xref: /openbmc/qemu/hw/net/rtl8139.c (revision 91bfcdb0)
1 /**
2  * QEMU RTL8139 emulation
3  *
4  * Copyright (c) 2006 Igor Kovalenko
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23 
24  * Modifications:
25  *  2006-Jan-28  Mark Malakanov :   TSAD and CSCR implementation (for Windows driver)
26  *
27  *  2006-Apr-28  Juergen Lock   :   EEPROM emulation changes for FreeBSD driver
28  *                                  HW revision ID changes for FreeBSD driver
29  *
30  *  2006-Jul-01  Igor Kovalenko :   Implemented loopback mode for FreeBSD driver
31  *                                  Corrected packet transfer reassembly routine for 8139C+ mode
32  *                                  Rearranged debugging print statements
33  *                                  Implemented PCI timer interrupt (disabled by default)
34  *                                  Implemented Tally Counters, increased VM load/save version
35  *                                  Implemented IP/TCP/UDP checksum task offloading
36  *
37  *  2006-Jul-04  Igor Kovalenko :   Implemented TCP segmentation offloading
38  *                                  Fixed MTU=1500 for produced ethernet frames
39  *
40  *  2006-Jul-09  Igor Kovalenko :   Fixed TCP header length calculation while processing
41  *                                  segmentation offloading
42  *                                  Removed slirp.h dependency
43  *                                  Added rx/tx buffer reset when enabling rx/tx operation
44  *
45  *  2010-Feb-04  Frediano Ziglio:   Rewrote timer support using QEMU timer only
46  *                                  when strictly needed (required for
47  *                                  Darwin)
48  *  2011-Mar-22  Benjamin Poirier:  Implemented VLAN offloading
49  */
50 
51 /* For crc32 */
52 #include <zlib.h>
53 
54 #include "hw/hw.h"
55 #include "hw/pci/pci.h"
56 #include "sysemu/dma.h"
57 #include "qemu/timer.h"
58 #include "net/net.h"
59 #include "net/eth.h"
60 #include "hw/loader.h"
61 #include "sysemu/sysemu.h"
62 #include "qemu/iov.h"
63 
64 /* debug RTL8139 card */
65 //#define DEBUG_RTL8139 1
66 
67 #define PCI_PERIOD 30    /* 30 ns period = 33.333333 Mhz frequency */
68 
69 #define SET_MASKED(input, mask, curr) \
70     ( ( (input) & ~(mask) ) | ( (curr) & (mask) ) )
71 
72 /* arg % size for size which is a power of 2 */
73 #define MOD2(input, size) \
74     ( ( input ) & ( size - 1 )  )
75 
76 #define ETHER_TYPE_LEN 2
77 #define ETH_HLEN (ETH_ALEN * 2 + ETHER_TYPE_LEN)
78 #define ETH_MTU     1500
79 
80 #define VLAN_TCI_LEN 2
81 #define VLAN_HLEN (ETHER_TYPE_LEN + VLAN_TCI_LEN)
82 
83 #if defined (DEBUG_RTL8139)
84 #  define DPRINTF(fmt, ...) \
85     do { fprintf(stderr, "RTL8139: " fmt, ## __VA_ARGS__); } while (0)
86 #else
87 static inline GCC_FMT_ATTR(1, 2) int DPRINTF(const char *fmt, ...)
88 {
89     return 0;
90 }
91 #endif
92 
93 #define TYPE_RTL8139 "rtl8139"
94 
95 #define RTL8139(obj) \
96      OBJECT_CHECK(RTL8139State, (obj), TYPE_RTL8139)
97 
98 /* Symbolic offsets to registers. */
99 enum RTL8139_registers {
100     MAC0 = 0,        /* Ethernet hardware address. */
101     MAR0 = 8,        /* Multicast filter. */
102     TxStatus0 = 0x10,/* Transmit status (Four 32bit registers). C mode only */
103                      /* Dump Tally Conter control register(64bit). C+ mode only */
104     TxAddr0 = 0x20,  /* Tx descriptors (also four 32bit). */
105     RxBuf = 0x30,
106     ChipCmd = 0x37,
107     RxBufPtr = 0x38,
108     RxBufAddr = 0x3A,
109     IntrMask = 0x3C,
110     IntrStatus = 0x3E,
111     TxConfig = 0x40,
112     RxConfig = 0x44,
113     Timer = 0x48,        /* A general-purpose counter. */
114     RxMissed = 0x4C,    /* 24 bits valid, write clears. */
115     Cfg9346 = 0x50,
116     Config0 = 0x51,
117     Config1 = 0x52,
118     FlashReg = 0x54,
119     MediaStatus = 0x58,
120     Config3 = 0x59,
121     Config4 = 0x5A,        /* absent on RTL-8139A */
122     HltClk = 0x5B,
123     MultiIntr = 0x5C,
124     PCIRevisionID = 0x5E,
125     TxSummary = 0x60, /* TSAD register. Transmit Status of All Descriptors*/
126     BasicModeCtrl = 0x62,
127     BasicModeStatus = 0x64,
128     NWayAdvert = 0x66,
129     NWayLPAR = 0x68,
130     NWayExpansion = 0x6A,
131     /* Undocumented registers, but required for proper operation. */
132     FIFOTMS = 0x70,        /* FIFO Control and test. */
133     CSCR = 0x74,        /* Chip Status and Configuration Register. */
134     PARA78 = 0x78,
135     PARA7c = 0x7c,        /* Magic transceiver parameter register. */
136     Config5 = 0xD8,        /* absent on RTL-8139A */
137     /* C+ mode */
138     TxPoll        = 0xD9,    /* Tell chip to check Tx descriptors for work */
139     RxMaxSize    = 0xDA, /* Max size of an Rx packet (8169 only) */
140     CpCmd        = 0xE0, /* C+ Command register (C+ mode only) */
141     IntrMitigate    = 0xE2,    /* rx/tx interrupt mitigation control */
142     RxRingAddrLO    = 0xE4, /* 64-bit start addr of Rx ring */
143     RxRingAddrHI    = 0xE8, /* 64-bit start addr of Rx ring */
144     TxThresh    = 0xEC, /* Early Tx threshold */
145 };
146 
147 enum ClearBitMasks {
148     MultiIntrClear = 0xF000,
149     ChipCmdClear = 0xE2,
150     Config1Clear = (1<<7)|(1<<6)|(1<<3)|(1<<2)|(1<<1),
151 };
152 
153 enum ChipCmdBits {
154     CmdReset = 0x10,
155     CmdRxEnb = 0x08,
156     CmdTxEnb = 0x04,
157     RxBufEmpty = 0x01,
158 };
159 
160 /* C+ mode */
161 enum CplusCmdBits {
162     CPlusRxVLAN   = 0x0040, /* enable receive VLAN detagging */
163     CPlusRxChkSum = 0x0020, /* enable receive checksum offloading */
164     CPlusRxEnb    = 0x0002,
165     CPlusTxEnb    = 0x0001,
166 };
167 
168 /* Interrupt register bits, using my own meaningful names. */
169 enum IntrStatusBits {
170     PCIErr = 0x8000,
171     PCSTimeout = 0x4000,
172     RxFIFOOver = 0x40,
173     RxUnderrun = 0x20, /* Packet Underrun / Link Change */
174     RxOverflow = 0x10,
175     TxErr = 0x08,
176     TxOK = 0x04,
177     RxErr = 0x02,
178     RxOK = 0x01,
179 
180     RxAckBits = RxFIFOOver | RxOverflow | RxOK,
181 };
182 
183 enum TxStatusBits {
184     TxHostOwns = 0x2000,
185     TxUnderrun = 0x4000,
186     TxStatOK = 0x8000,
187     TxOutOfWindow = 0x20000000,
188     TxAborted = 0x40000000,
189     TxCarrierLost = 0x80000000,
190 };
191 enum RxStatusBits {
192     RxMulticast = 0x8000,
193     RxPhysical = 0x4000,
194     RxBroadcast = 0x2000,
195     RxBadSymbol = 0x0020,
196     RxRunt = 0x0010,
197     RxTooLong = 0x0008,
198     RxCRCErr = 0x0004,
199     RxBadAlign = 0x0002,
200     RxStatusOK = 0x0001,
201 };
202 
203 /* Bits in RxConfig. */
204 enum rx_mode_bits {
205     AcceptErr = 0x20,
206     AcceptRunt = 0x10,
207     AcceptBroadcast = 0x08,
208     AcceptMulticast = 0x04,
209     AcceptMyPhys = 0x02,
210     AcceptAllPhys = 0x01,
211 };
212 
213 /* Bits in TxConfig. */
214 enum tx_config_bits {
215 
216         /* Interframe Gap Time. Only TxIFG96 doesn't violate IEEE 802.3 */
217         TxIFGShift = 24,
218         TxIFG84 = (0 << TxIFGShift),    /* 8.4us / 840ns (10 / 100Mbps) */
219         TxIFG88 = (1 << TxIFGShift),    /* 8.8us / 880ns (10 / 100Mbps) */
220         TxIFG92 = (2 << TxIFGShift),    /* 9.2us / 920ns (10 / 100Mbps) */
221         TxIFG96 = (3 << TxIFGShift),    /* 9.6us / 960ns (10 / 100Mbps) */
222 
223     TxLoopBack = (1 << 18) | (1 << 17), /* enable loopback test mode */
224     TxCRC = (1 << 16),    /* DISABLE appending CRC to end of Tx packets */
225     TxClearAbt = (1 << 0),    /* Clear abort (WO) */
226     TxDMAShift = 8,        /* DMA burst value (0-7) is shifted this many bits */
227     TxRetryShift = 4,    /* TXRR value (0-15) is shifted this many bits */
228 
229     TxVersionMask = 0x7C800000, /* mask out version bits 30-26, 23 */
230 };
231 
232 
233 /* Transmit Status of All Descriptors (TSAD) Register */
234 enum TSAD_bits {
235  TSAD_TOK3 = 1<<15, // TOK bit of Descriptor 3
236  TSAD_TOK2 = 1<<14, // TOK bit of Descriptor 2
237  TSAD_TOK1 = 1<<13, // TOK bit of Descriptor 1
238  TSAD_TOK0 = 1<<12, // TOK bit of Descriptor 0
239  TSAD_TUN3 = 1<<11, // TUN bit of Descriptor 3
240  TSAD_TUN2 = 1<<10, // TUN bit of Descriptor 2
241  TSAD_TUN1 = 1<<9, // TUN bit of Descriptor 1
242  TSAD_TUN0 = 1<<8, // TUN bit of Descriptor 0
243  TSAD_TABT3 = 1<<07, // TABT bit of Descriptor 3
244  TSAD_TABT2 = 1<<06, // TABT bit of Descriptor 2
245  TSAD_TABT1 = 1<<05, // TABT bit of Descriptor 1
246  TSAD_TABT0 = 1<<04, // TABT bit of Descriptor 0
247  TSAD_OWN3 = 1<<03, // OWN bit of Descriptor 3
248  TSAD_OWN2 = 1<<02, // OWN bit of Descriptor 2
249  TSAD_OWN1 = 1<<01, // OWN bit of Descriptor 1
250  TSAD_OWN0 = 1<<00, // OWN bit of Descriptor 0
251 };
252 
253 
254 /* Bits in Config1 */
255 enum Config1Bits {
256     Cfg1_PM_Enable = 0x01,
257     Cfg1_VPD_Enable = 0x02,
258     Cfg1_PIO = 0x04,
259     Cfg1_MMIO = 0x08,
260     LWAKE = 0x10,        /* not on 8139, 8139A */
261     Cfg1_Driver_Load = 0x20,
262     Cfg1_LED0 = 0x40,
263     Cfg1_LED1 = 0x80,
264     SLEEP = (1 << 1),    /* only on 8139, 8139A */
265     PWRDN = (1 << 0),    /* only on 8139, 8139A */
266 };
267 
268 /* Bits in Config3 */
269 enum Config3Bits {
270     Cfg3_FBtBEn    = (1 << 0), /* 1 = Fast Back to Back */
271     Cfg3_FuncRegEn = (1 << 1), /* 1 = enable CardBus Function registers */
272     Cfg3_CLKRUN_En = (1 << 2), /* 1 = enable CLKRUN */
273     Cfg3_CardB_En  = (1 << 3), /* 1 = enable CardBus registers */
274     Cfg3_LinkUp    = (1 << 4), /* 1 = wake up on link up */
275     Cfg3_Magic     = (1 << 5), /* 1 = wake up on Magic Packet (tm) */
276     Cfg3_PARM_En   = (1 << 6), /* 0 = software can set twister parameters */
277     Cfg3_GNTSel    = (1 << 7), /* 1 = delay 1 clock from PCI GNT signal */
278 };
279 
280 /* Bits in Config4 */
281 enum Config4Bits {
282     LWPTN = (1 << 2),    /* not on 8139, 8139A */
283 };
284 
285 /* Bits in Config5 */
286 enum Config5Bits {
287     Cfg5_PME_STS     = (1 << 0), /* 1 = PCI reset resets PME_Status */
288     Cfg5_LANWake     = (1 << 1), /* 1 = enable LANWake signal */
289     Cfg5_LDPS        = (1 << 2), /* 0 = save power when link is down */
290     Cfg5_FIFOAddrPtr = (1 << 3), /* Realtek internal SRAM testing */
291     Cfg5_UWF         = (1 << 4), /* 1 = accept unicast wakeup frame */
292     Cfg5_MWF         = (1 << 5), /* 1 = accept multicast wakeup frame */
293     Cfg5_BWF         = (1 << 6), /* 1 = accept broadcast wakeup frame */
294 };
295 
296 enum RxConfigBits {
297     /* rx fifo threshold */
298     RxCfgFIFOShift = 13,
299     RxCfgFIFONone = (7 << RxCfgFIFOShift),
300 
301     /* Max DMA burst */
302     RxCfgDMAShift = 8,
303     RxCfgDMAUnlimited = (7 << RxCfgDMAShift),
304 
305     /* rx ring buffer length */
306     RxCfgRcv8K = 0,
307     RxCfgRcv16K = (1 << 11),
308     RxCfgRcv32K = (1 << 12),
309     RxCfgRcv64K = (1 << 11) | (1 << 12),
310 
311     /* Disable packet wrap at end of Rx buffer. (not possible with 64k) */
312     RxNoWrap = (1 << 7),
313 };
314 
315 /* Twister tuning parameters from RealTek.
