xref: /openbmc/qemu/hw/net/rtl8139.c (revision 8fa3b702)
1 /**
2  * QEMU RTL8139 emulation
3  *
4  * Copyright (c) 2006 Igor Kovalenko
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23 
24  * Modifications:
25  *  2006-Jan-28  Mark Malakanov :   TSAD and CSCR implementation (for Windows driver)
26  *
27  *  2006-Apr-28  Juergen Lock   :   EEPROM emulation changes for FreeBSD driver
28  *                                  HW revision ID changes for FreeBSD driver
29  *
30  *  2006-Jul-01  Igor Kovalenko :   Implemented loopback mode for FreeBSD driver
31  *                                  Corrected packet transfer reassembly routine for 8139C+ mode
32  *                                  Rearranged debugging print statements
33  *                                  Implemented PCI timer interrupt (disabled by default)
34  *                                  Implemented Tally Counters, increased VM load/save version
35  *                                  Implemented IP/TCP/UDP checksum task offloading
36  *
37  *  2006-Jul-04  Igor Kovalenko :   Implemented TCP segmentation offloading
38  *                                  Fixed MTU=1500 for produced ethernet frames
39  *
40  *  2006-Jul-09  Igor Kovalenko :   Fixed TCP header length calculation while processing
41  *                                  segmentation offloading
42  *                                  Removed slirp.h dependency
43  *                                  Added rx/tx buffer reset when enabling rx/tx operation
44  *
45  *  2010-Feb-04  Frediano Ziglio:   Rewrote timer support using QEMU timer only
46  *                                  when strictly needed (required for
47  *                                  Darwin)
48  *  2011-Mar-22  Benjamin Poirier:  Implemented VLAN offloading
49  */
50 
51 /* For crc32 */
52 
53 #include "qemu/osdep.h"
54 #include <zlib.h>
55 
56 #include "hw/pci/pci.h"
57 #include "hw/qdev-properties.h"
58 #include "migration/vmstate.h"
59 #include "sysemu/dma.h"
60 #include "qemu/module.h"
61 #include "qemu/timer.h"
62 #include "net/net.h"
63 #include "net/eth.h"
64 #include "sysemu/sysemu.h"
65 #include "qom/object.h"
66 
67 /* debug RTL8139 card */
68 //#define DEBUG_RTL8139 1
69 
70 #define PCI_PERIOD 30    /* 30 ns period = 33.333333 Mhz frequency */
71 
72 #define SET_MASKED(input, mask, curr) \
73     ( ( (input) & ~(mask) ) | ( (curr) & (mask) ) )
74 
75 /* arg % size for size which is a power of 2 */
76 #define MOD2(input, size) \
77     ( ( input ) & ( size - 1 )  )
78 
79 #define ETHER_TYPE_LEN 2
80 #define ETH_MTU     1500
81 
82 #define VLAN_TCI_LEN 2
83 #define VLAN_HLEN (ETHER_TYPE_LEN + VLAN_TCI_LEN)
84 
85 #if defined (DEBUG_RTL8139)
86 #  define DPRINTF(fmt, ...) \
87     do { fprintf(stderr, "RTL8139: " fmt, ## __VA_ARGS__); } while (0)
88 #else
89 static inline GCC_FMT_ATTR(1, 2) int DPRINTF(const char *fmt, ...)
90 {
91     return 0;
92 }
93 #endif
94 
95 #define TYPE_RTL8139 "rtl8139"
96 
97 typedef struct RTL8139State RTL8139State;
98 DECLARE_INSTANCE_CHECKER(RTL8139State, RTL8139,
99                          TYPE_RTL8139)
100 
101 /* Symbolic offsets to registers. */
102 enum RTL8139_registers {
103     MAC0 = 0,        /* Ethernet hardware address. */
104     MAR0 = 8,        /* Multicast filter. */
105     TxStatus0 = 0x10,/* Transmit status (Four 32bit registers). C mode only */
106                      /* Dump Tally Conter control register(64bit). C+ mode only */
107     TxAddr0 = 0x20,  /* Tx descriptors (also four 32bit). */
108     RxBuf = 0x30,
109     ChipCmd = 0x37,
110     RxBufPtr = 0x38,
111     RxBufAddr = 0x3A,
112     IntrMask = 0x3C,
113     IntrStatus = 0x3E,
114     TxConfig = 0x40,
115     RxConfig = 0x44,
116     Timer = 0x48,        /* A general-purpose counter. */
117     RxMissed = 0x4C,    /* 24 bits valid, write clears. */
118     Cfg9346 = 0x50,
119     Config0 = 0x51,
120     Config1 = 0x52,
121     FlashReg = 0x54,
122     MediaStatus = 0x58,
123     Config3 = 0x59,
124     Config4 = 0x5A,        /* absent on RTL-8139A */
125     HltClk = 0x5B,
126     MultiIntr = 0x5C,
127     PCIRevisionID = 0x5E,
128     TxSummary = 0x60, /* TSAD register. Transmit Status of All Descriptors*/
129     BasicModeCtrl = 0x62,
130     BasicModeStatus = 0x64,
131     NWayAdvert = 0x66,
132     NWayLPAR = 0x68,
133     NWayExpansion = 0x6A,
134     /* Undocumented registers, but required for proper operation. */
135     FIFOTMS = 0x70,        /* FIFO Control and test. */
136     CSCR = 0x74,        /* Chip Status and Configuration Register. */
137     PARA78 = 0x78,
138     PARA7c = 0x7c,        /* Magic transceiver parameter register. */
139     Config5 = 0xD8,        /* absent on RTL-8139A */
140     /* C+ mode */
141     TxPoll        = 0xD9,    /* Tell chip to check Tx descriptors for work */
142     RxMaxSize    = 0xDA, /* Max size of an Rx packet (8169 only) */
143     CpCmd        = 0xE0, /* C+ Command register (C+ mode only) */
144     IntrMitigate    = 0xE2,    /* rx/tx interrupt mitigation control */
145     RxRingAddrLO    = 0xE4, /* 64-bit start addr of Rx ring */
146     RxRingAddrHI    = 0xE8, /* 64-bit start addr of Rx ring */
147     TxThresh    = 0xEC, /* Early Tx threshold */
148 };
149 
150 enum ClearBitMasks {
151     MultiIntrClear = 0xF000,
152     ChipCmdClear = 0xE2,
153     Config1Clear = (1<<7)|(1<<6)|(1<<3)|(1<<2)|(1<<1),
154 };
155 
156 enum ChipCmdBits {
157     CmdReset = 0x10,
158     CmdRxEnb = 0x08,
159     CmdTxEnb = 0x04,
160     RxBufEmpty = 0x01,
161 };
162 
163 /* C+ mode */
164 enum CplusCmdBits {
165     CPlusRxVLAN   = 0x0040, /* enable receive VLAN detagging */
166     CPlusRxChkSum = 0x0020, /* enable receive checksum offloading */
167     CPlusRxEnb    = 0x0002,
168     CPlusTxEnb    = 0x0001,
169 };
170 
171 /* Interrupt register bits, using my own meaningful names. */
172 enum IntrStatusBits {
173     PCIErr = 0x8000,
174     PCSTimeout = 0x4000,
175     RxFIFOOver = 0x40,
176     RxUnderrun = 0x20, /* Packet Underrun / Link Change */
177     RxOverflow = 0x10,
178     TxErr = 0x08,
179     TxOK = 0x04,
180     RxErr = 0x02,
181     RxOK = 0x01,
182 
183     RxAckBits = RxFIFOOver | RxOverflow | RxOK,
184 };
185 
186 enum TxStatusBits {
187     TxHostOwns = 0x2000,
188     TxUnderrun = 0x4000,
189     TxStatOK = 0x8000,
190     TxOutOfWindow = 0x20000000,
191     TxAborted = 0x40000000,
192     TxCarrierLost = 0x80000000,
193 };
194 enum RxStatusBits {
195     RxMulticast = 0x8000,
196     RxPhysical = 0x4000,
197     RxBroadcast = 0x2000,
198     RxBadSymbol = 0x0020,
199     RxRunt = 0x0010,
200     RxTooLong = 0x0008,
201     RxCRCErr = 0x0004,
202     RxBadAlign = 0x0002,
203     RxStatusOK = 0x0001,
204 };
205 
206 /* Bits in RxConfig. */
207 enum rx_mode_bits {
208     AcceptErr = 0x20,
209     AcceptRunt = 0x10,
210     AcceptBroadcast = 0x08,
211     AcceptMulticast = 0x04,
212     AcceptMyPhys = 0x02,
213     AcceptAllPhys = 0x01,
214 };
215 
216 /* Bits in TxConfig. */
217 enum tx_config_bits {
218 
219         /* Interframe Gap Time. Only TxIFG96 doesn't violate IEEE 802.3 */
220         TxIFGShift = 24,
221         TxIFG84 = (0 << TxIFGShift),    /* 8.4us / 840ns (10 / 100Mbps) */
222         TxIFG88 = (1 << TxIFGShift),    /* 8.8us / 880ns (10 / 100Mbps) */
223         TxIFG92 = (2 << TxIFGShift),    /* 9.2us / 920ns (10 / 100Mbps) */
224         TxIFG96 = (3 << TxIFGShift),    /* 9.6us / 960ns (10 / 100Mbps) */
225 
226     TxLoopBack = (1 << 18) | (1 << 17), /* enable loopback test mode */
227     TxCRC = (1 << 16),    /* DISABLE appending CRC to end of Tx packets */
228     TxClearAbt = (1 << 0),    /* Clear abort (WO) */
229     TxDMAShift = 8,        /* DMA burst value (0-7) is shifted this many bits */
230     TxRetryShift = 4,    /* TXRR value (0-15) is shifted this many bits */
231 
232     TxVersionMask = 0x7C800000, /* mask out version bits 30-26, 23 */
233 };
234 
235 
236 /* Transmit Status of All Descriptors (TSAD) Register */
237 enum TSAD_bits {
238  TSAD_TOK3 = 1<<15, // TOK bit of Descriptor 3
239  TSAD_TOK2 = 1<<14, // TOK bit of Descriptor 2
240  TSAD_TOK1 = 1<<13, // TOK bit of Descriptor 1
241  TSAD_TOK0 = 1<<12, // TOK bit of Descriptor 0
242  TSAD_TUN3 = 1<<11, // TUN bit of Descriptor 3
243  TSAD_TUN2 = 1<<10, // TUN bit of Descriptor 2
244  TSAD_TUN1 = 1<<9, // TUN bit of Descriptor 1
245  TSAD_TUN0 = 1<<8, // TUN bit of Descriptor 0
246  TSAD_TABT3 = 1<<07, // TABT bit of Descriptor 3
247  TSAD_TABT2 = 1<<06, // TABT bit of Descriptor 2
248  TSAD_TABT1 = 1<<05, // TABT bit of Descriptor 1
249  TSAD_TABT0 = 1<<04, // TABT bit of Descriptor 0
250  TSAD_OWN3 = 1<<03, // OWN bit of Descriptor 3
251  TSAD_OWN2 = 1<<02, // OWN bit of Descriptor 2
252  TSAD_OWN1 = 1<<01, // OWN bit of Descriptor 1
253  TSAD_OWN0 = 1<<00, // OWN bit of Descriptor 0
254 };
255 
256 
257 /* Bits in Config1 */
258 enum Config1Bits {
259     Cfg1_PM_Enable = 0x01,
260     Cfg1_VPD_Enable = 0x02,
261     Cfg1_PIO = 0x04,
262     Cfg1_MMIO = 0x08,
263     LWAKE = 0x10,        /* not on 8139, 8139A */
264     Cfg1_Driver_Load = 0x20,
265     Cfg1_LED0 = 0x40,
266     Cfg1_LED1 = 0x80,
267     SLEEP = (1 << 1),    /* only on 8139, 8139A */
268     PWRDN = (1 << 0),    /* only on 8139, 8139A */
269 };
270 
271 /* Bits in Config3 */
272 enum Config3Bits {
273     Cfg3_FBtBEn    = (1 << 0), /* 1 = Fast Back to Back */
274     Cfg3_FuncRegEn = (1 << 1), /* 1 = enable CardBus Function registers */
275     Cfg3_CLKRUN_En = (1 << 2), /* 1 = enable CLKRUN */
276     Cfg3_CardB_En  = (1 << 3), /* 1 = enable CardBus registers */
277     Cfg3_LinkUp    = (1 << 4), /* 1 = wake up on link up */
278     Cfg3_Magic     = (1 << 5), /* 1 = wake up on Magic Packet (tm) */
279     Cfg3_PARM_En   = (1 << 6), /* 0 = software can set twister parameters */
280     Cfg3_GNTSel    = (1 << 7), /* 1 = delay 1 clock from PCI GNT signal */
281 };
282 
283 /* Bits in Config4 */
284 enum Config4Bits {
285     LWPTN = (1 << 2),    /* not on 8139, 8139A */
286 };
287 
288 /* Bits in Config5 */
289 enum Config5Bits {
290     Cfg5_PME_STS     = (1 << 0), /* 1 = PCI reset resets PME_Status */
291     Cfg5_LANWake     = (1 << 1), /* 1 = enable LANWake signal */
292     Cfg5_LDPS        = (1 << 2), /* 0 = save power when link is down */
293     Cfg5_FIFOAddrPtr = (1 << 3), /* Realtek internal SRAM testing */
294     Cfg5_UWF         = (1 << 4), /* 1 = accept unicast wakeup frame */
295     Cfg5_MWF         = (1 << 5), /* 1 = accept multicast wakeup frame */
296     Cfg5_BWF         = (1 << 6), /* 1 = accept broadcast wakeup frame */
297 };
298 
299 enum RxConfigBits {
300     /* rx fifo threshold */
301     RxCfgFIFOShift = 13,
302     RxCfgFIFONone = (7 << RxCfgFIFOShift),
303 
304     /* Max DMA burst */
305     RxCfgDMAShift = 8,
306     RxCfgDMAUnlimited = (7 << RxCfgDMAShift),
307 
308     /* rx ring buffer length */
309     RxCfgRcv8K = 0,
310     RxCfgRcv16K = (1 << 11),
311     RxCfgRcv32K = (1 << 12),
312     RxCfgRcv64K = (1 << 11) | (1 << 12),
313 
314     /* Disable packet wrap at end of Rx buffer. (not possible with 64k) */
315     RxNoWrap = (1 << 7),
316 };
317 
318 /* Twister tuning parameters from RealTek.
