xref: /openbmc/qemu/hw/net/rtl8139.c (revision a6caeee8)
1 /**
2  * QEMU RTL8139 emulation
3  *
4  * Copyright (c) 2006 Igor Kovalenko
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23 
24  * Modifications:
25  *  2006-Jan-28  Mark Malakanov :   TSAD and CSCR implementation (for Windows driver)
26  *
27  *  2006-Apr-28  Juergen Lock   :   EEPROM emulation changes for FreeBSD driver
28  *                                  HW revision ID changes for FreeBSD driver
29  *
30  *  2006-Jul-01  Igor Kovalenko :   Implemented loopback mode for FreeBSD driver
31  *                                  Corrected packet transfer reassembly routine for 8139C+ mode
32  *                                  Rearranged debugging print statements
33  *                                  Implemented PCI timer interrupt (disabled by default)
34  *                                  Implemented Tally Counters, increased VM load/save version
35  *                                  Implemented IP/TCP/UDP checksum task offloading
36  *
37  *  2006-Jul-04  Igor Kovalenko :   Implemented TCP segmentation offloading
38  *                                  Fixed MTU=1500 for produced ethernet frames
39  *
40  *  2006-Jul-09  Igor Kovalenko :   Fixed TCP header length calculation while processing
41  *                                  segmentation offloading
42  *                                  Removed slirp.h dependency
43  *                                  Added rx/tx buffer reset when enabling rx/tx operation
44  *
45  *  2010-Feb-04  Frediano Ziglio:   Rewrote timer support using QEMU timer only
46  *                                  when strictly needed (required for
47  *                                  Darwin)
48  *  2011-Mar-22  Benjamin Poirier:  Implemented VLAN offloading
49  */
50 
51 /* For crc32 */
52 
53 #include "qemu/osdep.h"
54 #include <zlib.h>
55 
56 #include "hw/pci/pci.h"
57 #include "hw/qdev-properties.h"
58 #include "migration/vmstate.h"
59 #include "sysemu/dma.h"
60 #include "qemu/module.h"
61 #include "qemu/timer.h"
62 #include "net/net.h"
63 #include "net/eth.h"
64 #include "sysemu/sysemu.h"
65 #include "qom/object.h"
66 
67 /* debug RTL8139 card */
68 //#define DEBUG_RTL8139 1
69 
70 #define PCI_PERIOD 30    /* 30 ns period = 33.333333 Mhz frequency */
71 
72 #define SET_MASKED(input, mask, curr) \
73     ( ( (input) & ~(mask) ) | ( (curr) & (mask) ) )
74 
75 /* arg % size for size which is a power of 2 */
76 #define MOD2(input, size) \
77     ( ( input ) & ( size - 1 )  )
78 
79 #define ETHER_TYPE_LEN 2
80 #define ETH_MTU     1500
81 
82 #define VLAN_TCI_LEN 2
83 #define VLAN_HLEN (ETHER_TYPE_LEN + VLAN_TCI_LEN)
84 
85 #if defined (DEBUG_RTL8139)
86 #  define DPRINTF(fmt, ...) \
87     do { fprintf(stderr, "RTL8139: " fmt, ## __VA_ARGS__); } while (0)
88 #else
89 static inline G_GNUC_PRINTF(1, 2) int DPRINTF(const char *fmt, ...)
90 {
91     return 0;
92 }
93 #endif
94 
95 #define TYPE_RTL8139 "rtl8139"
96 
97 OBJECT_DECLARE_SIMPLE_TYPE(RTL8139State, RTL8139)
98 
99 /* Symbolic offsets to registers. */
100 enum RTL8139_registers {
101     MAC0 = 0,        /* Ethernet hardware address. */
102     MAR0 = 8,        /* Multicast filter. */
103     TxStatus0 = 0x10,/* Transmit status (Four 32bit registers). C mode only */
104                      /* Dump Tally Conter control register(64bit). C+ mode only */
105     TxAddr0 = 0x20,  /* Tx descriptors (also four 32bit). */
106     RxBuf = 0x30,
107     ChipCmd = 0x37,
108     RxBufPtr = 0x38,
109     RxBufAddr = 0x3A,
110     IntrMask = 0x3C,
111     IntrStatus = 0x3E,
112     TxConfig = 0x40,
113     RxConfig = 0x44,
114     Timer = 0x48,        /* A general-purpose counter. */
115     RxMissed = 0x4C,    /* 24 bits valid, write clears. */
116     Cfg9346 = 0x50,
117     Config0 = 0x51,
118     Config1 = 0x52,
119     FlashReg = 0x54,
120     MediaStatus = 0x58,
121     Config3 = 0x59,
122     Config4 = 0x5A,        /* absent on RTL-8139A */
123     HltClk = 0x5B,
124     MultiIntr = 0x5C,
125     PCIRevisionID = 0x5E,
126     TxSummary = 0x60, /* TSAD register. Transmit Status of All Descriptors*/
127     BasicModeCtrl = 0x62,
128     BasicModeStatus = 0x64,
129     NWayAdvert = 0x66,
130     NWayLPAR = 0x68,
131     NWayExpansion = 0x6A,
132     /* Undocumented registers, but required for proper operation. */
133     FIFOTMS = 0x70,        /* FIFO Control and test. */
134     CSCR = 0x74,        /* Chip Status and Configuration Register. */
135     PARA78 = 0x78,
136     PARA7c = 0x7c,        /* Magic transceiver parameter register. */
137     Config5 = 0xD8,        /* absent on RTL-8139A */
138     /* C+ mode */
139     TxPoll        = 0xD9,    /* Tell chip to check Tx descriptors for work */
140     RxMaxSize    = 0xDA, /* Max size of an Rx packet (8169 only) */
141     CpCmd        = 0xE0, /* C+ Command register (C+ mode only) */
142     IntrMitigate    = 0xE2,    /* rx/tx interrupt mitigation control */
143     RxRingAddrLO    = 0xE4, /* 64-bit start addr of Rx ring */
144     RxRingAddrHI    = 0xE8, /* 64-bit start addr of Rx ring */
145     TxThresh    = 0xEC, /* Early Tx threshold */
146 };
147 
148 enum ClearBitMasks {
149     MultiIntrClear = 0xF000,
150     ChipCmdClear = 0xE2,
151     Config1Clear = (1<<7)|(1<<6)|(1<<3)|(1<<2)|(1<<1),
152 };
153 
154 enum ChipCmdBits {
155     CmdReset = 0x10,
156     CmdRxEnb = 0x08,
157     CmdTxEnb = 0x04,
158     RxBufEmpty = 0x01,
159 };
160 
161 /* C+ mode */
162 enum CplusCmdBits {
163     CPlusRxVLAN   = 0x0040, /* enable receive VLAN detagging */
164     CPlusRxChkSum = 0x0020, /* enable receive checksum offloading */
165     CPlusRxEnb    = 0x0002,
166     CPlusTxEnb    = 0x0001,
167 };
168 
169 /* Interrupt register bits, using my own meaningful names. */
170 enum IntrStatusBits {
171     PCIErr = 0x8000,
172     PCSTimeout = 0x4000,
173     RxFIFOOver = 0x40,
174     RxUnderrun = 0x20, /* Packet Underrun / Link Change */
175     RxOverflow = 0x10,
176     TxErr = 0x08,
177     TxOK = 0x04,
178     RxErr = 0x02,
179     RxOK = 0x01,
180 
181     RxAckBits = RxFIFOOver | RxOverflow | RxOK,
182 };
183 
184 enum TxStatusBits {
185     TxHostOwns = 0x2000,
186     TxUnderrun = 0x4000,
187     TxStatOK = 0x8000,
188     TxOutOfWindow = 0x20000000,
189     TxAborted = 0x40000000,
190     TxCarrierLost = 0x80000000,
191 };
192 enum RxStatusBits {
193     RxMulticast = 0x8000,
194     RxPhysical = 0x4000,
195     RxBroadcast = 0x2000,
196     RxBadSymbol = 0x0020,
197     RxRunt = 0x0010,
198     RxTooLong = 0x0008,
199     RxCRCErr = 0x0004,
200     RxBadAlign = 0x0002,
201     RxStatusOK = 0x0001,
202 };
203 
204 /* Bits in RxConfig. */
205 enum rx_mode_bits {
206     AcceptErr = 0x20,
207     AcceptRunt = 0x10,
208     AcceptBroadcast = 0x08,
209     AcceptMulticast = 0x04,
210     AcceptMyPhys = 0x02,
211     AcceptAllPhys = 0x01,
212 };
213 
214 /* Bits in TxConfig. */
215 enum tx_config_bits {
216 
217         /* Interframe Gap Time. Only TxIFG96 doesn't violate IEEE 802.3 */
218         TxIFGShift = 24,
219         TxIFG84 = (0 << TxIFGShift),    /* 8.4us / 840ns (10 / 100Mbps) */
220         TxIFG88 = (1 << TxIFGShift),    /* 8.8us / 880ns (10 / 100Mbps) */
221         TxIFG92 = (2 << TxIFGShift),    /* 9.2us / 920ns (10 / 100Mbps) */
222         TxIFG96 = (3 << TxIFGShift),    /* 9.6us / 960ns (10 / 100Mbps) */
223 
224     TxLoopBack = (1 << 18) | (1 << 17), /* enable loopback test mode */
225     TxCRC = (1 << 16),    /* DISABLE appending CRC to end of Tx packets */
226     TxClearAbt = (1 << 0),    /* Clear abort (WO) */
227     TxDMAShift = 8,        /* DMA burst value (0-7) is shifted this many bits */
228     TxRetryShift = 4,    /* TXRR value (0-15) is shifted this many bits */
229 
230     TxVersionMask = 0x7C800000, /* mask out version bits 30-26, 23 */
231 };
232 
233 
234 /* Transmit Status of All Descriptors (TSAD) Register */
235 enum TSAD_bits {
236  TSAD_TOK3 = 1<<15, // TOK bit of Descriptor 3
237  TSAD_TOK2 = 1<<14, // TOK bit of Descriptor 2
238  TSAD_TOK1 = 1<<13, // TOK bit of Descriptor 1
239  TSAD_TOK0 = 1<<12, // TOK bit of Descriptor 0
240  TSAD_TUN3 = 1<<11, // TUN bit of Descriptor 3
241  TSAD_TUN2 = 1<<10, // TUN bit of Descriptor 2
242  TSAD_TUN1 = 1<<9, // TUN bit of Descriptor 1
243  TSAD_TUN0 = 1<<8, // TUN bit of Descriptor 0
244  TSAD_TABT3 = 1<<07, // TABT bit of Descriptor 3
245  TSAD_TABT2 = 1<<06, // TABT bit of Descriptor 2
246  TSAD_TABT1 = 1<<05, // TABT bit of Descriptor 1
247  TSAD_TABT0 = 1<<04, // TABT bit of Descriptor 0
248  TSAD_OWN3 = 1<<03, // OWN bit of Descriptor 3
249  TSAD_OWN2 = 1<<02, // OWN bit of Descriptor 2
250  TSAD_OWN1 = 1<<01, // OWN bit of Descriptor 1
251  TSAD_OWN0 = 1<<00, // OWN bit of Descriptor 0
252 };
253 
254 
255 /* Bits in Config1 */
256 enum Config1Bits {
257     Cfg1_PM_Enable = 0x01,
258     Cfg1_VPD_Enable = 0x02,
259     Cfg1_PIO = 0x04,
260     Cfg1_MMIO = 0x08,
261     LWAKE = 0x10,        /* not on 8139, 8139A */
262     Cfg1_Driver_Load = 0x20,
263     Cfg1_LED0 = 0x40,
264     Cfg1_LED1 = 0x80,
265     SLEEP = (1 << 1),    /* only on 8139, 8139A */
266     PWRDN = (1 << 0),    /* only on 8139, 8139A */
267 };
268 
269 /* Bits in Config3 */
270 enum Config3Bits {
271     Cfg3_FBtBEn    = (1 << 0), /* 1 = Fast Back to Back */
272     Cfg3_FuncRegEn = (1 << 1), /* 1 = enable CardBus Function registers */
273     Cfg3_CLKRUN_En = (1 << 2), /* 1 = enable CLKRUN */
274     Cfg3_CardB_En  = (1 << 3), /* 1 = enable CardBus registers */
275     Cfg3_LinkUp    = (1 << 4), /* 1 = wake up on link up */
276     Cfg3_Magic     = (1 << 5), /* 1 = wake up on Magic Packet (tm) */
277     Cfg3_PARM_En   = (1 << 6), /* 0 = software can set twister parameters */
278     Cfg3_GNTSel    = (1 << 7), /* 1 = delay 1 clock from PCI GNT signal */
279 };
280 
281 /* Bits in Config4 */
282 enum Config4Bits {
283     LWPTN = (1 << 2),    /* not on 8139, 8139A */
284 };
285 
286 /* Bits in Config5 */
287 enum Config5Bits {
288     Cfg5_PME_STS     = (1 << 0), /* 1 = PCI reset resets PME_Status */
289     Cfg5_LANWake     = (1 << 1), /* 1 = enable LANWake signal */
290     Cfg5_LDPS        = (1 << 2), /* 0 = save power when link is down */
291     Cfg5_FIFOAddrPtr = (1 << 3), /* Realtek internal SRAM testing */
292     Cfg5_UWF         = (1 << 4), /* 1 = accept unicast wakeup frame */
293     Cfg5_MWF         = (1 << 5), /* 1 = accept multicast wakeup frame */
294     Cfg5_BWF         = (1 << 6), /* 1 = accept broadcast wakeup frame */
295 };
296 
297 enum RxConfigBits {
298     /* rx fifo threshold */
299     RxCfgFIFOShift = 13,
300     RxCfgFIFONone = (7 << RxCfgFIFOShift),
301 
302     /* Max DMA burst */
303     RxCfgDMAShift = 8,
304     RxCfgDMAUnlimited = (7 << RxCfgDMAShift),
305 
306     /* rx ring buffer length */
307     RxCfgRcv8K = 0,
308     RxCfgRcv16K = (1 << 11),
309     RxCfgRcv32K = (1 << 12),
310     RxCfgRcv64K = (1 << 11) | (1 << 12),
311 
312     /* Disable packet wrap at end of Rx buffer. (not possible with 64k) */
313     RxNoWrap = (1 << 7),
314 };
315 
316 /* Twister tuning parameters from RealTek.