316    Completely undocumented, but required to tune bad links on some boards. */
317 /*
318 enum CSCRBits {
319     CSCR_LinkOKBit = 0x0400,
320     CSCR_LinkChangeBit = 0x0800,
321     CSCR_LinkStatusBits = 0x0f000,
322     CSCR_LinkDownOffCmd = 0x003c0,
323     CSCR_LinkDownCmd = 0x0f3c0,
324 */
325 enum CSCRBits {
326     CSCR_Testfun = 1<<15, /* 1 = Auto-neg speeds up internal timer, WO, def 0 */
327     CSCR_LD  = 1<<9,  /* Active low TPI link disable signal. When low, TPI still transmits link pulses and TPI stays in good link state. def 1*/
328     CSCR_HEART_BIT = 1<<8,  /* 1 = HEART BEAT enable, 0 = HEART BEAT disable. HEART BEAT function is only valid in 10Mbps mode. def 1*/
329     CSCR_JBEN = 1<<7,  /* 1 = enable jabber function. 0 = disable jabber function, def 1*/
330     CSCR_F_LINK_100 = 1<<6, /* Used to login force good link in 100Mbps for diagnostic purposes. 1 = DISABLE, 0 = ENABLE. def 1*/
331     CSCR_F_Connect  = 1<<5,  /* Assertion of this bit forces the disconnect function to be bypassed. def 0*/
332     CSCR_Con_status = 1<<3, /* This bit indicates the status of the connection. 1 = valid connected link detected; 0 = disconnected link detected. RO def 0*/
333     CSCR_Con_status_En = 1<<2, /* Assertion of this bit configures LED1 pin to indicate connection status. def 0*/
334     CSCR_PASS_SCR = 1<<0, /* Bypass Scramble, def 0*/
335 };
336 
337 enum Cfg9346Bits {
338     Cfg9346_Normal = 0x00,
339     Cfg9346_Autoload = 0x40,
340     Cfg9346_Programming = 0x80,
341     Cfg9346_ConfigWrite = 0xC0,
342 };
343 
344 typedef enum {
345     CH_8139 = 0,
346     CH_8139_K,
347     CH_8139A,
348     CH_8139A_G,
349     CH_8139B,
350     CH_8130,
351     CH_8139C,
352     CH_8100,
353     CH_8100B_8139D,
354     CH_8101,
355 } chip_t;
356 
357 enum chip_flags {
358     HasHltClk = (1 << 0),
359     HasLWake = (1 << 1),
360 };
361 
362 #define HW_REVID(b30, b29, b28, b27, b26, b23, b22) \
363     (b30<<30 | b29<<29 | b28<<28 | b27<<27 | b26<<26 | b23<<23 | b22<<22)
364 #define HW_REVID_MASK    HW_REVID(1, 1, 1, 1, 1, 1, 1)
365 
366 #define RTL8139_PCI_REVID_8139      0x10
367 #define RTL8139_PCI_REVID_8139CPLUS 0x20
368 
369 #define RTL8139_PCI_REVID           RTL8139_PCI_REVID_8139CPLUS
370 
371 /* Size is 64 * 16bit words */
372 #define EEPROM_9346_ADDR_BITS 6
373 #define EEPROM_9346_SIZE  (1 << EEPROM_9346_ADDR_BITS)
374 #define EEPROM_9346_ADDR_MASK (EEPROM_9346_SIZE - 1)
375 
376 enum Chip9346Operation
377 {
378     Chip9346_op_mask = 0xc0,          /* 10 zzzzzz */
379     Chip9346_op_read = 0x80,          /* 10 AAAAAA */
380     Chip9346_op_write = 0x40,         /* 01 AAAAAA D(15)..D(0) */
381     Chip9346_op_ext_mask = 0xf0,      /* 11 zzzzzz */
382     Chip9346_op_write_enable = 0x30,  /* 00 11zzzz */
383     Chip9346_op_write_all = 0x10,     /* 00 01zzzz */
384     Chip9346_op_write_disable = 0x00, /* 00 00zzzz */
385 };
386 
387 enum Chip9346Mode
388 {
389     Chip9346_none = 0,
390     Chip9346_enter_command_mode,
391     Chip9346_read_command,
392     Chip9346_data_read,      /* from output register */
393     Chip9346_data_write,     /* to input register, then to contents at specified address */
394     Chip9346_data_write_all, /* to input register, then filling contents */
395 };
396 
397 typedef struct EEprom9346
398 {
399     uint16_t contents[EEPROM_9346_SIZE];
400     int      mode;
401     uint32_t tick;
402     uint8_t  address;
403     uint16_t input;
404     uint16_t output;
405 
406     uint8_t eecs;
407     uint8_t eesk;
408     uint8_t eedi;
409     uint8_t eedo;
410 } EEprom9346;
411 
412 typedef struct RTL8139TallyCounters
413 {
414     /* Tally counters */
415     uint64_t   TxOk;
416     uint64_t   RxOk;
417     uint64_t   TxERR;
418     uint32_t   RxERR;
419     uint16_t   MissPkt;
420     uint16_t   FAE;
421     uint32_t   Tx1Col;
422     uint32_t   TxMCol;
423     uint64_t   RxOkPhy;
424     uint64_t   RxOkBrd;
425     uint32_t   RxOkMul;
426     uint16_t   TxAbt;
427     uint16_t   TxUndrn;
428 } RTL8139TallyCounters;
429 
430 /* Clears all tally counters */
431 static void RTL8139TallyCounters_clear(RTL8139TallyCounters* counters);
432 
433 typedef struct RTL8139State {
434     /*< private >*/
435     PCIDevice parent_obj;
436     /*< public >*/
437 
438     uint8_t phys[8]; /* mac address */
439     uint8_t mult[8]; /* multicast mask array */
440 
441     uint32_t TxStatus[4]; /* TxStatus0 in C mode*/ /* also DTCCR[0] and DTCCR[1] in C+ mode */
442     uint32_t TxAddr[4];   /* TxAddr0 */
443     uint32_t RxBuf;       /* Receive buffer */
444     uint32_t RxBufferSize;/* internal variable, receive ring buffer size in C mode */
445     uint32_t RxBufPtr;
446     uint32_t RxBufAddr;
447 
448     uint16_t IntrStatus;
449     uint16_t IntrMask;
450 
451     uint32_t TxConfig;
452     uint32_t RxConfig;
453     uint32_t RxMissed;
454 
455     uint16_t CSCR;
456 
457     uint8_t  Cfg9346;
458     uint8_t  Config0;
459     uint8_t  Config1;
460     uint8_t  Config3;
461     uint8_t  Config4;
462     uint8_t  Config5;
463 
464     uint8_t  clock_enabled;
465     uint8_t  bChipCmdState;
466 
467     uint16_t MultiIntr;
468 
469     uint16_t BasicModeCtrl;
470     uint16_t BasicModeStatus;
471     uint16_t NWayAdvert;
472     uint16_t NWayLPAR;
473     uint16_t NWayExpansion;
474 
475     uint16_t CpCmd;
476     uint8_t  TxThresh;
477 
478     NICState *nic;
479     NICConf conf;
480 
481     /* C ring mode */
482     uint32_t   currTxDesc;
483 
484     /* C+ mode */
485     uint32_t   cplus_enabled;
486 
487     uint32_t   currCPlusRxDesc;
488     uint32_t   currCPlusTxDesc;
489 
490     uint32_t   RxRingAddrLO;
491     uint32_t   RxRingAddrHI;
492 
493     EEprom9346 eeprom;
494 
495     uint32_t   TCTR;
496     uint32_t   TimerInt;
497     int64_t    TCTR_base;
498 
499     /* Tally counters */
500     RTL8139TallyCounters tally_counters;
501 
502     /* Non-persistent data */
503     uint8_t   *cplus_txbuffer;
504     int        cplus_txbuffer_len;
505     int        cplus_txbuffer_offset;
506 
507     /* PCI interrupt timer */
508     QEMUTimer *timer;
509 
510     MemoryRegion bar_io;
511     MemoryRegion bar_mem;
512 
513     /* Support migration to/from old versions */
514     int rtl8139_mmio_io_addr_dummy;
515 } RTL8139State;
516 
517 /* Writes tally counters to memory via DMA */
518 static void RTL8139TallyCounters_dma_write(RTL8139State *s, dma_addr_t tc_addr);
519 
520 static void rtl8139_set_next_tctr_time(RTL8139State *s);
521 
522 static void prom9346_decode_command(EEprom9346 *eeprom, uint8_t command)
523 {
524     DPRINTF("eeprom command 0x%02x\n", command);
525 
526     switch (command & Chip9346_op_mask)
527     {
528         case Chip9346_op_read:
529         {
530             eeprom->address = command & EEPROM_9346_ADDR_MASK;
531             eeprom->output = eeprom->contents[eeprom->address];
532             eeprom->eedo = 0;
533             eeprom->tick = 0;
534             eeprom->mode = Chip9346_data_read;
535             DPRINTF("eeprom read from address 0x%02x data=0x%04x\n",
536                 eeprom->address, eeprom->output);
537         }
538         break;
539 
540         case Chip9346_op_write:
541         {
542             eeprom->address = command & EEPROM_9346_ADDR_MASK;
543             eeprom->input = 0;
544             eeprom->tick = 0;
545             eeprom->mode = Chip9346_none; /* Chip9346_data_write */
546             DPRINTF("eeprom begin write to address 0x%02x\n",
547                 eeprom->address);
548         }
549         break;
550         default:
551             eeprom->mode = Chip9346_none;
552             switch (command & Chip9346_op_ext_mask)
553             {
554                 case Chip9346_op_write_enable:
555                     DPRINTF("eeprom write enabled\n");
556                     break;
557                 case Chip9346_op_write_all:
558                     DPRINTF("eeprom begin write all\n");
559                     break;
560                 case Chip9346_op_write_disable:
561                     DPRINTF("eeprom write disabled\n");
562                     break;
563             }
564             break;
565     }
566 }
567 
568 static void prom9346_shift_clock(EEprom9346 *eeprom)
569 {
570     int bit = eeprom->eedi?1:0;
571 
572     ++ eeprom->tick;
573 
574     DPRINTF("eeprom: tick %d eedi=%d eedo=%d\n", eeprom->tick, eeprom->eedi,
575         eeprom->eedo);
576 
577     switch (eeprom->mode)
578     {
579         case Chip9346_enter_command_mode:
580             if (bit)
581             {
582                 eeprom->mode = Chip9346_read_command;
583                 eeprom->tick = 0;
584                 eeprom->input = 0;
585                 DPRINTF("eeprom: +++ synchronized, begin command read\n");
586             }
587             break;
588 
589         case Chip9346_read_command:
590             eeprom->input = (eeprom->input << 1) | (bit & 1);
591             if (eeprom->tick == 8)
592             {
593                 prom9346_decode_command(eeprom, eeprom->input & 0xff);
594             }
595             break;
596 
597         case Chip9346_data_read:
598             eeprom->eedo = (eeprom->output & 0x8000)?1:0;
599             eeprom->output <<= 1;
600             if (eeprom->tick == 16)
601             {
602 #if 1
603         // the FreeBSD drivers (rl and re) don't explicitly toggle
604         // CS between reads (or does setting Cfg9346 to 0 count too?),
605         // so we need to enter wait-for-command state here
606                 eeprom->mode = Chip9346_enter_command_mode;
607                 eeprom->input = 0;
608                 eeprom->tick = 0;
609 
610                 DPRINTF("eeprom: +++ end of read, awaiting next command\n");
611 #else
612         // original behaviour
613                 ++eeprom->address;
614                 eeprom->address &= EEPROM_9346_ADDR_MASK;
615                 eeprom->output = eeprom->contents[eeprom->address];
616                 eeprom->tick = 0;
617 
618                 DPRINTF("eeprom: +++ read next address 0x%02x data=0x%04x\n",
619                     eeprom->address, eeprom->output);
620 #endif
621             }
622             break;
623 
624         case Chip9346_data_write:
625             eeprom->input = (eeprom->input << 1) | (bit & 1);
626             if (eeprom->tick == 16)
627             {
628                 DPRINTF("eeprom write to address 0x%02x data=0x%04x\n",
629                     eeprom->address, eeprom->input);
630 
631                 eeprom->contents[eeprom->address] = eeprom->input;
632                 eeprom->mode = Chip9346_none; /* waiting for next command after CS cycle */
633                 eeprom->tick = 0;
634                 eeprom->input = 0;
635             }
636             break;
637 
638         case Chip9346_data_write_all:
639             eeprom->input = (eeprom->input << 1) | (bit & 1);
640             if (eeprom->tick == 16)
641             {
642                 int i;
643                 for (i = 0; i < EEPROM_9346_SIZE; i++)
644                 {
645                     eeprom->contents[i] = eeprom->input;
646                 }
647                 DPRINTF("eeprom filled with data=0x%04x\n", eeprom->input);
648 
649                 eeprom->mode = Chip9346_enter_command_mode;
650                 eeprom->tick = 0;
651                 eeprom->input = 0;
652             }
653             break;
654 
655         default:
656             break;
657     }
658 }
659 
660 static int prom9346_get_wire(RTL8139State *s)
661 {
662     EEprom9346 *eeprom = &s->eeprom;
663     if (!eeprom->eecs)
664         return 0;
665 
666     return eeprom->eedo;
667 }
668 
669 /* FIXME: This should be merged into/replaced by eeprom93xx.c.  */
670 static void prom9346_set_wire(RTL8139State *s, int eecs, int eesk, int eedi)
671 {
672     EEprom9346 *eeprom = &s->eeprom;
673     uint8_t old_eecs = eeprom->eecs;
674     uint8_t old_eesk = eeprom->eesk;
675 
676     eeprom->eecs = eecs;
677     eeprom->eesk = eesk;
678     eeprom->eedi = eedi;
679 
680     DPRINTF("eeprom: +++ wires CS=%d SK=%d DI=%d DO=%d\n", eeprom->eecs,
681         eeprom->eesk, eeprom->eedi, eeprom->eedo);
682 
683     if (!old_eecs && eecs)
684     {
685         /* Synchronize start */
686         eeprom->tick = 0;
687         eeprom->input = 0;
688         eeprom->output = 0;
689         eeprom->mode = Chip9346_enter_command_mode;
690 
691         DPRINTF("=== eeprom: begin access, enter command mode\n");
692     }
693 
694     if (!eecs)
695     {
696         DPRINTF("=== eeprom: end access\n");
697         return;
698     }
699 
700     if (!old_eesk && eesk)
701     {
702         /* SK front rules */
703         prom9346_shift_clock(eeprom);
704     }
705 }
706 
707 static void rtl8139_update_irq(RTL8139State *s)
708 {
709     PCIDevice *d = PCI_DEVICE(s);
710     int isr;
711     isr = (s->IntrStatus & s->IntrMask) & 0xffff;
712 
713     DPRINTF("Set IRQ to %d (%04x %04x)\n", isr ? 1 : 0, s->IntrStatus,
714         s->IntrMask);
715 
716     pci_set_irq(d, (isr != 0));
717 }
718 
719 static int rtl8139_RxWrap(RTL8139State *s)
720 {
721     /* wrapping enabled; assume 1.5k more buffer space if size < 65536 */
722     return (s->RxConfig & (1 << 7));
723 }
724 
725 static int rtl8139_receiver_enabled(RTL8139State *s)
726 {
727     return s->bChipCmdState & CmdRxEnb;
728 }
729 
730 static int rtl8139_transmitter_enabled(RTL8139State *s)
731 {
732     return s->bChipCmdState & CmdTxEnb;
733 }
734 
735 static int rtl8139_cp_receiver_enabled(RTL8139State *s)
736 {
737     return s->CpCmd & CPlusRxEnb;
738 }
739 
740 static int rtl8139_cp_transmitter_enabled(RTL8139State *s)
741 {
742     return s->CpCmd & CPlusTxEnb;
743 }
744 
745 static void rtl8139_write_buffer(RTL8139State *s, const void *buf, int size)
746 {
747     PCIDevice *d = PCI_DEVICE(s);
748 
749     if (s->RxBufAddr + size > s->RxBufferSize)
750     {
751         int wrapped = MOD2(s->RxBufAddr + size, s->RxBufferSize);
752 
753         /* write packet data */
754         if (wrapped && !(s->RxBufferSize < 65536 && rtl8139_RxWrap(s)))
755         {
756             DPRINTF(">>> rx packet wrapped in buffer at %d\n", size - wrapped);
757 
758             if (size > wrapped)
759             {
760                 pci_dma_write(d, s->RxBuf + s->RxBufAddr,
761                               buf, size-wrapped);
762             }
763 
764             /* reset buffer pointer */
765             s->RxBufAddr = 0;
766 
767             pci_dma_write(d, s->RxBuf + s->RxBufAddr,
768                           buf + (size-wrapped), wrapped);
769 
770             s->RxBufAddr = wrapped;
771 
772             return;
773         }
774     }
775 
776     /* non-wrapping path or overwrapping enabled */
777     pci_dma_write(d, s->RxBuf + s->RxBufAddr, buf, size);
778 
779     s->RxBufAddr += size;
780 }
781 
782 #define MIN_BUF_SIZE 60
783 static inline dma_addr_t rtl8139_addr64(uint32_t low, uint32_t high)
784 {
785     return low | ((uint64_t)high << 32);
786 }
787 
788 /* Workaround for buggy guest driver such as linux who allocates rx
789  * rings after the receiver were enabled. */
790 static bool rtl8139_cp_rx_valid(RTL8139State *s)
791 {
792     return !(s->RxRingAddrLO == 0 && s->RxRingAddrHI == 0);
793 }
794 
795 static int rtl8139_can_receive(NetClientState *nc)
796 {
797     RTL8139State *s = qemu_get_nic_opaque(nc);
798     int avail;
799 
800     /* Receive (drop) packets if card is disabled.  */
801     if (!s->clock_enabled)
802       return 1;
803     if (!rtl8139_receiver_enabled(s))
804       return 1;
805 
806     if (rtl8139_cp_receiver_enabled(s) && rtl8139_cp_rx_valid(s)) {
807         /* ??? Flow control not implemented in c+ mode.
