xref: /openbmc/qemu/hw/net/rtl8139.c (revision 8fb3c76c)
1 /**
2  * QEMU RTL8139 emulation
3  *
4  * Copyright (c) 2006 Igor Kovalenko
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23 
24  * Modifications:
25  *  2006-Jan-28  Mark Malakanov :   TSAD and CSCR implementation (for Windows driver)
26  *
27  *  2006-Apr-28  Juergen Lock   :   EEPROM emulation changes for FreeBSD driver
28  *                                  HW revision ID changes for FreeBSD driver
29  *
30  *  2006-Jul-01  Igor Kovalenko :   Implemented loopback mode for FreeBSD driver
31  *                                  Corrected packet transfer reassembly routine for 8139C+ mode
32  *                                  Rearranged debugging print statements
33  *                                  Implemented PCI timer interrupt (disabled by default)
34  *                                  Implemented Tally Counters, increased VM load/save version
35  *                                  Implemented IP/TCP/UDP checksum task offloading
36  *
37  *  2006-Jul-04  Igor Kovalenko :   Implemented TCP segmentation offloading
38  *                                  Fixed MTU=1500 for produced ethernet frames
39  *
40  *  2006-Jul-09  Igor Kovalenko :   Fixed TCP header length calculation while processing
41  *                                  segmentation offloading
42  *                                  Removed slirp.h dependency
43  *                                  Added rx/tx buffer reset when enabling rx/tx operation
44  *
45  *  2010-Feb-04  Frediano Ziglio:   Rewrote timer support using QEMU timer only
46  *                                  when strictly needed (required for for
47  *                                  Darwin)
48  *  2011-Mar-22  Benjamin Poirier:  Implemented VLAN offloading
49  */
50 
51 /* For crc32 */
52 #include <zlib.h>
53 
54 #include "hw/hw.h"
55 #include "hw/pci/pci.h"
56 #include "sysemu/dma.h"
57 #include "qemu/timer.h"
58 #include "net/net.h"
59 #include "hw/loader.h"
60 #include "sysemu/sysemu.h"
61 #include "qemu/iov.h"
62 
63 /* debug RTL8139 card */
64 //#define DEBUG_RTL8139 1
65 
66 #define PCI_FREQUENCY 33000000L
67 
68 #define SET_MASKED(input, mask, curr) \
69     ( ( (input) & ~(mask) ) | ( (curr) & (mask) ) )
70 
71 /* arg % size for size which is a power of 2 */
72 #define MOD2(input, size) \
73     ( ( input ) & ( size - 1 )  )
74 
75 #define ETHER_ADDR_LEN 6
76 #define ETHER_TYPE_LEN 2
77 #define ETH_HLEN (ETHER_ADDR_LEN * 2 + ETHER_TYPE_LEN)
78 #define ETH_P_IP    0x0800      /* Internet Protocol packet */
79 #define ETH_P_8021Q 0x8100      /* 802.1Q VLAN Extended Header  */
80 #define ETH_MTU     1500
81 
82 #define VLAN_TCI_LEN 2
83 #define VLAN_HLEN (ETHER_TYPE_LEN + VLAN_TCI_LEN)
84 
85 #if defined (DEBUG_RTL8139)
86 #  define DPRINTF(fmt, ...) \
87     do { fprintf(stderr, "RTL8139: " fmt, ## __VA_ARGS__); } while (0)
88 #else
89 static inline GCC_FMT_ATTR(1, 2) int DPRINTF(const char *fmt, ...)
90 {
91     return 0;
92 }
93 #endif
94 
95 #define TYPE_RTL8139 "rtl8139"
96 
97 #define RTL8139(obj) \
98      OBJECT_CHECK(RTL8139State, (obj), TYPE_RTL8139)
99 
100 /* Symbolic offsets to registers. */
101 enum RTL8139_registers {
102     MAC0 = 0,        /* Ethernet hardware address. */
103     MAR0 = 8,        /* Multicast filter. */
104     TxStatus0 = 0x10,/* Transmit status (Four 32bit registers). C mode only */
105                      /* Dump Tally Conter control register(64bit). C+ mode only */
106     TxAddr0 = 0x20,  /* Tx descriptors (also four 32bit). */
107     RxBuf = 0x30,
108     ChipCmd = 0x37,
109     RxBufPtr = 0x38,
110     RxBufAddr = 0x3A,
111     IntrMask = 0x3C,
112     IntrStatus = 0x3E,
113     TxConfig = 0x40,
114     RxConfig = 0x44,
115     Timer = 0x48,        /* A general-purpose counter. */
116     RxMissed = 0x4C,    /* 24 bits valid, write clears. */
117     Cfg9346 = 0x50,
118     Config0 = 0x51,
119     Config1 = 0x52,
120     FlashReg = 0x54,
121     MediaStatus = 0x58,
122     Config3 = 0x59,
123     Config4 = 0x5A,        /* absent on RTL-8139A */
124     HltClk = 0x5B,
125     MultiIntr = 0x5C,
126     PCIRevisionID = 0x5E,
127     TxSummary = 0x60, /* TSAD register. Transmit Status of All Descriptors*/
128     BasicModeCtrl = 0x62,
129     BasicModeStatus = 0x64,
130     NWayAdvert = 0x66,
131     NWayLPAR = 0x68,
132     NWayExpansion = 0x6A,
133     /* Undocumented registers, but required for proper operation. */
134     FIFOTMS = 0x70,        /* FIFO Control and test. */
135     CSCR = 0x74,        /* Chip Status and Configuration Register. */
136     PARA78 = 0x78,
137     PARA7c = 0x7c,        /* Magic transceiver parameter register. */
138     Config5 = 0xD8,        /* absent on RTL-8139A */
139     /* C+ mode */
140     TxPoll        = 0xD9,    /* Tell chip to check Tx descriptors for work */
141     RxMaxSize    = 0xDA, /* Max size of an Rx packet (8169 only) */
142     CpCmd        = 0xE0, /* C+ Command register (C+ mode only) */
143     IntrMitigate    = 0xE2,    /* rx/tx interrupt mitigation control */
144     RxRingAddrLO    = 0xE4, /* 64-bit start addr of Rx ring */
145     RxRingAddrHI    = 0xE8, /* 64-bit start addr of Rx ring */
146     TxThresh    = 0xEC, /* Early Tx threshold */
147 };
148 
149 enum ClearBitMasks {
150     MultiIntrClear = 0xF000,
151     ChipCmdClear = 0xE2,
152     Config1Clear = (1<<7)|(1<<6)|(1<<3)|(1<<2)|(1<<1),
153 };
154 
155 enum ChipCmdBits {
156     CmdReset = 0x10,
157     CmdRxEnb = 0x08,
158     CmdTxEnb = 0x04,
159     RxBufEmpty = 0x01,
160 };
161 
162 /* C+ mode */
163 enum CplusCmdBits {
164     CPlusRxVLAN   = 0x0040, /* enable receive VLAN detagging */
165     CPlusRxChkSum = 0x0020, /* enable receive checksum offloading */
166     CPlusRxEnb    = 0x0002,
167     CPlusTxEnb    = 0x0001,
168 };
169 
170 /* Interrupt register bits, using my own meaningful names. */
171 enum IntrStatusBits {
172     PCIErr = 0x8000,
173     PCSTimeout = 0x4000,
174     RxFIFOOver = 0x40,
175     RxUnderrun = 0x20, /* Packet Underrun / Link Change */
176     RxOverflow = 0x10,
177     TxErr = 0x08,
178     TxOK = 0x04,
179     RxErr = 0x02,
180     RxOK = 0x01,
181 
182     RxAckBits = RxFIFOOver | RxOverflow | RxOK,
183 };
184 
185 enum TxStatusBits {
186     TxHostOwns = 0x2000,
187     TxUnderrun = 0x4000,
188     TxStatOK = 0x8000,
189     TxOutOfWindow = 0x20000000,
190     TxAborted = 0x40000000,
191     TxCarrierLost = 0x80000000,
192 };
193 enum RxStatusBits {
194     RxMulticast = 0x8000,
195     RxPhysical = 0x4000,
196     RxBroadcast = 0x2000,
197     RxBadSymbol = 0x0020,
198     RxRunt = 0x0010,
199     RxTooLong = 0x0008,
200     RxCRCErr = 0x0004,
201     RxBadAlign = 0x0002,
202     RxStatusOK = 0x0001,
203 };
204 
205 /* Bits in RxConfig. */
206 enum rx_mode_bits {
207     AcceptErr = 0x20,
208     AcceptRunt = 0x10,
209     AcceptBroadcast = 0x08,
210     AcceptMulticast = 0x04,
211     AcceptMyPhys = 0x02,
212     AcceptAllPhys = 0x01,
213 };
214 
215 /* Bits in TxConfig. */
216 enum tx_config_bits {
217 
218         /* Interframe Gap Time. Only TxIFG96 doesn't violate IEEE 802.3 */
219         TxIFGShift = 24,
220         TxIFG84 = (0 << TxIFGShift),    /* 8.4us / 840ns (10 / 100Mbps) */
221         TxIFG88 = (1 << TxIFGShift),    /* 8.8us / 880ns (10 / 100Mbps) */
222         TxIFG92 = (2 << TxIFGShift),    /* 9.2us / 920ns (10 / 100Mbps) */
223         TxIFG96 = (3 << TxIFGShift),    /* 9.6us / 960ns (10 / 100Mbps) */
224 
225     TxLoopBack = (1 << 18) | (1 << 17), /* enable loopback test mode */
226     TxCRC = (1 << 16),    /* DISABLE appending CRC to end of Tx packets */
227     TxClearAbt = (1 << 0),    /* Clear abort (WO) */
228     TxDMAShift = 8,        /* DMA burst value (0-7) is shifted this many bits */
229     TxRetryShift = 4,    /* TXRR value (0-15) is shifted this many bits */
230 
231     TxVersionMask = 0x7C800000, /* mask out version bits 30-26, 23 */
232 };
233 
234 
235 /* Transmit Status of All Descriptors (TSAD) Register */
236 enum TSAD_bits {
237  TSAD_TOK3 = 1<<15, // TOK bit of Descriptor 3
238  TSAD_TOK2 = 1<<14, // TOK bit of Descriptor 2
239  TSAD_TOK1 = 1<<13, // TOK bit of Descriptor 1
240  TSAD_TOK0 = 1<<12, // TOK bit of Descriptor 0
241  TSAD_TUN3 = 1<<11, // TUN bit of Descriptor 3
242  TSAD_TUN2 = 1<<10, // TUN bit of Descriptor 2
243  TSAD_TUN1 = 1<<9, // TUN bit of Descriptor 1
244  TSAD_TUN0 = 1<<8, // TUN bit of Descriptor 0
245  TSAD_TABT3 = 1<<07, // TABT bit of Descriptor 3
246  TSAD_TABT2 = 1<<06, // TABT bit of Descriptor 2
247  TSAD_TABT1 = 1<<05, // TABT bit of Descriptor 1
248  TSAD_TABT0 = 1<<04, // TABT bit of Descriptor 0
249  TSAD_OWN3 = 1<<03, // OWN bit of Descriptor 3
250  TSAD_OWN2 = 1<<02, // OWN bit of Descriptor 2
251  TSAD_OWN1 = 1<<01, // OWN bit of Descriptor 1
252  TSAD_OWN0 = 1<<00, // OWN bit of Descriptor 0
253 };
254 
255 
256 /* Bits in Config1 */
257 enum Config1Bits {
258     Cfg1_PM_Enable = 0x01,
259     Cfg1_VPD_Enable = 0x02,
260     Cfg1_PIO = 0x04,
261     Cfg1_MMIO = 0x08,
262     LWAKE = 0x10,        /* not on 8139, 8139A */
263     Cfg1_Driver_Load = 0x20,
264     Cfg1_LED0 = 0x40,
265     Cfg1_LED1 = 0x80,
266     SLEEP = (1 << 1),    /* only on 8139, 8139A */
267     PWRDN = (1 << 0),    /* only on 8139, 8139A */
268 };
269 
270 /* Bits in Config3 */
271 enum Config3Bits {
272     Cfg3_FBtBEn    = (1 << 0), /* 1 = Fast Back to Back */
273     Cfg3_FuncRegEn = (1 << 1), /* 1 = enable CardBus Function registers */
274     Cfg3_CLKRUN_En = (1 << 2), /* 1 = enable CLKRUN */
275     Cfg3_CardB_En  = (1 << 3), /* 1 = enable CardBus registers */
276     Cfg3_LinkUp    = (1 << 4), /* 1 = wake up on link up */
277     Cfg3_Magic     = (1 << 5), /* 1 = wake up on Magic Packet (tm) */
278     Cfg3_PARM_En   = (1 << 6), /* 0 = software can set twister parameters */
279     Cfg3_GNTSel    = (1 << 7), /* 1 = delay 1 clock from PCI GNT signal */
280 };
281 
282 /* Bits in Config4 */
283 enum Config4Bits {
284     LWPTN = (1 << 2),    /* not on 8139, 8139A */
285 };
286 
287 /* Bits in Config5 */
288 enum Config5Bits {
289     Cfg5_PME_STS     = (1 << 0), /* 1 = PCI reset resets PME_Status */
290     Cfg5_LANWake     = (1 << 1), /* 1 = enable LANWake signal */
291     Cfg5_LDPS        = (1 << 2), /* 0 = save power when link is down */
292     Cfg5_FIFOAddrPtr = (1 << 3), /* Realtek internal SRAM testing */
293     Cfg5_UWF         = (1 << 4), /* 1 = accept unicast wakeup frame */
294     Cfg5_MWF         = (1 << 5), /* 1 = accept multicast wakeup frame */
295     Cfg5_BWF         = (1 << 6), /* 1 = accept broadcast wakeup frame */
296 };
297 
298 enum RxConfigBits {
299     /* rx fifo threshold */
300     RxCfgFIFOShift = 13,
301     RxCfgFIFONone = (7 << RxCfgFIFOShift),
302 
303     /* Max DMA burst */
304     RxCfgDMAShift = 8,
305     RxCfgDMAUnlimited = (7 << RxCfgDMAShift),
306 
307     /* rx ring buffer length */
308     RxCfgRcv8K = 0,
309     RxCfgRcv16K = (1 << 11),
310     RxCfgRcv32K = (1 << 12),
311     RxCfgRcv64K = (1 << 11) | (1 << 12),
312 
313     /* Disable packet wrap at end of Rx buffer. (not possible with 64k) */
314     RxNoWrap = (1 << 7),
315 };
316 
317 /* Twister tuning parameters from RealTek.