317    Completely undocumented, but required to tune bad links on some boards. */
318 /*
319 enum CSCRBits {
320     CSCR_LinkOKBit = 0x0400,
321     CSCR_LinkChangeBit = 0x0800,
322     CSCR_LinkStatusBits = 0x0f000,
323     CSCR_LinkDownOffCmd = 0x003c0,
324     CSCR_LinkDownCmd = 0x0f3c0,
325 */
326 enum CSCRBits {
327     CSCR_Testfun = 1<<15, /* 1 = Auto-neg speeds up internal timer, WO, def 0 */
328     CSCR_LD  = 1<<9,  /* Active low TPI link disable signal. When low, TPI still transmits link pulses and TPI stays in good link state. def 1*/
329     CSCR_HEART_BIT = 1<<8,  /* 1 = HEART BEAT enable, 0 = HEART BEAT disable. HEART BEAT function is only valid in 10Mbps mode. def 1*/
330     CSCR_JBEN = 1<<7,  /* 1 = enable jabber function. 0 = disable jabber function, def 1*/
331     CSCR_F_LINK_100 = 1<<6, /* Used to login force good link in 100Mbps for diagnostic purposes. 1 = DISABLE, 0 = ENABLE. def 1*/
332     CSCR_F_Connect  = 1<<5,  /* Assertion of this bit forces the disconnect function to be bypassed. def 0*/
333     CSCR_Con_status = 1<<3, /* This bit indicates the status of the connection. 1 = valid connected link detected; 0 = disconnected link detected. RO def 0*/
334     CSCR_Con_status_En = 1<<2, /* Assertion of this bit configures LED1 pin to indicate connection status. def 0*/
335     CSCR_PASS_SCR = 1<<0, /* Bypass Scramble, def 0*/
336 };
337 
338 enum Cfg9346Bits {
339     Cfg9346_Normal = 0x00,
340     Cfg9346_Autoload = 0x40,
341     Cfg9346_Programming = 0x80,
342     Cfg9346_ConfigWrite = 0xC0,
343 };
344 
345 typedef enum {
346     CH_8139 = 0,
347     CH_8139_K,
348     CH_8139A,
349     CH_8139A_G,
350     CH_8139B,
351     CH_8130,
352     CH_8139C,
353     CH_8100,
354     CH_8100B_8139D,
355     CH_8101,
356 } chip_t;
357 
358 enum chip_flags {
359     HasHltClk = (1 << 0),
360     HasLWake = (1 << 1),
361 };
362 
363 #define HW_REVID(b30, b29, b28, b27, b26, b23, b22) \
364     (b30<<30 | b29<<29 | b28<<28 | b27<<27 | b26<<26 | b23<<23 | b22<<22)
365 #define HW_REVID_MASK    HW_REVID(1, 1, 1, 1, 1, 1, 1)
366 
367 #define RTL8139_PCI_REVID_8139      0x10
368 #define RTL8139_PCI_REVID_8139CPLUS 0x20
369 
370 #define RTL8139_PCI_REVID           RTL8139_PCI_REVID_8139CPLUS
371 
372 /* Size is 64 * 16bit words */
373 #define EEPROM_9346_ADDR_BITS 6
374 #define EEPROM_9346_SIZE  (1 << EEPROM_9346_ADDR_BITS)
375 #define EEPROM_9346_ADDR_MASK (EEPROM_9346_SIZE - 1)
376 
377 enum Chip9346Operation
378 {
379     Chip9346_op_mask = 0xc0,          /* 10 zzzzzz */
380     Chip9346_op_read = 0x80,          /* 10 AAAAAA */
381     Chip9346_op_write = 0x40,         /* 01 AAAAAA D(15)..D(0) */
382     Chip9346_op_ext_mask = 0xf0,      /* 11 zzzzzz */
383     Chip9346_op_write_enable = 0x30,  /* 00 11zzzz */
384     Chip9346_op_write_all = 0x10,     /* 00 01zzzz */
385     Chip9346_op_write_disable = 0x00, /* 00 00zzzz */
386 };
387 
388 enum Chip9346Mode
389 {
390     Chip9346_none = 0,
391     Chip9346_enter_command_mode,
392     Chip9346_read_command,
393     Chip9346_data_read,      /* from output register */
394     Chip9346_data_write,     /* to input register, then to contents at specified address */
395     Chip9346_data_write_all, /* to input register, then filling contents */
396 };
397 
398 typedef struct EEprom9346
399 {
400     uint16_t contents[EEPROM_9346_SIZE];
401     int      mode;
402     uint32_t tick;
403     uint8_t  address;
404     uint16_t input;
405     uint16_t output;
406 
407     uint8_t eecs;
408     uint8_t eesk;
409     uint8_t eedi;
410     uint8_t eedo;
411 } EEprom9346;
412 
413 typedef struct RTL8139TallyCounters
414 {
415     /* Tally counters */
416     uint64_t   TxOk;
417     uint64_t   RxOk;
418     uint64_t   TxERR;
419     uint32_t   RxERR;
420     uint16_t   MissPkt;
421     uint16_t   FAE;
422     uint32_t   Tx1Col;
423     uint32_t   TxMCol;
424     uint64_t   RxOkPhy;
425     uint64_t   RxOkBrd;
426     uint32_t   RxOkMul;
427     uint16_t   TxAbt;
428     uint16_t   TxUndrn;
429 } RTL8139TallyCounters;
430 
431 /* Clears all tally counters */
432 static void RTL8139TallyCounters_clear(RTL8139TallyCounters* counters);
433 
434 struct RTL8139State {
435     /*< private >*/
436     PCIDevice parent_obj;
437     /*< public >*/
438 
439     uint8_t phys[8]; /* mac address */
440     uint8_t mult[8]; /* multicast mask array */
441 
442     uint32_t TxStatus[4]; /* TxStatus0 in C mode*/ /* also DTCCR[0] and DTCCR[1] in C+ mode */
443     uint32_t TxAddr[4];   /* TxAddr0 */
444     uint32_t RxBuf;       /* Receive buffer */
445     uint32_t RxBufferSize;/* internal variable, receive ring buffer size in C mode */
446     uint32_t RxBufPtr;
447     uint32_t RxBufAddr;
448 
449     uint16_t IntrStatus;
450     uint16_t IntrMask;
451 
452     uint32_t TxConfig;
453     uint32_t RxConfig;
454     uint32_t RxMissed;
455 
456     uint16_t CSCR;
457 
458     uint8_t  Cfg9346;
459     uint8_t  Config0;
460     uint8_t  Config1;
461     uint8_t  Config3;
462     uint8_t  Config4;
463     uint8_t  Config5;
464 
465     uint8_t  clock_enabled;
466     uint8_t  bChipCmdState;
467 
468     uint16_t MultiIntr;
469 
470     uint16_t BasicModeCtrl;
471     uint16_t BasicModeStatus;
472     uint16_t NWayAdvert;
473     uint16_t NWayLPAR;
474     uint16_t NWayExpansion;
475 
476     uint16_t CpCmd;
477     uint8_t  TxThresh;
478 
479     NICState *nic;
480     NICConf conf;
481 
482     /* C ring mode */
483     uint32_t   currTxDesc;
484 
485     /* C+ mode */
486     uint32_t   cplus_enabled;
487 
488     uint32_t   currCPlusRxDesc;
489     uint32_t   currCPlusTxDesc;
490 
491     uint32_t   RxRingAddrLO;
492     uint32_t   RxRingAddrHI;
493 
494     EEprom9346 eeprom;
495 
496     uint32_t   TCTR;
497     uint32_t   TimerInt;
498     int64_t    TCTR_base;
499 
500     /* Tally counters */
501     RTL8139TallyCounters tally_counters;
502 
503     /* Non-persistent data */
504     uint8_t   *cplus_txbuffer;
505     int        cplus_txbuffer_len;
506     int        cplus_txbuffer_offset;
507 
508     /* PCI interrupt timer */
509     QEMUTimer *timer;
510 
511     MemoryRegion bar_io;
512     MemoryRegion bar_mem;
513 
514     /* Support migration to/from old versions */
515     int rtl8139_mmio_io_addr_dummy;
516 };
517 
518 /* Writes tally counters to memory via DMA */
519 static void RTL8139TallyCounters_dma_write(RTL8139State *s, dma_addr_t tc_addr);
520 
521 static void rtl8139_set_next_tctr_time(RTL8139State *s);
522 
523 static void prom9346_decode_command(EEprom9346 *eeprom, uint8_t command)
524 {
525     DPRINTF("eeprom command 0x%02x\n", command);
526 
527     switch (command & Chip9346_op_mask)
528     {
529         case Chip9346_op_read:
530         {
531             eeprom->address = command & EEPROM_9346_ADDR_MASK;
532             eeprom->output = eeprom->contents[eeprom->address];
533             eeprom->eedo = 0;
534             eeprom->tick = 0;
535             eeprom->mode = Chip9346_data_read;
536             DPRINTF("eeprom read from address 0x%02x data=0x%04x\n",
537                 eeprom->address, eeprom->output);
538         }
539         break;
540 
541         case Chip9346_op_write:
542         {
543             eeprom->address = command & EEPROM_9346_ADDR_MASK;
544             eeprom->input = 0;
545             eeprom->tick = 0;
546             eeprom->mode = Chip9346_none; /* Chip9346_data_write */
547             DPRINTF("eeprom begin write to address 0x%02x\n",
548                 eeprom->address);
549         }
550         break;
551         default:
552             eeprom->mode = Chip9346_none;
553             switch (command & Chip9346_op_ext_mask)
554             {
555                 case Chip9346_op_write_enable:
556                     DPRINTF("eeprom write enabled\n");
557                     break;
558                 case Chip9346_op_write_all:
559                     DPRINTF("eeprom begin write all\n");
560                     break;
561                 case Chip9346_op_write_disable:
562                     DPRINTF("eeprom write disabled\n");
563                     break;
564             }
565             break;
566     }
567 }
568 
569 static void prom9346_shift_clock(EEprom9346 *eeprom)
570 {
571     int bit = eeprom->eedi?1:0;
572 
573     ++ eeprom->tick;
574 
575     DPRINTF("eeprom: tick %d eedi=%d eedo=%d\n", eeprom->tick, eeprom->eedi,
576         eeprom->eedo);
577 
578     switch (eeprom->mode)
579     {
580         case Chip9346_enter_command_mode:
581             if (bit)
582             {
583                 eeprom->mode = Chip9346_read_command;
584                 eeprom->tick = 0;
585                 eeprom->input = 0;
586                 DPRINTF("eeprom: +++ synchronized, begin command read\n");
587             }
588             break;
589 
590         case Chip9346_read_command:
591             eeprom->input = (eeprom->input << 1) | (bit & 1);
592             if (eeprom->tick == 8)
593             {
594                 prom9346_decode_command(eeprom, eeprom->input & 0xff);
595             }
596             break;
597 
598         case Chip9346_data_read:
599             eeprom->eedo = (eeprom->output & 0x8000)?1:0;
600             eeprom->output <<= 1;
601             if (eeprom->tick == 16)
602             {
603 #if 1
604         // the FreeBSD drivers (rl and re) don't explicitly toggle
605         // CS between reads (or does setting Cfg9346 to 0 count too?),
606         // so we need to enter wait-for-command state here
607                 eeprom->mode = Chip9346_enter_command_mode;
608                 eeprom->input = 0;
609                 eeprom->tick = 0;
610 
611                 DPRINTF("eeprom: +++ end of read, awaiting next command\n");
612 #else
613         // original behaviour
614                 ++eeprom->address;
615                 eeprom->address &= EEPROM_9346_ADDR_MASK;
616                 eeprom->output = eeprom->contents[eeprom->address];
617                 eeprom->tick = 0;
618 
619                 DPRINTF("eeprom: +++ read next address 0x%02x data=0x%04x\n",
620                     eeprom->address, eeprom->output);
621 #endif
622             }
623             break;
624 
625         case Chip9346_data_write:
626             eeprom->input = (eeprom->input << 1) | (bit & 1);
627             if (eeprom->tick == 16)
628             {
629                 DPRINTF("eeprom write to address 0x%02x data=0x%04x\n",
630                     eeprom->address, eeprom->input);
631 
632                 eeprom->contents[eeprom->address] = eeprom->input;
633                 eeprom->mode = Chip9346_none; /* waiting for next command after CS cycle */
634                 eeprom->tick = 0;
635                 eeprom->input = 0;
636             }
637             break;
638 
639         case Chip9346_data_write_all:
640             eeprom->input = (eeprom->input << 1) | (bit & 1);
641             if (eeprom->tick == 16)
642             {
643                 int i;
644                 for (i = 0; i < EEPROM_9346_SIZE; i++)
645                 {
646                     eeprom->contents[i] = eeprom->input;
647                 }
648                 DPRINTF("eeprom filled with data=0x%04x\n", eeprom->input);
649 
650                 eeprom->mode = Chip9346_enter_command_mode;
651                 eeprom->tick = 0;
652                 eeprom->input = 0;
653             }
654             break;
655 
656         default:
657             break;
658     }
659 }
660 
661 static int prom9346_get_wire(RTL8139State *s)
662 {
663     EEprom9346 *eeprom = &s->eeprom;
664     if (!eeprom->eecs)
665         return 0;
666 
667     return eeprom->eedo;
668 }
669 
670 /* FIXME: This should be merged into/replaced by eeprom93xx.c.  */
671 static void prom9346_set_wire(RTL8139State *s, int eecs, int eesk, int eedi)
672 {
673     EEprom9346 *eeprom = &s->eeprom;
674     uint8_t old_eecs = eeprom->eecs;
675     uint8_t old_eesk = eeprom->eesk;
676 
677     eeprom->eecs = eecs;
678     eeprom->eesk = eesk;
679     eeprom->eedi = eedi;
680 
681     DPRINTF("eeprom: +++ wires CS=%d SK=%d DI=%d DO=%d\n", eeprom->eecs,
682         eeprom->eesk, eeprom->eedi, eeprom->eedo);
683 
684     if (!old_eecs && eecs)
685     {
686         /* Synchronize start */
687         eeprom->tick = 0;
688         eeprom->input = 0;
689         eeprom->output = 0;
690         eeprom->mode = Chip9346_enter_command_mode;
691 
692         DPRINTF("=== eeprom: begin access, enter command mode\n");
693     }
694 
695     if (!eecs)
696     {
697         DPRINTF("=== eeprom: end access\n");
698         return;
699     }
700 
701     if (!old_eesk && eesk)
702     {
703         /* SK front rules */
704         prom9346_shift_clock(eeprom);
705     }
706 }
707 
708 static void rtl8139_update_irq(RTL8139State *s)
709 {
710     PCIDevice *d = PCI_DEVICE(s);
711     int isr;
712     isr = (s->IntrStatus & s->IntrMask) & 0xffff;
713 
714     DPRINTF("Set IRQ to %d (%04x %04x)\n", isr ? 1 : 0, s->IntrStatus,
715         s->IntrMask);
716 
717     pci_set_irq(d, (isr != 0));
718 }
719 
720 static int rtl8139_RxWrap(RTL8139State *s)
721 {
722     /* wrapping enabled; assume 1.5k more buffer space if size < 65536 */
723     return (s->RxConfig & (1 << 7));
724 }
725 
726 static int rtl8139_receiver_enabled(RTL8139State *s)
727 {
728     return s->bChipCmdState & CmdRxEnb;
729 }
730 
731 static int rtl8139_transmitter_enabled(RTL8139State *s)
732 {
733     return s->bChipCmdState & CmdTxEnb;
734 }
735 
736 static int rtl8139_cp_receiver_enabled(RTL8139State *s)
737 {
738     return s->CpCmd & CPlusRxEnb;
739 }
740 
741 static int rtl8139_cp_transmitter_enabled(RTL8139State *s)
742 {
743     return s->CpCmd & CPlusTxEnb;
744 }
745 
746 static void rtl8139_write_buffer(RTL8139State *s, const void *buf, int size)
747 {
748     PCIDevice *d = PCI_DEVICE(s);
749 
750     if (s->RxBufAddr + size > s->RxBufferSize)
751     {
752         int wrapped = MOD2(s->RxBufAddr + size, s->RxBufferSize);
753 
754         /* write packet data */
755         if (wrapped && !(s->RxBufferSize < 65536 && rtl8139_RxWrap(s)))
756         {
757             DPRINTF(">>> rx packet wrapped in buffer at %d\n", size - wrapped);
758 
759             if (size > wrapped)
760             {
761                 pci_dma_write(d, s->RxBuf + s->RxBufAddr,
762                               buf, size-wrapped);
763             }
764 
765             /* reset buffer pointer */
766             s->RxBufAddr = 0;
767 
768             pci_dma_write(d, s->RxBuf + s->RxBufAddr,
769                           buf + (size-wrapped), wrapped);
770 
771             s->RxBufAddr = wrapped;
772 
773             return;
774         }
775     }
776 
777     /* non-wrapping path or overwrapping enabled */
778     pci_dma_write(d, s->RxBuf + s->RxBufAddr, buf, size);
779 
780     s->RxBufAddr += size;
781 }
782 
783 #define MIN_BUF_SIZE 60
784 static inline dma_addr_t rtl8139_addr64(uint32_t low, uint32_t high)
785 {
786     return low | ((uint64_t)high << 32);
787 }
788 
789 /* Workaround for buggy guest driver such as linux who allocates rx
790  * rings after the receiver were enabled. */
791 static bool rtl8139_cp_rx_valid(RTL8139State *s)
792 {
793     return !(s->RxRingAddrLO == 0 && s->RxRingAddrHI == 0);
794 }
795 
796 static bool rtl8139_can_receive(NetClientState *nc)
797 {
798     RTL8139State *s = qemu_get_nic_opaque(nc);
799     int avail;
800 
801     /* Receive (drop) packets if card is disabled.  */
802     if (!s->clock_enabled) {
803         return true;
804     }
805     if (!rtl8139_receiver_enabled(s)) {
806         return true;
807     }
808 
809     if (rtl8139_cp_receiver_enabled(s) && rtl8139_cp_rx_valid(s)) {
810         /* ??? Flow control not implemented in c+ mode.