808            This is a hack to work around slirp deficiencies anyway.  */
809         return 1;
810     } else {
811         avail = MOD2(s->RxBufferSize + s->RxBufPtr - s->RxBufAddr,
812                      s->RxBufferSize);
813         return (avail == 0 || avail >= 1514 || (s->IntrMask & RxOverflow));
814     }
815 }
816 
817 static ssize_t rtl8139_do_receive(NetClientState *nc, const uint8_t *buf, size_t size_, int do_interrupt)
818 {
819     RTL8139State *s = qemu_get_nic_opaque(nc);
820     PCIDevice *d = PCI_DEVICE(s);
821     /* size is the length of the buffer passed to the driver */
822     int size = size_;
823     const uint8_t *dot1q_buf = NULL;
824 
825     uint32_t packet_header = 0;
826 
827     uint8_t buf1[MIN_BUF_SIZE + VLAN_HLEN];
828     static const uint8_t broadcast_macaddr[6] =
829         { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
830 
831     DPRINTF(">>> received len=%d\n", size);
832 
833     /* test if board clock is stopped */
834     if (!s->clock_enabled)
835     {
836         DPRINTF("stopped ==========================\n");
837         return -1;
838     }
839 
840     /* first check if receiver is enabled */
841 
842     if (!rtl8139_receiver_enabled(s))
843     {
844         DPRINTF("receiver disabled ================\n");
845         return -1;
846     }
847 
848     /* XXX: check this */
849     if (s->RxConfig & AcceptAllPhys) {
850         /* promiscuous: receive all */
851         DPRINTF(">>> packet received in promiscuous mode\n");
852 
853     } else {
854         if (!memcmp(buf,  broadcast_macaddr, 6)) {
855             /* broadcast address */
856             if (!(s->RxConfig & AcceptBroadcast))
857             {
858                 DPRINTF(">>> broadcast packet rejected\n");
859 
860                 /* update tally counter */
861                 ++s->tally_counters.RxERR;
862 
863                 return size;
864             }
865 
866             packet_header |= RxBroadcast;
867 
868             DPRINTF(">>> broadcast packet received\n");
869 
870             /* update tally counter */
871             ++s->tally_counters.RxOkBrd;
872 
873         } else if (buf[0] & 0x01) {
874             /* multicast */
875             if (!(s->RxConfig & AcceptMulticast))
876             {
877                 DPRINTF(">>> multicast packet rejected\n");
878 
879                 /* update tally counter */
880                 ++s->tally_counters.RxERR;
881 
882                 return size;
883             }
884 
885             int mcast_idx = compute_mcast_idx(buf);
886 
887             if (!(s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))))
888             {
889                 DPRINTF(">>> multicast address mismatch\n");
890 
891                 /* update tally counter */
892                 ++s->tally_counters.RxERR;
893 
894                 return size;
895             }
896 
897             packet_header |= RxMulticast;
898 
899             DPRINTF(">>> multicast packet received\n");
900 
901             /* update tally counter */
902             ++s->tally_counters.RxOkMul;
903 
904         } else if (s->phys[0] == buf[0] &&
905                    s->phys[1] == buf[1] &&
906                    s->phys[2] == buf[2] &&
907                    s->phys[3] == buf[3] &&
908                    s->phys[4] == buf[4] &&
909                    s->phys[5] == buf[5]) {
910             /* match */
911             if (!(s->RxConfig & AcceptMyPhys))
912             {
913                 DPRINTF(">>> rejecting physical address matching packet\n");
914 
915                 /* update tally counter */
916                 ++s->tally_counters.RxERR;
917 
918                 return size;
919             }
920 
921             packet_header |= RxPhysical;
922 
923             DPRINTF(">>> physical address matching packet received\n");
924 
925             /* update tally counter */
926             ++s->tally_counters.RxOkPhy;
927 
928         } else {
929 
930             DPRINTF(">>> unknown packet\n");
931 
932             /* update tally counter */
933             ++s->tally_counters.RxERR;
934 
935             return size;
936         }
937     }
938 
939     /* if too small buffer, then expand it
940      * Include some tailroom in case a vlan tag is later removed. */
941     if (size < MIN_BUF_SIZE + VLAN_HLEN) {
942         memcpy(buf1, buf, size);
943         memset(buf1 + size, 0, MIN_BUF_SIZE + VLAN_HLEN - size);
944         buf = buf1;
945         if (size < MIN_BUF_SIZE) {
946             size = MIN_BUF_SIZE;
947         }
948     }
949 
950     if (rtl8139_cp_receiver_enabled(s))
951     {
952         if (!rtl8139_cp_rx_valid(s)) {
953             return size;
954         }
955 
956         DPRINTF("in C+ Rx mode ================\n");
957 
958         /* begin C+ receiver mode */
959 
960 /* w0 ownership flag */
961 #define CP_RX_OWN (1<<31)
962 /* w0 end of ring flag */
963 #define CP_RX_EOR (1<<30)
964 /* w0 bits 0...12 : buffer size */
965 #define CP_RX_BUFFER_SIZE_MASK ((1<<13) - 1)
966 /* w1 tag available flag */
967 #define CP_RX_TAVA (1<<16)
968 /* w1 bits 0...15 : VLAN tag */
969 #define CP_RX_VLAN_TAG_MASK ((1<<16) - 1)
970 /* w2 low  32bit of Rx buffer ptr */
971 /* w3 high 32bit of Rx buffer ptr */
972 
973         int descriptor = s->currCPlusRxDesc;
974         dma_addr_t cplus_rx_ring_desc;
975 
976         cplus_rx_ring_desc = rtl8139_addr64(s->RxRingAddrLO, s->RxRingAddrHI);
977         cplus_rx_ring_desc += 16 * descriptor;
978 
979         DPRINTF("+++ C+ mode reading RX descriptor %d from host memory at "
980             "%08x %08x = "DMA_ADDR_FMT"\n", descriptor, s->RxRingAddrHI,
981             s->RxRingAddrLO, cplus_rx_ring_desc);
982 
983         uint32_t val, rxdw0,rxdw1,rxbufLO,rxbufHI;
984 
985         pci_dma_read(d, cplus_rx_ring_desc, &val, 4);
986         rxdw0 = le32_to_cpu(val);
987         pci_dma_read(d, cplus_rx_ring_desc+4, &val, 4);
988         rxdw1 = le32_to_cpu(val);
989         pci_dma_read(d, cplus_rx_ring_desc+8, &val, 4);
990         rxbufLO = le32_to_cpu(val);
991         pci_dma_read(d, cplus_rx_ring_desc+12, &val, 4);
992         rxbufHI = le32_to_cpu(val);
993 
994         DPRINTF("+++ C+ mode RX descriptor %d %08x %08x %08x %08x\n",
995             descriptor, rxdw0, rxdw1, rxbufLO, rxbufHI);
996 
997         if (!(rxdw0 & CP_RX_OWN))
998         {
999             DPRINTF("C+ Rx mode : descriptor %d is owned by host\n",
1000                 descriptor);
1001 
1002             s->IntrStatus |= RxOverflow;
1003             ++s->RxMissed;
1004 
1005             /* update tally counter */
1006             ++s->tally_counters.RxERR;
1007             ++s->tally_counters.MissPkt;
1008 
1009             rtl8139_update_irq(s);
1010             return size_;
1011         }
1012 
1013         uint32_t rx_space = rxdw0 & CP_RX_BUFFER_SIZE_MASK;
1014 
1015         /* write VLAN info to descriptor variables. */
1016         if (s->CpCmd & CPlusRxVLAN && be16_to_cpup((uint16_t *)
1017                 &buf[ETH_ALEN * 2]) == ETH_P_VLAN) {
1018             dot1q_buf = &buf[ETH_ALEN * 2];
1019             size -= VLAN_HLEN;
1020             /* if too small buffer, use the tailroom added duing expansion */
1021             if (size < MIN_BUF_SIZE) {
1022                 size = MIN_BUF_SIZE;
1023             }
1024 
1025             rxdw1 &= ~CP_RX_VLAN_TAG_MASK;
1026             /* BE + ~le_to_cpu()~ + cpu_to_le() = BE */
1027             rxdw1 |= CP_RX_TAVA | le16_to_cpup((uint16_t *)
1028                 &dot1q_buf[ETHER_TYPE_LEN]);
1029 
1030             DPRINTF("C+ Rx mode : extracted vlan tag with tci: ""%u\n",
1031                 be16_to_cpup((uint16_t *)&dot1q_buf[ETHER_TYPE_LEN]));
1032         } else {
1033             /* reset VLAN tag flag */
1034             rxdw1 &= ~CP_RX_TAVA;
1035         }
1036 
1037         /* TODO: scatter the packet over available receive ring descriptors space */
1038 
1039         if (size+4 > rx_space)
1040         {
1041             DPRINTF("C+ Rx mode : descriptor %d size %d received %d + 4\n",
1042                 descriptor, rx_space, size);
1043 
1044             s->IntrStatus |= RxOverflow;
1045             ++s->RxMissed;
1046 
1047             /* update tally counter */
1048             ++s->tally_counters.RxERR;
1049             ++s->tally_counters.MissPkt;
1050 
1051             rtl8139_update_irq(s);
1052             return size_;
1053         }
1054 
1055         dma_addr_t rx_addr = rtl8139_addr64(rxbufLO, rxbufHI);
1056 
1057         /* receive/copy to target memory */
1058         if (dot1q_buf) {
1059             pci_dma_write(d, rx_addr, buf, 2 * ETH_ALEN);
1060             pci_dma_write(d, rx_addr + 2 * ETH_ALEN,
1061                           buf + 2 * ETH_ALEN + VLAN_HLEN,
1062                           size - 2 * ETH_ALEN);
1063         } else {
1064             pci_dma_write(d, rx_addr, buf, size);
1065         }
1066 
1067         if (s->CpCmd & CPlusRxChkSum)
1068         {
1069             /* do some packet checksumming */
1070         }
1071 
1072         /* write checksum */
1073         val = cpu_to_le32(crc32(0, buf, size_));
1074         pci_dma_write(d, rx_addr+size, (uint8_t *)&val, 4);
1075 
1076 /* first segment of received packet flag */
1077 #define CP_RX_STATUS_FS (1<<29)
1078 /* last segment of received packet flag */
1079 #define CP_RX_STATUS_LS (1<<28)
1080 /* multicast packet flag */
1081 #define CP_RX_STATUS_MAR (1<<26)
1082 /* physical-matching packet flag */
1083 #define CP_RX_STATUS_PAM (1<<25)
1084 /* broadcast packet flag */
1085 #define CP_RX_STATUS_BAR (1<<24)
1086 /* runt packet flag */
1087 #define CP_RX_STATUS_RUNT (1<<19)
1088 /* crc error flag */
1089 #define CP_RX_STATUS_CRC (1<<18)
1090 /* IP checksum error flag */
1091 #define CP_RX_STATUS_IPF (1<<15)
1092 /* UDP checksum error flag */
1093 #define CP_RX_STATUS_UDPF (1<<14)
1094 /* TCP checksum error flag */
1095 #define CP_RX_STATUS_TCPF (1<<13)
1096 
1097         /* transfer ownership to target */
1098         rxdw0 &= ~CP_RX_OWN;
1099 
1100         /* set first segment bit */
1101         rxdw0 |= CP_RX_STATUS_FS;
1102 
1103         /* set last segment bit */
1104         rxdw0 |= CP_RX_STATUS_LS;
1105 
1106         /* set received packet type flags */
1107         if (packet_header & RxBroadcast)
1108             rxdw0 |= CP_RX_STATUS_BAR;
1109         if (packet_header & RxMulticast)
1110             rxdw0 |= CP_RX_STATUS_MAR;
1111         if (packet_header & RxPhysical)
1112             rxdw0 |= CP_RX_STATUS_PAM;
1113 
1114         /* set received size */
1115         rxdw0 &= ~CP_RX_BUFFER_SIZE_MASK;
1116         rxdw0 |= (size+4);
1117 
1118         /* update ring data */
1119         val = cpu_to_le32(rxdw0);
1120         pci_dma_write(d, cplus_rx_ring_desc, (uint8_t *)&val, 4);
1121         val = cpu_to_le32(rxdw1);
1122         pci_dma_write(d, cplus_rx_ring_desc+4, (uint8_t *)&val, 4);
1123 
1124         /* update tally counter */
1125         ++s->tally_counters.RxOk;
1126 
1127         /* seek to next Rx descriptor */
1128         if (rxdw0 & CP_RX_EOR)
1129         {
1130             s->currCPlusRxDesc = 0;
1131         }
1132         else
1133         {
1134             ++s->currCPlusRxDesc;
1135         }
1136 
1137         DPRINTF("done C+ Rx mode ----------------\n");
1138 
1139     }
1140     else
1141     {
1142         DPRINTF("in ring Rx mode ================\n");
1143 
1144         /* begin ring receiver mode */
1145         int avail = MOD2(s->RxBufferSize + s->RxBufPtr - s->RxBufAddr, s->RxBufferSize);
1146 
1147         /* if receiver buffer is empty then avail == 0 */
1148 
1149 #define RX_ALIGN(x) (((x) + 3) & ~0x3)
1150 
1151         if (avail != 0 && RX_ALIGN(size + 8) >= avail)
1152         {
1153             DPRINTF("rx overflow: rx buffer length %d head 0x%04x "
1154                 "read 0x%04x === available 0x%04x need 0x%04x\n",
1155                 s->RxBufferSize, s->RxBufAddr, s->RxBufPtr, avail, size + 8);
1156 
1157             s->IntrStatus |= RxOverflow;
1158             ++s->RxMissed;
1159             rtl8139_update_irq(s);
1160             return 0;
1161         }
1162 
1163         packet_header |= RxStatusOK;
1164 
1165         packet_header |= (((size+4) << 16) & 0xffff0000);
1166 
1167         /* write header */
1168         uint32_t val = cpu_to_le32(packet_header);
1169 
1170         rtl8139_write_buffer(s, (uint8_t *)&val, 4);
1171 
1172         rtl8139_write_buffer(s, buf, size);
1173 
1174         /* write checksum */
1175         val = cpu_to_le32(crc32(0, buf, size));
1176         rtl8139_write_buffer(s, (uint8_t *)&val, 4);
1177 
1178         /* correct buffer write pointer */
1179         s->RxBufAddr = MOD2(RX_ALIGN(s->RxBufAddr), s->RxBufferSize);
1180 
1181         /* now we can signal we have received something */
1182 
1183         DPRINTF("received: rx buffer length %d head 0x%04x read 0x%04x\n",
1184             s->RxBufferSize, s->RxBufAddr, s->RxBufPtr);
1185     }
1186 
1187     s->IntrStatus |= RxOK;
1188 
1189     if (do_interrupt)
1190     {
1191         rtl8139_update_irq(s);
1192     }
1193 
1194     return size_;
1195 }
1196 
1197 static ssize_t rtl8139_receive(NetClientState *nc, const uint8_t *buf, size_t size)
1198 {
1199     return rtl8139_do_receive(nc, buf, size, 1);
1200 }
1201 
1202 static void rtl8139_reset_rxring(RTL8139State *s, uint32_t bufferSize)
1203 {
1204     s->RxBufferSize = bufferSize;
1205     s->RxBufPtr  = 0;
1206     s->RxBufAddr = 0;
1207 }
1208 
1209 static void rtl8139_reset(DeviceState *d)
1210 {
1211     RTL8139State *s = RTL8139(d);
1212     int i;
1213 
1214     /* restore MAC address */
1215     memcpy(s->phys, s->conf.macaddr.a, 6);
1216     qemu_format_nic_info_str(qemu_get_queue(s->nic), s->phys);
1217 
1218     /* reset interrupt mask */
1219     s->IntrStatus = 0;
1220     s->IntrMask = 0;
1221 
1222     rtl8139_update_irq(s);
1223 
1224     /* mark all status registers as owned by host */
1225     for (i = 0; i < 4; ++i)
