2843 {
2844     RTL8139State *s = opaque;
2845 
2846     switch (addr)
2847     {
2848         case RxMissed:
2849             DPRINTF("RxMissed clearing on write\n");
2850             s->RxMissed = 0;
2851             break;
2852 
2853         case TxConfig:
2854             rtl8139_TxConfig_write(s, val);
2855             break;
2856 
2857         case RxConfig:
2858             rtl8139_RxConfig_write(s, val);
2859             break;
2860 
2861         case TxStatus0 ... TxStatus0+4*4-1:
2862             rtl8139_TxStatus_write(s, addr-TxStatus0, val);
2863             break;
2864 
2865         case TxAddr0 ... TxAddr0+4*4-1:
2866             rtl8139_TxAddr_write(s, addr-TxAddr0, val);
2867             break;
2868 
2869         case RxBuf:
2870             rtl8139_RxBuf_write(s, val);
2871             break;
2872 
2873         case RxRingAddrLO:
2874             DPRINTF("C+ RxRing low bits write val=0x%08x\n", val);
2875             s->RxRingAddrLO = val;
2876             break;
2877 
2878         case RxRingAddrHI:
2879             DPRINTF("C+ RxRing high bits write val=0x%08x\n", val);
2880             s->RxRingAddrHI = val;
2881             break;
2882 
2883         case Timer:
2884             DPRINTF("TCTR Timer reset on write\n");
2885             s->TCTR_base = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
2886             rtl8139_set_next_tctr_time(s);
2887             break;
2888 
2889         case FlashReg:
2890             DPRINTF("FlashReg TimerInt write val=0x%08x\n", val);
2891             if (s->TimerInt != val) {
2892                 s->TimerInt = val;
2893                 rtl8139_set_next_tctr_time(s);
2894             }
2895             break;
2896 
2897         default:
2898             DPRINTF("ioport write(l) addr=0x%x val=0x%08x via write(b)\n",
2899                 addr, val);
2900             rtl8139_io_writeb(opaque, addr, val & 0xff);
2901             rtl8139_io_writeb(opaque, addr + 1, (val >> 8) & 0xff);
2902             rtl8139_io_writeb(opaque, addr + 2, (val >> 16) & 0xff);
2903             rtl8139_io_writeb(opaque, addr + 3, (val >> 24) & 0xff);
2904             break;
2905     }
2906 }
2907 
2908 static uint32_t rtl8139_io_readb(void *opaque, uint8_t addr)
2909 {
2910     RTL8139State *s = opaque;
2911     int ret;
2912 
2913     switch (addr)
2914     {
2915         case MAC0 ... MAC0+5:
2916             ret = s->phys[addr - MAC0];
2917             break;
2918         case MAC0+6 ... MAC0+7:
2919             ret = 0;
2920             break;
2921         case MAR0 ... MAR0+7:
2922             ret = s->mult[addr - MAR0];
2923             break;
2924         case TxStatus0 ... TxStatus0+4*4-1:
2925             ret = rtl8139_TxStatus_TxAddr_read(s, s->TxStatus, TxStatus0,
2926                                                addr, 1);
2927             break;
2928         case ChipCmd:
2929             ret = rtl8139_ChipCmd_read(s);
2930             break;
2931         case Cfg9346:
2932             ret = rtl8139_Cfg9346_read(s);
2933             break;
2934         case Config0:
2935             ret = rtl8139_Config0_read(s);
2936             break;
2937         case Config1:
2938             ret = rtl8139_Config1_read(s);
2939             break;
2940         case Config3:
2941             ret = rtl8139_Config3_read(s);
2942             break;
2943         case Config4:
2944             ret = rtl8139_Config4_read(s);
2945             break;
2946         case Config5:
2947             ret = rtl8139_Config5_read(s);
2948             break;
