xref: /openbmc/qemu/hw/net/rtl8139.c (revision 9121d02c)
1 /**
2  * QEMU RTL8139 emulation
3  *
4  * Copyright (c) 2006 Igor Kovalenko
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23 
24  * Modifications:
25  *  2006-Jan-28  Mark Malakanov :   TSAD and CSCR implementation (for Windows driver)
26  *
27  *  2006-Apr-28  Juergen Lock   :   EEPROM emulation changes for FreeBSD driver
28  *                                  HW revision ID changes for FreeBSD driver
29  *
30  *  2006-Jul-01  Igor Kovalenko :   Implemented loopback mode for FreeBSD driver
31  *                                  Corrected packet transfer reassembly routine for 8139C+ mode
32  *                                  Rearranged debugging print statements
33  *                                  Implemented PCI timer interrupt (disabled by default)
34  *                                  Implemented Tally Counters, increased VM load/save version
35  *                                  Implemented IP/TCP/UDP checksum task offloading
36  *
37  *  2006-Jul-04  Igor Kovalenko :   Implemented TCP segmentation offloading
38  *                                  Fixed MTU=1500 for produced ethernet frames
39  *
40  *  2006-Jul-09  Igor Kovalenko :   Fixed TCP header length calculation while processing
41  *                                  segmentation offloading
42  *                                  Removed slirp.h dependency
43  *                                  Added rx/tx buffer reset when enabling rx/tx operation
44  *
45  *  2010-Feb-04  Frediano Ziglio:   Rewrote timer support using QEMU timer only
46  *                                  when strictly needed (required for for
47  *                                  Darwin)
48  *  2011-Mar-22  Benjamin Poirier:  Implemented VLAN offloading
49  */
50 
51 /* For crc32 */
52 #include <zlib.h>
53 
54 #include "hw/hw.h"
55 #include "hw/pci/pci.h"
56 #include "sysemu/dma.h"
57 #include "qemu/timer.h"
58 #include "net/net.h"
59 #include "hw/loader.h"
60 #include "sysemu/sysemu.h"
61 #include "qemu/iov.h"
62 
63 /* debug RTL8139 card */
64 //#define DEBUG_RTL8139 1
65 
66 #define PCI_FREQUENCY 33000000L
67 
68 #define SET_MASKED(input, mask, curr) \
69     ( ( (input) & ~(mask) ) | ( (curr) & (mask) ) )
70 
71 /* arg % size for size which is a power of 2 */
72 #define MOD2(input, size) \
73     ( ( input ) & ( size - 1 )  )
74 
75 #define ETHER_ADDR_LEN 6
76 #define ETHER_TYPE_LEN 2
77 #define ETH_HLEN (ETHER_ADDR_LEN * 2 + ETHER_TYPE_LEN)
78 #define ETH_P_IP    0x0800      /* Internet Protocol packet */
79 #define ETH_P_8021Q 0x8100      /* 802.1Q VLAN Extended Header  */
80 #define ETH_MTU     1500
81 
82 #define VLAN_TCI_LEN 2
83 #define VLAN_HLEN (ETHER_TYPE_LEN + VLAN_TCI_LEN)
84 
85 #if defined (DEBUG_RTL8139)
86 #  define DPRINTF(fmt, ...) \
87     do { fprintf(stderr, "RTL8139: " fmt, ## __VA_ARGS__); } while (0)
88 #else
89 static inline GCC_FMT_ATTR(1, 2) int DPRINTF(const char *fmt, ...)
90 {
91     return 0;
92 }
93 #endif
94 
95 /* Symbolic offsets to registers. */
96 enum RTL8139_registers {
97     MAC0 = 0,        /* Ethernet hardware address. */
98     MAR0 = 8,        /* Multicast filter. */
99     TxStatus0 = 0x10,/* Transmit status (Four 32bit registers). C mode only */
100                      /* Dump Tally Conter control register(64bit). C+ mode only */
101     TxAddr0 = 0x20,  /* Tx descriptors (also four 32bit). */
102     RxBuf = 0x30,
103     ChipCmd = 0x37,
104     RxBufPtr = 0x38,
105     RxBufAddr = 0x3A,
106     IntrMask = 0x3C,
107     IntrStatus = 0x3E,
108     TxConfig = 0x40,
109     RxConfig = 0x44,
110     Timer = 0x48,        /* A general-purpose counter. */
111     RxMissed = 0x4C,    /* 24 bits valid, write clears. */
112     Cfg9346 = 0x50,
113     Config0 = 0x51,
114     Config1 = 0x52,
115     FlashReg = 0x54,
116     MediaStatus = 0x58,
117     Config3 = 0x59,
118     Config4 = 0x5A,        /* absent on RTL-8139A */
119     HltClk = 0x5B,
120     MultiIntr = 0x5C,
121     PCIRevisionID = 0x5E,
122     TxSummary = 0x60, /* TSAD register. Transmit Status of All Descriptors*/
123     BasicModeCtrl = 0x62,
124     BasicModeStatus = 0x64,
125     NWayAdvert = 0x66,
126     NWayLPAR = 0x68,
127     NWayExpansion = 0x6A,
128     /* Undocumented registers, but required for proper operation. */
129     FIFOTMS = 0x70,        /* FIFO Control and test. */
130     CSCR = 0x74,        /* Chip Status and Configuration Register. */
131     PARA78 = 0x78,
132     PARA7c = 0x7c,        /* Magic transceiver parameter register. */
133     Config5 = 0xD8,        /* absent on RTL-8139A */
134     /* C+ mode */
135     TxPoll        = 0xD9,    /* Tell chip to check Tx descriptors for work */
136     RxMaxSize    = 0xDA, /* Max size of an Rx packet (8169 only) */
137     CpCmd        = 0xE0, /* C+ Command register (C+ mode only) */
138     IntrMitigate    = 0xE2,    /* rx/tx interrupt mitigation control */
139     RxRingAddrLO    = 0xE4, /* 64-bit start addr of Rx ring */
140     RxRingAddrHI    = 0xE8, /* 64-bit start addr of Rx ring */
141     TxThresh    = 0xEC, /* Early Tx threshold */
142 };
143 
144 enum ClearBitMasks {
145     MultiIntrClear = 0xF000,
146     ChipCmdClear = 0xE2,
147     Config1Clear = (1<<7)|(1<<6)|(1<<3)|(1<<2)|(1<<1),
148 };
149 
150 enum ChipCmdBits {
151     CmdReset = 0x10,
152     CmdRxEnb = 0x08,
153     CmdTxEnb = 0x04,
154     RxBufEmpty = 0x01,
155 };
156 
157 /* C+ mode */
158 enum CplusCmdBits {
159     CPlusRxVLAN   = 0x0040, /* enable receive VLAN detagging */
160     CPlusRxChkSum = 0x0020, /* enable receive checksum offloading */
161     CPlusRxEnb    = 0x0002,
162     CPlusTxEnb    = 0x0001,
163 };
164 
165 /* Interrupt register bits, using my own meaningful names. */
166 enum IntrStatusBits {
167     PCIErr = 0x8000,
168     PCSTimeout = 0x4000,
169     RxFIFOOver = 0x40,
170     RxUnderrun = 0x20, /* Packet Underrun / Link Change */
171     RxOverflow = 0x10,
172     TxErr = 0x08,
173     TxOK = 0x04,
174     RxErr = 0x02,
175     RxOK = 0x01,
176 
177     RxAckBits = RxFIFOOver | RxOverflow | RxOK,
178 };
179 
180 enum TxStatusBits {
181     TxHostOwns = 0x2000,
182     TxUnderrun = 0x4000,
183     TxStatOK = 0x8000,
184     TxOutOfWindow = 0x20000000,
185     TxAborted = 0x40000000,
186     TxCarrierLost = 0x80000000,
187 };
188 enum RxStatusBits {
189     RxMulticast = 0x8000,
190     RxPhysical = 0x4000,
191     RxBroadcast = 0x2000,
192     RxBadSymbol = 0x0020,
193     RxRunt = 0x0010,
194     RxTooLong = 0x0008,
195     RxCRCErr = 0x0004,
196     RxBadAlign = 0x0002,
197     RxStatusOK = 0x0001,
198 };
199 
200 /* Bits in RxConfig. */
201 enum rx_mode_bits {
202     AcceptErr = 0x20,
203     AcceptRunt = 0x10,
204     AcceptBroadcast = 0x08,
205     AcceptMulticast = 0x04,
206     AcceptMyPhys = 0x02,
207     AcceptAllPhys = 0x01,
208 };
209 
210 /* Bits in TxConfig. */
211 enum tx_config_bits {
212 
213         /* Interframe Gap Time. Only TxIFG96 doesn't violate IEEE 802.3 */
214         TxIFGShift = 24,
215         TxIFG84 = (0 << TxIFGShift),    /* 8.4us / 840ns (10 / 100Mbps) */
216         TxIFG88 = (1 << TxIFGShift),    /* 8.8us / 880ns (10 / 100Mbps) */
217         TxIFG92 = (2 << TxIFGShift),    /* 9.2us / 920ns (10 / 100Mbps) */
218         TxIFG96 = (3 << TxIFGShift),    /* 9.6us / 960ns (10 / 100Mbps) */
219 
220     TxLoopBack = (1 << 18) | (1 << 17), /* enable loopback test mode */
221     TxCRC = (1 << 16),    /* DISABLE appending CRC to end of Tx packets */
222     TxClearAbt = (1 << 0),    /* Clear abort (WO) */
223     TxDMAShift = 8,        /* DMA burst value (0-7) is shifted this many bits */
224     TxRetryShift = 4,    /* TXRR value (0-15) is shifted this many bits */
225 
226     TxVersionMask = 0x7C800000, /* mask out version bits 30-26, 23 */
227 };
228 
229 
230 /* Transmit Status of All Descriptors (TSAD) Register */
231 enum TSAD_bits {
232  TSAD_TOK3 = 1<<15, // TOK bit of Descriptor 3
233  TSAD_TOK2 = 1<<14, // TOK bit of Descriptor 2
234  TSAD_TOK1 = 1<<13, // TOK bit of Descriptor 1
235  TSAD_TOK0 = 1<<12, // TOK bit of Descriptor 0
236  TSAD_TUN3 = 1<<11, // TUN bit of Descriptor 3
237  TSAD_TUN2 = 1<<10, // TUN bit of Descriptor 2
238  TSAD_TUN1 = 1<<9, // TUN bit of Descriptor 1
239  TSAD_TUN0 = 1<<8, // TUN bit of Descriptor 0
240  TSAD_TABT3 = 1<<07, // TABT bit of Descriptor 3
241  TSAD_TABT2 = 1<<06, // TABT bit of Descriptor 2
242  TSAD_TABT1 = 1<<05, // TABT bit of Descriptor 1
243  TSAD_TABT0 = 1<<04, // TABT bit of Descriptor 0
244  TSAD_OWN3 = 1<<03, // OWN bit of Descriptor 3
245  TSAD_OWN2 = 1<<02, // OWN bit of Descriptor 2
246  TSAD_OWN1 = 1<<01, // OWN bit of Descriptor 1
247  TSAD_OWN0 = 1<<00, // OWN bit of Descriptor 0
248 };
249 
250 
251 /* Bits in Config1 */
252 enum Config1Bits {
253     Cfg1_PM_Enable = 0x01,
254     Cfg1_VPD_Enable = 0x02,
255     Cfg1_PIO = 0x04,
256     Cfg1_MMIO = 0x08,
257     LWAKE = 0x10,        /* not on 8139, 8139A */
258     Cfg1_Driver_Load = 0x20,
259     Cfg1_LED0 = 0x40,
260     Cfg1_LED1 = 0x80,
261     SLEEP = (1 << 1),    /* only on 8139, 8139A */
262     PWRDN = (1 << 0),    /* only on 8139, 8139A */
263 };
264 
265 /* Bits in Config3 */
266 enum Config3Bits {
267     Cfg3_FBtBEn    = (1 << 0), /* 1 = Fast Back to Back */
268     Cfg3_FuncRegEn = (1 << 1), /* 1 = enable CardBus Function registers */
269     Cfg3_CLKRUN_En = (1 << 2), /* 1 = enable CLKRUN */
270     Cfg3_CardB_En  = (1 << 3), /* 1 = enable CardBus registers */
271     Cfg3_LinkUp    = (1 << 4), /* 1 = wake up on link up */
272     Cfg3_Magic     = (1 << 5), /* 1 = wake up on Magic Packet (tm) */
273     Cfg3_PARM_En   = (1 << 6), /* 0 = software can set twister parameters */
274     Cfg3_GNTSel    = (1 << 7), /* 1 = delay 1 clock from PCI GNT signal */
275 };
276 
277 /* Bits in Config4 */
278 enum Config4Bits {
279     LWPTN = (1 << 2),    /* not on 8139, 8139A */
280 };
281 
282 /* Bits in Config5 */
283 enum Config5Bits {
284     Cfg5_PME_STS     = (1 << 0), /* 1 = PCI reset resets PME_Status */
285     Cfg5_LANWake     = (1 << 1), /* 1 = enable LANWake signal */
286     Cfg5_LDPS        = (1 << 2), /* 0 = save power when link is down */
287     Cfg5_FIFOAddrPtr = (1 << 3), /* Realtek internal SRAM testing */
288     Cfg5_UWF         = (1 << 4), /* 1 = accept unicast wakeup frame */
289     Cfg5_MWF         = (1 << 5), /* 1 = accept multicast wakeup frame */
290     Cfg5_BWF         = (1 << 6), /* 1 = accept broadcast wakeup frame */
291 };
292 
293 enum RxConfigBits {
294     /* rx fifo threshold */
295     RxCfgFIFOShift = 13,
296     RxCfgFIFONone = (7 << RxCfgFIFOShift),
297 
298     /* Max DMA burst */
299     RxCfgDMAShift = 8,
300     RxCfgDMAUnlimited = (7 << RxCfgDMAShift),
301 
302     /* rx ring buffer length */
303     RxCfgRcv8K = 0,
304     RxCfgRcv16K = (1 << 11),
305     RxCfgRcv32K = (1 << 12),
306     RxCfgRcv64K = (1 << 11) | (1 << 12),
307 
308     /* Disable packet wrap at end of Rx buffer. (not possible with 64k) */
309     RxNoWrap = (1 << 7),
310 };
311 
312 /* Twister tuning parameters from RealTek.