1226     {
1227         s->TxStatus[i] = TxHostOwns;
1228     }
1229 
1230     s->currTxDesc = 0;
1231     s->currCPlusRxDesc = 0;
1232     s->currCPlusTxDesc = 0;
1233 
1234     s->RxRingAddrLO = 0;
1235     s->RxRingAddrHI = 0;
1236 
1237     s->RxBuf = 0;
1238 
1239     rtl8139_reset_rxring(s, 8192);
1240 
1241     /* ACK the reset */
1242     s->TxConfig = 0;
1243 
1244 #if 0
1245 //    s->TxConfig |= HW_REVID(1, 0, 0, 0, 0, 0, 0); // RTL-8139  HasHltClk
1246     s->clock_enabled = 0;
1247 #else
1248     s->TxConfig |= HW_REVID(1, 1, 1, 0, 1, 1, 0); // RTL-8139C+ HasLWake
1249     s->clock_enabled = 1;
1250 #endif
1251 
1252     s->bChipCmdState = CmdReset; /* RxBufEmpty bit is calculated on read from ChipCmd */;
1253 
1254     /* set initial state data */
1255     s->Config0 = 0x0; /* No boot ROM */
1256     s->Config1 = 0xC; /* IO mapped and MEM mapped registers available */
1257     s->Config3 = 0x1; /* fast back-to-back compatible */
1258     s->Config5 = 0x0;
1259 
1260     s->CSCR = CSCR_F_LINK_100 | CSCR_HEART_BIT | CSCR_LD;
1261 
1262     s->CpCmd   = 0x0; /* reset C+ mode */
1263     s->cplus_enabled = 0;
1264 
1265 
1266 //    s->BasicModeCtrl = 0x3100; // 100Mbps, full duplex, autonegotiation
1267 //    s->BasicModeCtrl = 0x2100; // 100Mbps, full duplex
1268     s->BasicModeCtrl = 0x1000; // autonegotiation
1269 
1270     s->BasicModeStatus  = 0x7809;
1271     //s->BasicModeStatus |= 0x0040; /* UTP medium */
1272     s->BasicModeStatus |= 0x0020; /* autonegotiation completed */
1273     /* preserve link state */
1274     s->BasicModeStatus |= qemu_get_queue(s->nic)->link_down ? 0 : 0x04;
1275 
1276     s->NWayAdvert    = 0x05e1; /* all modes, full duplex */
1277     s->NWayLPAR      = 0x05e1; /* all modes, full duplex */
1278     s->NWayExpansion = 0x0001; /* autonegotiation supported */
1279 
1280     /* also reset timer and disable timer interrupt */
1281     s->TCTR = 0;
1282     s->TimerInt = 0;
1283     s->TCTR_base = 0;
1284     rtl8139_set_next_tctr_time(s);
1285 
1286     /* reset tally counters */
1287     RTL8139TallyCounters_clear(&s->tally_counters);
1288 }
1289 
1290 static void RTL8139TallyCounters_clear(RTL8139TallyCounters* counters)
1291 {
1292     counters->TxOk = 0;
1293     counters->RxOk = 0;
1294     counters->TxERR = 0;
1295     counters->RxERR = 0;
1296     counters->MissPkt = 0;
1297     counters->FAE = 0;
1298     counters->Tx1Col = 0;
1299     counters->TxMCol = 0;
1300     counters->RxOkPhy = 0;
1301     counters->RxOkBrd = 0;
1302     counters->RxOkMul = 0;
1303     counters->TxAbt = 0;
1304     counters->TxUndrn = 0;
1305 }
1306 
1307 static void RTL8139TallyCounters_dma_write(RTL8139State *s, dma_addr_t tc_addr)
1308 {
1309     PCIDevice *d = PCI_DEVICE(s);
1310     RTL8139TallyCounters *tally_counters = &s->tally_counters;
1311     uint16_t val16;
1312     uint32_t val32;
1313     uint64_t val64;
1314 
1315     val64 = cpu_to_le64(tally_counters->TxOk);
1316     pci_dma_write(d, tc_addr + 0,     (uint8_t *)&val64, 8);
1317 
1318     val64 = cpu_to_le64(tally_counters->RxOk);
1319     pci_dma_write(d, tc_addr + 8,     (uint8_t *)&val64, 8);
1320 
1321     val64 = cpu_to_le64(tally_counters->TxERR);
1322     pci_dma_write(d, tc_addr + 16,    (uint8_t *)&val64, 8);
1323 
1324     val32 = cpu_to_le32(tally_counters->RxERR);
1325     pci_dma_write(d, tc_addr + 24,    (uint8_t *)&val32, 4);
1326 
1327     val16 = cpu_to_le16(tally_counters->MissPkt);
1328     pci_dma_write(d, tc_addr + 28,    (uint8_t *)&val16, 2);
1329 
1330     val16 = cpu_to_le16(tally_counters->FAE);
1331     pci_dma_write(d, tc_addr + 30,    (uint8_t *)&val16, 2);
1332 
1333     val32 = cpu_to_le32(tally_counters->Tx1Col);
1334     pci_dma_write(d, tc_addr + 32,    (uint8_t *)&val32, 4);
1335 
1336     val32 = cpu_to_le32(tally_counters->TxMCol);
1337     pci_dma_write(d, tc_addr + 36,    (uint8_t *)&val32, 4);
1338 
1339     val64 = cpu_to_le64(tally_counters->RxOkPhy);
1340     pci_dma_write(d, tc_addr + 40,    (uint8_t *)&val64, 8);
1341 
1342     val64 = cpu_to_le64(tally_counters->RxOkBrd);
1343     pci_dma_write(d, tc_addr + 48,    (uint8_t *)&val64, 8);
1344 
1345     val32 = cpu_to_le32(tally_counters->RxOkMul);
1346     pci_dma_write(d, tc_addr + 56,    (uint8_t *)&val32, 4);
1347 
1348     val16 = cpu_to_le16(tally_counters->TxAbt);
1349     pci_dma_write(d, tc_addr + 60,    (uint8_t *)&val16, 2);
1350 
1351     val16 = cpu_to_le16(tally_counters->TxUndrn);
1352     pci_dma_write(d, tc_addr + 62,    (uint8_t *)&val16, 2);
1353 }
1354 
1355 /* Loads values of tally counters from VM state file */
1356 
1357 static const VMStateDescription vmstate_tally_counters = {
1358     .name = "tally_counters",
1359     .version_id = 1,
1360     .minimum_version_id = 1,
1361     .fields = (VMStateField[]) {
1362         VMSTATE_UINT64(TxOk, RTL8139TallyCounters),
1363         VMSTATE_UINT64(RxOk, RTL8139TallyCounters),
1364         VMSTATE_UINT64(TxERR, RTL8139TallyCounters),
1365         VMSTATE_UINT32(RxERR, RTL8139TallyCounters),
1366         VMSTATE_UINT16(MissPkt, RTL8139TallyCounters),
1367         VMSTATE_UINT16(FAE, RTL8139TallyCounters),
1368         VMSTATE_UINT32(Tx1Col, RTL8139TallyCounters),
1369         VMSTATE_UINT32(TxMCol, RTL8139TallyCounters),
1370         VMSTATE_UINT64(RxOkPhy, RTL8139TallyCounters),
1371         VMSTATE_UINT64(RxOkBrd, RTL8139TallyCounters),
1372         VMSTATE_UINT16(TxAbt, RTL8139TallyCounters),
1373         VMSTATE_UINT16(TxUndrn, RTL8139TallyCounters),
1374         VMSTATE_END_OF_LIST()
1375     }
1376 };
1377 
1378 static void rtl8139_ChipCmd_write(RTL8139State *s, uint32_t val)
1379 {
1380     DeviceState *d = DEVICE(s);
1381 
1382     val &= 0xff;
1383 
1384     DPRINTF("ChipCmd write val=0x%08x\n", val);
1385 
1386     if (val & CmdReset)
1387     {
1388         DPRINTF("ChipCmd reset\n");
1389         rtl8139_reset(d);
1390     }
1391     if (val & CmdRxEnb)
1392     {
1393         DPRINTF("ChipCmd enable receiver\n");
1394 
1395         s->currCPlusRxDesc = 0;
1396     }
1397     if (val & CmdTxEnb)
1398     {
1399         DPRINTF("ChipCmd enable transmitter\n");
1400 
1401         s->currCPlusTxDesc = 0;
1402     }
1403 
1404     /* mask unwritable bits */
1405     val = SET_MASKED(val, 0xe3, s->bChipCmdState);
1406 
1407     /* Deassert reset pin before next read */
1408     val &= ~CmdReset;
1409 
1410     s->bChipCmdState = val;
1411 }
1412 
1413 static int rtl8139_RxBufferEmpty(RTL8139State *s)
1414 {
1415     int unread = MOD2(s->RxBufferSize + s->RxBufAddr - s->RxBufPtr, s->RxBufferSize);
1416 
1417     if (unread != 0)
1418     {
1419         DPRINTF("receiver buffer data available 0x%04x\n", unread);
1420         return 0;
1421     }
1422 
1423     DPRINTF("receiver buffer is empty\n");
1424 
1425     return 1;
1426 }
1427 
1428 static uint32_t rtl8139_ChipCmd_read(RTL8139State *s)
1429 {
1430     uint32_t ret = s->bChipCmdState;
1431 
1432     if (rtl8139_RxBufferEmpty(s))
1433         ret |= RxBufEmpty;
1434 
1435     DPRINTF("ChipCmd read val=0x%04x\n", ret);
1436 
1437     return ret;
1438 }
1439 
1440 static void rtl8139_CpCmd_write(RTL8139State *s, uint32_t val)
1441 {
1442     val &= 0xffff;
1443 
1444     DPRINTF("C+ command register write(w) val=0x%04x\n", val);
1445 
1446     s->cplus_enabled = 1;
1447 
1448     /* mask unwritable bits */
1449     val = SET_MASKED(val, 0xff84, s->CpCmd);
1450 
1451     s->CpCmd = val;
1452 }
1453 
1454 static uint32_t rtl8139_CpCmd_read(RTL8139State *s)
1455 {
1456     uint32_t ret = s->CpCmd;
1457 
1458     DPRINTF("C+ command register read(w) val=0x%04x\n", ret);
1459 
1460     return ret;
1461 }
1462 
1463 static void rtl8139_IntrMitigate_write(RTL8139State *s, uint32_t val)
1464 {
1465     DPRINTF("C+ IntrMitigate register write(w) val=0x%04x\n", val);
1466 }
1467 
1468 static uint32_t rtl8139_IntrMitigate_read(RTL8139State *s)
1469 {
1470     uint32_t ret = 0;
1471 
1472     DPRINTF("C+ IntrMitigate register read(w) val=0x%04x\n", ret);
1473 
1474     return ret;
1475 }
1476 
1477 static int rtl8139_config_writable(RTL8139State *s)
1478 {
1479     if ((s->Cfg9346 & Chip9346_op_mask) == Cfg9346_ConfigWrite)
1480     {
1481         return 1;
1482     }
1483 
1484     DPRINTF("Configuration registers are write-protected\n");
1485 
1486     return 0;
1487 }
1488 
1489 static void rtl8139_BasicModeCtrl_write(RTL8139State *s, uint32_t val)
1490 {
1491     val &= 0xffff;
1492 
1493     DPRINTF("BasicModeCtrl register write(w) val=0x%04x\n", val);
1494 
1495     /* mask unwritable bits */
1496     uint32_t mask = 0x4cff;
1497 
1498     if (1 || !rtl8139_config_writable(s))
1499     {
1500         /* Speed setting and autonegotiation enable bits are read-only */
1501         mask |= 0x3000;
1502         /* Duplex mode setting is read-only */
1503         mask |= 0x0100;
1504     }
1505 
1506     val = SET_MASKED(val, mask, s->BasicModeCtrl);
1507 
1508     s->BasicModeCtrl = val;
1509 }
1510 
1511 static uint32_t rtl8139_BasicModeCtrl_read(RTL8139State *s)
1512 {
1513     uint32_t ret = s->BasicModeCtrl;
1514 
1515     DPRINTF("BasicModeCtrl register read(w) val=0x%04x\n", ret);
1516 
1517     return ret;
1518 }
1519 
1520 static void rtl8139_BasicModeStatus_write(RTL8139State *s, uint32_t val)
1521 {
1522     val &= 0xffff;
1523 
1524     DPRINTF("BasicModeStatus register write(w) val=0x%04x\n", val);
1525 
1526     /* mask unwritable bits */
1527     val = SET_MASKED(val, 0xff3f, s->BasicModeStatus);
1528 
1529     s->BasicModeStatus = val;
1530 }
1531 
1532 static uint32_t rtl8139_BasicModeStatus_read(RTL8139State *s)
1533 {
1534     uint32_t ret = s->BasicModeStatus;
1535 
1536     DPRINTF("BasicModeStatus register read(w) val=0x%04x\n", ret);
1537 
1538     return ret;
1539 }
1540 
1541 static void rtl8139_Cfg9346_write(RTL8139State *s, uint32_t val)
1542 {
1543     DeviceState *d = DEVICE(s);
1544 
1545     val &= 0xff;
1546 
1547     DPRINTF("Cfg9346 write val=0x%02x\n", val);
1548 
1549     /* mask unwritable bits */
1550     val = SET_MASKED(val, 0x31, s->Cfg9346);
1551 
1552     uint32_t opmode = val & 0xc0;
1553     uint32_t eeprom_val = val & 0xf;
1554 
1555     if (opmode == 0x80) {
1556         /* eeprom access */
1557         int eecs = (eeprom_val & 0x08)?1:0;
1558         int eesk = (eeprom_val & 0x04)?1:0;
1559         int eedi = (eeprom_val & 0x02)?1:0;
1560         prom9346_set_wire(s, eecs, eesk, eedi);
1561     } else if (opmode == 0x40) {
1562         /* Reset.  */
1563         val = 0;
1564         rtl8139_reset(d);
1565     }
1566 
1567     s->Cfg9346 = val;
1568 }
1569 
1570 static uint32_t rtl8139_Cfg9346_read(RTL8139State *s)
1571 {
1572     uint32_t ret = s->Cfg9346;
1573 
1574     uint32_t opmode = ret & 0xc0;
1575 
1576     if (opmode == 0x80)
1577     {
1578         /* eeprom access */
1579         int eedo = prom9346_get_wire(s);
1580         if (eedo)
1581         {
1582             ret |=  0x01;
1583         }
1584         else
1585         {
1586             ret &= ~0x01;
1587         }
1588     }
1589 
1590     DPRINTF("Cfg9346 read val=0x%02x\n", ret);
1591 
1592     return ret;
1593 }
1594 
1595 static void rtl8139_Config0_write(RTL8139State *s, uint32_t val)
1596 {
1597     val &= 0xff;
1598 
1599     DPRINTF("Config0 write val=0x%02x\n", val);
1600 
1601     if (!rtl8139_config_writable(s)) {
1602         return;
1603     }
1604 
1605     /* mask unwritable bits */
1606     val = SET_MASKED(val, 0xf8, s->Config0);
1607 
1608     s->Config0 = val;
1609 }
1610 
1611 static uint32_t rtl8139_Config0_read(RTL8139State *s)
1612 {
1613     uint32_t ret = s->Config0;
1614 
1615     DPRINTF("Config0 read val=0x%02x\n", ret);
1616 
1617     return ret;
1618 }
1619 
1620 static void rtl8139_Config1_write(RTL8139State *s, uint32_t val)
1621 {
1622     val &= 0xff;
1623 
1624     DPRINTF("Config1 write val=0x%02x\n", val);
1625 
1626     if (!rtl8139_config_writable(s)) {
1627         return;
1628     }
1629 
1630     /* mask unwritable bits */
1631     val = SET_MASKED(val, 0xC, s->Config1);
1632 
1633     s->Config1 = val;
1634 }
1635 
1636 static uint32_t rtl8139_Config1_read(RTL8139State *s)
1637 {
1638     uint32_t ret = s->Config1;
1639 
1640     DPRINTF("Config1 read val=0x%02x\n", ret);
1641 
1642     return ret;
1643 }
1644 
1645 static void rtl8139_Config3_write(RTL8139State *s, uint32_t val)
1646 {
1647     val &= 0xff;
1648 
1649     DPRINTF("Config3 write val=0x%02x\n", val);
1650 
1651     if (!rtl8139_config_writable(s)) {
1652         return;
1653     }
1654 
1655     /* mask unwritable bits */
1656     val = SET_MASKED(val, 0x8F, s->Config3);
1657 
1658     s->Config3 = val;
1659 }
1660 
1661 static uint32_t rtl8139_Config3_read(RTL8139State *s)
1662 {
1663     uint32_t ret = s->Config3;
1664 
1665     DPRINTF("Config3 read val=0x%02x\n", ret);
1666 
1667     return ret;
1668 }
1669 
1670 static void rtl8139_Config4_write(RTL8139State *s, uint32_t val)
1671 {
1672     val &= 0xff;
1673 
1674     DPRINTF("Config4 write val=0x%02x\n", val);
1675 
1676     if (!rtl8139_config_writable(s)) {
1677         return;
1678     }
1679 
1680     /* mask unwritable bits */
1681     val = SET_MASKED(val, 0x0a, s->Config4);
1682 
1683     s->Config4 = val;
1684 }
1685 
1686 static uint32_t rtl8139_Config4_read(RTL8139State *s)
1687 {
1688     uint32_t ret = s->Config4;
1689 
1690     DPRINTF("Config4 read val=0x%02x\n", ret);
1691 
1692     return ret;
1693 }
1694 
1695 static void rtl8139_Config5_write(RTL8139State *s, uint32_t val)
1696 {
1697     val &= 0xff;
1698 
1699     DPRINTF("Config5 write val=0x%02x\n", val);
1700 
1701     /* mask unwritable bits */
1702     val = SET_MASKED(val, 0x80, s->Config5);
1703 
1704     s->Config5 = val;
1705 }
1706 
1707 static uint32_t rtl8139_Config5_read(RTL8139State *s)
1708 {
1709     uint32_t ret = s->Config5;
1710 
1711     DPRINTF("Config5 read val=0x%02x\n", ret);
1712 
1713     return ret;
1714 }
1715 
1716 static void rtl8139_TxConfig_write(RTL8139State *s, uint32_t val)