318    Completely undocumented, but required to tune bad links on some boards. */
319 /*
320 enum CSCRBits {
321     CSCR_LinkOKBit = 0x0400,
322     CSCR_LinkChangeBit = 0x0800,
323     CSCR_LinkStatusBits = 0x0f000,
324     CSCR_LinkDownOffCmd = 0x003c0,
325     CSCR_LinkDownCmd = 0x0f3c0,
326 */
327 enum CSCRBits {
328     CSCR_Testfun = 1<<15, /* 1 = Auto-neg speeds up internal timer, WO, def 0 */
329     CSCR_LD  = 1<<9,  /* Active low TPI link disable signal. When low, TPI still transmits link pulses and TPI stays in good link state. def 1*/
330     CSCR_HEART_BIT = 1<<8,  /* 1 = HEART BEAT enable, 0 = HEART BEAT disable. HEART BEAT function is only valid in 10Mbps mode. def 1*/
331     CSCR_JBEN = 1<<7,  /* 1 = enable jabber function. 0 = disable jabber function, def 1*/
332     CSCR_F_LINK_100 = 1<<6, /* Used to login force good link in 100Mbps for diagnostic purposes. 1 = DISABLE, 0 = ENABLE. def 1*/
333     CSCR_F_Connect  = 1<<5,  /* Assertion of this bit forces the disconnect function to be bypassed. def 0*/
334     CSCR_Con_status = 1<<3, /* This bit indicates the status of the connection. 1 = valid connected link detected; 0 = disconnected link detected. RO def 0*/
335     CSCR_Con_status_En = 1<<2, /* Assertion of this bit configures LED1 pin to indicate connection status. def 0*/
336     CSCR_PASS_SCR = 1<<0, /* Bypass Scramble, def 0*/
337 };
338 
339 enum Cfg9346Bits {
340     Cfg9346_Normal = 0x00,
341     Cfg9346_Autoload = 0x40,
342     Cfg9346_Programming = 0x80,
343     Cfg9346_ConfigWrite = 0xC0,
344 };
345 
346 typedef enum {
347     CH_8139 = 0,
348     CH_8139_K,
349     CH_8139A,
350     CH_8139A_G,
351     CH_8139B,
352     CH_8130,
353     CH_8139C,
354     CH_8100,
355     CH_8100B_8139D,
356     CH_8101,
357 } chip_t;
358 
359 enum chip_flags {
360     HasHltClk = (1 << 0),
361     HasLWake = (1 << 1),
362 };
363 
364 #define HW_REVID(b30, b29, b28, b27, b26, b23, b22) \
365     (b30<<30 | b29<<29 | b28<<28 | b27<<27 | b26<<26 | b23<<23 | b22<<22)
366 #define HW_REVID_MASK    HW_REVID(1, 1, 1, 1, 1, 1, 1)
367 
368 #define RTL8139_PCI_REVID_8139      0x10
369 #define RTL8139_PCI_REVID_8139CPLUS 0x20
370 
371 #define RTL8139_PCI_REVID           RTL8139_PCI_REVID_8139CPLUS
372 
373 /* Size is 64 * 16bit words */
374 #define EEPROM_9346_ADDR_BITS 6
375 #define EEPROM_9346_SIZE  (1 << EEPROM_9346_ADDR_BITS)
376 #define EEPROM_9346_ADDR_MASK (EEPROM_9346_SIZE - 1)
377 
378 enum Chip9346Operation
379 {
380     Chip9346_op_mask = 0xc0,          /* 10 zzzzzz */
381     Chip9346_op_read = 0x80,          /* 10 AAAAAA */
382     Chip9346_op_write = 0x40,         /* 01 AAAAAA D(15)..D(0) */
383     Chip9346_op_ext_mask = 0xf0,      /* 11 zzzzzz */
384     Chip9346_op_write_enable = 0x30,  /* 00 11zzzz */
385     Chip9346_op_write_all = 0x10,     /* 00 01zzzz */
386     Chip9346_op_write_disable = 0x00, /* 00 00zzzz */
387 };
388 
389 enum Chip9346Mode
390 {
391     Chip9346_none = 0,
392     Chip9346_enter_command_mode,
393     Chip9346_read_command,
394     Chip9346_data_read,      /* from output register */
395     Chip9346_data_write,     /* to input register, then to contents at specified address */
396     Chip9346_data_write_all, /* to input register, then filling contents */
397 };
398 
399 typedef struct EEprom9346
400 {
401     uint16_t contents[EEPROM_9346_SIZE];
402     int      mode;
403     uint32_t tick;
404     uint8_t  address;
405     uint16_t input;
406     uint16_t output;
407 
408     uint8_t eecs;
409     uint8_t eesk;
410     uint8_t eedi;
411     uint8_t eedo;
412 } EEprom9346;
413 
414 typedef struct RTL8139TallyCounters
415 {
416     /* Tally counters */
417     uint64_t   TxOk;
418     uint64_t   RxOk;
419     uint64_t   TxERR;
420     uint32_t   RxERR;
421     uint16_t   MissPkt;
422     uint16_t   FAE;
423     uint32_t   Tx1Col;
424     uint32_t   TxMCol;
425     uint64_t   RxOkPhy;
426     uint64_t   RxOkBrd;
427     uint32_t   RxOkMul;
428     uint16_t   TxAbt;
429     uint16_t   TxUndrn;
430 } RTL8139TallyCounters;
431 
432 /* Clears all tally counters */
433 static void RTL8139TallyCounters_clear(RTL8139TallyCounters* counters);
434 
435 typedef struct RTL8139State {
436     /*< private >*/
437     PCIDevice parent_obj;
438     /*< public >*/
439 
440     uint8_t phys[8]; /* mac address */
441     uint8_t mult[8]; /* multicast mask array */
442 
443     uint32_t TxStatus[4]; /* TxStatus0 in C mode*/ /* also DTCCR[0] and DTCCR[1] in C+ mode */
444     uint32_t TxAddr[4];   /* TxAddr0 */
445     uint32_t RxBuf;       /* Receive buffer */
446     uint32_t RxBufferSize;/* internal variable, receive ring buffer size in C mode */
447     uint32_t RxBufPtr;
448     uint32_t RxBufAddr;
449 
450     uint16_t IntrStatus;
451     uint16_t IntrMask;
452 
453     uint32_t TxConfig;
454     uint32_t RxConfig;
455     uint32_t RxMissed;
456 
457     uint16_t CSCR;
458 
459     uint8_t  Cfg9346;
460     uint8_t  Config0;
461     uint8_t  Config1;
462     uint8_t  Config3;
463     uint8_t  Config4;
464     uint8_t  Config5;
465 
466     uint8_t  clock_enabled;
467     uint8_t  bChipCmdState;
468 
469     uint16_t MultiIntr;
470 
471     uint16_t BasicModeCtrl;
472     uint16_t BasicModeStatus;
473     uint16_t NWayAdvert;
474     uint16_t NWayLPAR;
475     uint16_t NWayExpansion;
476 
477     uint16_t CpCmd;
478     uint8_t  TxThresh;
479 
480     NICState *nic;
481     NICConf conf;
482 
483     /* C ring mode */
484     uint32_t   currTxDesc;
485 
486     /* C+ mode */
487     uint32_t   cplus_enabled;
488 
489     uint32_t   currCPlusRxDesc;
490     uint32_t   currCPlusTxDesc;
491 
492     uint32_t   RxRingAddrLO;
493     uint32_t   RxRingAddrHI;
494 
495     EEprom9346 eeprom;
496 
497     uint32_t   TCTR;
498     uint32_t   TimerInt;
499     int64_t    TCTR_base;
500 
501     /* Tally counters */
502     RTL8139TallyCounters tally_counters;
503 
504     /* Non-persistent data */
505     uint8_t   *cplus_txbuffer;
506     int        cplus_txbuffer_len;
507     int        cplus_txbuffer_offset;
508 
509     /* PCI interrupt timer */
510     QEMUTimer *timer;
511     int64_t TimerExpire;
512 
513     MemoryRegion bar_io;
514     MemoryRegion bar_mem;
515 
516     /* Support migration to/from old versions */
517     int rtl8139_mmio_io_addr_dummy;
518 } RTL8139State;
519 
520 /* Writes tally counters to memory via DMA */
521 static void RTL8139TallyCounters_dma_write(RTL8139State *s, dma_addr_t tc_addr);
522 
523 static void rtl8139_set_next_tctr_time(RTL8139State *s, int64_t current_time);
524 
525 static void prom9346_decode_command(EEprom9346 *eeprom, uint8_t command)
526 {
527     DPRINTF("eeprom command 0x%02x\n", command);
528 
529     switch (command & Chip9346_op_mask)
530     {
531         case Chip9346_op_read:
532         {
533             eeprom->address = command & EEPROM_9346_ADDR_MASK;
534             eeprom->output = eeprom->contents[eeprom->address];
535             eeprom->eedo = 0;
536             eeprom->tick = 0;
537             eeprom->mode = Chip9346_data_read;
538             DPRINTF("eeprom read from address 0x%02x data=0x%04x\n",
539                 eeprom->address, eeprom->output);
540         }
541         break;
542 
543         case Chip9346_op_write:
544         {
545             eeprom->address = command & EEPROM_9346_ADDR_MASK;
546             eeprom->input = 0;
547             eeprom->tick = 0;
548             eeprom->mode = Chip9346_none; /* Chip9346_data_write */
549             DPRINTF("eeprom begin write to address 0x%02x\n",
550                 eeprom->address);
551         }
552         break;
553         default:
554             eeprom->mode = Chip9346_none;
555             switch (command & Chip9346_op_ext_mask)
556             {
557                 case Chip9346_op_write_enable:
558                     DPRINTF("eeprom write enabled\n");
559                     break;
560                 case Chip9346_op_write_all:
561                     DPRINTF("eeprom begin write all\n");
562                     break;
563                 case Chip9346_op_write_disable:
564                     DPRINTF("eeprom write disabled\n");
565                     break;
566             }
567             break;
568     }
569 }
570 
571 static void prom9346_shift_clock(EEprom9346 *eeprom)
572 {
573     int bit = eeprom->eedi?1:0;
574 
575     ++ eeprom->tick;
576 
577     DPRINTF("eeprom: tick %d eedi=%d eedo=%d\n", eeprom->tick, eeprom->eedi,
578         eeprom->eedo);
579 
580     switch (eeprom->mode)
581     {
582         case Chip9346_enter_command_mode:
583             if (bit)
584             {
585                 eeprom->mode = Chip9346_read_command;
586                 eeprom->tick = 0;
587                 eeprom->input = 0;
588                 DPRINTF("eeprom: +++ synchronized, begin command read\n");
589             }
590             break;
591 
592         case Chip9346_read_command:
593             eeprom->input = (eeprom->input << 1) | (bit & 1);
594             if (eeprom->tick == 8)
595             {
596                 prom9346_decode_command(eeprom, eeprom->input & 0xff);
597             }
598             break;
599 
600         case Chip9346_data_read:
601             eeprom->eedo = (eeprom->output & 0x8000)?1:0;
602             eeprom->output <<= 1;
603             if (eeprom->tick == 16)
604             {
605 #if 1
606         // the FreeBSD drivers (rl and re) don't explicitly toggle
607         // CS between reads (or does setting Cfg9346 to 0 count too?),
608         // so we need to enter wait-for-command state here
609                 eeprom->mode = Chip9346_enter_command_mode;
610                 eeprom->input = 0;
611                 eeprom->tick = 0;
612 
613                 DPRINTF("eeprom: +++ end of read, awaiting next command\n");
614 #else
615         // original behaviour
616                 ++eeprom->address;
617                 eeprom->address &= EEPROM_9346_ADDR_MASK;
618                 eeprom->output = eeprom->contents[eeprom->address];
619                 eeprom->tick = 0;
620 
621                 DPRINTF("eeprom: +++ read next address 0x%02x data=0x%04x\n",
622                     eeprom->address, eeprom->output);
623 #endif
624             }
625             break;
626 
627         case Chip9346_data_write:
628             eeprom->input = (eeprom->input << 1) | (bit & 1);
629             if (eeprom->tick == 16)
630             {
631                 DPRINTF("eeprom write to address 0x%02x data=0x%04x\n",
632                     eeprom->address, eeprom->input);
633 
634                 eeprom->contents[eeprom->address] = eeprom->input;
635                 eeprom->mode = Chip9346_none; /* waiting for next command after CS cycle */
636                 eeprom->tick = 0;
637                 eeprom->input = 0;
638             }
639             break;
640 
641         case Chip9346_data_write_all:
642             eeprom->input = (eeprom->input << 1) | (bit & 1);
643             if (eeprom->tick == 16)
644             {
645                 int i;
646                 for (i = 0; i < EEPROM_9346_SIZE; i++)
647                 {
648                     eeprom->contents[i] = eeprom->input;
649                 }
650                 DPRINTF("eeprom filled with data=0x%04x\n", eeprom->input);
651 
652                 eeprom->mode = Chip9346_enter_command_mode;
653                 eeprom->tick = 0;
654                 eeprom->input = 0;
655             }
656             break;
657 
658         default:
659             break;
660     }
661 }
662 
663 static int prom9346_get_wire(RTL8139State *s)
664 {
665     EEprom9346 *eeprom = &s->eeprom;
666     if (!eeprom->eecs)
667         return 0;
668 
669     return eeprom->eedo;
670 }
671 
672 /* FIXME: This should be merged into/replaced by eeprom93xx.c.  */
673 static void prom9346_set_wire(RTL8139State *s, int eecs, int eesk, int eedi)
674 {
675     EEprom9346 *eeprom = &s->eeprom;
676     uint8_t old_eecs = eeprom->eecs;
677     uint8_t old_eesk = eeprom->eesk;
678 
679     eeprom->eecs = eecs;
680     eeprom->eesk = eesk;
681     eeprom->eedi = eedi;
682 
683     DPRINTF("eeprom: +++ wires CS=%d SK=%d DI=%d DO=%d\n", eeprom->eecs,
684         eeprom->eesk, eeprom->eedi, eeprom->eedo);
685 
686     if (!old_eecs && eecs)
687     {
688         /* Synchronize start */
689         eeprom->tick = 0;
690         eeprom->input = 0;
691         eeprom->output = 0;
692         eeprom->mode = Chip9346_enter_command_mode;
693 
694         DPRINTF("=== eeprom: begin access, enter command mode\n");
695     }
696 
697     if (!eecs)
698     {
699         DPRINTF("=== eeprom: end access\n");
700         return;
701     }
702 
703     if (!old_eesk && eesk)
704     {
705         /* SK front rules */
706         prom9346_shift_clock(eeprom);
707     }
708 }
709 
710 static void rtl8139_update_irq(RTL8139State *s)
711 {
712     PCIDevice *d = PCI_DEVICE(s);
713     int isr;
714     isr = (s->IntrStatus & s->IntrMask) & 0xffff;
715 
716     DPRINTF("Set IRQ to %d (%04x %04x)\n", isr ? 1 : 0, s->IntrStatus,
717         s->IntrMask);
718 
719     pci_set_irq(d, (isr != 0));
720 }
721 
722 static int rtl8139_RxWrap(RTL8139State *s)
723 {
724     /* wrapping enabled; assume 1.5k more buffer space if size < 65536 */
725     return (s->RxConfig & (1 << 7));
726 }
727 
728 static int rtl8139_receiver_enabled(RTL8139State *s)
729 {
730     return s->bChipCmdState & CmdRxEnb;
731 }
732 
733 static int rtl8139_transmitter_enabled(RTL8139State *s)
734 {
735     return s->bChipCmdState & CmdTxEnb;
736 }
737 
738 static int rtl8139_cp_receiver_enabled(RTL8139State *s)
739 {
740     return s->CpCmd & CPlusRxEnb;
741 }
742 
743 static int rtl8139_cp_transmitter_enabled(RTL8139State *s)
744 {
745     return s->CpCmd & CPlusTxEnb;
746 }
747 
748 static void rtl8139_write_buffer(RTL8139State *s, const void *buf, int size)
749 {
750     PCIDevice *d = PCI_DEVICE(s);
751 
752     if (s->RxBufAddr + size > s->RxBufferSize)
753     {
754         int wrapped = MOD2(s->RxBufAddr + size, s->RxBufferSize);
755 
756         /* write packet data */
757         if (wrapped && !(s->RxBufferSize < 65536 && rtl8139_RxWrap(s)))
758         {
759             DPRINTF(">>> rx packet wrapped in buffer at %d\n", size - wrapped);
760 
761             if (size > wrapped)
762             {
763                 pci_dma_write(d, s->RxBuf + s->RxBufAddr,
764                               buf, size-wrapped);
765             }
766 
767             /* reset buffer pointer */
768             s->RxBufAddr = 0;
769 
770             pci_dma_write(d, s->RxBuf + s->RxBufAddr,
771                           buf + (size-wrapped), wrapped);
772 
773             s->RxBufAddr = wrapped;
774 
775             return;
776         }
777     }
778 
779     /* non-wrapping path or overwrapping enabled */
780     pci_dma_write(d, s->RxBuf + s->RxBufAddr, buf, size);
781 
782     s->RxBufAddr += size;
783 }
784 
785 #define MIN_BUF_SIZE 60
786 static inline dma_addr_t rtl8139_addr64(uint32_t low, uint32_t high)
787 {
788     return low | ((uint64_t)high << 32);
789 }
790 
791 /* Workaround for buggy guest driver such as linux who allocates rx
792  * rings after the receiver were enabled. */
793 static bool rtl8139_cp_rx_valid(RTL8139State *s)
794 {
795     return !(s->RxRingAddrLO == 0 && s->RxRingAddrHI == 0);
796 }
797 
798 static int rtl8139_can_receive(NetClientState *nc)
799 {
800     RTL8139State *s = qemu_get_nic_opaque(nc);
801     int avail;
802 
803     /* Receive (drop) packets if card is disabled.  */
804     if (!s->clock_enabled)
805       return 1;
806     if (!rtl8139_receiver_enabled(s))
807       return 1;
808 
809     if (rtl8139_cp_receiver_enabled(s) && rtl8139_cp_rx_valid(s)) {
810         /* ??? Flow control not implemented in c+ mode.