313    Completely undocumented, but required to tune bad links on some boards. */
314 /*
315 enum CSCRBits {
316     CSCR_LinkOKBit = 0x0400,
317     CSCR_LinkChangeBit = 0x0800,
318     CSCR_LinkStatusBits = 0x0f000,
319     CSCR_LinkDownOffCmd = 0x003c0,
320     CSCR_LinkDownCmd = 0x0f3c0,
321 */
322 enum CSCRBits {
323     CSCR_Testfun = 1<<15, /* 1 = Auto-neg speeds up internal timer, WO, def 0 */
324     CSCR_LD  = 1<<9,  /* Active low TPI link disable signal. When low, TPI still transmits link pulses and TPI stays in good link state. def 1*/
325     CSCR_HEART_BIT = 1<<8,  /* 1 = HEART BEAT enable, 0 = HEART BEAT disable. HEART BEAT function is only valid in 10Mbps mode. def 1*/
326     CSCR_JBEN = 1<<7,  /* 1 = enable jabber function. 0 = disable jabber function, def 1*/
327     CSCR_F_LINK_100 = 1<<6, /* Used to login force good link in 100Mbps for diagnostic purposes. 1 = DISABLE, 0 = ENABLE. def 1*/
328     CSCR_F_Connect  = 1<<5,  /* Assertion of this bit forces the disconnect function to be bypassed. def 0*/
329     CSCR_Con_status = 1<<3, /* This bit indicates the status of the connection. 1 = valid connected link detected; 0 = disconnected link detected. RO def 0*/
330     CSCR_Con_status_En = 1<<2, /* Assertion of this bit configures LED1 pin to indicate connection status. def 0*/
331     CSCR_PASS_SCR = 1<<0, /* Bypass Scramble, def 0*/
332 };
333 
334 enum Cfg9346Bits {
335     Cfg9346_Normal = 0x00,
336     Cfg9346_Autoload = 0x40,
337     Cfg9346_Programming = 0x80,
338     Cfg9346_ConfigWrite = 0xC0,
339 };
340 
341 typedef enum {
342     CH_8139 = 0,
343     CH_8139_K,
344     CH_8139A,
345     CH_8139A_G,
346     CH_8139B,
347     CH_8130,
348     CH_8139C,
349     CH_8100,
350     CH_8100B_8139D,
351     CH_8101,
352 } chip_t;
353 
354 enum chip_flags {
355     HasHltClk = (1 << 0),
356     HasLWake = (1 << 1),
357 };
358 
359 #define HW_REVID(b30, b29, b28, b27, b26, b23, b22) \
360     (b30<<30 | b29<<29 | b28<<28 | b27<<27 | b26<<26 | b23<<23 | b22<<22)
361 #define HW_REVID_MASK    HW_REVID(1, 1, 1, 1, 1, 1, 1)
362 
363 #define RTL8139_PCI_REVID_8139      0x10
364 #define RTL8139_PCI_REVID_8139CPLUS 0x20
365 
366 #define RTL8139_PCI_REVID           RTL8139_PCI_REVID_8139CPLUS
367 
368 /* Size is 64 * 16bit words */
369 #define EEPROM_9346_ADDR_BITS 6
370 #define EEPROM_9346_SIZE  (1 << EEPROM_9346_ADDR_BITS)
371 #define EEPROM_9346_ADDR_MASK (EEPROM_9346_SIZE - 1)
372 
373 enum Chip9346Operation
374 {
375     Chip9346_op_mask = 0xc0,          /* 10 zzzzzz */
376     Chip9346_op_read = 0x80,          /* 10 AAAAAA */
377     Chip9346_op_write = 0x40,         /* 01 AAAAAA D(15)..D(0) */
378     Chip9346_op_ext_mask = 0xf0,      /* 11 zzzzzz */
379     Chip9346_op_write_enable = 0x30,  /* 00 11zzzz */
380     Chip9346_op_write_all = 0x10,     /* 00 01zzzz */
381     Chip9346_op_write_disable = 0x00, /* 00 00zzzz */
382 };
383 
384 enum Chip9346Mode
385 {
386     Chip9346_none = 0,
387     Chip9346_enter_command_mode,
388     Chip9346_read_command,
389     Chip9346_data_read,      /* from output register */
390     Chip9346_data_write,     /* to input register, then to contents at specified address */
391     Chip9346_data_write_all, /* to input register, then filling contents */
392 };
393 
394 typedef struct EEprom9346
395 {
396     uint16_t contents[EEPROM_9346_SIZE];
397     int      mode;
398     uint32_t tick;
399     uint8_t  address;
400     uint16_t input;
401     uint16_t output;
402 
403     uint8_t eecs;
404     uint8_t eesk;
405     uint8_t eedi;
406     uint8_t eedo;
407 } EEprom9346;
408 
409 typedef struct RTL8139TallyCounters
410 {
411     /* Tally counters */
412     uint64_t   TxOk;
413     uint64_t   RxOk;
414     uint64_t   TxERR;
415     uint32_t   RxERR;
416     uint16_t   MissPkt;
417     uint16_t   FAE;
418     uint32_t   Tx1Col;
419     uint32_t   TxMCol;
420     uint64_t   RxOkPhy;
421     uint64_t   RxOkBrd;
422     uint32_t   RxOkMul;
423     uint16_t   TxAbt;
424     uint16_t   TxUndrn;
425 } RTL8139TallyCounters;
426 
427 /* Clears all tally counters */
428 static void RTL8139TallyCounters_clear(RTL8139TallyCounters* counters);
429 
430 typedef struct RTL8139State {
431     PCIDevice dev;
432     uint8_t phys[8]; /* mac address */
433     uint8_t mult[8]; /* multicast mask array */
434 
435     uint32_t TxStatus[4]; /* TxStatus0 in C mode*/ /* also DTCCR[0] and DTCCR[1] in C+ mode */
436     uint32_t TxAddr[4];   /* TxAddr0 */
437     uint32_t RxBuf;       /* Receive buffer */
438     uint32_t RxBufferSize;/* internal variable, receive ring buffer size in C mode */
439     uint32_t RxBufPtr;
440     uint32_t RxBufAddr;
441 
442     uint16_t IntrStatus;
443     uint16_t IntrMask;
444 
445     uint32_t TxConfig;
446     uint32_t RxConfig;
447     uint32_t RxMissed;
448 
449     uint16_t CSCR;
450 
451     uint8_t  Cfg9346;
452     uint8_t  Config0;
453     uint8_t  Config1;
454     uint8_t  Config3;
455     uint8_t  Config4;
456     uint8_t  Config5;
457 
458     uint8_t  clock_enabled;
459     uint8_t  bChipCmdState;
460 
461     uint16_t MultiIntr;
462 
463     uint16_t BasicModeCtrl;
464     uint16_t BasicModeStatus;
465     uint16_t NWayAdvert;
466     uint16_t NWayLPAR;
467     uint16_t NWayExpansion;
468 
469     uint16_t CpCmd;
470     uint8_t  TxThresh;
471 
472     NICState *nic;
473     NICConf conf;
474 
475     /* C ring mode */
476     uint32_t   currTxDesc;
477 
478     /* C+ mode */
479     uint32_t   cplus_enabled;
480 
481     uint32_t   currCPlusRxDesc;
482     uint32_t   currCPlusTxDesc;
483 
484     uint32_t   RxRingAddrLO;
485     uint32_t   RxRingAddrHI;
486 
487     EEprom9346 eeprom;
488 
489     uint32_t   TCTR;
490     uint32_t   TimerInt;
491     int64_t    TCTR_base;
492 
493     /* Tally counters */
494     RTL8139TallyCounters tally_counters;
495 
496     /* Non-persistent data */
497     uint8_t   *cplus_txbuffer;
498     int        cplus_txbuffer_len;
499     int        cplus_txbuffer_offset;
500 
501     /* PCI interrupt timer */
502     QEMUTimer *timer;
503     int64_t TimerExpire;
504 
505     MemoryRegion bar_io;
506     MemoryRegion bar_mem;
507 
508     /* Support migration to/from old versions */
509     int rtl8139_mmio_io_addr_dummy;
510 } RTL8139State;
511 
512 /* Writes tally counters to memory via DMA */
513 static void RTL8139TallyCounters_dma_write(RTL8139State *s, dma_addr_t tc_addr);
514 
515 static void rtl8139_set_next_tctr_time(RTL8139State *s, int64_t current_time);
516 
517 static void prom9346_decode_command(EEprom9346 *eeprom, uint8_t command)
518 {
519     DPRINTF("eeprom command 0x%02x\n", command);
520 
521     switch (command & Chip9346_op_mask)
522     {
523         case Chip9346_op_read:
524         {
525             eeprom->address = command & EEPROM_9346_ADDR_MASK;
526             eeprom->output = eeprom->contents[eeprom->address];
527             eeprom->eedo = 0;
528             eeprom->tick = 0;
529             eeprom->mode = Chip9346_data_read;
530             DPRINTF("eeprom read from address 0x%02x data=0x%04x\n",
531                 eeprom->address, eeprom->output);
532         }
533         break;
534 
535         case Chip9346_op_write:
536         {
537             eeprom->address = command & EEPROM_9346_ADDR_MASK;
538             eeprom->input = 0;
539             eeprom->tick = 0;
540             eeprom->mode = Chip9346_none; /* Chip9346_data_write */
541             DPRINTF("eeprom begin write to address 0x%02x\n",
542                 eeprom->address);
543         }
544         break;
545         default:
546             eeprom->mode = Chip9346_none;
547             switch (command & Chip9346_op_ext_mask)
548             {
549                 case Chip9346_op_write_enable:
550                     DPRINTF("eeprom write enabled\n");
551                     break;
552                 case Chip9346_op_write_all:
553                     DPRINTF("eeprom begin write all\n");
554                     break;
555                 case Chip9346_op_write_disable:
556                     DPRINTF("eeprom write disabled\n");
557                     break;
558             }
559             break;
560     }
561 }
562 
563 static void prom9346_shift_clock(EEprom9346 *eeprom)
564 {
565     int bit = eeprom->eedi?1:0;
566 
567     ++ eeprom->tick;
568 
569     DPRINTF("eeprom: tick %d eedi=%d eedo=%d\n", eeprom->tick, eeprom->eedi,
570         eeprom->eedo);
571 
572     switch (eeprom->mode)
573     {
574         case Chip9346_enter_command_mode:
575             if (bit)
576             {
577                 eeprom->mode = Chip9346_read_command;
578                 eeprom->tick = 0;
579                 eeprom->input = 0;
580                 DPRINTF("eeprom: +++ synchronized, begin command read\n");
581             }
582             break;
583 
584         case Chip9346_read_command:
585             eeprom->input = (eeprom->input << 1) | (bit & 1);
586             if (eeprom->tick == 8)
587             {
588                 prom9346_decode_command(eeprom, eeprom->input & 0xff);
589             }
590             break;
591 
592         case Chip9346_data_read:
593             eeprom->eedo = (eeprom->output & 0x8000)?1:0;
594             eeprom->output <<= 1;
595             if (eeprom->tick == 16)
596             {
597 #if 1
598         // the FreeBSD drivers (rl and re) don't explicitly toggle
599         // CS between reads (or does setting Cfg9346 to 0 count too?),
600         // so we need to enter wait-for-command state here
601                 eeprom->mode = Chip9346_enter_command_mode;
602                 eeprom->input = 0;
603                 eeprom->tick = 0;
604 
605                 DPRINTF("eeprom: +++ end of read, awaiting next command\n");
606 #else
607         // original behaviour
608                 ++eeprom->address;
609                 eeprom->address &= EEPROM_9346_ADDR_MASK;
610                 eeprom->output = eeprom->contents[eeprom->address];
611                 eeprom->tick = 0;
612 
613                 DPRINTF("eeprom: +++ read next address 0x%02x data=0x%04x\n",
614                     eeprom->address, eeprom->output);
615 #endif
616             }
617             break;
618 
619         case Chip9346_data_write:
620             eeprom->input = (eeprom->input << 1) | (bit & 1);
621             if (eeprom->tick == 16)
622             {
623                 DPRINTF("eeprom write to address 0x%02x data=0x%04x\n",
624                     eeprom->address, eeprom->input);
625 
626                 eeprom->contents[eeprom->address] = eeprom->input;
627                 eeprom->mode = Chip9346_none; /* waiting for next command after CS cycle */
628                 eeprom->tick = 0;
629                 eeprom->input = 0;
630             }
631             break;
632 
633         case Chip9346_data_write_all:
634             eeprom->input = (eeprom->input << 1) | (bit & 1);
635             if (eeprom->tick == 16)
636             {
637                 int i;
638                 for (i = 0; i < EEPROM_9346_SIZE; i++)
639                 {
640                     eeprom->contents[i] = eeprom->input;
641                 }
642                 DPRINTF("eeprom filled with data=0x%04x\n", eeprom->input);
643 
644                 eeprom->mode = Chip9346_enter_command_mode;
645                 eeprom->tick = 0;
646                 eeprom->input = 0;
647             }
648             break;
649 
650         default:
651             break;
652     }
653 }
654 
655 static int prom9346_get_wire(RTL8139State *s)
656 {
657     EEprom9346 *eeprom = &s->eeprom;
658     if (!eeprom->eecs)
659         return 0;
660 
661     return eeprom->eedo;
662 }
663 
664 /* FIXME: This should be merged into/replaced by eeprom93xx.c.  */
665 static void prom9346_set_wire(RTL8139State *s, int eecs, int eesk, int eedi)
666 {
667     EEprom9346 *eeprom = &s->eeprom;
668     uint8_t old_eecs = eeprom->eecs;
669     uint8_t old_eesk = eeprom->eesk;
670 
671     eeprom->eecs = eecs;
672     eeprom->eesk = eesk;
673     eeprom->eedi = eedi;
674 
675     DPRINTF("eeprom: +++ wires CS=%d SK=%d DI=%d DO=%d\n", eeprom->eecs,
676         eeprom->eesk, eeprom->eedi, eeprom->eedo);
677 
678     if (!old_eecs && eecs)
679     {
680         /* Synchronize start */
681         eeprom->tick = 0;
682         eeprom->input = 0;
683         eeprom->output = 0;
684         eeprom->mode = Chip9346_enter_command_mode;
685 
686         DPRINTF("=== eeprom: begin access, enter command mode\n");
687     }
688 
689     if (!eecs)
690     {
691         DPRINTF("=== eeprom: end access\n");
692         return;
693     }
694 
695     if (!old_eesk && eesk)
696     {
697         /* SK front rules */
698         prom9346_shift_clock(eeprom);
699     }
700 }
701 
702 static void rtl8139_update_irq(RTL8139State *s)
703 {
704     int isr;
705     isr = (s->IntrStatus & s->IntrMask) & 0xffff;
706 
707     DPRINTF("Set IRQ to %d (%04x %04x)\n", isr ? 1 : 0, s->IntrStatus,
708         s->IntrMask);
709 
710     qemu_set_irq(s->dev.irq[0], (isr != 0));
711 }
712 
713 static int rtl8139_RxWrap(RTL8139State *s)
714 {
715     /* wrapping enabled; assume 1.5k more buffer space if size < 65536 */
716     return (s->RxConfig & (1 << 7));
717 }
718 
719 static int rtl8139_receiver_enabled(RTL8139State *s)
720 {
721     return s->bChipCmdState & CmdRxEnb;
722 }
723 
724 static int rtl8139_transmitter_enabled(RTL8139State *s)
725 {
726     return s->bChipCmdState & CmdTxEnb;
727 }
728 
729 static int rtl8139_cp_receiver_enabled(RTL8139State *s)
730 {
731     return s->CpCmd & CPlusRxEnb;
732 }
733 
734 static int rtl8139_cp_transmitter_enabled(RTL8139State *s)
735 {
736     return s->CpCmd & CPlusTxEnb;
737 }
738 
739 static void rtl8139_write_buffer(RTL8139State *s, const void *buf, int size)
740 {
741     if (s->RxBufAddr + size > s->RxBufferSize)
742     {
743         int wrapped = MOD2(s->RxBufAddr + size, s->RxBufferSize);
744 
745         /* write packet data */
746         if (wrapped && !(s->RxBufferSize < 65536 && rtl8139_RxWrap(s)))
747         {
748             DPRINTF(">>> rx packet wrapped in buffer at %d\n", size - wrapped);
749 
750             if (size > wrapped)
751             {
752                 pci_dma_write(&s->dev, s->RxBuf + s->RxBufAddr,
753                               buf, size-wrapped);
754             }
755 
756             /* reset buffer pointer */
757             s->RxBufAddr = 0;
758 
759             pci_dma_write(&s->dev, s->RxBuf + s->RxBufAddr,
760                           buf + (size-wrapped), wrapped);
761 
762             s->RxBufAddr = wrapped;
763 
764             return;
765         }
766     }
767 
768     /* non-wrapping path or overwrapping enabled */
769     pci_dma_write(&s->dev, s->RxBuf + s->RxBufAddr, buf, size);
770 
771     s->RxBufAddr += size;
772 }
773 
774 #define MIN_BUF_SIZE 60
775 static inline dma_addr_t rtl8139_addr64(uint32_t low, uint32_t high)
776 {
777     return low | ((uint64_t)high << 32);
778 }
779 
780 /* Workaround for buggy guest driver such as linux who allocates rx
781  * rings after the receiver were enabled. */
782 static bool rtl8139_cp_rx_valid(RTL8139State *s)
783 {
784     return !(s->RxRingAddrLO == 0 && s->RxRingAddrHI == 0);
785 }
786 
787 static int rtl8139_can_receive(NetClientState *nc)
788 {
789     RTL8139State *s = qemu_get_nic_opaque(nc);
790     int avail;
791 
792     /* Receive (drop) packets if card is disabled.  */
793     if (!s->clock_enabled)
794       return 1;
795     if (!rtl8139_receiver_enabled(s))
796       return 1;
797 
798     if (rtl8139_cp_receiver_enabled(s) && rtl8139_cp_rx_valid(s)) {
799         /* ??? Flow control not implemented in c+ mode.