811            This is a hack to work around slirp deficiencies anyway.  */
812         return true;
813     }
814 
815     avail = MOD2(s->RxBufferSize + s->RxBufPtr - s->RxBufAddr,
816                  s->RxBufferSize);
817     return avail == 0 || avail >= 1514 || (s->IntrMask & RxOverflow);
818 }
819 
820 static ssize_t rtl8139_do_receive(NetClientState *nc, const uint8_t *buf, size_t size_, int do_interrupt)
821 {
822     RTL8139State *s = qemu_get_nic_opaque(nc);
823     PCIDevice *d = PCI_DEVICE(s);
824     /* size is the length of the buffer passed to the driver */
825     size_t size = size_;
826     const uint8_t *dot1q_buf = NULL;
827 
828     uint32_t packet_header = 0;
829 
830     uint8_t buf1[MIN_BUF_SIZE + VLAN_HLEN];
831     static const uint8_t broadcast_macaddr[6] =
832         { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
833 
834     DPRINTF(">>> received len=%zu\n", size);
835 
836     /* test if board clock is stopped */
837     if (!s->clock_enabled)
838     {
839         DPRINTF("stopped ==========================\n");
840         return -1;
841     }
842 
843     /* first check if receiver is enabled */
844 
845     if (!rtl8139_receiver_enabled(s))
846     {
847         DPRINTF("receiver disabled ================\n");
848         return -1;
849     }
850 
851     /* XXX: check this */
852     if (s->RxConfig & AcceptAllPhys) {
853         /* promiscuous: receive all */
854         DPRINTF(">>> packet received in promiscuous mode\n");
855 
856     } else {
857         if (!memcmp(buf,  broadcast_macaddr, 6)) {
858             /* broadcast address */
859             if (!(s->RxConfig & AcceptBroadcast))
860             {
861                 DPRINTF(">>> broadcast packet rejected\n");
862 
863                 /* update tally counter */
864                 ++s->tally_counters.RxERR;
865 
866                 return size;
867             }
868 
869             packet_header |= RxBroadcast;
870 
871             DPRINTF(">>> broadcast packet received\n");
872 
873             /* update tally counter */
874             ++s->tally_counters.RxOkBrd;
875 
876         } else if (buf[0] & 0x01) {
877             /* multicast */
878             if (!(s->RxConfig & AcceptMulticast))
879             {
880                 DPRINTF(">>> multicast packet rejected\n");
881 
882                 /* update tally counter */
883                 ++s->tally_counters.RxERR;
884 
885                 return size;
886             }
887 
888             int mcast_idx = net_crc32(buf, ETH_ALEN) >> 26;
889 
890             if (!(s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))))
891             {
892                 DPRINTF(">>> multicast address mismatch\n");
893 
894                 /* update tally counter */
895                 ++s->tally_counters.RxERR;
896 
897                 return size;
898             }
899 
900             packet_header |= RxMulticast;
901 
902             DPRINTF(">>> multicast packet received\n");
903 
904             /* update tally counter */
905             ++s->tally_counters.RxOkMul;
906 
907         } else if (s->phys[0] == buf[0] &&
908                    s->phys[1] == buf[1] &&
909                    s->phys[2] == buf[2] &&
910                    s->phys[3] == buf[3] &&
911                    s->phys[4] == buf[4] &&
912                    s->phys[5] == buf[5]) {
913             /* match */
914             if (!(s->RxConfig & AcceptMyPhys))
915             {
916                 DPRINTF(">>> rejecting physical address matching packet\n");
917 
918                 /* update tally counter */
919                 ++s->tally_counters.RxERR;
920 
921                 return size;
922             }
923 
924             packet_header |= RxPhysical;
925 
926             DPRINTF(">>> physical address matching packet received\n");
927 
928             /* update tally counter */
929             ++s->tally_counters.RxOkPhy;
930 
931         } else {
932 
933             DPRINTF(">>> unknown packet\n");
934 
935             /* update tally counter */
936             ++s->tally_counters.RxERR;
937 
938             return size;
939         }
940     }
941 
942     /* if too small buffer, then expand it
943      * Include some tailroom in case a vlan tag is later removed. */
944     if (size < MIN_BUF_SIZE + VLAN_HLEN) {
945         memcpy(buf1, buf, size);
946         memset(buf1 + size, 0, MIN_BUF_SIZE + VLAN_HLEN - size);
947         buf = buf1;
948         if (size < MIN_BUF_SIZE) {
949             size = MIN_BUF_SIZE;
950         }
951     }
952 
953     if (rtl8139_cp_receiver_enabled(s))
954     {
955         if (!rtl8139_cp_rx_valid(s)) {
956             return size;
957         }
958 
959         DPRINTF("in C+ Rx mode ================\n");
960 
961         /* begin C+ receiver mode */
962 
963 /* w0 ownership flag */
964 #define CP_RX_OWN (1<<31)
965 /* w0 end of ring flag */
966 #define CP_RX_EOR (1<<30)
967 /* w0 bits 0...12 : buffer size */
968 #define CP_RX_BUFFER_SIZE_MASK ((1<<13) - 1)
969 /* w1 tag available flag */
970 #define CP_RX_TAVA (1<<16)
971 /* w1 bits 0...15 : VLAN tag */
972 #define CP_RX_VLAN_TAG_MASK ((1<<16) - 1)
973 /* w2 low  32bit of Rx buffer ptr */
974 /* w3 high 32bit of Rx buffer ptr */
975 
976         int descriptor = s->currCPlusRxDesc;
977         dma_addr_t cplus_rx_ring_desc;
978 
979         cplus_rx_ring_desc = rtl8139_addr64(s->RxRingAddrLO, s->RxRingAddrHI);
980         cplus_rx_ring_desc += 16 * descriptor;
981 
982         DPRINTF("+++ C+ mode reading RX descriptor %d from host memory at "
983             "%08x %08x = "DMA_ADDR_FMT"\n", descriptor, s->RxRingAddrHI,
984             s->RxRingAddrLO, cplus_rx_ring_desc);
985 
986         uint32_t val, rxdw0,rxdw1,rxbufLO,rxbufHI;
987 
988         pci_dma_read(d, cplus_rx_ring_desc, &val, 4);
989         rxdw0 = le32_to_cpu(val);
990         pci_dma_read(d, cplus_rx_ring_desc+4, &val, 4);
991         rxdw1 = le32_to_cpu(val);
992         pci_dma_read(d, cplus_rx_ring_desc+8, &val, 4);
993         rxbufLO = le32_to_cpu(val);
994         pci_dma_read(d, cplus_rx_ring_desc+12, &val, 4);
995         rxbufHI = le32_to_cpu(val);
996 
997         DPRINTF("+++ C+ mode RX descriptor %d %08x %08x %08x %08x\n",
998             descriptor, rxdw0, rxdw1, rxbufLO, rxbufHI);
999 
1000         if (!(rxdw0 & CP_RX_OWN))
1001         {
1002             DPRINTF("C+ Rx mode : descriptor %d is owned by host\n",
1003                 descriptor);
1004 
1005             s->IntrStatus |= RxOverflow;
1006             ++s->RxMissed;
1007 
1008             /* update tally counter */
1009             ++s->tally_counters.RxERR;
1010             ++s->tally_counters.MissPkt;
1011 
1012             rtl8139_update_irq(s);
1013             return size_;
1014         }
1015 
1016         uint32_t rx_space = rxdw0 & CP_RX_BUFFER_SIZE_MASK;
1017 
1018         /* write VLAN info to descriptor variables. */
1019         if (s->CpCmd & CPlusRxVLAN &&
1020             lduw_be_p(&buf[ETH_ALEN * 2]) == ETH_P_VLAN) {
1021             dot1q_buf = &buf[ETH_ALEN * 2];
1022             size -= VLAN_HLEN;
1023             /* if too small buffer, use the tailroom added duing expansion */
1024             if (size < MIN_BUF_SIZE) {
1025                 size = MIN_BUF_SIZE;
1026             }
1027 
1028             rxdw1 &= ~CP_RX_VLAN_TAG_MASK;
1029             /* BE + ~le_to_cpu()~ + cpu_to_le() = BE */
1030             rxdw1 |= CP_RX_TAVA | lduw_le_p(&dot1q_buf[ETHER_TYPE_LEN]);
1031 
1032             DPRINTF("C+ Rx mode : extracted vlan tag with tci: ""%u\n",
1033                 lduw_be_p(&dot1q_buf[ETHER_TYPE_LEN]));
1034         } else {
1035             /* reset VLAN tag flag */
1036             rxdw1 &= ~CP_RX_TAVA;
1037         }
1038 
1039         /* TODO: scatter the packet over available receive ring descriptors space */
1040 
1041         if (size+4 > rx_space)
1042         {
1043             DPRINTF("C+ Rx mode : descriptor %d size %d received %zu + 4\n",
1044                 descriptor, rx_space, size);
1045 
1046             s->IntrStatus |= RxOverflow;
1047             ++s->RxMissed;
1048 
1049             /* update tally counter */
1050             ++s->tally_counters.RxERR;
1051             ++s->tally_counters.MissPkt;
1052 
1053             rtl8139_update_irq(s);
1054             return size_;
1055         }
1056 
1057         dma_addr_t rx_addr = rtl8139_addr64(rxbufLO, rxbufHI);
1058 
1059         /* receive/copy to target memory */
1060         if (dot1q_buf) {
1061             pci_dma_write(d, rx_addr, buf, 2 * ETH_ALEN);
1062             pci_dma_write(d, rx_addr + 2 * ETH_ALEN,
1063                           buf + 2 * ETH_ALEN + VLAN_HLEN,
1064                           size - 2 * ETH_ALEN);
1065         } else {
1066             pci_dma_write(d, rx_addr, buf, size);
1067         }
1068 
1069         if (s->CpCmd & CPlusRxChkSum)
1070         {
1071             /* do some packet checksumming */
1072         }
1073 
1074         /* write checksum */
1075         val = cpu_to_le32(crc32(0, buf, size_));
1076         pci_dma_write(d, rx_addr+size, (uint8_t *)&val, 4);
1077 
1078 /* first segment of received packet flag */
1079 #define CP_RX_STATUS_FS (1<<29)
1080 /* last segment of received packet flag */
1081 #define CP_RX_STATUS_LS (1<<28)
1082 /* multicast packet flag */
1083 #define CP_RX_STATUS_MAR (1<<26)
1084 /* physical-matching packet flag */
1085 #define CP_RX_STATUS_PAM (1<<25)
1086 /* broadcast packet flag */
1087 #define CP_RX_STATUS_BAR (1<<24)
1088 /* runt packet flag */
1089 #define CP_RX_STATUS_RUNT (1<<19)
1090 /* crc error flag */
1091 #define CP_RX_STATUS_CRC (1<<18)
1092 /* IP checksum error flag */
1093 #define CP_RX_STATUS_IPF (1<<15)
1094 /* UDP checksum error flag */
1095 #define CP_RX_STATUS_UDPF (1<<14)
1096 /* TCP checksum error flag */
1097 #define CP_RX_STATUS_TCPF (1<<13)
1098 
1099         /* transfer ownership to target */
1100         rxdw0 &= ~CP_RX_OWN;
1101 
1102         /* set first segment bit */
1103         rxdw0 |= CP_RX_STATUS_FS;
1104 
1105         /* set last segment bit */
1106         rxdw0 |= CP_RX_STATUS_LS;
1107 
1108         /* set received packet type flags */
1109         if (packet_header & RxBroadcast)
1110             rxdw0 |= CP_RX_STATUS_BAR;
1111         if (packet_header & RxMulticast)
1112             rxdw0 |= CP_RX_STATUS_MAR;
1113         if (packet_header & RxPhysical)
1114             rxdw0 |= CP_RX_STATUS_PAM;
1115 
1116         /* set received size */
1117         rxdw0 &= ~CP_RX_BUFFER_SIZE_MASK;
1118         rxdw0 |= (size+4);
1119 
1120         /* update ring data */
1121         val = cpu_to_le32(rxdw0);
1122         pci_dma_write(d, cplus_rx_ring_desc, (uint8_t *)&val, 4);
1123         val = cpu_to_le32(rxdw1);
1124         pci_dma_write(d, cplus_rx_ring_desc+4, (uint8_t *)&val, 4);
1125 
1126         /* update tally counter */
1127         ++s->tally_counters.RxOk;
1128 
1129         /* seek to next Rx descriptor */
1130         if (rxdw0 & CP_RX_EOR)
1131         {
1132             s->currCPlusRxDesc = 0;
1133         }
1134         else
1135         {
1136             ++s->currCPlusRxDesc;
1137         }
1138 
1139         DPRINTF("done C+ Rx mode ----------------\n");
1140 
1141     }
1142     else
1143     {
1144         DPRINTF("in ring Rx mode ================\n");
1145 
1146         /* begin ring receiver mode */
1147         int avail = MOD2(s->RxBufferSize + s->RxBufPtr - s->RxBufAddr, s->RxBufferSize);
1148 
1149         /* if receiver buffer is empty then avail == 0 */
1150 
1151 #define RX_ALIGN(x) (((x) + 3) & ~0x3)
1152 
1153         if (avail != 0 && RX_ALIGN(size + 8) >= avail)
1154         {
1155             DPRINTF("rx overflow: rx buffer length %d head 0x%04x "
1156                 "read 0x%04x === available 0x%04x need 0x%04zx\n",
1157                 s->RxBufferSize, s->RxBufAddr, s->RxBufPtr, avail, size + 8);
1158 
1159             s->IntrStatus |= RxOverflow;
1160             ++s->RxMissed;
1161             rtl8139_update_irq(s);
1162             return 0;
1163         }
1164 
1165         packet_header |= RxStatusOK;
1166 
1167         packet_header |= (((size+4) << 16) & 0xffff0000);
1168 
1169         /* write header */
1170         uint32_t val = cpu_to_le32(packet_header);
1171 
1172         rtl8139_write_buffer(s, (uint8_t *)&val, 4);
1173 
1174         rtl8139_write_buffer(s, buf, size);
1175 
1176         /* write checksum */
1177         val = cpu_to_le32(crc32(0, buf, size));
1178         rtl8139_write_buffer(s, (uint8_t *)&val, 4);
1179 
1180         /* correct buffer write pointer */
1181         s->RxBufAddr = MOD2(RX_ALIGN(s->RxBufAddr), s->RxBufferSize);
1182 
1183         /* now we can signal we have received something */
1184 
1185         DPRINTF("received: rx buffer length %d head 0x%04x read 0x%04x\n",
1186             s->RxBufferSize, s->RxBufAddr, s->RxBufPtr);
1187     }
1188 
1189     s->IntrStatus |= RxOK;
1190 
1191     if (do_interrupt)
1192     {
1193         rtl8139_update_irq(s);
1194     }
1195 
1196     return size_;
1197 }
1198 
1199 static ssize_t rtl8139_receive(NetClientState *nc, const uint8_t *buf, size_t size)
1200 {
1201     return rtl8139_do_receive(nc, buf, size, 1);
1202 }
1203 
1204 static void rtl8139_reset_rxring(RTL8139State *s, uint32_t bufferSize)
1205 {
1206     s->RxBufferSize = bufferSize;
1207     s->RxBufPtr  = 0;
1208     s->RxBufAddr = 0;
1209 }
1210 
1211 static void rtl8139_reset_phy(RTL8139State *s)
1212 {
1213     s->BasicModeStatus  = 0x7809;
1214     s->BasicModeStatus |= 0x0020; /* autonegotiation completed */