1717 {
1718     if (!rtl8139_transmitter_enabled(s))
1719     {
1720         DPRINTF("transmitter disabled; no TxConfig write val=0x%08x\n", val);
1721         return;
1722     }
1723 
1724     DPRINTF("TxConfig write val=0x%08x\n", val);
1725 
1726     val = SET_MASKED(val, TxVersionMask | 0x8070f80f, s->TxConfig);
1727 
1728     s->TxConfig = val;
1729 }
1730 
1731 static void rtl8139_TxConfig_writeb(RTL8139State *s, uint32_t val)
1732 {
1733     DPRINTF("RTL8139C TxConfig via write(b) val=0x%02x\n", val);
1734 
1735     uint32_t tc = s->TxConfig;
1736     tc &= 0xFFFFFF00;
1737     tc |= (val & 0x000000FF);
1738     rtl8139_TxConfig_write(s, tc);
1739 }
1740 
1741 static uint32_t rtl8139_TxConfig_read(RTL8139State *s)
1742 {
1743     uint32_t ret = s->TxConfig;
1744 
1745     DPRINTF("TxConfig read val=0x%04x\n", ret);
1746 
1747     return ret;
1748 }
1749 
1750 static void rtl8139_RxConfig_write(RTL8139State *s, uint32_t val)
1751 {
1752     DPRINTF("RxConfig write val=0x%08x\n", val);
1753 
1754     /* mask unwritable bits */
1755     val = SET_MASKED(val, 0xf0fc0040, s->RxConfig);
1756 
1757     s->RxConfig = val;
1758 
1759     /* reset buffer size and read/write pointers */
1760     rtl8139_reset_rxring(s, 8192 << ((s->RxConfig >> 11) & 0x3));
1761 
1762     DPRINTF("RxConfig write reset buffer size to %d\n", s->RxBufferSize);
1763 }
1764 
1765 static uint32_t rtl8139_RxConfig_read(RTL8139State *s)
1766 {
1767     uint32_t ret = s->RxConfig;
1768 
1769     DPRINTF("RxConfig read val=0x%08x\n", ret);
1770 
1771     return ret;
1772 }
1773 
1774 static void rtl8139_transfer_frame(RTL8139State *s, uint8_t *buf, int size,
1775     int do_interrupt, const uint8_t *dot1q_buf)
1776 {
1777     struct iovec *iov = NULL;
1778     struct iovec vlan_iov[3];
1779 
1780     if (!size)
1781     {
1782         DPRINTF("+++ empty ethernet frame\n");
1783         return;
1784     }
1785 
1786     if (dot1q_buf && size >= ETH_ALEN * 2) {
1787         iov = (struct iovec[3]) {
1788             { .iov_base = buf, .iov_len = ETH_ALEN * 2 },
1789             { .iov_base = (void *) dot1q_buf, .iov_len = VLAN_HLEN },
1790             { .iov_base = buf + ETH_ALEN * 2,
1791                 .iov_len = size - ETH_ALEN * 2 },
1792         };
1793 
1794         memcpy(vlan_iov, iov, sizeof(vlan_iov));
1795         iov = vlan_iov;
1796     }
1797 
1798     if (TxLoopBack == (s->TxConfig & TxLoopBack))
1799     {
1800         size_t buf2_size;
1801         uint8_t *buf2;
1802 
1803         if (iov) {
1804             buf2_size = iov_size(iov, 3);
1805             buf2 = g_malloc(buf2_size);
1806             iov_to_buf(iov, 3, 0, buf2, buf2_size);
1807             buf = buf2;
1808         }
1809 
1810         DPRINTF("+++ transmit loopback mode\n");
1811         rtl8139_do_receive(qemu_get_queue(s->nic), buf, size, do_interrupt);
1812 
1813         if (iov) {
1814             g_free(buf2);
1815         }
1816     }
1817     else
1818     {
1819         if (iov) {
1820             qemu_sendv_packet(qemu_get_queue(s->nic), iov, 3);
1821         } else {
1822             qemu_send_packet(qemu_get_queue(s->nic), buf, size);
1823         }
1824     }
1825 }
1826 
1827 static int rtl8139_transmit_one(RTL8139State *s, int descriptor)
1828 {
1829     if (!rtl8139_transmitter_enabled(s))
1830     {
1831         DPRINTF("+++ cannot transmit from descriptor %d: transmitter "
1832             "disabled\n", descriptor);
1833         return 0;
1834     }
1835 
1836     if (s->TxStatus[descriptor] & TxHostOwns)
1837     {
1838         DPRINTF("+++ cannot transmit from descriptor %d: owned by host "
1839             "(%08x)\n", descriptor, s->TxStatus[descriptor]);
1840         return 0;
1841     }
1842 
1843     DPRINTF("+++ transmitting from descriptor %d\n", descriptor);
1844 
1845     PCIDevice *d = PCI_DEVICE(s);
1846     int txsize = s->TxStatus[descriptor] & 0x1fff;
1847     uint8_t txbuffer[0x2000];
1848 
1849     DPRINTF("+++ transmit reading %d bytes from host memory at 0x%08x\n",
1850         txsize, s->TxAddr[descriptor]);
1851 
1852     pci_dma_read(d, s->TxAddr[descriptor], txbuffer, txsize);
1853 
1854     /* Mark descriptor as transferred */
1855     s->TxStatus[descriptor] |= TxHostOwns;
1856     s->TxStatus[descriptor] |= TxStatOK;
1857 
1858     rtl8139_transfer_frame(s, txbuffer, txsize, 0, NULL);
1859 
1860     DPRINTF("+++ transmitted %d bytes from descriptor %d\n", txsize,
1861         descriptor);
1862 
1863     /* update interrupt */
1864     s->IntrStatus |= TxOK;
1865     rtl8139_update_irq(s);
1866 
1867     return 1;
1868 }
1869 
1870 /* structures and macros for task offloading */
1871 #define TCP_HEADER_DATA_OFFSET(tcp) (((be16_to_cpu(tcp->th_offset_flags) >> 12)&0xf) << 2)
1872 #define TCP_FLAGS_ONLY(flags) ((flags)&0x3f)
1873 #define TCP_HEADER_FLAGS(tcp) TCP_FLAGS_ONLY(be16_to_cpu(tcp->th_offset_flags))
1874 
1875 #define TCP_HEADER_CLEAR_FLAGS(tcp, off) ((tcp)->th_offset_flags &= cpu_to_be16(~TCP_FLAGS_ONLY(off)))
1876 
1877 /* produces ones' complement sum of data */
1878 static uint16_t ones_complement_sum(uint8_t *data, size_t len)
1879 {
1880     uint32_t result = 0;
1881 
1882     for (; len > 1; data+=2, len-=2)
1883     {
1884         result += *(uint16_t*)data;
1885     }
1886 
1887     /* add the remainder byte */
1888     if (len)
1889     {
1890         uint8_t odd[2] = {*data, 0};
1891         result += *(uint16_t*)odd;
1892     }
1893 
1894     while (result>>16)
1895         result = (result & 0xffff) + (result >> 16);
1896 
1897     return result;
1898 }
1899 
1900 static uint16_t ip_checksum(void *data, size_t len)
1901 {
1902     return ~ones_complement_sum((uint8_t*)data, len);
1903 }
1904 
1905 static int rtl8139_cplus_transmit_one(RTL8139State *s)
1906 {
1907     if (!rtl8139_transmitter_enabled(s))
1908     {
1909         DPRINTF("+++ C+ mode: transmitter disabled\n");
1910         return 0;
1911     }
1912 
1913     if (!rtl8139_cp_transmitter_enabled(s))
1914     {
1915         DPRINTF("+++ C+ mode: C+ transmitter disabled\n");
1916         return 0 ;
1917     }
1918 
1919     PCIDevice *d = PCI_DEVICE(s);
1920     int descriptor = s->currCPlusTxDesc;
1921 
1922     dma_addr_t cplus_tx_ring_desc = rtl8139_addr64(s->TxAddr[0], s->TxAddr[1]);
1923 
1924     /* Normal priority ring */
1925     cplus_tx_ring_desc += 16 * descriptor;
1926 
1927     DPRINTF("+++ C+ mode reading TX descriptor %d from host memory at "
1928         "%08x %08x = 0x"DMA_ADDR_FMT"\n", descriptor, s->TxAddr[1],
1929         s->TxAddr[0], cplus_tx_ring_desc);
1930 
1931     uint32_t val, txdw0,txdw1,txbufLO,txbufHI;
1932 
1933     pci_dma_read(d, cplus_tx_ring_desc,    (uint8_t *)&val, 4);
1934     txdw0 = le32_to_cpu(val);
1935     pci_dma_read(d, cplus_tx_ring_desc+4,  (uint8_t *)&val, 4);
1936     txdw1 = le32_to_cpu(val);
1937     pci_dma_read(d, cplus_tx_ring_desc+8,  (uint8_t *)&val, 4);
1938     txbufLO = le32_to_cpu(val);
1939     pci_dma_read(d, cplus_tx_ring_desc+12, (uint8_t *)&val, 4);
1940     txbufHI = le32_to_cpu(val);
1941 
1942     DPRINTF("+++ C+ mode TX descriptor %d %08x %08x %08x %08x\n", descriptor,
1943         txdw0, txdw1, txbufLO, txbufHI);
1944 
1945 /* w0 ownership flag */
1946 #define CP_TX_OWN (1<<31)
1947 /* w0 end of ring flag */
1948 #define CP_TX_EOR (1<<30)
1949 /* first segment of received packet flag */
1950 #define CP_TX_FS (1<<29)
1951 /* last segment of received packet flag */
1952 #define CP_TX_LS (1<<28)
1953 /* large send packet flag */
1954 #define CP_TX_LGSEN (1<<27)
1955 /* large send MSS mask, bits 16...25 */
1956 #define CP_TC_LGSEN_MSS_MASK ((1 << 12) - 1)
1957 
1958 /* IP checksum offload flag */
1959 #define CP_TX_IPCS (1<<18)
1960 /* UDP checksum offload flag */
1961 #define CP_TX_UDPCS (1<<17)
1962 /* TCP checksum offload flag */
1963 #define CP_TX_TCPCS (1<<16)
1964 
1965 /* w0 bits 0...15 : buffer size */
1966 #define CP_TX_BUFFER_SIZE (1<<16)
1967 #define CP_TX_BUFFER_SIZE_MASK (CP_TX_BUFFER_SIZE - 1)
1968 /* w1 add tag flag */
1969 #define CP_TX_TAGC (1<<17)
1970 /* w1 bits 0...15 : VLAN tag (big endian) */
1971 #define CP_TX_VLAN_TAG_MASK ((1<<16) - 1)
1972 /* w2 low  32bit of Rx buffer ptr */
1973 /* w3 high 32bit of Rx buffer ptr */
1974 
1975 /* set after transmission */
1976 /* FIFO underrun flag */
1977 #define CP_TX_STATUS_UNF (1<<25)
1978 /* transmit error summary flag, valid if set any of three below */
1979 #define CP_TX_STATUS_TES (1<<23)
1980 /* out-of-window collision flag */
1981 #define CP_TX_STATUS_OWC (1<<22)
1982 /* link failure flag */
1983 #define CP_TX_STATUS_LNKF (1<<21)
1984 /* excessive collisions flag */
1985 #define CP_TX_STATUS_EXC (1<<20)
1986 
1987     if (!(txdw0 & CP_TX_OWN))
1988     {
1989         DPRINTF("C+ Tx mode : descriptor %d is owned by host\n", descriptor);
1990         return 0 ;
1991     }
1992 
1993     DPRINTF("+++ C+ Tx mode : transmitting from descriptor %d\n", descriptor);
1994 
1995     if (txdw0 & CP_TX_FS)
1996     {
1997         DPRINTF("+++ C+ Tx mode : descriptor %d is first segment "
1998             "descriptor\n", descriptor);
1999 
2000         /* reset internal buffer offset */
2001         s->cplus_txbuffer_offset = 0;
2002     }
2003 
2004     int txsize = txdw0 & CP_TX_BUFFER_SIZE_MASK;
2005     dma_addr_t tx_addr = rtl8139_addr64(txbufLO, txbufHI);
2006 
2007     /* make sure we have enough space to assemble the packet */
2008     if (!s->cplus_txbuffer)
2009     {
2010         s->cplus_txbuffer_len = CP_TX_BUFFER_SIZE;
2011         s->cplus_txbuffer = g_malloc(s->cplus_txbuffer_len);
2012         s->cplus_txbuffer_offset = 0;
2013 
2014         DPRINTF("+++ C+ mode transmission buffer allocated space %d\n",
2015             s->cplus_txbuffer_len);
2016     }
2017 
2018     if (s->cplus_txbuffer_offset + txsize >= s->cplus_txbuffer_len)
2019     {
2020         /* The spec didn't tell the maximum size, stick to CP_TX_BUFFER_SIZE */
2021         txsize = s->cplus_txbuffer_len - s->cplus_txbuffer_offset;
2022         DPRINTF("+++ C+ mode transmission buffer overrun, truncated descriptor"
2023                 "length to %d\n", txsize);
2024     }
2025 
2026     /* append more data to the packet */
2027 
2028     DPRINTF("+++ C+ mode transmit reading %d bytes from host memory at "
2029             DMA_ADDR_FMT" to offset %d\n", txsize, tx_addr,
2030             s->cplus_txbuffer_offset);
2031 
2032     pci_dma_read(d, tx_addr,
2033                  s->cplus_txbuffer + s->cplus_txbuffer_offset, txsize);
2034     s->cplus_txbuffer_offset += txsize;
2035 
2036     /* seek to next Rx descriptor */
2037     if (txdw0 & CP_TX_EOR)
2038     {
2039         s->currCPlusTxDesc = 0;
2040     }
2041     else
2042     {
2043         ++s->currCPlusTxDesc;
2044         if (s->currCPlusTxDesc >= 64)
2045             s->currCPlusTxDesc = 0;
2046     }
2047 
2048     /* transfer ownership to target */
2049     txdw0 &= ~CP_RX_OWN;
2050 
2051     /* reset error indicator bits */
2052     txdw0 &= ~CP_TX_STATUS_UNF;
2053     txdw0 &= ~CP_TX_STATUS_TES;
2054     txdw0 &= ~CP_TX_STATUS_OWC;
2055     txdw0 &= ~CP_TX_STATUS_LNKF;
2056     txdw0 &= ~CP_TX_STATUS_EXC;
2057 
2058     /* update ring data */
2059     val = cpu_to_le32(txdw0);
2060     pci_dma_write(d, cplus_tx_ring_desc, (uint8_t *)&val, 4);
2061 
2062     /* Now decide if descriptor being processed is holding the last segment of packet */
2063     if (txdw0 & CP_TX_LS)
2064     {
2065         uint8_t dot1q_buffer_space[VLAN_HLEN];
2066         uint16_t *dot1q_buffer;
2067 
2068         DPRINTF("+++ C+ Tx mode : descriptor %d is last segment descriptor\n",
2069             descriptor);
2070 
2071         /* can transfer fully assembled packet */
2072 
2073         uint8_t *saved_buffer  = s->cplus_txbuffer;
2074         int      saved_size    = s->cplus_txbuffer_offset;
2075         int      saved_buffer_len = s->cplus_txbuffer_len;
2076 
2077         /* create vlan tag */
2078         if (txdw1 & CP_TX_TAGC) {
2079             /* the vlan tag is in BE byte order in the descriptor
2080              * BE + le_to_cpu() + ~swap()~ = cpu */
2081             DPRINTF("+++ C+ Tx mode : inserting vlan tag with ""tci: %u\n",
2082                 bswap16(txdw1 & CP_TX_VLAN_TAG_MASK));
2083 
2084             dot1q_buffer = (uint16_t *) dot1q_buffer_space;
2085             dot1q_buffer[0] = cpu_to_be16(ETH_P_VLAN);
2086             /* BE + le_to_cpu() + ~cpu_to_le()~ = BE */
2087             dot1q_buffer[1] = cpu_to_le16(txdw1 & CP_TX_VLAN_TAG_MASK);
2088         } else {
2089             dot1q_buffer = NULL;
2090         }
2091 
2092         /* reset the card space to protect from recursive call */
2093         s->cplus_txbuffer = NULL;
2094         s->cplus_txbuffer_offset = 0;
2095         s->cplus_txbuffer_len = 0;
2096 
2097         if (txdw0 & (CP_TX_IPCS | CP_TX_UDPCS | CP_TX_TCPCS | CP_TX_LGSEN))
2098         {
2099             DPRINTF("+++ C+ mode offloaded task checksum\n");
2100 
2101             /* Large enough for Ethernet and IP headers? */
2102             if (saved_size < ETH_HLEN + sizeof(struct ip_header)) {
2103                 goto skip_offload;
2104             }
2105 
2106             /* ip packet header */
2107             struct ip_header *ip = NULL;
2108             int hlen = 0;
2109             uint8_t  ip_protocol = 0;
2110             uint16_t ip_data_len = 0;
2111 
2112             uint8_t *eth_payload_data = NULL;
2113             size_t   eth_payload_len  = 0;
2114 
2115             int proto = be16_to_cpu(*(uint16_t *)(saved_buffer + 12));
2116             if (proto != ETH_P_IP)
2117             {
2118                 goto skip_offload;
2119             }
2120 
2121             DPRINTF("+++ C+ mode has IP packet\n");
2122 
2123             /* Note on memory alignment: eth_payload_data is 16-bit aligned
2124              * since saved_buffer is allocated with g_malloc() and ETH_HLEN is
2125              * even.  32-bit accesses must use ldl/stl wrappers to avoid
2126              * unaligned accesses.