800            This is a hack to work around slirp deficiencies anyway.  */
801         return 1;
802     } else {
803         avail = MOD2(s->RxBufferSize + s->RxBufPtr - s->RxBufAddr,
804                      s->RxBufferSize);
805         return (avail == 0 || avail >= 1514 || (s->IntrMask & RxOverflow));
806     }
807 }
808 
809 static ssize_t rtl8139_do_receive(NetClientState *nc, const uint8_t *buf, size_t size_, int do_interrupt)
810 {
811     RTL8139State *s = qemu_get_nic_opaque(nc);
812     /* size is the length of the buffer passed to the driver */
813     int size = size_;
814     const uint8_t *dot1q_buf = NULL;
815 
816     uint32_t packet_header = 0;
817 
818     uint8_t buf1[MIN_BUF_SIZE + VLAN_HLEN];
819     static const uint8_t broadcast_macaddr[6] =
820         { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
821 
822     DPRINTF(">>> received len=%d\n", size);
823 
824     /* test if board clock is stopped */
825     if (!s->clock_enabled)
826     {
827         DPRINTF("stopped ==========================\n");
828         return -1;
829     }
830 
831     /* first check if receiver is enabled */
832 
833     if (!rtl8139_receiver_enabled(s))
834     {
835         DPRINTF("receiver disabled ================\n");
836         return -1;
837     }
838 
839     /* XXX: check this */
840     if (s->RxConfig & AcceptAllPhys) {
841         /* promiscuous: receive all */
842         DPRINTF(">>> packet received in promiscuous mode\n");
843 
844     } else {
845         if (!memcmp(buf,  broadcast_macaddr, 6)) {
846             /* broadcast address */
847             if (!(s->RxConfig & AcceptBroadcast))
848             {
849                 DPRINTF(">>> broadcast packet rejected\n");
850 
851                 /* update tally counter */
852                 ++s->tally_counters.RxERR;
853 
854                 return size;
855             }
856 
857             packet_header |= RxBroadcast;
858 
859             DPRINTF(">>> broadcast packet received\n");
860 
861             /* update tally counter */
862             ++s->tally_counters.RxOkBrd;
863 
864         } else if (buf[0] & 0x01) {
865             /* multicast */
866             if (!(s->RxConfig & AcceptMulticast))
867             {
868                 DPRINTF(">>> multicast packet rejected\n");
869 
870                 /* update tally counter */
871                 ++s->tally_counters.RxERR;
872 
873                 return size;
874             }
875 
876             int mcast_idx = compute_mcast_idx(buf);
877 
878             if (!(s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))))
879             {
880                 DPRINTF(">>> multicast address mismatch\n");
881 
882                 /* update tally counter */
883                 ++s->tally_counters.RxERR;
884 
885                 return size;
886             }
887 
888             packet_header |= RxMulticast;
889 
890             DPRINTF(">>> multicast packet received\n");
891 
892             /* update tally counter */
893             ++s->tally_counters.RxOkMul;
894 
895         } else if (s->phys[0] == buf[0] &&
896                    s->phys[1] == buf[1] &&
897                    s->phys[2] == buf[2] &&
898                    s->phys[3] == buf[3] &&
899                    s->phys[4] == buf[4] &&
900                    s->phys[5] == buf[5]) {
901             /* match */
902             if (!(s->RxConfig & AcceptMyPhys))
903             {
904                 DPRINTF(">>> rejecting physical address matching packet\n");
905 
906                 /* update tally counter */
907                 ++s->tally_counters.RxERR;
908 
909                 return size;
910             }
911 
912             packet_header |= RxPhysical;
913 
914             DPRINTF(">>> physical address matching packet received\n");
915 
916             /* update tally counter */
917             ++s->tally_counters.RxOkPhy;
918 
919         } else {
920 
921             DPRINTF(">>> unknown packet\n");
922 
923             /* update tally counter */
924             ++s->tally_counters.RxERR;
925 
926             return size;
927         }
928     }
929 
930     /* if too small buffer, then expand it
931      * Include some tailroom in case a vlan tag is later removed. */
932     if (size < MIN_BUF_SIZE + VLAN_HLEN) {
933         memcpy(buf1, buf, size);
934         memset(buf1 + size, 0, MIN_BUF_SIZE + VLAN_HLEN - size);
935         buf = buf1;
936         if (size < MIN_BUF_SIZE) {
937             size = MIN_BUF_SIZE;
938         }
939     }
940 
941     if (rtl8139_cp_receiver_enabled(s))
942     {
943         if (!rtl8139_cp_rx_valid(s)) {
944             return size;
945         }
946 
947         DPRINTF("in C+ Rx mode ================\n");
948 
949         /* begin C+ receiver mode */
950 
951 /* w0 ownership flag */
952 #define CP_RX_OWN (1<<31)
953 /* w0 end of ring flag */
954 #define CP_RX_EOR (1<<30)
955 /* w0 bits 0...12 : buffer size */
956 #define CP_RX_BUFFER_SIZE_MASK ((1<<13) - 1)
957 /* w1 tag available flag */
958 #define CP_RX_TAVA (1<<16)
959 /* w1 bits 0...15 : VLAN tag */
960 #define CP_RX_VLAN_TAG_MASK ((1<<16) - 1)
961 /* w2 low  32bit of Rx buffer ptr */
962 /* w3 high 32bit of Rx buffer ptr */
963 
964         int descriptor = s->currCPlusRxDesc;
965         dma_addr_t cplus_rx_ring_desc;
966 
967         cplus_rx_ring_desc = rtl8139_addr64(s->RxRingAddrLO, s->RxRingAddrHI);
968         cplus_rx_ring_desc += 16 * descriptor;
969 
970         DPRINTF("+++ C+ mode reading RX descriptor %d from host memory at "
971             "%08x %08x = "DMA_ADDR_FMT"\n", descriptor, s->RxRingAddrHI,
972             s->RxRingAddrLO, cplus_rx_ring_desc);
973 
974         uint32_t val, rxdw0,rxdw1,rxbufLO,rxbufHI;
975 
976         pci_dma_read(&s->dev, cplus_rx_ring_desc, &val, 4);
977         rxdw0 = le32_to_cpu(val);
978         pci_dma_read(&s->dev, cplus_rx_ring_desc+4, &val, 4);
979         rxdw1 = le32_to_cpu(val);
980         pci_dma_read(&s->dev, cplus_rx_ring_desc+8, &val, 4);
981         rxbufLO = le32_to_cpu(val);
982         pci_dma_read(&s->dev, cplus_rx_ring_desc+12, &val, 4);
983         rxbufHI = le32_to_cpu(val);
984 
985         DPRINTF("+++ C+ mode RX descriptor %d %08x %08x %08x %08x\n",
986             descriptor, rxdw0, rxdw1, rxbufLO, rxbufHI);
987 
988         if (!(rxdw0 & CP_RX_OWN))
989         {
990             DPRINTF("C+ Rx mode : descriptor %d is owned by host\n",
991                 descriptor);
992 
993             s->IntrStatus |= RxOverflow;
994             ++s->RxMissed;
995 
996             /* update tally counter */
997             ++s->tally_counters.RxERR;
998             ++s->tally_counters.MissPkt;
999 
1000             rtl8139_update_irq(s);
1001             return size_;
1002         }
1003 
1004         uint32_t rx_space = rxdw0 & CP_RX_BUFFER_SIZE_MASK;
1005 
1006         /* write VLAN info to descriptor variables. */
1007         if (s->CpCmd & CPlusRxVLAN && be16_to_cpup((uint16_t *)
1008                 &buf[ETHER_ADDR_LEN * 2]) == ETH_P_8021Q) {
1009             dot1q_buf = &buf[ETHER_ADDR_LEN * 2];
1010             size -= VLAN_HLEN;
1011             /* if too small buffer, use the tailroom added duing expansion */
1012             if (size < MIN_BUF_SIZE) {
1013                 size = MIN_BUF_SIZE;
1014             }
1015 
1016             rxdw1 &= ~CP_RX_VLAN_TAG_MASK;
1017             /* BE + ~le_to_cpu()~ + cpu_to_le() = BE */
1018             rxdw1 |= CP_RX_TAVA | le16_to_cpup((uint16_t *)
1019                 &dot1q_buf[ETHER_TYPE_LEN]);
1020 
1021             DPRINTF("C+ Rx mode : extracted vlan tag with tci: ""%u\n",
1022                 be16_to_cpup((uint16_t *)&dot1q_buf[ETHER_TYPE_LEN]));
1023         } else {
1024             /* reset VLAN tag flag */
1025             rxdw1 &= ~CP_RX_TAVA;
1026         }
1027 
1028         /* TODO: scatter the packet over available receive ring descriptors space */
1029 
1030         if (size+4 > rx_space)
1031         {
1032             DPRINTF("C+ Rx mode : descriptor %d size %d received %d + 4\n",
1033                 descriptor, rx_space, size);
1034 
1035             s->IntrStatus |= RxOverflow;
1036             ++s->RxMissed;
1037 
1038             /* update tally counter */
1039             ++s->tally_counters.RxERR;
1040             ++s->tally_counters.MissPkt;
1041 
1042             rtl8139_update_irq(s);
1043             return size_;
1044         }
1045 
1046         dma_addr_t rx_addr = rtl8139_addr64(rxbufLO, rxbufHI);
1047 
1048         /* receive/copy to target memory */
1049         if (dot1q_buf) {
1050             pci_dma_write(&s->dev, rx_addr, buf, 2 * ETHER_ADDR_LEN);
1051             pci_dma_write(&s->dev, rx_addr + 2 * ETHER_ADDR_LEN,
1052                           buf + 2 * ETHER_ADDR_LEN + VLAN_HLEN,
1053                           size - 2 * ETHER_ADDR_LEN);
1054         } else {
1055             pci_dma_write(&s->dev, rx_addr, buf, size);
1056         }
1057 
1058         if (s->CpCmd & CPlusRxChkSum)
1059         {
1060             /* do some packet checksumming */
1061         }
1062 
1063         /* write checksum */
1064         val = cpu_to_le32(crc32(0, buf, size_));
1065         pci_dma_write(&s->dev, rx_addr+size, (uint8_t *)&val, 4);
1066 
1067 /* first segment of received packet flag */
1068 #define CP_RX_STATUS_FS (1<<29)
1069 /* last segment of received packet flag */
1070 #define CP_RX_STATUS_LS (1<<28)
1071 /* multicast packet flag */
1072 #define CP_RX_STATUS_MAR (1<<26)
1073 /* physical-matching packet flag */
1074 #define CP_RX_STATUS_PAM (1<<25)
1075 /* broadcast packet flag */
1076 #define CP_RX_STATUS_BAR (1<<24)
1077 /* runt packet flag */
1078 #define CP_RX_STATUS_RUNT (1<<19)
1079 /* crc error flag */
1080 #define CP_RX_STATUS_CRC (1<<18)
1081 /* IP checksum error flag */
1082 #define CP_RX_STATUS_IPF (1<<15)
1083 /* UDP checksum error flag */
1084 #define CP_RX_STATUS_UDPF (1<<14)
1085 /* TCP checksum error flag */
1086 #define CP_RX_STATUS_TCPF (1<<13)
1087 
1088         /* transfer ownership to target */
1089         rxdw0 &= ~CP_RX_OWN;
1090 
1091         /* set first segment bit */
1092         rxdw0 |= CP_RX_STATUS_FS;
1093 
1094         /* set last segment bit */
1095         rxdw0 |= CP_RX_STATUS_LS;
1096 
1097         /* set received packet type flags */
1098         if (packet_header & RxBroadcast)
1099             rxdw0 |= CP_RX_STATUS_BAR;
1100         if (packet_header & RxMulticast)
1101             rxdw0 |= CP_RX_STATUS_MAR;
1102         if (packet_header & RxPhysical)
1103             rxdw0 |= CP_RX_STATUS_PAM;
1104 
1105         /* set received size */
1106         rxdw0 &= ~CP_RX_BUFFER_SIZE_MASK;
1107         rxdw0 |= (size+4);
1108 
1109         /* update ring data */
1110         val = cpu_to_le32(rxdw0);
1111         pci_dma_write(&s->dev, cplus_rx_ring_desc, (uint8_t *)&val, 4);
1112         val = cpu_to_le32(rxdw1);
1113         pci_dma_write(&s->dev, cplus_rx_ring_desc+4, (uint8_t *)&val, 4);
1114 
1115         /* update tally counter */
1116         ++s->tally_counters.RxOk;
1117 
1118         /* seek to next Rx descriptor */
1119         if (rxdw0 & CP_RX_EOR)
1120         {
1121             s->currCPlusRxDesc = 0;
1122         }
1123         else
1124         {
1125             ++s->currCPlusRxDesc;
1126         }
1127 
1128         DPRINTF("done C+ Rx mode ----------------\n");
1129 
1130     }
1131     else
1132     {
1133         DPRINTF("in ring Rx mode ================\n");
1134 
1135         /* begin ring receiver mode */
1136         int avail = MOD2(s->RxBufferSize + s->RxBufPtr - s->RxBufAddr, s->RxBufferSize);
1137 
1138         /* if receiver buffer is empty then avail == 0 */
1139 
1140         if (avail != 0 && size + 8 >= avail)
1141         {
1142             DPRINTF("rx overflow: rx buffer length %d head 0x%04x "
1143                 "read 0x%04x === available 0x%04x need 0x%04x\n",
1144                 s->RxBufferSize, s->RxBufAddr, s->RxBufPtr, avail, size + 8);
1145 
1146             s->IntrStatus |= RxOverflow;
1147             ++s->RxMissed;
1148             rtl8139_update_irq(s);
1149             return size_;
1150         }
1151 
1152         packet_header |= RxStatusOK;
1153 
1154         packet_header |= (((size+4) << 16) & 0xffff0000);
1155 
1156         /* write header */
1157         uint32_t val = cpu_to_le32(packet_header);
1158 
1159         rtl8139_write_buffer(s, (uint8_t *)&val, 4);
1160 
1161         rtl8139_write_buffer(s, buf, size);
1162 
1163         /* write checksum */
1164         val = cpu_to_le32(crc32(0, buf, size));
1165         rtl8139_write_buffer(s, (uint8_t *)&val, 4);
1166 
1167         /* correct buffer write pointer */
1168         s->RxBufAddr = MOD2((s->RxBufAddr + 3) & ~0x3, s->RxBufferSize);
1169 
1170         /* now we can signal we have received something */
1171 
1172         DPRINTF("received: rx buffer length %d head 0x%04x read 0x%04x\n",
1173             s->RxBufferSize, s->RxBufAddr, s->RxBufPtr);
1174     }
1175 
1176     s->IntrStatus |= RxOK;
1177 
1178     if (do_interrupt)
1179     {
1180         rtl8139_update_irq(s);
1181     }
1182 
1183     return size_;
1184 }
1185 
1186 static ssize_t rtl8139_receive(NetClientState *nc, const uint8_t *buf, size_t size)
1187 {
1188     return rtl8139_do_receive(nc, buf, size, 1);
1189 }
1190 
1191 static void rtl8139_reset_rxring(RTL8139State *s, uint32_t bufferSize)
1192 {
1193     s->RxBufferSize = bufferSize;
1194     s->RxBufPtr  = 0;
1195     s->RxBufAddr = 0;
1196 }
1197 
1198 static void rtl8139_reset(DeviceState *d)
1199 {
1200     RTL8139State *s = container_of(d, RTL8139State, dev.qdev);
1201     int i;
1202 
1203     /* restore MAC address */
1204     memcpy(s->phys, s->conf.macaddr.a, 6);
1205 
1206     /* reset interrupt mask */
1207     s->IntrStatus = 0;
1208     s->IntrMask = 0;
1209 
1210     rtl8139_update_irq(s);
1211 
1212     /* mark all status registers as owned by host */
1213     for (i = 0; i < 4; ++i)
1214     {
1215         s->TxStatus[i] = TxHostOwns;
1216     }
1217 
1218     s->currTxDesc = 0;
1219     s->currCPlusRxDesc = 0;
1220     s->currCPlusTxDesc = 0;
1221 
1222     s->RxRingAddrLO = 0;
1223     s->RxRingAddrHI = 0;
1224 
1225     s->RxBuf = 0;
1226 
1227     rtl8139_reset_rxring(s, 8192);
1228 
1229     /* ACK the reset */
1230     s->TxConfig = 0;
1231 
1232 #if 0
1233 //    s->TxConfig |= HW_REVID(1, 0, 0, 0, 0, 0, 0); // RTL-8139  HasHltClk
1234     s->clock_enabled = 0;
1235 #else
1236     s->TxConfig |= HW_REVID(1, 1, 1, 0, 1, 1, 0); // RTL-8139C+ HasLWake
1237     s->clock_enabled = 1;
1238 #endif
1239 
1240     s->bChipCmdState = CmdReset; /* RxBufEmpty bit is calculated on read from ChipCmd */;
1241 
1242     /* set initial state data */
1243     s->Config0 = 0x0; /* No boot ROM */
1244     s->Config1 = 0xC; /* IO mapped and MEM mapped registers available */
1245     s->Config3 = 0x1; /* fast back-to-back compatible */
1246     s->Config5 = 0x0;
1247 
1248     s->CSCR = CSCR_F_LINK_100 | CSCR_HEART_BIT | CSCR_LD;
1249 
1250     s->CpCmd   = 0x0; /* reset C+ mode */
1251     s->cplus_enabled = 0;
1252 
1253 
1254 //    s->BasicModeCtrl = 0x3100; // 100Mbps, full duplex, autonegotiation
1255 //    s->BasicModeCtrl = 0x2100; // 100Mbps, full duplex
1256     s->BasicModeCtrl = 0x1000; // autonegotiation
1257 
1258     s->BasicModeStatus  = 0x7809;
1259     //s->BasicModeStatus |= 0x0040; /* UTP medium */
1260     s->BasicModeStatus |= 0x0020; /* autonegotiation completed */