2949 
2950         case MediaStatus:
2951             /* The LinkDown bit of MediaStatus is inverse with link status */
2952             ret = 0xd0 | (~s->BasicModeStatus & 0x04);
2953             DPRINTF("MediaStatus read 0x%x\n", ret);
2954             break;
2955 
2956         case HltClk:
2957             ret = s->clock_enabled;
2958             DPRINTF("HltClk read 0x%x\n", ret);
2959             break;
2960 
2961         case PCIRevisionID:
2962             ret = RTL8139_PCI_REVID;
2963             DPRINTF("PCI Revision ID read 0x%x\n", ret);
2964             break;
2965 
2966         case TxThresh:
2967             ret = s->TxThresh;
2968             DPRINTF("C+ TxThresh read(b) val=0x%02x\n", ret);
2969             break;
2970 
2971         case 0x43: /* Part of TxConfig register. Windows driver tries to read it */
2972             ret = s->TxConfig >> 24;
2973             DPRINTF("RTL8139C TxConfig at 0x43 read(b) val=0x%02x\n", ret);
2974             break;
2975 
2976         default:
2977             DPRINTF("not implemented read(b) addr=0x%x\n", addr);
2978             ret = 0;
2979             break;
2980     }
2981 
2982     return ret;
2983 }
2984 
2985 static uint32_t rtl8139_io_readw(void *opaque, uint8_t addr)
2986 {
2987     RTL8139State *s = opaque;
2988     uint32_t ret;
2989 
2990     switch (addr)
2991     {
2992         case TxAddr0 ... TxAddr0+4*4-1:
2993             ret = rtl8139_TxStatus_TxAddr_read(s, s->TxAddr, TxAddr0, addr, 2);
2994             break;
2995         case IntrMask:
2996             ret = rtl8139_IntrMask_read(s);
2997             break;
2998 
2999         case IntrStatus:
3000             ret = rtl8139_IntrStatus_read(s);
3001             break;
3002 
3003         case MultiIntr:
3004             ret = rtl8139_MultiIntr_read(s);
3005             break;
3006 
3007         case RxBufPtr:
3008             ret = rtl8139_RxBufPtr_read(s);
3009             break;
3010 
3011         case RxBufAddr:
3012             ret = rtl8139_RxBufAddr_read(s);
3013             break;
3014 
3015         case BasicModeCtrl:
3016             ret = rtl8139_BasicModeCtrl_read(s);
3017             break;
3018         case BasicModeStatus:
3019             ret = rtl8139_BasicModeStatus_read(s);
3020             break;
3021         case NWayAdvert:
3022             ret = s->NWayAdvert;
3023             DPRINTF("NWayAdvert read(w) val=0x%04x\n", ret);
3024             break;
3025         case NWayLPAR:
3026             ret = s->NWayLPAR;
3027             DPRINTF("NWayLPAR read(w) val=0x%04x\n", ret);
3028             break;
3029         case NWayExpansion:
3030             ret = s->NWayExpansion;
3031             DPRINTF("NWayExpansion read(w) val=0x%04x\n", ret);
3032             break;
3033 
3034         case CpCmd:
3035             ret = rtl8139_CpCmd_read(s);
3036             break;
3037 
3038         case IntrMitigate:
3039             ret = rtl8139_IntrMitigate_read(s);
3040             break;
3041 
3042         case TxSummary:
3043             ret = rtl8139_TSAD_read(s);
3044             break;
3045 
3046         case CSCR:
3047             ret = rtl8139_CSCR_read(s);
3048             break;
3049 
3050         default:
3051             DPRINTF("ioport read(w) addr=0x%x via read(b)\n", addr);
3052 
3053             ret  = rtl8139_io_readb(opaque, addr);
3054             ret |= rtl8139_io_readb(opaque, addr + 1) << 8;
3055 
3056             DPRINTF("ioport read(w) addr=0x%x val=0x%04x\n", addr, ret);
3057             break;
3058     }
3059 