811            This is a hack to work around slirp deficiencies anyway.  */
812         return 1;
813     } else {
814         avail = MOD2(s->RxBufferSize + s->RxBufPtr - s->RxBufAddr,
815                      s->RxBufferSize);
816         return (avail == 0 || avail >= 1514 || (s->IntrMask & RxOverflow));
817     }
818 }
819 
820 static ssize_t rtl8139_do_receive(NetClientState *nc, const uint8_t *buf, size_t size_, int do_interrupt)
821 {
822     RTL8139State *s = qemu_get_nic_opaque(nc);
823     PCIDevice *d = PCI_DEVICE(s);
824     /* size is the length of the buffer passed to the driver */
825     int size = size_;
826     const uint8_t *dot1q_buf = NULL;
827 
828     uint32_t packet_header = 0;
829 
830     uint8_t buf1[MIN_BUF_SIZE + VLAN_HLEN];
831     static const uint8_t broadcast_macaddr[6] =
832         { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
833 
834     DPRINTF(">>> received len=%d\n", size);
835 
836     /* test if board clock is stopped */
837     if (!s->clock_enabled)
838     {
839         DPRINTF("stopped ==========================\n");
840         return -1;
841     }
842 
843     /* first check if receiver is enabled */
844 
845     if (!rtl8139_receiver_enabled(s))
846     {
847         DPRINTF("receiver disabled ================\n");
848         return -1;
849     }
850 
851     /* XXX: check this */
852     if (s->RxConfig & AcceptAllPhys) {
853         /* promiscuous: receive all */
854         DPRINTF(">>> packet received in promiscuous mode\n");
855 
856     } else {
857         if (!memcmp(buf,  broadcast_macaddr, 6)) {
858             /* broadcast address */
859             if (!(s->RxConfig & AcceptBroadcast))
860             {
861                 DPRINTF(">>> broadcast packet rejected\n");
862 
863                 /* update tally counter */
864                 ++s->tally_counters.RxERR;
865 
866                 return size;
867             }
868 
869             packet_header |= RxBroadcast;
870 
871             DPRINTF(">>> broadcast packet received\n");
872 
873             /* update tally counter */
874             ++s->tally_counters.RxOkBrd;
875 
876         } else if (buf[0] & 0x01) {
877             /* multicast */
878             if (!(s->RxConfig & AcceptMulticast))
879             {
880                 DPRINTF(">>> multicast packet rejected\n");
881 
882                 /* update tally counter */
883                 ++s->tally_counters.RxERR;
884 
885                 return size;
886             }
887 
888             int mcast_idx = compute_mcast_idx(buf);
889 
890             if (!(s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))))
891             {
892                 DPRINTF(">>> multicast address mismatch\n");
893 
894                 /* update tally counter */
895                 ++s->tally_counters.RxERR;
896 
897                 return size;
898             }
899 
900             packet_header |= RxMulticast;
901 
902             DPRINTF(">>> multicast packet received\n");
903 
904             /* update tally counter */
905             ++s->tally_counters.RxOkMul;
906 
907         } else if (s->phys[0] == buf[0] &&
908                    s->phys[1] == buf[1] &&
909                    s->phys[2] == buf[2] &&
910                    s->phys[3] == buf[3] &&
911                    s->phys[4] == buf[4] &&
912                    s->phys[5] == buf[5]) {
913             /* match */
914             if (!(s->RxConfig & AcceptMyPhys))
915             {
916                 DPRINTF(">>> rejecting physical address matching packet\n");
917 
918                 /* update tally counter */
919                 ++s->tally_counters.RxERR;
920 
921                 return size;
922             }
923 
924             packet_header |= RxPhysical;
925 
926             DPRINTF(">>> physical address matching packet received\n");
927 
928             /* update tally counter */
929             ++s->tally_counters.RxOkPhy;
930 
931         } else {
932 
933             DPRINTF(">>> unknown packet\n");
934 
935             /* update tally counter */
936             ++s->tally_counters.RxERR;
937 
938             return size;
939         }
940     }
941 
942     /* if too small buffer, then expand it
943      * Include some tailroom in case a vlan tag is later removed. */
944     if (size < MIN_BUF_SIZE + VLAN_HLEN) {
945         memcpy(buf1, buf, size);
946         memset(buf1 + size, 0, MIN_BUF_SIZE + VLAN_HLEN - size);
947         buf = buf1;
948         if (size < MIN_BUF_SIZE) {
949             size = MIN_BUF_SIZE;
950         }
951     }
952 
953     if (rtl8139_cp_receiver_enabled(s))
954     {
955         if (!rtl8139_cp_rx_valid(s)) {
956             return size;
957         }
958 
959         DPRINTF("in C+ Rx mode ================\n");
960 
961         /* begin C+ receiver mode */
962 
963 /* w0 ownership flag */
964 #define CP_RX_OWN (1<<31)
965 /* w0 end of ring flag */
966 #define CP_RX_EOR (1<<30)
967 /* w0 bits 0...12 : buffer size */
968 #define CP_RX_BUFFER_SIZE_MASK ((1<<13) - 1)
969 /* w1 tag available flag */
970 #define CP_RX_TAVA (1<<16)
971 /* w1 bits 0...15 : VLAN tag */
972 #define CP_RX_VLAN_TAG_MASK ((1<<16) - 1)
973 /* w2 low  32bit of Rx buffer ptr */
974 /* w3 high 32bit of Rx buffer ptr */
975 
976         int descriptor = s->currCPlusRxDesc;
977         dma_addr_t cplus_rx_ring_desc;
978 
979         cplus_rx_ring_desc = rtl8139_addr64(s->RxRingAddrLO, s->RxRingAddrHI);
980         cplus_rx_ring_desc += 16 * descriptor;
981 
982         DPRINTF("+++ C+ mode reading RX descriptor %d from host memory at "
983             "%08x %08x = "DMA_ADDR_FMT"\n", descriptor, s->RxRingAddrHI,
984             s->RxRingAddrLO, cplus_rx_ring_desc);
985 
986         uint32_t val, rxdw0,rxdw1,rxbufLO,rxbufHI;
987 
988         pci_dma_read(d, cplus_rx_ring_desc, &val, 4);
989         rxdw0 = le32_to_cpu(val);
990         pci_dma_read(d, cplus_rx_ring_desc+4, &val, 4);
991         rxdw1 = le32_to_cpu(val);
992         pci_dma_read(d, cplus_rx_ring_desc+8, &val, 4);
993         rxbufLO = le32_to_cpu(val);
994         pci_dma_read(d, cplus_rx_ring_desc+12, &val, 4);
995         rxbufHI = le32_to_cpu(val);
996 
997         DPRINTF("+++ C+ mode RX descriptor %d %08x %08x %08x %08x\n",
998             descriptor, rxdw0, rxdw1, rxbufLO, rxbufHI);
999 
1000         if (!(rxdw0 & CP_RX_OWN))
1001         {
1002             DPRINTF("C+ Rx mode : descriptor %d is owned by host\n",
1003                 descriptor);
1004 
1005             s->IntrStatus |= RxOverflow;
1006             ++s->RxMissed;
1007 
1008             /* update tally counter */
1009             ++s->tally_counters.RxERR;
1010             ++s->tally_counters.MissPkt;
1011 
1012             rtl8139_update_irq(s);
1013             return size_;
1014         }
1015 
1016         uint32_t rx_space = rxdw0 & CP_RX_BUFFER_SIZE_MASK;
1017 
1018         /* write VLAN info to descriptor variables. */
1019         if (s->CpCmd & CPlusRxVLAN && be16_to_cpup((uint16_t *)
1020                 &buf[ETHER_ADDR_LEN * 2]) == ETH_P_8021Q) {
1021             dot1q_buf = &buf[ETHER_ADDR_LEN * 2];
1022             size -= VLAN_HLEN;
1023             /* if too small buffer, use the tailroom added duing expansion */
1024             if (size < MIN_BUF_SIZE) {
1025                 size = MIN_BUF_SIZE;
1026             }
1027 
1028             rxdw1 &= ~CP_RX_VLAN_TAG_MASK;
1029             /* BE + ~le_to_cpu()~ + cpu_to_le() = BE */
1030             rxdw1 |= CP_RX_TAVA | le16_to_cpup((uint16_t *)
1031                 &dot1q_buf[ETHER_TYPE_LEN]);
1032 
1033             DPRINTF("C+ Rx mode : extracted vlan tag with tci: ""%u\n",
1034                 be16_to_cpup((uint16_t *)&dot1q_buf[ETHER_TYPE_LEN]));
1035         } else {
1036             /* reset VLAN tag flag */
1037             rxdw1 &= ~CP_RX_TAVA;
1038         }
1039 
1040         /* TODO: scatter the packet over available receive ring descriptors space */
1041 
1042         if (size+4 > rx_space)
1043         {
1044             DPRINTF("C+ Rx mode : descriptor %d size %d received %d + 4\n",
1045                 descriptor, rx_space, size);
1046 
1047             s->IntrStatus |= RxOverflow;
1048             ++s->RxMissed;
1049 
1050             /* update tally counter */
1051             ++s->tally_counters.RxERR;
1052             ++s->tally_counters.MissPkt;
1053 
1054             rtl8139_update_irq(s);
1055             return size_;
1056         }
1057 
1058         dma_addr_t rx_addr = rtl8139_addr64(rxbufLO, rxbufHI);
1059 
1060         /* receive/copy to target memory */
1061         if (dot1q_buf) {
1062             pci_dma_write(d, rx_addr, buf, 2 * ETHER_ADDR_LEN);
1063             pci_dma_write(d, rx_addr + 2 * ETHER_ADDR_LEN,
1064                           buf + 2 * ETHER_ADDR_LEN + VLAN_HLEN,
1065                           size - 2 * ETHER_ADDR_LEN);
1066         } else {
1067             pci_dma_write(d, rx_addr, buf, size);
1068         }
1069 
1070         if (s->CpCmd & CPlusRxChkSum)
1071         {
1072             /* do some packet checksumming */
1073         }
1074 
1075         /* write checksum */
1076         val = cpu_to_le32(crc32(0, buf, size_));
1077         pci_dma_write(d, rx_addr+size, (uint8_t *)&val, 4);
1078 
1079 /* first segment of received packet flag */
1080 #define CP_RX_STATUS_FS (1<<29)
1081 /* last segment of received packet flag */
1082 #define CP_RX_STATUS_LS (1<<28)
1083 /* multicast packet flag */
1084 #define CP_RX_STATUS_MAR (1<<26)
1085 /* physical-matching packet flag */
1086 #define CP_RX_STATUS_PAM (1<<25)
1087 /* broadcast packet flag */
1088 #define CP_RX_STATUS_BAR (1<<24)
1089 /* runt packet flag */
1090 #define CP_RX_STATUS_RUNT (1<<19)
1091 /* crc error flag */
1092 #define CP_RX_STATUS_CRC (1<<18)
1093 /* IP checksum error flag */
1094 #define CP_RX_STATUS_IPF (1<<15)
1095 /* UDP checksum error flag */
1096 #define CP_RX_STATUS_UDPF (1<<14)
1097 /* TCP checksum error flag */
1098 #define CP_RX_STATUS_TCPF (1<<13)
1099 
1100         /* transfer ownership to target */
1101         rxdw0 &= ~CP_RX_OWN;
1102 
1103         /* set first segment bit */
1104         rxdw0 |= CP_RX_STATUS_FS;
1105 
1106         /* set last segment bit */
1107         rxdw0 |= CP_RX_STATUS_LS;
1108 
1109         /* set received packet type flags */
1110         if (packet_header & RxBroadcast)
1111             rxdw0 |= CP_RX_STATUS_BAR;
1112         if (packet_header & RxMulticast)
1113             rxdw0 |= CP_RX_STATUS_MAR;
1114         if (packet_header & RxPhysical)
1115             rxdw0 |= CP_RX_STATUS_PAM;
1116 
1117         /* set received size */
1118         rxdw0 &= ~CP_RX_BUFFER_SIZE_MASK;
1119         rxdw0 |= (size+4);
1120 
1121         /* update ring data */
1122         val = cpu_to_le32(rxdw0);
1123         pci_dma_write(d, cplus_rx_ring_desc, (uint8_t *)&val, 4);
1124         val = cpu_to_le32(rxdw1);
1125         pci_dma_write(d, cplus_rx_ring_desc+4, (uint8_t *)&val, 4);
1126 
1127         /* update tally counter */
1128         ++s->tally_counters.RxOk;
1129 
1130         /* seek to next Rx descriptor */
1131         if (rxdw0 & CP_RX_EOR)
1132         {
1133             s->currCPlusRxDesc = 0;
1134         }
1135         else
1136         {
1137             ++s->currCPlusRxDesc;
1138         }
1139 
1140         DPRINTF("done C+ Rx mode ----------------\n");
1141 
1142     }
1143     else
1144     {
1145         DPRINTF("in ring Rx mode ================\n");
1146 
1147         /* begin ring receiver mode */
1148         int avail = MOD2(s->RxBufferSize + s->RxBufPtr - s->RxBufAddr, s->RxBufferSize);
1149 
1150         /* if receiver buffer is empty then avail == 0 */
1151 
1152         if (avail != 0 && size + 8 >= avail)
1153         {
1154             DPRINTF("rx overflow: rx buffer length %d head 0x%04x "
1155                 "read 0x%04x === available 0x%04x need 0x%04x\n",
1156                 s->RxBufferSize, s->RxBufAddr, s->RxBufPtr, avail, size + 8);
1157 
1158             s->IntrStatus |= RxOverflow;
1159             ++s->RxMissed;
1160             rtl8139_update_irq(s);
1161             return size_;
1162         }
1163 
1164         packet_header |= RxStatusOK;
1165 
1166         packet_header |= (((size+4) << 16) & 0xffff0000);
1167 
1168         /* write header */
1169         uint32_t val = cpu_to_le32(packet_header);
1170 
1171         rtl8139_write_buffer(s, (uint8_t *)&val, 4);
1172 
1173         rtl8139_write_buffer(s, buf, size);
1174 
1175         /* write checksum */
1176         val = cpu_to_le32(crc32(0, buf, size));
1177         rtl8139_write_buffer(s, (uint8_t *)&val, 4);
1178 
1179         /* correct buffer write pointer */
1180         s->RxBufAddr = MOD2((s->RxBufAddr + 3) & ~0x3, s->RxBufferSize);
1181 
1182         /* now we can signal we have received something */
1183 
1184         DPRINTF("received: rx buffer length %d head 0x%04x read 0x%04x\n",
1185             s->RxBufferSize, s->RxBufAddr, s->RxBufPtr);
1186     }
1187 
1188     s->IntrStatus |= RxOK;
1189 
1190     if (do_interrupt)
1191     {
1192         rtl8139_update_irq(s);
1193     }
1194 
1195     return size_;
1196 }
1197 
1198 static ssize_t rtl8139_receive(NetClientState *nc, const uint8_t *buf, size_t size)
1199 {
1200     return rtl8139_do_receive(nc, buf, size, 1);
1201 }
1202 
1203 static void rtl8139_reset_rxring(RTL8139State *s, uint32_t bufferSize)
1204 {
1205     s->RxBufferSize = bufferSize;
1206     s->RxBufPtr  = 0;
1207     s->RxBufAddr = 0;
1208 }
1209 
1210 static void rtl8139_reset(DeviceState *d)
1211 {
1212     RTL8139State *s = RTL8139(d);
1213     int i;
1214 
1215     /* restore MAC address */
1216     memcpy(s->phys, s->conf.macaddr.a, 6);
1217     qemu_format_nic_info_str(qemu_get_queue(s->nic), s->phys);
1218 
1219     /* reset interrupt mask */
1220     s->IntrStatus = 0;
1221     s->IntrMask = 0;
1222 
1223     rtl8139_update_irq(s);
1224 
1225     /* mark all status registers as owned by host */
1226     for (i = 0; i < 4; ++i)
1227     {
1228         s->TxStatus[i] = TxHostOwns;
1229     }
1230 
1231     s->currTxDesc = 0;
1232     s->currCPlusRxDesc = 0;
1233     s->currCPlusTxDesc = 0;
1234 
1235     s->RxRingAddrLO = 0;
1236     s->RxRingAddrHI = 0;
1237 
1238     s->RxBuf = 0;
1239 
1240     rtl8139_reset_rxring(s, 8192);
1241 
1242     /* ACK the reset */
1243     s->TxConfig = 0;
1244 
1245 #if 0
1246 //    s->TxConfig |= HW_REVID(1, 0, 0, 0, 0, 0, 0); // RTL-8139  HasHltClk
1247     s->clock_enabled = 0;
1248 #else
1249     s->TxConfig |= HW_REVID(1, 1, 1, 0, 1, 1, 0); // RTL-8139C+ HasLWake
1250     s->clock_enabled = 1;
1251 #endif
1252 
1253     s->bChipCmdState = CmdReset; /* RxBufEmpty bit is calculated on read from ChipCmd */;
1254 
1255     /* set initial state data */
1256     s->Config0 = 0x0; /* No boot ROM */
1257     s->Config1 = 0xC; /* IO mapped and MEM mapped registers available */
1258     s->Config3 = 0x1; /* fast back-to-back compatible */
1259     s->Config5 = 0x0;
1260 
1261     s->CSCR = CSCR_F_LINK_100 | CSCR_HEART_BIT | CSCR_LD;
1262 
1263     s->CpCmd   = 0x0; /* reset C+ mode */
1264     s->cplus_enabled = 0;
1265 
1266 
1267 //    s->BasicModeCtrl = 0x3100; // 100Mbps, full duplex, autonegotiation
1268 //    s->BasicModeCtrl = 0x2100; // 100Mbps, full duplex
1269     s->BasicModeCtrl = 0x1000; // autonegotiation
1270 
1271     s->BasicModeStatus  = 0x7809;
1272     //s->BasicModeStatus |= 0x0040; /* UTP medium */
1273     s->BasicModeStatus |= 0x0020; /* autonegotiation completed */
1274     /* preserve link state */