1261     /* preserve link state */
1262     s->BasicModeStatus |= qemu_get_queue(s->nic)->link_down ? 0 : 0x04;
1263 
1264     s->NWayAdvert    = 0x05e1; /* all modes, full duplex */
1265     s->NWayLPAR      = 0x05e1; /* all modes, full duplex */
1266     s->NWayExpansion = 0x0001; /* autonegotiation supported */
1267 
1268     /* also reset timer and disable timer interrupt */
1269     s->TCTR = 0;
1270     s->TimerInt = 0;
1271     s->TCTR_base = 0;
1272 
1273     /* reset tally counters */
1274     RTL8139TallyCounters_clear(&s->tally_counters);
1275 }
1276 
1277 static void RTL8139TallyCounters_clear(RTL8139TallyCounters* counters)
1278 {
1279     counters->TxOk = 0;
1280     counters->RxOk = 0;
1281     counters->TxERR = 0;
1282     counters->RxERR = 0;
1283     counters->MissPkt = 0;
1284     counters->FAE = 0;
1285     counters->Tx1Col = 0;
1286     counters->TxMCol = 0;
1287     counters->RxOkPhy = 0;
1288     counters->RxOkBrd = 0;
1289     counters->RxOkMul = 0;
1290     counters->TxAbt = 0;
1291     counters->TxUndrn = 0;
1292 }
1293 
1294 static void RTL8139TallyCounters_dma_write(RTL8139State *s, dma_addr_t tc_addr)
1295 {
1296     RTL8139TallyCounters *tally_counters = &s->tally_counters;
1297     uint16_t val16;
1298     uint32_t val32;
1299     uint64_t val64;
1300 
1301     val64 = cpu_to_le64(tally_counters->TxOk);
1302     pci_dma_write(&s->dev, tc_addr + 0,     (uint8_t *)&val64, 8);
1303 
1304     val64 = cpu_to_le64(tally_counters->RxOk);
1305     pci_dma_write(&s->dev, tc_addr + 8,     (uint8_t *)&val64, 8);
1306 
1307     val64 = cpu_to_le64(tally_counters->TxERR);
1308     pci_dma_write(&s->dev, tc_addr + 16,    (uint8_t *)&val64, 8);
1309 
1310     val32 = cpu_to_le32(tally_counters->RxERR);
1311     pci_dma_write(&s->dev, tc_addr + 24,    (uint8_t *)&val32, 4);
1312 
1313     val16 = cpu_to_le16(tally_counters->MissPkt);
1314     pci_dma_write(&s->dev, tc_addr + 28,    (uint8_t *)&val16, 2);
1315 
1316     val16 = cpu_to_le16(tally_counters->FAE);
1317     pci_dma_write(&s->dev, tc_addr + 30,    (uint8_t *)&val16, 2);
1318 
1319     val32 = cpu_to_le32(tally_counters->Tx1Col);
1320     pci_dma_write(&s->dev, tc_addr + 32,    (uint8_t *)&val32, 4);
1321 
1322     val32 = cpu_to_le32(tally_counters->TxMCol);
1323     pci_dma_write(&s->dev, tc_addr + 36,    (uint8_t *)&val32, 4);
1324 
1325     val64 = cpu_to_le64(tally_counters->RxOkPhy);
1326     pci_dma_write(&s->dev, tc_addr + 40,    (uint8_t *)&val64, 8);
1327 
1328     val64 = cpu_to_le64(tally_counters->RxOkBrd);
1329     pci_dma_write(&s->dev, tc_addr + 48,    (uint8_t *)&val64, 8);
1330 
1331     val32 = cpu_to_le32(tally_counters->RxOkMul);
1332     pci_dma_write(&s->dev, tc_addr + 56,    (uint8_t *)&val32, 4);
1333 
1334     val16 = cpu_to_le16(tally_counters->TxAbt);
1335     pci_dma_write(&s->dev, tc_addr + 60,    (uint8_t *)&val16, 2);
1336 
1337     val16 = cpu_to_le16(tally_counters->TxUndrn);
1338     pci_dma_write(&s->dev, tc_addr + 62,    (uint8_t *)&val16, 2);
1339 }
1340 
1341 /* Loads values of tally counters from VM state file */
1342 
1343 static const VMStateDescription vmstate_tally_counters = {
1344     .name = "tally_counters",
1345     .version_id = 1,
1346     .minimum_version_id = 1,
1347     .minimum_version_id_old = 1,
1348     .fields      = (VMStateField []) {
1349         VMSTATE_UINT64(TxOk, RTL8139TallyCounters),
1350         VMSTATE_UINT64(RxOk, RTL8139TallyCounters),
1351         VMSTATE_UINT64(TxERR, RTL8139TallyCounters),
1352         VMSTATE_UINT32(RxERR, RTL8139TallyCounters),
1353         VMSTATE_UINT16(MissPkt, RTL8139TallyCounters),
1354         VMSTATE_UINT16(FAE, RTL8139TallyCounters),
1355         VMSTATE_UINT32(Tx1Col, RTL8139TallyCounters),
1356         VMSTATE_UINT32(TxMCol, RTL8139TallyCounters),
1357         VMSTATE_UINT64(RxOkPhy, RTL8139TallyCounters),
1358         VMSTATE_UINT64(RxOkBrd, RTL8139TallyCounters),
1359         VMSTATE_UINT16(TxAbt, RTL8139TallyCounters),
1360         VMSTATE_UINT16(TxUndrn, RTL8139TallyCounters),
1361         VMSTATE_END_OF_LIST()
1362     }
1363 };
1364 
1365 static void rtl8139_ChipCmd_write(RTL8139State *s, uint32_t val)
1366 {
1367     val &= 0xff;
1368 
1369     DPRINTF("ChipCmd write val=0x%08x\n", val);
1370 
1371     if (val & CmdReset)
1372     {
1373         DPRINTF("ChipCmd reset\n");
1374         rtl8139_reset(&s->dev.qdev);
1375     }
1376     if (val & CmdRxEnb)
1377     {
1378         DPRINTF("ChipCmd enable receiver\n");
1379 
1380         s->currCPlusRxDesc = 0;
1381     }
1382     if (val & CmdTxEnb)
1383     {
1384         DPRINTF("ChipCmd enable transmitter\n");
1385 
1386         s->currCPlusTxDesc = 0;
1387     }
1388 
1389     /* mask unwritable bits */
1390     val = SET_MASKED(val, 0xe3, s->bChipCmdState);
1391 
1392     /* Deassert reset pin before next read */
1393     val &= ~CmdReset;
1394 
1395     s->bChipCmdState = val;
1396 }
1397 
1398 static int rtl8139_RxBufferEmpty(RTL8139State *s)
1399 {
1400     int unread = MOD2(s->RxBufferSize + s->RxBufAddr - s->RxBufPtr, s->RxBufferSize);
1401 
1402     if (unread != 0)
1403     {
1404         DPRINTF("receiver buffer data available 0x%04x\n", unread);
1405         return 0;
1406     }
1407 
1408     DPRINTF("receiver buffer is empty\n");
1409 
1410     return 1;
1411 }
1412 
1413 static uint32_t rtl8139_ChipCmd_read(RTL8139State *s)
1414 {
1415     uint32_t ret = s->bChipCmdState;
1416 
1417     if (rtl8139_RxBufferEmpty(s))
1418         ret |= RxBufEmpty;
1419 
1420     DPRINTF("ChipCmd read val=0x%04x\n", ret);
1421 
1422     return ret;
1423 }
1424 
1425 static void rtl8139_CpCmd_write(RTL8139State *s, uint32_t val)
1426 {
1427     val &= 0xffff;
1428 
1429     DPRINTF("C+ command register write(w) val=0x%04x\n", val);
1430 
1431     s->cplus_enabled = 1;
1432 
1433     /* mask unwritable bits */
1434     val = SET_MASKED(val, 0xff84, s->CpCmd);
1435 
1436     s->CpCmd = val;
1437 }
1438 
1439 static uint32_t rtl8139_CpCmd_read(RTL8139State *s)
1440 {
1441     uint32_t ret = s->CpCmd;
1442 
1443     DPRINTF("C+ command register read(w) val=0x%04x\n", ret);
1444 
1445     return ret;
1446 }
1447 
1448 static void rtl8139_IntrMitigate_write(RTL8139State *s, uint32_t val)
1449 {
1450     DPRINTF("C+ IntrMitigate register write(w) val=0x%04x\n", val);
1451 }
1452 
1453 static uint32_t rtl8139_IntrMitigate_read(RTL8139State *s)
1454 {
1455     uint32_t ret = 0;
1456 
1457     DPRINTF("C+ IntrMitigate register read(w) val=0x%04x\n", ret);
1458 
1459     return ret;
1460 }
1461 
1462 static int rtl8139_config_writable(RTL8139State *s)
1463 {
1464     if ((s->Cfg9346 & Chip9346_op_mask) == Cfg9346_ConfigWrite)
1465     {
1466         return 1;
1467     }
1468 
1469     DPRINTF("Configuration registers are write-protected\n");
1470 
1471     return 0;
1472 }
1473 
1474 static void rtl8139_BasicModeCtrl_write(RTL8139State *s, uint32_t val)
1475 {
1476     val &= 0xffff;
1477 
1478     DPRINTF("BasicModeCtrl register write(w) val=0x%04x\n", val);
1479 
1480     /* mask unwritable bits */
1481     uint32_t mask = 0x4cff;
1482 
1483     if (1 || !rtl8139_config_writable(s))
1484     {
1485         /* Speed setting and autonegotiation enable bits are read-only */
1486         mask |= 0x3000;
1487         /* Duplex mode setting is read-only */
1488         mask |= 0x0100;
1489     }
1490 
1491     val = SET_MASKED(val, mask, s->BasicModeCtrl);
1492 
1493     s->BasicModeCtrl = val;
1494 }
1495 
1496 static uint32_t rtl8139_BasicModeCtrl_read(RTL8139State *s)
1497 {
1498     uint32_t ret = s->BasicModeCtrl;
1499 
1500     DPRINTF("BasicModeCtrl register read(w) val=0x%04x\n", ret);
1501 
1502     return ret;
1503 }
1504 
1505 static void rtl8139_BasicModeStatus_write(RTL8139State *s, uint32_t val)
1506 {
1507     val &= 0xffff;
1508 
1509     DPRINTF("BasicModeStatus register write(w) val=0x%04x\n", val);
1510 
1511     /* mask unwritable bits */
1512     val = SET_MASKED(val, 0xff3f, s->BasicModeStatus);
1513 
1514     s->BasicModeStatus = val;
1515 }
1516 
1517 static uint32_t rtl8139_BasicModeStatus_read(RTL8139State *s)
1518 {
1519     uint32_t ret = s->BasicModeStatus;
1520 
1521     DPRINTF("BasicModeStatus register read(w) val=0x%04x\n", ret);
1522 
1523     return ret;
1524 }
1525 
1526 static void rtl8139_Cfg9346_write(RTL8139State *s, uint32_t val)
1527 {
1528     val &= 0xff;
1529 
1530     DPRINTF("Cfg9346 write val=0x%02x\n", val);
1531 
1532     /* mask unwritable bits */
1533     val = SET_MASKED(val, 0x31, s->Cfg9346);
1534 
1535     uint32_t opmode = val & 0xc0;
1536     uint32_t eeprom_val = val & 0xf;
1537 
1538     if (opmode == 0x80) {
1539         /* eeprom access */
1540         int eecs = (eeprom_val & 0x08)?1:0;
1541         int eesk = (eeprom_val & 0x04)?1:0;
1542         int eedi = (eeprom_val & 0x02)?1:0;
1543         prom9346_set_wire(s, eecs, eesk, eedi);
1544     } else if (opmode == 0x40) {
1545         /* Reset.  */
1546         val = 0;
1547         rtl8139_reset(&s->dev.qdev);
1548     }
1549 
1550     s->Cfg9346 = val;
1551 }
1552 
1553 static uint32_t rtl8139_Cfg9346_read(RTL8139State *s)
1554 {
1555     uint32_t ret = s->Cfg9346;
1556 
1557     uint32_t opmode = ret & 0xc0;
1558 
1559     if (opmode == 0x80)
1560     {
1561         /* eeprom access */
1562         int eedo = prom9346_get_wire(s);
1563         if (eedo)
1564         {
1565             ret |=  0x01;
1566         }
1567         else
1568         {
1569             ret &= ~0x01;
1570         }
1571     }
1572 
1573     DPRINTF("Cfg9346 read val=0x%02x\n", ret);
1574 
1575     return ret;
1576 }
1577 
1578 static void rtl8139_Config0_write(RTL8139State *s, uint32_t val)
1579 {
1580     val &= 0xff;
1581 
1582     DPRINTF("Config0 write val=0x%02x\n", val);
1583 
1584     if (!rtl8139_config_writable(s)) {
1585         return;
1586     }
1587 
1588     /* mask unwritable bits */
1589     val = SET_MASKED(val, 0xf8, s->Config0);
1590 
1591     s->Config0 = val;
1592 }
1593 
1594 static uint32_t rtl8139_Config0_read(RTL8139State *s)
1595 {
1596     uint32_t ret = s->Config0;
1597 
1598     DPRINTF("Config0 read val=0x%02x\n", ret);
1599 
1600     return ret;
1601 }
1602 
1603 static void rtl8139_Config1_write(RTL8139State *s, uint32_t val)
1604 {
1605     val &= 0xff;
1606 
1607     DPRINTF("Config1 write val=0x%02x\n", val);
1608 
1609     if (!rtl8139_config_writable(s)) {
1610         return;
1611     }
1612 
1613     /* mask unwritable bits */
1614     val = SET_MASKED(val, 0xC, s->Config1);
1615 
1616     s->Config1 = val;
1617 }
1618 
1619 static uint32_t rtl8139_Config1_read(RTL8139State *s)
1620 {
1621     uint32_t ret = s->Config1;
1622 
1623     DPRINTF("Config1 read val=0x%02x\n", ret);
1624 
1625     return ret;
1626 }
1627 
1628 static void rtl8139_Config3_write(RTL8139State *s, uint32_t val)
1629 {
1630     val &= 0xff;
1631 
1632     DPRINTF("Config3 write val=0x%02x\n", val);
1633 
1634     if (!rtl8139_config_writable(s)) {
1635         return;
1636     }
1637 
1638     /* mask unwritable bits */
1639     val = SET_MASKED(val, 0x8F, s->Config3);
1640 
1641     s->Config3 = val;
1642 }
1643 
1644 static uint32_t rtl8139_Config3_read(RTL8139State *s)
1645 {
1646     uint32_t ret = s->Config3;
1647 
1648     DPRINTF("Config3 read val=0x%02x\n", ret);
1649 
1650     return ret;
1651 }
1652 
1653 static void rtl8139_Config4_write(RTL8139State *s, uint32_t val)
1654 {
1655     val &= 0xff;
1656 
1657     DPRINTF("Config4 write val=0x%02x\n", val);
1658 
1659     if (!rtl8139_config_writable(s)) {
1660         return;
1661     }
1662 
1663     /* mask unwritable bits */
1664     val = SET_MASKED(val, 0x0a, s->Config4);
1665 
1666     s->Config4 = val;
1667 }
1668 
1669 static uint32_t rtl8139_Config4_read(RTL8139State *s)
1670 {
1671     uint32_t ret = s->Config4;
1672 
1673     DPRINTF("Config4 read val=0x%02x\n", ret);
1674 
1675     return ret;
1676 }
1677 
1678 static void rtl8139_Config5_write(RTL8139State *s, uint32_t val)
1679 {
1680     val &= 0xff;
1681 
1682     DPRINTF("Config5 write val=0x%02x\n", val);
1683 
1684     /* mask unwritable bits */
1685     val = SET_MASKED(val, 0x80, s->Config5);
1686 
1687     s->Config5 = val;
1688 }
1689 
1690 static uint32_t rtl8139_Config5_read(RTL8139State *s)
1691 {
1692     uint32_t ret = s->Config5;
1693 
1694     DPRINTF("Config5 read val=0x%02x\n", ret);
1695 
1696     return ret;
1697 }
1698 
1699 static void rtl8139_TxConfig_write(RTL8139State *s, uint32_t val)
1700 {
1701     if (!rtl8139_transmitter_enabled(s))
1702     {
1703         DPRINTF("transmitter disabled; no TxConfig write val=0x%08x\n", val);
1704         return;
1705     }
1706 
1707     DPRINTF("TxConfig write val=0x%08x\n", val);
1708 
1709     val = SET_MASKED(val, TxVersionMask | 0x8070f80f, s->TxConfig);
1710 
1711     s->TxConfig = val;
1712 }
1713 
1714 static void rtl8139_TxConfig_writeb(RTL8139State *s, uint32_t val)
1715 {
1716     DPRINTF("RTL8139C TxConfig via write(b) val=0x%02x\n", val);
1717 
1718     uint32_t tc = s->TxConfig;
1719     tc &= 0xFFFFFF00;
1720     tc |= (val & 0x000000FF);
1721     rtl8139_TxConfig_write(s, tc);
1722 }
1723 
1724 static uint32_t rtl8139_TxConfig_read(RTL8139State *s)
1725 {
1726     uint32_t ret = s->TxConfig;
1727 
1728     DPRINTF("TxConfig read val=0x%04x\n", ret);
1729 
1730     return ret;
1731 }
1732 
1733 static void rtl8139_RxConfig_write(RTL8139State *s, uint32_t val)
1734 {
1735     DPRINTF("RxConfig write val=0x%08x\n", val);
1736 
1737     /* mask unwritable bits */
1738     val = SET_MASKED(val, 0xf0fc0040, s->RxConfig);
1739 
1740     s->RxConfig = val;
1741 
1742     /* reset buffer size and read/write pointers */
1743     rtl8139_reset_rxring(s, 8192 << ((s->RxConfig >> 11) & 0x3));
1744 
1745     DPRINTF("RxConfig write reset buffer size to %d\n", s->RxBufferSize);
1746 }
1747 
1748 static uint32_t rtl8139_RxConfig_read(RTL8139State *s)
1749 {
1750     uint32_t ret = s->RxConfig;
1751 
1752     DPRINTF("RxConfig read val=0x%08x\n", ret);
1753 
1754     return ret;
1755 }
1756 
1757 static void rtl8139_transfer_frame(RTL8139State *s, uint8_t *buf, int size,
1758     int do_interrupt, const uint8_t *dot1q_buf)
1759 {
1760     struct iovec *iov = NULL;
1761 
1762     if (!size)
1763     {
1764         DPRINTF("+++ empty ethernet frame\n");
1765         return;
1766     }
1767 
1768     if (dot1q_buf && size >= ETHER_ADDR_LEN * 2) {
1769         iov = (struct iovec[3]) {
1770             { .iov_base = buf, .iov_len = ETHER_ADDR_LEN * 2 },
1771             { .iov_base = (void *) dot1q_buf, .iov_len = VLAN_HLEN },
1772             { .iov_base = buf + ETHER_ADDR_LEN * 2,
1773                 .iov_len = size - ETHER_ADDR_LEN * 2 },
1774         };
1775     }
1776 
1777     if (TxLoopBack == (s->TxConfig & TxLoopBack))
1778     {
1779         size_t buf2_size;
1780         uint8_t *buf2;
1781 
1782         if (iov) {
1783             buf2_size = iov_size(iov, 3);
1784             buf2 = g_malloc(buf2_size);
1785             iov_to_buf(iov, 3, 0, buf2, buf2_size);
1786             buf = buf2;
1787         }
1788 
1789         DPRINTF("+++ transmit loopback mode\n");
1790         rtl8139_do_receive(qemu_get_queue(s->nic), buf, size, do_interrupt);
1791 
1792         if (iov) {
1793             g_free(buf2);
1794         }
1795     }
1796     else
1797     {
1798         if (iov) {
1799             qemu_sendv_packet(qemu_get_queue(s->nic), iov, 3);
1800         } else {