319    Completely undocumented, but required to tune bad links on some boards. */
320 /*
321 enum CSCRBits {
322     CSCR_LinkOKBit = 0x0400,
323     CSCR_LinkChangeBit = 0x0800,
324     CSCR_LinkStatusBits = 0x0f000,
325     CSCR_LinkDownOffCmd = 0x003c0,
326     CSCR_LinkDownCmd = 0x0f3c0,
327 */
328 enum CSCRBits {
329     CSCR_Testfun = 1<<15, /* 1 = Auto-neg speeds up internal timer, WO, def 0 */
330     CSCR_LD  = 1<<9,  /* Active low TPI link disable signal. When low, TPI still transmits link pulses and TPI stays in good link state. def 1*/
331     CSCR_HEART_BIT = 1<<8,  /* 1 = HEART BEAT enable, 0 = HEART BEAT disable. HEART BEAT function is only valid in 10Mbps mode. def 1*/
332     CSCR_JBEN = 1<<7,  /* 1 = enable jabber function. 0 = disable jabber function, def 1*/
333     CSCR_F_LINK_100 = 1<<6, /* Used to login force good link in 100Mbps for diagnostic purposes. 1 = DISABLE, 0 = ENABLE. def 1*/
334     CSCR_F_Connect  = 1<<5,  /* Assertion of this bit forces the disconnect function to be bypassed. def 0*/
335     CSCR_Con_status = 1<<3, /* This bit indicates the status of the connection. 1 = valid connected link detected; 0 = disconnected link detected. RO def 0*/
336     CSCR_Con_status_En = 1<<2, /* Assertion of this bit configures LED1 pin to indicate connection status. def 0*/
337     CSCR_PASS_SCR = 1<<0, /* Bypass Scramble, def 0*/
338 };
339 
340 enum Cfg9346Bits {
341     Cfg9346_Normal = 0x00,
342     Cfg9346_Autoload = 0x40,
343     Cfg9346_Programming = 0x80,
344     Cfg9346_ConfigWrite = 0xC0,
345 };
346 
347 typedef enum {
348     CH_8139 = 0,
349     CH_8139_K,
350     CH_8139A,
351     CH_8139A_G,
352     CH_8139B,
353     CH_8130,
354     CH_8139C,
355     CH_8100,
356     CH_8100B_8139D,
357     CH_8101,
358 } chip_t;
359 
360 enum chip_flags {
361     HasHltClk = (1 << 0),
362     HasLWake = (1 << 1),
363 };
364 
365 #define HW_REVID(b30, b29, b28, b27, b26, b23, b22) \
366     (b30<<30 | b29<<29 | b28<<28 | b27<<27 | b26<<26 | b23<<23 | b22<<22)
367 #define HW_REVID_MASK    HW_REVID(1, 1, 1, 1, 1, 1, 1)
368 
369 #define RTL8139_PCI_REVID_8139      0x10
370 #define RTL8139_PCI_REVID_8139CPLUS 0x20
371 
372 #define RTL8139_PCI_REVID           RTL8139_PCI_REVID_8139CPLUS
373 
374 /* Size is 64 * 16bit words */
375 #define EEPROM_9346_ADDR_BITS 6
376 #define EEPROM_9346_SIZE  (1 << EEPROM_9346_ADDR_BITS)
377 #define EEPROM_9346_ADDR_MASK (EEPROM_9346_SIZE - 1)
378 
379 enum Chip9346Operation
380 {
381     Chip9346_op_mask = 0xc0,          /* 10 zzzzzz */
382     Chip9346_op_read = 0x80,          /* 10 AAAAAA */
383     Chip9346_op_write = 0x40,         /* 01 AAAAAA D(15)..D(0) */
384     Chip9346_op_ext_mask = 0xf0,      /* 11 zzzzzz */
385     Chip9346_op_write_enable = 0x30,  /* 00 11zzzz */
386     Chip9346_op_write_all = 0x10,     /* 00 01zzzz */
387     Chip9346_op_write_disable = 0x00, /* 00 00zzzz */
388 };
389 
390 enum Chip9346Mode
391 {
392     Chip9346_none = 0,
393     Chip9346_enter_command_mode,
394     Chip9346_read_command,
395     Chip9346_data_read,      /* from output register */
396     Chip9346_data_write,     /* to input register, then to contents at specified address */
397     Chip9346_data_write_all, /* to input register, then filling contents */
398 };
399 
400 typedef struct EEprom9346
401 {
402     uint16_t contents[EEPROM_9346_SIZE];
403     int      mode;
404     uint32_t tick;
405     uint8_t  address;
406     uint16_t input;
407     uint16_t output;
408 
409     uint8_t eecs;
410     uint8_t eesk;
411     uint8_t eedi;
412     uint8_t eedo;
413 } EEprom9346;
414 
415 typedef struct RTL8139TallyCounters
416 {
417     /* Tally counters */
418     uint64_t   TxOk;
419     uint64_t   RxOk;
420     uint64_t   TxERR;
421     uint32_t   RxERR;
422     uint16_t   MissPkt;
423     uint16_t   FAE;
424     uint32_t   Tx1Col;
425     uint32_t   TxMCol;
426     uint64_t   RxOkPhy;
427     uint64_t   RxOkBrd;
428     uint32_t   RxOkMul;
429     uint16_t   TxAbt;
430     uint16_t   TxUndrn;
431 } RTL8139TallyCounters;
432 
433 /* Clears all tally counters */
434 static void RTL8139TallyCounters_clear(RTL8139TallyCounters* counters);
435 
436 struct RTL8139State {
437     /*< private >*/
438     PCIDevice parent_obj;
439     /*< public >*/
440 
441     uint8_t phys[8]; /* mac address */
442     uint8_t mult[8]; /* multicast mask array */
443 
444     uint32_t TxStatus[4]; /* TxStatus0 in C mode*/ /* also DTCCR[0] and DTCCR[1] in C+ mode */
445     uint32_t TxAddr[4];   /* TxAddr0 */
446     uint32_t RxBuf;       /* Receive buffer */
447     uint32_t RxBufferSize;/* internal variable, receive ring buffer size in C mode */
448     uint32_t RxBufPtr;
449     uint32_t RxBufAddr;
450 
451     uint16_t IntrStatus;
452     uint16_t IntrMask;
453 
454     uint32_t TxConfig;
455     uint32_t RxConfig;
456     uint32_t RxMissed;
457 
458     uint16_t CSCR;
459 
460     uint8_t  Cfg9346;
461     uint8_t  Config0;
462     uint8_t  Config1;
463     uint8_t  Config3;
464     uint8_t  Config4;
465     uint8_t  Config5;
466 
467     uint8_t  clock_enabled;
468     uint8_t  bChipCmdState;
469 
470     uint16_t MultiIntr;
471 
472     uint16_t BasicModeCtrl;
473     uint16_t BasicModeStatus;
474     uint16_t NWayAdvert;
475     uint16_t NWayLPAR;
476     uint16_t NWayExpansion;
477 
478     uint16_t CpCmd;
479     uint8_t  TxThresh;
480 
481     NICState *nic;
482     NICConf conf;
483 
484     /* C ring mode */
485     uint32_t   currTxDesc;
486 
487     /* C+ mode */
488     uint32_t   cplus_enabled;
489 
490     uint32_t   currCPlusRxDesc;
491     uint32_t   currCPlusTxDesc;
492 
493     uint32_t   RxRingAddrLO;
494     uint32_t   RxRingAddrHI;
495 
496     EEprom9346 eeprom;
497 
498     uint32_t   TCTR;
499     uint32_t   TimerInt;
500     int64_t    TCTR_base;
501 
502     /* Tally counters */
503     RTL8139TallyCounters tally_counters;
504 
505     /* Non-persistent data */
506     uint8_t   *cplus_txbuffer;
507     int        cplus_txbuffer_len;
508     int        cplus_txbuffer_offset;
509 
510     /* PCI interrupt timer */
511     QEMUTimer *timer;
512 
513     MemoryRegion bar_io;
514     MemoryRegion bar_mem;
515 
516     /* Support migration to/from old versions */
517     int rtl8139_mmio_io_addr_dummy;
518 };
519 
520 /* Writes tally counters to memory via DMA */
521 static void RTL8139TallyCounters_dma_write(RTL8139State *s, dma_addr_t tc_addr);
522 
523 static void rtl8139_set_next_tctr_time(RTL8139State *s);
524 
525 static void prom9346_decode_command(EEprom9346 *eeprom, uint8_t command)
526 {
527     DPRINTF("eeprom command 0x%02x\n", command);
528 
529     switch (command & Chip9346_op_mask)
530     {
531         case Chip9346_op_read:
532         {
533             eeprom->address = command & EEPROM_9346_ADDR_MASK;
534             eeprom->output = eeprom->contents[eeprom->address];
535             eeprom->eedo = 0;
536             eeprom->tick = 0;
537             eeprom->mode = Chip9346_data_read;
538             DPRINTF("eeprom read from address 0x%02x data=0x%04x\n",
539                 eeprom->address, eeprom->output);
540         }
541         break;
542 
543         case Chip9346_op_write:
544         {
545             eeprom->address = command & EEPROM_9346_ADDR_MASK;
546             eeprom->input = 0;
547             eeprom->tick = 0;
548             eeprom->mode = Chip9346_none; /* Chip9346_data_write */
549             DPRINTF("eeprom begin write to address 0x%02x\n",
550                 eeprom->address);
551         }
552         break;
553         default:
554             eeprom->mode = Chip9346_none;
555             switch (command & Chip9346_op_ext_mask)
556             {
557                 case Chip9346_op_write_enable:
558                     DPRINTF("eeprom write enabled\n");
559                     break;
560                 case Chip9346_op_write_all:
561                     DPRINTF("eeprom begin write all\n");
562                     break;
563                 case Chip9346_op_write_disable:
564                     DPRINTF("eeprom write disabled\n");
565                     break;
566             }
567             break;
568     }
569 }
570 
571 static void prom9346_shift_clock(EEprom9346 *eeprom)
572 {
573     int bit = eeprom->eedi?1:0;
574 
575     ++ eeprom->tick;
576 
577     DPRINTF("eeprom: tick %d eedi=%d eedo=%d\n", eeprom->tick, eeprom->eedi,
578         eeprom->eedo);
579 
580     switch (eeprom->mode)
581     {
582         case Chip9346_enter_command_mode:
583             if (bit)
584             {
585                 eeprom->mode = Chip9346_read_command;
586                 eeprom->tick = 0;
587                 eeprom->input = 0;
588                 DPRINTF("eeprom: +++ synchronized, begin command read\n");
589             }
590             break;
591 
592         case Chip9346_read_command:
593             eeprom->input = (eeprom->input << 1) | (bit & 1);
594             if (eeprom->tick == 8)
595             {
596                 prom9346_decode_command(eeprom, eeprom->input & 0xff);
597             }
598             break;
599 
600         case Chip9346_data_read:
601             eeprom->eedo = (eeprom->output & 0x8000)?1:0;
602             eeprom->output <<= 1;
603             if (eeprom->tick == 16)
604             {
605 #if 1
606         // the FreeBSD drivers (rl and re) don't explicitly toggle
607         // CS between reads (or does setting Cfg9346 to 0 count too?),
608         // so we need to enter wait-for-command state here
609                 eeprom->mode = Chip9346_enter_command_mode;
610                 eeprom->input = 0;
611                 eeprom->tick = 0;
612 
613                 DPRINTF("eeprom: +++ end of read, awaiting next command\n");
614 #else
615         // original behaviour
616                 ++eeprom->address;
617                 eeprom->address &= EEPROM_9346_ADDR_MASK;
618                 eeprom->output = eeprom->contents[eeprom->address];
619                 eeprom->tick = 0;
620 
621                 DPRINTF("eeprom: +++ read next address 0x%02x data=0x%04x\n",
622                     eeprom->address, eeprom->output);
623 #endif
624             }
625             break;
626 
627         case Chip9346_data_write:
628             eeprom->input = (eeprom->input << 1) | (bit & 1);
629             if (eeprom->tick == 16)
630             {
631                 DPRINTF("eeprom write to address 0x%02x data=0x%04x\n",
632                     eeprom->address, eeprom->input);
633 
634                 eeprom->contents[eeprom->address] = eeprom->input;
635                 eeprom->mode = Chip9346_none; /* waiting for next command after CS cycle */
636                 eeprom->tick = 0;
637                 eeprom->input = 0;
638             }
639             break;
640 
641         case Chip9346_data_write_all:
642             eeprom->input = (eeprom->input << 1) | (bit & 1);
643             if (eeprom->tick == 16)
644             {
645                 int i;
646                 for (i = 0; i < EEPROM_9346_SIZE; i++)
647                 {
648                     eeprom->contents[i] = eeprom->input;
649                 }
650                 DPRINTF("eeprom filled with data=0x%04x\n", eeprom->input);
651 
652                 eeprom->mode = Chip9346_enter_command_mode;
653                 eeprom->tick = 0;
654                 eeprom->input = 0;
655             }
656             break;
657 
658         default:
659             break;
660     }
661 }
662 
663 static int prom9346_get_wire(RTL8139State *s)
664 {
665     EEprom9346 *eeprom = &s->eeprom;
666     if (!eeprom->eecs)
667         return 0;
668 
669     return eeprom->eedo;
670 }
671 
672 /* FIXME: This should be merged into/replaced by eeprom93xx.c.  */
673 static void prom9346_set_wire(RTL8139State *s, int eecs, int eesk, int eedi)
674 {
675     EEprom9346 *eeprom = &s->eeprom;
676     uint8_t old_eecs = eeprom->eecs;
677     uint8_t old_eesk = eeprom->eesk;
678 
679     eeprom->eecs = eecs;
680     eeprom->eesk = eesk;
681     eeprom->eedi = eedi;
682 
683     DPRINTF("eeprom: +++ wires CS=%d SK=%d DI=%d DO=%d\n", eeprom->eecs,
684         eeprom->eesk, eeprom->eedi, eeprom->eedo);
685 
686     if (!old_eecs && eecs)
687     {
688         /* Synchronize start */
689         eeprom->tick = 0;
690         eeprom->input = 0;
691         eeprom->output = 0;
692         eeprom->mode = Chip9346_enter_command_mode;
693 
694         DPRINTF("=== eeprom: begin access, enter command mode\n");
695     }
696 
697     if (!eecs)
698     {
699         DPRINTF("=== eeprom: end access\n");
700         return;
701     }
702 
703     if (!old_eesk && eesk)
704     {
705         /* SK front rules */
706         prom9346_shift_clock(eeprom);
707     }
708 }
709 
710 static void rtl8139_update_irq(RTL8139State *s)
711 {
712     PCIDevice *d = PCI_DEVICE(s);
713     int isr;
714     isr = (s->IntrStatus & s->IntrMask) & 0xffff;
715 
716     DPRINTF("Set IRQ to %d (%04x %04x)\n", isr ? 1 : 0, s->IntrStatus,
717         s->IntrMask);
718 
719     pci_set_irq(d, (isr != 0));
720 }
721 
722 static int rtl8139_RxWrap(RTL8139State *s)
723 {
724     /* wrapping enabled; assume 1.5k more buffer space if size < 65536 */
725     return (s->RxConfig & (1 << 7));
726 }
727 
728 static int rtl8139_receiver_enabled(RTL8139State *s)
729 {
730     return s->bChipCmdState & CmdRxEnb;
731 }
732 
733 static int rtl8139_transmitter_enabled(RTL8139State *s)
734 {
735     return s->bChipCmdState & CmdTxEnb;
736 }
737 
738 static int rtl8139_cp_receiver_enabled(RTL8139State *s)
739 {
740     return s->CpCmd & CPlusRxEnb;
741 }
742 
743 static int rtl8139_cp_transmitter_enabled(RTL8139State *s)
744 {
745     return s->CpCmd & CPlusTxEnb;
746 }
747 
748 static void rtl8139_write_buffer(RTL8139State *s, const void *buf, int size)
749 {
750     PCIDevice *d = PCI_DEVICE(s);
751 
752     if (s->RxBufAddr + size > s->RxBufferSize)
753     {
754         int wrapped = MOD2(s->RxBufAddr + size, s->RxBufferSize);
755 
756         /* write packet data */
757         if (wrapped && !(s->RxBufferSize < 65536 && rtl8139_RxWrap(s)))
758         {
759             DPRINTF(">>> rx packet wrapped in buffer at %d\n", size - wrapped);
760 
761             if (size > wrapped)
762             {
763                 pci_dma_write(d, s->RxBuf + s->RxBufAddr,
764                               buf, size-wrapped);
765             }
766 
767             /* reset buffer pointer */
768             s->RxBufAddr = 0;
769 
770             pci_dma_write(d, s->RxBuf + s->RxBufAddr,
771                           buf + (size-wrapped), wrapped);
772 
773             s->RxBufAddr = wrapped;
774 
775             return;
776         }
777     }
778 
779     /* non-wrapping path or overwrapping enabled */
780     pci_dma_write(d, s->RxBuf + s->RxBufAddr, buf, size);
781 
782     s->RxBufAddr += size;
783 }
784 
785 #define MIN_BUF_SIZE 60
786 static inline dma_addr_t rtl8139_addr64(uint32_t low, uint32_t high)
787 {
788     return low | ((uint64_t)high << 32);
789 }
790 
791 /* Workaround for buggy guest driver such as linux who allocates rx
792  * rings after the receiver were enabled. */
793 static bool rtl8139_cp_rx_valid(RTL8139State *s)
794 {
795     return !(s->RxRingAddrLO == 0 && s->RxRingAddrHI == 0);
796 }
797 
798 static bool rtl8139_can_receive(NetClientState *nc)
799 {
800     RTL8139State *s = qemu_get_nic_opaque(nc);
801     int avail;
802 
803     /* Receive (drop) packets if card is disabled.  */
804     if (!s->clock_enabled) {
805         return true;
806     }
807     if (!rtl8139_receiver_enabled(s)) {
808         return true;
809     }
810 
811     if (rtl8139_cp_receiver_enabled(s) && rtl8139_cp_rx_valid(s)) {
812         /* ??? Flow control not implemented in c+ mode.