1275     s->BasicModeStatus |= qemu_get_queue(s->nic)->link_down ? 0 : 0x04;
1276 
1277     s->NWayAdvert    = 0x05e1; /* all modes, full duplex */
1278     s->NWayLPAR      = 0x05e1; /* all modes, full duplex */
1279     s->NWayExpansion = 0x0001; /* autonegotiation supported */
1280 
1281     /* also reset timer and disable timer interrupt */
1282     s->TCTR = 0;
1283     s->TimerInt = 0;
1284     s->TCTR_base = 0;
1285 
1286     /* reset tally counters */
1287     RTL8139TallyCounters_clear(&s->tally_counters);
1288 }
1289 
1290 static void RTL8139TallyCounters_clear(RTL8139TallyCounters* counters)
1291 {
1292     counters->TxOk = 0;
1293     counters->RxOk = 0;
1294     counters->TxERR = 0;
1295     counters->RxERR = 0;
1296     counters->MissPkt = 0;
1297     counters->FAE = 0;
1298     counters->Tx1Col = 0;
1299     counters->TxMCol = 0;
1300     counters->RxOkPhy = 0;
1301     counters->RxOkBrd = 0;
1302     counters->RxOkMul = 0;
1303     counters->TxAbt = 0;
1304     counters->TxUndrn = 0;
1305 }
1306 
1307 static void RTL8139TallyCounters_dma_write(RTL8139State *s, dma_addr_t tc_addr)
1308 {
1309     PCIDevice *d = PCI_DEVICE(s);
1310     RTL8139TallyCounters *tally_counters = &s->tally_counters;
1311     uint16_t val16;
1312     uint32_t val32;
1313     uint64_t val64;
1314 
1315     val64 = cpu_to_le64(tally_counters->TxOk);
1316     pci_dma_write(d, tc_addr + 0,     (uint8_t *)&val64, 8);
1317 
1318     val64 = cpu_to_le64(tally_counters->RxOk);
1319     pci_dma_write(d, tc_addr + 8,     (uint8_t *)&val64, 8);
1320 
1321     val64 = cpu_to_le64(tally_counters->TxERR);
1322     pci_dma_write(d, tc_addr + 16,    (uint8_t *)&val64, 8);
1323 
1324     val32 = cpu_to_le32(tally_counters->RxERR);
1325     pci_dma_write(d, tc_addr + 24,    (uint8_t *)&val32, 4);
1326 
1327     val16 = cpu_to_le16(tally_counters->MissPkt);
1328     pci_dma_write(d, tc_addr + 28,    (uint8_t *)&val16, 2);
1329 
1330     val16 = cpu_to_le16(tally_counters->FAE);
1331     pci_dma_write(d, tc_addr + 30,    (uint8_t *)&val16, 2);
1332 
1333     val32 = cpu_to_le32(tally_counters->Tx1Col);
1334     pci_dma_write(d, tc_addr + 32,    (uint8_t *)&val32, 4);
1335 
1336     val32 = cpu_to_le32(tally_counters->TxMCol);
1337     pci_dma_write(d, tc_addr + 36,    (uint8_t *)&val32, 4);
1338 
1339     val64 = cpu_to_le64(tally_counters->RxOkPhy);
1340     pci_dma_write(d, tc_addr + 40,    (uint8_t *)&val64, 8);
1341 
1342     val64 = cpu_to_le64(tally_counters->RxOkBrd);
1343     pci_dma_write(d, tc_addr + 48,    (uint8_t *)&val64, 8);
1344 
1345     val32 = cpu_to_le32(tally_counters->RxOkMul);
1346     pci_dma_write(d, tc_addr + 56,    (uint8_t *)&val32, 4);
1347 
1348     val16 = cpu_to_le16(tally_counters->TxAbt);
1349     pci_dma_write(d, tc_addr + 60,    (uint8_t *)&val16, 2);
1350 
1351     val16 = cpu_to_le16(tally_counters->TxUndrn);
1352     pci_dma_write(d, tc_addr + 62,    (uint8_t *)&val16, 2);
1353 }
1354 
1355 /* Loads values of tally counters from VM state file */
1356 
1357 static const VMStateDescription vmstate_tally_counters = {
1358     .name = "tally_counters",
1359     .version_id = 1,
1360     .minimum_version_id = 1,
1361     .fields = (VMStateField[]) {
1362         VMSTATE_UINT64(TxOk, RTL8139TallyCounters),
1363         VMSTATE_UINT64(RxOk, RTL8139TallyCounters),
1364         VMSTATE_UINT64(TxERR, RTL8139TallyCounters),
1365         VMSTATE_UINT32(RxERR, RTL8139TallyCounters),
1366         VMSTATE_UINT16(MissPkt, RTL8139TallyCounters),
1367         VMSTATE_UINT16(FAE, RTL8139TallyCounters),
1368         VMSTATE_UINT32(Tx1Col, RTL8139TallyCounters),
1369         VMSTATE_UINT32(TxMCol, RTL8139TallyCounters),
1370         VMSTATE_UINT64(RxOkPhy, RTL8139TallyCounters),
1371         VMSTATE_UINT64(RxOkBrd, RTL8139TallyCounters),
1372         VMSTATE_UINT16(TxAbt, RTL8139TallyCounters),
1373         VMSTATE_UINT16(TxUndrn, RTL8139TallyCounters),
1374         VMSTATE_END_OF_LIST()
1375     }
1376 };
1377 
1378 static void rtl8139_ChipCmd_write(RTL8139State *s, uint32_t val)
1379 {
1380     DeviceState *d = DEVICE(s);
1381 
1382     val &= 0xff;
1383 
1384     DPRINTF("ChipCmd write val=0x%08x\n", val);
1385 
1386     if (val & CmdReset)
1387     {
1388         DPRINTF("ChipCmd reset\n");
1389         rtl8139_reset(d);
1390     }
1391     if (val & CmdRxEnb)
1392     {
1393         DPRINTF("ChipCmd enable receiver\n");
1394 
1395         s->currCPlusRxDesc = 0;
1396     }
1397     if (val & CmdTxEnb)
1398     {
1399         DPRINTF("ChipCmd enable transmitter\n");
1400 
1401         s->currCPlusTxDesc = 0;
1402     }
1403 
1404     /* mask unwritable bits */
1405     val = SET_MASKED(val, 0xe3, s->bChipCmdState);
1406 
1407     /* Deassert reset pin before next read */
1408     val &= ~CmdReset;
1409 
1410     s->bChipCmdState = val;
1411 }
1412 
1413 static int rtl8139_RxBufferEmpty(RTL8139State *s)
1414 {
1415     int unread = MOD2(s->RxBufferSize + s->RxBufAddr - s->RxBufPtr, s->RxBufferSize);
1416 
1417     if (unread != 0)
1418     {
1419         DPRINTF("receiver buffer data available 0x%04x\n", unread);
1420         return 0;
1421     }
1422 
1423     DPRINTF("receiver buffer is empty\n");
1424 
1425     return 1;
1426 }
1427 
1428 static uint32_t rtl8139_ChipCmd_read(RTL8139State *s)
1429 {
1430     uint32_t ret = s->bChipCmdState;
1431 
1432     if (rtl8139_RxBufferEmpty(s))
1433         ret |= RxBufEmpty;
1434 
1435     DPRINTF("ChipCmd read val=0x%04x\n", ret);
1436 
1437     return ret;
1438 }
1439 
1440 static void rtl8139_CpCmd_write(RTL8139State *s, uint32_t val)
1441 {
1442     val &= 0xffff;
1443 
1444     DPRINTF("C+ command register write(w) val=0x%04x\n", val);
1445 
1446     s->cplus_enabled = 1;
1447 
1448     /* mask unwritable bits */
1449     val = SET_MASKED(val, 0xff84, s->CpCmd);
1450 
1451     s->CpCmd = val;
1452 }
1453 
1454 static uint32_t rtl8139_CpCmd_read(RTL8139State *s)
1455 {
1456     uint32_t ret = s->CpCmd;
1457 
1458     DPRINTF("C+ command register read(w) val=0x%04x\n", ret);
1459 
1460     return ret;
1461 }
1462 
1463 static void rtl8139_IntrMitigate_write(RTL8139State *s, uint32_t val)
1464 {
1465     DPRINTF("C+ IntrMitigate register write(w) val=0x%04x\n", val);
1466 }
1467 
1468 static uint32_t rtl8139_IntrMitigate_read(RTL8139State *s)
1469 {
1470     uint32_t ret = 0;
1471 
1472     DPRINTF("C+ IntrMitigate register read(w) val=0x%04x\n", ret);
1473 
1474     return ret;
1475 }
1476 
1477 static int rtl8139_config_writable(RTL8139State *s)
1478 {
1479     if ((s->Cfg9346 & Chip9346_op_mask) == Cfg9346_ConfigWrite)
1480     {
1481         return 1;
1482     }
1483 
1484     DPRINTF("Configuration registers are write-protected\n");
1485 
1486     return 0;
1487 }
1488 
1489 static void rtl8139_BasicModeCtrl_write(RTL8139State *s, uint32_t val)
1490 {
1491     val &= 0xffff;
1492 
1493     DPRINTF("BasicModeCtrl register write(w) val=0x%04x\n", val);
1494 
1495     /* mask unwritable bits */
1496     uint32_t mask = 0x4cff;
1497 
1498     if (1 || !rtl8139_config_writable(s))
1499     {
1500         /* Speed setting and autonegotiation enable bits are read-only */
1501         mask |= 0x3000;
1502         /* Duplex mode setting is read-only */
1503         mask |= 0x0100;
1504     }
1505 
1506     val = SET_MASKED(val, mask, s->BasicModeCtrl);
1507 
1508     s->BasicModeCtrl = val;
1509 }
1510 
1511 static uint32_t rtl8139_BasicModeCtrl_read(RTL8139State *s)
1512 {
1513     uint32_t ret = s->BasicModeCtrl;
1514 
1515     DPRINTF("BasicModeCtrl register read(w) val=0x%04x\n", ret);
1516 
1517     return ret;
1518 }
1519 
1520 static void rtl8139_BasicModeStatus_write(RTL8139State *s, uint32_t val)
1521 {
1522     val &= 0xffff;
1523 
1524     DPRINTF("BasicModeStatus register write(w) val=0x%04x\n", val);
1525 
1526     /* mask unwritable bits */
1527     val = SET_MASKED(val, 0xff3f, s->BasicModeStatus);
1528 
1529     s->BasicModeStatus = val;
1530 }
1531 
1532 static uint32_t rtl8139_BasicModeStatus_read(RTL8139State *s)
1533 {
1534     uint32_t ret = s->BasicModeStatus;
1535 
1536     DPRINTF("BasicModeStatus register read(w) val=0x%04x\n", ret);
1537 
1538     return ret;
1539 }
1540 
1541 static void rtl8139_Cfg9346_write(RTL8139State *s, uint32_t val)
1542 {
1543     DeviceState *d = DEVICE(s);
1544 
1545     val &= 0xff;
1546 
1547     DPRINTF("Cfg9346 write val=0x%02x\n", val);
1548 
1549     /* mask unwritable bits */
1550     val = SET_MASKED(val, 0x31, s->Cfg9346);
1551 
1552     uint32_t opmode = val & 0xc0;
1553     uint32_t eeprom_val = val & 0xf;
1554 
1555     if (opmode == 0x80) {
1556         /* eeprom access */
1557         int eecs = (eeprom_val & 0x08)?1:0;
1558         int eesk = (eeprom_val & 0x04)?1:0;
1559         int eedi = (eeprom_val & 0x02)?1:0;
1560         prom9346_set_wire(s, eecs, eesk, eedi);
1561     } else if (opmode == 0x40) {
1562         /* Reset.  */
1563         val = 0;
1564         rtl8139_reset(d);
1565     }
1566 
1567     s->Cfg9346 = val;
1568 }
1569 
1570 static uint32_t rtl8139_Cfg9346_read(RTL8139State *s)
1571 {
1572     uint32_t ret = s->Cfg9346;
1573 
1574     uint32_t opmode = ret & 0xc0;
1575 
1576     if (opmode == 0x80)
1577     {
1578         /* eeprom access */
1579         int eedo = prom9346_get_wire(s);
1580         if (eedo)
1581         {
1582             ret |=  0x01;
1583         }
1584         else
1585         {
1586             ret &= ~0x01;
1587         }
1588     }
1589 
1590     DPRINTF("Cfg9346 read val=0x%02x\n", ret);
1591 
1592     return ret;
1593 }
1594 
1595 static void rtl8139_Config0_write(RTL8139State *s, uint32_t val)
1596 {
1597     val &= 0xff;
1598 
1599     DPRINTF("Config0 write val=0x%02x\n", val);
1600 
1601     if (!rtl8139_config_writable(s)) {
1602         return;
1603     }
1604 
1605     /* mask unwritable bits */
1606     val = SET_MASKED(val, 0xf8, s->Config0);
1607 
1608     s->Config0 = val;
1609 }
1610 
1611 static uint32_t rtl8139_Config0_read(RTL8139State *s)
1612 {
1613     uint32_t ret = s->Config0;
1614 
1615     DPRINTF("Config0 read val=0x%02x\n", ret);
1616 
1617     return ret;
1618 }
1619 
1620 static void rtl8139_Config1_write(RTL8139State *s, uint32_t val)
1621 {
1622     val &= 0xff;
1623 
1624     DPRINTF("Config1 write val=0x%02x\n", val);
1625 
1626     if (!rtl8139_config_writable(s)) {
1627         return;
1628     }
1629 
1630     /* mask unwritable bits */
1631     val = SET_MASKED(val, 0xC, s->Config1);
1632 
1633     s->Config1 = val;
1634 }
1635 
1636 static uint32_t rtl8139_Config1_read(RTL8139State *s)
1637 {
1638     uint32_t ret = s->Config1;
1639 
1640     DPRINTF("Config1 read val=0x%02x\n", ret);
1641 
1642     return ret;
1643 }
1644 
1645 static void rtl8139_Config3_write(RTL8139State *s, uint32_t val)
1646 {
1647     val &= 0xff;
1648 
1649     DPRINTF("Config3 write val=0x%02x\n", val);
1650 
1651     if (!rtl8139_config_writable(s)) {
1652         return;
1653     }
1654 
1655     /* mask unwritable bits */
1656     val = SET_MASKED(val, 0x8F, s->Config3);
1657 
1658     s->Config3 = val;
1659 }
1660 
1661 static uint32_t rtl8139_Config3_read(RTL8139State *s)
1662 {
1663     uint32_t ret = s->Config3;
1664 
1665     DPRINTF("Config3 read val=0x%02x\n", ret);
1666 
1667     return ret;
1668 }
1669 
1670 static void rtl8139_Config4_write(RTL8139State *s, uint32_t val)
1671 {
1672     val &= 0xff;
1673 
1674     DPRINTF("Config4 write val=0x%02x\n", val);
1675 
1676     if (!rtl8139_config_writable(s)) {
1677         return;
1678     }
1679 
1680     /* mask unwritable bits */
1681     val = SET_MASKED(val, 0x0a, s->Config4);
1682 
1683     s->Config4 = val;
1684 }
1685 
1686 static uint32_t rtl8139_Config4_read(RTL8139State *s)
1687 {
1688     uint32_t ret = s->Config4;
1689 
1690     DPRINTF("Config4 read val=0x%02x\n", ret);
1691 
1692     return ret;
1693 }
1694 
1695 static void rtl8139_Config5_write(RTL8139State *s, uint32_t val)
1696 {
1697     val &= 0xff;
1698 
1699     DPRINTF("Config5 write val=0x%02x\n", val);
1700 
1701     /* mask unwritable bits */
1702     val = SET_MASKED(val, 0x80, s->Config5);
1703 
1704     s->Config5 = val;
1705 }
1706 
1707 static uint32_t rtl8139_Config5_read(RTL8139State *s)
1708 {
1709     uint32_t ret = s->Config5;
1710 
1711     DPRINTF("Config5 read val=0x%02x\n", ret);
1712 
1713     return ret;
1714 }
1715 
1716 static void rtl8139_TxConfig_write(RTL8139State *s, uint32_t val)
1717 {
1718     if (!rtl8139_transmitter_enabled(s))
1719     {
1720         DPRINTF("transmitter disabled; no TxConfig write val=0x%08x\n", val);
1721         return;
1722     }
1723 
1724     DPRINTF("TxConfig write val=0x%08x\n", val);
1725 
1726     val = SET_MASKED(val, TxVersionMask | 0x8070f80f, s->TxConfig);
1727 
1728     s->TxConfig = val;
1729 }
1730 
1731 static void rtl8139_TxConfig_writeb(RTL8139State *s, uint32_t val)
1732 {
1733     DPRINTF("RTL8139C TxConfig via write(b) val=0x%02x\n", val);
1734 
1735     uint32_t tc = s->TxConfig;
1736     tc &= 0xFFFFFF00;
1737     tc |= (val & 0x000000FF);
1738     rtl8139_TxConfig_write(s, tc);
1739 }
1740 
1741 static uint32_t rtl8139_TxConfig_read(RTL8139State *s)
1742 {
1743     uint32_t ret = s->TxConfig;
1744 
1745     DPRINTF("TxConfig read val=0x%04x\n", ret);
1746 
1747     return ret;
1748 }
1749 
1750 static void rtl8139_RxConfig_write(RTL8139State *s, uint32_t val)
1751 {
1752     DPRINTF("RxConfig write val=0x%08x\n", val);
1753 
1754     /* mask unwritable bits */
1755     val = SET_MASKED(val, 0xf0fc0040, s->RxConfig);
1756 
1757     s->RxConfig = val;
1758 
1759     /* reset buffer size and read/write pointers */
1760     rtl8139_reset_rxring(s, 8192 << ((s->RxConfig >> 11) & 0x3));
1761 
1762     DPRINTF("RxConfig write reset buffer size to %d\n", s->RxBufferSize);
1763 }
1764 
1765 static uint32_t rtl8139_RxConfig_read(RTL8139State *s)
1766 {
1767     uint32_t ret = s->RxConfig;
1768 
1769     DPRINTF("RxConfig read val=0x%08x\n", ret);
1770 
1771     return ret;
1772 }
1773 
1774 static void rtl8139_transfer_frame(RTL8139State *s, uint8_t *buf, int size,
1775     int do_interrupt, const uint8_t *dot1q_buf)
1776 {
1777     struct iovec *iov = NULL;
1778 
1779     if (!size)
1780     {
1781         DPRINTF("+++ empty ethernet frame\n");
1782         return;
1783     }
1784 
1785     if (dot1q_buf && size >= ETHER_ADDR_LEN * 2) {
1786         iov = (struct iovec[3]) {
1787             { .iov_base = buf, .iov_len = ETHER_ADDR_LEN * 2 },
1788             { .iov_base = (void *) dot1q_buf, .iov_len = VLAN_HLEN },
1789             { .iov_base = buf + ETHER_ADDR_LEN * 2,
1790                 .iov_len = size - ETHER_ADDR_LEN * 2 },
1791         };
1792     }
1793 
1794     if (TxLoopBack == (s->TxConfig & TxLoopBack))
1795     {
1796         size_t buf2_size;
1797         uint8_t *buf2;
1798 
1799         if (iov) {
1800             buf2_size = iov_size(iov, 3);
1801             buf2 = g_malloc(buf2_size);
1802             iov_to_buf(iov, 3, 0, buf2, buf2_size);
1803             buf = buf2;
1804         }
1805 
1806         DPRINTF("+++ transmit loopback mode\n");
1807         rtl8139_do_receive(qemu_get_queue(s->nic), buf, size, do_interrupt);
1808 
1809         if (iov) {
1810             g_free(buf2);
1811         }
1812     }
1813     else
1814     {
1815         if (iov) {
1816             qemu_sendv_packet(qemu_get_queue(s->nic), iov, 3);
1817         } else {
1818             qemu_send_packet(qemu_get_queue(s->nic), buf, size);
1819         }
1820     }
1821 }
1822 
1823 static int rtl8139_transmit_one(RTL8139State *s, int descriptor)