1801             qemu_send_packet(qemu_get_queue(s->nic), buf, size);
1802         }
1803     }
1804 }
1805 
1806 static int rtl8139_transmit_one(RTL8139State *s, int descriptor)
1807 {
1808     if (!rtl8139_transmitter_enabled(s))
1809     {
1810         DPRINTF("+++ cannot transmit from descriptor %d: transmitter "
1811             "disabled\n", descriptor);
1812         return 0;
1813     }
1814 
1815     if (s->TxStatus[descriptor] & TxHostOwns)
1816     {
1817         DPRINTF("+++ cannot transmit from descriptor %d: owned by host "
1818             "(%08x)\n", descriptor, s->TxStatus[descriptor]);
1819         return 0;
1820     }
1821 
1822     DPRINTF("+++ transmitting from descriptor %d\n", descriptor);
1823 
1824     int txsize = s->TxStatus[descriptor] & 0x1fff;
1825     uint8_t txbuffer[0x2000];
1826 
1827     DPRINTF("+++ transmit reading %d bytes from host memory at 0x%08x\n",
1828         txsize, s->TxAddr[descriptor]);
1829 
1830     pci_dma_read(&s->dev, s->TxAddr[descriptor], txbuffer, txsize);
1831 
1832     /* Mark descriptor as transferred */
1833     s->TxStatus[descriptor] |= TxHostOwns;
1834     s->TxStatus[descriptor] |= TxStatOK;
1835 
1836     rtl8139_transfer_frame(s, txbuffer, txsize, 0, NULL);
1837 
1838     DPRINTF("+++ transmitted %d bytes from descriptor %d\n", txsize,
1839         descriptor);
1840 
1841     /* update interrupt */
1842     s->IntrStatus |= TxOK;
1843     rtl8139_update_irq(s);
1844 
1845     return 1;
1846 }
1847 
1848 /* structures and macros for task offloading */
1849 typedef struct ip_header
1850 {
1851     uint8_t  ip_ver_len;    /* version and header length */
1852     uint8_t  ip_tos;        /* type of service */
1853     uint16_t ip_len;        /* total length */
1854     uint16_t ip_id;         /* identification */
1855     uint16_t ip_off;        /* fragment offset field */
1856     uint8_t  ip_ttl;        /* time to live */
1857     uint8_t  ip_p;          /* protocol */
1858     uint16_t ip_sum;        /* checksum */
1859     uint32_t ip_src,ip_dst; /* source and dest address */
1860 } ip_header;
1861 
1862 #define IP_HEADER_VERSION_4 4
1863 #define IP_HEADER_VERSION(ip) ((ip->ip_ver_len >> 4)&0xf)
1864 #define IP_HEADER_LENGTH(ip) (((ip->ip_ver_len)&0xf) << 2)
1865 
1866 typedef struct tcp_header
1867 {
1868     uint16_t th_sport;		/* source port */
1869     uint16_t th_dport;		/* destination port */
1870     uint32_t th_seq;			/* sequence number */
1871     uint32_t th_ack;			/* acknowledgement number */
1872     uint16_t th_offset_flags; /* data offset, reserved 6 bits, TCP protocol flags */
1873     uint16_t th_win;			/* window */
1874     uint16_t th_sum;			/* checksum */
1875     uint16_t th_urp;			/* urgent pointer */
1876 } tcp_header;
1877 
1878 typedef struct udp_header
1879 {
1880     uint16_t uh_sport; /* source port */
1881     uint16_t uh_dport; /* destination port */
1882     uint16_t uh_ulen;  /* udp length */
1883     uint16_t uh_sum;   /* udp checksum */
1884 } udp_header;
1885 
1886 typedef struct ip_pseudo_header
1887 {
1888     uint32_t ip_src;
1889     uint32_t ip_dst;
1890     uint8_t  zeros;
1891     uint8_t  ip_proto;
1892     uint16_t ip_payload;
1893 } ip_pseudo_header;
1894 
1895 #define IP_PROTO_TCP 6
1896 #define IP_PROTO_UDP 17
1897 
1898 #define TCP_HEADER_DATA_OFFSET(tcp) (((be16_to_cpu(tcp->th_offset_flags) >> 12)&0xf) << 2)
1899 #define TCP_FLAGS_ONLY(flags) ((flags)&0x3f)
1900 #define TCP_HEADER_FLAGS(tcp) TCP_FLAGS_ONLY(be16_to_cpu(tcp->th_offset_flags))
1901 
1902 #define TCP_HEADER_CLEAR_FLAGS(tcp, off) ((tcp)->th_offset_flags &= cpu_to_be16(~TCP_FLAGS_ONLY(off)))
1903 
1904 #define TCP_FLAG_FIN  0x01
1905 #define TCP_FLAG_PUSH 0x08
1906 
1907 /* produces ones' complement sum of data */
1908 static uint16_t ones_complement_sum(uint8_t *data, size_t len)
1909 {
1910     uint32_t result = 0;
1911 
1912     for (; len > 1; data+=2, len-=2)
1913     {
1914         result += *(uint16_t*)data;
1915     }
1916 
1917     /* add the remainder byte */
1918     if (len)
1919     {
1920         uint8_t odd[2] = {*data, 0};
1921         result += *(uint16_t*)odd;
1922     }
1923 
1924     while (result>>16)
1925         result = (result & 0xffff) + (result >> 16);
1926 
1927     return result;
1928 }
1929 
1930 static uint16_t ip_checksum(void *data, size_t len)
1931 {
1932     return ~ones_complement_sum((uint8_t*)data, len);
1933 }
1934 
1935 static int rtl8139_cplus_transmit_one(RTL8139State *s)
1936 {
1937     if (!rtl8139_transmitter_enabled(s))
1938     {
1939         DPRINTF("+++ C+ mode: transmitter disabled\n");
1940         return 0;
1941     }
1942 
1943     if (!rtl8139_cp_transmitter_enabled(s))
1944     {
1945         DPRINTF("+++ C+ mode: C+ transmitter disabled\n");
1946         return 0 ;
1947     }
1948 
1949     int descriptor = s->currCPlusTxDesc;
1950 
1951     dma_addr_t cplus_tx_ring_desc = rtl8139_addr64(s->TxAddr[0], s->TxAddr[1]);
1952 
1953     /* Normal priority ring */
1954     cplus_tx_ring_desc += 16 * descriptor;
1955 
1956     DPRINTF("+++ C+ mode reading TX descriptor %d from host memory at "
1957         "%08x %08x = 0x"DMA_ADDR_FMT"\n", descriptor, s->TxAddr[1],
1958         s->TxAddr[0], cplus_tx_ring_desc);
1959 
1960     uint32_t val, txdw0,txdw1,txbufLO,txbufHI;
1961 
1962     pci_dma_read(&s->dev, cplus_tx_ring_desc,    (uint8_t *)&val, 4);
1963     txdw0 = le32_to_cpu(val);
1964     pci_dma_read(&s->dev, cplus_tx_ring_desc+4,  (uint8_t *)&val, 4);
1965     txdw1 = le32_to_cpu(val);
1966     pci_dma_read(&s->dev, cplus_tx_ring_desc+8,  (uint8_t *)&val, 4);
1967     txbufLO = le32_to_cpu(val);
1968     pci_dma_read(&s->dev, cplus_tx_ring_desc+12, (uint8_t *)&val, 4);
1969     txbufHI = le32_to_cpu(val);
1970 
1971     DPRINTF("+++ C+ mode TX descriptor %d %08x %08x %08x %08x\n", descriptor,
1972         txdw0, txdw1, txbufLO, txbufHI);
1973 
1974 /* w0 ownership flag */
1975 #define CP_TX_OWN (1<<31)
1976 /* w0 end of ring flag */
1977 #define CP_TX_EOR (1<<30)
1978 /* first segment of received packet flag */
1979 #define CP_TX_FS (1<<29)
1980 /* last segment of received packet flag */
1981 #define CP_TX_LS (1<<28)
1982 /* large send packet flag */
1983 #define CP_TX_LGSEN (1<<27)
1984 /* large send MSS mask, bits 16...25 */
1985 #define CP_TC_LGSEN_MSS_MASK ((1 << 12) - 1)
1986 
1987 /* IP checksum offload flag */
1988 #define CP_TX_IPCS (1<<18)
1989 /* UDP checksum offload flag */
1990 #define CP_TX_UDPCS (1<<17)
1991 /* TCP checksum offload flag */
1992 #define CP_TX_TCPCS (1<<16)
1993 
1994 /* w0 bits 0...15 : buffer size */
1995 #define CP_TX_BUFFER_SIZE (1<<16)
1996 #define CP_TX_BUFFER_SIZE_MASK (CP_TX_BUFFER_SIZE - 1)
1997 /* w1 add tag flag */
1998 #define CP_TX_TAGC (1<<17)
1999 /* w1 bits 0...15 : VLAN tag (big endian) */
2000 #define CP_TX_VLAN_TAG_MASK ((1<<16) - 1)
2001 /* w2 low  32bit of Rx buffer ptr */
2002 /* w3 high 32bit of Rx buffer ptr */
2003 
2004 /* set after transmission */
2005 /* FIFO underrun flag */
2006 #define CP_TX_STATUS_UNF (1<<25)
2007 /* transmit error summary flag, valid if set any of three below */
2008 #define CP_TX_STATUS_TES (1<<23)
2009 /* out-of-window collision flag */
2010 #define CP_TX_STATUS_OWC (1<<22)
2011 /* link failure flag */
2012 #define CP_TX_STATUS_LNKF (1<<21)
2013 /* excessive collisions flag */
2014 #define CP_TX_STATUS_EXC (1<<20)
2015 
2016     if (!(txdw0 & CP_TX_OWN))
2017     {
2018         DPRINTF("C+ Tx mode : descriptor %d is owned by host\n", descriptor);
2019         return 0 ;
2020     }
2021 
2022     DPRINTF("+++ C+ Tx mode : transmitting from descriptor %d\n", descriptor);
2023 
2024     if (txdw0 & CP_TX_FS)
2025     {
2026         DPRINTF("+++ C+ Tx mode : descriptor %d is first segment "
2027             "descriptor\n", descriptor);
2028 
2029         /* reset internal buffer offset */
2030         s->cplus_txbuffer_offset = 0;
2031     }
2032 
2033     int txsize = txdw0 & CP_TX_BUFFER_SIZE_MASK;
2034     dma_addr_t tx_addr = rtl8139_addr64(txbufLO, txbufHI);
2035 
2036     /* make sure we have enough space to assemble the packet */
2037     if (!s->cplus_txbuffer)
2038     {
2039         s->cplus_txbuffer_len = CP_TX_BUFFER_SIZE;
2040         s->cplus_txbuffer = g_malloc(s->cplus_txbuffer_len);
2041         s->cplus_txbuffer_offset = 0;
2042 
2043         DPRINTF("+++ C+ mode transmission buffer allocated space %d\n",
2044             s->cplus_txbuffer_len);
2045     }
2046 
2047     if (s->cplus_txbuffer_offset + txsize >= s->cplus_txbuffer_len)
2048     {
2049         /* The spec didn't tell the maximum size, stick to CP_TX_BUFFER_SIZE */
2050         txsize = s->cplus_txbuffer_len - s->cplus_txbuffer_offset;
2051         DPRINTF("+++ C+ mode transmission buffer overrun, truncated descriptor"
2052                 "length to %d\n", txsize);
2053     }
2054 
2055     if (!s->cplus_txbuffer)
2056     {
2057         /* out of memory */
2058 
2059         DPRINTF("+++ C+ mode transmiter failed to reallocate %d bytes\n",
2060             s->cplus_txbuffer_len);
2061 
2062         /* update tally counter */
2063         ++s->tally_counters.TxERR;
2064         ++s->tally_counters.TxAbt;
2065 
2066         return 0;
2067     }
2068 
2069     /* append more data to the packet */
2070 
2071     DPRINTF("+++ C+ mode transmit reading %d bytes from host memory at "
2072             DMA_ADDR_FMT" to offset %d\n", txsize, tx_addr,
2073             s->cplus_txbuffer_offset);
2074 
2075     pci_dma_read(&s->dev, tx_addr,
2076                  s->cplus_txbuffer + s->cplus_txbuffer_offset, txsize);
2077     s->cplus_txbuffer_offset += txsize;
2078 
2079     /* seek to next Rx descriptor */
2080     if (txdw0 & CP_TX_EOR)
2081     {
2082         s->currCPlusTxDesc = 0;
2083     }
2084     else
2085     {
2086         ++s->currCPlusTxDesc;
2087         if (s->currCPlusTxDesc >= 64)
2088             s->currCPlusTxDesc = 0;
2089     }
2090 
2091     /* transfer ownership to target */
2092     txdw0 &= ~CP_RX_OWN;
2093 
2094     /* reset error indicator bits */
2095     txdw0 &= ~CP_TX_STATUS_UNF;
2096     txdw0 &= ~CP_TX_STATUS_TES;
2097     txdw0 &= ~CP_TX_STATUS_OWC;
2098     txdw0 &= ~CP_TX_STATUS_LNKF;
2099     txdw0 &= ~CP_TX_STATUS_EXC;
2100 
2101     /* update ring data */
2102     val = cpu_to_le32(txdw0);
2103     pci_dma_write(&s->dev, cplus_tx_ring_desc, (uint8_t *)&val, 4);
2104 
2105     /* Now decide if descriptor being processed is holding the last segment of packet */
2106     if (txdw0 & CP_TX_LS)
2107     {
2108         uint8_t dot1q_buffer_space[VLAN_HLEN];
2109         uint16_t *dot1q_buffer;
2110 
2111         DPRINTF("+++ C+ Tx mode : descriptor %d is last segment descriptor\n",
2112             descriptor);
2113 
2114         /* can transfer fully assembled packet */
2115 
2116         uint8_t *saved_buffer  = s->cplus_txbuffer;
2117         int      saved_size    = s->cplus_txbuffer_offset;
2118         int      saved_buffer_len = s->cplus_txbuffer_len;
2119 
2120         /* create vlan tag */
2121         if (txdw1 & CP_TX_TAGC) {
2122             /* the vlan tag is in BE byte order in the descriptor
2123              * BE + le_to_cpu() + ~swap()~ = cpu */
2124             DPRINTF("+++ C+ Tx mode : inserting vlan tag with ""tci: %u\n",
2125                 bswap16(txdw1 & CP_TX_VLAN_TAG_MASK));
2126 
2127             dot1q_buffer = (uint16_t *) dot1q_buffer_space;
2128             dot1q_buffer[0] = cpu_to_be16(ETH_P_8021Q);
2129             /* BE + le_to_cpu() + ~cpu_to_le()~ = BE */
2130             dot1q_buffer[1] = cpu_to_le16(txdw1 & CP_TX_VLAN_TAG_MASK);
2131         } else {
2132             dot1q_buffer = NULL;
2133         }
2134 
2135         /* reset the card space to protect from recursive call */
2136         s->cplus_txbuffer = NULL;
2137         s->cplus_txbuffer_offset = 0;
2138         s->cplus_txbuffer_len = 0;
2139 
2140         if (txdw0 & (CP_TX_IPCS | CP_TX_UDPCS | CP_TX_TCPCS | CP_TX_LGSEN))
2141         {
2142             DPRINTF("+++ C+ mode offloaded task checksum\n");
2143 
2144             /* ip packet header */
2145             ip_header *ip = NULL;
2146             int hlen = 0;
2147             uint8_t  ip_protocol = 0;
2148             uint16_t ip_data_len = 0;
2149 
2150             uint8_t *eth_payload_data = NULL;
2151             size_t   eth_payload_len  = 0;
2152 
2153             int proto = be16_to_cpu(*(uint16_t *)(saved_buffer + 12));
2154             if (proto == ETH_P_IP)
2155             {
2156                 DPRINTF("+++ C+ mode has IP packet\n");
2157 
2158                 /* not aligned */
2159                 eth_payload_data = saved_buffer + ETH_HLEN;
2160                 eth_payload_len  = saved_size   - ETH_HLEN;
2161 
2162                 ip = (ip_header*)eth_payload_data;
2163 
2164                 if (IP_HEADER_VERSION(ip) != IP_HEADER_VERSION_4) {
2165                     DPRINTF("+++ C+ mode packet has bad IP version %d "
2166                         "expected %d\n", IP_HEADER_VERSION(ip),
2167                         IP_HEADER_VERSION_4);
2168                     ip = NULL;
2169                 } else {
2170                     hlen = IP_HEADER_LENGTH(ip);
2171                     ip_protocol = ip->ip_p;
2172                     ip_data_len = be16_to_cpu(ip->ip_len) - hlen;
2173                 }
2174             }
2175 
2176             if (ip)
2177             {
2178                 if (txdw0 & CP_TX_IPCS)
2179                 {
2180                     DPRINTF("+++ C+ mode need IP checksum\n");
2181 
2182                     if (hlen<sizeof(ip_header) || hlen>eth_payload_len) {/* min header length */
2183                         /* bad packet header len */
2184                         /* or packet too short */
2185                     }
2186                     else
2187                     {
2188                         ip->ip_sum = 0;
2189                         ip->ip_sum = ip_checksum(ip, hlen);
2190                         DPRINTF("+++ C+ mode IP header len=%d checksum=%04x\n",
2191                             hlen, ip->ip_sum);
2192                     }
2193                 }
2194 
2195                 if ((txdw0 & CP_TX_LGSEN) && ip_protocol == IP_PROTO_TCP)
2196                 {
2197                     int large_send_mss = (txdw0 >> 16) & CP_TC_LGSEN_MSS_MASK;
2198 
2199                     DPRINTF("+++ C+ mode offloaded task TSO MTU=%d IP data %d "
2200                         "frame data %d specified MSS=%d\n", ETH_MTU,
2201                         ip_data_len, saved_size - ETH_HLEN, large_send_mss);
2202 
2203                     int tcp_send_offset = 0;
2204                     int send_count = 0;
2205 
2206                     /* maximum IP header length is 60 bytes */
2207                     uint8_t saved_ip_header[60];
2208 
2209                     /* save IP header template; data area is used in tcp checksum calculation */
2210                     memcpy(saved_ip_header, eth_payload_data, hlen);
2211 
2212                     /* a placeholder for checksum calculation routine in tcp case */
2213                     uint8_t *data_to_checksum     = eth_payload_data + hlen - 12;
2214                     //                    size_t   data_to_checksum_len = eth_payload_len  - hlen + 12;
2215 
2216                     /* pointer to TCP header */
2217                     tcp_header *p_tcp_hdr = (tcp_header*)(eth_payload_data + hlen);
2218 
2219                     int tcp_hlen = TCP_HEADER_DATA_OFFSET(p_tcp_hdr);