2127              */
2128             eth_payload_data = saved_buffer + ETH_HLEN;
2129             eth_payload_len  = saved_size   - ETH_HLEN;
2130 
2131             ip = (struct ip_header*)eth_payload_data;
2132 
2133             if (IP_HEADER_VERSION(ip) != IP_HEADER_VERSION_4) {
2134                 DPRINTF("+++ C+ mode packet has bad IP version %d "
2135                     "expected %d\n", IP_HEADER_VERSION(ip),
2136                     IP_HEADER_VERSION_4);
2137                 goto skip_offload;
2138             }
2139 
2140             hlen = IP_HDR_GET_LEN(ip);
2141             if (hlen < sizeof(struct ip_header) || hlen > eth_payload_len) {
2142                 goto skip_offload;
2143             }
2144 
2145             ip_protocol = ip->ip_p;
2146 
2147             ip_data_len = be16_to_cpu(ip->ip_len);
2148             if (ip_data_len < hlen || ip_data_len > eth_payload_len) {
2149                 goto skip_offload;
2150             }
2151             ip_data_len -= hlen;
2152 
2153             if (txdw0 & CP_TX_IPCS)
2154             {
2155                 DPRINTF("+++ C+ mode need IP checksum\n");
2156 
2157                 ip->ip_sum = 0;
2158                 ip->ip_sum = ip_checksum(ip, hlen);
2159                 DPRINTF("+++ C+ mode IP header len=%d checksum=%04x\n",
2160                     hlen, ip->ip_sum);
2161             }
2162 
2163             if ((txdw0 & CP_TX_LGSEN) && ip_protocol == IP_PROTO_TCP)
2164             {
2165                 /* Large enough for the TCP header? */
2166                 if (ip_data_len < sizeof(tcp_header)) {
2167                     goto skip_offload;
2168                 }
2169 
2170                 int large_send_mss = (txdw0 >> 16) & CP_TC_LGSEN_MSS_MASK;
2171 
2172                 DPRINTF("+++ C+ mode offloaded task TSO MTU=%d IP data %d "
2173                     "frame data %d specified MSS=%d\n", ETH_MTU,
2174                     ip_data_len, saved_size - ETH_HLEN, large_send_mss);
2175 
2176                 int tcp_send_offset = 0;
2177                 int send_count = 0;
2178 
2179                 /* maximum IP header length is 60 bytes */
2180                 uint8_t saved_ip_header[60];
2181 
2182                 /* save IP header template; data area is used in tcp checksum calculation */
2183                 memcpy(saved_ip_header, eth_payload_data, hlen);
2184 
2185                 /* a placeholder for checksum calculation routine in tcp case */
2186                 uint8_t *data_to_checksum     = eth_payload_data + hlen - 12;
2187                 //                    size_t   data_to_checksum_len = eth_payload_len  - hlen + 12;
2188 
2189                 /* pointer to TCP header */
2190                 tcp_header *p_tcp_hdr = (tcp_header*)(eth_payload_data + hlen);
2191 
2192                 int tcp_hlen = TCP_HEADER_DATA_OFFSET(p_tcp_hdr);
2193 
2194                 /* Invalid TCP data offset? */
2195                 if (tcp_hlen < sizeof(tcp_header) || tcp_hlen > ip_data_len) {
2196                     goto skip_offload;
2197                 }
2198 
2199                 /* ETH_MTU = ip header len + tcp header len + payload */
2200                 int tcp_data_len = ip_data_len - tcp_hlen;
2201                 int tcp_chunk_size = ETH_MTU - hlen - tcp_hlen;
2202 
2203                 DPRINTF("+++ C+ mode TSO IP data len %d TCP hlen %d TCP "
2204                     "data len %d TCP chunk size %d\n", ip_data_len,
2205                     tcp_hlen, tcp_data_len, tcp_chunk_size);
2206 
2207                 /* note the cycle below overwrites IP header data,
2208                    but restores it from saved_ip_header before sending packet */
2209 
2210                 int is_last_frame = 0;
2211 
2212                 for (tcp_send_offset = 0; tcp_send_offset < tcp_data_len; tcp_send_offset += tcp_chunk_size)
2213                 {
2214                     uint16_t chunk_size = tcp_chunk_size;
2215 
2216                     /* check if this is the last frame */
2217                     if (tcp_send_offset + tcp_chunk_size >= tcp_data_len)
2218                     {
2219                         is_last_frame = 1;
2220                         chunk_size = tcp_data_len - tcp_send_offset;
2221                     }
2222 
2223                     DPRINTF("+++ C+ mode TSO TCP seqno %08x\n",
2224                             ldl_be_p(&p_tcp_hdr->th_seq));
2225 
2226                     /* add 4 TCP pseudoheader fields */
2227                     /* copy IP source and destination fields */
2228                     memcpy(data_to_checksum, saved_ip_header + 12, 8);
2229 
2230                     DPRINTF("+++ C+ mode TSO calculating TCP checksum for "
2231                         "packet with %d bytes data\n", tcp_hlen +
2232                         chunk_size);
2233 
2234                     if (tcp_send_offset)
2235                     {
2236                         memcpy((uint8_t*)p_tcp_hdr + tcp_hlen, (uint8_t*)p_tcp_hdr + tcp_hlen + tcp_send_offset, chunk_size);
2237                     }
2238 
2239                     /* keep PUSH and FIN flags only for the last frame */
2240                     if (!is_last_frame)
2241                     {
2242                         TCP_HEADER_CLEAR_FLAGS(p_tcp_hdr, TH_PUSH | TH_FIN);
2243                     }
2244 
2245                     /* recalculate TCP checksum */
2246                     ip_pseudo_header *p_tcpip_hdr = (ip_pseudo_header *)data_to_checksum;
2247                     p_tcpip_hdr->zeros      = 0;
2248                     p_tcpip_hdr->ip_proto   = IP_PROTO_TCP;
2249                     p_tcpip_hdr->ip_payload = cpu_to_be16(tcp_hlen + chunk_size);
2250 
2251                     p_tcp_hdr->th_sum = 0;
2252 
2253                     int tcp_checksum = ip_checksum(data_to_checksum, tcp_hlen + chunk_size + 12);
2254                     DPRINTF("+++ C+ mode TSO TCP checksum %04x\n",
2255                         tcp_checksum);
2256 
2257                     p_tcp_hdr->th_sum = tcp_checksum;
2258 
2259                     /* restore IP header */
2260                     memcpy(eth_payload_data, saved_ip_header, hlen);
2261 
2262                     /* set IP data length and recalculate IP checksum */
2263                     ip->ip_len = cpu_to_be16(hlen + tcp_hlen + chunk_size);
2264 
2265                     /* increment IP id for subsequent frames */
2266                     ip->ip_id = cpu_to_be16(tcp_send_offset/tcp_chunk_size + be16_to_cpu(ip->ip_id));
2267 
2268                     ip->ip_sum = 0;
2269                     ip->ip_sum = ip_checksum(eth_payload_data, hlen);
2270                     DPRINTF("+++ C+ mode TSO IP header len=%d "
2271                         "checksum=%04x\n", hlen, ip->ip_sum);
2272 
2273                     int tso_send_size = ETH_HLEN + hlen + tcp_hlen + chunk_size;
2274                     DPRINTF("+++ C+ mode TSO transferring packet size "
2275                         "%d\n", tso_send_size);
2276                     rtl8139_transfer_frame(s, saved_buffer, tso_send_size,
2277                         0, (uint8_t *) dot1q_buffer);
2278 
2279                     /* add transferred count to TCP sequence number */
2280                     stl_be_p(&p_tcp_hdr->th_seq,
2281                              chunk_size + ldl_be_p(&p_tcp_hdr->th_seq));
2282                     ++send_count;
2283                 }
2284 
2285                 /* Stop sending this frame */
2286                 saved_size = 0;
2287             }
2288             else if (txdw0 & (CP_TX_TCPCS|CP_TX_UDPCS))
2289             {
2290                 DPRINTF("+++ C+ mode need TCP or UDP checksum\n");
2291 
2292                 /* maximum IP header length is 60 bytes */
2293                 uint8_t saved_ip_header[60];
2294                 memcpy(saved_ip_header, eth_payload_data, hlen);
2295 
2296                 uint8_t *data_to_checksum     = eth_payload_data + hlen - 12;
2297                 //                    size_t   data_to_checksum_len = eth_payload_len  - hlen + 12;
2298 
2299                 /* add 4 TCP pseudoheader fields */
2300                 /* copy IP source and destination fields */
2301                 memcpy(data_to_checksum, saved_ip_header + 12, 8);
2302 
2303                 if ((txdw0 & CP_TX_TCPCS) && ip_protocol == IP_PROTO_TCP)
2304                 {
2305                     DPRINTF("+++ C+ mode calculating TCP checksum for "
2306                         "packet with %d bytes data\n", ip_data_len);
2307 
2308                     ip_pseudo_header *p_tcpip_hdr = (ip_pseudo_header *)data_to_checksum;
2309                     p_tcpip_hdr->zeros      = 0;
2310                     p_tcpip_hdr->ip_proto   = IP_PROTO_TCP;
2311                     p_tcpip_hdr->ip_payload = cpu_to_be16(ip_data_len);
2312 
2313                     tcp_header* p_tcp_hdr = (tcp_header *) (data_to_checksum+12);
2314 
2315                     p_tcp_hdr->th_sum = 0;
2316 
2317                     int tcp_checksum = ip_checksum(data_to_checksum, ip_data_len + 12);
2318                     DPRINTF("+++ C+ mode TCP checksum %04x\n",
2319                         tcp_checksum);
2320 
2321                     p_tcp_hdr->th_sum = tcp_checksum;
2322                 }
2323                 else if ((txdw0 & CP_TX_UDPCS) && ip_protocol == IP_PROTO_UDP)
2324                 {
2325                     DPRINTF("+++ C+ mode calculating UDP checksum for "
2326                         "packet with %d bytes data\n", ip_data_len);
2327 
2328                     ip_pseudo_header *p_udpip_hdr = (ip_pseudo_header *)data_to_checksum;
2329                     p_udpip_hdr->zeros      = 0;
2330                     p_udpip_hdr->ip_proto   = IP_PROTO_UDP;
2331                     p_udpip_hdr->ip_payload = cpu_to_be16(ip_data_len);
2332 
2333                     udp_header *p_udp_hdr = (udp_header *) (data_to_checksum+12);
2334 
2335                     p_udp_hdr->uh_sum = 0;
2336 
2337                     int udp_checksum = ip_checksum(data_to_checksum, ip_data_len + 12);
2338                     DPRINTF("+++ C+ mode UDP checksum %04x\n",
2339                         udp_checksum);
2340 
2341                     p_udp_hdr->uh_sum = udp_checksum;
2342                 }
2343 
2344                 /* restore IP header */
2345                 memcpy(eth_payload_data, saved_ip_header, hlen);
2346             }
2347         }
2348 
2349 skip_offload:
2350         /* update tally counter */
2351         ++s->tally_counters.TxOk;
2352 
2353         DPRINTF("+++ C+ mode transmitting %d bytes packet\n", saved_size);
2354 
2355         rtl8139_transfer_frame(s, saved_buffer, saved_size, 1,
2356             (uint8_t *) dot1q_buffer);
2357 
2358         /* restore card space if there was no recursion and reset offset */
2359         if (!s->cplus_txbuffer)
2360         {
2361             s->cplus_txbuffer        = saved_buffer;
2362             s->cplus_txbuffer_len    = saved_buffer_len;
2363             s->cplus_txbuffer_offset = 0;
2364         }
2365         else
2366         {
2367             g_free(saved_buffer);
2368         }
2369     }
2370     else
2371     {
2372         DPRINTF("+++ C+ mode transmission continue to next descriptor\n");
2373     }
2374 
2375     return 1;
2376 }
2377 
2378 static void rtl8139_cplus_transmit(RTL8139State *s)
2379 {
2380     int txcount = 0;
2381 
2382     while (rtl8139_cplus_transmit_one(s))
2383     {
2384         ++txcount;
2385     }
2386 
2387     /* Mark transfer completed */
2388     if (!txcount)
2389     {
2390         DPRINTF("C+ mode : transmitter queue stalled, current TxDesc = %d\n",
2391             s->currCPlusTxDesc);
2392     }
2393     else
2394     {
2395         /* update interrupt status */
2396         s->IntrStatus |= TxOK;
2397         rtl8139_update_irq(s);
2398     }
2399 }
2400 
2401 static void rtl8139_transmit(RTL8139State *s)
2402 {
2403     int descriptor = s->currTxDesc, txcount = 0;
2404 
2405     /*while*/
2406     if (rtl8139_transmit_one(s, descriptor))
2407     {
2408         ++s->currTxDesc;
2409         s->currTxDesc %= 4;
2410         ++txcount;
2411     }
2412 
2413     /* Mark transfer completed */
2414     if (!txcount)
2415     {
2416         DPRINTF("transmitter queue stalled, current TxDesc = %d\n",
2417             s->currTxDesc);
2418     }
2419 }
2420 
2421 static void rtl8139_TxStatus_write(RTL8139State *s, uint32_t txRegOffset, uint32_t val)
2422 {
2423 
2424     int descriptor = txRegOffset/4;
2425 
2426     /* handle C+ transmit mode register configuration */
2427 
2428     if (s->cplus_enabled)
2429     {
2430         DPRINTF("RTL8139C+ DTCCR write offset=0x%x val=0x%08x "
2431             "descriptor=%d\n", txRegOffset, val, descriptor);
2432 
2433         /* handle Dump Tally Counters command */
2434         s->TxStatus[descriptor] = val;
2435 
2436         if (descriptor == 0 && (val & 0x8))
2437         {
2438             hwaddr tc_addr = rtl8139_addr64(s->TxStatus[0] & ~0x3f, s->TxStatus[1]);
2439 
2440             /* dump tally counters to specified memory location */
2441             RTL8139TallyCounters_dma_write(s, tc_addr);
2442 
2443             /* mark dump completed */
2444             s->TxStatus[0] &= ~0x8;
2445         }
2446 
2447         return;
2448     }
2449 
2450     DPRINTF("TxStatus write offset=0x%x val=0x%08x descriptor=%d\n",
2451         txRegOffset, val, descriptor);
2452 
2453     /* mask only reserved bits */
2454     val &= ~0xff00c000; /* these bits are reset on write */
2455     val = SET_MASKED(val, 0x00c00000, s->TxStatus[descriptor]);
2456 
2457     s->TxStatus[descriptor] = val;
2458 
2459     /* attempt to start transmission */
2460     rtl8139_transmit(s);
2461 }
2462 
2463 static uint32_t rtl8139_TxStatus_TxAddr_read(RTL8139State *s, uint32_t regs[],
2464                                              uint32_t base, uint8_t addr,
2465                                              int size)
2466 {
2467     uint32_t reg = (addr - base) / 4;
2468     uint32_t offset = addr & 0x3;
2469     uint32_t ret = 0;
2470 
2471     if (addr & (size - 1)) {
2472         DPRINTF("not implemented read for TxStatus/TxAddr "
2473                 "addr=0x%x size=0x%x\n", addr, size);
2474         return ret;
2475     }
2476 
2477     switch (size) {
2478     case 1: /* fall through */
2479     case 2: /* fall through */
2480     case 4:
2481         ret = (regs[reg] >> offset * 8) & (((uint64_t)1 << (size * 8)) - 1);
2482         DPRINTF("TxStatus/TxAddr[%d] read addr=0x%x size=0x%x val=0x%08x\n",
2483                 reg, addr, size, ret);
2484         break;
2485     default:
2486         DPRINTF("unsupported size 0x%x of TxStatus/TxAddr reading\n", size);
2487         break;
2488     }
2489 
2490     return ret;
2491 }
2492 
2493 static uint16_t rtl8139_TSAD_read(RTL8139State *s)
2494 {
2495     uint16_t ret = 0;
2496 
2497     /* Simulate TSAD, it is read only anyway */
2498 
2499     ret = ((s->TxStatus[3] & TxStatOK  )?TSAD_TOK3:0)
2500          |((s->TxStatus[2] & TxStatOK  )?TSAD_TOK2:0)
2501          |((s->TxStatus[1] & TxStatOK  )?TSAD_TOK1:0)
2502          |((s->TxStatus[0] & TxStatOK  )?TSAD_TOK0:0)
2503 
2504          |((s->TxStatus[3] & TxUnderrun)?TSAD_TUN3:0)
2505          |((s->TxStatus[2] & TxUnderrun)?TSAD_TUN2:0)
2506          |((s->TxStatus[1] & TxUnderrun)?TSAD_TUN1:0)
2507          |((s->TxStatus[0] & TxUnderrun)?TSAD_TUN0:0)
2508 
2509          |((s->TxStatus[3] & TxAborted )?TSAD_TABT3:0)
2510          |((s->TxStatus[2] & TxAborted )?TSAD_TABT2:0)
2511          |((s->TxStatus[1] & TxAborted )?TSAD_TABT1:0)
2512          |((s->TxStatus[0] & TxAborted )?TSAD_TABT0:0)
2513 
2514          |((s->TxStatus[3] & TxHostOwns )?TSAD_OWN3:0)
2515          |((s->TxStatus[2] & TxHostOwns )?TSAD_OWN2:0)
2516          |((s->TxStatus[1] & TxHostOwns )?TSAD_OWN1:0)
2517          |((s->TxStatus[0] & TxHostOwns )?TSAD_OWN0:0) ;
2518 
2519 
2520     DPRINTF("TSAD read val=0x%04x\n", ret);