1824 {
1825     if (!rtl8139_transmitter_enabled(s))
1826     {
1827         DPRINTF("+++ cannot transmit from descriptor %d: transmitter "
1828             "disabled\n", descriptor);
1829         return 0;
1830     }
1831 
1832     if (s->TxStatus[descriptor] & TxHostOwns)
1833     {
1834         DPRINTF("+++ cannot transmit from descriptor %d: owned by host "
1835             "(%08x)\n", descriptor, s->TxStatus[descriptor]);
1836         return 0;
1837     }
1838 
1839     DPRINTF("+++ transmitting from descriptor %d\n", descriptor);
1840 
1841     PCIDevice *d = PCI_DEVICE(s);
1842     int txsize = s->TxStatus[descriptor] & 0x1fff;
1843     uint8_t txbuffer[0x2000];
1844 
1845     DPRINTF("+++ transmit reading %d bytes from host memory at 0x%08x\n",
1846         txsize, s->TxAddr[descriptor]);
1847 
1848     pci_dma_read(d, s->TxAddr[descriptor], txbuffer, txsize);
1849 
1850     /* Mark descriptor as transferred */
1851     s->TxStatus[descriptor] |= TxHostOwns;
1852     s->TxStatus[descriptor] |= TxStatOK;
1853 
1854     rtl8139_transfer_frame(s, txbuffer, txsize, 0, NULL);
1855 
1856     DPRINTF("+++ transmitted %d bytes from descriptor %d\n", txsize,
1857         descriptor);
1858 
1859     /* update interrupt */
1860     s->IntrStatus |= TxOK;
1861     rtl8139_update_irq(s);
1862 
1863     return 1;
1864 }
1865 
1866 /* structures and macros for task offloading */
1867 typedef struct ip_header
1868 {
1869     uint8_t  ip_ver_len;    /* version and header length */
1870     uint8_t  ip_tos;        /* type of service */
1871     uint16_t ip_len;        /* total length */
1872     uint16_t ip_id;         /* identification */
1873     uint16_t ip_off;        /* fragment offset field */
1874     uint8_t  ip_ttl;        /* time to live */
1875     uint8_t  ip_p;          /* protocol */
1876     uint16_t ip_sum;        /* checksum */
1877     uint32_t ip_src,ip_dst; /* source and dest address */
1878 } ip_header;
1879 
1880 #define IP_HEADER_VERSION_4 4
1881 #define IP_HEADER_VERSION(ip) ((ip->ip_ver_len >> 4)&0xf)
1882 #define IP_HEADER_LENGTH(ip) (((ip->ip_ver_len)&0xf) << 2)
1883 
1884 typedef struct tcp_header
1885 {
1886     uint16_t th_sport;		/* source port */
1887     uint16_t th_dport;		/* destination port */
1888     uint32_t th_seq;			/* sequence number */
1889     uint32_t th_ack;			/* acknowledgement number */
1890     uint16_t th_offset_flags; /* data offset, reserved 6 bits, TCP protocol flags */
1891     uint16_t th_win;			/* window */
1892     uint16_t th_sum;			/* checksum */
1893     uint16_t th_urp;			/* urgent pointer */
1894 } tcp_header;
1895 
1896 typedef struct udp_header
1897 {
1898     uint16_t uh_sport; /* source port */
1899     uint16_t uh_dport; /* destination port */
1900     uint16_t uh_ulen;  /* udp length */
1901     uint16_t uh_sum;   /* udp checksum */
1902 } udp_header;
1903 
1904 typedef struct ip_pseudo_header
1905 {
1906     uint32_t ip_src;
1907     uint32_t ip_dst;
1908     uint8_t  zeros;
1909     uint8_t  ip_proto;
1910     uint16_t ip_payload;
1911 } ip_pseudo_header;
1912 
1913 #define IP_PROTO_TCP 6
1914 #define IP_PROTO_UDP 17
1915 
1916 #define TCP_HEADER_DATA_OFFSET(tcp) (((be16_to_cpu(tcp->th_offset_flags) >> 12)&0xf) << 2)
1917 #define TCP_FLAGS_ONLY(flags) ((flags)&0x3f)
1918 #define TCP_HEADER_FLAGS(tcp) TCP_FLAGS_ONLY(be16_to_cpu(tcp->th_offset_flags))
1919 
1920 #define TCP_HEADER_CLEAR_FLAGS(tcp, off) ((tcp)->th_offset_flags &= cpu_to_be16(~TCP_FLAGS_ONLY(off)))
1921 
1922 #define TCP_FLAG_FIN  0x01
1923 #define TCP_FLAG_PUSH 0x08
1924 
1925 /* produces ones' complement sum of data */
1926 static uint16_t ones_complement_sum(uint8_t *data, size_t len)
1927 {
1928     uint32_t result = 0;
1929 
1930     for (; len > 1; data+=2, len-=2)
1931     {
1932         result += *(uint16_t*)data;
1933     }
1934 
1935     /* add the remainder byte */
1936     if (len)
1937     {
1938         uint8_t odd[2] = {*data, 0};
1939         result += *(uint16_t*)odd;
1940     }
1941 
1942     while (result>>16)
1943         result = (result & 0xffff) + (result >> 16);
1944 
1945     return result;
1946 }
1947 
1948 static uint16_t ip_checksum(void *data, size_t len)
1949 {
1950     return ~ones_complement_sum((uint8_t*)data, len);
1951 }
1952 
1953 static int rtl8139_cplus_transmit_one(RTL8139State *s)
1954 {
1955     if (!rtl8139_transmitter_enabled(s))
1956     {
1957         DPRINTF("+++ C+ mode: transmitter disabled\n");
1958         return 0;
1959     }
1960 
1961     if (!rtl8139_cp_transmitter_enabled(s))
1962     {
1963         DPRINTF("+++ C+ mode: C+ transmitter disabled\n");
1964         return 0 ;
1965     }
1966 
1967     PCIDevice *d = PCI_DEVICE(s);
1968     int descriptor = s->currCPlusTxDesc;
1969 
1970     dma_addr_t cplus_tx_ring_desc = rtl8139_addr64(s->TxAddr[0], s->TxAddr[1]);
1971 
1972     /* Normal priority ring */
1973     cplus_tx_ring_desc += 16 * descriptor;
1974 
1975     DPRINTF("+++ C+ mode reading TX descriptor %d from host memory at "
1976         "%08x %08x = 0x"DMA_ADDR_FMT"\n", descriptor, s->TxAddr[1],
1977         s->TxAddr[0], cplus_tx_ring_desc);
1978 
1979     uint32_t val, txdw0,txdw1,txbufLO,txbufHI;
1980 
1981     pci_dma_read(d, cplus_tx_ring_desc,    (uint8_t *)&val, 4);
1982     txdw0 = le32_to_cpu(val);
1983     pci_dma_read(d, cplus_tx_ring_desc+4,  (uint8_t *)&val, 4);
1984     txdw1 = le32_to_cpu(val);
1985     pci_dma_read(d, cplus_tx_ring_desc+8,  (uint8_t *)&val, 4);
1986     txbufLO = le32_to_cpu(val);
1987     pci_dma_read(d, cplus_tx_ring_desc+12, (uint8_t *)&val, 4);
1988     txbufHI = le32_to_cpu(val);
1989 
1990     DPRINTF("+++ C+ mode TX descriptor %d %08x %08x %08x %08x\n", descriptor,
1991         txdw0, txdw1, txbufLO, txbufHI);
1992 
1993 /* w0 ownership flag */
1994 #define CP_TX_OWN (1<<31)
1995 /* w0 end of ring flag */
1996 #define CP_TX_EOR (1<<30)
1997 /* first segment of received packet flag */
1998 #define CP_TX_FS (1<<29)
1999 /* last segment of received packet flag */
2000 #define CP_TX_LS (1<<28)
2001 /* large send packet flag */
2002 #define CP_TX_LGSEN (1<<27)
2003 /* large send MSS mask, bits 16...25 */
2004 #define CP_TC_LGSEN_MSS_MASK ((1 << 12) - 1)
2005 
2006 /* IP checksum offload flag */
2007 #define CP_TX_IPCS (1<<18)
2008 /* UDP checksum offload flag */
2009 #define CP_TX_UDPCS (1<<17)
2010 /* TCP checksum offload flag */
2011 #define CP_TX_TCPCS (1<<16)
2012 
2013 /* w0 bits 0...15 : buffer size */
2014 #define CP_TX_BUFFER_SIZE (1<<16)
2015 #define CP_TX_BUFFER_SIZE_MASK (CP_TX_BUFFER_SIZE - 1)
2016 /* w1 add tag flag */
2017 #define CP_TX_TAGC (1<<17)
2018 /* w1 bits 0...15 : VLAN tag (big endian) */
2019 #define CP_TX_VLAN_TAG_MASK ((1<<16) - 1)
2020 /* w2 low  32bit of Rx buffer ptr */
2021 /* w3 high 32bit of Rx buffer ptr */
2022 
2023 /* set after transmission */
2024 /* FIFO underrun flag */
2025 #define CP_TX_STATUS_UNF (1<<25)
2026 /* transmit error summary flag, valid if set any of three below */
2027 #define CP_TX_STATUS_TES (1<<23)
2028 /* out-of-window collision flag */
2029 #define CP_TX_STATUS_OWC (1<<22)
2030 /* link failure flag */
2031 #define CP_TX_STATUS_LNKF (1<<21)
2032 /* excessive collisions flag */
2033 #define CP_TX_STATUS_EXC (1<<20)
2034 
2035     if (!(txdw0 & CP_TX_OWN))
2036     {
2037         DPRINTF("C+ Tx mode : descriptor %d is owned by host\n", descriptor);
2038         return 0 ;
2039     }
2040 
2041     DPRINTF("+++ C+ Tx mode : transmitting from descriptor %d\n", descriptor);
2042 
2043     if (txdw0 & CP_TX_FS)
2044     {
2045         DPRINTF("+++ C+ Tx mode : descriptor %d is first segment "
2046             "descriptor\n", descriptor);
2047 
2048         /* reset internal buffer offset */
2049         s->cplus_txbuffer_offset = 0;
2050     }
2051 
2052     int txsize = txdw0 & CP_TX_BUFFER_SIZE_MASK;
2053     dma_addr_t tx_addr = rtl8139_addr64(txbufLO, txbufHI);
2054 
2055     /* make sure we have enough space to assemble the packet */
2056     if (!s->cplus_txbuffer)
2057     {
2058         s->cplus_txbuffer_len = CP_TX_BUFFER_SIZE;
2059         s->cplus_txbuffer = g_malloc(s->cplus_txbuffer_len);
2060         s->cplus_txbuffer_offset = 0;
2061 
2062         DPRINTF("+++ C+ mode transmission buffer allocated space %d\n",
2063             s->cplus_txbuffer_len);
2064     }
2065 
2066     if (s->cplus_txbuffer_offset + txsize >= s->cplus_txbuffer_len)
2067     {
2068         /* The spec didn't tell the maximum size, stick to CP_TX_BUFFER_SIZE */
2069         txsize = s->cplus_txbuffer_len - s->cplus_txbuffer_offset;
2070         DPRINTF("+++ C+ mode transmission buffer overrun, truncated descriptor"
2071                 "length to %d\n", txsize);
2072     }
2073 
2074     if (!s->cplus_txbuffer)
2075     {
2076         /* out of memory */
2077 
2078         DPRINTF("+++ C+ mode transmiter failed to reallocate %d bytes\n",
2079             s->cplus_txbuffer_len);
2080 
2081         /* update tally counter */
2082         ++s->tally_counters.TxERR;
2083         ++s->tally_counters.TxAbt;
2084 
2085         return 0;
2086     }
2087 
2088     /* append more data to the packet */
2089 
2090     DPRINTF("+++ C+ mode transmit reading %d bytes from host memory at "
2091             DMA_ADDR_FMT" to offset %d\n", txsize, tx_addr,
2092             s->cplus_txbuffer_offset);
2093 
2094     pci_dma_read(d, tx_addr,
2095                  s->cplus_txbuffer + s->cplus_txbuffer_offset, txsize);
2096     s->cplus_txbuffer_offset += txsize;
2097 
2098     /* seek to next Rx descriptor */
2099     if (txdw0 & CP_TX_EOR)
2100     {
2101         s->currCPlusTxDesc = 0;
2102     }
2103     else
2104     {
2105         ++s->currCPlusTxDesc;
2106         if (s->currCPlusTxDesc >= 64)
2107             s->currCPlusTxDesc = 0;
2108     }
2109 
2110     /* transfer ownership to target */
2111     txdw0 &= ~CP_RX_OWN;
2112 
2113     /* reset error indicator bits */
2114     txdw0 &= ~CP_TX_STATUS_UNF;
2115     txdw0 &= ~CP_TX_STATUS_TES;
2116     txdw0 &= ~CP_TX_STATUS_OWC;
2117     txdw0 &= ~CP_TX_STATUS_LNKF;
2118     txdw0 &= ~CP_TX_STATUS_EXC;
2119 
2120     /* update ring data */
2121     val = cpu_to_le32(txdw0);
2122     pci_dma_write(d, cplus_tx_ring_desc, (uint8_t *)&val, 4);
2123 
2124     /* Now decide if descriptor being processed is holding the last segment of packet */
2125     if (txdw0 & CP_TX_LS)
2126     {
2127         uint8_t dot1q_buffer_space[VLAN_HLEN];
2128         uint16_t *dot1q_buffer;
2129 
2130         DPRINTF("+++ C+ Tx mode : descriptor %d is last segment descriptor\n",
2131             descriptor);
2132 
2133         /* can transfer fully assembled packet */
2134 
2135         uint8_t *saved_buffer  = s->cplus_txbuffer;
2136         int      saved_size    = s->cplus_txbuffer_offset;
2137         int      saved_buffer_len = s->cplus_txbuffer_len;
2138 
2139         /* create vlan tag */
2140         if (txdw1 & CP_TX_TAGC) {
2141             /* the vlan tag is in BE byte order in the descriptor
2142              * BE + le_to_cpu() + ~swap()~ = cpu */
2143             DPRINTF("+++ C+ Tx mode : inserting vlan tag with ""tci: %u\n",
2144                 bswap16(txdw1 & CP_TX_VLAN_TAG_MASK));
2145 
2146             dot1q_buffer = (uint16_t *) dot1q_buffer_space;
2147             dot1q_buffer[0] = cpu_to_be16(ETH_P_8021Q);
2148             /* BE + le_to_cpu() + ~cpu_to_le()~ = BE */
2149             dot1q_buffer[1] = cpu_to_le16(txdw1 & CP_TX_VLAN_TAG_MASK);
2150         } else {
2151             dot1q_buffer = NULL;
2152         }
2153 
2154         /* reset the card space to protect from recursive call */
2155         s->cplus_txbuffer = NULL;
2156         s->cplus_txbuffer_offset = 0;
2157         s->cplus_txbuffer_len = 0;
2158 
2159         if (txdw0 & (CP_TX_IPCS | CP_TX_UDPCS | CP_TX_TCPCS | CP_TX_LGSEN))
2160         {
2161             DPRINTF("+++ C+ mode offloaded task checksum\n");
2162 
2163             /* ip packet header */
2164             ip_header *ip = NULL;
2165             int hlen = 0;
2166             uint8_t  ip_protocol = 0;
2167             uint16_t ip_data_len = 0;
2168 
2169             uint8_t *eth_payload_data = NULL;
2170             size_t   eth_payload_len  = 0;
2171 
2172             int proto = be16_to_cpu(*(uint16_t *)(saved_buffer + 12));
2173             if (proto == ETH_P_IP)
2174             {
2175                 DPRINTF("+++ C+ mode has IP packet\n");
2176 
2177                 /* not aligned */
2178                 eth_payload_data = saved_buffer + ETH_HLEN;
2179                 eth_payload_len  = saved_size   - ETH_HLEN;
2180 
2181                 ip = (ip_header*)eth_payload_data;
2182 
2183                 if (IP_HEADER_VERSION(ip) != IP_HEADER_VERSION_4) {
2184                     DPRINTF("+++ C+ mode packet has bad IP version %d "
2185                         "expected %d\n", IP_HEADER_VERSION(ip),
2186                         IP_HEADER_VERSION_4);
2187                     ip = NULL;
2188                 } else {
2189                     hlen = IP_HEADER_LENGTH(ip);
2190                     ip_protocol = ip->ip_p;
2191                     ip_data_len = be16_to_cpu(ip->ip_len) - hlen;
2192                 }
2193             }
2194 
2195             if (ip)
2196             {
2197                 if (txdw0 & CP_TX_IPCS)
2198                 {
2199                     DPRINTF("+++ C+ mode need IP checksum\n");
2200 
2201                     if (hlen<sizeof(ip_header) || hlen>eth_payload_len) {/* min header length */
2202                         /* bad packet header len */
2203                         /* or packet too short */
2204                     }
2205                     else
2206                     {
2207                         ip->ip_sum = 0;
2208                         ip->ip_sum = ip_checksum(ip, hlen);
2209                         DPRINTF("+++ C+ mode IP header len=%d checksum=%04x\n",
2210                             hlen, ip->ip_sum);
2211                     }
2212                 }
2213 
2214                 if ((txdw0 & CP_TX_LGSEN) && ip_protocol == IP_PROTO_TCP)
2215                 {
2216                     int large_send_mss = (txdw0 >> 16) & CP_TC_LGSEN_MSS_MASK;
2217 
2218                     DPRINTF("+++ C+ mode offloaded task TSO MTU=%d IP data %d "
2219                         "frame data %d specified MSS=%d\n", ETH_MTU,
2220                         ip_data_len, saved_size - ETH_HLEN, large_send_mss);
2221 
2222                     int tcp_send_offset = 0;
2223                     int send_count = 0;
2224 
2225                     /* maximum IP header length is 60 bytes */
2226                     uint8_t saved_ip_header[60];
2227 
2228                     /* save IP header template; data area is used in tcp checksum calculation */
2229                     memcpy(saved_ip_header, eth_payload_data, hlen);
2230 
2231                     /* a placeholder for checksum calculation routine in tcp case */
2232                     uint8_t *data_to_checksum     = eth_payload_data + hlen - 12;
2233                     //                    size_t   data_to_checksum_len = eth_payload_len  - hlen + 12;
2234 
2235                     /* pointer to TCP header */
2236                     tcp_header *p_tcp_hdr = (tcp_header*)(eth_payload_data + hlen);
2237 
2238                     int tcp_hlen = TCP_HEADER_DATA_OFFSET(p_tcp_hdr);
2239 
2240                     /* ETH_MTU = ip header len + tcp header len + payload */
2241                     int tcp_data_len = ip_data_len - tcp_hlen;
2242                     int tcp_chunk_size = ETH_MTU - hlen - tcp_hlen;