2220 
2221                     /* ETH_MTU = ip header len + tcp header len + payload */
2222                     int tcp_data_len = ip_data_len - tcp_hlen;
2223                     int tcp_chunk_size = ETH_MTU - hlen - tcp_hlen;
2224 
2225                     DPRINTF("+++ C+ mode TSO IP data len %d TCP hlen %d TCP "
2226                         "data len %d TCP chunk size %d\n", ip_data_len,
2227                         tcp_hlen, tcp_data_len, tcp_chunk_size);
2228 
2229                     /* note the cycle below overwrites IP header data,
2230                        but restores it from saved_ip_header before sending packet */
2231 
2232                     int is_last_frame = 0;
2233 
2234                     for (tcp_send_offset = 0; tcp_send_offset < tcp_data_len; tcp_send_offset += tcp_chunk_size)
2235                     {
2236                         uint16_t chunk_size = tcp_chunk_size;
2237 
2238                         /* check if this is the last frame */
2239                         if (tcp_send_offset + tcp_chunk_size >= tcp_data_len)
2240                         {
2241                             is_last_frame = 1;
2242                             chunk_size = tcp_data_len - tcp_send_offset;
2243                         }
2244 
2245                         DPRINTF("+++ C+ mode TSO TCP seqno %08x\n",
2246                             be32_to_cpu(p_tcp_hdr->th_seq));
2247 
2248                         /* add 4 TCP pseudoheader fields */
2249                         /* copy IP source and destination fields */
2250                         memcpy(data_to_checksum, saved_ip_header + 12, 8);
2251 
2252                         DPRINTF("+++ C+ mode TSO calculating TCP checksum for "
2253                             "packet with %d bytes data\n", tcp_hlen +
2254                             chunk_size);
2255 
2256                         if (tcp_send_offset)
2257                         {
2258                             memcpy((uint8_t*)p_tcp_hdr + tcp_hlen, (uint8_t*)p_tcp_hdr + tcp_hlen + tcp_send_offset, chunk_size);
2259                         }
2260 
2261                         /* keep PUSH and FIN flags only for the last frame */
2262                         if (!is_last_frame)
2263                         {
2264                             TCP_HEADER_CLEAR_FLAGS(p_tcp_hdr, TCP_FLAG_PUSH|TCP_FLAG_FIN);
2265                         }
2266 
2267                         /* recalculate TCP checksum */
2268                         ip_pseudo_header *p_tcpip_hdr = (ip_pseudo_header *)data_to_checksum;
2269                         p_tcpip_hdr->zeros      = 0;
2270                         p_tcpip_hdr->ip_proto   = IP_PROTO_TCP;
2271                         p_tcpip_hdr->ip_payload = cpu_to_be16(tcp_hlen + chunk_size);
2272 
2273                         p_tcp_hdr->th_sum = 0;
2274 
2275                         int tcp_checksum = ip_checksum(data_to_checksum, tcp_hlen + chunk_size + 12);
2276                         DPRINTF("+++ C+ mode TSO TCP checksum %04x\n",
2277                             tcp_checksum);
2278 
2279                         p_tcp_hdr->th_sum = tcp_checksum;
2280 
2281                         /* restore IP header */
2282                         memcpy(eth_payload_data, saved_ip_header, hlen);
2283 
2284                         /* set IP data length and recalculate IP checksum */
2285                         ip->ip_len = cpu_to_be16(hlen + tcp_hlen + chunk_size);
2286 
2287                         /* increment IP id for subsequent frames */
2288                         ip->ip_id = cpu_to_be16(tcp_send_offset/tcp_chunk_size + be16_to_cpu(ip->ip_id));
2289 
2290                         ip->ip_sum = 0;
2291                         ip->ip_sum = ip_checksum(eth_payload_data, hlen);
2292                         DPRINTF("+++ C+ mode TSO IP header len=%d "
2293                             "checksum=%04x\n", hlen, ip->ip_sum);
2294 
2295                         int tso_send_size = ETH_HLEN + hlen + tcp_hlen + chunk_size;
2296                         DPRINTF("+++ C+ mode TSO transferring packet size "
2297                             "%d\n", tso_send_size);
2298                         rtl8139_transfer_frame(s, saved_buffer, tso_send_size,
2299                             0, (uint8_t *) dot1q_buffer);
2300 
2301                         /* add transferred count to TCP sequence number */
2302                         p_tcp_hdr->th_seq = cpu_to_be32(chunk_size + be32_to_cpu(p_tcp_hdr->th_seq));
2303                         ++send_count;
2304                     }
2305 
2306                     /* Stop sending this frame */
2307                     saved_size = 0;
2308                 }
2309                 else if (txdw0 & (CP_TX_TCPCS|CP_TX_UDPCS))
2310                 {
2311                     DPRINTF("+++ C+ mode need TCP or UDP checksum\n");
2312 
2313                     /* maximum IP header length is 60 bytes */
2314                     uint8_t saved_ip_header[60];
2315                     memcpy(saved_ip_header, eth_payload_data, hlen);
2316 
2317                     uint8_t *data_to_checksum     = eth_payload_data + hlen - 12;
2318                     //                    size_t   data_to_checksum_len = eth_payload_len  - hlen + 12;
2319 
2320                     /* add 4 TCP pseudoheader fields */
2321                     /* copy IP source and destination fields */
2322                     memcpy(data_to_checksum, saved_ip_header + 12, 8);
2323 
2324                     if ((txdw0 & CP_TX_TCPCS) && ip_protocol == IP_PROTO_TCP)
2325                     {
2326                         DPRINTF("+++ C+ mode calculating TCP checksum for "
2327                             "packet with %d bytes data\n", ip_data_len);
2328 
2329                         ip_pseudo_header *p_tcpip_hdr = (ip_pseudo_header *)data_to_checksum;
2330                         p_tcpip_hdr->zeros      = 0;
2331                         p_tcpip_hdr->ip_proto   = IP_PROTO_TCP;
2332                         p_tcpip_hdr->ip_payload = cpu_to_be16(ip_data_len);
2333 
2334                         tcp_header* p_tcp_hdr = (tcp_header *) (data_to_checksum+12);
2335 
2336                         p_tcp_hdr->th_sum = 0;
2337 
2338                         int tcp_checksum = ip_checksum(data_to_checksum, ip_data_len + 12);
2339                         DPRINTF("+++ C+ mode TCP checksum %04x\n",
2340                             tcp_checksum);
2341 
2342                         p_tcp_hdr->th_sum = tcp_checksum;
2343                     }
2344                     else if ((txdw0 & CP_TX_UDPCS) && ip_protocol == IP_PROTO_UDP)
2345                     {
2346                         DPRINTF("+++ C+ mode calculating UDP checksum for "
2347                             "packet with %d bytes data\n", ip_data_len);
2348 
2349                         ip_pseudo_header *p_udpip_hdr = (ip_pseudo_header *)data_to_checksum;
2350                         p_udpip_hdr->zeros      = 0;
2351                         p_udpip_hdr->ip_proto   = IP_PROTO_UDP;
2352                         p_udpip_hdr->ip_payload = cpu_to_be16(ip_data_len);
2353 
2354                         udp_header *p_udp_hdr = (udp_header *) (data_to_checksum+12);
2355 
2356                         p_udp_hdr->uh_sum = 0;
2357 
2358                         int udp_checksum = ip_checksum(data_to_checksum, ip_data_len + 12);
2359                         DPRINTF("+++ C+ mode UDP checksum %04x\n",
2360                             udp_checksum);
2361 
2362                         p_udp_hdr->uh_sum = udp_checksum;
2363                     }
2364 
2365                     /* restore IP header */
2366                     memcpy(eth_payload_data, saved_ip_header, hlen);
2367                 }
2368             }
2369         }
2370 
2371         /* update tally counter */
2372         ++s->tally_counters.TxOk;
2373 
2374         DPRINTF("+++ C+ mode transmitting %d bytes packet\n", saved_size);
2375 
2376         rtl8139_transfer_frame(s, saved_buffer, saved_size, 1,
2377             (uint8_t *) dot1q_buffer);
2378 
2379         /* restore card space if there was no recursion and reset offset */
2380         if (!s->cplus_txbuffer)
2381         {
2382             s->cplus_txbuffer        = saved_buffer;
2383             s->cplus_txbuffer_len    = saved_buffer_len;
2384             s->cplus_txbuffer_offset = 0;
2385         }
2386         else
2387         {
2388             g_free(saved_buffer);
2389         }
2390     }
2391     else
2392     {
2393         DPRINTF("+++ C+ mode transmission continue to next descriptor\n");
2394     }
2395 
2396     return 1;
2397 }
2398 
2399 static void rtl8139_cplus_transmit(RTL8139State *s)
2400 {
2401     int txcount = 0;
2402 
2403     while (rtl8139_cplus_transmit_one(s))
2404     {
2405         ++txcount;
2406     }
2407 
2408     /* Mark transfer completed */
2409     if (!txcount)
2410     {
2411         DPRINTF("C+ mode : transmitter queue stalled, current TxDesc = %d\n",
2412             s->currCPlusTxDesc);
2413     }
2414     else
2415     {
2416         /* update interrupt status */
2417         s->IntrStatus |= TxOK;
2418         rtl8139_update_irq(s);
2419     }
2420 }
2421 
2422 static void rtl8139_transmit(RTL8139State *s)
2423 {
2424     int descriptor = s->currTxDesc, txcount = 0;
2425 
2426     /*while*/
2427     if (rtl8139_transmit_one(s, descriptor))
2428     {
2429         ++s->currTxDesc;
2430         s->currTxDesc %= 4;
2431         ++txcount;
2432     }
2433 
2434     /* Mark transfer completed */
2435     if (!txcount)
2436     {
2437         DPRINTF("transmitter queue stalled, current TxDesc = %d\n",
2438             s->currTxDesc);
2439     }
2440 }
2441 
2442 static void rtl8139_TxStatus_write(RTL8139State *s, uint32_t txRegOffset, uint32_t val)
2443 {
2444 
2445     int descriptor = txRegOffset/4;
2446 
2447     /* handle C+ transmit mode register configuration */
2448 
2449     if (s->cplus_enabled)
2450     {
2451         DPRINTF("RTL8139C+ DTCCR write offset=0x%x val=0x%08x "
2452             "descriptor=%d\n", txRegOffset, val, descriptor);
2453 
2454         /* handle Dump Tally Counters command */
2455         s->TxStatus[descriptor] = val;
2456 
2457         if (descriptor == 0 && (val & 0x8))
2458         {
2459             hwaddr tc_addr = rtl8139_addr64(s->TxStatus[0] & ~0x3f, s->TxStatus[1]);
2460 
2461             /* dump tally counters to specified memory location */
2462             RTL8139TallyCounters_dma_write(s, tc_addr);
2463 
2464             /* mark dump completed */
2465             s->TxStatus[0] &= ~0x8;
2466         }
2467 
2468         return;
2469     }
2470 
2471     DPRINTF("TxStatus write offset=0x%x val=0x%08x descriptor=%d\n",
2472         txRegOffset, val, descriptor);
2473 
2474     /* mask only reserved bits */
2475     val &= ~0xff00c000; /* these bits are reset on write */
2476     val = SET_MASKED(val, 0x00c00000, s->TxStatus[descriptor]);
2477 
2478     s->TxStatus[descriptor] = val;
2479 
2480     /* attempt to start transmission */
2481     rtl8139_transmit(s);
2482 }
2483 
2484 static uint32_t rtl8139_TxStatus_TxAddr_read(RTL8139State *s, uint32_t regs[],
2485                                              uint32_t base, uint8_t addr,
2486                                              int size)
2487 {
2488     uint32_t reg = (addr - base) / 4;
2489     uint32_t offset = addr & 0x3;
2490     uint32_t ret = 0;
2491 
2492     if (addr & (size - 1)) {
2493         DPRINTF("not implemented read for TxStatus/TxAddr "
2494                 "addr=0x%x size=0x%x\n", addr, size);
2495         return ret;
2496     }
2497 
2498     switch (size) {
2499     case 1: /* fall through */
2500     case 2: /* fall through */
2501     case 4:
2502         ret = (regs[reg] >> offset * 8) & (((uint64_t)1 << (size * 8)) - 1);
2503         DPRINTF("TxStatus/TxAddr[%d] read addr=0x%x size=0x%x val=0x%08x\n",
2504                 reg, addr, size, ret);
2505         break;
2506     default:
2507         DPRINTF("unsupported size 0x%x of TxStatus/TxAddr reading\n", size);
2508         break;
2509     }
2510 
2511     return ret;
2512 }
2513 
2514 static uint16_t rtl8139_TSAD_read(RTL8139State *s)
2515 {
2516     uint16_t ret = 0;
2517 
2518     /* Simulate TSAD, it is read only anyway */
2519 
2520     ret = ((s->TxStatus[3] & TxStatOK  )?TSAD_TOK3:0)
2521          |((s->TxStatus[2] & TxStatOK  )?TSAD_TOK2:0)
2522          |((s->TxStatus[1] & TxStatOK  )?TSAD_TOK1:0)
2523          |((s->TxStatus[0] & TxStatOK  )?TSAD_TOK0:0)
2524 
2525          |((s->TxStatus[3] & TxUnderrun)?TSAD_TUN3:0)
2526          |((s->TxStatus[2] & TxUnderrun)?TSAD_TUN2:0)
2527          |((s->TxStatus[1] & TxUnderrun)?TSAD_TUN1:0)
2528          |((s->TxStatus[0] & TxUnderrun)?TSAD_TUN0:0)
2529 
2530          |((s->TxStatus[3] & TxAborted )?TSAD_TABT3:0)
2531          |((s->TxStatus[2] & TxAborted )?TSAD_TABT2:0)
2532          |((s->TxStatus[1] & TxAborted )?TSAD_TABT1:0)
2533          |((s->TxStatus[0] & TxAborted )?TSAD_TABT0:0)
2534 
2535          |((s->TxStatus[3] & TxHostOwns )?TSAD_OWN3:0)
2536          |((s->TxStatus[2] & TxHostOwns )?TSAD_OWN2:0)
2537          |((s->TxStatus[1] & TxHostOwns )?TSAD_OWN1:0)
2538          |((s->TxStatus[0] & TxHostOwns )?TSAD_OWN0:0) ;
2539 
2540 
2541     DPRINTF("TSAD read val=0x%04x\n", ret);
2542 
2543     return ret;
2544 }
2545 
2546 static uint16_t rtl8139_CSCR_read(RTL8139State *s)
2547 {
2548     uint16_t ret = s->CSCR;
2549 
2550     DPRINTF("CSCR read val=0x%04x\n", ret);
2551 
2552     return ret;
2553 }
2554 
2555 static void rtl8139_TxAddr_write(RTL8139State *s, uint32_t txAddrOffset, uint32_t val)
2556 {
2557     DPRINTF("TxAddr write offset=0x%x val=0x%08x\n", txAddrOffset, val);
2558 
2559     s->TxAddr[txAddrOffset/4] = val;
2560 }
2561 
2562 static uint32_t rtl8139_TxAddr_read(RTL8139State *s, uint32_t txAddrOffset)
2563 {
2564     uint32_t ret = s->TxAddr[txAddrOffset/4];
2565 
2566     DPRINTF("TxAddr read offset=0x%x val=0x%08x\n", txAddrOffset, ret);
2567 
2568     return ret;
2569 }
2570 
2571 static void rtl8139_RxBufPtr_write(RTL8139State *s, uint32_t val)
2572 {
2573     DPRINTF("RxBufPtr write val=0x%04x\n", val);
2574 
2575     /* this value is off by 16 */
2576     s->RxBufPtr = MOD2(val + 0x10, s->RxBufferSize);
2577 
2578     /* more buffer space may be available so try to receive */
2579     qemu_flush_queued_packets(qemu_get_queue(s->nic));
2580 
2581     DPRINTF(" CAPR write: rx buffer length %d head 0x%04x read 0x%04x\n",
2582         s->RxBufferSize, s->RxBufAddr, s->RxBufPtr);
2583 }
2584 
2585 static uint32_t rtl8139_RxBufPtr_read(RTL8139State *s)
2586 {
2587     /* this value is off by 16 */
2588     uint32_t ret = s->RxBufPtr - 0x10;
2589 
2590     DPRINTF("RxBufPtr read val=0x%04x\n", ret);
2591 
2592     return ret;
2593 }
2594 
2595 static uint32_t rtl8139_RxBufAddr_read(RTL8139State *s)
2596 {
2597     /* this value is NOT off by 16 */
2598     uint32_t ret = s->RxBufAddr;
2599 
2600     DPRINTF("RxBufAddr read val=0x%04x\n", ret);
2601 
2602     return ret;
2603 }
2604 
2605 static void rtl8139_RxBuf_write(RTL8139State *s, uint32_t val)
2606 {
2607     DPRINTF("RxBuf write val=0x%08x\n", val);
2608 
2609     s->RxBuf = val;
2610 
2611     /* may need to reset rxring here */
2612 }
2613 
2614 static uint32_t rtl8139_RxBuf_read(RTL8139State *s)
2615 {
2616     uint32_t ret = s->RxBuf;
2617 
2618     DPRINTF("RxBuf read val=0x%08x\n", ret);