813            This is a hack to work around slirp deficiencies anyway.  */
814         return true;
815     }
816 
817     avail = MOD2(s->RxBufferSize + s->RxBufPtr - s->RxBufAddr,
818                  s->RxBufferSize);
819     return avail == 0 || avail >= 1514 || (s->IntrMask & RxOverflow);
820 }
821 
822 static ssize_t rtl8139_do_receive(NetClientState *nc, const uint8_t *buf, size_t size_, int do_interrupt)
823 {
824     RTL8139State *s = qemu_get_nic_opaque(nc);
825     PCIDevice *d = PCI_DEVICE(s);
826     /* size is the length of the buffer passed to the driver */
827     size_t size = size_;
828     const uint8_t *dot1q_buf = NULL;
829 
830     uint32_t packet_header = 0;
831 
832     uint8_t buf1[MIN_BUF_SIZE + VLAN_HLEN];
833     static const uint8_t broadcast_macaddr[6] =
834         { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
835 
836     DPRINTF(">>> received len=%zu\n", size);
837 
838     /* test if board clock is stopped */
839     if (!s->clock_enabled)
840     {
841         DPRINTF("stopped ==========================\n");
842         return -1;
843     }
844 
845     /* first check if receiver is enabled */
846 
847     if (!rtl8139_receiver_enabled(s))
848     {
849         DPRINTF("receiver disabled ================\n");
850         return -1;
851     }
852 
853     /* XXX: check this */
854     if (s->RxConfig & AcceptAllPhys) {
855         /* promiscuous: receive all */
856         DPRINTF(">>> packet received in promiscuous mode\n");
857 
858     } else {
859         if (!memcmp(buf,  broadcast_macaddr, 6)) {
860             /* broadcast address */
861             if (!(s->RxConfig & AcceptBroadcast))
862             {
863                 DPRINTF(">>> broadcast packet rejected\n");
864 
865                 /* update tally counter */
866                 ++s->tally_counters.RxERR;
867 
868                 return size;
869             }
870 
871             packet_header |= RxBroadcast;
872 
873             DPRINTF(">>> broadcast packet received\n");
874 
875             /* update tally counter */
876             ++s->tally_counters.RxOkBrd;
877 
878         } else if (buf[0] & 0x01) {
879             /* multicast */
880             if (!(s->RxConfig & AcceptMulticast))
881             {
882                 DPRINTF(">>> multicast packet rejected\n");
883 
884                 /* update tally counter */
885                 ++s->tally_counters.RxERR;
886 
887                 return size;
888             }
889 
890             int mcast_idx = net_crc32(buf, ETH_ALEN) >> 26;
891 
892             if (!(s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))))
893             {
894                 DPRINTF(">>> multicast address mismatch\n");
895 
896                 /* update tally counter */
897                 ++s->tally_counters.RxERR;
898 
899                 return size;
900             }
901 
902             packet_header |= RxMulticast;
903 
904             DPRINTF(">>> multicast packet received\n");
905 
906             /* update tally counter */
907             ++s->tally_counters.RxOkMul;
908 
909         } else if (s->phys[0] == buf[0] &&
910                    s->phys[1] == buf[1] &&
911                    s->phys[2] == buf[2] &&
912                    s->phys[3] == buf[3] &&
913                    s->phys[4] == buf[4] &&
914                    s->phys[5] == buf[5]) {
915             /* match */
916             if (!(s->RxConfig & AcceptMyPhys))
917             {
918                 DPRINTF(">>> rejecting physical address matching packet\n");
919 
920                 /* update tally counter */
921                 ++s->tally_counters.RxERR;
922 
923                 return size;
924             }
925 
926             packet_header |= RxPhysical;
927 
928             DPRINTF(">>> physical address matching packet received\n");
929 
930             /* update tally counter */
931             ++s->tally_counters.RxOkPhy;
932 
933         } else {
934 
935             DPRINTF(">>> unknown packet\n");
936 
937             /* update tally counter */
938             ++s->tally_counters.RxERR;
939 
940             return size;
941         }
942     }
943 
944     /* if too small buffer, then expand it
945      * Include some tailroom in case a vlan tag is later removed. */
946     if (size < MIN_BUF_SIZE + VLAN_HLEN) {
947         memcpy(buf1, buf, size);
948         memset(buf1 + size, 0, MIN_BUF_SIZE + VLAN_HLEN - size);
949         buf = buf1;
950         if (size < MIN_BUF_SIZE) {
951             size = MIN_BUF_SIZE;
952         }
953     }
954 
955     if (rtl8139_cp_receiver_enabled(s))
956     {
957         if (!rtl8139_cp_rx_valid(s)) {
958             return size;
959         }
960 
961         DPRINTF("in C+ Rx mode ================\n");
962 
963         /* begin C+ receiver mode */
964 
965 /* w0 ownership flag */
966 #define CP_RX_OWN (1<<31)
967 /* w0 end of ring flag */
968 #define CP_RX_EOR (1<<30)
969 /* w0 bits 0...12 : buffer size */
970 #define CP_RX_BUFFER_SIZE_MASK ((1<<13) - 1)
971 /* w1 tag available flag */
972 #define CP_RX_TAVA (1<<16)
973 /* w1 bits 0...15 : VLAN tag */
974 #define CP_RX_VLAN_TAG_MASK ((1<<16) - 1)
975 /* w2 low  32bit of Rx buffer ptr */
976 /* w3 high 32bit of Rx buffer ptr */
977 
978         int descriptor = s->currCPlusRxDesc;
979         dma_addr_t cplus_rx_ring_desc;
980 
981         cplus_rx_ring_desc = rtl8139_addr64(s->RxRingAddrLO, s->RxRingAddrHI);
982         cplus_rx_ring_desc += 16 * descriptor;
983 
984         DPRINTF("+++ C+ mode reading RX descriptor %d from host memory at "
985             "%08x %08x = "DMA_ADDR_FMT"\n", descriptor, s->RxRingAddrHI,
986             s->RxRingAddrLO, cplus_rx_ring_desc);
987 
988         uint32_t val, rxdw0,rxdw1,rxbufLO,rxbufHI;
989 
990         pci_dma_read(d, cplus_rx_ring_desc, &val, 4);
991         rxdw0 = le32_to_cpu(val);
992         pci_dma_read(d, cplus_rx_ring_desc+4, &val, 4);
993         rxdw1 = le32_to_cpu(val);
994         pci_dma_read(d, cplus_rx_ring_desc+8, &val, 4);
995         rxbufLO = le32_to_cpu(val);
996         pci_dma_read(d, cplus_rx_ring_desc+12, &val, 4);
997         rxbufHI = le32_to_cpu(val);
998 
999         DPRINTF("+++ C+ mode RX descriptor %d %08x %08x %08x %08x\n",
1000             descriptor, rxdw0, rxdw1, rxbufLO, rxbufHI);
1001 
1002         if (!(rxdw0 & CP_RX_OWN))
1003         {
1004             DPRINTF("C+ Rx mode : descriptor %d is owned by host\n",
1005                 descriptor);
1006 
1007             s->IntrStatus |= RxOverflow;
1008             ++s->RxMissed;
1009 
1010             /* update tally counter */
1011             ++s->tally_counters.RxERR;
1012             ++s->tally_counters.MissPkt;
1013 
1014             rtl8139_update_irq(s);
1015             return size_;
1016         }
1017 
1018         uint32_t rx_space = rxdw0 & CP_RX_BUFFER_SIZE_MASK;
1019 
1020         /* write VLAN info to descriptor variables. */
1021         if (s->CpCmd & CPlusRxVLAN &&
1022             lduw_be_p(&buf[ETH_ALEN * 2]) == ETH_P_VLAN) {
1023             dot1q_buf = &buf[ETH_ALEN * 2];
1024             size -= VLAN_HLEN;
1025             /* if too small buffer, use the tailroom added duing expansion */
1026             if (size < MIN_BUF_SIZE) {
1027                 size = MIN_BUF_SIZE;
1028             }
1029 
1030             rxdw1 &= ~CP_RX_VLAN_TAG_MASK;
1031             /* BE + ~le_to_cpu()~ + cpu_to_le() = BE */
1032             rxdw1 |= CP_RX_TAVA | lduw_le_p(&dot1q_buf[ETHER_TYPE_LEN]);
1033 
1034             DPRINTF("C+ Rx mode : extracted vlan tag with tci: ""%u\n",
1035                 lduw_be_p(&dot1q_buf[ETHER_TYPE_LEN]));
1036         } else {
1037             /* reset VLAN tag flag */
1038             rxdw1 &= ~CP_RX_TAVA;
1039         }
1040 
1041         /* TODO: scatter the packet over available receive ring descriptors space */
1042 
1043         if (size+4 > rx_space)
1044         {
1045             DPRINTF("C+ Rx mode : descriptor %d size %d received %zu + 4\n",
1046                 descriptor, rx_space, size);
1047 
1048             s->IntrStatus |= RxOverflow;
1049             ++s->RxMissed;
1050 
1051             /* update tally counter */
1052             ++s->tally_counters.RxERR;
1053             ++s->tally_counters.MissPkt;
1054 
1055             rtl8139_update_irq(s);
1056             return size_;
1057         }
1058 
1059         dma_addr_t rx_addr = rtl8139_addr64(rxbufLO, rxbufHI);
1060 
1061         /* receive/copy to target memory */
1062         if (dot1q_buf) {
1063             pci_dma_write(d, rx_addr, buf, 2 * ETH_ALEN);
1064             pci_dma_write(d, rx_addr + 2 * ETH_ALEN,
1065                           buf + 2 * ETH_ALEN + VLAN_HLEN,
1066                           size - 2 * ETH_ALEN);
1067         } else {
1068             pci_dma_write(d, rx_addr, buf, size);
1069         }
1070 
1071         if (s->CpCmd & CPlusRxChkSum)
1072         {
1073             /* do some packet checksumming */
1074         }
1075 
1076         /* write checksum */
1077         val = cpu_to_le32(crc32(0, buf, size_));
1078         pci_dma_write(d, rx_addr+size, (uint8_t *)&val, 4);
1079 
1080 /* first segment of received packet flag */
1081 #define CP_RX_STATUS_FS (1<<29)
1082 /* last segment of received packet flag */
1083 #define CP_RX_STATUS_LS (1<<28)
1084 /* multicast packet flag */
1085 #define CP_RX_STATUS_MAR (1<<26)
1086 /* physical-matching packet flag */
1087 #define CP_RX_STATUS_PAM (1<<25)
1088 /* broadcast packet flag */
1089 #define CP_RX_STATUS_BAR (1<<24)
1090 /* runt packet flag */
1091 #define CP_RX_STATUS_RUNT (1<<19)
1092 /* crc error flag */
1093 #define CP_RX_STATUS_CRC (1<<18)
1094 /* IP checksum error flag */
1095 #define CP_RX_STATUS_IPF (1<<15)
1096 /* UDP checksum error flag */
1097 #define CP_RX_STATUS_UDPF (1<<14)
1098 /* TCP checksum error flag */
1099 #define CP_RX_STATUS_TCPF (1<<13)
1100 
1101         /* transfer ownership to target */
1102         rxdw0 &= ~CP_RX_OWN;
1103 
1104         /* set first segment bit */
1105         rxdw0 |= CP_RX_STATUS_FS;
1106 
1107         /* set last segment bit */
1108         rxdw0 |= CP_RX_STATUS_LS;
1109 
1110         /* set received packet type flags */
1111         if (packet_header & RxBroadcast)
1112             rxdw0 |= CP_RX_STATUS_BAR;
1113         if (packet_header & RxMulticast)
1114             rxdw0 |= CP_RX_STATUS_MAR;
1115         if (packet_header & RxPhysical)
1116             rxdw0 |= CP_RX_STATUS_PAM;
1117 
1118         /* set received size */
1119         rxdw0 &= ~CP_RX_BUFFER_SIZE_MASK;
1120         rxdw0 |= (size+4);
1121 
1122         /* update ring data */
1123         val = cpu_to_le32(rxdw0);
1124         pci_dma_write(d, cplus_rx_ring_desc, (uint8_t *)&val, 4);
1125         val = cpu_to_le32(rxdw1);
1126         pci_dma_write(d, cplus_rx_ring_desc+4, (uint8_t *)&val, 4);
1127 
1128         /* update tally counter */
1129         ++s->tally_counters.RxOk;
1130 
1131         /* seek to next Rx descriptor */
1132         if (rxdw0 & CP_RX_EOR)
1133         {
1134             s->currCPlusRxDesc = 0;
1135         }
1136         else
1137         {
1138             ++s->currCPlusRxDesc;
1139         }
1140 
1141         DPRINTF("done C+ Rx mode ----------------\n");
1142 
1143     }
1144     else
1145     {
1146         DPRINTF("in ring Rx mode ================\n");
1147 
1148         /* begin ring receiver mode */
1149         int avail = MOD2(s->RxBufferSize + s->RxBufPtr - s->RxBufAddr, s->RxBufferSize);
1150 
1151         /* if receiver buffer is empty then avail == 0 */
1152 
1153 #define RX_ALIGN(x) (((x) + 3) & ~0x3)
1154 
1155         if (avail != 0 && RX_ALIGN(size + 8) >= avail)
1156         {
1157             DPRINTF("rx overflow: rx buffer length %d head 0x%04x "
1158                 "read 0x%04x === available 0x%04x need 0x%04zx\n",
1159                 s->RxBufferSize, s->RxBufAddr, s->RxBufPtr, avail, size + 8);
1160 
1161             s->IntrStatus |= RxOverflow;
1162             ++s->RxMissed;
1163             rtl8139_update_irq(s);
1164             return 0;
1165         }
1166 
1167         packet_header |= RxStatusOK;
1168 
1169         packet_header |= (((size+4) << 16) & 0xffff0000);
1170 
1171         /* write header */
1172         uint32_t val = cpu_to_le32(packet_header);
1173 
1174         rtl8139_write_buffer(s, (uint8_t *)&val, 4);
1175 
1176         rtl8139_write_buffer(s, buf, size);
1177 
1178         /* write checksum */
1179         val = cpu_to_le32(crc32(0, buf, size));
1180         rtl8139_write_buffer(s, (uint8_t *)&val, 4);
1181 
1182         /* correct buffer write pointer */
1183         s->RxBufAddr = MOD2(RX_ALIGN(s->RxBufAddr), s->RxBufferSize);
1184 
1185         /* now we can signal we have received something */
1186 
1187         DPRINTF("received: rx buffer length %d head 0x%04x read 0x%04x\n",
1188             s->RxBufferSize, s->RxBufAddr, s->RxBufPtr);
1189     }
1190 
1191     s->IntrStatus |= RxOK;
1192 
1193     if (do_interrupt)
1194     {
1195         rtl8139_update_irq(s);
1196     }
1197 
1198     return size_;
1199 }
1200 
1201 static ssize_t rtl8139_receive(NetClientState *nc, const uint8_t *buf, size_t size)
1202 {
1203     return rtl8139_do_receive(nc, buf, size, 1);
1204 }
1205 
1206 static void rtl8139_reset_rxring(RTL8139State *s, uint32_t bufferSize)
1207 {
1208     s->RxBufferSize = bufferSize;
1209     s->RxBufPtr  = 0;
1210     s->RxBufAddr = 0;
1211 }
1212 
1213 static void rtl8139_reset_phy(RTL8139State *s)
1214 {
1215     s->BasicModeStatus  = 0x7809;
1216     s->BasicModeStatus |= 0x0020; /* autonegotiation completed */