1215     /* preserve link state */
1216     s->BasicModeStatus |= qemu_get_queue(s->nic)->link_down ? 0 : 0x04;
1217 
1218     s->NWayAdvert    = 0x05e1; /* all modes, full duplex */
1219     s->NWayLPAR      = 0x05e1; /* all modes, full duplex */
1220     s->NWayExpansion = 0x0001; /* autonegotiation supported */
1221 
1222     s->CSCR = CSCR_F_LINK_100 | CSCR_HEART_BIT | CSCR_LD;
1223 }
1224 
1225 static void rtl8139_reset(DeviceState *d)
1226 {
1227     RTL8139State *s = RTL8139(d);
1228     int i;
1229 
1230     /* restore MAC address */
1231     memcpy(s->phys, s->conf.macaddr.a, 6);
1232     qemu_format_nic_info_str(qemu_get_queue(s->nic), s->phys);
1233 
1234     /* reset interrupt mask */
1235     s->IntrStatus = 0;
1236     s->IntrMask = 0;
1237 
1238     rtl8139_update_irq(s);
1239 
1240     /* mark all status registers as owned by host */
1241     for (i = 0; i < 4; ++i)
1242     {
1243         s->TxStatus[i] = TxHostOwns;
1244     }
1245 
1246     s->currTxDesc = 0;
1247     s->currCPlusRxDesc = 0;
1248     s->currCPlusTxDesc = 0;
1249 
1250     s->RxRingAddrLO = 0;
1251     s->RxRingAddrHI = 0;
1252 
1253     s->RxBuf = 0;
1254 
1255     rtl8139_reset_rxring(s, 8192);
1256 
1257     /* ACK the reset */
1258     s->TxConfig = 0;
1259 
1260 #if 0
1261 //    s->TxConfig |= HW_REVID(1, 0, 0, 0, 0, 0, 0); // RTL-8139  HasHltClk
1262     s->clock_enabled = 0;
1263 #else
1264     s->TxConfig |= HW_REVID(1, 1, 1, 0, 1, 1, 0); // RTL-8139C+ HasLWake
1265     s->clock_enabled = 1;
1266 #endif
1267 
1268     s->bChipCmdState = CmdReset; /* RxBufEmpty bit is calculated on read from ChipCmd */;
1269 
1270     /* set initial state data */
1271     s->Config0 = 0x0; /* No boot ROM */
1272     s->Config1 = 0xC; /* IO mapped and MEM mapped registers available */
1273     s->Config3 = 0x1; /* fast back-to-back compatible */
1274     s->Config5 = 0x0;
1275 
1276     s->CpCmd   = 0x0; /* reset C+ mode */
1277     s->cplus_enabled = 0;
1278 
1279 //    s->BasicModeCtrl = 0x3100; // 100Mbps, full duplex, autonegotiation
1280 //    s->BasicModeCtrl = 0x2100; // 100Mbps, full duplex
1281     s->BasicModeCtrl = 0x1000; // autonegotiation
1282 
1283     rtl8139_reset_phy(s);
1284 
1285     /* also reset timer and disable timer interrupt */
1286     s->TCTR = 0;
1287     s->TimerInt = 0;
1288     s->TCTR_base = 0;
1289     rtl8139_set_next_tctr_time(s);
1290 
1291     /* reset tally counters */
1292     RTL8139TallyCounters_clear(&s->tally_counters);
1293 }
1294 
1295 static void RTL8139TallyCounters_clear(RTL8139TallyCounters* counters)
1296 {
1297     counters->TxOk = 0;
1298     counters->RxOk = 0;
1299     counters->TxERR = 0;
1300     counters->RxERR = 0;
1301     counters->MissPkt = 0;
1302     counters->FAE = 0;
1303     counters->Tx1Col = 0;
1304     counters->TxMCol = 0;
1305     counters->RxOkPhy = 0;
1306     counters->RxOkBrd = 0;
1307     counters->RxOkMul = 0;
1308     counters->TxAbt = 0;
1309     counters->TxUndrn = 0;
1310 }
1311 
1312 static void RTL8139TallyCounters_dma_write(RTL8139State *s, dma_addr_t tc_addr)
1313 {
1314     PCIDevice *d = PCI_DEVICE(s);
1315     RTL8139TallyCounters *tally_counters = &s->tally_counters;
1316     uint16_t val16;
1317     uint32_t val32;
1318     uint64_t val64;
1319 
1320     val64 = cpu_to_le64(tally_counters->TxOk);
1321     pci_dma_write(d, tc_addr + 0,     (uint8_t *)&val64, 8);
1322 
1323     val64 = cpu_to_le64(tally_counters->RxOk);
1324     pci_dma_write(d, tc_addr + 8,     (uint8_t *)&val64, 8);
1325 
1326     val64 = cpu_to_le64(tally_counters->TxERR);
1327     pci_dma_write(d, tc_addr + 16,    (uint8_t *)&val64, 8);
1328 
1329     val32 = cpu_to_le32(tally_counters->RxERR);
1330     pci_dma_write(d, tc_addr + 24,    (uint8_t *)&val32, 4);
1331 
1332     val16 = cpu_to_le16(tally_counters->MissPkt);
1333     pci_dma_write(d, tc_addr + 28,    (uint8_t *)&val16, 2);
1334 
1335     val16 = cpu_to_le16(tally_counters->FAE);
1336     pci_dma_write(d, tc_addr + 30,    (uint8_t *)&val16, 2);
1337 
1338     val32 = cpu_to_le32(tally_counters->Tx1Col);
1339     pci_dma_write(d, tc_addr + 32,    (uint8_t *)&val32, 4);
1340 
1341     val32 = cpu_to_le32(tally_counters->TxMCol);
1342     pci_dma_write(d, tc_addr + 36,    (uint8_t *)&val32, 4);
1343 
1344     val64 = cpu_to_le64(tally_counters->RxOkPhy);
1345     pci_dma_write(d, tc_addr + 40,    (uint8_t *)&val64, 8);
1346 
1347     val64 = cpu_to_le64(tally_counters->RxOkBrd);
1348     pci_dma_write(d, tc_addr + 48,    (uint8_t *)&val64, 8);
1349 
1350     val32 = cpu_to_le32(tally_counters->RxOkMul);
1351     pci_dma_write(d, tc_addr + 56,    (uint8_t *)&val32, 4);
1352 
1353     val16 = cpu_to_le16(tally_counters->TxAbt);
1354     pci_dma_write(d, tc_addr + 60,    (uint8_t *)&val16, 2);
1355 
1356     val16 = cpu_to_le16(tally_counters->TxUndrn);
1357     pci_dma_write(d, tc_addr + 62,    (uint8_t *)&val16, 2);
1358 }
1359 
1360 static void rtl8139_ChipCmd_write(RTL8139State *s, uint32_t val)
1361 {
1362     DeviceState *d = DEVICE(s);
1363 
1364     val &= 0xff;
1365 
1366     DPRINTF("ChipCmd write val=0x%08x\n", val);
1367 
1368     if (val & CmdReset)
1369     {
1370         DPRINTF("ChipCmd reset\n");
1371         rtl8139_reset(d);
1372     }
1373     if (val & CmdRxEnb)
1374     {
1375         DPRINTF("ChipCmd enable receiver\n");
1376 
1377         s->currCPlusRxDesc = 0;
1378     }
1379     if (val & CmdTxEnb)
1380     {
1381         DPRINTF("ChipCmd enable transmitter\n");
1382 
1383         s->currCPlusTxDesc = 0;
1384     }
1385 
1386     /* mask unwritable bits */
1387     val = SET_MASKED(val, 0xe3, s->bChipCmdState);
1388 
1389     /* Deassert reset pin before next read */
1390     val &= ~CmdReset;
1391 
1392     s->bChipCmdState = val;
1393 }
1394 
1395 static int rtl8139_RxBufferEmpty(RTL8139State *s)
1396 {
1397     int unread = MOD2(s->RxBufferSize + s->RxBufAddr - s->RxBufPtr, s->RxBufferSize);
1398 
1399     if (unread != 0)
1400     {
1401         DPRINTF("receiver buffer data available 0x%04x\n", unread);
1402         return 0;
1403     }
1404 
1405     DPRINTF("receiver buffer is empty\n");
1406 
1407     return 1;
1408 }
1409 
1410 static uint32_t rtl8139_ChipCmd_read(RTL8139State *s)
1411 {
1412     uint32_t ret = s->bChipCmdState;
1413 
1414     if (rtl8139_RxBufferEmpty(s))
1415         ret |= RxBufEmpty;
1416 
1417     DPRINTF("ChipCmd read val=0x%04x\n", ret);
1418 
1419     return ret;
1420 }
1421 
1422 static void rtl8139_CpCmd_write(RTL8139State *s, uint32_t val)
1423 {
1424     val &= 0xffff;
1425 
1426     DPRINTF("C+ command register write(w) val=0x%04x\n", val);
1427 
1428     s->cplus_enabled = 1;
1429 
1430     /* mask unwritable bits */
1431     val = SET_MASKED(val, 0xff84, s->CpCmd);
1432 
1433     s->CpCmd = val;
1434 }
1435 
1436 static uint32_t rtl8139_CpCmd_read(RTL8139State *s)
1437 {
1438     uint32_t ret = s->CpCmd;
1439 
1440     DPRINTF("C+ command register read(w) val=0x%04x\n", ret);
1441 
1442     return ret;
1443 }
1444 
1445 static void rtl8139_IntrMitigate_write(RTL8139State *s, uint32_t val)
1446 {
1447     DPRINTF("C+ IntrMitigate register write(w) val=0x%04x\n", val);
1448 }
1449 
1450 static uint32_t rtl8139_IntrMitigate_read(RTL8139State *s)
1451 {
1452     uint32_t ret = 0;
1453 
1454     DPRINTF("C+ IntrMitigate register read(w) val=0x%04x\n", ret);
1455 
1456     return ret;
1457 }
1458 
1459 static int rtl8139_config_writable(RTL8139State *s)
1460 {
1461     if ((s->Cfg9346 & Chip9346_op_mask) == Cfg9346_ConfigWrite)
1462     {
1463         return 1;
1464     }
1465 
1466     DPRINTF("Configuration registers are write-protected\n");
1467 
1468     return 0;
1469 }
1470 
1471 static void rtl8139_BasicModeCtrl_write(RTL8139State *s, uint32_t val)
1472 {
1473     val &= 0xffff;
1474 
1475     DPRINTF("BasicModeCtrl register write(w) val=0x%04x\n", val);
1476 
1477     /* mask unwritable bits */
1478     uint32_t mask = 0xccff;
1479 
1480     if (1 || !rtl8139_config_writable(s))
1481     {
1482         /* Speed setting and autonegotiation enable bits are read-only */
1483         mask |= 0x3000;
1484         /* Duplex mode setting is read-only */
1485         mask |= 0x0100;
1486     }
1487 
1488     if (val & 0x8000) {
1489         /* Reset PHY */
1490         rtl8139_reset_phy(s);
1491     }
1492 
1493     val = SET_MASKED(val, mask, s->BasicModeCtrl);
1494 
1495     s->BasicModeCtrl = val;
1496 }
1497 
1498 static uint32_t rtl8139_BasicModeCtrl_read(RTL8139State *s)
1499 {
1500     uint32_t ret = s->BasicModeCtrl;
1501 
1502     DPRINTF("BasicModeCtrl register read(w) val=0x%04x\n", ret);
1503 
1504     return ret;
1505 }
1506 
1507 static void rtl8139_BasicModeStatus_write(RTL8139State *s, uint32_t val)
1508 {
1509     val &= 0xffff;
1510 
1511     DPRINTF("BasicModeStatus register write(w) val=0x%04x\n", val);
1512 
1513     /* mask unwritable bits */
1514     val = SET_MASKED(val, 0xff3f, s->BasicModeStatus);
1515 
1516     s->BasicModeStatus = val;
1517 }
1518 
1519 static uint32_t rtl8139_BasicModeStatus_read(RTL8139State *s)
1520 {
1521     uint32_t ret = s->BasicModeStatus;
1522 
1523     DPRINTF("BasicModeStatus register read(w) val=0x%04x\n", ret);
1524 
1525     return ret;
1526 }
1527 
1528 static void rtl8139_Cfg9346_write(RTL8139State *s, uint32_t val)
1529 {
1530     DeviceState *d = DEVICE(s);
1531 
1532     val &= 0xff;
1533 
1534     DPRINTF("Cfg9346 write val=0x%02x\n", val);
1535 
1536     /* mask unwritable bits */
1537     val = SET_MASKED(val, 0x31, s->Cfg9346);
1538 
1539     uint32_t opmode = val & 0xc0;
1540     uint32_t eeprom_val = val & 0xf;
1541 
1542     if (opmode == 0x80) {
1543         /* eeprom access */
1544         int eecs = (eeprom_val & 0x08)?1:0;
1545         int eesk = (eeprom_val & 0x04)?1:0;
1546         int eedi = (eeprom_val & 0x02)?1:0;
1547         prom9346_set_wire(s, eecs, eesk, eedi);
1548     } else if (opmode == 0x40) {
1549         /* Reset.  */
1550         val = 0;
1551         rtl8139_reset(d);
1552     }
1553 
1554     s->Cfg9346 = val;
1555 }
1556 
1557 static uint32_t rtl8139_Cfg9346_read(RTL8139State *s)
1558 {
1559     uint32_t ret = s->Cfg9346;
1560 
1561     uint32_t opmode = ret & 0xc0;
1562 
1563     if (opmode == 0x80)
1564     {
1565         /* eeprom access */
1566         int eedo = prom9346_get_wire(s);
1567         if (eedo)
1568         {
1569             ret |=  0x01;
1570         }
1571         else
1572         {
1573             ret &= ~0x01;
1574         }
1575     }
1576 
1577     DPRINTF("Cfg9346 read val=0x%02x\n", ret);
1578 
1579     return ret;
1580 }
1581 
1582 static void rtl8139_Config0_write(RTL8139State *s, uint32_t val)
1583 {
1584     val &= 0xff;
1585 
1586     DPRINTF("Config0 write val=0x%02x\n", val);
1587 
1588     if (!rtl8139_config_writable(s)) {
1589         return;
1590     }
1591 
1592     /* mask unwritable bits */
1593     val = SET_MASKED(val, 0xf8, s->Config0);
1594 
1595     s->Config0 = val;
1596 }
1597 
1598 static uint32_t rtl8139_Config0_read(RTL8139State *s)
1599 {
1600     uint32_t ret = s->Config0;
1601 
1602     DPRINTF("Config0 read val=0x%02x\n", ret);
1603 
1604     return ret;
1605 }
1606 
1607 static void rtl8139_Config1_write(RTL8139State *s, uint32_t val)
1608 {
1609     val &= 0xff;
1610 
1611     DPRINTF("Config1 write val=0x%02x\n", val);
1612 
1613     if (!rtl8139_config_writable(s)) {
1614         return;
1615     }
1616 
1617     /* mask unwritable bits */
1618     val = SET_MASKED(val, 0xC, s->Config1);
1619 
1620     s->Config1 = val;
1621 }
1622 
1623 static uint32_t rtl8139_Config1_read(RTL8139State *s)
1624 {
1625     uint32_t ret = s->Config1;
1626 
1627     DPRINTF("Config1 read val=0x%02x\n", ret);
1628 
1629     return ret;
1630 }
1631 
1632 static void rtl8139_Config3_write(RTL8139State *s, uint32_t val)
1633 {
1634     val &= 0xff;
1635 
1636     DPRINTF("Config3 write val=0x%02x\n", val);
1637 
1638     if (!rtl8139_config_writable(s)) {
1639         return;
1640     }
1641 
1642     /* mask unwritable bits */
1643     val = SET_MASKED(val, 0x8F, s->Config3);
1644 
1645     s->Config3 = val;
1646 }
1647 
1648 static uint32_t rtl8139_Config3_read(RTL8139State *s)
1649 {
1650     uint32_t ret = s->Config3;
1651 
1652     DPRINTF("Config3 read val=0x%02x\n", ret);
1653 
1654     return ret;
1655 }
1656 
1657 static void rtl8139_Config4_write(RTL8139State *s, uint32_t val)
1658 {
1659     val &= 0xff;
1660 
1661     DPRINTF("Config4 write val=0x%02x\n", val);
1662 
1663     if (!rtl8139_config_writable(s)) {
1664         return;
1665     }
1666 
1667     /* mask unwritable bits */
1668     val = SET_MASKED(val, 0x0a, s->Config4);
1669 
1670     s->Config4 = val;
1671 }
1672 
1673 static uint32_t rtl8139_Config4_read(RTL8139State *s)
1674 {
1675     uint32_t ret = s->Config4;
1676 
1677     DPRINTF("Config4 read val=0x%02x\n", ret);
1678 
1679     return ret;
1680 }
1681 
1682 static void rtl8139_Config5_write(RTL8139State *s, uint32_t val)
1683 {
1684     val &= 0xff;
1685 
1686     DPRINTF("Config5 write val=0x%02x\n", val);
1687 
1688     /* mask unwritable bits */
1689     val = SET_MASKED(val, 0x80, s->Config5);
1690 
1691     s->Config5 = val;
1692 }
1693 
1694 static uint32_t rtl8139_Config5_read(RTL8139State *s)
1695 {
1696     uint32_t ret = s->Config5;
1697 
1698     DPRINTF("Config5 read val=0x%02x\n", ret);
1699 
1700     return ret;
1701 }
1702 
1703 static void rtl8139_TxConfig_write(RTL8139State *s, uint32_t val)
1704 {
1705     if (!rtl8139_transmitter_enabled(s))
1706     {
1707         DPRINTF("transmitter disabled; no TxConfig write val=0x%08x\n", val);