2521 
2522     return ret;
2523 }
2524 
2525 static uint16_t rtl8139_CSCR_read(RTL8139State *s)
2526 {
2527     uint16_t ret = s->CSCR;
2528 
2529     DPRINTF("CSCR read val=0x%04x\n", ret);
2530 
2531     return ret;
2532 }
2533 
2534 static void rtl8139_TxAddr_write(RTL8139State *s, uint32_t txAddrOffset, uint32_t val)
2535 {
2536     DPRINTF("TxAddr write offset=0x%x val=0x%08x\n", txAddrOffset, val);
2537 
2538     s->TxAddr[txAddrOffset/4] = val;
2539 }
2540 
2541 static uint32_t rtl8139_TxAddr_read(RTL8139State *s, uint32_t txAddrOffset)
2542 {
2543     uint32_t ret = s->TxAddr[txAddrOffset/4];
2544 
2545     DPRINTF("TxAddr read offset=0x%x val=0x%08x\n", txAddrOffset, ret);
2546 
2547     return ret;
2548 }
2549 
2550 static void rtl8139_RxBufPtr_write(RTL8139State *s, uint32_t val)
2551 {
2552     DPRINTF("RxBufPtr write val=0x%04x\n", val);
2553 
2554     /* this value is off by 16 */
2555     s->RxBufPtr = MOD2(val + 0x10, s->RxBufferSize);
2556 
2557     /* more buffer space may be available so try to receive */
2558     qemu_flush_queued_packets(qemu_get_queue(s->nic));
2559 
2560     DPRINTF(" CAPR write: rx buffer length %d head 0x%04x read 0x%04x\n",
2561         s->RxBufferSize, s->RxBufAddr, s->RxBufPtr);
2562 }
2563 
2564 static uint32_t rtl8139_RxBufPtr_read(RTL8139State *s)
2565 {
2566     /* this value is off by 16 */
2567     uint32_t ret = s->RxBufPtr - 0x10;
2568 
2569     DPRINTF("RxBufPtr read val=0x%04x\n", ret);
2570 
2571     return ret;
2572 }
2573 
2574 static uint32_t rtl8139_RxBufAddr_read(RTL8139State *s)
2575 {
2576     /* this value is NOT off by 16 */
2577     uint32_t ret = s->RxBufAddr;
2578 
2579     DPRINTF("RxBufAddr read val=0x%04x\n", ret);
2580 
2581     return ret;
2582 }
2583 
2584 static void rtl8139_RxBuf_write(RTL8139State *s, uint32_t val)
2585 {
2586     DPRINTF("RxBuf write val=0x%08x\n", val);
2587 
2588     s->RxBuf = val;
2589 
2590     /* may need to reset rxring here */
2591 }
2592 
2593 static uint32_t rtl8139_RxBuf_read(RTL8139State *s)
2594 {
2595     uint32_t ret = s->RxBuf;
2596 
2597     DPRINTF("RxBuf read val=0x%08x\n", ret);
2598 
2599     return ret;
2600 }
2601 
2602 static void rtl8139_IntrMask_write(RTL8139State *s, uint32_t val)
2603 {
2604     DPRINTF("IntrMask write(w) val=0x%04x\n", val);
2605 
2606     /* mask unwritable bits */
2607     val = SET_MASKED(val, 0x1e00, s->IntrMask);
2608 
2609     s->IntrMask = val;
2610 
2611     rtl8139_update_irq(s);
2612 
2613 }
2614 
2615 static uint32_t rtl8139_IntrMask_read(RTL8139State *s)
2616 {
2617     uint32_t ret = s->IntrMask;
2618 
2619     DPRINTF("IntrMask read(w) val=0x%04x\n", ret);
2620 
2621     return ret;
2622 }
2623 
2624 static void rtl8139_IntrStatus_write(RTL8139State *s, uint32_t val)
2625 {
2626     DPRINTF("IntrStatus write(w) val=0x%04x\n", val);
2627 
2628 #if 0
2629 
2630     /* writing to ISR has no effect */
2631 
2632     return;
2633 
2634 #else
2635     uint16_t newStatus = s->IntrStatus & ~val;
2636 
2637     /* mask unwritable bits */
2638     newStatus = SET_MASKED(newStatus, 0x1e00, s->IntrStatus);
2639 
2640     /* writing 1 to interrupt status register bit clears it */
2641     s->IntrStatus = 0;
2642     rtl8139_update_irq(s);
2643 
2644     s->IntrStatus = newStatus;
2645     rtl8139_set_next_tctr_time(s);
2646     rtl8139_update_irq(s);
2647 
2648 #endif
2649 }
2650 
2651 static uint32_t rtl8139_IntrStatus_read(RTL8139State *s)
2652 {
2653     uint32_t ret = s->IntrStatus;
2654 
2655     DPRINTF("IntrStatus read(w) val=0x%04x\n", ret);
2656 
2657 #if 0
2658 
2659     /* reading ISR clears all interrupts */
2660     s->IntrStatus = 0;
2661 
2662     rtl8139_update_irq(s);
2663 
2664 #endif
2665 
2666     return ret;
2667 }
2668 
2669 static void rtl8139_MultiIntr_write(RTL8139State *s, uint32_t val)
2670 {
2671     DPRINTF("MultiIntr write(w) val=0x%04x\n", val);
2672 
2673     /* mask unwritable bits */
2674     val = SET_MASKED(val, 0xf000, s->MultiIntr);
2675 
2676     s->MultiIntr = val;
2677 }
2678 
2679 static uint32_t rtl8139_MultiIntr_read(RTL8139State *s)
2680 {
2681     uint32_t ret = s->MultiIntr;
2682 
2683     DPRINTF("MultiIntr read(w) val=0x%04x\n", ret);
2684 
2685     return ret;
2686 }
2687 
2688 static void rtl8139_io_writeb(void *opaque, uint8_t addr, uint32_t val)
2689 {
2690     RTL8139State *s = opaque;
2691 
2692     switch (addr)
2693     {
2694         case MAC0 ... MAC0+4:
2695             s->phys[addr - MAC0] = val;
2696             break;
2697         case MAC0+5:
2698             s->phys[addr - MAC0] = val;
2699             qemu_format_nic_info_str(qemu_get_queue(s->nic), s->phys);
2700             break;
2701         case MAC0+6 ... MAC0+7:
2702             /* reserved */
2703             break;
2704         case MAR0 ... MAR0+7:
2705             s->mult[addr - MAR0] = val;
2706             break;
2707         case ChipCmd:
2708             rtl8139_ChipCmd_write(s, val);
2709             break;
2710         case Cfg9346:
2711             rtl8139_Cfg9346_write(s, val);
2712             break;
2713         case TxConfig: /* windows driver sometimes writes using byte-lenth call */
2714             rtl8139_TxConfig_writeb(s, val);
2715             break;
2716         case Config0:
2717             rtl8139_Config0_write(s, val);
2718             break;
2719         case Config1:
2720             rtl8139_Config1_write(s, val);
2721             break;
2722         case Config3:
2723             rtl8139_Config3_write(s, val);
2724             break;
2725         case Config4:
2726             rtl8139_Config4_write(s, val);
2727             break;
2728         case Config5:
2729             rtl8139_Config5_write(s, val);
2730             break;
2731         case MediaStatus:
2732             /* ignore */
2733             DPRINTF("not implemented write(b) to MediaStatus val=0x%02x\n",
2734                 val);
2735             break;
2736 
2737         case HltClk:
2738             DPRINTF("HltClk write val=0x%08x\n", val);
2739             if (val == 'R')
2740             {
2741                 s->clock_enabled = 1;
2742             }
2743             else if (val == 'H')
2744             {
2745                 s->clock_enabled = 0;
2746             }
2747             break;
2748 
2749         case TxThresh:
2750             DPRINTF("C+ TxThresh write(b) val=0x%02x\n", val);
2751             s->TxThresh = val;
2752             break;
2753 
2754         case TxPoll:
2755             DPRINTF("C+ TxPoll write(b) val=0x%02x\n", val);
2756             if (val & (1 << 7))
2757             {
2758                 DPRINTF("C+ TxPoll high priority transmission (not "
2759                     "implemented)\n");
2760                 //rtl8139_cplus_transmit(s);
2761             }
2762             if (val & (1 << 6))
2763             {
2764                 DPRINTF("C+ TxPoll normal priority transmission\n");
2765                 rtl8139_cplus_transmit(s);
2766             }
2767 
2768             break;
2769 
2770         default:
2771             DPRINTF("not implemented write(b) addr=0x%x val=0x%02x\n", addr,
2772                 val);
2773             break;
2774     }
2775 }
2776 
2777 static void rtl8139_io_writew(void *opaque, uint8_t addr, uint32_t val)
2778 {
2779     RTL8139State *s = opaque;
2780 
2781     switch (addr)
2782     {
2783         case IntrMask:
2784             rtl8139_IntrMask_write(s, val);
2785             break;
2786 
2787         case IntrStatus:
2788             rtl8139_IntrStatus_write(s, val);
2789             break;
2790 
2791         case MultiIntr:
2792             rtl8139_MultiIntr_write(s, val);
2793             break;
2794 
2795         case RxBufPtr:
2796             rtl8139_RxBufPtr_write(s, val);
2797             break;
2798 
2799         case BasicModeCtrl:
2800             rtl8139_BasicModeCtrl_write(s, val);
2801             break;
2802         case BasicModeStatus:
2803             rtl8139_BasicModeStatus_write(s, val);
2804             break;
2805         case NWayAdvert:
2806             DPRINTF("NWayAdvert write(w) val=0x%04x\n", val);
2807             s->NWayAdvert = val;
2808             break;
2809         case NWayLPAR:
2810             DPRINTF("forbidden NWayLPAR write(w) val=0x%04x\n", val);
2811             break;
2812         case NWayExpansion:
2813             DPRINTF("NWayExpansion write(w) val=0x%04x\n", val);
2814             s->NWayExpansion = val;
2815             break;
2816 
2817         case CpCmd:
2818             rtl8139_CpCmd_write(s, val);
2819             break;
2820 
2821         case IntrMitigate:
2822             rtl8139_IntrMitigate_write(s, val);
2823             break;
2824 
2825         default:
2826             DPRINTF("ioport write(w) addr=0x%x val=0x%04x via write(b)\n",
2827                 addr, val);
2828 
2829             rtl8139_io_writeb(opaque, addr, val & 0xff);
2830             rtl8139_io_writeb(opaque, addr + 1, (val >> 8) & 0xff);
2831             break;
2832     }
2833 }
2834 
2835 static void rtl8139_set_next_tctr_time(RTL8139State *s)
2836 {
2837     const uint64_t ns_per_period = (uint64_t)PCI_PERIOD << 32;
2838 
2839     DPRINTF("entered rtl8139_set_next_tctr_time\n");
2840 
2841     /* This function is called at least once per period, so it is a good
2842      * place to update the timer base.
2843      *
2844      * After one iteration of this loop the value in the Timer register does
2845      * not change, but the device model is counting up by 2^32 ticks (approx.
2846      * 130 seconds).
2847      */
2848     while (s->TCTR_base + ns_per_period <= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)) {
2849         s->TCTR_base += ns_per_period;
2850     }
2851 
2852     if (!s->TimerInt) {
2853         timer_del(s->timer);
2854     } else {
2855         uint64_t delta = (uint64_t)s->TimerInt * PCI_PERIOD;
2856         if (s->TCTR_base + delta <= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)) {
2857             delta += ns_per_period;
2858         }
2859         timer_mod(s->timer, s->TCTR_base + delta);
2860     }
2861 }
2862 
2863 static void rtl8139_io_writel(void *opaque, uint8_t addr, uint32_t val)
2864 {
2865     RTL8139State *s = opaque;
2866 
2867     switch (addr)
2868     {
2869         case RxMissed:
2870             DPRINTF("RxMissed clearing on write\n");
2871             s->RxMissed = 0;
2872             break;
2873 
2874         case TxConfig:
2875             rtl8139_TxConfig_write(s, val);
2876             break;
2877 
2878         case RxConfig:
2879             rtl8139_RxConfig_write(s, val);
2880             break;
2881 
2882         case TxStatus0 ... TxStatus0+4*4-1:
2883             rtl8139_TxStatus_write(s, addr-TxStatus0, val);
2884             break;
2885 
2886         case TxAddr0 ... TxAddr0+4*4-1:
2887             rtl8139_TxAddr_write(s, addr-TxAddr0, val);
2888             break;
2889 
2890         case RxBuf:
2891             rtl8139_RxBuf_write(s, val);
2892             break;
2893 
2894         case RxRingAddrLO:
2895             DPRINTF("C+ RxRing low bits write val=0x%08x\n", val);
2896             s->RxRingAddrLO = val;
2897             break;
2898 
2899         case RxRingAddrHI:
2900             DPRINTF("C+ RxRing high bits write val=0x%08x\n", val);
2901             s->RxRingAddrHI = val;
2902             break;
2903 
2904         case Timer:
2905             DPRINTF("TCTR Timer reset on write\n");
2906             s->TCTR_base = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
2907             rtl8139_set_next_tctr_time(s);
2908             break;
2909 
2910         case FlashReg:
2911             DPRINTF("FlashReg TimerInt write val=0x%08x\n", val);
2912             if (s->TimerInt != val) {
2913                 s->TimerInt = val;
2914                 rtl8139_set_next_tctr_time(s);
2915             }
2916             break;
2917 
2918         default:
2919             DPRINTF("ioport write(l) addr=0x%x val=0x%08x via write(b)\n",
2920                 addr, val);
2921             rtl8139_io_writeb(opaque, addr, val & 0xff);
2922             rtl8139_io_writeb(opaque, addr + 1, (val >> 8) & 0xff);
2923             rtl8139_io_writeb(opaque, addr + 2, (val >> 16) & 0xff);
2924             rtl8139_io_writeb(opaque, addr + 3, (val >> 24) & 0xff);
2925             break;
2926     }
2927 }
2928 
2929 static uint32_t rtl8139_io_readb(void *opaque, uint8_t addr)
2930 {
2931     RTL8139State *s = opaque;
2932     int ret;
2933 
2934     switch (addr)
2935     {
2936         case MAC0 ... MAC0+5:
2937             ret = s->phys[addr - MAC0];
2938             break;
2939         case MAC0+6 ... MAC0+7:
2940             ret = 0;
2941             break;
2942         case MAR0 ... MAR0+7:
2943             ret = s->mult[addr - MAR0];
2944             break;
2945         case TxStatus0 ... TxStatus0+4*4-1:
2946             ret = rtl8139_TxStatus_TxAddr_read(s, s->TxStatus, TxStatus0,
2947                                                addr, 1);
2948             break;
2949         case ChipCmd:
2950             ret = rtl8139_ChipCmd_read(s);
2951             break;
2952         case Cfg9346:
2953             ret = rtl8139_Cfg9346_read(s);
2954             break;
2955         case Config0:
2956             ret = rtl8139_Config0_read(s);
2957             break;
2958         case Config1:
2959             ret = rtl8139_Config1_read(s);
2960             break;
2961         case Config3:
2962             ret = rtl8139_Config3_read(s);
2963             break;
2964         case Config4:
2965             ret = rtl8139_Config4_read(s);
2966             break;
2967         case Config5:
2968             ret = rtl8139_Config5_read(s);
2969             break;
2970 
2971         case MediaStatus:
2972             /* The LinkDown bit of MediaStatus is inverse with link status */
2973             ret = 0xd0 | (~s->BasicModeStatus & 0x04);
2974             DPRINTF("MediaStatus read 0x%x\n", ret);
2975             break;
2976 
2977         case HltClk:
2978             ret = s->clock_enabled;
2979             DPRINTF("HltClk read 0x%x\n", ret);
2980             break;
2981 
2982         case PCIRevisionID:
2983             ret = RTL8139_PCI_REVID;
2984             DPRINTF("PCI Revision ID read 0x%x\n", ret);
2985             break;
2986 
2987         case TxThresh:
2988             ret = s->TxThresh;
2989             DPRINTF("C+ TxThresh read(b) val=0x%02x\n", ret);
2990             break;
2991 
2992         case 0x43: /* Part of TxConfig register. Windows driver tries to read it */
2993             ret = s->TxConfig >> 24;
2994             DPRINTF("RTL8139C TxConfig at 0x43 read(b) val=0x%02x\n", ret);
2995             break;
2996 
2997         default:
2998             DPRINTF("not implemented read(b) addr=0x%x\n", addr);
2999             ret = 0;
3000             break;
3001     }
3002 
3003     return ret;
3004 }
3005 
3006 static uint32_t rtl8139_io_readw(void *opaque, uint8_t addr)
3007 {
3008     RTL8139State *s = opaque;
3009     uint32_t ret;
3010 
3011     switch (addr)
3012     {
3013         case TxAddr0 ... TxAddr0+4*4-1:
3014             ret = rtl8139_TxStatus_TxAddr_read(s, s->TxAddr, TxAddr0, addr, 2);
3015             break;
3016         case IntrMask:
3017             ret = rtl8139_IntrMask_read(s);
3018             break;
3019 
3020         case IntrStatus:
3021             ret = rtl8139_IntrStatus_read(s);
3022             break;
3023 
3024         case MultiIntr:
3025             ret = rtl8139_MultiIntr_read(s);
3026             break;
3027 
3028         case RxBufPtr:
3029             ret = rtl8139_RxBufPtr_read(s);
3030             break;
3031 
3032         case RxBufAddr:
3033             ret = rtl8139_RxBufAddr_read(s);
3034             break;
3035 
3036         case BasicModeCtrl:
3037             ret = rtl8139_BasicModeCtrl_read(s);
3038             break;
3039         case BasicModeStatus:
3040             ret = rtl8139_BasicModeStatus_read(s);