1217     /* preserve link state */
1218     s->BasicModeStatus |= qemu_get_queue(s->nic)->link_down ? 0 : 0x04;
1219 
1220     s->NWayAdvert    = 0x05e1; /* all modes, full duplex */
1221     s->NWayLPAR      = 0x05e1; /* all modes, full duplex */
1222     s->NWayExpansion = 0x0001; /* autonegotiation supported */
1223 
1224     s->CSCR = CSCR_F_LINK_100 | CSCR_HEART_BIT | CSCR_LD;
1225 }
1226 
1227 static void rtl8139_reset(DeviceState *d)
1228 {
1229     RTL8139State *s = RTL8139(d);
1230     int i;
1231 
1232     /* restore MAC address */
1233     memcpy(s->phys, s->conf.macaddr.a, 6);
1234     qemu_format_nic_info_str(qemu_get_queue(s->nic), s->phys);
1235 
1236     /* reset interrupt mask */
1237     s->IntrStatus = 0;
1238     s->IntrMask = 0;
1239 
1240     rtl8139_update_irq(s);
1241 
1242     /* mark all status registers as owned by host */
1243     for (i = 0; i < 4; ++i)
1244     {
1245         s->TxStatus[i] = TxHostOwns;
1246     }
1247 
1248     s->currTxDesc = 0;
1249     s->currCPlusRxDesc = 0;
1250     s->currCPlusTxDesc = 0;
1251 
1252     s->RxRingAddrLO = 0;
1253     s->RxRingAddrHI = 0;
1254 
1255     s->RxBuf = 0;
1256 
1257     rtl8139_reset_rxring(s, 8192);
1258 
1259     /* ACK the reset */
1260     s->TxConfig = 0;
1261 
1262 #if 0
1263 //    s->TxConfig |= HW_REVID(1, 0, 0, 0, 0, 0, 0); // RTL-8139  HasHltClk
1264     s->clock_enabled = 0;
1265 #else
1266     s->TxConfig |= HW_REVID(1, 1, 1, 0, 1, 1, 0); // RTL-8139C+ HasLWake
1267     s->clock_enabled = 1;
1268 #endif
1269 
1270     s->bChipCmdState = CmdReset; /* RxBufEmpty bit is calculated on read from ChipCmd */;
1271 
1272     /* set initial state data */
1273     s->Config0 = 0x0; /* No boot ROM */
1274     s->Config1 = 0xC; /* IO mapped and MEM mapped registers available */
1275     s->Config3 = 0x1; /* fast back-to-back compatible */
1276     s->Config5 = 0x0;
1277 
1278     s->CpCmd   = 0x0; /* reset C+ mode */
1279     s->cplus_enabled = 0;
1280 
1281 //    s->BasicModeCtrl = 0x3100; // 100Mbps, full duplex, autonegotiation
1282 //    s->BasicModeCtrl = 0x2100; // 100Mbps, full duplex
1283     s->BasicModeCtrl = 0x1000; // autonegotiation
1284 
1285     rtl8139_reset_phy(s);
1286 
1287     /* also reset timer and disable timer interrupt */
1288     s->TCTR = 0;
1289     s->TimerInt = 0;
1290     s->TCTR_base = 0;
1291     rtl8139_set_next_tctr_time(s);
1292 
1293     /* reset tally counters */
1294     RTL8139TallyCounters_clear(&s->tally_counters);
1295 }
1296 
1297 static void RTL8139TallyCounters_clear(RTL8139TallyCounters* counters)
1298 {
1299     counters->TxOk = 0;
1300     counters->RxOk = 0;
1301     counters->TxERR = 0;
1302     counters->RxERR = 0;
1303     counters->MissPkt = 0;
1304     counters->FAE = 0;
1305     counters->Tx1Col = 0;
1306     counters->TxMCol = 0;
1307     counters->RxOkPhy = 0;
1308     counters->RxOkBrd = 0;
1309     counters->RxOkMul = 0;
1310     counters->TxAbt = 0;
1311     counters->TxUndrn = 0;
1312 }
1313 
1314 static void RTL8139TallyCounters_dma_write(RTL8139State *s, dma_addr_t tc_addr)
1315 {
1316     PCIDevice *d = PCI_DEVICE(s);
1317     RTL8139TallyCounters *tally_counters = &s->tally_counters;
1318     uint16_t val16;
1319     uint32_t val32;
1320     uint64_t val64;
1321 
1322     val64 = cpu_to_le64(tally_counters->TxOk);
1323     pci_dma_write(d, tc_addr + 0,     (uint8_t *)&val64, 8);
1324 
1325     val64 = cpu_to_le64(tally_counters->RxOk);
1326     pci_dma_write(d, tc_addr + 8,     (uint8_t *)&val64, 8);
1327 
1328     val64 = cpu_to_le64(tally_counters->TxERR);
1329     pci_dma_write(d, tc_addr + 16,    (uint8_t *)&val64, 8);
1330 
1331     val32 = cpu_to_le32(tally_counters->RxERR);
1332     pci_dma_write(d, tc_addr + 24,    (uint8_t *)&val32, 4);
1333 
1334     val16 = cpu_to_le16(tally_counters->MissPkt);
1335     pci_dma_write(d, tc_addr + 28,    (uint8_t *)&val16, 2);
1336 
1337     val16 = cpu_to_le16(tally_counters->FAE);
1338     pci_dma_write(d, tc_addr + 30,    (uint8_t *)&val16, 2);
1339 
1340     val32 = cpu_to_le32(tally_counters->Tx1Col);
1341     pci_dma_write(d, tc_addr + 32,    (uint8_t *)&val32, 4);
1342 
1343     val32 = cpu_to_le32(tally_counters->TxMCol);
1344     pci_dma_write(d, tc_addr + 36,    (uint8_t *)&val32, 4);
1345 
1346     val64 = cpu_to_le64(tally_counters->RxOkPhy);
1347     pci_dma_write(d, tc_addr + 40,    (uint8_t *)&val64, 8);
1348 
1349     val64 = cpu_to_le64(tally_counters->RxOkBrd);
1350     pci_dma_write(d, tc_addr + 48,    (uint8_t *)&val64, 8);
1351 
1352     val32 = cpu_to_le32(tally_counters->RxOkMul);
1353     pci_dma_write(d, tc_addr + 56,    (uint8_t *)&val32, 4);
1354 
1355     val16 = cpu_to_le16(tally_counters->TxAbt);
1356     pci_dma_write(d, tc_addr + 60,    (uint8_t *)&val16, 2);
1357 
1358     val16 = cpu_to_le16(tally_counters->TxUndrn);
1359     pci_dma_write(d, tc_addr + 62,    (uint8_t *)&val16, 2);
1360 }
1361 
1362 static void rtl8139_ChipCmd_write(RTL8139State *s, uint32_t val)
1363 {
1364     DeviceState *d = DEVICE(s);
1365 
1366     val &= 0xff;
1367 
1368     DPRINTF("ChipCmd write val=0x%08x\n", val);
1369 
1370     if (val & CmdReset)
1371     {
1372         DPRINTF("ChipCmd reset\n");
1373         rtl8139_reset(d);
1374     }
1375     if (val & CmdRxEnb)
1376     {
1377         DPRINTF("ChipCmd enable receiver\n");
1378 
1379         s->currCPlusRxDesc = 0;
1380     }
1381     if (val & CmdTxEnb)
1382     {
1383         DPRINTF("ChipCmd enable transmitter\n");
1384 
1385         s->currCPlusTxDesc = 0;
1386     }
1387 
1388     /* mask unwritable bits */
1389     val = SET_MASKED(val, 0xe3, s->bChipCmdState);
1390 
1391     /* Deassert reset pin before next read */
1392     val &= ~CmdReset;
1393 
1394     s->bChipCmdState = val;
1395 }
1396 
1397 static int rtl8139_RxBufferEmpty(RTL8139State *s)
1398 {
1399     int unread = MOD2(s->RxBufferSize + s->RxBufAddr - s->RxBufPtr, s->RxBufferSize);
1400 
1401     if (unread != 0)
1402     {
1403         DPRINTF("receiver buffer data available 0x%04x\n", unread);
1404         return 0;
1405     }
1406 
1407     DPRINTF("receiver buffer is empty\n");
1408 
1409     return 1;
1410 }
1411 
1412 static uint32_t rtl8139_ChipCmd_read(RTL8139State *s)
1413 {
1414     uint32_t ret = s->bChipCmdState;
1415 
1416     if (rtl8139_RxBufferEmpty(s))
1417         ret |= RxBufEmpty;
1418 
1419     DPRINTF("ChipCmd read val=0x%04x\n", ret);
1420 
1421     return ret;
1422 }
1423 
1424 static void rtl8139_CpCmd_write(RTL8139State *s, uint32_t val)
1425 {
1426     val &= 0xffff;
1427 
1428     DPRINTF("C+ command register write(w) val=0x%04x\n", val);
1429 
1430     s->cplus_enabled = 1;
1431 
1432     /* mask unwritable bits */
1433     val = SET_MASKED(val, 0xff84, s->CpCmd);
1434 
1435     s->CpCmd = val;
1436 }
1437 
1438 static uint32_t rtl8139_CpCmd_read(RTL8139State *s)
1439 {
1440     uint32_t ret = s->CpCmd;
1441 
1442     DPRINTF("C+ command register read(w) val=0x%04x\n", ret);
1443 
1444     return ret;
1445 }
1446 
1447 static void rtl8139_IntrMitigate_write(RTL8139State *s, uint32_t val)
1448 {
1449     DPRINTF("C+ IntrMitigate register write(w) val=0x%04x\n", val);
1450 }
1451 
1452 static uint32_t rtl8139_IntrMitigate_read(RTL8139State *s)
1453 {
1454     uint32_t ret = 0;
1455 
1456     DPRINTF("C+ IntrMitigate register read(w) val=0x%04x\n", ret);
1457 
1458     return ret;
1459 }
1460 
1461 static int rtl8139_config_writable(RTL8139State *s)
1462 {
1463     if ((s->Cfg9346 & Chip9346_op_mask) == Cfg9346_ConfigWrite)
1464     {
1465         return 1;
1466     }
1467 
1468     DPRINTF("Configuration registers are write-protected\n");
1469 
1470     return 0;
1471 }
1472 
1473 static void rtl8139_BasicModeCtrl_write(RTL8139State *s, uint32_t val)
1474 {
1475     val &= 0xffff;
1476 
1477     DPRINTF("BasicModeCtrl register write(w) val=0x%04x\n", val);
1478 
1479     /* mask unwritable bits */
1480     uint32_t mask = 0xccff;
1481 
1482     if (1 || !rtl8139_config_writable(s))
1483     {
1484         /* Speed setting and autonegotiation enable bits are read-only */
1485         mask |= 0x3000;
1486         /* Duplex mode setting is read-only */
1487         mask |= 0x0100;
1488     }
1489 
1490     if (val & 0x8000) {
1491         /* Reset PHY */
1492         rtl8139_reset_phy(s);
1493     }
1494 
1495     val = SET_MASKED(val, mask, s->BasicModeCtrl);
1496 
1497     s->BasicModeCtrl = val;
1498 }
1499 
1500 static uint32_t rtl8139_BasicModeCtrl_read(RTL8139State *s)
1501 {
1502     uint32_t ret = s->BasicModeCtrl;
1503 
1504     DPRINTF("BasicModeCtrl register read(w) val=0x%04x\n", ret);
1505 
1506     return ret;
1507 }
1508 
1509 static void rtl8139_BasicModeStatus_write(RTL8139State *s, uint32_t val)
1510 {
1511     val &= 0xffff;
1512 
1513     DPRINTF("BasicModeStatus register write(w) val=0x%04x\n", val);
1514 
1515     /* mask unwritable bits */
1516     val = SET_MASKED(val, 0xff3f, s->BasicModeStatus);
1517 
1518     s->BasicModeStatus = val;
1519 }
1520 
1521 static uint32_t rtl8139_BasicModeStatus_read(RTL8139State *s)
1522 {
1523     uint32_t ret = s->BasicModeStatus;
1524 
1525     DPRINTF("BasicModeStatus register read(w) val=0x%04x\n", ret);
1526 
1527     return ret;
1528 }
1529 
1530 static void rtl8139_Cfg9346_write(RTL8139State *s, uint32_t val)
1531 {
1532     DeviceState *d = DEVICE(s);
1533 
1534     val &= 0xff;
1535 
1536     DPRINTF("Cfg9346 write val=0x%02x\n", val);
1537 
1538     /* mask unwritable bits */
1539     val = SET_MASKED(val, 0x31, s->Cfg9346);
1540 
1541     uint32_t opmode = val & 0xc0;
1542     uint32_t eeprom_val = val & 0xf;
1543 
1544     if (opmode == 0x80) {
1545         /* eeprom access */
1546         int eecs = (eeprom_val & 0x08)?1:0;
1547         int eesk = (eeprom_val & 0x04)?1:0;
1548         int eedi = (eeprom_val & 0x02)?1:0;
1549         prom9346_set_wire(s, eecs, eesk, eedi);
1550     } else if (opmode == 0x40) {
1551         /* Reset.  */
1552         val = 0;
1553         rtl8139_reset(d);
1554     }
1555 
1556     s->Cfg9346 = val;
1557 }
1558 
1559 static uint32_t rtl8139_Cfg9346_read(RTL8139State *s)
1560 {
1561     uint32_t ret = s->Cfg9346;
1562 
1563     uint32_t opmode = ret & 0xc0;
1564 
1565     if (opmode == 0x80)
1566     {
1567         /* eeprom access */
1568         int eedo = prom9346_get_wire(s);
1569         if (eedo)
1570         {
1571             ret |=  0x01;
1572         }
1573         else
1574         {
1575             ret &= ~0x01;
1576         }
1577     }
1578 
1579     DPRINTF("Cfg9346 read val=0x%02x\n", ret);
1580 
1581     return ret;
1582 }
1583 
1584 static void rtl8139_Config0_write(RTL8139State *s, uint32_t val)
1585 {
1586     val &= 0xff;
1587 
1588     DPRINTF("Config0 write val=0x%02x\n", val);
1589 
1590     if (!rtl8139_config_writable(s)) {
1591         return;
1592     }
1593 
1594     /* mask unwritable bits */
1595     val = SET_MASKED(val, 0xf8, s->Config0);
1596 
1597     s->Config0 = val;
1598 }
1599 
1600 static uint32_t rtl8139_Config0_read(RTL8139State *s)
1601 {
1602     uint32_t ret = s->Config0;
1603 
1604     DPRINTF("Config0 read val=0x%02x\n", ret);
1605 
1606     return ret;
1607 }
1608 
1609 static void rtl8139_Config1_write(RTL8139State *s, uint32_t val)
1610 {
1611     val &= 0xff;
1612 
1613     DPRINTF("Config1 write val=0x%02x\n", val);
1614 
1615     if (!rtl8139_config_writable(s)) {
1616         return;
1617     }
1618 
1619     /* mask unwritable bits */
1620     val = SET_MASKED(val, 0xC, s->Config1);
1621 
1622     s->Config1 = val;
1623 }
1624 
1625 static uint32_t rtl8139_Config1_read(RTL8139State *s)
1626 {
1627     uint32_t ret = s->Config1;
1628 
1629     DPRINTF("Config1 read val=0x%02x\n", ret);
1630 
1631     return ret;
1632 }
1633 
1634 static void rtl8139_Config3_write(RTL8139State *s, uint32_t val)
1635 {
1636     val &= 0xff;
1637 
1638     DPRINTF("Config3 write val=0x%02x\n", val);
1639 
1640     if (!rtl8139_config_writable(s)) {
1641         return;
1642     }
1643 
1644     /* mask unwritable bits */
1645     val = SET_MASKED(val, 0x8F, s->Config3);
1646 
1647     s->Config3 = val;
1648 }
1649 
1650 static uint32_t rtl8139_Config3_read(RTL8139State *s)
1651 {
1652     uint32_t ret = s->Config3;
1653 
1654     DPRINTF("Config3 read val=0x%02x\n", ret);
1655 
1656     return ret;
1657 }
1658 
1659 static void rtl8139_Config4_write(RTL8139State *s, uint32_t val)
1660 {
1661     val &= 0xff;
1662 
1663     DPRINTF("Config4 write val=0x%02x\n", val);
1664 
1665     if (!rtl8139_config_writable(s)) {
1666         return;
1667     }
1668 
1669     /* mask unwritable bits */
1670     val = SET_MASKED(val, 0x0a, s->Config4);
1671 
1672     s->Config4 = val;
1673 }
1674 
1675 static uint32_t rtl8139_Config4_read(RTL8139State *s)
1676 {
1677     uint32_t ret = s->Config4;
1678 
1679     DPRINTF("Config4 read val=0x%02x\n", ret);
1680 
1681     return ret;
1682 }
1683 
1684 static void rtl8139_Config5_write(RTL8139State *s, uint32_t val)
1685 {
1686     val &= 0xff;
1687 
1688     DPRINTF("Config5 write val=0x%02x\n", val);
1689 
1690     /* mask unwritable bits */
1691     val = SET_MASKED(val, 0x80, s->Config5);
1692 
1693     s->Config5 = val;
1694 }
1695 
1696 static uint32_t rtl8139_Config5_read(RTL8139State *s)
1697 {
1698     uint32_t ret = s->Config5;
1699 
1700     DPRINTF("Config5 read val=0x%02x\n", ret);
1701 
1702     return ret;
1703 }
1704 
1705 static void rtl8139_TxConfig_write(RTL8139State *s, uint32_t val)
1706 {
1707     if (!rtl8139_transmitter_enabled(s))
1708     {
1709         DPRINTF("transmitter disabled; no TxConfig write val=0x%08x\n", val);