2619 
2620     return ret;
2621 }
2622 
2623 static void rtl8139_IntrMask_write(RTL8139State *s, uint32_t val)
2624 {
2625     DPRINTF("IntrMask write(w) val=0x%04x\n", val);
2626 
2627     /* mask unwritable bits */
2628     val = SET_MASKED(val, 0x1e00, s->IntrMask);
2629 
2630     s->IntrMask = val;
2631 
2632     rtl8139_set_next_tctr_time(s, qemu_get_clock_ns(vm_clock));
2633     rtl8139_update_irq(s);
2634 
2635 }
2636 
2637 static uint32_t rtl8139_IntrMask_read(RTL8139State *s)
2638 {
2639     uint32_t ret = s->IntrMask;
2640 
2641     DPRINTF("IntrMask read(w) val=0x%04x\n", ret);
2642 
2643     return ret;
2644 }
2645 
2646 static void rtl8139_IntrStatus_write(RTL8139State *s, uint32_t val)
2647 {
2648     DPRINTF("IntrStatus write(w) val=0x%04x\n", val);
2649 
2650 #if 0
2651 
2652     /* writing to ISR has no effect */
2653 
2654     return;
2655 
2656 #else
2657     uint16_t newStatus = s->IntrStatus & ~val;
2658 
2659     /* mask unwritable bits */
2660     newStatus = SET_MASKED(newStatus, 0x1e00, s->IntrStatus);
2661 
2662     /* writing 1 to interrupt status register bit clears it */
2663     s->IntrStatus = 0;
2664     rtl8139_update_irq(s);
2665 
2666     s->IntrStatus = newStatus;
2667     /*
2668      * Computing if we miss an interrupt here is not that correct but
2669      * considered that we should have had already an interrupt
2670      * and probably emulated is slower is better to assume this resetting was
2671      * done before testing on previous rtl8139_update_irq lead to IRQ losing
2672      */
2673     rtl8139_set_next_tctr_time(s, qemu_get_clock_ns(vm_clock));
2674     rtl8139_update_irq(s);
2675 
2676 #endif
2677 }
2678 
2679 static uint32_t rtl8139_IntrStatus_read(RTL8139State *s)
2680 {
2681     rtl8139_set_next_tctr_time(s, qemu_get_clock_ns(vm_clock));
2682 
2683     uint32_t ret = s->IntrStatus;
2684 
2685     DPRINTF("IntrStatus read(w) val=0x%04x\n", ret);
2686 
2687 #if 0
2688 
2689     /* reading ISR clears all interrupts */
2690     s->IntrStatus = 0;
2691 
2692     rtl8139_update_irq(s);
2693 
2694 #endif
2695 
2696     return ret;
2697 }
2698 
2699 static void rtl8139_MultiIntr_write(RTL8139State *s, uint32_t val)
2700 {
2701     DPRINTF("MultiIntr write(w) val=0x%04x\n", val);
2702 
2703     /* mask unwritable bits */
2704     val = SET_MASKED(val, 0xf000, s->MultiIntr);
2705 
2706     s->MultiIntr = val;
2707 }
2708 
2709 static uint32_t rtl8139_MultiIntr_read(RTL8139State *s)
2710 {
2711     uint32_t ret = s->MultiIntr;
2712 
2713     DPRINTF("MultiIntr read(w) val=0x%04x\n", ret);
2714 
2715     return ret;
2716 }
2717 
2718 static void rtl8139_io_writeb(void *opaque, uint8_t addr, uint32_t val)
2719 {
2720     RTL8139State *s = opaque;
2721 
2722     switch (addr)
2723     {
2724         case MAC0 ... MAC0+5:
2725             s->phys[addr - MAC0] = val;
2726             break;
2727         case MAC0+6 ... MAC0+7:
2728             /* reserved */
2729             break;
2730         case MAR0 ... MAR0+7:
2731             s->mult[addr - MAR0] = val;
2732             break;
2733         case ChipCmd:
2734             rtl8139_ChipCmd_write(s, val);
2735             break;
2736         case Cfg9346:
2737             rtl8139_Cfg9346_write(s, val);
2738             break;
2739         case TxConfig: /* windows driver sometimes writes using byte-lenth call */
2740             rtl8139_TxConfig_writeb(s, val);
2741             break;
2742         case Config0:
2743             rtl8139_Config0_write(s, val);
2744             break;
2745         case Config1:
2746             rtl8139_Config1_write(s, val);
2747             break;
2748         case Config3:
2749             rtl8139_Config3_write(s, val);
2750             break;
2751         case Config4:
2752             rtl8139_Config4_write(s, val);
2753             break;
2754         case Config5:
2755             rtl8139_Config5_write(s, val);
2756             break;
2757         case MediaStatus:
2758             /* ignore */
2759             DPRINTF("not implemented write(b) to MediaStatus val=0x%02x\n",
2760                 val);
2761             break;
2762 
2763         case HltClk:
2764             DPRINTF("HltClk write val=0x%08x\n", val);
2765             if (val == 'R')
2766             {
2767                 s->clock_enabled = 1;
2768             }
2769             else if (val == 'H')
2770             {
2771                 s->clock_enabled = 0;
2772             }
2773             break;
2774 
2775         case TxThresh:
2776             DPRINTF("C+ TxThresh write(b) val=0x%02x\n", val);
2777             s->TxThresh = val;
2778             break;
2779 
2780         case TxPoll:
2781             DPRINTF("C+ TxPoll write(b) val=0x%02x\n", val);
2782             if (val & (1 << 7))
2783             {
2784                 DPRINTF("C+ TxPoll high priority transmission (not "
2785                     "implemented)\n");
2786                 //rtl8139_cplus_transmit(s);
2787             }
2788             if (val & (1 << 6))
2789             {
2790                 DPRINTF("C+ TxPoll normal priority transmission\n");
2791                 rtl8139_cplus_transmit(s);
2792             }
2793 
2794             break;
2795 
2796         default:
2797             DPRINTF("not implemented write(b) addr=0x%x val=0x%02x\n", addr,
2798                 val);
2799             break;
2800     }
2801 }
2802 
2803 static void rtl8139_io_writew(void *opaque, uint8_t addr, uint32_t val)
2804 {
2805     RTL8139State *s = opaque;
2806 
2807     switch (addr)
2808     {
2809         case IntrMask:
2810             rtl8139_IntrMask_write(s, val);
2811             break;
2812 
2813         case IntrStatus:
2814             rtl8139_IntrStatus_write(s, val);
2815             break;
2816 
2817         case MultiIntr:
2818             rtl8139_MultiIntr_write(s, val);
2819             break;
2820 
2821         case RxBufPtr:
2822             rtl8139_RxBufPtr_write(s, val);
2823             break;
2824 
2825         case BasicModeCtrl:
2826             rtl8139_BasicModeCtrl_write(s, val);
2827             break;
2828         case BasicModeStatus:
2829             rtl8139_BasicModeStatus_write(s, val);
2830             break;
2831         case NWayAdvert:
2832             DPRINTF("NWayAdvert write(w) val=0x%04x\n", val);
2833             s->NWayAdvert = val;
2834             break;
2835         case NWayLPAR:
2836             DPRINTF("forbidden NWayLPAR write(w) val=0x%04x\n", val);
2837             break;
2838         case NWayExpansion:
2839             DPRINTF("NWayExpansion write(w) val=0x%04x\n", val);
2840             s->NWayExpansion = val;
2841             break;
2842 
2843         case CpCmd:
2844             rtl8139_CpCmd_write(s, val);
2845             break;
2846 
2847         case IntrMitigate:
2848             rtl8139_IntrMitigate_write(s, val);
2849             break;
2850 
2851         default:
2852             DPRINTF("ioport write(w) addr=0x%x val=0x%04x via write(b)\n",
2853                 addr, val);
2854 
2855             rtl8139_io_writeb(opaque, addr, val & 0xff);
2856             rtl8139_io_writeb(opaque, addr + 1, (val >> 8) & 0xff);
2857             break;
2858     }
2859 }
2860 
2861 static void rtl8139_set_next_tctr_time(RTL8139State *s, int64_t current_time)
2862 {
2863     int64_t pci_time, next_time;
2864     uint32_t low_pci;
2865 
2866     DPRINTF("entered rtl8139_set_next_tctr_time\n");
2867 
2868     if (s->TimerExpire && current_time >= s->TimerExpire) {
2869         s->IntrStatus |= PCSTimeout;
2870         rtl8139_update_irq(s);
2871     }
2872 
2873     /* Set QEMU timer only if needed that is
2874      * - TimerInt <> 0 (we have a timer)
2875      * - mask = 1 (we want an interrupt timer)
2876      * - irq = 0  (irq is not already active)
2877      * If any of above change we need to compute timer again
2878      * Also we must check if timer is passed without QEMU timer
2879      */
2880     s->TimerExpire = 0;
2881     if (!s->TimerInt) {
2882         return;
2883     }
2884 
2885     pci_time = muldiv64(current_time - s->TCTR_base, PCI_FREQUENCY,
2886                                 get_ticks_per_sec());
2887     low_pci = pci_time & 0xffffffff;
2888     pci_time = pci_time - low_pci + s->TimerInt;
2889     if (low_pci >= s->TimerInt) {
2890         pci_time += 0x100000000LL;
2891     }
2892     next_time = s->TCTR_base + muldiv64(pci_time, get_ticks_per_sec(),
2893                                                 PCI_FREQUENCY);
2894     s->TimerExpire = next_time;
2895 
2896     if ((s->IntrMask & PCSTimeout) != 0 && (s->IntrStatus & PCSTimeout) == 0) {
2897         qemu_mod_timer(s->timer, next_time);
2898     }
2899 }
2900 
2901 static void rtl8139_io_writel(void *opaque, uint8_t addr, uint32_t val)
2902 {
2903     RTL8139State *s = opaque;
2904 
2905     switch (addr)
2906     {
2907         case RxMissed:
2908             DPRINTF("RxMissed clearing on write\n");
2909             s->RxMissed = 0;
2910             break;
2911 
2912         case TxConfig:
2913             rtl8139_TxConfig_write(s, val);
2914             break;
2915 
2916         case RxConfig:
2917             rtl8139_RxConfig_write(s, val);
2918             break;
2919 
2920         case TxStatus0 ... TxStatus0+4*4-1:
2921             rtl8139_TxStatus_write(s, addr-TxStatus0, val);
2922             break;
2923 
2924         case TxAddr0 ... TxAddr0+4*4-1:
2925             rtl8139_TxAddr_write(s, addr-TxAddr0, val);
2926             break;
2927 
2928         case RxBuf:
2929             rtl8139_RxBuf_write(s, val);
2930             break;
2931 
2932         case RxRingAddrLO:
2933             DPRINTF("C+ RxRing low bits write val=0x%08x\n", val);
2934             s->RxRingAddrLO = val;
2935             break;
2936 
2937         case RxRingAddrHI:
2938             DPRINTF("C+ RxRing high bits write val=0x%08x\n", val);
2939             s->RxRingAddrHI = val;
2940             break;
2941 
2942         case Timer:
2943             DPRINTF("TCTR Timer reset on write\n");
2944             s->TCTR_base = qemu_get_clock_ns(vm_clock);
2945             rtl8139_set_next_tctr_time(s, s->TCTR_base);
2946             break;
2947 
2948         case FlashReg:
2949             DPRINTF("FlashReg TimerInt write val=0x%08x\n", val);
2950             if (s->TimerInt != val) {
2951                 s->TimerInt = val;
2952                 rtl8139_set_next_tctr_time(s, qemu_get_clock_ns(vm_clock));
2953             }
2954             break;
2955 
2956         default:
2957             DPRINTF("ioport write(l) addr=0x%x val=0x%08x via write(b)\n",
2958                 addr, val);
2959             rtl8139_io_writeb(opaque, addr, val & 0xff);
2960             rtl8139_io_writeb(opaque, addr + 1, (val >> 8) & 0xff);
2961             rtl8139_io_writeb(opaque, addr + 2, (val >> 16) & 0xff);
2962             rtl8139_io_writeb(opaque, addr + 3, (val >> 24) & 0xff);
2963             break;
2964     }
2965 }
2966 
2967 static uint32_t rtl8139_io_readb(void *opaque, uint8_t addr)
2968 {
2969     RTL8139State *s = opaque;
2970     int ret;
2971 
2972     switch (addr)
2973     {
2974         case MAC0 ... MAC0+5:
2975             ret = s->phys[addr - MAC0];
2976             break;
2977         case MAC0+6 ... MAC0+7:
2978             ret = 0;
2979             break;
2980         case MAR0 ... MAR0+7:
2981             ret = s->mult[addr - MAR0];
2982             break;
2983         case TxStatus0 ... TxStatus0+4*4-1:
2984             ret = rtl8139_TxStatus_TxAddr_read(s, s->TxStatus, TxStatus0,
2985                                                addr, 1);
2986             break;
2987         case ChipCmd:
2988             ret = rtl8139_ChipCmd_read(s);
2989             break;
2990         case Cfg9346:
2991             ret = rtl8139_Cfg9346_read(s);
2992             break;
2993         case Config0:
2994             ret = rtl8139_Config0_read(s);
2995             break;
2996         case Config1:
2997             ret = rtl8139_Config1_read(s);
2998             break;
2999         case Config3:
3000             ret = rtl8139_Config3_read(s);
3001             break;
3002         case Config4:
3003             ret = rtl8139_Config4_read(s);
3004             break;
3005         case Config5:
3006             ret = rtl8139_Config5_read(s);
3007             break;
3008 
3009         case MediaStatus:
3010             /* The LinkDown bit of MediaStatus is inverse with link status */
3011             ret = 0xd0 | (~s->BasicModeStatus & 0x04);
3012             DPRINTF("MediaStatus read 0x%x\n", ret);
3013             break;
3014 
3015         case HltClk:
3016             ret = s->clock_enabled;
3017             DPRINTF("HltClk read 0x%x\n", ret);
3018             break;
3019 
3020         case PCIRevisionID:
3021             ret = RTL8139_PCI_REVID;
3022             DPRINTF("PCI Revision ID read 0x%x\n", ret);
3023             break;
3024 
3025         case TxThresh:
3026             ret = s->TxThresh;
3027             DPRINTF("C+ TxThresh read(b) val=0x%02x\n", ret);
3028             break;
3029 
3030         case 0x43: /* Part of TxConfig register. Windows driver tries to read it */
3031             ret = s->TxConfig >> 24;
3032             DPRINTF("RTL8139C TxConfig at 0x43 read(b) val=0x%02x\n", ret);
3033             break;
3034 
3035         default:
3036             DPRINTF("not implemented read(b) addr=0x%x\n", addr);
3037             ret = 0;
3038             break;
3039     }
3040 
3041     return ret;
3042 }
3043 
3044 static uint32_t rtl8139_io_readw(void *opaque, uint8_t addr)
3045 {
3046     RTL8139State *s = opaque;
3047     uint32_t ret;
3048 
3049     switch (addr)
3050     {
3051         case TxAddr0 ... TxAddr0+4*4-1:
3052             ret = rtl8139_TxStatus_TxAddr_read(s, s->TxAddr, TxAddr0, addr, 2);
3053             break;
3054         case IntrMask:
3055             ret = rtl8139_IntrMask_read(s);
3056             break;
3057 
3058         case IntrStatus:
3059             ret = rtl8139_IntrStatus_read(s);
3060             break;
3061 
3062         case MultiIntr:
3063             ret = rtl8139_MultiIntr_read(s);
3064             break;
3065 
3066         case RxBufPtr:
3067             ret = rtl8139_RxBufPtr_read(s);
3068             break;
3069 
3070         case RxBufAddr:
3071             ret = rtl8139_RxBufAddr_read(s);
3072             break;
3073 
3074         case BasicModeCtrl:
3075             ret = rtl8139_BasicModeCtrl_read(s);
3076             break;
3077         case BasicModeStatus:
3078             ret = rtl8139_BasicModeStatus_read(s);
3079             break;
3080         case NWayAdvert:
3081             ret = s->NWayAdvert;
3082             DPRINTF("NWayAdvert read(w) val=0x%04x\n", ret);
3083             break;
3084         case NWayLPAR:
3085             ret = s->NWayLPAR;
3086             DPRINTF("NWayLPAR read(w) val=0x%04x\n", ret);
3087             break;
3088         case NWayExpansion:
3089             ret = s->NWayExpansion;
3090             DPRINTF("NWayExpansion read(w) val=0x%04x\n", ret);
3091             break;
3092 
3093         case CpCmd:
3094             ret = rtl8139_CpCmd_read(s);
3095             break;
3096 
3097         case IntrMitigate:
3098             ret = rtl8139_IntrMitigate_read(s);
3099             break;
3100 
3101         case TxSummary:
3102             ret = rtl8139_TSAD_read(s);
3103             break;
3104 
3105         case CSCR:
3106             ret = rtl8139_CSCR_read(s);