3060     return ret;
3061 }
3062 
3063 static uint32_t rtl8139_io_readl(void *opaque, uint8_t addr)
3064 {
3065     RTL8139State *s = opaque;
3066     uint32_t ret;
3067 
3068     switch (addr)
3069     {
3070         case RxMissed:
3071             ret = s->RxMissed;
3072 
3073             DPRINTF("RxMissed read val=0x%08x\n", ret);
3074             break;
3075 
3076         case TxConfig:
3077             ret = rtl8139_TxConfig_read(s);
3078             break;
3079 
3080         case RxConfig:
3081             ret = rtl8139_RxConfig_read(s);
3082             break;
3083 
3084         case TxStatus0 ... TxStatus0+4*4-1:
3085             ret = rtl8139_TxStatus_TxAddr_read(s, s->TxStatus, TxStatus0,
3086                                                addr, 4);
3087             break;
3088 
3089         case TxAddr0 ... TxAddr0+4*4-1:
3090             ret = rtl8139_TxAddr_read(s, addr-TxAddr0);
3091             break;
3092 
3093         case RxBuf:
3094             ret = rtl8139_RxBuf_read(s);
3095             break;
3096 
3097         case RxRingAddrLO:
3098             ret = s->RxRingAddrLO;
3099             DPRINTF("C+ RxRing low bits read val=0x%08x\n", ret);
3100             break;
3101 
3102         case RxRingAddrHI:
3103             ret = s->RxRingAddrHI;
3104             DPRINTF("C+ RxRing high bits read val=0x%08x\n", ret);
3105             break;
3106 
3107         case Timer:
3108             ret = (qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - s->TCTR_base) /
3109                   PCI_PERIOD;
3110             DPRINTF("TCTR Timer read val=0x%08x\n", ret);
3111             break;
3112 
3113         case FlashReg:
3114             ret = s->TimerInt;
3115             DPRINTF("FlashReg TimerInt read val=0x%08x\n", ret);
3116             break;
3117 
3118         default:
3119             DPRINTF("ioport read(l) addr=0x%x via read(b)\n", addr);
3120 
3121             ret  = rtl8139_io_readb(opaque, addr);
3122             ret |= rtl8139_io_readb(opaque, addr + 1) << 8;
3123             ret |= rtl8139_io_readb(opaque, addr + 2) << 16;
3124             ret |= rtl8139_io_readb(opaque, addr + 3) << 24;
3125 
3126             DPRINTF("read(l) addr=0x%x val=%08x\n", addr, ret);
3127             break;
3128     }
3129 
3130     return ret;
3131 }
3132 
3133 /* */
3134 
3135 static int rtl8139_post_load(void *opaque, int version_id)
3136 {
3137     RTL8139State* s = opaque;
3138     rtl8139_set_next_tctr_time(s);
3139     if (version_id < 4) {
3140         s->cplus_enabled = s->CpCmd != 0;
3141     }
3142 
3143     /* nc.link_down can't be migrated, so infer link_down according
3144      * to link status bit in BasicModeStatus */
3145     qemu_get_queue(s->nic)->link_down = (s->BasicModeStatus & 0x04) == 0;
3146 
3147     return 0;
3148 }
3149 
3150 static bool rtl8139_hotplug_ready_needed(void *opaque)
3151 {
3152     return qdev_machine_modified();
3153 }
3154 
3155 static const VMStateDescription vmstate_rtl8139_hotplug_ready ={
3156     .name = "rtl8139/hotplug_ready",
3157     .version_id = 1,
3158     .minimum_version_id = 1,
3159     .needed = rtl8139_hotplug_ready_needed,
3160     .fields = (VMStateField[]) {
3161         VMSTATE_END_OF_LIST()
3162     }
3163 };
3164 
3165 static int rtl8139_pre_save(void *opaque)
3166 {
3167     RTL8139State* s = opaque;
3168     int64_t current_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
3169 
3170     /* for migration to older versions */
3171     s->TCTR = (current_time - s->TCTR_base) / PCI_PERIOD;