1708         return;
1709     }
1710 
1711     DPRINTF("TxConfig write val=0x%08x\n", val);
1712 
1713     val = SET_MASKED(val, TxVersionMask | 0x8070f80f, s->TxConfig);
1714 
1715     s->TxConfig = val;
1716 }
1717 
1718 static void rtl8139_TxConfig_writeb(RTL8139State *s, uint32_t val)
1719 {
1720     DPRINTF("RTL8139C TxConfig via write(b) val=0x%02x\n", val);
1721 
1722     uint32_t tc = s->TxConfig;
1723     tc &= 0xFFFFFF00;
1724     tc |= (val & 0x000000FF);
1725     rtl8139_TxConfig_write(s, tc);
1726 }
1727 
1728 static uint32_t rtl8139_TxConfig_read(RTL8139State *s)
1729 {
1730     uint32_t ret = s->TxConfig;
1731 
1732     DPRINTF("TxConfig read val=0x%04x\n", ret);
1733 
1734     return ret;
1735 }
1736 
1737 static void rtl8139_RxConfig_write(RTL8139State *s, uint32_t val)
1738 {
1739     DPRINTF("RxConfig write val=0x%08x\n", val);
1740 
1741     /* mask unwritable bits */
1742     val = SET_MASKED(val, 0xf0fc0040, s->RxConfig);
1743 
1744     s->RxConfig = val;
1745 
1746     /* reset buffer size and read/write pointers */
1747     rtl8139_reset_rxring(s, 8192 << ((s->RxConfig >> 11) & 0x3));
1748 
1749     DPRINTF("RxConfig write reset buffer size to %d\n", s->RxBufferSize);
1750 }
1751 
1752 static uint32_t rtl8139_RxConfig_read(RTL8139State *s)
1753 {
1754     uint32_t ret = s->RxConfig;
1755 
1756     DPRINTF("RxConfig read val=0x%08x\n", ret);
1757 
1758     return ret;
1759 }
1760 
1761 static void rtl8139_transfer_frame(RTL8139State *s, uint8_t *buf, int size,
1762     int do_interrupt, const uint8_t *dot1q_buf)
1763 {
1764     struct iovec *iov = NULL;
1765     struct iovec vlan_iov[3];
1766 
1767     if (!size)
1768     {
1769         DPRINTF("+++ empty ethernet frame\n");
1770         return;
1771     }
1772 
1773     if (dot1q_buf && size >= ETH_ALEN * 2) {
1774         iov = (struct iovec[3]) {
1775             { .iov_base = buf, .iov_len = ETH_ALEN * 2 },
1776             { .iov_base = (void *) dot1q_buf, .iov_len = VLAN_HLEN },
1777             { .iov_base = buf + ETH_ALEN * 2,
1778                 .iov_len = size - ETH_ALEN * 2 },
1779         };
1780 
1781         memcpy(vlan_iov, iov, sizeof(vlan_iov));
1782         iov = vlan_iov;
1783     }
1784 
1785     if (TxLoopBack == (s->TxConfig & TxLoopBack))
1786     {
1787         size_t buf2_size;
1788         uint8_t *buf2;
1789 
1790         if (iov) {
1791             buf2_size = iov_size(iov, 3);
1792             buf2 = g_malloc(buf2_size);
1793             iov_to_buf(iov, 3, 0, buf2, buf2_size);
1794             buf = buf2;
1795         }
1796 
1797         DPRINTF("+++ transmit loopback mode\n");
1798         qemu_receive_packet(qemu_get_queue(s->nic), buf, size);
1799 
1800         if (iov) {
1801             g_free(buf2);
1802         }
1803     }
1804     else
1805     {
1806         if (iov) {
1807             qemu_sendv_packet(qemu_get_queue(s->nic), iov, 3);
1808         } else {
1809             qemu_send_packet(qemu_get_queue(s->nic), buf, size);
1810         }
1811     }
1812 }
1813 
1814 static int rtl8139_transmit_one(RTL8139State *s, int descriptor)
1815 {
1816     if (!rtl8139_transmitter_enabled(s))
1817     {
1818         DPRINTF("+++ cannot transmit from descriptor %d: transmitter "
1819             "disabled\n", descriptor);
1820         return 0;
1821     }
1822 
1823     if (s->TxStatus[descriptor] & TxHostOwns)
1824     {
1825         DPRINTF("+++ cannot transmit from descriptor %d: owned by host "
1826             "(%08x)\n", descriptor, s->TxStatus[descriptor]);
1827         return 0;
1828     }
1829 
1830     DPRINTF("+++ transmitting from descriptor %d\n", descriptor);
1831 
1832     PCIDevice *d = PCI_DEVICE(s);
1833     int txsize = s->TxStatus[descriptor] & 0x1fff;
1834     uint8_t txbuffer[0x2000];
1835 
1836     DPRINTF("+++ transmit reading %d bytes from host memory at 0x%08x\n",
1837         txsize, s->TxAddr[descriptor]);
1838 
1839     pci_dma_read(d, s->TxAddr[descriptor], txbuffer, txsize);
1840 
1841     /* Mark descriptor as transferred */
1842     s->TxStatus[descriptor] |= TxHostOwns;
1843     s->TxStatus[descriptor] |= TxStatOK;
1844 
1845     rtl8139_transfer_frame(s, txbuffer, txsize, 0, NULL);
1846 
1847     DPRINTF("+++ transmitted %d bytes from descriptor %d\n", txsize,
1848         descriptor);
1849 
1850     /* update interrupt */
1851     s->IntrStatus |= TxOK;
1852     rtl8139_update_irq(s);
1853 
1854     return 1;
1855 }
1856 
1857 #define TCP_HEADER_CLEAR_FLAGS(tcp, off) ((tcp)->th_offset_flags &= cpu_to_be16(~TCP_FLAGS_ONLY(off)))
1858 
1859 /* produces ones' complement sum of data */
1860 static uint16_t ones_complement_sum(uint8_t *data, size_t len)
1861 {
1862     uint32_t result = 0;
1863 
1864     for (; len > 1; data+=2, len-=2)
1865     {
1866         result += *(uint16_t*)data;
1867     }
1868 
1869     /* add the remainder byte */
1870     if (len)
1871     {
1872         uint8_t odd[2] = {*data, 0};
1873         result += *(uint16_t*)odd;
1874     }
1875 
1876     while (result>>16)
1877         result = (result & 0xffff) + (result >> 16);
1878 
1879     return result;
1880 }
1881 
1882 static uint16_t ip_checksum(void *data, size_t len)
1883 {
1884     return ~ones_complement_sum((uint8_t*)data, len);
1885 }
1886 
1887 static int rtl8139_cplus_transmit_one(RTL8139State *s)
1888 {
1889     if (!rtl8139_transmitter_enabled(s))
1890     {
1891         DPRINTF("+++ C+ mode: transmitter disabled\n");
1892         return 0;
1893     }
1894 
1895     if (!rtl8139_cp_transmitter_enabled(s))
1896     {
1897         DPRINTF("+++ C+ mode: C+ transmitter disabled\n");
1898         return 0 ;
1899     }
1900 
1901     PCIDevice *d = PCI_DEVICE(s);
1902     int descriptor = s->currCPlusTxDesc;
1903 
1904     dma_addr_t cplus_tx_ring_desc = rtl8139_addr64(s->TxAddr[0], s->TxAddr[1]);
1905 
1906     /* Normal priority ring */
1907     cplus_tx_ring_desc += 16 * descriptor;
1908 
1909     DPRINTF("+++ C+ mode reading TX descriptor %d from host memory at "
1910         "%08x %08x = 0x"DMA_ADDR_FMT"\n", descriptor, s->TxAddr[1],
1911         s->TxAddr[0], cplus_tx_ring_desc);
1912 
1913     uint32_t val, txdw0,txdw1,txbufLO,txbufHI;
1914 
1915     pci_dma_read(d, cplus_tx_ring_desc,    (uint8_t *)&val, 4);
1916     txdw0 = le32_to_cpu(val);
1917     pci_dma_read(d, cplus_tx_ring_desc+4,  (uint8_t *)&val, 4);
1918     txdw1 = le32_to_cpu(val);
1919     pci_dma_read(d, cplus_tx_ring_desc+8,  (uint8_t *)&val, 4);
1920     txbufLO = le32_to_cpu(val);
1921     pci_dma_read(d, cplus_tx_ring_desc+12, (uint8_t *)&val, 4);
1922     txbufHI = le32_to_cpu(val);
1923 
1924     DPRINTF("+++ C+ mode TX descriptor %d %08x %08x %08x %08x\n", descriptor,
1925         txdw0, txdw1, txbufLO, txbufHI);
1926 
1927 /* w0 ownership flag */
1928 #define CP_TX_OWN (1<<31)
1929 /* w0 end of ring flag */
1930 #define CP_TX_EOR (1<<30)
1931 /* first segment of received packet flag */
1932 #define CP_TX_FS (1<<29)
1933 /* last segment of received packet flag */
1934 #define CP_TX_LS (1<<28)
1935 /* large send packet flag */
1936 #define CP_TX_LGSEN (1<<27)
1937 /* large send MSS mask, bits 16...25 */
1938 #define CP_TC_LGSEN_MSS_MASK ((1 << 12) - 1)
1939 
1940 /* IP checksum offload flag */
1941 #define CP_TX_IPCS (1<<18)
1942 /* UDP checksum offload flag */
1943 #define CP_TX_UDPCS (1<<17)
1944 /* TCP checksum offload flag */
1945 #define CP_TX_TCPCS (1<<16)
1946 
1947 /* w0 bits 0...15 : buffer size */
1948 #define CP_TX_BUFFER_SIZE (1<<16)
1949 #define CP_TX_BUFFER_SIZE_MASK (CP_TX_BUFFER_SIZE - 1)
1950 /* w1 add tag flag */
1951 #define CP_TX_TAGC (1<<17)
1952 /* w1 bits 0...15 : VLAN tag (big endian) */
1953 #define CP_TX_VLAN_TAG_MASK ((1<<16) - 1)
1954 /* w2 low  32bit of Rx buffer ptr */
1955 /* w3 high 32bit of Rx buffer ptr */
1956 
1957 /* set after transmission */
1958 /* FIFO underrun flag */
1959 #define CP_TX_STATUS_UNF (1<<25)
1960 /* transmit error summary flag, valid if set any of three below */
1961 #define CP_TX_STATUS_TES (1<<23)
1962 /* out-of-window collision flag */
1963 #define CP_TX_STATUS_OWC (1<<22)
1964 /* link failure flag */
1965 #define CP_TX_STATUS_LNKF (1<<21)
1966 /* excessive collisions flag */
1967 #define CP_TX_STATUS_EXC (1<<20)
1968 
1969     if (!(txdw0 & CP_TX_OWN))
1970     {
1971         DPRINTF("C+ Tx mode : descriptor %d is owned by host\n", descriptor);
1972         return 0 ;
1973     }
1974 
1975     DPRINTF("+++ C+ Tx mode : transmitting from descriptor %d\n", descriptor);
1976 
1977     if (txdw0 & CP_TX_FS)
1978     {
1979         DPRINTF("+++ C+ Tx mode : descriptor %d is first segment "
1980             "descriptor\n", descriptor);
1981 
1982         /* reset internal buffer offset */
1983         s->cplus_txbuffer_offset = 0;
1984     }
1985 
1986     int txsize = txdw0 & CP_TX_BUFFER_SIZE_MASK;
1987     dma_addr_t tx_addr = rtl8139_addr64(txbufLO, txbufHI);
1988 
1989     /* make sure we have enough space to assemble the packet */
1990     if (!s->cplus_txbuffer)
1991     {
1992         s->cplus_txbuffer_len = CP_TX_BUFFER_SIZE;
1993         s->cplus_txbuffer = g_malloc(s->cplus_txbuffer_len);
1994         s->cplus_txbuffer_offset = 0;
1995 
1996         DPRINTF("+++ C+ mode transmission buffer allocated space %d\n",
1997             s->cplus_txbuffer_len);
1998     }
1999 
2000     if (s->cplus_txbuffer_offset + txsize >= s->cplus_txbuffer_len)
2001     {
2002         /* The spec didn't tell the maximum size, stick to CP_TX_BUFFER_SIZE */
2003         txsize = s->cplus_txbuffer_len - s->cplus_txbuffer_offset;
2004         DPRINTF("+++ C+ mode transmission buffer overrun, truncated descriptor"
2005                 "length to %d\n", txsize);
2006     }
2007 
2008     /* append more data to the packet */
2009 
2010     DPRINTF("+++ C+ mode transmit reading %d bytes from host memory at "
2011             DMA_ADDR_FMT" to offset %d\n", txsize, tx_addr,
2012             s->cplus_txbuffer_offset);
2013 
2014     pci_dma_read(d, tx_addr,
2015                  s->cplus_txbuffer + s->cplus_txbuffer_offset, txsize);
2016     s->cplus_txbuffer_offset += txsize;
2017 
2018     /* seek to next Rx descriptor */
2019     if (txdw0 & CP_TX_EOR)
2020     {
2021         s->currCPlusTxDesc = 0;
2022     }
2023     else
2024     {
2025         ++s->currCPlusTxDesc;
2026         if (s->currCPlusTxDesc >= 64)
2027             s->currCPlusTxDesc = 0;
2028     }
2029 
2030     /* transfer ownership to target */
2031     txdw0 &= ~CP_TX_OWN;
2032 
2033     /* reset error indicator bits */
2034     txdw0 &= ~CP_TX_STATUS_UNF;
2035     txdw0 &= ~CP_TX_STATUS_TES;
2036     txdw0 &= ~CP_TX_STATUS_OWC;
2037     txdw0 &= ~CP_TX_STATUS_LNKF;
2038     txdw0 &= ~CP_TX_STATUS_EXC;
2039 
2040     /* update ring data */
2041     val = cpu_to_le32(txdw0);
2042     pci_dma_write(d, cplus_tx_ring_desc, (uint8_t *)&val, 4);
2043 
2044     /* Now decide if descriptor being processed is holding the last segment of packet */
2045     if (txdw0 & CP_TX_LS)
2046     {
2047         uint8_t dot1q_buffer_space[VLAN_HLEN];
2048         uint16_t *dot1q_buffer;
2049 
2050         DPRINTF("+++ C+ Tx mode : descriptor %d is last segment descriptor\n",
2051             descriptor);
2052 
2053         /* can transfer fully assembled packet */
2054 
2055         uint8_t *saved_buffer  = s->cplus_txbuffer;
2056         int      saved_size    = s->cplus_txbuffer_offset;
2057         int      saved_buffer_len = s->cplus_txbuffer_len;
2058 
2059         /* create vlan tag */
2060         if (txdw1 & CP_TX_TAGC) {
2061             /* the vlan tag is in BE byte order in the descriptor
2062              * BE + le_to_cpu() + ~swap()~ = cpu */
2063             DPRINTF("+++ C+ Tx mode : inserting vlan tag with ""tci: %u\n",
2064                 bswap16(txdw1 & CP_TX_VLAN_TAG_MASK));
2065 
2066             dot1q_buffer = (uint16_t *) dot1q_buffer_space;
2067             dot1q_buffer[0] = cpu_to_be16(ETH_P_VLAN);
2068             /* BE + le_to_cpu() + ~cpu_to_le()~ = BE */
2069             dot1q_buffer[1] = cpu_to_le16(txdw1 & CP_TX_VLAN_TAG_MASK);
2070         } else {
2071             dot1q_buffer = NULL;
2072         }
2073 
2074         /* reset the card space to protect from recursive call */
2075         s->cplus_txbuffer = NULL;
2076         s->cplus_txbuffer_offset = 0;
2077         s->cplus_txbuffer_len = 0;
2078 
2079         if (txdw0 & (CP_TX_IPCS | CP_TX_UDPCS | CP_TX_TCPCS | CP_TX_LGSEN))
2080         {
2081             DPRINTF("+++ C+ mode offloaded task checksum\n");
2082 
2083             /* Large enough for Ethernet and IP headers? */
2084             if (saved_size < ETH_HLEN + sizeof(struct ip_header)) {
2085                 goto skip_offload;
2086             }
2087 
2088             /* ip packet header */
2089             struct ip_header *ip = NULL;
2090             int hlen = 0;
2091             uint8_t  ip_protocol = 0;
2092             uint16_t ip_data_len = 0;
2093 
2094             uint8_t *eth_payload_data = NULL;
2095             size_t   eth_payload_len  = 0;
2096 
2097             int proto = be16_to_cpu(*(uint16_t *)(saved_buffer + 12));
2098             if (proto != ETH_P_IP)
2099             {
2100                 goto skip_offload;
2101             }
2102 
2103             DPRINTF("+++ C+ mode has IP packet\n");
2104 
2105             /* Note on memory alignment: eth_payload_data is 16-bit aligned
2106              * since saved_buffer is allocated with g_malloc() and ETH_HLEN is
2107              * even.  32-bit accesses must use ldl/stl wrappers to avoid
2108              * unaligned accesses.