1710         return;
1711     }
1712 
1713     DPRINTF("TxConfig write val=0x%08x\n", val);
1714 
1715     val = SET_MASKED(val, TxVersionMask | 0x8070f80f, s->TxConfig);
1716 
1717     s->TxConfig = val;
1718 }
1719 
1720 static void rtl8139_TxConfig_writeb(RTL8139State *s, uint32_t val)
1721 {
1722     DPRINTF("RTL8139C TxConfig via write(b) val=0x%02x\n", val);
1723 
1724     uint32_t tc = s->TxConfig;
1725     tc &= 0xFFFFFF00;
1726     tc |= (val & 0x000000FF);
1727     rtl8139_TxConfig_write(s, tc);
1728 }
1729 
1730 static uint32_t rtl8139_TxConfig_read(RTL8139State *s)
1731 {
1732     uint32_t ret = s->TxConfig;
1733 
1734     DPRINTF("TxConfig read val=0x%04x\n", ret);
1735 
1736     return ret;
1737 }
1738 
1739 static void rtl8139_RxConfig_write(RTL8139State *s, uint32_t val)
1740 {
1741     DPRINTF("RxConfig write val=0x%08x\n", val);
1742 
1743     /* mask unwritable bits */
1744     val = SET_MASKED(val, 0xf0fc0040, s->RxConfig);
1745 
1746     s->RxConfig = val;
1747 
1748     /* reset buffer size and read/write pointers */
1749     rtl8139_reset_rxring(s, 8192 << ((s->RxConfig >> 11) & 0x3));
1750 
1751     DPRINTF("RxConfig write reset buffer size to %d\n", s->RxBufferSize);
1752 }
1753 
1754 static uint32_t rtl8139_RxConfig_read(RTL8139State *s)
1755 {
1756     uint32_t ret = s->RxConfig;
1757 
1758     DPRINTF("RxConfig read val=0x%08x\n", ret);
1759 
1760     return ret;
1761 }
1762 
1763 static void rtl8139_transfer_frame(RTL8139State *s, uint8_t *buf, int size,
1764     int do_interrupt, const uint8_t *dot1q_buf)
1765 {
1766     struct iovec *iov = NULL;
1767     struct iovec vlan_iov[3];
1768 
1769     if (!size)
1770     {
1771         DPRINTF("+++ empty ethernet frame\n");
1772         return;
1773     }
1774 
1775     if (dot1q_buf && size >= ETH_ALEN * 2) {
1776         iov = (struct iovec[3]) {
1777             { .iov_base = buf, .iov_len = ETH_ALEN * 2 },
1778             { .iov_base = (void *) dot1q_buf, .iov_len = VLAN_HLEN },
1779             { .iov_base = buf + ETH_ALEN * 2,
1780                 .iov_len = size - ETH_ALEN * 2 },
1781         };
1782 
1783         memcpy(vlan_iov, iov, sizeof(vlan_iov));
1784         iov = vlan_iov;
1785     }
1786 
1787     if (TxLoopBack == (s->TxConfig & TxLoopBack))
1788     {
1789         size_t buf2_size;
1790         uint8_t *buf2;
1791 
1792         if (iov) {
1793             buf2_size = iov_size(iov, 3);
1794             buf2 = g_malloc(buf2_size);
1795             iov_to_buf(iov, 3, 0, buf2, buf2_size);
1796             buf = buf2;
1797         }
1798 
1799         DPRINTF("+++ transmit loopback mode\n");
1800         rtl8139_do_receive(qemu_get_queue(s->nic), buf, size, do_interrupt);
1801 
1802         if (iov) {
1803             g_free(buf2);
1804         }
1805     }
1806     else
1807     {
1808         if (iov) {
1809             qemu_sendv_packet(qemu_get_queue(s->nic), iov, 3);
1810         } else {
1811             qemu_send_packet(qemu_get_queue(s->nic), buf, size);
1812         }
1813     }
1814 }
1815 
1816 static int rtl8139_transmit_one(RTL8139State *s, int descriptor)
1817 {
1818     if (!rtl8139_transmitter_enabled(s))
1819     {
1820         DPRINTF("+++ cannot transmit from descriptor %d: transmitter "
1821             "disabled\n", descriptor);
1822         return 0;
1823     }
1824 
1825     if (s->TxStatus[descriptor] & TxHostOwns)
1826     {
1827         DPRINTF("+++ cannot transmit from descriptor %d: owned by host "
1828             "(%08x)\n", descriptor, s->TxStatus[descriptor]);
1829         return 0;
1830     }
1831 
1832     DPRINTF("+++ transmitting from descriptor %d\n", descriptor);
1833 
1834     PCIDevice *d = PCI_DEVICE(s);
1835     int txsize = s->TxStatus[descriptor] & 0x1fff;
1836     uint8_t txbuffer[0x2000];
1837 
1838     DPRINTF("+++ transmit reading %d bytes from host memory at 0x%08x\n",
1839         txsize, s->TxAddr[descriptor]);
1840 
1841     pci_dma_read(d, s->TxAddr[descriptor], txbuffer, txsize);
1842 
1843     /* Mark descriptor as transferred */
1844     s->TxStatus[descriptor] |= TxHostOwns;
1845     s->TxStatus[descriptor] |= TxStatOK;
1846 
1847     rtl8139_transfer_frame(s, txbuffer, txsize, 0, NULL);
1848 
1849     DPRINTF("+++ transmitted %d bytes from descriptor %d\n", txsize,
1850         descriptor);
1851 
1852     /* update interrupt */
1853     s->IntrStatus |= TxOK;
1854     rtl8139_update_irq(s);
1855 
1856     return 1;
1857 }
1858 
1859 #define TCP_HEADER_CLEAR_FLAGS(tcp, off) ((tcp)->th_offset_flags &= cpu_to_be16(~TCP_FLAGS_ONLY(off)))
1860 
1861 /* produces ones' complement sum of data */
1862 static uint16_t ones_complement_sum(uint8_t *data, size_t len)
1863 {
1864     uint32_t result = 0;
1865 
1866     for (; len > 1; data+=2, len-=2)
1867     {
1868         result += *(uint16_t*)data;
1869     }
1870 
1871     /* add the remainder byte */
1872     if (len)
1873     {
1874         uint8_t odd[2] = {*data, 0};
1875         result += *(uint16_t*)odd;
1876     }
1877 
1878     while (result>>16)
1879         result = (result & 0xffff) + (result >> 16);
1880 
1881     return result;
1882 }
1883 
1884 static uint16_t ip_checksum(void *data, size_t len)
1885 {
1886     return ~ones_complement_sum((uint8_t*)data, len);
1887 }
1888 
1889 static int rtl8139_cplus_transmit_one(RTL8139State *s)
1890 {
1891     if (!rtl8139_transmitter_enabled(s))
1892     {
1893         DPRINTF("+++ C+ mode: transmitter disabled\n");
1894         return 0;
1895     }
1896 
1897     if (!rtl8139_cp_transmitter_enabled(s))
1898     {
1899         DPRINTF("+++ C+ mode: C+ transmitter disabled\n");
1900         return 0 ;
1901     }
1902 
1903     PCIDevice *d = PCI_DEVICE(s);
1904     int descriptor = s->currCPlusTxDesc;
1905 
1906     dma_addr_t cplus_tx_ring_desc = rtl8139_addr64(s->TxAddr[0], s->TxAddr[1]);
1907 
1908     /* Normal priority ring */
1909     cplus_tx_ring_desc += 16 * descriptor;
1910 
1911     DPRINTF("+++ C+ mode reading TX descriptor %d from host memory at "
1912         "%08x %08x = 0x"DMA_ADDR_FMT"\n", descriptor, s->TxAddr[1],
1913         s->TxAddr[0], cplus_tx_ring_desc);
1914 
1915     uint32_t val, txdw0,txdw1,txbufLO,txbufHI;
1916 
1917     pci_dma_read(d, cplus_tx_ring_desc,    (uint8_t *)&val, 4);
1918     txdw0 = le32_to_cpu(val);
1919     pci_dma_read(d, cplus_tx_ring_desc+4,  (uint8_t *)&val, 4);
1920     txdw1 = le32_to_cpu(val);
1921     pci_dma_read(d, cplus_tx_ring_desc+8,  (uint8_t *)&val, 4);
1922     txbufLO = le32_to_cpu(val);
1923     pci_dma_read(d, cplus_tx_ring_desc+12, (uint8_t *)&val, 4);
1924     txbufHI = le32_to_cpu(val);
1925 
1926     DPRINTF("+++ C+ mode TX descriptor %d %08x %08x %08x %08x\n", descriptor,
1927         txdw0, txdw1, txbufLO, txbufHI);
1928 
1929 /* w0 ownership flag */
1930 #define CP_TX_OWN (1<<31)
1931 /* w0 end of ring flag */
1932 #define CP_TX_EOR (1<<30)
1933 /* first segment of received packet flag */
1934 #define CP_TX_FS (1<<29)
1935 /* last segment of received packet flag */
1936 #define CP_TX_LS (1<<28)
1937 /* large send packet flag */
1938 #define CP_TX_LGSEN (1<<27)
1939 /* large send MSS mask, bits 16...25 */
1940 #define CP_TC_LGSEN_MSS_MASK ((1 << 12) - 1)
1941 
1942 /* IP checksum offload flag */
1943 #define CP_TX_IPCS (1<<18)
1944 /* UDP checksum offload flag */
1945 #define CP_TX_UDPCS (1<<17)
1946 /* TCP checksum offload flag */
1947 #define CP_TX_TCPCS (1<<16)
1948 
1949 /* w0 bits 0...15 : buffer size */
1950 #define CP_TX_BUFFER_SIZE (1<<16)
1951 #define CP_TX_BUFFER_SIZE_MASK (CP_TX_BUFFER_SIZE - 1)
1952 /* w1 add tag flag */
1953 #define CP_TX_TAGC (1<<17)
1954 /* w1 bits 0...15 : VLAN tag (big endian) */
1955 #define CP_TX_VLAN_TAG_MASK ((1<<16) - 1)
1956 /* w2 low  32bit of Rx buffer ptr */
1957 /* w3 high 32bit of Rx buffer ptr */
1958 
1959 /* set after transmission */
1960 /* FIFO underrun flag */
1961 #define CP_TX_STATUS_UNF (1<<25)
1962 /* transmit error summary flag, valid if set any of three below */
1963 #define CP_TX_STATUS_TES (1<<23)
1964 /* out-of-window collision flag */
1965 #define CP_TX_STATUS_OWC (1<<22)
1966 /* link failure flag */
1967 #define CP_TX_STATUS_LNKF (1<<21)
1968 /* excessive collisions flag */
1969 #define CP_TX_STATUS_EXC (1<<20)
1970 
1971     if (!(txdw0 & CP_TX_OWN))
1972     {
1973         DPRINTF("C+ Tx mode : descriptor %d is owned by host\n", descriptor);
1974         return 0 ;
1975     }
1976 
1977     DPRINTF("+++ C+ Tx mode : transmitting from descriptor %d\n", descriptor);
1978 
1979     if (txdw0 & CP_TX_FS)
1980     {
1981         DPRINTF("+++ C+ Tx mode : descriptor %d is first segment "
1982             "descriptor\n", descriptor);
1983 
1984         /* reset internal buffer offset */
1985         s->cplus_txbuffer_offset = 0;
1986     }
1987 
1988     int txsize = txdw0 & CP_TX_BUFFER_SIZE_MASK;
1989     dma_addr_t tx_addr = rtl8139_addr64(txbufLO, txbufHI);
1990 
1991     /* make sure we have enough space to assemble the packet */
1992     if (!s->cplus_txbuffer)
1993     {
1994         s->cplus_txbuffer_len = CP_TX_BUFFER_SIZE;
1995         s->cplus_txbuffer = g_malloc(s->cplus_txbuffer_len);
1996         s->cplus_txbuffer_offset = 0;
1997 
1998         DPRINTF("+++ C+ mode transmission buffer allocated space %d\n",
1999             s->cplus_txbuffer_len);
2000     }
2001 
2002     if (s->cplus_txbuffer_offset + txsize >= s->cplus_txbuffer_len)
2003     {
2004         /* The spec didn't tell the maximum size, stick to CP_TX_BUFFER_SIZE */
2005         txsize = s->cplus_txbuffer_len - s->cplus_txbuffer_offset;
2006         DPRINTF("+++ C+ mode transmission buffer overrun, truncated descriptor"
2007                 "length to %d\n", txsize);
2008     }
2009 
2010     /* append more data to the packet */
2011 
2012     DPRINTF("+++ C+ mode transmit reading %d bytes from host memory at "
2013             DMA_ADDR_FMT" to offset %d\n", txsize, tx_addr,
2014             s->cplus_txbuffer_offset);
2015 
2016     pci_dma_read(d, tx_addr,
2017                  s->cplus_txbuffer + s->cplus_txbuffer_offset, txsize);
2018     s->cplus_txbuffer_offset += txsize;
2019 
2020     /* seek to next Rx descriptor */
2021     if (txdw0 & CP_TX_EOR)
2022     {
2023         s->currCPlusTxDesc = 0;
2024     }
2025     else
2026     {
2027         ++s->currCPlusTxDesc;
2028         if (s->currCPlusTxDesc >= 64)
2029             s->currCPlusTxDesc = 0;
2030     }
2031 
2032     /* transfer ownership to target */
2033     txdw0 &= ~CP_TX_OWN;
2034 
2035     /* reset error indicator bits */
2036     txdw0 &= ~CP_TX_STATUS_UNF;
2037     txdw0 &= ~CP_TX_STATUS_TES;
2038     txdw0 &= ~CP_TX_STATUS_OWC;
2039     txdw0 &= ~CP_TX_STATUS_LNKF;
2040     txdw0 &= ~CP_TX_STATUS_EXC;
2041 
2042     /* update ring data */
2043     val = cpu_to_le32(txdw0);
2044     pci_dma_write(d, cplus_tx_ring_desc, (uint8_t *)&val, 4);
2045 
2046     /* Now decide if descriptor being processed is holding the last segment of packet */
2047     if (txdw0 & CP_TX_LS)
2048     {
2049         uint8_t dot1q_buffer_space[VLAN_HLEN];
2050         uint16_t *dot1q_buffer;
2051 
2052         DPRINTF("+++ C+ Tx mode : descriptor %d is last segment descriptor\n",
2053             descriptor);
2054 
2055         /* can transfer fully assembled packet */
2056 
2057         uint8_t *saved_buffer  = s->cplus_txbuffer;
2058         int      saved_size    = s->cplus_txbuffer_offset;
2059         int      saved_buffer_len = s->cplus_txbuffer_len;
2060 
2061         /* create vlan tag */
2062         if (txdw1 & CP_TX_TAGC) {
2063             /* the vlan tag is in BE byte order in the descriptor
2064              * BE + le_to_cpu() + ~swap()~ = cpu */
2065             DPRINTF("+++ C+ Tx mode : inserting vlan tag with ""tci: %u\n",
2066                 bswap16(txdw1 & CP_TX_VLAN_TAG_MASK));
2067 
2068             dot1q_buffer = (uint16_t *) dot1q_buffer_space;
2069             dot1q_buffer[0] = cpu_to_be16(ETH_P_VLAN);
2070             /* BE + le_to_cpu() + ~cpu_to_le()~ = BE */
2071             dot1q_buffer[1] = cpu_to_le16(txdw1 & CP_TX_VLAN_TAG_MASK);
2072         } else {
2073             dot1q_buffer = NULL;
2074         }
2075 
2076         /* reset the card space to protect from recursive call */
2077         s->cplus_txbuffer = NULL;
2078         s->cplus_txbuffer_offset = 0;
2079         s->cplus_txbuffer_len = 0;
2080 
2081         if (txdw0 & (CP_TX_IPCS | CP_TX_UDPCS | CP_TX_TCPCS | CP_TX_LGSEN))
2082         {
2083             DPRINTF("+++ C+ mode offloaded task checksum\n");
2084 
2085             /* Large enough for Ethernet and IP headers? */
2086             if (saved_size < ETH_HLEN + sizeof(struct ip_header)) {
2087                 goto skip_offload;
2088             }
2089 
2090             /* ip packet header */
2091             struct ip_header *ip = NULL;
2092             int hlen = 0;
2093             uint8_t  ip_protocol = 0;
2094             uint16_t ip_data_len = 0;
2095 
2096             uint8_t *eth_payload_data = NULL;
2097             size_t   eth_payload_len  = 0;
2098 
2099             int proto = be16_to_cpu(*(uint16_t *)(saved_buffer + 12));
2100             if (proto != ETH_P_IP)
2101             {
2102                 goto skip_offload;
2103             }
2104 
2105             DPRINTF("+++ C+ mode has IP packet\n");
2106 
2107             /* Note on memory alignment: eth_payload_data is 16-bit aligned
2108              * since saved_buffer is allocated with g_malloc() and ETH_HLEN is
2109              * even.  32-bit accesses must use ldl/stl wrappers to avoid
2110              * unaligned accesses.