3172     s->rtl8139_mmio_io_addr_dummy = 0;
3173 
3174     return 0;
3175 }
3176 
3177 static const VMStateDescription vmstate_rtl8139 = {
3178     .name = "rtl8139",
3179     .version_id = 5,
3180     .minimum_version_id = 3,
3181     .post_load = rtl8139_post_load,
3182     .pre_save  = rtl8139_pre_save,
3183     .fields = (VMStateField[]) {
3184         VMSTATE_PCI_DEVICE(parent_obj, RTL8139State),
3185         VMSTATE_PARTIAL_BUFFER(phys, RTL8139State, 6),
3186         VMSTATE_BUFFER(mult, RTL8139State),
3187         VMSTATE_UINT32_ARRAY(TxStatus, RTL8139State, 4),
3188         VMSTATE_UINT32_ARRAY(TxAddr, RTL8139State, 4),
3189 
3190         VMSTATE_UINT32(RxBuf, RTL8139State),
3191         VMSTATE_UINT32(RxBufferSize, RTL8139State),
3192         VMSTATE_UINT32(RxBufPtr, RTL8139State),
3193         VMSTATE_UINT32(RxBufAddr, RTL8139State),
3194 
3195         VMSTATE_UINT16(IntrStatus, RTL8139State),
3196         VMSTATE_UINT16(IntrMask, RTL8139State),
3197 
3198         VMSTATE_UINT32(TxConfig, RTL8139State),
3199         VMSTATE_UINT32(RxConfig, RTL8139State),
3200         VMSTATE_UINT32(RxMissed, RTL8139State),
3201         VMSTATE_UINT16(CSCR, RTL8139State),
3202 
3203         VMSTATE_UINT8(Cfg9346, RTL8139State),
3204         VMSTATE_UINT8(Config0, RTL8139State),
3205         VMSTATE_UINT8(Config1, RTL8139State),
3206         VMSTATE_UINT8(Config3, RTL8139State),
3207         VMSTATE_UINT8(Config4, RTL8139State),
3208         VMSTATE_UINT8(Config5, RTL8139State),
3209 
3210         VMSTATE_UINT8(clock_enabled, RTL8139State),
3211         VMSTATE_UINT8(bChipCmdState, RTL8139State),
3212 
3213         VMSTATE_UINT16(MultiIntr, RTL8139State),
3214 
3215         VMSTATE_UINT16(BasicModeCtrl, RTL8139State),
3216         VMSTATE_UINT16(BasicModeStatus, RTL8139State),
3217         VMSTATE_UINT16(NWayAdvert, RTL8139State),
3218         VMSTATE_UINT16(NWayLPAR, RTL8139State),
3219         VMSTATE_UINT16(NWayExpansion, RTL8139State),
3220 
3221         VMSTATE_UINT16(CpCmd, RTL8139State),
3222         VMSTATE_UINT8(TxThresh, RTL8139State),
3223 
3224         VMSTATE_UNUSED(4),
3225         VMSTATE_MACADDR(conf.macaddr, RTL8139State),
3226         VMSTATE_INT32(rtl8139_mmio_io_addr_dummy, RTL8139State),
3227 
3228         VMSTATE_UINT32(currTxDesc, RTL8139State),
3229         VMSTATE_UINT32(currCPlusRxDesc, RTL8139State),
3230         VMSTATE_UINT32(currCPlusTxDesc, RTL8139State),
3231         VMSTATE_UINT32(RxRingAddrLO, RTL8139State),
3232         VMSTATE_UINT32(RxRingAddrHI, RTL8139State),
3233 
3234         VMSTATE_UINT16_ARRAY(eeprom.contents, RTL8139State, EEPROM_9346_SIZE),
3235         VMSTATE_INT32(eeprom.mode, RTL8139State),
3236         VMSTATE_UINT32(eeprom.tick, RTL8139State),
3237         VMSTATE_UINT8(eeprom.address, RTL8139State),
3238         VMSTATE_UINT16(eeprom.input, RTL8139State),
3239         VMSTATE_UINT16(eeprom.output, RTL8139State),
3240 
3241         VMSTATE_UINT8(eeprom.eecs, RTL8139State),
3242         VMSTATE_UINT8(eeprom.eesk, RTL8139State),
3243         VMSTATE_UINT8(eeprom.eedi, RTL8139State),
3244         VMSTATE_UINT8(eeprom.eedo, RTL8139State),
3245 
3246         VMSTATE_UINT32(TCTR, RTL8139State),
3247         VMSTATE_UINT32(TimerInt, RTL8139State),
3248         VMSTATE_INT64(TCTR_base, RTL8139State),
3249 
3250         VMSTATE_UINT64(tally_counters.TxOk, RTL8139State),
3251         VMSTATE_UINT64(tally_counters.RxOk, RTL8139State),
3252         VMSTATE_UINT64(tally_counters.TxERR, RTL8139State),
3253         VMSTATE_UINT32(tally_counters.RxERR, RTL8139State),