2109              */
2110             eth_payload_data = saved_buffer + ETH_HLEN;
2111             eth_payload_len  = saved_size   - ETH_HLEN;
2112 
2113             ip = (struct ip_header*)eth_payload_data;
2114 
2115             if (IP_HEADER_VERSION(ip) != IP_HEADER_VERSION_4) {
2116                 DPRINTF("+++ C+ mode packet has bad IP version %d "
2117                     "expected %d\n", IP_HEADER_VERSION(ip),
2118                     IP_HEADER_VERSION_4);
2119                 goto skip_offload;
2120             }
2121 
2122             hlen = IP_HDR_GET_LEN(ip);
2123             if (hlen < sizeof(struct ip_header) || hlen > eth_payload_len) {
2124                 goto skip_offload;
2125             }
2126 
2127             ip_protocol = ip->ip_p;
2128 
2129             ip_data_len = be16_to_cpu(ip->ip_len);
2130             if (ip_data_len < hlen || ip_data_len > eth_payload_len) {
2131                 goto skip_offload;
2132             }
2133             ip_data_len -= hlen;
2134 
2135             if (txdw0 & CP_TX_IPCS)
2136             {
2137                 DPRINTF("+++ C+ mode need IP checksum\n");
2138 
2139                 ip->ip_sum = 0;
2140                 ip->ip_sum = ip_checksum(ip, hlen);
2141                 DPRINTF("+++ C+ mode IP header len=%d checksum=%04x\n",
2142                     hlen, ip->ip_sum);
2143             }
2144 
2145             if ((txdw0 & CP_TX_LGSEN) && ip_protocol == IP_PROTO_TCP)
2146             {
2147                 /* Large enough for the TCP header? */
2148                 if (ip_data_len < sizeof(tcp_header)) {
2149                     goto skip_offload;
2150                 }
2151 
2152                 int large_send_mss = (txdw0 >> 16) & CP_TC_LGSEN_MSS_MASK;
2153 
2154                 DPRINTF("+++ C+ mode offloaded task TSO MTU=%d IP data %d "
2155                     "frame data %d specified MSS=%d\n", ETH_MTU,
2156                     ip_data_len, saved_size - ETH_HLEN, large_send_mss);
2157 
2158                 int tcp_send_offset = 0;
2159                 int send_count = 0;
2160 
2161                 /* maximum IP header length is 60 bytes */
2162                 uint8_t saved_ip_header[60];
2163 
2164                 /* save IP header template; data area is used in tcp checksum calculation */
2165                 memcpy(saved_ip_header, eth_payload_data, hlen);
2166 
2167                 /* a placeholder for checksum calculation routine in tcp case */
2168                 uint8_t *data_to_checksum     = eth_payload_data + hlen - 12;
2169                 //                    size_t   data_to_checksum_len = eth_payload_len  - hlen + 12;
2170 
2171                 /* pointer to TCP header */
2172                 tcp_header *p_tcp_hdr = (tcp_header*)(eth_payload_data + hlen);
2173 
2174                 int tcp_hlen = TCP_HEADER_DATA_OFFSET(p_tcp_hdr);
2175 
2176                 /* Invalid TCP data offset? */
2177                 if (tcp_hlen < sizeof(tcp_header) || tcp_hlen > ip_data_len) {
2178                     goto skip_offload;
2179                 }
2180 
2181                 /* ETH_MTU = ip header len + tcp header len + payload */
2182                 int tcp_data_len = ip_data_len - tcp_hlen;
2183                 int tcp_chunk_size = ETH_MTU - hlen - tcp_hlen;
2184 
2185                 DPRINTF("+++ C+ mode TSO IP data len %d TCP hlen %d TCP "
2186                     "data len %d TCP chunk size %d\n", ip_data_len,
2187                     tcp_hlen, tcp_data_len, tcp_chunk_size);
2188 
2189                 /* note the cycle below overwrites IP header data,
2190                    but restores it from saved_ip_header before sending packet */
2191 
2192                 int is_last_frame = 0;
2193 
2194                 for (tcp_send_offset = 0; tcp_send_offset < tcp_data_len; tcp_send_offset += tcp_chunk_size)
2195                 {
2196                     uint16_t chunk_size = tcp_chunk_size;
2197 
2198                     /* check if this is the last frame */
2199                     if (tcp_send_offset + tcp_chunk_size >= tcp_data_len)
2200                     {
2201                         is_last_frame = 1;
2202                         chunk_size = tcp_data_len - tcp_send_offset;
2203                     }
2204 
2205                     DPRINTF("+++ C+ mode TSO TCP seqno %08x\n",
2206                             ldl_be_p(&p_tcp_hdr->th_seq));
2207 
2208                     /* add 4 TCP pseudoheader fields */
2209                     /* copy IP source and destination fields */
2210                     memcpy(data_to_checksum, saved_ip_header + 12, 8);
2211 
2212                     DPRINTF("+++ C+ mode TSO calculating TCP checksum for "
2213                         "packet with %d bytes data\n", tcp_hlen +
2214                         chunk_size);
2215 
2216                     if (tcp_send_offset)
2217                     {
2218                         memcpy((uint8_t*)p_tcp_hdr + tcp_hlen, (uint8_t*)p_tcp_hdr + tcp_hlen + tcp_send_offset, chunk_size);
2219                     }
2220 
2221                     /* keep PUSH and FIN flags only for the last frame */
2222                     if (!is_last_frame)
2223                     {
2224                         TCP_HEADER_CLEAR_FLAGS(p_tcp_hdr, TH_PUSH | TH_FIN);
2225                     }
2226 
2227                     /* recalculate TCP checksum */
2228                     ip_pseudo_header *p_tcpip_hdr = (ip_pseudo_header *)data_to_checksum;
2229                     p_tcpip_hdr->zeros      = 0;
2230                     p_tcpip_hdr->ip_proto   = IP_PROTO_TCP;
2231                     p_tcpip_hdr->ip_payload = cpu_to_be16(tcp_hlen + chunk_size);
2232 
2233                     p_tcp_hdr->th_sum = 0;
2234 
2235                     int tcp_checksum = ip_checksum(data_to_checksum, tcp_hlen + chunk_size + 12);
2236                     DPRINTF("+++ C+ mode TSO TCP checksum %04x\n",
2237                         tcp_checksum);
2238 
2239                     p_tcp_hdr->th_sum = tcp_checksum;
2240 
2241                     /* restore IP header */
2242                     memcpy(eth_payload_data, saved_ip_header, hlen);
2243 
2244                     /* set IP data length and recalculate IP checksum */
2245                     ip->ip_len = cpu_to_be16(hlen + tcp_hlen + chunk_size);
2246 
2247                     /* increment IP id for subsequent frames */
2248                     ip->ip_id = cpu_to_be16(tcp_send_offset/tcp_chunk_size + be16_to_cpu(ip->ip_id));
2249 
2250                     ip->ip_sum = 0;
2251                     ip->ip_sum = ip_checksum(eth_payload_data, hlen);
2252                     DPRINTF("+++ C+ mode TSO IP header len=%d "
2253                         "checksum=%04x\n", hlen, ip->ip_sum);
2254 
2255                     int tso_send_size = ETH_HLEN + hlen + tcp_hlen + chunk_size;
2256                     DPRINTF("+++ C+ mode TSO transferring packet size "
2257                         "%d\n", tso_send_size);
2258                     rtl8139_transfer_frame(s, saved_buffer, tso_send_size,
2259                         0, (uint8_t *) dot1q_buffer);
2260 
2261                     /* add transferred count to TCP sequence number */
2262                     stl_be_p(&p_tcp_hdr->th_seq,
2263                              chunk_size + ldl_be_p(&p_tcp_hdr->th_seq));
2264                     ++send_count;
2265                 }
2266 
2267                 /* Stop sending this frame */
2268                 saved_size = 0;
2269             }
2270             else if (txdw0 & (CP_TX_TCPCS|CP_TX_UDPCS))
2271             {
2272                 DPRINTF("+++ C+ mode need TCP or UDP checksum\n");
2273 
2274                 /* maximum IP header length is 60 bytes */
2275                 uint8_t saved_ip_header[60];
2276                 memcpy(saved_ip_header, eth_payload_data, hlen);
2277 
2278                 uint8_t *data_to_checksum     = eth_payload_data + hlen - 12;
2279                 //                    size_t   data_to_checksum_len = eth_payload_len  - hlen + 12;
2280 
2281                 /* add 4 TCP pseudoheader fields */
2282                 /* copy IP source and destination fields */
2283                 memcpy(data_to_checksum, saved_ip_header + 12, 8);
2284 
2285                 if ((txdw0 & CP_TX_TCPCS) && ip_protocol == IP_PROTO_TCP)
2286                 {
2287                     DPRINTF("+++ C+ mode calculating TCP checksum for "
2288                         "packet with %d bytes data\n", ip_data_len);
2289 
2290                     ip_pseudo_header *p_tcpip_hdr = (ip_pseudo_header *)data_to_checksum;
2291                     p_tcpip_hdr->zeros      = 0;
2292                     p_tcpip_hdr->ip_proto   = IP_PROTO_TCP;
2293                     p_tcpip_hdr->ip_payload = cpu_to_be16(ip_data_len);
2294 
2295                     tcp_header* p_tcp_hdr = (tcp_header *) (data_to_checksum+12);
2296 
2297                     p_tcp_hdr->th_sum = 0;
2298 
2299                     int tcp_checksum = ip_checksum(data_to_checksum, ip_data_len + 12);
2300                     DPRINTF("+++ C+ mode TCP checksum %04x\n",
2301                         tcp_checksum);
2302 
2303                     p_tcp_hdr->th_sum = tcp_checksum;
2304                 }
2305                 else if ((txdw0 & CP_TX_UDPCS) && ip_protocol == IP_PROTO_UDP)
2306                 {
2307                     DPRINTF("+++ C+ mode calculating UDP checksum for "
2308                         "packet with %d bytes data\n", ip_data_len);
2309 
2310                     ip_pseudo_header *p_udpip_hdr = (ip_pseudo_header *)data_to_checksum;
2311                     p_udpip_hdr->zeros      = 0;
2312                     p_udpip_hdr->ip_proto   = IP_PROTO_UDP;
2313                     p_udpip_hdr->ip_payload = cpu_to_be16(ip_data_len);
2314 
2315                     udp_header *p_udp_hdr = (udp_header *) (data_to_checksum+12);
2316 
2317                     p_udp_hdr->uh_sum = 0;
2318 
2319                     int udp_checksum = ip_checksum(data_to_checksum, ip_data_len + 12);
2320                     DPRINTF("+++ C+ mode UDP checksum %04x\n",
2321                         udp_checksum);
2322 
2323                     p_udp_hdr->uh_sum = udp_checksum;
2324                 }
2325 
2326                 /* restore IP header */
2327                 memcpy(eth_payload_data, saved_ip_header, hlen);
2328             }
2329         }
2330 
2331 skip_offload:
2332         /* update tally counter */
2333         ++s->tally_counters.TxOk;
2334 
2335         DPRINTF("+++ C+ mode transmitting %d bytes packet\n", saved_size);
2336 
2337         rtl8139_transfer_frame(s, saved_buffer, saved_size, 1,
2338             (uint8_t *) dot1q_buffer);
2339 
2340         /* restore card space if there was no recursion and reset offset */
2341         if (!s->cplus_txbuffer)
2342         {
2343             s->cplus_txbuffer        = saved_buffer;
2344             s->cplus_txbuffer_len    = saved_buffer_len;
2345             s->cplus_txbuffer_offset = 0;
2346         }
2347         else
2348         {
2349             g_free(saved_buffer);
2350         }
2351     }
2352     else
2353     {
2354         DPRINTF("+++ C+ mode transmission continue to next descriptor\n");
2355     }
2356 
2357     return 1;
2358 }
2359 
2360 static void rtl8139_cplus_transmit(RTL8139State *s)
2361 {
2362     int txcount = 0;
2363 
2364     while (txcount < 64 && rtl8139_cplus_transmit_one(s))
2365     {
2366         ++txcount;
2367     }
2368 
2369     /* Mark transfer completed */
2370     if (!txcount)
2371     {
2372         DPRINTF("C+ mode : transmitter queue stalled, current TxDesc = %d\n",
2373             s->currCPlusTxDesc);
2374     }
2375     else
2376     {
2377         /* update interrupt status */
2378         s->IntrStatus |= TxOK;
2379         rtl8139_update_irq(s);
2380     }
2381 }
2382 
2383 static void rtl8139_transmit(RTL8139State *s)
2384 {
2385     int descriptor = s->currTxDesc, txcount = 0;
2386 
2387     /*while*/
2388     if (rtl8139_transmit_one(s, descriptor))
2389     {
2390         ++s->currTxDesc;
2391         s->currTxDesc %= 4;
2392         ++txcount;
2393     }
2394 
2395     /* Mark transfer completed */
2396     if (!txcount)
2397     {
2398         DPRINTF("transmitter queue stalled, current TxDesc = %d\n",
2399             s->currTxDesc);
2400     }
2401 }
2402 
2403 static void rtl8139_TxStatus_write(RTL8139State *s, uint32_t txRegOffset, uint32_t val)
2404 {
2405 
2406     int descriptor = txRegOffset/4;
2407 
2408     /* handle C+ transmit mode register configuration */
2409 
2410     if (s->cplus_enabled)
2411     {
2412         DPRINTF("RTL8139C+ DTCCR write offset=0x%x val=0x%08x "
2413             "descriptor=%d\n", txRegOffset, val, descriptor);
2414 
2415         /* handle Dump Tally Counters command */
2416         s->TxStatus[descriptor] = val;
2417 
2418         if (descriptor == 0 && (val & 0x8))
2419         {
2420             hwaddr tc_addr = rtl8139_addr64(s->TxStatus[0] & ~0x3f, s->TxStatus[1]);
2421 
2422             /* dump tally counters to specified memory location */
2423             RTL8139TallyCounters_dma_write(s, tc_addr);
2424 
2425             /* mark dump completed */
2426             s->TxStatus[0] &= ~0x8;
2427         }
2428 
2429         return;
2430     }
2431 
2432     DPRINTF("TxStatus write offset=0x%x val=0x%08x descriptor=%d\n",
2433         txRegOffset, val, descriptor);
2434 
2435     /* mask only reserved bits */
2436     val &= ~0xff00c000; /* these bits are reset on write */
2437     val = SET_MASKED(val, 0x00c00000, s->TxStatus[descriptor]);
2438 
2439     s->TxStatus[descriptor] = val;
2440 
2441     /* attempt to start transmission */
2442     rtl8139_transmit(s);
2443 }
2444 
2445 static uint32_t rtl8139_TxStatus_TxAddr_read(RTL8139State *s, uint32_t regs[],
2446                                              uint32_t base, uint8_t addr,
2447                                              int size)
2448 {
2449     uint32_t reg = (addr - base) / 4;
2450     uint32_t offset = addr & 0x3;
2451     uint32_t ret = 0;
2452 
2453     if (addr & (size - 1)) {
2454         DPRINTF("not implemented read for TxStatus/TxAddr "
2455                 "addr=0x%x size=0x%x\n", addr, size);
2456         return ret;
2457     }
2458 
2459     switch (size) {
2460     case 1: /* fall through */
2461     case 2: /* fall through */
2462     case 4:
2463         ret = (regs[reg] >> offset * 8) & (((uint64_t)1 << (size * 8)) - 1);
2464         DPRINTF("TxStatus/TxAddr[%d] read addr=0x%x size=0x%x val=0x%08x\n",
2465                 reg, addr, size, ret);
2466         break;
2467     default:
2468         DPRINTF("unsupported size 0x%x of TxStatus/TxAddr reading\n", size);
2469         break;
2470     }
2471 
2472     return ret;
2473 }
2474 
2475 static uint16_t rtl8139_TSAD_read(RTL8139State *s)
2476 {
2477     uint16_t ret = 0;
2478 
2479     /* Simulate TSAD, it is read only anyway */
2480 
2481     ret = ((s->TxStatus[3] & TxStatOK  )?TSAD_TOK3:0)
2482          |((s->TxStatus[2] & TxStatOK  )?TSAD_TOK2:0)
2483          |((s->TxStatus[1] & TxStatOK  )?TSAD_TOK1:0)
2484          |((s->TxStatus[0] & TxStatOK  )?TSAD_TOK0:0)
2485 
2486          |((s->TxStatus[3] & TxUnderrun)?TSAD_TUN3:0)
2487          |((s->TxStatus[2] & TxUnderrun)?TSAD_TUN2:0)
2488          |((s->TxStatus[1] & TxUnderrun)?TSAD_TUN1:0)
2489          |((s->TxStatus[0] & TxUnderrun)?TSAD_TUN0:0)
2490 
2491          |((s->TxStatus[3] & TxAborted )?TSAD_TABT3:0)
2492          |((s->TxStatus[2] & TxAborted )?TSAD_TABT2:0)
2493          |((s->TxStatus[1] & TxAborted )?TSAD_TABT1:0)
2494          |((s->TxStatus[0] & TxAborted )?TSAD_TABT0:0)
2495 
2496          |((s->TxStatus[3] & TxHostOwns )?TSAD_OWN3:0)
2497          |((s->TxStatus[2] & TxHostOwns )?TSAD_OWN2:0)