2111              */
2112             eth_payload_data = saved_buffer + ETH_HLEN;
2113             eth_payload_len  = saved_size   - ETH_HLEN;
2114 
2115             ip = (struct ip_header*)eth_payload_data;
2116 
2117             if (IP_HEADER_VERSION(ip) != IP_HEADER_VERSION_4) {
2118                 DPRINTF("+++ C+ mode packet has bad IP version %d "
2119                     "expected %d\n", IP_HEADER_VERSION(ip),
2120                     IP_HEADER_VERSION_4);
2121                 goto skip_offload;
2122             }
2123 
2124             hlen = IP_HDR_GET_LEN(ip);
2125             if (hlen < sizeof(struct ip_header) || hlen > eth_payload_len) {
2126                 goto skip_offload;
2127             }
2128 
2129             ip_protocol = ip->ip_p;
2130 
2131             ip_data_len = be16_to_cpu(ip->ip_len);
2132             if (ip_data_len < hlen || ip_data_len > eth_payload_len) {
2133                 goto skip_offload;
2134             }
2135             ip_data_len -= hlen;
2136 
2137             if (txdw0 & CP_TX_IPCS)
2138             {
2139                 DPRINTF("+++ C+ mode need IP checksum\n");
2140 
2141                 ip->ip_sum = 0;
2142                 ip->ip_sum = ip_checksum(ip, hlen);
2143                 DPRINTF("+++ C+ mode IP header len=%d checksum=%04x\n",
2144                     hlen, ip->ip_sum);
2145             }
2146 
2147             if ((txdw0 & CP_TX_LGSEN) && ip_protocol == IP_PROTO_TCP)
2148             {
2149                 /* Large enough for the TCP header? */
2150                 if (ip_data_len < sizeof(tcp_header)) {
2151                     goto skip_offload;
2152                 }
2153 
2154                 int large_send_mss = (txdw0 >> 16) & CP_TC_LGSEN_MSS_MASK;
2155 
2156                 DPRINTF("+++ C+ mode offloaded task TSO MTU=%d IP data %d "
2157                     "frame data %d specified MSS=%d\n", ETH_MTU,
2158                     ip_data_len, saved_size - ETH_HLEN, large_send_mss);
2159 
2160                 int tcp_send_offset = 0;
2161                 int send_count = 0;
2162 
2163                 /* maximum IP header length is 60 bytes */
2164                 uint8_t saved_ip_header[60];
2165 
2166                 /* save IP header template; data area is used in tcp checksum calculation */
2167                 memcpy(saved_ip_header, eth_payload_data, hlen);
2168 
2169                 /* a placeholder for checksum calculation routine in tcp case */
2170                 uint8_t *data_to_checksum     = eth_payload_data + hlen - 12;
2171                 //                    size_t   data_to_checksum_len = eth_payload_len  - hlen + 12;
2172 
2173                 /* pointer to TCP header */
2174                 tcp_header *p_tcp_hdr = (tcp_header*)(eth_payload_data + hlen);
2175 
2176                 int tcp_hlen = TCP_HEADER_DATA_OFFSET(p_tcp_hdr);
2177 
2178                 /* Invalid TCP data offset? */
2179                 if (tcp_hlen < sizeof(tcp_header) || tcp_hlen > ip_data_len) {
2180                     goto skip_offload;
2181                 }
2182 
2183                 /* ETH_MTU = ip header len + tcp header len + payload */
2184                 int tcp_data_len = ip_data_len - tcp_hlen;
2185                 int tcp_chunk_size = ETH_MTU - hlen - tcp_hlen;
2186 
2187                 DPRINTF("+++ C+ mode TSO IP data len %d TCP hlen %d TCP "
2188                     "data len %d TCP chunk size %d\n", ip_data_len,
2189                     tcp_hlen, tcp_data_len, tcp_chunk_size);
2190 
2191                 /* note the cycle below overwrites IP header data,
2192                    but restores it from saved_ip_header before sending packet */
2193 
2194                 int is_last_frame = 0;
2195 
2196                 for (tcp_send_offset = 0; tcp_send_offset < tcp_data_len; tcp_send_offset += tcp_chunk_size)
2197                 {
2198                     uint16_t chunk_size = tcp_chunk_size;
2199 
2200                     /* check if this is the last frame */
2201                     if (tcp_send_offset + tcp_chunk_size >= tcp_data_len)
2202                     {
2203                         is_last_frame = 1;
2204                         chunk_size = tcp_data_len - tcp_send_offset;
2205                     }
2206 
2207                     DPRINTF("+++ C+ mode TSO TCP seqno %08x\n",
2208                             ldl_be_p(&p_tcp_hdr->th_seq));
2209 
2210                     /* add 4 TCP pseudoheader fields */
2211                     /* copy IP source and destination fields */
2212                     memcpy(data_to_checksum, saved_ip_header + 12, 8);
2213 
2214                     DPRINTF("+++ C+ mode TSO calculating TCP checksum for "
2215                         "packet with %d bytes data\n", tcp_hlen +
2216                         chunk_size);
2217 
2218                     if (tcp_send_offset)
2219                     {
2220                         memcpy((uint8_t*)p_tcp_hdr + tcp_hlen, (uint8_t*)p_tcp_hdr + tcp_hlen + tcp_send_offset, chunk_size);
2221                     }
2222 
2223                     /* keep PUSH and FIN flags only for the last frame */
2224                     if (!is_last_frame)
2225                     {
2226                         TCP_HEADER_CLEAR_FLAGS(p_tcp_hdr, TH_PUSH | TH_FIN);
2227                     }
2228 
2229                     /* recalculate TCP checksum */
2230                     ip_pseudo_header *p_tcpip_hdr = (ip_pseudo_header *)data_to_checksum;
2231                     p_tcpip_hdr->zeros      = 0;
2232                     p_tcpip_hdr->ip_proto   = IP_PROTO_TCP;
2233                     p_tcpip_hdr->ip_payload = cpu_to_be16(tcp_hlen + chunk_size);
2234 
2235                     p_tcp_hdr->th_sum = 0;
2236 
2237                     int tcp_checksum = ip_checksum(data_to_checksum, tcp_hlen + chunk_size + 12);
2238                     DPRINTF("+++ C+ mode TSO TCP checksum %04x\n",
2239                         tcp_checksum);
2240 
2241                     p_tcp_hdr->th_sum = tcp_checksum;
2242 
2243                     /* restore IP header */
2244                     memcpy(eth_payload_data, saved_ip_header, hlen);
2245 
2246                     /* set IP data length and recalculate IP checksum */
2247                     ip->ip_len = cpu_to_be16(hlen + tcp_hlen + chunk_size);
2248 
2249                     /* increment IP id for subsequent frames */
2250                     ip->ip_id = cpu_to_be16(tcp_send_offset/tcp_chunk_size + be16_to_cpu(ip->ip_id));
2251 
2252                     ip->ip_sum = 0;
2253                     ip->ip_sum = ip_checksum(eth_payload_data, hlen);
2254                     DPRINTF("+++ C+ mode TSO IP header len=%d "
2255                         "checksum=%04x\n", hlen, ip->ip_sum);
2256 
2257                     int tso_send_size = ETH_HLEN + hlen + tcp_hlen + chunk_size;
2258                     DPRINTF("+++ C+ mode TSO transferring packet size "
2259                         "%d\n", tso_send_size);
2260                     rtl8139_transfer_frame(s, saved_buffer, tso_send_size,
2261                         0, (uint8_t *) dot1q_buffer);
2262 
2263                     /* add transferred count to TCP sequence number */
2264                     stl_be_p(&p_tcp_hdr->th_seq,
2265                              chunk_size + ldl_be_p(&p_tcp_hdr->th_seq));
2266                     ++send_count;
2267                 }
2268 
2269                 /* Stop sending this frame */
2270                 saved_size = 0;
2271             }
2272             else if (txdw0 & (CP_TX_TCPCS|CP_TX_UDPCS))
2273             {
2274                 DPRINTF("+++ C+ mode need TCP or UDP checksum\n");
2275 
2276                 /* maximum IP header length is 60 bytes */
2277                 uint8_t saved_ip_header[60];
2278                 memcpy(saved_ip_header, eth_payload_data, hlen);
2279 
2280                 uint8_t *data_to_checksum     = eth_payload_data + hlen - 12;
2281                 //                    size_t   data_to_checksum_len = eth_payload_len  - hlen + 12;
2282 
2283                 /* add 4 TCP pseudoheader fields */
2284                 /* copy IP source and destination fields */
2285                 memcpy(data_to_checksum, saved_ip_header + 12, 8);
2286 
2287                 if ((txdw0 & CP_TX_TCPCS) && ip_protocol == IP_PROTO_TCP)
2288                 {
2289                     DPRINTF("+++ C+ mode calculating TCP checksum for "
2290                         "packet with %d bytes data\n", ip_data_len);
2291 
2292                     ip_pseudo_header *p_tcpip_hdr = (ip_pseudo_header *)data_to_checksum;
2293                     p_tcpip_hdr->zeros      = 0;
2294                     p_tcpip_hdr->ip_proto   = IP_PROTO_TCP;
2295                     p_tcpip_hdr->ip_payload = cpu_to_be16(ip_data_len);
2296 
2297                     tcp_header* p_tcp_hdr = (tcp_header *) (data_to_checksum+12);
2298 
2299                     p_tcp_hdr->th_sum = 0;
2300 
2301                     int tcp_checksum = ip_checksum(data_to_checksum, ip_data_len + 12);
2302                     DPRINTF("+++ C+ mode TCP checksum %04x\n",
2303                         tcp_checksum);
2304 
2305                     p_tcp_hdr->th_sum = tcp_checksum;
2306                 }
2307                 else if ((txdw0 & CP_TX_UDPCS) && ip_protocol == IP_PROTO_UDP)
2308                 {
2309                     DPRINTF("+++ C+ mode calculating UDP checksum for "
2310                         "packet with %d bytes data\n", ip_data_len);
2311 
2312                     ip_pseudo_header *p_udpip_hdr = (ip_pseudo_header *)data_to_checksum;
2313                     p_udpip_hdr->zeros      = 0;
2314                     p_udpip_hdr->ip_proto   = IP_PROTO_UDP;
2315                     p_udpip_hdr->ip_payload = cpu_to_be16(ip_data_len);
2316 
2317                     udp_header *p_udp_hdr = (udp_header *) (data_to_checksum+12);
2318 
2319                     p_udp_hdr->uh_sum = 0;
2320 
2321                     int udp_checksum = ip_checksum(data_to_checksum, ip_data_len + 12);
2322                     DPRINTF("+++ C+ mode UDP checksum %04x\n",
2323                         udp_checksum);
2324 
2325                     p_udp_hdr->uh_sum = udp_checksum;
2326                 }
2327 
2328                 /* restore IP header */
2329                 memcpy(eth_payload_data, saved_ip_header, hlen);
2330             }
2331         }
2332 
2333 skip_offload:
2334         /* update tally counter */
2335         ++s->tally_counters.TxOk;
2336 
2337         DPRINTF("+++ C+ mode transmitting %d bytes packet\n", saved_size);
2338 
2339         rtl8139_transfer_frame(s, saved_buffer, saved_size, 1,
2340             (uint8_t *) dot1q_buffer);
2341 
2342         /* restore card space if there was no recursion and reset offset */
2343         if (!s->cplus_txbuffer)
2344         {
2345             s->cplus_txbuffer        = saved_buffer;
2346             s->cplus_txbuffer_len    = saved_buffer_len;
2347             s->cplus_txbuffer_offset = 0;
2348         }
2349         else
2350         {
2351             g_free(saved_buffer);
2352         }
2353     }
2354     else
2355     {
2356         DPRINTF("+++ C+ mode transmission continue to next descriptor\n");
2357     }
2358 
2359     return 1;
2360 }
2361 
2362 static void rtl8139_cplus_transmit(RTL8139State *s)
2363 {
2364     int txcount = 0;
2365 
2366     while (txcount < 64 && rtl8139_cplus_transmit_one(s))
2367     {
2368         ++txcount;
2369     }
2370 
2371     /* Mark transfer completed */
2372     if (!txcount)
2373     {
2374         DPRINTF("C+ mode : transmitter queue stalled, current TxDesc = %d\n",
2375             s->currCPlusTxDesc);
2376     }
2377     else
2378     {
2379         /* update interrupt status */
2380         s->IntrStatus |= TxOK;
2381         rtl8139_update_irq(s);
2382     }
2383 }
2384 
2385 static void rtl8139_transmit(RTL8139State *s)
2386 {
2387     int descriptor = s->currTxDesc, txcount = 0;
2388 
2389     /*while*/
2390     if (rtl8139_transmit_one(s, descriptor))
2391     {
2392         ++s->currTxDesc;
2393         s->currTxDesc %= 4;
2394         ++txcount;
2395     }
2396 
2397     /* Mark transfer completed */
2398     if (!txcount)
2399     {
2400         DPRINTF("transmitter queue stalled, current TxDesc = %d\n",
2401             s->currTxDesc);
2402     }
2403 }
2404 
2405 static void rtl8139_TxStatus_write(RTL8139State *s, uint32_t txRegOffset, uint32_t val)
2406 {
2407 
2408     int descriptor = txRegOffset/4;
2409 
2410     /* handle C+ transmit mode register configuration */
2411 
2412     if (s->cplus_enabled)
2413     {
2414         DPRINTF("RTL8139C+ DTCCR write offset=0x%x val=0x%08x "
2415             "descriptor=%d\n", txRegOffset, val, descriptor);
2416 
2417         /* handle Dump Tally Counters command */
2418         s->TxStatus[descriptor] = val;
2419 
2420         if (descriptor == 0 && (val & 0x8))
2421         {
2422             hwaddr tc_addr = rtl8139_addr64(s->TxStatus[0] & ~0x3f, s->TxStatus[1]);
2423 
2424             /* dump tally counters to specified memory location */
2425             RTL8139TallyCounters_dma_write(s, tc_addr);
2426 
2427             /* mark dump completed */
2428             s->TxStatus[0] &= ~0x8;
2429         }
2430 
2431         return;
2432     }
2433 
2434     DPRINTF("TxStatus write offset=0x%x val=0x%08x descriptor=%d\n",
2435         txRegOffset, val, descriptor);
2436 
2437     /* mask only reserved bits */
2438     val &= ~0xff00c000; /* these bits are reset on write */
2439     val = SET_MASKED(val, 0x00c00000, s->TxStatus[descriptor]);
2440 
2441     s->TxStatus[descriptor] = val;
2442 
2443     /* attempt to start transmission */
2444     rtl8139_transmit(s);
2445 }
2446 
2447 static uint32_t rtl8139_TxStatus_TxAddr_read(RTL8139State *s, uint32_t regs[],
2448                                              uint32_t base, uint8_t addr,
2449                                              int size)
2450 {
2451     uint32_t reg = (addr - base) / 4;
2452     uint32_t offset = addr & 0x3;
2453     uint32_t ret = 0;
2454 
2455     if (addr & (size - 1)) {
2456         DPRINTF("not implemented read for TxStatus/TxAddr "
2457                 "addr=0x%x size=0x%x\n", addr, size);
2458         return ret;
2459     }
2460 
2461     switch (size) {
2462     case 1: /* fall through */
2463     case 2: /* fall through */
2464     case 4:
2465         ret = (regs[reg] >> offset * 8) & (((uint64_t)1 << (size * 8)) - 1);
2466         DPRINTF("TxStatus/TxAddr[%d] read addr=0x%x size=0x%x val=0x%08x\n",
2467                 reg, addr, size, ret);
2468         break;
2469     default:
2470         DPRINTF("unsupported size 0x%x of TxStatus/TxAddr reading\n", size);
2471         break;
2472     }
2473 
2474     return ret;
2475 }
2476 
2477 static uint16_t rtl8139_TSAD_read(RTL8139State *s)
2478 {
2479     uint16_t ret = 0;
2480 
2481     /* Simulate TSAD, it is read only anyway */
2482 
2483     ret = ((s->TxStatus[3] & TxStatOK  )?TSAD_TOK3:0)
2484          |((s->TxStatus[2] & TxStatOK  )?TSAD_TOK2:0)
2485          |((s->TxStatus[1] & TxStatOK  )?TSAD_TOK1:0)
2486          |((s->TxStatus[0] & TxStatOK  )?TSAD_TOK0:0)
2487 
2488          |((s->TxStatus[3] & TxUnderrun)?TSAD_TUN3:0)
2489          |((s->TxStatus[2] & TxUnderrun)?TSAD_TUN2:0)
2490          |((s->TxStatus[1] & TxUnderrun)?TSAD_TUN1:0)
2491          |((s->TxStatus[0] & TxUnderrun)?TSAD_TUN0:0)
2492 
2493          |((s->TxStatus[3] & TxAborted )?TSAD_TABT3:0)
2494          |((s->TxStatus[2] & TxAborted )?TSAD_TABT2:0)
2495          |((s->TxStatus[1] & TxAborted )?TSAD_TABT1:0)
2496          |((s->TxStatus[0] & TxAborted )?TSAD_TABT0:0)
2497 
2498          |((s->TxStatus[3] & TxHostOwns )?TSAD_OWN3:0)
2499          |((s->TxStatus[2] & TxHostOwns )?TSAD_OWN2:0)