3254         VMSTATE_UINT16(tally_counters.MissPkt, RTL8139State),
3255         VMSTATE_UINT16(tally_counters.FAE, RTL8139State),
3256         VMSTATE_UINT32(tally_counters.Tx1Col, RTL8139State),
3257         VMSTATE_UINT32(tally_counters.TxMCol, RTL8139State),
3258         VMSTATE_UINT64(tally_counters.RxOkPhy, RTL8139State),
3259         VMSTATE_UINT64(tally_counters.RxOkBrd, RTL8139State),
3260         VMSTATE_UINT32_V(tally_counters.RxOkMul, RTL8139State, 5),
3261         VMSTATE_UINT16(tally_counters.TxAbt, RTL8139State),
3262         VMSTATE_UINT16(tally_counters.TxUndrn, RTL8139State),
3263 
3264         VMSTATE_UINT32_V(cplus_enabled, RTL8139State, 4),
3265         VMSTATE_END_OF_LIST()
3266     },
3267     .subsections = (const VMStateDescription*[]) {
3268         &vmstate_rtl8139_hotplug_ready,
3269         NULL
3270     }
3271 };
3272 
3273 /***********************************************************/
3274 /* PCI RTL8139 definitions */
3275 
3276 static void rtl8139_ioport_write(void *opaque, hwaddr addr,
3277                                  uint64_t val, unsigned size)
3278 {
3279     switch (size) {
3280     case 1:
3281         rtl8139_io_writeb(opaque, addr, val);
3282         break;
3283     case 2:
3284         rtl8139_io_writew(opaque, addr, val);
3285         break;
3286     case 4:
3287         rtl8139_io_writel(opaque, addr, val);
3288         break;
3289     }
3290 }
3291 
3292 static uint64_t rtl8139_ioport_read(void *opaque, hwaddr addr,
3293                                     unsigned size)
3294 {
3295     switch (size) {
3296     case 1:
3297         return rtl8139_io_readb(opaque, addr);
3298     case 2:
3299         return rtl8139_io_readw(opaque, addr);
3300     case 4:
3301         return rtl8139_io_readl(opaque, addr);
3302     }
3303 
3304     return -1;
3305 }
3306 
3307 static const MemoryRegionOps rtl8139_io_ops = {
3308     .read = rtl8139_ioport_read,
3309     .write = rtl8139_ioport_write,
3310     .impl = {
3311         .min_access_size = 1,
3312         .max_access_size = 4,
3313     },
3314     .endianness = DEVICE_LITTLE_ENDIAN,
3315 };
3316 
3317 static void rtl8139_timer(void *opaque)
3318 {
3319     RTL8139State *s = opaque;
3320 
3321     if (!s->clock_enabled)
3322     {
3323         DPRINTF(">>> timer: clock is not running\n");
3324         return;
3325     }
3326 
3327     s->IntrStatus |= PCSTimeout;
3328     rtl8139_update_irq(s);
3329     rtl8139_set_next_tctr_time(s);
3330 }
3331 
3332 static void pci_rtl8139_uninit(PCIDevice *dev)
3333 {
3334     RTL8139State *s = RTL8139(dev);
3335 
3336     g_free(s->cplus_txbuffer);
3337     s->cplus_txbuffer = NULL;
3338     timer_del(s->timer);
3339     timer_free(s->timer);
3340     qemu_del_nic(s->nic);
3341 }
3342 
3343 static void rtl8139_set_link_status(NetClientState *nc)
3344 {
3345     RTL8139State *s = qemu_get_nic_opaque(nc);
3346 
3347     if (nc->link_down) {
3348         s->BasicModeStatus &= ~0x04;
3349     } else {
3350         s->BasicModeStatus |= 0x04;
3351     }
3352 
3353     s->IntrStatus |= RxUnderrun;
3354     rtl8139_update_irq(s);
3355 }
3356 
3357 static NetClientInfo net_rtl8139_info = {
3358     .type = NET_CLIENT_DRIVER_NIC,
3359     .size = sizeof(NICState),
3360     .can_receive = rtl8139_can_receive,
3361     .receive = rtl8139_receive,
3362     .link_status_changed = rtl8139_set_link_status,
3363 };
3364 
3365 static void pci_rtl8139_realize(PCIDevice *dev, Error **errp)
3366 {
3367     RTL8139State *s = RTL8139(dev);
3368     DeviceState *d = DEVICE(dev);
