xref: /openbmc/qemu/hw/net/rtl8139.c (revision 10500ce2)
1 /**
2  * QEMU RTL8139 emulation
3  *
4  * Copyright (c) 2006 Igor Kovalenko
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23 
24  * Modifications:
25  *  2006-Jan-28  Mark Malakanov :   TSAD and CSCR implementation (for Windows driver)
26  *
27  *  2006-Apr-28  Juergen Lock   :   EEPROM emulation changes for FreeBSD driver
28  *                                  HW revision ID changes for FreeBSD driver
29  *
30  *  2006-Jul-01  Igor Kovalenko :   Implemented loopback mode for FreeBSD driver
31  *                                  Corrected packet transfer reassembly routine for 8139C+ mode
32  *                                  Rearranged debugging print statements
33  *                                  Implemented PCI timer interrupt (disabled by default)
34  *                                  Implemented Tally Counters, increased VM load/save version
35  *                                  Implemented IP/TCP/UDP checksum task offloading
36  *
37  *  2006-Jul-04  Igor Kovalenko :   Implemented TCP segmentation offloading
38  *                                  Fixed MTU=1500 for produced ethernet frames
39  *
40  *  2006-Jul-09  Igor Kovalenko :   Fixed TCP header length calculation while processing
41  *                                  segmentation offloading
42  *                                  Removed slirp.h dependency
43  *                                  Added rx/tx buffer reset when enabling rx/tx operation
44  *
45  *  2010-Feb-04  Frediano Ziglio:   Rewrote timer support using QEMU timer only
46  *                                  when strictly needed (required for for
47  *                                  Darwin)
48  *  2011-Mar-22  Benjamin Poirier:  Implemented VLAN offloading
49  */
50 
51 /* For crc32 */
52 #include <zlib.h>
53 
54 #include "hw/hw.h"
55 #include "hw/pci/pci.h"
56 #include "sysemu/dma.h"
57 #include "qemu/timer.h"
58 #include "net/net.h"
59 #include "hw/loader.h"
60 #include "sysemu/sysemu.h"
61 #include "qemu/iov.h"
62 
63 /* debug RTL8139 card */
64 //#define DEBUG_RTL8139 1
65 
66 #define PCI_FREQUENCY 33000000L
67 
68 #define SET_MASKED(input, mask, curr) \
69     ( ( (input) & ~(mask) ) | ( (curr) & (mask) ) )
70 
71 /* arg % size for size which is a power of 2 */
72 #define MOD2(input, size) \
73     ( ( input ) & ( size - 1 )  )
74 
75 #define ETHER_ADDR_LEN 6
76 #define ETHER_TYPE_LEN 2
77 #define ETH_HLEN (ETHER_ADDR_LEN * 2 + ETHER_TYPE_LEN)
78 #define ETH_P_IP    0x0800      /* Internet Protocol packet */
79 #define ETH_P_8021Q 0x8100      /* 802.1Q VLAN Extended Header  */
80 #define ETH_MTU     1500
81 
82 #define VLAN_TCI_LEN 2
83 #define VLAN_HLEN (ETHER_TYPE_LEN + VLAN_TCI_LEN)
84 
85 #if defined (DEBUG_RTL8139)
86 #  define DPRINTF(fmt, ...) \
87     do { fprintf(stderr, "RTL8139: " fmt, ## __VA_ARGS__); } while (0)
88 #else
89 static inline GCC_FMT_ATTR(1, 2) int DPRINTF(const char *fmt, ...)
90 {
91     return 0;
92 }
93 #endif
94 
95 #define TYPE_RTL8139 "rtl8139"
96 
97 #define RTL8139(obj) \
98      OBJECT_CHECK(RTL8139State, (obj), TYPE_RTL8139)
99 
100 /* Symbolic offsets to registers. */
101 enum RTL8139_registers {
102     MAC0 = 0,        /* Ethernet hardware address. */
103     MAR0 = 8,        /* Multicast filter. */
104     TxStatus0 = 0x10,/* Transmit status (Four 32bit registers). C mode only */
105                      /* Dump Tally Conter control register(64bit). C+ mode only */
106     TxAddr0 = 0x20,  /* Tx descriptors (also four 32bit). */
107     RxBuf = 0x30,
108     ChipCmd = 0x37,
109     RxBufPtr = 0x38,
110     RxBufAddr = 0x3A,
111     IntrMask = 0x3C,
112     IntrStatus = 0x3E,
113     TxConfig = 0x40,
114     RxConfig = 0x44,
115     Timer = 0x48,        /* A general-purpose counter. */
116     RxMissed = 0x4C,    /* 24 bits valid, write clears. */
117     Cfg9346 = 0x50,
118     Config0 = 0x51,
119     Config1 = 0x52,