2500          |((s->TxStatus[1] & TxHostOwns )?TSAD_OWN1:0)
2501          |((s->TxStatus[0] & TxHostOwns )?TSAD_OWN0:0) ;
2502 
2503 
2504     DPRINTF("TSAD read val=0x%04x\n", ret);
2505 
2506     return ret;
2507 }
2508 
2509 static uint16_t rtl8139_CSCR_read(RTL8139State *s)
2510 {
2511     uint16_t ret = s->CSCR;
2512 
2513     DPRINTF("CSCR read val=0x%04x\n", ret);
2514 
2515     return ret;
2516 }
2517 
2518 static void rtl8139_TxAddr_write(RTL8139State *s, uint32_t txAddrOffset, uint32_t val)
2519 {
2520     DPRINTF("TxAddr write offset=0x%x val=0x%08x\n", txAddrOffset, val);
2521 
2522     s->TxAddr[txAddrOffset/4] = val;
2523 }
2524 
2525 static uint32_t rtl8139_TxAddr_read(RTL8139State *s, uint32_t txAddrOffset)
2526 {
2527     uint32_t ret = s->TxAddr[txAddrOffset/4];
2528 
2529     DPRINTF("TxAddr read offset=0x%x val=0x%08x\n", txAddrOffset, ret);
2530 
2531     return ret;
2532 }
2533 
2534 static void rtl8139_RxBufPtr_write(RTL8139State *s, uint32_t val)
2535 {
2536     DPRINTF("RxBufPtr write val=0x%04x\n", val);
2537 
2538     /* this value is off by 16 */
2539     s->RxBufPtr = MOD2(val + 0x10, s->RxBufferSize);
2540 
2541     /* more buffer space may be available so try to receive */
2542     qemu_flush_queued_packets(qemu_get_queue(s->nic));
2543 
2544     DPRINTF(" CAPR write: rx buffer length %d head 0x%04x read 0x%04x\n",
2545         s->RxBufferSize, s->RxBufAddr, s->RxBufPtr);
2546 }
2547 
2548 static uint32_t rtl8139_RxBufPtr_read(RTL8139State *s)
2549 {
2550     /* this value is off by 16 */
2551     uint32_t ret = s->RxBufPtr - 0x10;
2552 
2553     DPRINTF("RxBufPtr read val=0x%04x\n", ret);
2554 
2555     return ret;
2556 }
2557 
2558 static uint32_t rtl8139_RxBufAddr_read(RTL8139State *s)
2559 {
2560     /* this value is NOT off by 16 */
2561     uint32_t ret = s->RxBufAddr;
2562 
2563     DPRINTF("RxBufAddr read val=0x%04x\n", ret);
2564 
2565     return ret;
2566 }
2567 
2568 static void rtl8139_RxBuf_write(RTL8139State *s, uint32_t val)
2569 {
2570     DPRINTF("RxBuf write val=0x%08x\n", val);
2571 
2572     s->RxBuf = val;
2573 
2574     /* may need to reset rxring here */
2575 }
2576 
2577 static uint32_t rtl8139_RxBuf_read(RTL8139State *s)
2578 {
2579     uint32_t ret = s->RxBuf;
2580 
2581     DPRINTF("RxBuf read val=0x%08x\n", ret);
2582 
2583     return ret;
2584 }
2585 
2586 static void rtl8139_IntrMask_write(RTL8139State *s, uint32_t val)
2587 {
2588     DPRINTF("IntrMask write(w) val=0x%04x\n", val);
2589 
2590     /* mask unwritable bits */
2591     val = SET_MASKED(val, 0x1e00, s->IntrMask);
2592 
2593     s->IntrMask = val;
2594 
2595     rtl8139_update_irq(s);
2596 
2597 }
2598 
2599 static uint32_t rtl8139_IntrMask_read(RTL8139State *s)
2600 {
2601     uint32_t ret = s->IntrMask;
2602 
2603     DPRINTF("IntrMask read(w) val=0x%04x\n", ret);
2604 
2605     return ret;
2606 }
2607 
2608 static void rtl8139_IntrStatus_write(RTL8139State *s, uint32_t val)
2609 {
2610     DPRINTF("IntrStatus write(w) val=0x%04x\n", val);
2611 
2612 #if 0
2613 
2614     /* writing to ISR has no effect */
2615 
2616     return;
2617 
2618 #else
2619     uint16_t newStatus = s->IntrStatus & ~val;
2620 
2621     /* mask unwritable bits */
2622     newStatus = SET_MASKED(newStatus, 0x1e00, s->IntrStatus);
2623 
2624     /* writing 1 to interrupt status register bit clears it */
2625     s->IntrStatus = 0;
2626     rtl8139_update_irq(s);
2627 
2628     s->IntrStatus = newStatus;
2629     rtl8139_set_next_tctr_time(s);
2630     rtl8139_update_irq(s);
2631 
2632 #endif
2633 }
2634 
2635 static uint32_t rtl8139_IntrStatus_read(RTL8139State *s)
2636 {
2637     uint32_t ret = s->IntrStatus;
2638 
2639     DPRINTF("IntrStatus read(w) val=0x%04x\n", ret);
2640 
2641 #if 0
2642 
2643     /* reading ISR clears all interrupts */
2644     s->IntrStatus = 0;
2645 
2646     rtl8139_update_irq(s);
2647 
2648 #endif
2649 
2650     return ret;
2651 }
2652 
2653 static void rtl8139_MultiIntr_write(RTL8139State *s, uint32_t val)
2654 {
2655     DPRINTF("MultiIntr write(w) val=0x%04x\n", val);
2656 
2657     /* mask unwritable bits */
2658     val = SET_MASKED(val, 0xf000, s->MultiIntr);
2659 
2660     s->MultiIntr = val;
2661 }
2662 
2663 static uint32_t rtl8139_MultiIntr_read(RTL8139State *s)
2664 {
2665     uint32_t ret = s->MultiIntr;
2666 
2667     DPRINTF("MultiIntr read(w) val=0x%04x\n", ret);
2668 
2669     return ret;
2670 }
2671 
2672 static void rtl8139_io_writeb(void *opaque, uint8_t addr, uint32_t val)
2673 {
2674     RTL8139State *s = opaque;
2675 
2676     switch (addr)
2677     {
2678         case MAC0 ... MAC0+4:
2679             s->phys[addr - MAC0] = val;
2680             break;
2681         case MAC0+5:
2682             s->phys[addr - MAC0] = val;
2683             qemu_format_nic_info_str(qemu_get_queue(s->nic), s->phys);
2684             break;
2685         case MAC0+6 ... MAC0+7:
2686             /* reserved */
2687             break;
2688         case MAR0 ... MAR0+7:
2689             s->mult[addr - MAR0] = val;
2690             break;
2691         case ChipCmd:
2692             rtl8139_ChipCmd_write(s, val);
2693             break;
2694         case Cfg9346:
2695             rtl8139_Cfg9346_write(s, val);
2696             break;
2697         case TxConfig: /* windows driver sometimes writes using byte-lenth call */
2698             rtl8139_TxConfig_writeb(s, val);
2699             break;
2700         case Config0:
2701             rtl8139_Config0_write(s, val);
2702             break;
2703         case Config1:
2704             rtl8139_Config1_write(s, val);
2705             break;
2706         case Config3:
2707             rtl8139_Config3_write(s, val);
2708             break;
2709         case Config4:
2710             rtl8139_Config4_write(s, val);
2711             break;
2712         case Config5:
2713             rtl8139_Config5_write(s, val);
2714             break;
2715         case MediaStatus:
2716             /* ignore */
2717             DPRINTF("not implemented write(b) to MediaStatus val=0x%02x\n",
2718                 val);
2719             break;
2720 
2721         case HltClk:
2722             DPRINTF("HltClk write val=0x%08x\n", val);
2723             if (val == 'R')
2724             {
2725                 s->clock_enabled = 1;
2726             }
2727             else if (val == 'H')
2728             {
2729                 s->clock_enabled = 0;
2730             }
2731             break;
2732 
2733         case TxThresh:
2734             DPRINTF("C+ TxThresh write(b) val=0x%02x\n", val);
2735             s->TxThresh = val;
2736             break;
2737 
2738         case TxPoll:
2739             DPRINTF("C+ TxPoll write(b) val=0x%02x\n", val);
2740             if (val & (1 << 7))
2741             {
2742                 DPRINTF("C+ TxPoll high priority transmission (not "
2743                     "implemented)\n");
2744                 //rtl8139_cplus_transmit(s);
2745             }
2746             if (val & (1 << 6))
2747             {
2748                 DPRINTF("C+ TxPoll normal priority transmission\n");
2749                 rtl8139_cplus_transmit(s);
2750             }
2751 
2752             break;
2753 
2754         default:
2755             DPRINTF("not implemented write(b) addr=0x%x val=0x%02x\n", addr,
2756                 val);
2757             break;
2758     }
2759 }
2760 
2761 static void rtl8139_io_writew(void *opaque, uint8_t addr, uint32_t val)
2762 {
2763     RTL8139State *s = opaque;
2764 
2765     switch (addr)
2766     {
2767         case IntrMask:
2768             rtl8139_IntrMask_write(s, val);
2769             break;
2770 
2771         case IntrStatus:
2772             rtl8139_IntrStatus_write(s, val);
2773             break;
2774 
2775         case MultiIntr:
2776             rtl8139_MultiIntr_write(s, val);
2777             break;
2778 
2779         case RxBufPtr:
2780             rtl8139_RxBufPtr_write(s, val);
2781             break;
2782 
2783         case BasicModeCtrl:
2784             rtl8139_BasicModeCtrl_write(s, val);
2785             break;
2786         case BasicModeStatus:
2787             rtl8139_BasicModeStatus_write(s, val);
2788             break;
2789         case NWayAdvert:
2790             DPRINTF("NWayAdvert write(w) val=0x%04x\n", val);
2791             s->NWayAdvert = val;
2792             break;
2793         case NWayLPAR:
2794             DPRINTF("forbidden NWayLPAR write(w) val=0x%04x\n", val);
2795             break;
2796         case NWayExpansion:
2797             DPRINTF("NWayExpansion write(w) val=0x%04x\n", val);
2798             s->NWayExpansion = val;
2799             break;
2800 
2801         case CpCmd:
2802             rtl8139_CpCmd_write(s, val);
2803             break;
2804 
2805         case IntrMitigate:
2806             rtl8139_IntrMitigate_write(s, val);
2807             break;
2808 
2809         default:
2810             DPRINTF("ioport write(w) addr=0x%x val=0x%04x via write(b)\n",
2811                 addr, val);
2812 
2813             rtl8139_io_writeb(opaque, addr, val & 0xff);
2814             rtl8139_io_writeb(opaque, addr + 1, (val >> 8) & 0xff);
2815             break;
2816     }
2817 }
2818 
2819 static void rtl8139_set_next_tctr_time(RTL8139State *s)
2820 {
2821     const uint64_t ns_per_period = (uint64_t)PCI_PERIOD << 32;
2822 
2823     DPRINTF("entered rtl8139_set_next_tctr_time\n");
2824 
2825     /* This function is called at least once per period, so it is a good
2826      * place to update the timer base.
2827      *
2828      * After one iteration of this loop the value in the Timer register does
2829      * not change, but the device model is counting up by 2^32 ticks (approx.
2830      * 130 seconds).
2831      */
2832     while (s->TCTR_base + ns_per_period <= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)) {
2833         s->TCTR_base += ns_per_period;
2834     }
2835 
2836     if (!s->TimerInt) {
2837         timer_del(s->timer);
2838     } else {
2839         uint64_t delta = (uint64_t)s->TimerInt * PCI_PERIOD;
2840         if (s->TCTR_base + delta <= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)) {
2841             delta += ns_per_period;
2842         }
2843         timer_mod(s->timer, s->TCTR_base + delta);
2844     }
2845 }
2846 
2847 static void rtl8139_io_writel(void *opaque, uint8_t addr, uint32_t val)
2848 {
2849     RTL8139State *s = opaque;
2850 
2851     switch (addr)
2852     {
2853         case RxMissed:
2854             DPRINTF("RxMissed clearing on write\n");
2855             s->RxMissed = 0;
2856             break;
2857 
2858         case TxConfig:
2859             rtl8139_TxConfig_write(s, val);
2860             break;
2861 
2862         case RxConfig:
2863             rtl8139_RxConfig_write(s, val);
2864             break;
2865 
2866         case TxStatus0 ... TxStatus0+4*4-1:
2867             rtl8139_TxStatus_write(s, addr-TxStatus0, val);
2868             break;
2869 
2870         case TxAddr0 ... TxAddr0+4*4-1:
2871             rtl8139_TxAddr_write(s, addr-TxAddr0, val);
2872             break;
2873 
2874         case RxBuf:
2875             rtl8139_RxBuf_write(s, val);
2876             break;
2877 
2878         case RxRingAddrLO:
2879             DPRINTF("C+ RxRing low bits write val=0x%08x\n", val);
2880             s->RxRingAddrLO = val;
2881             break;
2882 
2883         case RxRingAddrHI:
2884             DPRINTF("C+ RxRing high bits write val=0x%08x\n", val);
2885             s->RxRingAddrHI = val;
2886             break;
2887 
2888         case Timer:
2889             DPRINTF("TCTR Timer reset on write\n");
2890             s->TCTR_base = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
2891             rtl8139_set_next_tctr_time(s);
2892             break;
2893 
2894         case FlashReg:
2895             DPRINTF("FlashReg TimerInt write val=0x%08x\n", val);
2896             if (s->TimerInt != val) {
2897                 s->TimerInt = val;
2898                 rtl8139_set_next_tctr_time(s);
2899             }
2900             break;
2901 
2902         default:
2903             DPRINTF("ioport write(l) addr=0x%x val=0x%08x via write(b)\n",
2904                 addr, val);
2905             rtl8139_io_writeb(opaque, addr, val & 0xff);
2906             rtl8139_io_writeb(opaque, addr + 1, (val >> 8) & 0xff);
2907             rtl8139_io_writeb(opaque, addr + 2, (val >> 16) & 0xff);
2908             rtl8139_io_writeb(opaque, addr + 3, (val >> 24) & 0xff);
2909             break;
2910     }
2911 }
2912 
2913 static uint32_t rtl8139_io_readb(void *opaque, uint8_t addr)
2914 {
2915     RTL8139State *s = opaque;
2916     int ret;
2917 
2918     switch (addr)
2919     {
2920         case MAC0 ... MAC0+5:
2921             ret = s->phys[addr - MAC0];
2922             break;
2923         case MAC0+6 ... MAC0+7:
2924             ret = 0;
2925             break;
2926         case MAR0 ... MAR0+7:
2927             ret = s->mult[addr - MAR0];
2928             break;
2929         case TxStatus0 ... TxStatus0+4*4-1:
2930             ret = rtl8139_TxStatus_TxAddr_read(s, s->TxStatus, TxStatus0,
2931                                                addr, 1);
2932             break;
2933         case ChipCmd:
2934             ret = rtl8139_ChipCmd_read(s);
2935             break;
2936         case Cfg9346:
2937             ret = rtl8139_Cfg9346_read(s);
2938             break;
2939         case Config0:
2940             ret = rtl8139_Config0_read(s);
2941             break;
2942         case Config1:
2943             ret = rtl8139_Config1_read(s);
2944             break;
2945         case Config3:
2946             ret = rtl8139_Config3_read(s);
2947             break;
2948         case Config4:
2949             ret = rtl8139_Config4_read(s);
2950             break;
2951         case Config5:
2952             ret = rtl8139_Config5_read(s);
2953             break;
2954 
2955         case MediaStatus:
2956             /* The LinkDown bit of MediaStatus is inverse with link status */
2957             ret = 0xd0 | (~s->BasicModeStatus & 0x04);
2958             DPRINTF("MediaStatus read 0x%x\n", ret);
2959             break;
2960 
2961         case HltClk:
2962             ret = s->clock_enabled;
2963             DPRINTF("HltClk read 0x%x\n", ret);
2964             break;
2965 
2966         case PCIRevisionID:
2967             ret = RTL8139_PCI_REVID;
2968             DPRINTF("PCI Revision ID read 0x%x\n", ret);
2969             break;
2970 
2971         case TxThresh:
2972             ret = s->TxThresh;
2973             DPRINTF("C+ TxThresh read(b) val=0x%02x\n", ret);
2974             break;
2975 
2976         case 0x43: /* Part of TxConfig register. Windows driver tries to read it */
2977             ret = s->TxConfig >> 24;
2978             DPRINTF("RTL8139C TxConfig at 0x43 read(b) val=0x%02x\n", ret);
2979             break;
2980 
2981         default:
2982             DPRINTF("not implemented read(b) addr=0x%x\n", addr);
2983             ret = 0;
2984             break;
2985     }
2986 
2987     return ret;
2988 }
2989 
2990 static uint32_t rtl8139_io_readw(void *opaque, uint8_t addr)
2991 {
2992     RTL8139State *s = opaque;
2993     uint32_t ret;
2994 
2995     switch (addr)
2996     {
2997         case TxAddr0 ... TxAddr0+4*4-1:
2998             ret = rtl8139_TxStatus_TxAddr_read(s, s->TxAddr, TxAddr0, addr, 2);
2999             break;
3000         case IntrMask:
3001             ret = rtl8139_IntrMask_read(s);
3002             break;
3003 
3004         case IntrStatus:
3005             ret = rtl8139_IntrStatus_read(s);
3006             break;
3007 
3008         case MultiIntr:
3009             ret = rtl8139_MultiIntr_read(s);
3010             break;
3011 
3012         case RxBufPtr:
3013             ret = rtl8139_RxBufPtr_read(s);