3369     uint8_t *pci_conf;
3370 
3371     pci_conf = dev->config;
3372     pci_conf[PCI_INTERRUPT_PIN] = 1;    /* interrupt pin A */
3373     /* TODO: start of capability list, but no capability
3374      * list bit in status register, and offset 0xdc seems unused. */
3375     pci_conf[PCI_CAPABILITY_LIST] = 0xdc;
3376 
3377     memory_region_init_io(&s->bar_io, OBJECT(s), &rtl8139_io_ops, s,
3378                           "rtl8139", 0x100);
3379     memory_region_init_alias(&s->bar_mem, OBJECT(s), "rtl8139-mem", &s->bar_io,
3380                              0, 0x100);
3381 
3382     pci_register_bar(dev, 0, PCI_BASE_ADDRESS_SPACE_IO, &s->bar_io);
3383     pci_register_bar(dev, 1, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->bar_mem);
3384 
3385     qemu_macaddr_default_if_unset(&s->conf.macaddr);
3386 
3387     /* prepare eeprom */
3388     s->eeprom.contents[0] = 0x8129;
3389 #if 1
3390     /* PCI vendor and device ID should be mirrored here */
3391     s->eeprom.contents[1] = PCI_VENDOR_ID_REALTEK;
3392     s->eeprom.contents[2] = PCI_DEVICE_ID_REALTEK_8139;
3393 #endif
3394     s->eeprom.contents[7] = s->conf.macaddr.a[0] | s->conf.macaddr.a[1] << 8;
3395     s->eeprom.contents[8] = s->conf.macaddr.a[2] | s->conf.macaddr.a[3] << 8;
3396     s->eeprom.contents[9] = s->conf.macaddr.a[4] | s->conf.macaddr.a[5] << 8;
3397 
3398     s->nic = qemu_new_nic(&net_rtl8139_info, &s->conf,
3399                           object_get_typename(OBJECT(dev)), d->id, s);
3400     qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a);
3401 
3402     s->cplus_txbuffer = NULL;
3403     s->cplus_txbuffer_len = 0;
3404     s->cplus_txbuffer_offset = 0;
3405 
3406     s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, rtl8139_timer, s);
3407 }
3408 
3409 static void rtl8139_instance_init(Object *obj)
3410 {
3411     RTL8139State *s = RTL8139(obj);
3412 
3413     device_add_bootindex_property(obj, &s->conf.bootindex,
3414                                   "bootindex", "/ethernet-phy@0",
3415                                   DEVICE(obj), NULL);
3416 }
3417 
3418 static Property rtl8139_properties[] = {
3419     DEFINE_NIC_PROPERTIES(RTL8139State, conf),
3420     DEFINE_PROP_END_OF_LIST(),
3421 };
3422 
3423 static void rtl8139_class_init(ObjectClass *klass, void *data)
3424 {
3425     DeviceClass *dc = DEVICE_CLASS(klass);
3426     PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
3427 
3428     k->realize = pci_rtl8139_realize;
3429     k->exit = pci_rtl8139_uninit;
3430     k->romfile = "efi-rtl8139.rom";
3431     k->vendor_id = PCI_VENDOR_ID_REALTEK;
3432     k->device_id = PCI_DEVICE_ID_REALTEK_8139;
3433     k->revision = RTL8139_PCI_REVID; /* >=0x20 is for 8139C+ */
3434     k->class_id = PCI_CLASS_NETWORK_ETHERNET;
3435     dc->reset = rtl8139_reset;
3436     dc->vmsd = &vmstate_rtl8139;
3437     dc->props = rtl8139_properties;
3438     set_bit(DEVICE_CATEGORY_NETWORK, dc->categories);
3439 }
3440 
3441 static const TypeInfo rtl8139_info = {
3442     .name          = TYPE_RTL8139,
3443     .parent        = TYPE_PCI_DEVICE,
3444     .instance_size = sizeof(RTL8139State),
3445     .class_init    = rtl8139_class_init,
3446     .instance_init = rtl8139_instance_init,
3447     .interfaces = (InterfaceInfo[]) {
3448         { INTERFACE_CONVENTIONAL_PCI_DEVICE },
3449         { },
3450     },
3451 };
3452 
3453 static void rtl8139_register_types(void)
3454 {
3455     type_register_static(&rtl8139_info);
3456 }
3457 
3458 type_init(rtl8139_register_types)
3459