3041             break;
3042         case NWayAdvert:
3043             ret = s->NWayAdvert;
3044             DPRINTF("NWayAdvert read(w) val=0x%04x\n", ret);
3045             break;
3046         case NWayLPAR:
3047             ret = s->NWayLPAR;
3048             DPRINTF("NWayLPAR read(w) val=0x%04x\n", ret);
3049             break;
3050         case NWayExpansion:
3051             ret = s->NWayExpansion;
3052             DPRINTF("NWayExpansion read(w) val=0x%04x\n", ret);
3053             break;
3054 
3055         case CpCmd:
3056             ret = rtl8139_CpCmd_read(s);
3057             break;
3058 
3059         case IntrMitigate:
3060             ret = rtl8139_IntrMitigate_read(s);
3061             break;
3062 
3063         case TxSummary:
3064             ret = rtl8139_TSAD_read(s);
3065             break;
3066 
3067         case CSCR:
3068             ret = rtl8139_CSCR_read(s);
3069             break;
3070 
3071         default:
3072             DPRINTF("ioport read(w) addr=0x%x via read(b)\n", addr);
3073 
3074             ret  = rtl8139_io_readb(opaque, addr);
3075             ret |= rtl8139_io_readb(opaque, addr + 1) << 8;
3076 
3077             DPRINTF("ioport read(w) addr=0x%x val=0x%04x\n", addr, ret);
3078             break;
3079     }
3080 
3081     return ret;
3082 }
3083 
3084 static uint32_t rtl8139_io_readl(void *opaque, uint8_t addr)
3085 {
3086     RTL8139State *s = opaque;
3087     uint32_t ret;
3088 
3089     switch (addr)
3090     {
3091         case RxMissed:
3092             ret = s->RxMissed;
3093 
3094             DPRINTF("RxMissed read val=0x%08x\n", ret);
3095             break;
3096 
3097         case TxConfig:
3098             ret = rtl8139_TxConfig_read(s);
3099             break;
3100 
3101         case RxConfig:
3102             ret = rtl8139_RxConfig_read(s);
3103             break;
3104 
3105         case TxStatus0 ... TxStatus0+4*4-1:
3106             ret = rtl8139_TxStatus_TxAddr_read(s, s->TxStatus, TxStatus0,
3107                                                addr, 4);
3108             break;
3109 
3110         case TxAddr0 ... TxAddr0+4*4-1:
3111             ret = rtl8139_TxAddr_read(s, addr-TxAddr0);
3112             break;
3113 
3114         case RxBuf:
3115             ret = rtl8139_RxBuf_read(s);
3116             break;
3117 
3118         case RxRingAddrLO:
3119             ret = s->RxRingAddrLO;
3120             DPRINTF("C+ RxRing low bits read val=0x%08x\n", ret);
3121             break;
3122 
3123         case RxRingAddrHI:
3124             ret = s->RxRingAddrHI;
3125             DPRINTF("C+ RxRing high bits read val=0x%08x\n", ret);
3126             break;
3127 
3128         case Timer:
3129             ret = (qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - s->TCTR_base) /
3130                   PCI_PERIOD;
3131             DPRINTF("TCTR Timer read val=0x%08x\n", ret);
3132             break;
3133 
3134         case FlashReg:
3135             ret = s->TimerInt;
3136             DPRINTF("FlashReg TimerInt read val=0x%08x\n", ret);
3137             break;
3138 
3139         default:
3140             DPRINTF("ioport read(l) addr=0x%x via read(b)\n", addr);
3141 
3142             ret  = rtl8139_io_readb(opaque, addr);
3143             ret |= rtl8139_io_readb(opaque, addr + 1) << 8;
3144             ret |= rtl8139_io_readb(opaque, addr + 2) << 16;
3145             ret |= rtl8139_io_readb(opaque, addr + 3) << 24;
3146 
3147             DPRINTF("read(l) addr=0x%x val=%08x\n", addr, ret);
3148             break;
3149     }
3150 
3151     return ret;
3152 }
3153 
3154 /* */
3155 
3156 static void rtl8139_mmio_writeb(void *opaque, hwaddr addr, uint32_t val)
3157 {
3158     rtl8139_io_writeb(opaque, addr & 0xFF, val);
3159 }
3160 
3161 static void rtl8139_mmio_writew(void *opaque, hwaddr addr, uint32_t val)
3162 {
3163     rtl8139_io_writew(opaque, addr & 0xFF, val);
3164 }
3165 
3166 static void rtl8139_mmio_writel(void *opaque, hwaddr addr, uint32_t val)
3167 {
3168     rtl8139_io_writel(opaque, addr & 0xFF, val);
3169 }
3170 
3171 static uint32_t rtl8139_mmio_readb(void *opaque, hwaddr addr)
3172 {
3173     return rtl8139_io_readb(opaque, addr & 0xFF);
3174 }
3175 
3176 static uint32_t rtl8139_mmio_readw(void *opaque, hwaddr addr)
3177 {
3178     uint32_t val = rtl8139_io_readw(opaque, addr & 0xFF);
3179     return val;
3180 }
3181 
3182 static uint32_t rtl8139_mmio_readl(void *opaque, hwaddr addr)
3183 {
3184     uint32_t val = rtl8139_io_readl(opaque, addr & 0xFF);
3185     return val;
3186 }
3187 
3188 static int rtl8139_post_load(void *opaque, int version_id)
3189 {
3190     RTL8139State* s = opaque;
3191     rtl8139_set_next_tctr_time(s);
3192     if (version_id < 4) {
3193         s->cplus_enabled = s->CpCmd != 0;
3194     }
3195 
3196     /* nc.link_down can't be migrated, so infer link_down according
3197      * to link status bit in BasicModeStatus */
3198     qemu_get_queue(s->nic)->link_down = (s->BasicModeStatus & 0x04) == 0;
3199 
3200     return 0;
3201 }
3202 
3203 static bool rtl8139_hotplug_ready_needed(void *opaque)
3204 {
3205     return qdev_machine_modified();
3206 }
3207 
3208 static const VMStateDescription vmstate_rtl8139_hotplug_ready ={
3209     .name = "rtl8139/hotplug_ready",
3210     .version_id = 1,
3211     .minimum_version_id = 1,
3212     .needed = rtl8139_hotplug_ready_needed,
3213     .fields = (VMStateField[]) {
3214         VMSTATE_END_OF_LIST()
3215     }
3216 };
3217 
3218 static void rtl8139_pre_save(void *opaque)
3219 {
3220     RTL8139State* s = opaque;
3221     int64_t current_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
3222 
3223     /* for migration to older versions */
3224     s->TCTR = (current_time - s->TCTR_base) / PCI_PERIOD;
3225     s->rtl8139_mmio_io_addr_dummy = 0;
3226 }
3227 
3228 static const VMStateDescription vmstate_rtl8139 = {
3229     .name = "rtl8139",
3230     .version_id = 4,
3231     .minimum_version_id = 3,
3232     .post_load = rtl8139_post_load,
3233     .pre_save  = rtl8139_pre_save,
3234     .fields = (VMStateField[]) {
3235         VMSTATE_PCI_DEVICE(parent_obj, RTL8139State),
3236         VMSTATE_PARTIAL_BUFFER(phys, RTL8139State, 6),
3237         VMSTATE_BUFFER(mult, RTL8139State),
3238         VMSTATE_UINT32_ARRAY(TxStatus, RTL8139State, 4),
3239         VMSTATE_UINT32_ARRAY(TxAddr, RTL8139State, 4),
3240 
3241         VMSTATE_UINT32(RxBuf, RTL8139State),
3242         VMSTATE_UINT32(RxBufferSize, RTL8139State),
3243         VMSTATE_UINT32(RxBufPtr, RTL8139State),
3244         VMSTATE_UINT32(RxBufAddr, RTL8139State),
3245 
3246         VMSTATE_UINT16(IntrStatus, RTL8139State),
3247         VMSTATE_UINT16(IntrMask, RTL8139State),
3248 
3249         VMSTATE_UINT32(TxConfig, RTL8139State),
3250         VMSTATE_UINT32(RxConfig, RTL8139State),
3251         VMSTATE_UINT32(RxMissed, RTL8139State),
3252         VMSTATE_UINT16(CSCR, RTL8139State),
3253 
3254         VMSTATE_UINT8(Cfg9346, RTL8139State),
3255         VMSTATE_UINT8(Config0, RTL8139State),
3256         VMSTATE_UINT8(Config1, RTL8139State),
3257         VMSTATE_UINT8(Config3, RTL8139State),
3258         VMSTATE_UINT8(Config4, RTL8139State),
3259         VMSTATE_UINT8(Config5, RTL8139State),
3260 
3261         VMSTATE_UINT8(clock_enabled, RTL8139State),
3262         VMSTATE_UINT8(bChipCmdState, RTL8139State),
3263 
3264         VMSTATE_UINT16(MultiIntr, RTL8139State),
3265 
3266         VMSTATE_UINT16(BasicModeCtrl, RTL8139State),
3267         VMSTATE_UINT16(BasicModeStatus, RTL8139State),
3268         VMSTATE_UINT16(NWayAdvert, RTL8139State),
3269         VMSTATE_UINT16(NWayLPAR, RTL8139State),
3270         VMSTATE_UINT16(NWayExpansion, RTL8139State),
3271 
3272         VMSTATE_UINT16(CpCmd, RTL8139State),
3273         VMSTATE_UINT8(TxThresh, RTL8139State),
3274 
3275         VMSTATE_UNUSED(4),
3276         VMSTATE_MACADDR(conf.macaddr, RTL8139State),
3277         VMSTATE_INT32(rtl8139_mmio_io_addr_dummy, RTL8139State),
3278 
3279         VMSTATE_UINT32(currTxDesc, RTL8139State),
3280         VMSTATE_UINT32(currCPlusRxDesc, RTL8139State),
3281         VMSTATE_UINT32(currCPlusTxDesc, RTL8139State),
3282         VMSTATE_UINT32(RxRingAddrLO, RTL8139State),
3283         VMSTATE_UINT32(RxRingAddrHI, RTL8139State),
3284 
3285         VMSTATE_UINT16_ARRAY(eeprom.contents, RTL8139State, EEPROM_9346_SIZE),
3286         VMSTATE_INT32(eeprom.mode, RTL8139State),
3287         VMSTATE_UINT32(eeprom.tick, RTL8139State),
3288         VMSTATE_UINT8(eeprom.address, RTL8139State),
3289         VMSTATE_UINT16(eeprom.input, RTL8139State),
3290         VMSTATE_UINT16(eeprom.output, RTL8139State),
3291 
3292         VMSTATE_UINT8(eeprom.eecs, RTL8139State),
3293         VMSTATE_UINT8(eeprom.eesk, RTL8139State),
3294         VMSTATE_UINT8(eeprom.eedi, RTL8139State),
3295         VMSTATE_UINT8(eeprom.eedo, RTL8139State),
3296 
3297         VMSTATE_UINT32(TCTR, RTL8139State),
3298         VMSTATE_UINT32(TimerInt, RTL8139State),
3299         VMSTATE_INT64(TCTR_base, RTL8139State),
3300 
3301         VMSTATE_STRUCT(tally_counters, RTL8139State, 0,
3302                        vmstate_tally_counters, RTL8139TallyCounters),
3303 
3304         VMSTATE_UINT32_V(cplus_enabled, RTL8139State, 4),
3305         VMSTATE_END_OF_LIST()
3306     },
3307     .subsections = (const VMStateDescription*[]) {
3308         &vmstate_rtl8139_hotplug_ready,
3309         NULL
3310     }
3311 };
3312 
3313 /***********************************************************/
3314 /* PCI RTL8139 definitions */
3315 
3316 static void rtl8139_ioport_write(void *opaque, hwaddr addr,
3317                                  uint64_t val, unsigned size)
3318 {
3319     switch (size) {
3320     case 1:
3321         rtl8139_io_writeb(opaque, addr, val);
3322         break;
3323     case 2:
3324         rtl8139_io_writew(opaque, addr, val);
3325         break;
3326     case 4:
3327         rtl8139_io_writel(opaque, addr, val);
3328         break;
3329     }
3330 }
3331 
3332 static uint64_t rtl8139_ioport_read(void *opaque, hwaddr addr,
3333                                     unsigned size)
3334 {
3335     switch (size) {
3336     case 1:
3337         return rtl8139_io_readb(opaque, addr);
3338     case 2:
3339         return rtl8139_io_readw(opaque, addr);
3340     case 4:
3341         return rtl8139_io_readl(opaque, addr);
3342     }
3343 
3344     return -1;
3345 }
3346 
3347 static const MemoryRegionOps rtl8139_io_ops = {
3348     .read = rtl8139_ioport_read,
3349     .write = rtl8139_ioport_write,
3350     .impl = {
3351         .min_access_size = 1,
3352         .max_access_size = 4,
3353     },
3354     .endianness = DEVICE_LITTLE_ENDIAN,
3355 };
3356 
3357 static const MemoryRegionOps rtl8139_mmio_ops = {
3358     .old_mmio = {
3359         .read = {
3360             rtl8139_mmio_readb,
3361             rtl8139_mmio_readw,
3362             rtl8139_mmio_readl,
3363         },
3364         .write = {
3365             rtl8139_mmio_writeb,
3366             rtl8139_mmio_writew,
3367             rtl8139_mmio_writel,
3368         },
3369     },
3370     .endianness = DEVICE_LITTLE_ENDIAN,
3371 };
3372 
3373 static void rtl8139_timer(void *opaque)
3374 {
3375     RTL8139State *s = opaque;
3376 
3377     if (!s->clock_enabled)
3378     {
3379         DPRINTF(">>> timer: clock is not running\n");
3380         return;
3381     }
3382 
3383     s->IntrStatus |= PCSTimeout;
3384     rtl8139_update_irq(s);
3385     rtl8139_set_next_tctr_time(s);
3386 }
3387 
3388 static void pci_rtl8139_uninit(PCIDevice *dev)
3389 {
3390     RTL8139State *s = RTL8139(dev);
3391 
3392     g_free(s->cplus_txbuffer);
3393     s->cplus_txbuffer = NULL;
3394     timer_del(s->timer);
3395     timer_free(s->timer);
3396     qemu_del_nic(s->nic);
3397 }
3398 
3399 static void rtl8139_set_link_status(NetClientState *nc)
3400 {
3401     RTL8139State *s = qemu_get_nic_opaque(nc);
3402 
3403     if (nc->link_down) {
3404         s->BasicModeStatus &= ~0x04;
3405     } else {
3406         s->BasicModeStatus |= 0x04;
3407     }
3408 
3409     s->IntrStatus |= RxUnderrun;
3410     rtl8139_update_irq(s);
3411 }
3412 
3413 static NetClientInfo net_rtl8139_info = {
3414     .type = NET_CLIENT_OPTIONS_KIND_NIC,
3415     .size = sizeof(NICState),
3416     .can_receive = rtl8139_can_receive,
3417     .receive = rtl8139_receive,
3418     .link_status_changed = rtl8139_set_link_status,
3419 };
3420 
3421 static void pci_rtl8139_realize(PCIDevice *dev, Error **errp)
3422 {
3423     RTL8139State *s = RTL8139(dev);
3424     DeviceState *d = DEVICE(dev);
3425     uint8_t *pci_conf;
3426 
3427     pci_conf = dev->config;
3428     pci_conf[PCI_INTERRUPT_PIN] = 1;    /* interrupt pin A */
3429     /* TODO: start of capability list, but no capability
3430      * list bit in status register, and offset 0xdc seems unused. */
3431     pci_conf[PCI_CAPABILITY_LIST] = 0xdc;
3432 
3433     memory_region_init_io(&s->bar_io, OBJECT(s), &rtl8139_io_ops, s,
3434                           "rtl8139", 0x100);
3435     memory_region_init_io(&s->bar_mem, OBJECT(s), &rtl8139_mmio_ops, s,
3436                           "rtl8139", 0x100);
3437     pci_register_bar(dev, 0, PCI_BASE_ADDRESS_SPACE_IO, &s->bar_io);
3438     pci_register_bar(dev, 1, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->bar_mem);
3439 
3440     qemu_macaddr_default_if_unset(&s->conf.macaddr);
3441 
3442     /* prepare eeprom */
3443     s->eeprom.contents[0] = 0x8129;
3444 #if 1
3445     /* PCI vendor and device ID should be mirrored here */
3446     s->eeprom.contents[1] = PCI_VENDOR_ID_REALTEK;
3447     s->eeprom.contents[2] = PCI_DEVICE_ID_REALTEK_8139;
3448 #endif
3449     s->eeprom.contents[7] = s->conf.macaddr.a[0] | s->conf.macaddr.a[1] << 8;
3450     s->eeprom.contents[8] = s->conf.macaddr.a[2] | s->conf.macaddr.a[3] << 8;
3451     s->eeprom.contents[9] = s->conf.macaddr.a[4] | s->conf.macaddr.a[5] << 8;
3452 
3453     s->nic = qemu_new_nic(&net_rtl8139_info, &s->conf,
3454                           object_get_typename(OBJECT(dev)), d->id, s);
3455     qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a);
3456 
3457     s->cplus_txbuffer = NULL;
3458     s->cplus_txbuffer_len = 0;
3459     s->cplus_txbuffer_offset = 0;
3460 
3461     s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, rtl8139_timer, s);
3462 }
3463 
3464 static void rtl8139_instance_init(Object *obj)
3465 {
3466     RTL8139State *s = RTL8139(obj);
3467 
3468     device_add_bootindex_property(obj, &s->conf.bootindex,
3469                                   "bootindex", "/ethernet-phy@0",
3470                                   DEVICE(obj), NULL);
3471 }
3472 
3473 static Property rtl8139_properties[] = {
3474     DEFINE_NIC_PROPERTIES(RTL8139State, conf),
3475     DEFINE_PROP_END_OF_LIST(),
3476 };
3477 
3478 static void rtl8139_class_init(ObjectClass *klass, void *data)
3479 {
3480     DeviceClass *dc = DEVICE_CLASS(klass);
3481     PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
3482 
3483     k->realize = pci_rtl8139_realize;
3484     k->exit = pci_rtl8139_uninit;
3485     k->romfile = "efi-rtl8139.rom";
3486     k->vendor_id = PCI_VENDOR_ID_REALTEK;
3487     k->device_id = PCI_DEVICE_ID_REALTEK_8139;
3488     k->revision = RTL8139_PCI_REVID; /* >=0x20 is for 8139C+ */
3489     k->class_id = PCI_CLASS_NETWORK_ETHERNET;
3490     dc->reset = rtl8139_reset;
3491     dc->vmsd = &vmstate_rtl8139;
3492     dc->props = rtl8139_properties;
3493     set_bit(DEVICE_CATEGORY_NETWORK, dc->categories);
3494 }
3495 
3496 static const TypeInfo rtl8139_info = {
3497     .name          = TYPE_RTL8139,
3498     .parent        = TYPE_PCI_DEVICE,
3499     .instance_size = sizeof(RTL8139State),
3500     .class_init    = rtl8139_class_init,
3501     .instance_init = rtl8139_instance_init,
3502 };
3503 
3504 static void rtl8139_register_types(void)
3505 {
3506     type_register_static(&rtl8139_info);
3507 }
3508 
3509 type_init(rtl8139_register_types)
3510