2243 
2244                     DPRINTF("+++ C+ mode TSO IP data len %d TCP hlen %d TCP "
2245                         "data len %d TCP chunk size %d\n", ip_data_len,
2246                         tcp_hlen, tcp_data_len, tcp_chunk_size);
2247 
2248                     /* note the cycle below overwrites IP header data,
2249                        but restores it from saved_ip_header before sending packet */
2250 
2251                     int is_last_frame = 0;
2252 
2253                     for (tcp_send_offset = 0; tcp_send_offset < tcp_data_len; tcp_send_offset += tcp_chunk_size)
2254                     {
2255                         uint16_t chunk_size = tcp_chunk_size;
2256 
2257                         /* check if this is the last frame */
2258                         if (tcp_send_offset + tcp_chunk_size >= tcp_data_len)
2259                         {
2260                             is_last_frame = 1;
2261                             chunk_size = tcp_data_len - tcp_send_offset;
2262                         }
2263 
2264                         DPRINTF("+++ C+ mode TSO TCP seqno %08x\n",
2265                             be32_to_cpu(p_tcp_hdr->th_seq));
2266 
2267                         /* add 4 TCP pseudoheader fields */
2268                         /* copy IP source and destination fields */
2269                         memcpy(data_to_checksum, saved_ip_header + 12, 8);
2270 
2271                         DPRINTF("+++ C+ mode TSO calculating TCP checksum for "
2272                             "packet with %d bytes data\n", tcp_hlen +
2273                             chunk_size);
2274 
2275                         if (tcp_send_offset)
2276                         {
2277                             memcpy((uint8_t*)p_tcp_hdr + tcp_hlen, (uint8_t*)p_tcp_hdr + tcp_hlen + tcp_send_offset, chunk_size);
2278                         }
2279 
2280                         /* keep PUSH and FIN flags only for the last frame */
2281                         if (!is_last_frame)
2282                         {
2283                             TCP_HEADER_CLEAR_FLAGS(p_tcp_hdr, TCP_FLAG_PUSH|TCP_FLAG_FIN);
2284                         }
2285 
2286                         /* recalculate TCP checksum */
2287                         ip_pseudo_header *p_tcpip_hdr = (ip_pseudo_header *)data_to_checksum;
2288                         p_tcpip_hdr->zeros      = 0;
2289                         p_tcpip_hdr->ip_proto   = IP_PROTO_TCP;
2290                         p_tcpip_hdr->ip_payload = cpu_to_be16(tcp_hlen + chunk_size);
2291 
2292                         p_tcp_hdr->th_sum = 0;
2293 
2294                         int tcp_checksum = ip_checksum(data_to_checksum, tcp_hlen + chunk_size + 12);
2295                         DPRINTF("+++ C+ mode TSO TCP checksum %04x\n",
2296                             tcp_checksum);
2297 
2298                         p_tcp_hdr->th_sum = tcp_checksum;
2299 
2300                         /* restore IP header */
2301                         memcpy(eth_payload_data, saved_ip_header, hlen);
2302 
2303                         /* set IP data length and recalculate IP checksum */
2304                         ip->ip_len = cpu_to_be16(hlen + tcp_hlen + chunk_size);
2305 
2306                         /* increment IP id for subsequent frames */
2307                         ip->ip_id = cpu_to_be16(tcp_send_offset/tcp_chunk_size + be16_to_cpu(ip->ip_id));
2308 
2309                         ip->ip_sum = 0;
2310                         ip->ip_sum = ip_checksum(eth_payload_data, hlen);
2311                         DPRINTF("+++ C+ mode TSO IP header len=%d "
2312                             "checksum=%04x\n", hlen, ip->ip_sum);
2313 
2314                         int tso_send_size = ETH_HLEN + hlen + tcp_hlen + chunk_size;
2315                         DPRINTF("+++ C+ mode TSO transferring packet size "
2316                             "%d\n", tso_send_size);
2317                         rtl8139_transfer_frame(s, saved_buffer, tso_send_size,
2318                             0, (uint8_t *) dot1q_buffer);
2319 
2320                         /* add transferred count to TCP sequence number */
2321                         p_tcp_hdr->th_seq = cpu_to_be32(chunk_size + be32_to_cpu(p_tcp_hdr->th_seq));
2322                         ++send_count;
2323                     }
2324 
2325                     /* Stop sending this frame */
2326                     saved_size = 0;
2327                 }
2328                 else if (txdw0 & (CP_TX_TCPCS|CP_TX_UDPCS))
2329                 {
2330                     DPRINTF("+++ C+ mode need TCP or UDP checksum\n");
2331 
2332                     /* maximum IP header length is 60 bytes */
2333                     uint8_t saved_ip_header[60];
2334                     memcpy(saved_ip_header, eth_payload_data, hlen);
2335 
2336                     uint8_t *data_to_checksum     = eth_payload_data + hlen - 12;
2337                     //                    size_t   data_to_checksum_len = eth_payload_len  - hlen + 12;
2338 
2339                     /* add 4 TCP pseudoheader fields */
2340                     /* copy IP source and destination fields */
2341                     memcpy(data_to_checksum, saved_ip_header + 12, 8);
2342 
2343                     if ((txdw0 & CP_TX_TCPCS) && ip_protocol == IP_PROTO_TCP)
2344                     {
2345                         DPRINTF("+++ C+ mode calculating TCP checksum for "
2346                             "packet with %d bytes data\n", ip_data_len);
2347 
2348                         ip_pseudo_header *p_tcpip_hdr = (ip_pseudo_header *)data_to_checksum;
2349                         p_tcpip_hdr->zeros      = 0;
2350                         p_tcpip_hdr->ip_proto   = IP_PROTO_TCP;
2351                         p_tcpip_hdr->ip_payload = cpu_to_be16(ip_data_len);
2352 
2353                         tcp_header* p_tcp_hdr = (tcp_header *) (data_to_checksum+12);
2354 
2355                         p_tcp_hdr->th_sum = 0;
2356 
2357                         int tcp_checksum = ip_checksum(data_to_checksum, ip_data_len + 12);
2358                         DPRINTF("+++ C+ mode TCP checksum %04x\n",
2359                             tcp_checksum);
2360 
2361                         p_tcp_hdr->th_sum = tcp_checksum;
2362                     }
2363                     else if ((txdw0 & CP_TX_UDPCS) && ip_protocol == IP_PROTO_UDP)
2364                     {
2365                         DPRINTF("+++ C+ mode calculating UDP checksum for "
2366                             "packet with %d bytes data\n", ip_data_len);
2367 
2368                         ip_pseudo_header *p_udpip_hdr = (ip_pseudo_header *)data_to_checksum;
2369                         p_udpip_hdr->zeros      = 0;
2370                         p_udpip_hdr->ip_proto   = IP_PROTO_UDP;
2371                         p_udpip_hdr->ip_payload = cpu_to_be16(ip_data_len);
2372 
2373                         udp_header *p_udp_hdr = (udp_header *) (data_to_checksum+12);
2374 
2375                         p_udp_hdr->uh_sum = 0;
2376 
2377                         int udp_checksum = ip_checksum(data_to_checksum, ip_data_len + 12);
2378                         DPRINTF("+++ C+ mode UDP checksum %04x\n",
2379                             udp_checksum);
2380 
2381                         p_udp_hdr->uh_sum = udp_checksum;
2382                     }
2383 
2384                     /* restore IP header */
2385                     memcpy(eth_payload_data, saved_ip_header, hlen);
2386                 }
2387             }
2388         }
2389 
2390         /* update tally counter */
2391         ++s->tally_counters.TxOk;
2392 
2393         DPRINTF("+++ C+ mode transmitting %d bytes packet\n", saved_size);
2394 
2395         rtl8139_transfer_frame(s, saved_buffer, saved_size, 1,
2396             (uint8_t *) dot1q_buffer);
2397 
2398         /* restore card space if there was no recursion and reset offset */
2399         if (!s->cplus_txbuffer)
2400         {
2401             s->cplus_txbuffer        = saved_buffer;
2402             s->cplus_txbuffer_len    = saved_buffer_len;
2403             s->cplus_txbuffer_offset = 0;
2404         }
2405         else
2406         {
2407             g_free(saved_buffer);
2408         }
2409     }
2410     else
2411     {
2412         DPRINTF("+++ C+ mode transmission continue to next descriptor\n");
2413     }
2414 
2415     return 1;
2416 }
2417 
2418 static void rtl8139_cplus_transmit(RTL8139State *s)
2419 {
2420     int txcount = 0;
2421 
2422     while (rtl8139_cplus_transmit_one(s))
2423     {
2424         ++txcount;
2425     }
2426 
2427     /* Mark transfer completed */
2428     if (!txcount)
2429     {
2430         DPRINTF("C+ mode : transmitter queue stalled, current TxDesc = %d\n",
2431             s->currCPlusTxDesc);
2432     }
2433     else
2434     {
2435         /* update interrupt status */
2436         s->IntrStatus |= TxOK;
2437         rtl8139_update_irq(s);
2438     }
2439 }
2440 
2441 static void rtl8139_transmit(RTL8139State *s)
2442 {
2443     int descriptor = s->currTxDesc, txcount = 0;
2444 
2445     /*while*/
2446     if (rtl8139_transmit_one(s, descriptor))
2447     {
2448         ++s->currTxDesc;
2449         s->currTxDesc %= 4;
2450         ++txcount;
2451     }
2452 
2453     /* Mark transfer completed */
2454     if (!txcount)
2455     {
2456         DPRINTF("transmitter queue stalled, current TxDesc = %d\n",
2457             s->currTxDesc);
2458     }
2459 }
2460 
2461 static void rtl8139_TxStatus_write(RTL8139State *s, uint32_t txRegOffset, uint32_t val)
2462 {
2463 
2464     int descriptor = txRegOffset/4;
2465 
2466     /* handle C+ transmit mode register configuration */
2467 
2468     if (s->cplus_enabled)
2469     {
2470         DPRINTF("RTL8139C+ DTCCR write offset=0x%x val=0x%08x "
2471             "descriptor=%d\n", txRegOffset, val, descriptor);
2472 
2473         /* handle Dump Tally Counters command */
2474         s->TxStatus[descriptor] = val;
2475 
2476         if (descriptor == 0 && (val & 0x8))
2477         {
2478             hwaddr tc_addr = rtl8139_addr64(s->TxStatus[0] & ~0x3f, s->TxStatus[1]);
2479 
2480             /* dump tally counters to specified memory location */
2481             RTL8139TallyCounters_dma_write(s, tc_addr);
2482 
2483             /* mark dump completed */
2484             s->TxStatus[0] &= ~0x8;
2485         }
2486 
2487         return;
2488     }
2489 
2490     DPRINTF("TxStatus write offset=0x%x val=0x%08x descriptor=%d\n",
2491         txRegOffset, val, descriptor);
2492 
2493     /* mask only reserved bits */
2494     val &= ~0xff00c000; /* these bits are reset on write */
2495     val = SET_MASKED(val, 0x00c00000, s->TxStatus[descriptor]);
2496 
2497     s->TxStatus[descriptor] = val;
2498 
2499     /* attempt to start transmission */
2500     rtl8139_transmit(s);
2501 }
2502 
2503 static uint32_t rtl8139_TxStatus_TxAddr_read(RTL8139State *s, uint32_t regs[],
2504                                              uint32_t base, uint8_t addr,
2505                                              int size)
2506 {
2507     uint32_t reg = (addr - base) / 4;
2508     uint32_t offset = addr & 0x3;
2509     uint32_t ret = 0;
2510 
2511     if (addr & (size - 1)) {
2512         DPRINTF("not implemented read for TxStatus/TxAddr "
2513                 "addr=0x%x size=0x%x\n", addr, size);
2514         return ret;
2515     }
2516 
2517     switch (size) {
2518     case 1: /* fall through */
2519     case 2: /* fall through */
2520     case 4:
2521         ret = (regs[reg] >> offset * 8) & (((uint64_t)1 << (size * 8)) - 1);
2522         DPRINTF("TxStatus/TxAddr[%d] read addr=0x%x size=0x%x val=0x%08x\n",
2523                 reg, addr, size, ret);
2524         break;
2525     default:
2526         DPRINTF("unsupported size 0x%x of TxStatus/TxAddr reading\n", size);
2527         break;
2528     }
2529 
2530     return ret;
2531 }
2532 
2533 static uint16_t rtl8139_TSAD_read(RTL8139State *s)
2534 {
2535     uint16_t ret = 0;
2536 
2537     /* Simulate TSAD, it is read only anyway */
2538 
2539     ret = ((s->TxStatus[3] & TxStatOK  )?TSAD_TOK3:0)
2540          |((s->TxStatus[2] & TxStatOK  )?TSAD_TOK2:0)
2541          |((s->TxStatus[1] & TxStatOK  )?TSAD_TOK1:0)
2542          |((s->TxStatus[0] & TxStatOK  )?TSAD_TOK0:0)
2543 
2544          |((s->TxStatus[3] & TxUnderrun)?TSAD_TUN3:0)
2545          |((s->TxStatus[2] & TxUnderrun)?TSAD_TUN2:0)
2546          |((s->TxStatus[1] & TxUnderrun)?TSAD_TUN1:0)
2547          |((s->TxStatus[0] & TxUnderrun)?TSAD_TUN0:0)
2548 
2549          |((s->TxStatus[3] & TxAborted )?TSAD_TABT3:0)
2550          |((s->TxStatus[2] & TxAborted )?TSAD_TABT2:0)
2551          |((s->TxStatus[1] & TxAborted )?TSAD_TABT1:0)
2552          |((s->TxStatus[0] & TxAborted )?TSAD_TABT0:0)
2553 
2554          |((s->TxStatus[3] & TxHostOwns )?TSAD_OWN3:0)
2555          |((s->TxStatus[2] & TxHostOwns )?TSAD_OWN2:0)
2556          |((s->TxStatus[1] & TxHostOwns )?TSAD_OWN1:0)
2557          |((s->TxStatus[0] & TxHostOwns )?TSAD_OWN0:0) ;
2558 
2559 
2560     DPRINTF("TSAD read val=0x%04x\n", ret);
2561 
2562     return ret;
2563 }
2564 
2565 static uint16_t rtl8139_CSCR_read(RTL8139State *s)
2566 {
2567     uint16_t ret = s->CSCR;
2568 
2569     DPRINTF("CSCR read val=0x%04x\n", ret);
2570 
2571     return ret;
2572 }
2573 
2574 static void rtl8139_TxAddr_write(RTL8139State *s, uint32_t txAddrOffset, uint32_t val)
2575 {
2576     DPRINTF("TxAddr write offset=0x%x val=0x%08x\n", txAddrOffset, val);
2577 
2578     s->TxAddr[txAddrOffset/4] = val;
2579 }
2580 
2581 static uint32_t rtl8139_TxAddr_read(RTL8139State *s, uint32_t txAddrOffset)
2582 {
2583     uint32_t ret = s->TxAddr[txAddrOffset/4];
2584 
2585     DPRINTF("TxAddr read offset=0x%x val=0x%08x\n", txAddrOffset, ret);
2586 
2587     return ret;
2588 }
2589 
2590 static void rtl8139_RxBufPtr_write(RTL8139State *s, uint32_t val)
2591 {
2592     DPRINTF("RxBufPtr write val=0x%04x\n", val);
2593 
2594     /* this value is off by 16 */
2595     s->RxBufPtr = MOD2(val + 0x10, s->RxBufferSize);
2596 
2597     /* more buffer space may be available so try to receive */
2598     qemu_flush_queued_packets(qemu_get_queue(s->nic));
2599 
2600     DPRINTF(" CAPR write: rx buffer length %d head 0x%04x read 0x%04x\n",
2601         s->RxBufferSize, s->RxBufAddr, s->RxBufPtr);
2602 }
2603 
2604 static uint32_t rtl8139_RxBufPtr_read(RTL8139State *s)
2605 {
2606     /* this value is off by 16 */
2607     uint32_t ret = s->RxBufPtr - 0x10;
2608 
2609     DPRINTF("RxBufPtr read val=0x%04x\n", ret);
2610 
2611     return ret;
2612 }
2613 
2614 static uint32_t rtl8139_RxBufAddr_read(RTL8139State *s)
2615 {
2616     /* this value is NOT off by 16 */
2617     uint32_t ret = s->RxBufAddr;
2618 
2619     DPRINTF("RxBufAddr read val=0x%04x\n", ret);
2620 
2621     return ret;
2622 }
2623 
2624 static void rtl8139_RxBuf_write(RTL8139State *s, uint32_t val)
2625 {
2626     DPRINTF("RxBuf write val=0x%08x\n", val);
2627 
2628     s->RxBuf = val;
2629 
2630     /* may need to reset rxring here */
2631 }
2632 
2633 static uint32_t rtl8139_RxBuf_read(RTL8139State *s)
2634 {
2635     uint32_t ret = s->RxBuf;
2636 
2637     DPRINTF("RxBuf read val=0x%08x\n", ret);
2638 
2639     return ret;
2640 }
2641 
2642 static void rtl8139_IntrMask_write(RTL8139State *s, uint32_t val)
2643 {
2644     DPRINTF("IntrMask write(w) val=0x%04x\n", val);
2645 
2646     /* mask unwritable bits */
2647     val = SET_MASKED(val, 0x1e00, s->IntrMask);
2648 
2649     s->IntrMask = val;
2650 