3107             break;
3108 
3109         default:
3110             DPRINTF("ioport read(w) addr=0x%x via read(b)\n", addr);
3111 
3112             ret  = rtl8139_io_readb(opaque, addr);
3113             ret |= rtl8139_io_readb(opaque, addr + 1) << 8;
3114 
3115             DPRINTF("ioport read(w) addr=0x%x val=0x%04x\n", addr, ret);
3116             break;
3117     }
3118 
3119     return ret;
3120 }
3121 
3122 static uint32_t rtl8139_io_readl(void *opaque, uint8_t addr)
3123 {
3124     RTL8139State *s = opaque;
3125     uint32_t ret;
3126 
3127     switch (addr)
3128     {
3129         case RxMissed:
3130             ret = s->RxMissed;
3131 
3132             DPRINTF("RxMissed read val=0x%08x\n", ret);
3133             break;
3134 
3135         case TxConfig:
3136             ret = rtl8139_TxConfig_read(s);
3137             break;
3138 
3139         case RxConfig:
3140             ret = rtl8139_RxConfig_read(s);
3141             break;
3142 
3143         case TxStatus0 ... TxStatus0+4*4-1:
3144             ret = rtl8139_TxStatus_TxAddr_read(s, s->TxStatus, TxStatus0,
3145                                                addr, 4);
3146             break;
3147 
3148         case TxAddr0 ... TxAddr0+4*4-1:
3149             ret = rtl8139_TxAddr_read(s, addr-TxAddr0);
3150             break;
3151 
3152         case RxBuf:
3153             ret = rtl8139_RxBuf_read(s);
3154             break;
3155 
3156         case RxRingAddrLO:
3157             ret = s->RxRingAddrLO;
3158             DPRINTF("C+ RxRing low bits read val=0x%08x\n", ret);
3159             break;
3160 
3161         case RxRingAddrHI:
3162             ret = s->RxRingAddrHI;
3163             DPRINTF("C+ RxRing high bits read val=0x%08x\n", ret);
3164             break;
3165 
3166         case Timer:
3167             ret = muldiv64(qemu_get_clock_ns(vm_clock) - s->TCTR_base,
3168                            PCI_FREQUENCY, get_ticks_per_sec());
3169             DPRINTF("TCTR Timer read val=0x%08x\n", ret);
3170             break;
3171 
3172         case FlashReg:
3173             ret = s->TimerInt;
3174             DPRINTF("FlashReg TimerInt read val=0x%08x\n", ret);
3175             break;
3176 
3177         default:
3178             DPRINTF("ioport read(l) addr=0x%x via read(b)\n", addr);
3179 
3180             ret  = rtl8139_io_readb(opaque, addr);
3181             ret |= rtl8139_io_readb(opaque, addr + 1) << 8;
3182             ret |= rtl8139_io_readb(opaque, addr + 2) << 16;
3183             ret |= rtl8139_io_readb(opaque, addr + 3) << 24;
3184 
3185             DPRINTF("read(l) addr=0x%x val=%08x\n", addr, ret);
3186             break;
3187     }
3188 
3189     return ret;
3190 }
3191 
3192 /* */
3193 
3194 static void rtl8139_mmio_writeb(void *opaque, hwaddr addr, uint32_t val)
3195 {
3196     rtl8139_io_writeb(opaque, addr & 0xFF, val);
3197 }
3198 
3199 static void rtl8139_mmio_writew(void *opaque, hwaddr addr, uint32_t val)
3200 {
3201     rtl8139_io_writew(opaque, addr & 0xFF, val);
3202 }
3203 
3204 static void rtl8139_mmio_writel(void *opaque, hwaddr addr, uint32_t val)
3205 {
3206     rtl8139_io_writel(opaque, addr & 0xFF, val);
3207 }
3208 
3209 static uint32_t rtl8139_mmio_readb(void *opaque, hwaddr addr)
3210 {
3211     return rtl8139_io_readb(opaque, addr & 0xFF);
3212 }
3213 
3214 static uint32_t rtl8139_mmio_readw(void *opaque, hwaddr addr)
3215 {
3216     uint32_t val = rtl8139_io_readw(opaque, addr & 0xFF);
3217     return val;
3218 }
3219 
3220 static uint32_t rtl8139_mmio_readl(void *opaque, hwaddr addr)
3221 {
3222     uint32_t val = rtl8139_io_readl(opaque, addr & 0xFF);
3223     return val;
3224 }
3225 
3226 static int rtl8139_post_load(void *opaque, int version_id)
3227 {
3228     RTL8139State* s = opaque;
3229     rtl8139_set_next_tctr_time(s, qemu_get_clock_ns(vm_clock));
3230     if (version_id < 4) {
3231         s->cplus_enabled = s->CpCmd != 0;
3232     }
3233 
3234     /* nc.link_down can't be migrated, so infer link_down according
3235      * to link status bit in BasicModeStatus */
3236     qemu_get_queue(s->nic)->link_down = (s->BasicModeStatus & 0x04) == 0;
3237 
3238     return 0;
3239 }
3240 
3241 static bool rtl8139_hotplug_ready_needed(void *opaque)
3242 {
3243     return qdev_machine_modified();
3244 }
3245 
3246 static const VMStateDescription vmstate_rtl8139_hotplug_ready ={
3247     .name = "rtl8139/hotplug_ready",
3248     .version_id = 1,
3249     .minimum_version_id = 1,
3250     .minimum_version_id_old = 1,
3251     .fields      = (VMStateField []) {
3252         VMSTATE_END_OF_LIST()
3253     }
3254 };
3255 
3256 static void rtl8139_pre_save(void *opaque)
3257 {
3258     RTL8139State* s = opaque;
3259     int64_t current_time = qemu_get_clock_ns(vm_clock);
3260 
3261     /* set IntrStatus correctly */
3262     rtl8139_set_next_tctr_time(s, current_time);
3263     s->TCTR = muldiv64(current_time - s->TCTR_base, PCI_FREQUENCY,
3264                        get_ticks_per_sec());
3265     s->rtl8139_mmio_io_addr_dummy = 0;
3266 }
3267 
3268 static const VMStateDescription vmstate_rtl8139 = {
3269     .name = "rtl8139",
3270     .version_id = 4,
3271     .minimum_version_id = 3,
3272     .minimum_version_id_old = 3,
3273     .post_load = rtl8139_post_load,
3274     .pre_save  = rtl8139_pre_save,
3275     .fields      = (VMStateField []) {
3276         VMSTATE_PCI_DEVICE(dev, RTL8139State),
3277         VMSTATE_PARTIAL_BUFFER(phys, RTL8139State, 6),
3278         VMSTATE_BUFFER(mult, RTL8139State),
3279         VMSTATE_UINT32_ARRAY(TxStatus, RTL8139State, 4),
3280         VMSTATE_UINT32_ARRAY(TxAddr, RTL8139State, 4),
3281 
3282         VMSTATE_UINT32(RxBuf, RTL8139State),
3283         VMSTATE_UINT32(RxBufferSize, RTL8139State),
3284         VMSTATE_UINT32(RxBufPtr, RTL8139State),
3285         VMSTATE_UINT32(RxBufAddr, RTL8139State),
3286 
3287         VMSTATE_UINT16(IntrStatus, RTL8139State),
3288         VMSTATE_UINT16(IntrMask, RTL8139State),
3289 
3290         VMSTATE_UINT32(TxConfig, RTL8139State),
3291         VMSTATE_UINT32(RxConfig, RTL8139State),
3292         VMSTATE_UINT32(RxMissed, RTL8139State),
3293         VMSTATE_UINT16(CSCR, RTL8139State),
3294 
3295         VMSTATE_UINT8(Cfg9346, RTL8139State),
3296         VMSTATE_UINT8(Config0, RTL8139State),
3297         VMSTATE_UINT8(Config1, RTL8139State),
3298         VMSTATE_UINT8(Config3, RTL8139State),
3299         VMSTATE_UINT8(Config4, RTL8139State),
3300         VMSTATE_UINT8(Config5, RTL8139State),
3301 
3302         VMSTATE_UINT8(clock_enabled, RTL8139State),
3303         VMSTATE_UINT8(bChipCmdState, RTL8139State),
3304 
3305         VMSTATE_UINT16(MultiIntr, RTL8139State),
3306 
3307         VMSTATE_UINT16(BasicModeCtrl, RTL8139State),
3308         VMSTATE_UINT16(BasicModeStatus, RTL8139State),
3309         VMSTATE_UINT16(NWayAdvert, RTL8139State),
3310         VMSTATE_UINT16(NWayLPAR, RTL8139State),
3311         VMSTATE_UINT16(NWayExpansion, RTL8139State),
3312 
3313         VMSTATE_UINT16(CpCmd, RTL8139State),
3314         VMSTATE_UINT8(TxThresh, RTL8139State),
3315 
3316         VMSTATE_UNUSED(4),
3317         VMSTATE_MACADDR(conf.macaddr, RTL8139State),
3318         VMSTATE_INT32(rtl8139_mmio_io_addr_dummy, RTL8139State),
3319 
3320         VMSTATE_UINT32(currTxDesc, RTL8139State),
3321         VMSTATE_UINT32(currCPlusRxDesc, RTL8139State),
3322         VMSTATE_UINT32(currCPlusTxDesc, RTL8139State),
3323         VMSTATE_UINT32(RxRingAddrLO, RTL8139State),
3324         VMSTATE_UINT32(RxRingAddrHI, RTL8139State),
3325 
3326         VMSTATE_UINT16_ARRAY(eeprom.contents, RTL8139State, EEPROM_9346_SIZE),
3327         VMSTATE_INT32(eeprom.mode, RTL8139State),
3328         VMSTATE_UINT32(eeprom.tick, RTL8139State),
3329         VMSTATE_UINT8(eeprom.address, RTL8139State),
3330         VMSTATE_UINT16(eeprom.input, RTL8139State),
3331         VMSTATE_UINT16(eeprom.output, RTL8139State),
3332 
3333         VMSTATE_UINT8(eeprom.eecs, RTL8139State),
3334         VMSTATE_UINT8(eeprom.eesk, RTL8139State),
3335         VMSTATE_UINT8(eeprom.eedi, RTL8139State),
3336         VMSTATE_UINT8(eeprom.eedo, RTL8139State),
3337 
3338         VMSTATE_UINT32(TCTR, RTL8139State),
3339         VMSTATE_UINT32(TimerInt, RTL8139State),
3340         VMSTATE_INT64(TCTR_base, RTL8139State),
3341 
3342         VMSTATE_STRUCT(tally_counters, RTL8139State, 0,
3343                        vmstate_tally_counters, RTL8139TallyCounters),
3344 
3345         VMSTATE_UINT32_V(cplus_enabled, RTL8139State, 4),
3346         VMSTATE_END_OF_LIST()
3347     },
3348     .subsections = (VMStateSubsection []) {
3349         {
3350             .vmsd = &vmstate_rtl8139_hotplug_ready,
3351             .needed = rtl8139_hotplug_ready_needed,
3352         }, {
3353             /* empty */
3354         }
3355     }
3356 };
3357 
3358 /***********************************************************/
3359 /* PCI RTL8139 definitions */
3360 
3361 static void rtl8139_ioport_write(void *opaque, hwaddr addr,
3362                                  uint64_t val, unsigned size)
3363 {
3364     switch (size) {
3365     case 1:
3366         rtl8139_io_writeb(opaque, addr, val);
3367         break;
3368     case 2:
3369         rtl8139_io_writew(opaque, addr, val);
3370         break;
3371     case 4:
3372         rtl8139_io_writel(opaque, addr, val);
3373         break;
3374     }
3375 }
3376 
3377 static uint64_t rtl8139_ioport_read(void *opaque, hwaddr addr,
3378                                     unsigned size)
3379 {
3380     switch (size) {
3381     case 1:
3382         return rtl8139_io_readb(opaque, addr);
3383     case 2:
3384         return rtl8139_io_readw(opaque, addr);
3385     case 4:
3386         return rtl8139_io_readl(opaque, addr);
3387     }
3388 
3389     return -1;
3390 }
3391 
3392 static const MemoryRegionOps rtl8139_io_ops = {
3393     .read = rtl8139_ioport_read,
3394     .write = rtl8139_ioport_write,
3395     .impl = {
3396         .min_access_size = 1,
3397         .max_access_size = 4,
3398     },
3399     .endianness = DEVICE_LITTLE_ENDIAN,
3400 };
3401 
3402 static const MemoryRegionOps rtl8139_mmio_ops = {
3403     .old_mmio = {
3404         .read = {
3405             rtl8139_mmio_readb,
3406             rtl8139_mmio_readw,
3407             rtl8139_mmio_readl,
3408         },
3409         .write = {
3410             rtl8139_mmio_writeb,
3411             rtl8139_mmio_writew,
3412             rtl8139_mmio_writel,
3413         },
3414     },
3415     .endianness = DEVICE_LITTLE_ENDIAN,
3416 };
3417 
3418 static void rtl8139_timer(void *opaque)
3419 {
3420     RTL8139State *s = opaque;
3421 
3422     if (!s->clock_enabled)
3423     {
3424         DPRINTF(">>> timer: clock is not running\n");
3425         return;
3426     }
3427 
3428     s->IntrStatus |= PCSTimeout;
3429     rtl8139_update_irq(s);
3430     rtl8139_set_next_tctr_time(s, qemu_get_clock_ns(vm_clock));
3431 }
3432 
3433 static void rtl8139_cleanup(NetClientState *nc)
3434 {
3435     RTL8139State *s = qemu_get_nic_opaque(nc);
3436 
3437     s->nic = NULL;
3438 }
3439 
3440 static void pci_rtl8139_uninit(PCIDevice *dev)
3441 {
3442     RTL8139State *s = DO_UPCAST(RTL8139State, dev, dev);
3443 
3444     memory_region_destroy(&s->bar_io);
3445     memory_region_destroy(&s->bar_mem);
3446     if (s->cplus_txbuffer) {
3447         g_free(s->cplus_txbuffer);
3448         s->cplus_txbuffer = NULL;
3449     }
3450     qemu_del_timer(s->timer);
3451     qemu_free_timer(s->timer);
3452     qemu_del_nic(s->nic);
3453 }
3454 
3455 static void rtl8139_set_link_status(NetClientState *nc)
3456 {
3457     RTL8139State *s = qemu_get_nic_opaque(nc);
3458 
3459     if (nc->link_down) {
3460         s->BasicModeStatus &= ~0x04;
3461     } else {
3462         s->BasicModeStatus |= 0x04;
3463     }
3464 
3465     s->IntrStatus |= RxUnderrun;
3466     rtl8139_update_irq(s);
3467 }
3468 
3469 static NetClientInfo net_rtl8139_info = {
3470     .type = NET_CLIENT_OPTIONS_KIND_NIC,
3471     .size = sizeof(NICState),
3472     .can_receive = rtl8139_can_receive,
3473     .receive = rtl8139_receive,
3474     .cleanup = rtl8139_cleanup,
3475     .link_status_changed = rtl8139_set_link_status,
3476 };
3477 
3478 static int pci_rtl8139_init(PCIDevice *dev)
3479 {
3480     RTL8139State * s = DO_UPCAST(RTL8139State, dev, dev);
3481     uint8_t *pci_conf;
3482 
3483     pci_conf = s->dev.config;
3484     pci_conf[PCI_INTERRUPT_PIN] = 1;    /* interrupt pin A */
3485     /* TODO: start of capability list, but no capability
3486      * list bit in status register, and offset 0xdc seems unused. */
3487     pci_conf[PCI_CAPABILITY_LIST] = 0xdc;
3488 
3489     memory_region_init_io(&s->bar_io, OBJECT(s), &rtl8139_io_ops, s,
3490                           "rtl8139", 0x100);
3491     memory_region_init_io(&s->bar_mem, OBJECT(s), &rtl8139_mmio_ops, s,
3492                           "rtl8139", 0x100);
3493     pci_register_bar(&s->dev, 0, PCI_BASE_ADDRESS_SPACE_IO, &s->bar_io);
3494     pci_register_bar(&s->dev, 1, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->bar_mem);
3495 
3496     qemu_macaddr_default_if_unset(&s->conf.macaddr);
3497 
3498     /* prepare eeprom */
3499     s->eeprom.contents[0] = 0x8129;
3500 #if 1
3501     /* PCI vendor and device ID should be mirrored here */
3502     s->eeprom.contents[1] = PCI_VENDOR_ID_REALTEK;
3503     s->eeprom.contents[2] = PCI_DEVICE_ID_REALTEK_8139;
3504 #endif
3505     s->eeprom.contents[7] = s->conf.macaddr.a[0] | s->conf.macaddr.a[1] << 8;
3506     s->eeprom.contents[8] = s->conf.macaddr.a[2] | s->conf.macaddr.a[3] << 8;
3507     s->eeprom.contents[9] = s->conf.macaddr.a[4] | s->conf.macaddr.a[5] << 8;
3508 
3509     s->nic = qemu_new_nic(&net_rtl8139_info, &s->conf,
3510                           object_get_typename(OBJECT(dev)), dev->qdev.id, s);
3511     qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a);
3512 
3513     s->cplus_txbuffer = NULL;
3514     s->cplus_txbuffer_len = 0;
3515     s->cplus_txbuffer_offset = 0;
3516 
3517     s->TimerExpire = 0;
3518     s->timer = qemu_new_timer_ns(vm_clock, rtl8139_timer, s);
3519     rtl8139_set_next_tctr_time(s, qemu_get_clock_ns(vm_clock));
3520 
3521     add_boot_device_path(s->conf.bootindex, &dev->qdev, "/ethernet-phy@0");
3522 
3523     return 0;
3524 }
3525 
3526 static Property rtl8139_properties[] = {
3527     DEFINE_NIC_PROPERTIES(RTL8139State, conf),
3528     DEFINE_PROP_END_OF_LIST(),
3529 };
3530 
3531 static void rtl8139_class_init(ObjectClass *klass, void *data)
3532 {
3533     DeviceClass *dc = DEVICE_CLASS(klass);
3534     PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
3535 
3536     k->init = pci_rtl8139_init;
3537     k->exit = pci_rtl8139_uninit;
3538     k->romfile = "efi-rtl8139.rom";
3539     k->vendor_id = PCI_VENDOR_ID_REALTEK;
3540     k->device_id = PCI_DEVICE_ID_REALTEK_8139;
3541     k->revision = RTL8139_PCI_REVID; /* >=0x20 is for 8139C+ */
3542     k->class_id = PCI_CLASS_NETWORK_ETHERNET;
3543     dc->reset = rtl8139_reset;
3544     dc->vmsd = &vmstate_rtl8139;
3545     dc->props = rtl8139_properties;
3546 }
3547 
3548 static const TypeInfo rtl8139_info = {
3549     .name          = "rtl8139",
3550     .parent        = TYPE_PCI_DEVICE,
3551     .instance_size = sizeof(RTL8139State),
3552     .class_init    = rtl8139_class_init,
3553 };
3554 
3555 static void rtl8139_register_types(void)
3556 {
3557     type_register_static(&rtl8139_info);
3558 }
3559 
3560 type_init(rtl8139_register_types)
3561