3014             break;
3015 
3016         case RxBufAddr:
3017             ret = rtl8139_RxBufAddr_read(s);
3018             break;
3019 
3020         case BasicModeCtrl:
3021             ret = rtl8139_BasicModeCtrl_read(s);
3022             break;
3023         case BasicModeStatus:
3024             ret = rtl8139_BasicModeStatus_read(s);
3025             break;
3026         case NWayAdvert:
3027             ret = s->NWayAdvert;
3028             DPRINTF("NWayAdvert read(w) val=0x%04x\n", ret);
3029             break;
3030         case NWayLPAR:
3031             ret = s->NWayLPAR;
3032             DPRINTF("NWayLPAR read(w) val=0x%04x\n", ret);
3033             break;
3034         case NWayExpansion:
3035             ret = s->NWayExpansion;
3036             DPRINTF("NWayExpansion read(w) val=0x%04x\n", ret);
3037             break;
3038 
3039         case CpCmd:
3040             ret = rtl8139_CpCmd_read(s);
3041             break;
3042 
3043         case IntrMitigate:
3044             ret = rtl8139_IntrMitigate_read(s);
3045             break;
3046 
3047         case TxSummary:
3048             ret = rtl8139_TSAD_read(s);
3049             break;
3050 
3051         case CSCR:
3052             ret = rtl8139_CSCR_read(s);
3053             break;
3054 
3055         default:
3056             DPRINTF("ioport read(w) addr=0x%x via read(b)\n", addr);
3057 
3058             ret  = rtl8139_io_readb(opaque, addr);
3059             ret |= rtl8139_io_readb(opaque, addr + 1) << 8;
3060 
3061             DPRINTF("ioport read(w) addr=0x%x val=0x%04x\n", addr, ret);
3062             break;
3063     }
3064 
3065     return ret;
3066 }
3067 
3068 static uint32_t rtl8139_io_readl(void *opaque, uint8_t addr)
3069 {
3070     RTL8139State *s = opaque;
3071     uint32_t ret;
3072 
3073     switch (addr)
3074     {
3075         case RxMissed:
3076             ret = s->RxMissed;
3077 
3078             DPRINTF("RxMissed read val=0x%08x\n", ret);
3079             break;
3080 
3081         case TxConfig:
3082             ret = rtl8139_TxConfig_read(s);
3083             break;
3084 
3085         case RxConfig:
3086             ret = rtl8139_RxConfig_read(s);
3087             break;
3088 
3089         case TxStatus0 ... TxStatus0+4*4-1:
3090             ret = rtl8139_TxStatus_TxAddr_read(s, s->TxStatus, TxStatus0,
3091                                                addr, 4);
3092             break;
3093 
3094         case TxAddr0 ... TxAddr0+4*4-1:
3095             ret = rtl8139_TxAddr_read(s, addr-TxAddr0);
3096             break;
3097 
3098         case RxBuf:
3099             ret = rtl8139_RxBuf_read(s);
3100             break;
3101 
3102         case RxRingAddrLO:
3103             ret = s->RxRingAddrLO;
3104             DPRINTF("C+ RxRing low bits read val=0x%08x\n", ret);
3105             break;
3106 
3107         case RxRingAddrHI:
3108             ret = s->RxRingAddrHI;
3109             DPRINTF("C+ RxRing high bits read val=0x%08x\n", ret);
3110             break;
3111 
3112         case Timer:
3113             ret = (qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - s->TCTR_base) /
3114                   PCI_PERIOD;
3115             DPRINTF("TCTR Timer read val=0x%08x\n", ret);
3116             break;
3117 
3118         case FlashReg:
3119             ret = s->TimerInt;
3120             DPRINTF("FlashReg TimerInt read val=0x%08x\n", ret);
3121             break;
3122 
3123         default:
3124             DPRINTF("ioport read(l) addr=0x%x via read(b)\n", addr);
3125 
3126             ret  = rtl8139_io_readb(opaque, addr);
3127             ret |= rtl8139_io_readb(opaque, addr + 1) << 8;
3128             ret |= rtl8139_io_readb(opaque, addr + 2) << 16;
3129             ret |= rtl8139_io_readb(opaque, addr + 3) << 24;
3130 
3131             DPRINTF("read(l) addr=0x%x val=%08x\n", addr, ret);
3132             break;
3133     }
3134 
3135     return ret;
3136 }
3137 
3138 /* */
3139 
3140 static int rtl8139_post_load(void *opaque, int version_id)
3141 {
3142     RTL8139State* s = opaque;
3143     rtl8139_set_next_tctr_time(s);
3144     if (version_id < 4) {
3145         s->cplus_enabled = s->CpCmd != 0;
3146     }
3147 
3148     /* nc.link_down can't be migrated, so infer link_down according
3149      * to link status bit in BasicModeStatus */
3150     qemu_get_queue(s->nic)->link_down = (s->BasicModeStatus & 0x04) == 0;
3151 
3152     return 0;
3153 }
3154 
3155 static bool rtl8139_hotplug_ready_needed(void *opaque)
3156 {
3157     return qdev_machine_modified();
3158 }
3159 
3160 static const VMStateDescription vmstate_rtl8139_hotplug_ready ={
3161     .name = "rtl8139/hotplug_ready",
3162     .version_id = 1,
3163     .minimum_version_id = 1,
3164     .needed = rtl8139_hotplug_ready_needed,
3165     .fields = (VMStateField[]) {
3166         VMSTATE_END_OF_LIST()
3167     }
3168 };
3169 
3170 static int rtl8139_pre_save(void *opaque)
3171 {
3172     RTL8139State* s = opaque;
3173     int64_t current_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
3174 
3175     /* for migration to older versions */
3176     s->TCTR = (current_time - s->TCTR_base) / PCI_PERIOD;
3177     s->rtl8139_mmio_io_addr_dummy = 0;
3178 
3179     return 0;
3180 }
3181 
3182 static const VMStateDescription vmstate_rtl8139 = {
3183     .name = "rtl8139",
3184     .version_id = 5,
3185     .minimum_version_id = 3,
3186     .post_load = rtl8139_post_load,
3187     .pre_save  = rtl8139_pre_save,
3188     .fields = (VMStateField[]) {
3189         VMSTATE_PCI_DEVICE(parent_obj, RTL8139State),
3190         VMSTATE_PARTIAL_BUFFER(phys, RTL8139State, 6),
3191         VMSTATE_BUFFER(mult, RTL8139State),
3192         VMSTATE_UINT32_ARRAY(TxStatus, RTL8139State, 4),
3193         VMSTATE_UINT32_ARRAY(TxAddr, RTL8139State, 4),
3194 
3195         VMSTATE_UINT32(RxBuf, RTL8139State),
3196         VMSTATE_UINT32(RxBufferSize, RTL8139State),
3197         VMSTATE_UINT32(RxBufPtr, RTL8139State),
3198         VMSTATE_UINT32(RxBufAddr, RTL8139State),
3199 
3200         VMSTATE_UINT16(IntrStatus, RTL8139State),
3201         VMSTATE_UINT16(IntrMask, RTL8139State),
3202 
3203         VMSTATE_UINT32(TxConfig, RTL8139State),
3204         VMSTATE_UINT32(RxConfig, RTL8139State),
3205         VMSTATE_UINT32(RxMissed, RTL8139State),
3206         VMSTATE_UINT16(CSCR, RTL8139State),
3207 
3208         VMSTATE_UINT8(Cfg9346, RTL8139State),
3209         VMSTATE_UINT8(Config0, RTL8139State),
3210         VMSTATE_UINT8(Config1, RTL8139State),
3211         VMSTATE_UINT8(Config3, RTL8139State),
3212         VMSTATE_UINT8(Config4, RTL8139State),
3213         VMSTATE_UINT8(Config5, RTL8139State),
3214 
3215         VMSTATE_UINT8(clock_enabled, RTL8139State),
3216         VMSTATE_UINT8(bChipCmdState, RTL8139State),
3217 
3218         VMSTATE_UINT16(MultiIntr, RTL8139State),
3219 
3220         VMSTATE_UINT16(BasicModeCtrl, RTL8139State),
3221         VMSTATE_UINT16(BasicModeStatus, RTL8139State),
3222         VMSTATE_UINT16(NWayAdvert, RTL8139State),
3223         VMSTATE_UINT16(NWayLPAR, RTL8139State),
3224         VMSTATE_UINT16(NWayExpansion, RTL8139State),
3225 
3226         VMSTATE_UINT16(CpCmd, RTL8139State),
3227         VMSTATE_UINT8(TxThresh, RTL8139State),
3228 
3229         VMSTATE_UNUSED(4),
3230         VMSTATE_MACADDR(conf.macaddr, RTL8139State),
3231         VMSTATE_INT32(rtl8139_mmio_io_addr_dummy, RTL8139State),
3232 
3233         VMSTATE_UINT32(currTxDesc, RTL8139State),
3234         VMSTATE_UINT32(currCPlusRxDesc, RTL8139State),
3235         VMSTATE_UINT32(currCPlusTxDesc, RTL8139State),
3236         VMSTATE_UINT32(RxRingAddrLO, RTL8139State),
3237         VMSTATE_UINT32(RxRingAddrHI, RTL8139State),
3238 
3239         VMSTATE_UINT16_ARRAY(eeprom.contents, RTL8139State, EEPROM_9346_SIZE),
3240         VMSTATE_INT32(eeprom.mode, RTL8139State),
3241         VMSTATE_UINT32(eeprom.tick, RTL8139State),
3242         VMSTATE_UINT8(eeprom.address, RTL8139State),
3243         VMSTATE_UINT16(eeprom.input, RTL8139State),
3244         VMSTATE_UINT16(eeprom.output, RTL8139State),
3245 
3246         VMSTATE_UINT8(eeprom.eecs, RTL8139State),
3247         VMSTATE_UINT8(eeprom.eesk, RTL8139State),
3248         VMSTATE_UINT8(eeprom.eedi, RTL8139State),
3249         VMSTATE_UINT8(eeprom.eedo, RTL8139State),
3250 
3251         VMSTATE_UINT32(TCTR, RTL8139State),
3252         VMSTATE_UINT32(TimerInt, RTL8139State),
3253         VMSTATE_INT64(TCTR_base, RTL8139State),
3254 
3255         VMSTATE_UINT64(tally_counters.TxOk, RTL8139State),
3256         VMSTATE_UINT64(tally_counters.RxOk, RTL8139State),
3257         VMSTATE_UINT64(tally_counters.TxERR, RTL8139State),
3258         VMSTATE_UINT32(tally_counters.RxERR, RTL8139State),
3259         VMSTATE_UINT16(tally_counters.MissPkt, RTL8139State),
3260         VMSTATE_UINT16(tally_counters.FAE, RTL8139State),
3261         VMSTATE_UINT32(tally_counters.Tx1Col, RTL8139State),
3262         VMSTATE_UINT32(tally_counters.TxMCol, RTL8139State),
3263         VMSTATE_UINT64(tally_counters.RxOkPhy, RTL8139State),
3264         VMSTATE_UINT64(tally_counters.RxOkBrd, RTL8139State),
3265         VMSTATE_UINT32_V(tally_counters.RxOkMul, RTL8139State, 5),
3266         VMSTATE_UINT16(tally_counters.TxAbt, RTL8139State),
3267         VMSTATE_UINT16(tally_counters.TxUndrn, RTL8139State),
3268 
3269         VMSTATE_UINT32_V(cplus_enabled, RTL8139State, 4),
3270         VMSTATE_END_OF_LIST()
3271     },
3272     .subsections = (const VMStateDescription*[]) {
3273         &vmstate_rtl8139_hotplug_ready,
3274         NULL
3275     }
3276 };
3277 
3278 /***********************************************************/
3279 /* PCI RTL8139 definitions */
3280 
3281 static void rtl8139_ioport_write(void *opaque, hwaddr addr,
3282                                  uint64_t val, unsigned size)
3283 {
3284     switch (size) {
3285     case 1:
3286         rtl8139_io_writeb(opaque, addr, val);
3287         break;
3288     case 2:
3289         rtl8139_io_writew(opaque, addr, val);
3290         break;
3291     case 4:
3292         rtl8139_io_writel(opaque, addr, val);
3293         break;
3294     }
3295 }
3296 
3297 static uint64_t rtl8139_ioport_read(void *opaque, hwaddr addr,
3298                                     unsigned size)
3299 {
3300     switch (size) {
3301     case 1:
3302         return rtl8139_io_readb(opaque, addr);
3303     case 2:
3304         return rtl8139_io_readw(opaque, addr);
3305     case 4:
3306         return rtl8139_io_readl(opaque, addr);
3307     }
3308 
3309     return -1;
3310 }
3311 
3312 static const MemoryRegionOps rtl8139_io_ops = {
3313     .read = rtl8139_ioport_read,
3314     .write = rtl8139_ioport_write,
3315     .impl = {
3316         .min_access_size = 1,
3317         .max_access_size = 4,
3318     },
3319     .endianness = DEVICE_LITTLE_ENDIAN,
3320 };
3321 
3322 static void rtl8139_timer(void *opaque)
3323 {
3324     RTL8139State *s = opaque;
3325 
3326     if (!s->clock_enabled)
3327     {
3328         DPRINTF(">>> timer: clock is not running\n");
3329         return;
3330     }
3331 
3332     s->IntrStatus |= PCSTimeout;
3333     rtl8139_update_irq(s);
3334     rtl8139_set_next_tctr_time(s);
3335 }
3336 
3337 static void pci_rtl8139_uninit(PCIDevice *dev)
3338 {
3339     RTL8139State *s = RTL8139(dev);
3340 
3341     g_free(s->cplus_txbuffer);
3342     s->cplus_txbuffer = NULL;
3343     timer_del(s->timer);
3344     timer_free(s->timer);
3345     qemu_del_nic(s->nic);
3346 }
3347 
3348 static void rtl8139_set_link_status(NetClientState *nc)
3349 {
3350     RTL8139State *s = qemu_get_nic_opaque(nc);
3351 
3352     if (nc->link_down) {
3353         s->BasicModeStatus &= ~0x04;
3354     } else {
3355         s->BasicModeStatus |= 0x04;
3356     }
3357 
3358     s->IntrStatus |= RxUnderrun;
3359     rtl8139_update_irq(s);
3360 }
3361 
3362 static NetClientInfo net_rtl8139_info = {
3363     .type = NET_CLIENT_DRIVER_NIC,
3364     .size = sizeof(NICState),
3365     .can_receive = rtl8139_can_receive,
3366     .receive = rtl8139_receive,
3367     .link_status_changed = rtl8139_set_link_status,
3368 };
3369 
3370 static void pci_rtl8139_realize(PCIDevice *dev, Error **errp)
3371 {
3372     RTL8139State *s = RTL8139(dev);
3373     DeviceState *d = DEVICE(dev);
3374     uint8_t *pci_conf;
3375 
3376     pci_conf = dev->config;
3377     pci_conf[PCI_INTERRUPT_PIN] = 1;    /* interrupt pin A */
3378     /* TODO: start of capability list, but no capability
3379      * list bit in status register, and offset 0xdc seems unused. */
3380     pci_conf[PCI_CAPABILITY_LIST] = 0xdc;
3381 
3382     memory_region_init_io(&s->bar_io, OBJECT(s), &rtl8139_io_ops, s,
3383                           "rtl8139", 0x100);
3384     memory_region_init_alias(&s->bar_mem, OBJECT(s), "rtl8139-mem", &s->bar_io,
3385                              0, 0x100);
3386 
3387     pci_register_bar(dev, 0, PCI_BASE_ADDRESS_SPACE_IO, &s->bar_io);
3388     pci_register_bar(dev, 1, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->bar_mem);
3389 
3390     qemu_macaddr_default_if_unset(&s->conf.macaddr);
3391 
3392     /* prepare eeprom */
3393     s->eeprom.contents[0] = 0x8129;
3394 #if 1
3395     /* PCI vendor and device ID should be mirrored here */
3396     s->eeprom.contents[1] = PCI_VENDOR_ID_REALTEK;
3397     s->eeprom.contents[2] = PCI_DEVICE_ID_REALTEK_8139;
3398 #endif
3399     s->eeprom.contents[7] = s->conf.macaddr.a[0] | s->conf.macaddr.a[1] << 8;
3400     s->eeprom.contents[8] = s->conf.macaddr.a[2] | s->conf.macaddr.a[3] << 8;
3401     s->eeprom.contents[9] = s->conf.macaddr.a[4] | s->conf.macaddr.a[5] << 8;
3402 
3403     s->nic = qemu_new_nic(&net_rtl8139_info, &s->conf,
3404                           object_get_typename(OBJECT(dev)), d->id, s);
3405     qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a);
3406 
3407     s->cplus_txbuffer = NULL;
3408     s->cplus_txbuffer_len = 0;
3409     s->cplus_txbuffer_offset = 0;
3410 
3411     s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, rtl8139_timer, s);
3412 }
3413 
3414 static void rtl8139_instance_init(Object *obj)
3415 {
3416     RTL8139State *s = RTL8139(obj);
3417 
3418     device_add_bootindex_property(obj, &s->conf.bootindex,
3419                                   "bootindex", "/ethernet-phy@0",
3420                                   DEVICE(obj));
3421 }
3422 
3423 static Property rtl8139_properties[] = {
3424     DEFINE_NIC_PROPERTIES(RTL8139State, conf),
3425     DEFINE_PROP_END_OF_LIST(),
3426 };
3427 
3428 static void rtl8139_class_init(ObjectClass *klass, void *data)
3429 {
3430     DeviceClass *dc = DEVICE_CLASS(klass);
3431     PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
3432 
3433     k->realize = pci_rtl8139_realize;
3434     k->exit = pci_rtl8139_uninit;
3435     k->romfile = "efi-rtl8139.rom";
3436     k->vendor_id = PCI_VENDOR_ID_REALTEK;
3437     k->device_id = PCI_DEVICE_ID_REALTEK_8139;
3438     k->revision = RTL8139_PCI_REVID; /* >=0x20 is for 8139C+ */
3439     k->class_id = PCI_CLASS_NETWORK_ETHERNET;
3440     dc->reset = rtl8139_reset;
3441     dc->vmsd = &vmstate_rtl8139;
3442     device_class_set_props(dc, rtl8139_properties);
3443     set_bit(DEVICE_CATEGORY_NETWORK, dc->categories);
3444 }
3445 
3446 static const TypeInfo rtl8139_info = {
3447     .name          = TYPE_RTL8139,
3448     .parent        = TYPE_PCI_DEVICE,
3449     .instance_size = sizeof(RTL8139State),
3450     .class_init    = rtl8139_class_init,
3451     .instance_init = rtl8139_instance_init,
3452     .interfaces = (InterfaceInfo[]) {
3453         { INTERFACE_CONVENTIONAL_PCI_DEVICE },
3454         { },
3455     },
3456 };
3457 
3458 static void rtl8139_register_types(void)
3459 {
3460     type_register_static(&rtl8139_info);
3461 }
3462 
3463 type_init(rtl8139_register_types)
3464