2651     rtl8139_set_next_tctr_time(s, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
2652     rtl8139_update_irq(s);
2653 
2654 }
2655 
2656 static uint32_t rtl8139_IntrMask_read(RTL8139State *s)
2657 {
2658     uint32_t ret = s->IntrMask;
2659 
2660     DPRINTF("IntrMask read(w) val=0x%04x\n", ret);
2661 
2662     return ret;
2663 }
2664 
2665 static void rtl8139_IntrStatus_write(RTL8139State *s, uint32_t val)
2666 {
2667     DPRINTF("IntrStatus write(w) val=0x%04x\n", val);
2668 
2669 #if 0
2670 
2671     /* writing to ISR has no effect */
2672 
2673     return;
2674 
2675 #else
2676     uint16_t newStatus = s->IntrStatus & ~val;
2677 
2678     /* mask unwritable bits */
2679     newStatus = SET_MASKED(newStatus, 0x1e00, s->IntrStatus);
2680 
2681     /* writing 1 to interrupt status register bit clears it */
2682     s->IntrStatus = 0;
2683     rtl8139_update_irq(s);
2684 
2685     s->IntrStatus = newStatus;
2686     /*
2687      * Computing if we miss an interrupt here is not that correct but
2688      * considered that we should have had already an interrupt
2689      * and probably emulated is slower is better to assume this resetting was
2690      * done before testing on previous rtl8139_update_irq lead to IRQ losing
2691      */
2692     rtl8139_set_next_tctr_time(s, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
2693     rtl8139_update_irq(s);
2694 
2695 #endif
2696 }
2697 
2698 static uint32_t rtl8139_IntrStatus_read(RTL8139State *s)
2699 {
2700     rtl8139_set_next_tctr_time(s, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
2701 
2702     uint32_t ret = s->IntrStatus;
2703 
2704     DPRINTF("IntrStatus read(w) val=0x%04x\n", ret);
2705 
2706 #if 0
2707 
2708     /* reading ISR clears all interrupts */
2709     s->IntrStatus = 0;
2710 
2711     rtl8139_update_irq(s);
2712 
2713 #endif
2714 
2715     return ret;
2716 }
2717 
2718 static void rtl8139_MultiIntr_write(RTL8139State *s, uint32_t val)
2719 {
2720     DPRINTF("MultiIntr write(w) val=0x%04x\n", val);
2721 
2722     /* mask unwritable bits */
2723     val = SET_MASKED(val, 0xf000, s->MultiIntr);
2724 
2725     s->MultiIntr = val;
2726 }
2727 
2728 static uint32_t rtl8139_MultiIntr_read(RTL8139State *s)
2729 {
2730     uint32_t ret = s->MultiIntr;
2731 
2732     DPRINTF("MultiIntr read(w) val=0x%04x\n", ret);
2733 
2734     return ret;
2735 }
2736 
2737 static void rtl8139_io_writeb(void *opaque, uint8_t addr, uint32_t val)
2738 {
2739     RTL8139State *s = opaque;
2740 
2741     switch (addr)
2742     {
2743         case MAC0 ... MAC0+4:
2744             s->phys[addr - MAC0] = val;
2745             break;
2746         case MAC0+5:
2747             s->phys[addr - MAC0] = val;
2748             qemu_format_nic_info_str(qemu_get_queue(s->nic), s->phys);
2749             break;
2750         case MAC0+6 ... MAC0+7:
2751             /* reserved */
2752             break;
2753         case MAR0 ... MAR0+7:
2754             s->mult[addr - MAR0] = val;
2755             break;
2756         case ChipCmd:
2757             rtl8139_ChipCmd_write(s, val);
2758             break;
2759         case Cfg9346:
2760             rtl8139_Cfg9346_write(s, val);
2761             break;
2762         case TxConfig: /* windows driver sometimes writes using byte-lenth call */
2763             rtl8139_TxConfig_writeb(s, val);
2764             break;
2765         case Config0:
2766             rtl8139_Config0_write(s, val);
2767             break;
2768         case Config1:
2769             rtl8139_Config1_write(s, val);
2770             break;
2771         case Config3:
2772             rtl8139_Config3_write(s, val);
2773             break;
2774         case Config4:
2775             rtl8139_Config4_write(s, val);
2776             break;
2777         case Config5:
2778             rtl8139_Config5_write(s, val);
2779             break;
2780         case MediaStatus:
2781             /* ignore */
2782             DPRINTF("not implemented write(b) to MediaStatus val=0x%02x\n",
2783                 val);
2784             break;
2785 
2786         case HltClk:
2787             DPRINTF("HltClk write val=0x%08x\n", val);
2788             if (val == 'R')
2789             {
2790                 s->clock_enabled = 1;
2791             }
2792             else if (val == 'H')
2793             {
2794                 s->clock_enabled = 0;
2795             }
2796             break;
2797 
2798         case TxThresh:
2799             DPRINTF("C+ TxThresh write(b) val=0x%02x\n", val);
2800             s->TxThresh = val;
2801             break;
2802 
2803         case TxPoll:
2804             DPRINTF("C+ TxPoll write(b) val=0x%02x\n", val);
2805             if (val & (1 << 7))
2806             {
2807                 DPRINTF("C+ TxPoll high priority transmission (not "
2808                     "implemented)\n");
2809                 //rtl8139_cplus_transmit(s);
2810             }
2811             if (val & (1 << 6))
2812             {
2813                 DPRINTF("C+ TxPoll normal priority transmission\n");
2814                 rtl8139_cplus_transmit(s);
2815             }
2816 
2817             break;
2818 
2819         default:
2820             DPRINTF("not implemented write(b) addr=0x%x val=0x%02x\n", addr,
2821                 val);
2822             break;
2823     }
2824 }
2825 
2826 static void rtl8139_io_writew(void *opaque, uint8_t addr, uint32_t val)
2827 {
2828     RTL8139State *s = opaque;
2829 
2830     switch (addr)
2831     {
2832         case IntrMask:
2833             rtl8139_IntrMask_write(s, val);
2834             break;
2835 
2836         case IntrStatus:
2837             rtl8139_IntrStatus_write(s, val);
2838             break;
2839 
2840         case MultiIntr:
2841             rtl8139_MultiIntr_write(s, val);
2842             break;
2843 
2844         case RxBufPtr:
2845             rtl8139_RxBufPtr_write(s, val);
2846             break;
2847 
2848         case BasicModeCtrl:
2849             rtl8139_BasicModeCtrl_write(s, val);
2850             break;
2851         case BasicModeStatus:
2852             rtl8139_BasicModeStatus_write(s, val);
2853             break;
2854         case NWayAdvert:
2855             DPRINTF("NWayAdvert write(w) val=0x%04x\n", val);
2856             s->NWayAdvert = val;
2857             break;
2858         case NWayLPAR:
2859             DPRINTF("forbidden NWayLPAR write(w) val=0x%04x\n", val);
2860             break;
2861         case NWayExpansion:
2862             DPRINTF("NWayExpansion write(w) val=0x%04x\n", val);
2863             s->NWayExpansion = val;
2864             break;
2865 
2866         case CpCmd:
2867             rtl8139_CpCmd_write(s, val);
2868             break;
2869 
2870         case IntrMitigate:
2871             rtl8139_IntrMitigate_write(s, val);
2872             break;
2873 
2874         default:
2875             DPRINTF("ioport write(w) addr=0x%x val=0x%04x via write(b)\n",
2876                 addr, val);
2877 
2878             rtl8139_io_writeb(opaque, addr, val & 0xff);
2879             rtl8139_io_writeb(opaque, addr + 1, (val >> 8) & 0xff);
2880             break;
2881     }
2882 }
2883 
2884 static void rtl8139_set_next_tctr_time(RTL8139State *s, int64_t current_time)
2885 {
2886     int64_t pci_time, next_time;
2887     uint32_t low_pci;
2888 
2889     DPRINTF("entered rtl8139_set_next_tctr_time\n");
2890 
2891     if (s->TimerExpire && current_time >= s->TimerExpire) {
2892         s->IntrStatus |= PCSTimeout;
2893         rtl8139_update_irq(s);
2894     }
2895 
2896     /* Set QEMU timer only if needed that is
2897      * - TimerInt <> 0 (we have a timer)
2898      * - mask = 1 (we want an interrupt timer)
2899      * - irq = 0  (irq is not already active)
2900      * If any of above change we need to compute timer again
2901      * Also we must check if timer is passed without QEMU timer
2902      */
2903     s->TimerExpire = 0;
2904     if (!s->TimerInt) {
2905         return;
2906     }
2907 
2908     pci_time = muldiv64(current_time - s->TCTR_base, PCI_FREQUENCY,
2909                                 get_ticks_per_sec());
2910     low_pci = pci_time & 0xffffffff;
2911     pci_time = pci_time - low_pci + s->TimerInt;
2912     if (low_pci >= s->TimerInt) {
2913         pci_time += 0x100000000LL;
2914     }
2915     next_time = s->TCTR_base + muldiv64(pci_time, get_ticks_per_sec(),
2916                                                 PCI_FREQUENCY);
2917     s->TimerExpire = next_time;
2918 
2919     if ((s->IntrMask & PCSTimeout) != 0 && (s->IntrStatus & PCSTimeout) == 0) {
2920         timer_mod(s->timer, next_time);
2921     }
2922 }
2923 
2924 static void rtl8139_io_writel(void *opaque, uint8_t addr, uint32_t val)
2925 {
2926     RTL8139State *s = opaque;
2927 
2928     switch (addr)
2929     {
2930         case RxMissed:
2931             DPRINTF("RxMissed clearing on write\n");
2932             s->RxMissed = 0;
2933             break;
2934 
2935         case TxConfig:
2936             rtl8139_TxConfig_write(s, val);
2937             break;
2938 
2939         case RxConfig:
2940             rtl8139_RxConfig_write(s, val);
2941             break;
2942 
2943         case TxStatus0 ... TxStatus0+4*4-1:
2944             rtl8139_TxStatus_write(s, addr-TxStatus0, val);
2945             break;
2946 
2947         case TxAddr0 ... TxAddr0+4*4-1:
2948             rtl8139_TxAddr_write(s, addr-TxAddr0, val);
2949             break;
2950 
2951         case RxBuf:
2952             rtl8139_RxBuf_write(s, val);
2953             break;
2954 
2955         case RxRingAddrLO:
2956             DPRINTF("C+ RxRing low bits write val=0x%08x\n", val);
2957             s->RxRingAddrLO = val;
2958             break;
2959 
2960         case RxRingAddrHI:
2961             DPRINTF("C+ RxRing high bits write val=0x%08x\n", val);
2962             s->RxRingAddrHI = val;
2963             break;
2964 
2965         case Timer:
2966             DPRINTF("TCTR Timer reset on write\n");
2967             s->TCTR_base = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
2968             rtl8139_set_next_tctr_time(s, s->TCTR_base);
2969             break;
2970 
2971         case FlashReg:
2972             DPRINTF("FlashReg TimerInt write val=0x%08x\n", val);
2973             if (s->TimerInt != val) {
2974                 s->TimerInt = val;
2975                 rtl8139_set_next_tctr_time(s, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
2976             }
2977             break;
2978 
2979         default:
2980             DPRINTF("ioport write(l) addr=0x%x val=0x%08x via write(b)\n",
2981                 addr, val);
2982             rtl8139_io_writeb(opaque, addr, val & 0xff);
2983             rtl8139_io_writeb(opaque, addr + 1, (val >> 8) & 0xff);
2984             rtl8139_io_writeb(opaque, addr + 2, (val >> 16) & 0xff);
2985             rtl8139_io_writeb(opaque, addr + 3, (val >> 24) & 0xff);
2986             break;
2987     }
2988 }
2989 
2990 static uint32_t rtl8139_io_readb(void *opaque, uint8_t addr)
2991 {
2992     RTL8139State *s = opaque;
2993     int ret;
2994 
2995     switch (addr)
2996     {
2997         case MAC0 ... MAC0+5:
2998             ret = s->phys[addr - MAC0];
2999             break;
3000         case MAC0+6 ... MAC0+7:
3001             ret = 0;
3002             break;
3003         case MAR0 ... MAR0+7:
3004             ret = s->mult[addr - MAR0];
3005             break;
3006         case TxStatus0 ... TxStatus0+4*4-1:
3007             ret = rtl8139_TxStatus_TxAddr_read(s, s->TxStatus, TxStatus0,
3008                                                addr, 1);
3009             break;
3010         case ChipCmd:
3011             ret = rtl8139_ChipCmd_read(s);
3012             break;
3013         case Cfg9346:
3014             ret = rtl8139_Cfg9346_read(s);
3015             break;
3016         case Config0:
3017             ret = rtl8139_Config0_read(s);
3018             break;
3019         case Config1:
3020             ret = rtl8139_Config1_read(s);
3021             break;
3022         case Config3:
3023             ret = rtl8139_Config3_read(s);
3024             break;
3025         case Config4:
3026             ret = rtl8139_Config4_read(s);
3027             break;
3028         case Config5:
3029             ret = rtl8139_Config5_read(s);
3030             break;
3031 
3032         case MediaStatus:
3033             /* The LinkDown bit of MediaStatus is inverse with link status */
3034             ret = 0xd0 | (~s->BasicModeStatus & 0x04);
3035             DPRINTF("MediaStatus read 0x%x\n", ret);
3036             break;
3037 
3038         case HltClk:
3039             ret = s->clock_enabled;
3040             DPRINTF("HltClk read 0x%x\n", ret);
3041             break;
3042 
3043         case PCIRevisionID:
3044             ret = RTL8139_PCI_REVID;
3045             DPRINTF("PCI Revision ID read 0x%x\n", ret);
3046             break;
3047 
3048         case TxThresh:
3049             ret = s->TxThresh;
3050             DPRINTF("C+ TxThresh read(b) val=0x%02x\n", ret);
3051             break;
3052 
3053         case 0x43: /* Part of TxConfig register. Windows driver tries to read it */
3054             ret = s->TxConfig >> 24;
3055             DPRINTF("RTL8139C TxConfig at 0x43 read(b) val=0x%02x\n", ret);
3056             break;
3057 
3058         default:
3059             DPRINTF("not implemented read(b) addr=0x%x\n", addr);
3060             ret = 0;
3061             break;
3062     }
3063 
3064     return ret;
3065 }
3066 
3067 static uint32_t rtl8139_io_readw(void *opaque, uint8_t addr)
3068 {
3069     RTL8139State *s = opaque;
3070     uint32_t ret;
3071 
3072     switch (addr)
3073     {
3074         case TxAddr0 ... TxAddr0+4*4-1:
3075             ret = rtl8139_TxStatus_TxAddr_read(s, s->TxAddr, TxAddr0, addr, 2);
3076             break;
3077         case IntrMask:
3078             ret = rtl8139_IntrMask_read(s);
3079             break;
3080 
3081         case IntrStatus:
3082             ret = rtl8139_IntrStatus_read(s);
3083             break;
3084 
3085         case MultiIntr:
3086             ret = rtl8139_MultiIntr_read(s);
3087             break;
3088 
3089         case RxBufPtr:
3090             ret = rtl8139_RxBufPtr_read(s);
3091             break;
3092 
3093         case RxBufAddr:
3094             ret = rtl8139_RxBufAddr_read(s);
3095             break;
3096 
3097         case BasicModeCtrl:
3098             ret = rtl8139_BasicModeCtrl_read(s);
3099             break;
3100         case BasicModeStatus:
3101             ret = rtl8139_BasicModeStatus_read(s);
3102             break;
3103         case NWayAdvert:
3104             ret = s->NWayAdvert;
3105             DPRINTF("NWayAdvert read(w) val=0x%04x\n", ret);
3106             break;
3107         case NWayLPAR:
3108             ret = s->NWayLPAR;
3109             DPRINTF("NWayLPAR read(w) val=0x%04x\n", ret);
3110             break;
3111         case NWayExpansion:
3112             ret = s->NWayExpansion;
3113             DPRINTF("NWayExpansion read(w) val=0x%04x\n", ret);
3114             break;
3115 
3116         case CpCmd:
3117             ret = rtl8139_CpCmd_read(s);
3118             break;
3119 
3120         case IntrMitigate:
3121             ret = rtl8139_IntrMitigate_read(s);
3122             break;
3123 
3124         case TxSummary:
3125             ret = rtl8139_TSAD_read(s);
3126             break;
3127 
3128         case CSCR:
3129             ret = rtl8139_CSCR_read(s);
3130             break;
3131 
3132         default:
3133             DPRINTF("ioport read(w) addr=0x%x via read(b)\n", addr);
3134 