2498          |((s->TxStatus[1] & TxHostOwns )?TSAD_OWN1:0)
2499          |((s->TxStatus[0] & TxHostOwns )?TSAD_OWN0:0) ;
2500 
2501 
2502     DPRINTF("TSAD read val=0x%04x\n", ret);
2503 
2504     return ret;
2505 }
2506 
2507 static uint16_t rtl8139_CSCR_read(RTL8139State *s)
2508 {
2509     uint16_t ret = s->CSCR;
2510 
2511     DPRINTF("CSCR read val=0x%04x\n", ret);
2512 
2513     return ret;
2514 }
2515 
2516 static void rtl8139_TxAddr_write(RTL8139State *s, uint32_t txAddrOffset, uint32_t val)
2517 {
2518     DPRINTF("TxAddr write offset=0x%x val=0x%08x\n", txAddrOffset, val);
2519 
2520     s->TxAddr[txAddrOffset/4] = val;
2521 }
2522 
2523 static uint32_t rtl8139_TxAddr_read(RTL8139State *s, uint32_t txAddrOffset)
2524 {
2525     uint32_t ret = s->TxAddr[txAddrOffset/4];
2526 
2527     DPRINTF("TxAddr read offset=0x%x val=0x%08x\n", txAddrOffset, ret);
2528 
2529     return ret;
2530 }
2531 
2532 static void rtl8139_RxBufPtr_write(RTL8139State *s, uint32_t val)
2533 {
2534     DPRINTF("RxBufPtr write val=0x%04x\n", val);
2535 
2536     /* this value is off by 16 */
2537     s->RxBufPtr = MOD2(val + 0x10, s->RxBufferSize);
2538 
2539     /* more buffer space may be available so try to receive */
2540     qemu_flush_queued_packets(qemu_get_queue(s->nic));
2541 
2542     DPRINTF(" CAPR write: rx buffer length %d head 0x%04x read 0x%04x\n",
2543         s->RxBufferSize, s->RxBufAddr, s->RxBufPtr);
2544 }
2545 
2546 static uint32_t rtl8139_RxBufPtr_read(RTL8139State *s)
2547 {
2548     /* this value is off by 16 */
2549     uint32_t ret = s->RxBufPtr - 0x10;
2550 
2551     DPRINTF("RxBufPtr read val=0x%04x\n", ret);
2552 
2553     return ret;
2554 }
2555 
2556 static uint32_t rtl8139_RxBufAddr_read(RTL8139State *s)
2557 {
2558     /* this value is NOT off by 16 */
2559     uint32_t ret = s->RxBufAddr;
2560 
2561     DPRINTF("RxBufAddr read val=0x%04x\n", ret);
2562 
2563     return ret;
2564 }
2565 
2566 static void rtl8139_RxBuf_write(RTL8139State *s, uint32_t val)
2567 {
2568     DPRINTF("RxBuf write val=0x%08x\n", val);
2569 
2570     s->RxBuf = val;
2571 
2572     /* may need to reset rxring here */
2573 }
2574 
2575 static uint32_t rtl8139_RxBuf_read(RTL8139State *s)
2576 {
2577     uint32_t ret = s->RxBuf;
2578 
2579     DPRINTF("RxBuf read val=0x%08x\n", ret);
2580 
2581     return ret;
2582 }
2583 
2584 static void rtl8139_IntrMask_write(RTL8139State *s, uint32_t val)
2585 {
2586     DPRINTF("IntrMask write(w) val=0x%04x\n", val);
2587 
2588     /* mask unwritable bits */
2589     val = SET_MASKED(val, 0x1e00, s->IntrMask);
2590 
2591     s->IntrMask = val;
2592 
2593     rtl8139_update_irq(s);
2594 
2595 }
2596 
2597 static uint32_t rtl8139_IntrMask_read(RTL8139State *s)
2598 {
2599     uint32_t ret = s->IntrMask;
2600 
2601     DPRINTF("IntrMask read(w) val=0x%04x\n", ret);
2602 
2603     return ret;
2604 }
2605 
2606 static void rtl8139_IntrStatus_write(RTL8139State *s, uint32_t val)
2607 {
2608     DPRINTF("IntrStatus write(w) val=0x%04x\n", val);
2609 
2610 #if 0
2611 
2612     /* writing to ISR has no effect */
2613 
2614     return;
2615 
2616 #else
2617     uint16_t newStatus = s->IntrStatus & ~val;
2618 
2619     /* mask unwritable bits */
2620     newStatus = SET_MASKED(newStatus, 0x1e00, s->IntrStatus);
2621 
2622     /* writing 1 to interrupt status register bit clears it */
2623     s->IntrStatus = 0;
2624     rtl8139_update_irq(s);
2625 
2626     s->IntrStatus = newStatus;
2627     rtl8139_set_next_tctr_time(s);
2628     rtl8139_update_irq(s);
2629 
2630 #endif
2631 }
2632 
2633 static uint32_t rtl8139_IntrStatus_read(RTL8139State *s)
2634 {
2635     uint32_t ret = s->IntrStatus;
2636 
2637     DPRINTF("IntrStatus read(w) val=0x%04x\n", ret);
2638 
2639 #if 0
2640 
2641     /* reading ISR clears all interrupts */
2642     s->IntrStatus = 0;
2643 
2644     rtl8139_update_irq(s);
2645 
2646 #endif
2647 
2648     return ret;
2649 }
2650 
2651 static void rtl8139_MultiIntr_write(RTL8139State *s, uint32_t val)
2652 {
2653     DPRINTF("MultiIntr write(w) val=0x%04x\n", val);
2654 
2655     /* mask unwritable bits */
2656     val = SET_MASKED(val, 0xf000, s->MultiIntr);
2657 
2658     s->MultiIntr = val;
2659 }
2660 
2661 static uint32_t rtl8139_MultiIntr_read(RTL8139State *s)
2662 {
2663     uint32_t ret = s->MultiIntr;
2664 
2665     DPRINTF("MultiIntr read(w) val=0x%04x\n", ret);
2666 
2667     return ret;
2668 }
2669 
2670 static void rtl8139_io_writeb(void *opaque, uint8_t addr, uint32_t val)
2671 {
2672     RTL8139State *s = opaque;
2673 
2674     switch (addr)
2675     {
2676         case MAC0 ... MAC0+4:
2677             s->phys[addr - MAC0] = val;
2678             break;
2679         case MAC0+5:
2680             s->phys[addr - MAC0] = val;
2681             qemu_format_nic_info_str(qemu_get_queue(s->nic), s->phys);
2682             break;
2683         case MAC0+6 ... MAC0+7:
2684             /* reserved */
2685             break;
2686         case MAR0 ... MAR0+7:
2687             s->mult[addr - MAR0] = val;
2688             break;
2689         case ChipCmd:
2690             rtl8139_ChipCmd_write(s, val);
2691             break;
2692         case Cfg9346:
2693             rtl8139_Cfg9346_write(s, val);
2694             break;
2695         case TxConfig: /* windows driver sometimes writes using byte-lenth call */
2696             rtl8139_TxConfig_writeb(s, val);
2697             break;
2698         case Config0:
2699             rtl8139_Config0_write(s, val);
2700             break;
2701         case Config1:
2702             rtl8139_Config1_write(s, val);
2703             break;
2704         case Config3:
2705             rtl8139_Config3_write(s, val);
2706             break;
2707         case Config4:
2708             rtl8139_Config4_write(s, val);
2709             break;
2710         case Config5:
2711             rtl8139_Config5_write(s, val);
2712             break;
2713         case MediaStatus:
2714             /* ignore */
2715             DPRINTF("not implemented write(b) to MediaStatus val=0x%02x\n",
2716                 val);
2717             break;
2718 
2719         case HltClk:
2720             DPRINTF("HltClk write val=0x%08x\n", val);
2721             if (val == 'R')
2722             {
2723                 s->clock_enabled = 1;
2724             }
2725             else if (val == 'H')
2726             {
2727                 s->clock_enabled = 0;
2728             }
2729             break;
2730 
2731         case TxThresh:
2732             DPRINTF("C+ TxThresh write(b) val=0x%02x\n", val);
2733             s->TxThresh = val;
2734             break;
2735 
2736         case TxPoll:
2737             DPRINTF("C+ TxPoll write(b) val=0x%02x\n", val);
2738             if (val & (1 << 7))
2739             {
2740                 DPRINTF("C+ TxPoll high priority transmission (not "
2741                     "implemented)\n");
2742                 //rtl8139_cplus_transmit(s);
2743             }
2744             if (val & (1 << 6))
2745             {
2746                 DPRINTF("C+ TxPoll normal priority transmission\n");
2747                 rtl8139_cplus_transmit(s);
2748             }
2749 
2750             break;
2751 
2752         default:
2753             DPRINTF("not implemented write(b) addr=0x%x val=0x%02x\n", addr,
2754                 val);
2755             break;
2756     }
2757 }
2758 
2759 static void rtl8139_io_writew(void *opaque, uint8_t addr, uint32_t val)
2760 {
2761     RTL8139State *s = opaque;
2762 
2763     switch (addr)
2764     {
2765         case IntrMask:
2766             rtl8139_IntrMask_write(s, val);
2767             break;
2768 
2769         case IntrStatus:
2770             rtl8139_IntrStatus_write(s, val);
2771             break;
2772 
2773         case MultiIntr:
2774             rtl8139_MultiIntr_write(s, val);
2775             break;
2776 
2777         case RxBufPtr:
2778             rtl8139_RxBufPtr_write(s, val);
2779             break;
2780 
2781         case BasicModeCtrl:
2782             rtl8139_BasicModeCtrl_write(s, val);
2783             break;
2784         case BasicModeStatus:
2785             rtl8139_BasicModeStatus_write(s, val);
2786             break;
2787         case NWayAdvert:
2788             DPRINTF("NWayAdvert write(w) val=0x%04x\n", val);
2789             s->NWayAdvert = val;
2790             break;
2791         case NWayLPAR:
2792             DPRINTF("forbidden NWayLPAR write(w) val=0x%04x\n", val);
2793             break;
2794         case NWayExpansion:
2795             DPRINTF("NWayExpansion write(w) val=0x%04x\n", val);
2796             s->NWayExpansion = val;
2797             break;
2798 
2799         case CpCmd:
2800             rtl8139_CpCmd_write(s, val);
2801             break;
2802 
2803         case IntrMitigate:
2804             rtl8139_IntrMitigate_write(s, val);
2805             break;
2806 
2807         default:
2808             DPRINTF("ioport write(w) addr=0x%x val=0x%04x via write(b)\n",
2809                 addr, val);
2810 
2811             rtl8139_io_writeb(opaque, addr, val & 0xff);
2812             rtl8139_io_writeb(opaque, addr + 1, (val >> 8) & 0xff);
2813             break;
2814     }
2815 }
2816 
2817 static void rtl8139_set_next_tctr_time(RTL8139State *s)
2818 {
2819     const uint64_t ns_per_period = (uint64_t)PCI_PERIOD << 32;
2820 
2821     DPRINTF("entered rtl8139_set_next_tctr_time\n");
2822 
2823     /* This function is called at least once per period, so it is a good
2824      * place to update the timer base.
2825      *
2826      * After one iteration of this loop the value in the Timer register does
2827      * not change, but the device model is counting up by 2^32 ticks (approx.
2828      * 130 seconds).
2829      */
2830     while (s->TCTR_base + ns_per_period <= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)) {
2831         s->TCTR_base += ns_per_period;
2832     }
2833 
2834     if (!s->TimerInt) {
2835         timer_del(s->timer);
2836     } else {
2837         uint64_t delta = (uint64_t)s->TimerInt * PCI_PERIOD;
2838         if (s->TCTR_base + delta <= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)) {
2839             delta += ns_per_period;
2840         }
2841         timer_mod(s->timer, s->TCTR_base + delta);
2842     }
2843 }
2844 
2845 static void rtl8139_io_writel(void *opaque, uint8_t addr, uint32_t val)
2846 {
2847     RTL8139State *s = opaque;
2848 
2849     switch (addr)
2850     {
2851         case RxMissed:
2852             DPRINTF("RxMissed clearing on write\n");
2853             s->RxMissed = 0;
2854             break;
2855 
2856         case TxConfig:
2857             rtl8139_TxConfig_write(s, val);
2858             break;
2859 
2860         case RxConfig:
2861             rtl8139_RxConfig_write(s, val);
2862             break;
2863 
2864         case TxStatus0 ... TxStatus0+4*4-1:
2865             rtl8139_TxStatus_write(s, addr-TxStatus0, val);
2866             break;
2867 
2868         case TxAddr0 ... TxAddr0+4*4-1:
2869             rtl8139_TxAddr_write(s, addr-TxAddr0, val);
2870             break;
2871 
2872         case RxBuf:
2873             rtl8139_RxBuf_write(s, val);
2874             break;
2875 
2876         case RxRingAddrLO:
2877             DPRINTF("C+ RxRing low bits write val=0x%08x\n", val);
2878             s->RxRingAddrLO = val;
2879             break;
2880 
2881         case RxRingAddrHI:
2882             DPRINTF("C+ RxRing high bits write val=0x%08x\n", val);
2883             s->RxRingAddrHI = val;
2884             break;
2885 
2886         case Timer:
2887             DPRINTF("TCTR Timer reset on write\n");
2888             s->TCTR_base = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
2889             rtl8139_set_next_tctr_time(s);
2890             break;
2891 
2892         case FlashReg:
2893             DPRINTF("FlashReg TimerInt write val=0x%08x\n", val);
2894             if (s->TimerInt != val) {
2895                 s->TimerInt = val;
2896                 rtl8139_set_next_tctr_time(s);
2897             }
2898             break;
2899 
2900         default:
2901             DPRINTF("ioport write(l) addr=0x%x val=0x%08x via write(b)\n",
2902                 addr, val);
2903             rtl8139_io_writeb(opaque, addr, val & 0xff);
2904             rtl8139_io_writeb(opaque, addr + 1, (val >> 8) & 0xff);
2905             rtl8139_io_writeb(opaque, addr + 2, (val >> 16) & 0xff);
2906             rtl8139_io_writeb(opaque, addr + 3, (val >> 24) & 0xff);
2907             break;
2908     }
2909 }
2910 
2911 static uint32_t rtl8139_io_readb(void *opaque, uint8_t addr)
2912 {
2913     RTL8139State *s = opaque;
2914     int ret;
2915 
2916     switch (addr)
2917     {
2918         case MAC0 ... MAC0+5:
2919             ret = s->phys[addr - MAC0];
2920             break;
2921         case MAC0+6 ... MAC0+7:
2922             ret = 0;
2923             break;
2924         case MAR0 ... MAR0+7:
2925             ret = s->mult[addr - MAR0];
2926             break;
2927         case TxStatus0 ... TxStatus0+4*4-1:
2928             ret = rtl8139_TxStatus_TxAddr_read(s, s->TxStatus, TxStatus0,
2929                                                addr, 1);
2930             break;
2931         case ChipCmd:
2932             ret = rtl8139_ChipCmd_read(s);
2933             break;
2934         case Cfg9346:
2935             ret = rtl8139_Cfg9346_read(s);
2936             break;
2937         case Config0:
2938             ret = rtl8139_Config0_read(s);
2939             break;
2940         case Config1:
2941             ret = rtl8139_Config1_read(s);
2942             break;
2943         case Config3:
2944             ret = rtl8139_Config3_read(s);
2945             break;
2946         case Config4:
2947             ret = rtl8139_Config4_read(s);
2948             break;
2949         case Config5:
2950             ret = rtl8139_Config5_read(s);
2951             break;
2952 
2953         case MediaStatus:
2954             /* The LinkDown bit of MediaStatus is inverse with link status */
2955             ret = 0xd0 | (~s->BasicModeStatus & 0x04);
2956             DPRINTF("MediaStatus read 0x%x\n", ret);
2957             break;
2958 
2959         case HltClk:
2960             ret = s->clock_enabled;
2961             DPRINTF("HltClk read 0x%x\n", ret);
2962             break;
2963 
2964         case PCIRevisionID:
2965             ret = RTL8139_PCI_REVID;
2966             DPRINTF("PCI Revision ID read 0x%x\n", ret);
2967             break;
2968 
2969         case TxThresh:
2970             ret = s->TxThresh;
2971             DPRINTF("C+ TxThresh read(b) val=0x%02x\n", ret);
2972             break;
2973 
2974         case 0x43: /* Part of TxConfig register. Windows driver tries to read it */
2975             ret = s->TxConfig >> 24;
2976             DPRINTF("RTL8139C TxConfig at 0x43 read(b) val=0x%02x\n", ret);
2977             break;
2978 
2979         default:
2980             DPRINTF("not implemented read(b) addr=0x%x\n", addr);
2981             ret = 0;
2982             break;
2983     }
2984 
2985     return ret;
2986 }
2987 
2988 static uint32_t rtl8139_io_readw(void *opaque, uint8_t addr)
2989 {
2990     RTL8139State *s = opaque;
2991     uint32_t ret;
2992 
2993     switch (addr)
2994     {
2995         case TxAddr0 ... TxAddr0+4*4-1:
2996             ret = rtl8139_TxStatus_TxAddr_read(s, s->TxAddr, TxAddr0, addr, 2);
2997             break;
2998         case IntrMask:
2999             ret = rtl8139_IntrMask_read(s);
3000             break;
3001 
3002         case IntrStatus:
3003             ret = rtl8139_IntrStatus_read(s);
3004             break;
3005 
3006         case MultiIntr:
3007             ret = rtl8139_MultiIntr_read(s);
3008             break;
3009 
3010         case RxBufPtr:
3011             ret = rtl8139_RxBufPtr_read(s);
3012             break;
3013 
3014         case RxBufAddr:
3015             ret = rtl8139_RxBufAddr_read(s);
3016             break;
3017 
3018         case BasicModeCtrl:
3019             ret = rtl8139_BasicModeCtrl_read(s);
3020             break;
3021         case BasicModeStatus:
3022             ret = rtl8139_BasicModeStatus_read(s);
3023             break;
3024         case NWayAdvert:
3025             ret = s->NWayAdvert;
3026             DPRINTF("NWayAdvert read(w) val=0x%04x\n", ret);
3027             break;
3028         case NWayLPAR:
3029             ret = s->NWayLPAR;
3030             DPRINTF("NWayLPAR read(w) val=0x%04x\n", ret);
3031             break;
3032         case NWayExpansion:
3033             ret = s->NWayExpansion;
3034             DPRINTF("NWayExpansion read(w) val=0x%04x\n", ret);
3035             break;
3036 
3037         case CpCmd:
3038             ret = rtl8139_CpCmd_read(s);
3039             break;
3040 
3041         case IntrMitigate:
3042             ret = rtl8139_IntrMitigate_read(s);
3043             break;
3044 
3045         case TxSummary:
3046             ret = rtl8139_TSAD_read(s);
3047             break;
3048 
3049         case CSCR:
3050             ret = rtl8139_CSCR_read(s);
3051             break;
3052 
3053         default:
3054             DPRINTF("ioport read(w) addr=0x%x via read(b)\n", addr);
3055 
3056             ret  = rtl8139_io_readb(opaque, addr);
3057             ret |= rtl8139_io_readb(opaque, addr + 1) << 8;
3058 
3059             DPRINTF("ioport read(w) addr=0x%x val=0x%04x\n", addr, ret);
3060             break;
3061     }
3062 
3063     return ret;
3064 }
3065 
3066 static uint32_t rtl8139_io_readl(void *opaque, uint8_t addr)
3067 {
3068     RTL8139State *s = opaque;
3069     uint32_t ret;
3070 
3071     switch (addr)
3072     {
3073         case RxMissed:
3074             ret = s->RxMissed;
3075 
3076             DPRINTF("RxMissed read val=0x%08x\n", ret);
3077             break;
3078 
3079         case TxConfig:
3080             ret = rtl8139_TxConfig_read(s);
3081             break;
3082 
3083         case RxConfig:
3084             ret = rtl8139_RxConfig_read(s);
3085             break;
3086 
3087         case TxStatus0 ... TxStatus0+4*4-1:
3088             ret = rtl8139_TxStatus_TxAddr_read(s, s->TxStatus, TxStatus0,
3089                                                addr, 4);
3090             break;
3091 
3092         case TxAddr0 ... TxAddr0+4*4-1:
3093             ret = rtl8139_TxAddr_read(s, addr-TxAddr0);
3094             break;
3095 
3096         case RxBuf:
3097             ret = rtl8139_RxBuf_read(s);
3098             break;
3099 
3100         case RxRingAddrLO:
3101             ret = s->RxRingAddrLO;
3102             DPRINTF("C+ RxRing low bits read val=0x%08x\n", ret);
3103             break;
3104 
3105         case RxRingAddrHI:
3106             ret = s->RxRingAddrHI;
3107             DPRINTF("C+ RxRing high bits read val=0x%08x\n", ret);
3108             break;
3109 
3110         case Timer:
3111             ret = (qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - s->TCTR_base) /
3112                   PCI_PERIOD;
3113             DPRINTF("TCTR Timer read val=0x%08x\n", ret);
3114             break;
3115 
3116         case FlashReg:
3117             ret = s->TimerInt;
3118             DPRINTF("FlashReg TimerInt read val=0x%08x\n", ret);
3119             break;
3120 
3121         default:
3122             DPRINTF("ioport read(l) addr=0x%x via read(b)\n", addr);
3123 
3124             ret  = rtl8139_io_readb(opaque, addr);
3125             ret |= rtl8139_io_readb(opaque, addr + 1) << 8;
3126             ret |= rtl8139_io_readb(opaque, addr + 2) << 16;
3127             ret |= rtl8139_io_readb(opaque, addr + 3) << 24;
3128 
3129             DPRINTF("read(l) addr=0x%x val=%08x\n", addr, ret);
3130             break;
3131     }
3132 
3133     return ret;
3134 }
3135 
3136 /* */
3137 
3138 static int rtl8139_post_load(void *opaque, int version_id)
3139 {
3140     RTL8139State* s = opaque;
3141     rtl8139_set_next_tctr_time(s);
3142     if (version_id < 4) {
3143         s->cplus_enabled = s->CpCmd != 0;
3144     }
3145 
3146     /* nc.link_down can't be migrated, so infer link_down according
3147      * to link status bit in BasicModeStatus */
3148     qemu_get_queue(s->nic)->link_down = (s->BasicModeStatus & 0x04) == 0;
3149 
3150     return 0;
3151 }
3152 
3153 static bool rtl8139_hotplug_ready_needed(void *opaque)
3154 {
3155     return qdev_machine_modified();
3156 }
3157 
3158 static const VMStateDescription vmstate_rtl8139_hotplug_ready ={
3159     .name = "rtl8139/hotplug_ready",
3160     .version_id = 1,
3161     .minimum_version_id = 1,
3162     .needed = rtl8139_hotplug_ready_needed,
3163     .fields = (VMStateField[]) {
3164         VMSTATE_END_OF_LIST()
3165     }
3166 };
3167 
3168 static int rtl8139_pre_save(void *opaque)
3169 {
3170     RTL8139State* s = opaque;
3171     int64_t current_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
3172 
3173     /* for migration to older versions */
3174     s->TCTR = (current_time - s->TCTR_base) / PCI_PERIOD;
3175     s->rtl8139_mmio_io_addr_dummy = 0;
3176 
3177     return 0;
3178 }
3179 
3180 static const VMStateDescription vmstate_rtl8139 = {
3181     .name = "rtl8139",
3182     .version_id = 5,
3183     .minimum_version_id = 3,
3184     .post_load = rtl8139_post_load,
3185     .pre_save  = rtl8139_pre_save,
3186     .fields = (VMStateField[]) {
3187         VMSTATE_PCI_DEVICE(parent_obj, RTL8139State),
3188         VMSTATE_PARTIAL_BUFFER(phys, RTL8139State, 6),
3189         VMSTATE_BUFFER(mult, RTL8139State),
3190         VMSTATE_UINT32_ARRAY(TxStatus, RTL8139State, 4),
3191         VMSTATE_UINT32_ARRAY(TxAddr, RTL8139State, 4),
3192 
3193         VMSTATE_UINT32(RxBuf, RTL8139State),
3194         VMSTATE_UINT32(RxBufferSize, RTL8139State),
3195         VMSTATE_UINT32(RxBufPtr, RTL8139State),
3196         VMSTATE_UINT32(RxBufAddr, RTL8139State),
3197 
3198         VMSTATE_UINT16(IntrStatus, RTL8139State),
3199         VMSTATE_UINT16(IntrMask, RTL8139State),
3200 
3201         VMSTATE_UINT32(TxConfig, RTL8139State),
3202         VMSTATE_UINT32(RxConfig, RTL8139State),
3203         VMSTATE_UINT32(RxMissed, RTL8139State),
3204         VMSTATE_UINT16(CSCR, RTL8139State),
3205 
3206         VMSTATE_UINT8(Cfg9346, RTL8139State),
3207         VMSTATE_UINT8(Config0, RTL8139State),
3208         VMSTATE_UINT8(Config1, RTL8139State),
3209         VMSTATE_UINT8(Config3, RTL8139State),
3210         VMSTATE_UINT8(Config4, RTL8139State),
3211         VMSTATE_UINT8(Config5, RTL8139State),
3212 
3213         VMSTATE_UINT8(clock_enabled, RTL8139State),
3214         VMSTATE_UINT8(bChipCmdState, RTL8139State),
3215 
3216         VMSTATE_UINT16(MultiIntr, RTL8139State),
3217 
3218         VMSTATE_UINT16(BasicModeCtrl, RTL8139State),
3219         VMSTATE_UINT16(BasicModeStatus, RTL8139State),
3220         VMSTATE_UINT16(NWayAdvert, RTL8139State),
3221         VMSTATE_UINT16(NWayLPAR, RTL8139State),
3222         VMSTATE_UINT16(NWayExpansion, RTL8139State),
3223 
3224         VMSTATE_UINT16(CpCmd, RTL8139State),
3225         VMSTATE_UINT8(TxThresh, RTL8139State),
3226 
3227         VMSTATE_UNUSED(4),
3228         VMSTATE_MACADDR(conf.macaddr, RTL8139State),
3229         VMSTATE_INT32(rtl8139_mmio_io_addr_dummy, RTL8139State),
3230 
3231         VMSTATE_UINT32(currTxDesc, RTL8139State),
3232         VMSTATE_UINT32(currCPlusRxDesc, RTL8139State),
3233         VMSTATE_UINT32(currCPlusTxDesc, RTL8139State),
3234         VMSTATE_UINT32(RxRingAddrLO, RTL8139State),
3235         VMSTATE_UINT32(RxRingAddrHI, RTL8139State),
3236 
3237         VMSTATE_UINT16_ARRAY(eeprom.contents, RTL8139State, EEPROM_9346_SIZE),
3238         VMSTATE_INT32(eeprom.mode, RTL8139State),
3239         VMSTATE_UINT32(eeprom.tick, RTL8139State),
3240         VMSTATE_UINT8(eeprom.address, RTL8139State),
3241         VMSTATE_UINT16(eeprom.input, RTL8139State),
3242         VMSTATE_UINT16(eeprom.output, RTL8139State),
3243 
3244         VMSTATE_UINT8(eeprom.eecs, RTL8139State),
3245         VMSTATE_UINT8(eeprom.eesk, RTL8139State),
3246         VMSTATE_UINT8(eeprom.eedi, RTL8139State),
3247         VMSTATE_UINT8(eeprom.eedo, RTL8139State),
3248 
3249         VMSTATE_UINT32(TCTR, RTL8139State),
3250         VMSTATE_UINT32(TimerInt, RTL8139State),
3251         VMSTATE_INT64(TCTR_base, RTL8139State),
3252 
3253         VMSTATE_UINT64(tally_counters.TxOk, RTL8139State),
3254         VMSTATE_UINT64(tally_counters.RxOk, RTL8139State),
3255         VMSTATE_UINT64(tally_counters.TxERR, RTL8139State),
3256         VMSTATE_UINT32(tally_counters.RxERR, RTL8139State),
3257         VMSTATE_UINT16(tally_counters.MissPkt, RTL8139State),
3258         VMSTATE_UINT16(tally_counters.FAE, RTL8139State),
3259         VMSTATE_UINT32(tally_counters.Tx1Col, RTL8139State),
3260         VMSTATE_UINT32(tally_counters.TxMCol, RTL8139State),
3261         VMSTATE_UINT64(tally_counters.RxOkPhy, RTL8139State),
3262         VMSTATE_UINT64(tally_counters.RxOkBrd, RTL8139State),
3263         VMSTATE_UINT32_V(tally_counters.RxOkMul, RTL8139State, 5),
3264         VMSTATE_UINT16(tally_counters.TxAbt, RTL8139State),
3265         VMSTATE_UINT16(tally_counters.TxUndrn, RTL8139State),
3266 
3267         VMSTATE_UINT32_V(cplus_enabled, RTL8139State, 4),
3268         VMSTATE_END_OF_LIST()
3269     },
3270     .subsections = (const VMStateDescription*[]) {
3271         &vmstate_rtl8139_hotplug_ready,
3272         NULL
3273     }
3274 };
3275 
3276 /***********************************************************/
3277 /* PCI RTL8139 definitions */
3278 
3279 static void rtl8139_ioport_write(void *opaque, hwaddr addr,
3280                                  uint64_t val, unsigned size)
3281 {
3282     switch (size) {
3283     case 1:
3284         rtl8139_io_writeb(opaque, addr, val);
3285         break;
3286     case 2:
3287         rtl8139_io_writew(opaque, addr, val);
3288         break;
3289     case 4:
3290         rtl8139_io_writel(opaque, addr, val);
3291         break;
3292     }
3293 }
3294 
3295 static uint64_t rtl8139_ioport_read(void *opaque, hwaddr addr,
3296                                     unsigned size)
3297 {
3298     switch (size) {
3299     case 1:
3300         return rtl8139_io_readb(opaque, addr);
3301     case 2:
3302         return rtl8139_io_readw(opaque, addr);
3303     case 4:
3304         return rtl8139_io_readl(opaque, addr);
3305     }
3306 
3307     return -1;
3308 }
3309 
3310 static const MemoryRegionOps rtl8139_io_ops = {
3311     .read = rtl8139_ioport_read,
3312     .write = rtl8139_ioport_write,
3313     .impl = {
3314         .min_access_size = 1,
3315         .max_access_size = 4,
3316     },
3317     .endianness = DEVICE_LITTLE_ENDIAN,
3318 };
3319 
3320 static void rtl8139_timer(void *opaque)
3321 {
3322     RTL8139State *s = opaque;
3323 
3324     if (!s->clock_enabled)
3325     {
3326         DPRINTF(">>> timer: clock is not running\n");
3327         return;
3328     }
3329 
3330     s->IntrStatus |= PCSTimeout;
3331     rtl8139_update_irq(s);
3332     rtl8139_set_next_tctr_time(s);
3333 }
3334 
3335 static void pci_rtl8139_uninit(PCIDevice *dev)
3336 {
3337     RTL8139State *s = RTL8139(dev);
3338 
3339     g_free(s->cplus_txbuffer);
3340     s->cplus_txbuffer = NULL;
3341     timer_free(s->timer);
3342     qemu_del_nic(s->nic);
3343 }
3344 
3345 static void rtl8139_set_link_status(NetClientState *nc)
3346 {
3347     RTL8139State *s = qemu_get_nic_opaque(nc);
3348 
3349     if (nc->link_down) {
3350         s->BasicModeStatus &= ~0x04;
3351     } else {
3352         s->BasicModeStatus |= 0x04;
3353     }
3354 
3355     s->IntrStatus |= RxUnderrun;
3356     rtl8139_update_irq(s);
3357 }
3358 
3359 static NetClientInfo net_rtl8139_info = {
3360     .type = NET_CLIENT_DRIVER_NIC,
3361     .size = sizeof(NICState),
3362     .can_receive = rtl8139_can_receive,
3363     .receive = rtl8139_receive,
3364     .link_status_changed = rtl8139_set_link_status,
3365 };
3366 
3367 static void pci_rtl8139_realize(PCIDevice *dev, Error **errp)
3368 {
3369     RTL8139State *s = RTL8139(dev);
3370     DeviceState *d = DEVICE(dev);
3371     uint8_t *pci_conf;
3372 
3373     pci_conf = dev->config;
3374     pci_conf[PCI_INTERRUPT_PIN] = 1;    /* interrupt pin A */
3375     /* TODO: start of capability list, but no capability
3376      * list bit in status register, and offset 0xdc seems unused. */
3377     pci_conf[PCI_CAPABILITY_LIST] = 0xdc;
3378 
3379     memory_region_init_io(&s->bar_io, OBJECT(s), &rtl8139_io_ops, s,
3380                           "rtl8139", 0x100);
3381     memory_region_init_alias(&s->bar_mem, OBJECT(s), "rtl8139-mem", &s->bar_io,
3382                              0, 0x100);
3383 
3384     pci_register_bar(dev, 0, PCI_BASE_ADDRESS_SPACE_IO, &s->bar_io);
3385     pci_register_bar(dev, 1, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->bar_mem);
3386 
3387     qemu_macaddr_default_if_unset(&s->conf.macaddr);
3388 
3389     /* prepare eeprom */
3390     s->eeprom.contents[0] = 0x8129;
3391 #if 1
3392     /* PCI vendor and device ID should be mirrored here */
3393     s->eeprom.contents[1] = PCI_VENDOR_ID_REALTEK;
3394     s->eeprom.contents[2] = PCI_DEVICE_ID_REALTEK_8139;
3395 #endif
3396     s->eeprom.contents[7] = s->conf.macaddr.a[0] | s->conf.macaddr.a[1] << 8;
3397     s->eeprom.contents[8] = s->conf.macaddr.a[2] | s->conf.macaddr.a[3] << 8;
3398     s->eeprom.contents[9] = s->conf.macaddr.a[4] | s->conf.macaddr.a[5] << 8;
3399 
3400     s->nic = qemu_new_nic(&net_rtl8139_info, &s->conf,
3401                           object_get_typename(OBJECT(dev)), d->id, s);
3402     qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a);
3403 
3404     s->cplus_txbuffer = NULL;
3405     s->cplus_txbuffer_len = 0;
3406     s->cplus_txbuffer_offset = 0;
3407 
3408     s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, rtl8139_timer, s);
3409 }
3410 
3411 static void rtl8139_instance_init(Object *obj)
3412 {
3413     RTL8139State *s = RTL8139(obj);
3414 
3415     device_add_bootindex_property(obj, &s->conf.bootindex,
3416                                   "bootindex", "/ethernet-phy@0",
3417                                   DEVICE(obj));
3418 }
3419 
3420 static Property rtl8139_properties[] = {
3421     DEFINE_NIC_PROPERTIES(RTL8139State, conf),
3422     DEFINE_PROP_END_OF_LIST(),
3423 };
3424 
3425 static void rtl8139_class_init(ObjectClass *klass, void *data)
3426 {
3427     DeviceClass *dc = DEVICE_CLASS(klass);
3428     PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
3429 
3430     k->realize = pci_rtl8139_realize;
3431     k->exit = pci_rtl8139_uninit;
3432     k->romfile = "efi-rtl8139.rom";
3433     k->vendor_id = PCI_VENDOR_ID_REALTEK;
3434     k->device_id = PCI_DEVICE_ID_REALTEK_8139;
3435     k->revision = RTL8139_PCI_REVID; /* >=0x20 is for 8139C+ */
3436     k->class_id = PCI_CLASS_NETWORK_ETHERNET;
3437     dc->reset = rtl8139_reset;
3438     dc->vmsd = &vmstate_rtl8139;
3439     device_class_set_props(dc, rtl8139_properties);
3440     set_bit(DEVICE_CATEGORY_NETWORK, dc->categories);
3441 }
3442 
3443 static const TypeInfo rtl8139_info = {
3444     .name          = TYPE_RTL8139,
3445     .parent        = TYPE_PCI_DEVICE,
3446     .instance_size = sizeof(RTL8139State),
3447     .class_init    = rtl8139_class_init,
3448     .instance_init = rtl8139_instance_init,
3449     .interfaces = (InterfaceInfo[]) {
3450         { INTERFACE_CONVENTIONAL_PCI_DEVICE },
3451         { },
3452     },
3453 };
3454 
3455 static void rtl8139_register_types(void)
3456 {
3457     type_register_static(&rtl8139_info);
3458 }
3459 
3460 type_init(rtl8139_register_types)
3461