3135             ret  = rtl8139_io_readb(opaque, addr);
3136             ret |= rtl8139_io_readb(opaque, addr + 1) << 8;
3137 
3138             DPRINTF("ioport read(w) addr=0x%x val=0x%04x\n", addr, ret);
3139             break;
3140     }
3141 
3142     return ret;
3143 }
3144 
3145 static uint32_t rtl8139_io_readl(void *opaque, uint8_t addr)
3146 {
3147     RTL8139State *s = opaque;
3148     uint32_t ret;
3149 
3150     switch (addr)
3151     {
3152         case RxMissed:
3153             ret = s->RxMissed;
3154 
3155             DPRINTF("RxMissed read val=0x%08x\n", ret);
3156             break;
3157 
3158         case TxConfig:
3159             ret = rtl8139_TxConfig_read(s);
3160             break;
3161 
3162         case RxConfig:
3163             ret = rtl8139_RxConfig_read(s);
3164             break;
3165 
3166         case TxStatus0 ... TxStatus0+4*4-1:
3167             ret = rtl8139_TxStatus_TxAddr_read(s, s->TxStatus, TxStatus0,
3168                                                addr, 4);
3169             break;
3170 
3171         case TxAddr0 ... TxAddr0+4*4-1:
3172             ret = rtl8139_TxAddr_read(s, addr-TxAddr0);
3173             break;
3174 
3175         case RxBuf:
3176             ret = rtl8139_RxBuf_read(s);
3177             break;
3178 
3179         case RxRingAddrLO:
3180             ret = s->RxRingAddrLO;
3181             DPRINTF("C+ RxRing low bits read val=0x%08x\n", ret);
3182             break;
3183 
3184         case RxRingAddrHI:
3185             ret = s->RxRingAddrHI;
3186             DPRINTF("C+ RxRing high bits read val=0x%08x\n", ret);
3187             break;
3188 
3189         case Timer:
3190             ret = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - s->TCTR_base,
3191                            PCI_FREQUENCY, get_ticks_per_sec());
3192             DPRINTF("TCTR Timer read val=0x%08x\n", ret);
3193             break;
3194 
3195         case FlashReg:
3196             ret = s->TimerInt;
3197             DPRINTF("FlashReg TimerInt read val=0x%08x\n", ret);
3198             break;
3199 
3200         default:
3201             DPRINTF("ioport read(l) addr=0x%x via read(b)\n", addr);
3202 
3203             ret  = rtl8139_io_readb(opaque, addr);
3204             ret |= rtl8139_io_readb(opaque, addr + 1) << 8;
3205             ret |= rtl8139_io_readb(opaque, addr + 2) << 16;
3206             ret |= rtl8139_io_readb(opaque, addr + 3) << 24;
3207 
3208             DPRINTF("read(l) addr=0x%x val=%08x\n", addr, ret);
3209             break;
3210     }
3211 
3212     return ret;
3213 }
3214 
3215 /* */
3216 
3217 static void rtl8139_mmio_writeb(void *opaque, hwaddr addr, uint32_t val)
3218 {
3219     rtl8139_io_writeb(opaque, addr & 0xFF, val);
3220 }
3221 
3222 static void rtl8139_mmio_writew(void *opaque, hwaddr addr, uint32_t val)
3223 {
3224     rtl8139_io_writew(opaque, addr & 0xFF, val);
3225 }
3226 
3227 static void rtl8139_mmio_writel(void *opaque, hwaddr addr, uint32_t val)
3228 {
3229     rtl8139_io_writel(opaque, addr & 0xFF, val);
3230 }
3231 
3232 static uint32_t rtl8139_mmio_readb(void *opaque, hwaddr addr)
3233 {
3234     return rtl8139_io_readb(opaque, addr & 0xFF);
3235 }
3236 
3237 static uint32_t rtl8139_mmio_readw(void *opaque, hwaddr addr)
3238 {
3239     uint32_t val = rtl8139_io_readw(opaque, addr & 0xFF);
3240     return val;
3241 }
3242 
3243 static uint32_t rtl8139_mmio_readl(void *opaque, hwaddr addr)
3244 {
3245     uint32_t val = rtl8139_io_readl(opaque, addr & 0xFF);
3246     return val;
3247 }
3248 
3249 static int rtl8139_post_load(void *opaque, int version_id)
3250 {
3251     RTL8139State* s = opaque;
3252     rtl8139_set_next_tctr_time(s, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
3253     if (version_id < 4) {
3254         s->cplus_enabled = s->CpCmd != 0;
3255     }
3256 
3257     /* nc.link_down can't be migrated, so infer link_down according
3258      * to link status bit in BasicModeStatus */
3259     qemu_get_queue(s->nic)->link_down = (s->BasicModeStatus & 0x04) == 0;
3260 
3261     return 0;
3262 }
3263 
3264 static bool rtl8139_hotplug_ready_needed(void *opaque)
3265 {
3266     return qdev_machine_modified();
3267 }
3268 
3269 static const VMStateDescription vmstate_rtl8139_hotplug_ready ={
3270     .name = "rtl8139/hotplug_ready",
3271     .version_id = 1,
3272     .minimum_version_id = 1,
3273     .fields = (VMStateField[]) {
3274         VMSTATE_END_OF_LIST()
3275     }
3276 };
3277 
3278 static void rtl8139_pre_save(void *opaque)
3279 {
3280     RTL8139State* s = opaque;
3281     int64_t current_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
3282 
3283     /* set IntrStatus correctly */
3284     rtl8139_set_next_tctr_time(s, current_time);
3285     s->TCTR = muldiv64(current_time - s->TCTR_base, PCI_FREQUENCY,
3286                        get_ticks_per_sec());
3287     s->rtl8139_mmio_io_addr_dummy = 0;
3288 }
3289 
3290 static const VMStateDescription vmstate_rtl8139 = {
3291     .name = "rtl8139",
3292     .version_id = 4,
3293     .minimum_version_id = 3,
3294     .post_load = rtl8139_post_load,
3295     .pre_save  = rtl8139_pre_save,
3296     .fields = (VMStateField[]) {
3297         VMSTATE_PCI_DEVICE(parent_obj, RTL8139State),
3298         VMSTATE_PARTIAL_BUFFER(phys, RTL8139State, 6),
3299         VMSTATE_BUFFER(mult, RTL8139State),
3300         VMSTATE_UINT32_ARRAY(TxStatus, RTL8139State, 4),
3301         VMSTATE_UINT32_ARRAY(TxAddr, RTL8139State, 4),
3302 
3303         VMSTATE_UINT32(RxBuf, RTL8139State),
3304         VMSTATE_UINT32(RxBufferSize, RTL8139State),
3305         VMSTATE_UINT32(RxBufPtr, RTL8139State),
3306         VMSTATE_UINT32(RxBufAddr, RTL8139State),
3307 
3308         VMSTATE_UINT16(IntrStatus, RTL8139State),
3309         VMSTATE_UINT16(IntrMask, RTL8139State),
3310 
3311         VMSTATE_UINT32(TxConfig, RTL8139State),
3312         VMSTATE_UINT32(RxConfig, RTL8139State),
3313         VMSTATE_UINT32(RxMissed, RTL8139State),
3314         VMSTATE_UINT16(CSCR, RTL8139State),
3315 
3316         VMSTATE_UINT8(Cfg9346, RTL8139State),
3317         VMSTATE_UINT8(Config0, RTL8139State),
3318         VMSTATE_UINT8(Config1, RTL8139State),
3319         VMSTATE_UINT8(Config3, RTL8139State),
3320         VMSTATE_UINT8(Config4, RTL8139State),
3321         VMSTATE_UINT8(Config5, RTL8139State),
3322 
3323         VMSTATE_UINT8(clock_enabled, RTL8139State),
3324         VMSTATE_UINT8(bChipCmdState, RTL8139State),
3325 
3326         VMSTATE_UINT16(MultiIntr, RTL8139State),
3327 
3328         VMSTATE_UINT16(BasicModeCtrl, RTL8139State),
3329         VMSTATE_UINT16(BasicModeStatus, RTL8139State),
3330         VMSTATE_UINT16(NWayAdvert, RTL8139State),
3331         VMSTATE_UINT16(NWayLPAR, RTL8139State),
3332         VMSTATE_UINT16(NWayExpansion, RTL8139State),
3333 
3334         VMSTATE_UINT16(CpCmd, RTL8139State),
3335         VMSTATE_UINT8(TxThresh, RTL8139State),
3336 
3337         VMSTATE_UNUSED(4),
3338         VMSTATE_MACADDR(conf.macaddr, RTL8139State),
3339         VMSTATE_INT32(rtl8139_mmio_io_addr_dummy, RTL8139State),
3340 
3341         VMSTATE_UINT32(currTxDesc, RTL8139State),
3342         VMSTATE_UINT32(currCPlusRxDesc, RTL8139State),
3343         VMSTATE_UINT32(currCPlusTxDesc, RTL8139State),
3344         VMSTATE_UINT32(RxRingAddrLO, RTL8139State),
3345         VMSTATE_UINT32(RxRingAddrHI, RTL8139State),
3346 
3347         VMSTATE_UINT16_ARRAY(eeprom.contents, RTL8139State, EEPROM_9346_SIZE),
3348         VMSTATE_INT32(eeprom.mode, RTL8139State),
3349         VMSTATE_UINT32(eeprom.tick, RTL8139State),
3350         VMSTATE_UINT8(eeprom.address, RTL8139State),
3351         VMSTATE_UINT16(eeprom.input, RTL8139State),
3352         VMSTATE_UINT16(eeprom.output, RTL8139State),
3353 
3354         VMSTATE_UINT8(eeprom.eecs, RTL8139State),
3355         VMSTATE_UINT8(eeprom.eesk, RTL8139State),
3356         VMSTATE_UINT8(eeprom.eedi, RTL8139State),
3357         VMSTATE_UINT8(eeprom.eedo, RTL8139State),
3358 
3359         VMSTATE_UINT32(TCTR, RTL8139State),
3360         VMSTATE_UINT32(TimerInt, RTL8139State),
3361         VMSTATE_INT64(TCTR_base, RTL8139State),
3362 
3363         VMSTATE_STRUCT(tally_counters, RTL8139State, 0,
3364                        vmstate_tally_counters, RTL8139TallyCounters),
3365 
3366         VMSTATE_UINT32_V(cplus_enabled, RTL8139State, 4),
3367         VMSTATE_END_OF_LIST()
3368     },
3369     .subsections = (VMStateSubsection []) {
3370         {
3371             .vmsd = &vmstate_rtl8139_hotplug_ready,
3372             .needed = rtl8139_hotplug_ready_needed,
3373         }, {
3374             /* empty */
3375         }
3376     }
3377 };
3378 
3379 /***********************************************************/
3380 /* PCI RTL8139 definitions */
3381 
3382 static void rtl8139_ioport_write(void *opaque, hwaddr addr,
3383                                  uint64_t val, unsigned size)
3384 {
3385     switch (size) {
3386     case 1:
3387         rtl8139_io_writeb(opaque, addr, val);
3388         break;
3389     case 2:
3390         rtl8139_io_writew(opaque, addr, val);
3391         break;
3392     case 4:
3393         rtl8139_io_writel(opaque, addr, val);
3394         break;
3395     }
3396 }
3397 
3398 static uint64_t rtl8139_ioport_read(void *opaque, hwaddr addr,
3399                                     unsigned size)
3400 {
3401     switch (size) {
3402     case 1:
3403         return rtl8139_io_readb(opaque, addr);
3404     case 2:
3405         return rtl8139_io_readw(opaque, addr);
3406     case 4:
3407         return rtl8139_io_readl(opaque, addr);
3408     }
3409 
3410     return -1;
3411 }
3412 
3413 static const MemoryRegionOps rtl8139_io_ops = {
3414     .read = rtl8139_ioport_read,
3415     .write = rtl8139_ioport_write,
3416     .impl = {
3417         .min_access_size = 1,
3418         .max_access_size = 4,
3419     },
3420     .endianness = DEVICE_LITTLE_ENDIAN,
3421 };
3422 
3423 static const MemoryRegionOps rtl8139_mmio_ops = {
3424     .old_mmio = {
3425         .read = {
3426             rtl8139_mmio_readb,
3427             rtl8139_mmio_readw,
3428             rtl8139_mmio_readl,
3429         },
3430         .write = {
3431             rtl8139_mmio_writeb,
3432             rtl8139_mmio_writew,
3433             rtl8139_mmio_writel,
3434         },
3435     },
3436     .endianness = DEVICE_LITTLE_ENDIAN,
3437 };
3438 
3439 static void rtl8139_timer(void *opaque)
3440 {
3441     RTL8139State *s = opaque;
3442 
3443     if (!s->clock_enabled)
3444     {
3445         DPRINTF(">>> timer: clock is not running\n");
3446         return;
3447     }
3448 
3449     s->IntrStatus |= PCSTimeout;
3450     rtl8139_update_irq(s);
3451     rtl8139_set_next_tctr_time(s, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
3452 }
3453 
3454 static void rtl8139_cleanup(NetClientState *nc)
3455 {
3456     RTL8139State *s = qemu_get_nic_opaque(nc);
3457 
3458     s->nic = NULL;
3459 }
3460 
3461 static void pci_rtl8139_uninit(PCIDevice *dev)
3462 {
3463     RTL8139State *s = RTL8139(dev);
3464 
3465     if (s->cplus_txbuffer) {
3466         g_free(s->cplus_txbuffer);
3467         s->cplus_txbuffer = NULL;
3468     }
3469     timer_del(s->timer);
3470     timer_free(s->timer);
3471     qemu_del_nic(s->nic);
3472 }
3473 
3474 static void rtl8139_set_link_status(NetClientState *nc)
3475 {
3476     RTL8139State *s = qemu_get_nic_opaque(nc);
3477 
3478     if (nc->link_down) {
3479         s->BasicModeStatus &= ~0x04;
3480     } else {
3481         s->BasicModeStatus |= 0x04;
3482     }
3483 
3484     s->IntrStatus |= RxUnderrun;
3485     rtl8139_update_irq(s);
3486 }
3487 
3488 static NetClientInfo net_rtl8139_info = {
3489     .type = NET_CLIENT_OPTIONS_KIND_NIC,
3490     .size = sizeof(NICState),
3491     .can_receive = rtl8139_can_receive,
3492     .receive = rtl8139_receive,
3493     .cleanup = rtl8139_cleanup,
3494     .link_status_changed = rtl8139_set_link_status,
3495 };
3496 
3497 static int pci_rtl8139_init(PCIDevice *dev)
3498 {
3499     RTL8139State *s = RTL8139(dev);
3500     DeviceState *d = DEVICE(dev);
3501     uint8_t *pci_conf;
3502 
3503     pci_conf = dev->config;
3504     pci_conf[PCI_INTERRUPT_PIN] = 1;    /* interrupt pin A */
3505     /* TODO: start of capability list, but no capability
3506      * list bit in status register, and offset 0xdc seems unused. */
3507     pci_conf[PCI_CAPABILITY_LIST] = 0xdc;
3508 
3509     memory_region_init_io(&s->bar_io, OBJECT(s), &rtl8139_io_ops, s,
3510                           "rtl8139", 0x100);
3511     memory_region_init_io(&s->bar_mem, OBJECT(s), &rtl8139_mmio_ops, s,
3512                           "rtl8139", 0x100);
3513     pci_register_bar(dev, 0, PCI_BASE_ADDRESS_SPACE_IO, &s->bar_io);
3514     pci_register_bar(dev, 1, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->bar_mem);
3515 
3516     qemu_macaddr_default_if_unset(&s->conf.macaddr);
3517 
3518     /* prepare eeprom */
3519     s->eeprom.contents[0] = 0x8129;
3520 #if 1
3521     /* PCI vendor and device ID should be mirrored here */
3522     s->eeprom.contents[1] = PCI_VENDOR_ID_REALTEK;
3523     s->eeprom.contents[2] = PCI_DEVICE_ID_REALTEK_8139;
3524 #endif
3525     s->eeprom.contents[7] = s->conf.macaddr.a[0] | s->conf.macaddr.a[1] << 8;
3526     s->eeprom.contents[8] = s->conf.macaddr.a[2] | s->conf.macaddr.a[3] << 8;
3527     s->eeprom.contents[9] = s->conf.macaddr.a[4] | s->conf.macaddr.a[5] << 8;
3528 
3529     s->nic = qemu_new_nic(&net_rtl8139_info, &s->conf,
3530                           object_get_typename(OBJECT(dev)), d->id, s);
3531     qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a);
3532 
3533     s->cplus_txbuffer = NULL;
3534     s->cplus_txbuffer_len = 0;
3535     s->cplus_txbuffer_offset = 0;
3536 
3537     s->TimerExpire = 0;
3538     s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, rtl8139_timer, s);
3539     rtl8139_set_next_tctr_time(s, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
3540 
3541     return 0;
3542 }
3543 
3544 static void rtl8139_instance_init(Object *obj)
3545 {
3546     RTL8139State *s = RTL8139(obj);
3547 
3548     device_add_bootindex_property(obj, &s->conf.bootindex,
3549                                   "bootindex", "/ethernet-phy@0",
3550                                   DEVICE(obj), NULL);
3551 }
3552 
3553 static Property rtl8139_properties[] = {
3554     DEFINE_NIC_PROPERTIES(RTL8139State, conf),
3555     DEFINE_PROP_END_OF_LIST(),
3556 };
3557 
3558 static void rtl8139_class_init(ObjectClass *klass, void *data)
3559 {
3560     DeviceClass *dc = DEVICE_CLASS(klass);
3561     PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
3562 
3563     k->init = pci_rtl8139_init;
3564     k->exit = pci_rtl8139_uninit;
3565     k->romfile = "efi-rtl8139.rom";
3566     k->vendor_id = PCI_VENDOR_ID_REALTEK;
3567     k->device_id = PCI_DEVICE_ID_REALTEK_8139;
3568     k->revision = RTL8139_PCI_REVID; /* >=0x20 is for 8139C+ */
3569     k->class_id = PCI_CLASS_NETWORK_ETHERNET;
3570     dc->reset = rtl8139_reset;
3571     dc->vmsd = &vmstate_rtl8139;
3572     dc->props = rtl8139_properties;
3573     set_bit(DEVICE_CATEGORY_NETWORK, dc->categories);
3574 }
3575 
3576 static const TypeInfo rtl8139_info = {
3577     .name          = TYPE_RTL8139,
3578     .parent        = TYPE_PCI_DEVICE,
3579     .instance_size = sizeof(RTL8139State),
3580     .class_init    = rtl8139_class_init,
3581     .instance_init = rtl8139_instance_init,
3582 };
3583 
3584 static void rtl8139_register_types(void)
3585 {
3586     type_register_static(&rtl8139_info);
3587 }
3588 
3589 type_init(rtl8139_register_types)
3590