120     FlashReg = 0x54,
121     MediaStatus = 0x58,
122     Config3 = 0x59,
123     Config4 = 0x5A,        /* absent on RTL-8139A */
124     HltClk = 0x5B,
125     MultiIntr = 0x5C,
126     PCIRevisionID = 0x5E,
127     TxSummary = 0x60, /* TSAD register. Transmit Status of All Descriptors*/
128     BasicModeCtrl = 0x62,
129     BasicModeStatus = 0x64,
130     NWayAdvert = 0x66,
131     NWayLPAR = 0x68,
132     NWayExpansion = 0x6A,
133     /* Undocumented registers, but required for proper operation. */
134     FIFOTMS = 0x70,        /* FIFO Control and test. */
135     CSCR = 0x74,        /* Chip Status and Configuration Register. */
136     PARA78 = 0x78,
137     PARA7c = 0x7c,        /* Magic transceiver parameter register. */
138     Config5 = 0xD8,        /* absent on RTL-8139A */
139     /* C+ mode */
140     TxPoll        = 0xD9,    /* Tell chip to check Tx descriptors for work */
141     RxMaxSize    = 0xDA, /* Max size of an Rx packet (8169 only) */
142     CpCmd        = 0xE0, /* C+ Command register (C+ mode only) */
143     IntrMitigate    = 0xE2,    /* rx/tx interrupt mitigation control */
144     RxRingAddrLO    = 0xE4, /* 64-bit start addr of Rx ring */
145     RxRingAddrHI    = 0xE8, /* 64-bit start addr of Rx ring */
146     TxThresh    = 0xEC, /* Early Tx threshold */
147 };
148 
149 enum ClearBitMasks {
150     MultiIntrClear = 0xF000,
151     ChipCmdClear = 0xE2,
152     Config1Clear = (1<<7)|(1<<6)|(1<<3)|(1<<2)|(1<<1),
153 };
154 
155 enum ChipCmdBits {
156     CmdReset = 0x10,
157     CmdRxEnb = 0x08,
158     CmdTxEnb = 0x04,
159     RxBufEmpty = 0x01,
160 };
161 
162 /* C+ mode */
163 enum CplusCmdBits {
164     CPlusRxVLAN   = 0x0040, /* enable receive VLAN detagging */
165     CPlusRxChkSum = 0x0020, /* enable receive checksum offloading */
166     CPlusRxEnb    = 0x0002,
167     CPlusTxEnb    = 0x0001,
168 };
169 
170 /* Interrupt register bits, using my own meaningful names. */
171 enum IntrStatusBits {
172     PCIErr = 0x8000,
173     PCSTimeout = 0x4000,
174     RxFIFOOver = 0x40,
175     RxUnderrun = 0x20, /* Packet Underrun / Link Change */
176     RxOverflow = 0x10,
177     TxErr = 0x08,
178     TxOK = 0x04,
179     RxErr = 0x02,
180     RxOK = 0x01,
181 
182     RxAckBits = RxFIFOOver | RxOverflow | RxOK,
183 };
184 
185 enum TxStatusBits {
186     TxHostOwns = 0x2000,
187     TxUnderrun = 0x4000,
188     TxStatOK = 0x8000,
189     TxOutOfWindow = 0x20000000,
190     TxAborted = 0x40000000,
191     TxCarrierLost = 0x80000000,
192 };
193 enum RxStatusBits {
194     RxMulticast = 0x8000,
195     RxPhysical = 0x4000,
196     RxBroadcast = 0x2000,
197     RxBadSymbol = 0x0020,
198     RxRunt = 0x0010,
199     RxTooLong = 0x0008,
200     RxCRCErr = 0x0004,
201     RxBadAlign = 0x0002,
202     RxStatusOK = 0x0001,
203 };
204 
205 /* Bits in RxConfig. */
206 enum rx_mode_bits {
207     AcceptErr = 0x20,
208     AcceptRunt = 0x10,
209     AcceptBroadcast = 0x08,
210     AcceptMulticast = 0x04,
211     AcceptMyPhys = 0x02,
212     AcceptAllPhys = 0x01,
213 };
214 
215 /* Bits in TxConfig. */
216 enum tx_config_bits {
217 
218         /* Interframe Gap Time. Only TxIFG96 doesn't violate IEEE 802.3 */
219         TxIFGShift = 24,
220         TxIFG84 = (0 << TxIFGShift),    /* 8.4us / 840ns (10 / 100Mbps) */
221         TxIFG88 = (1 << TxIFGShift),    /* 8.8us / 880ns (10 / 100Mbps) */
222         TxIFG92 = (2 << TxIFGShift),    /* 9.2us / 920ns (10 / 100Mbps) */
223         TxIFG96 = (3 << TxIFGShift),    /* 9.6us / 960ns (10 / 100Mbps) */
224 
225     TxLoopBack = (1 << 18) | (1 << 17), /* enable loopback test mode */
226     TxCRC = (1 << 16),    /* DISABLE appending CRC to end of Tx packets */
227     TxClearAbt = (1 << 0),    /* Clear abort (WO) */
228     TxDMAShift = 8,        /* DMA burst value (0-7) is shifted this many bits */
229     TxRetryShift = 4,    /* TXRR value (0-15) is shifted this many bits */
230 
231     TxVersionMask = 0x7C800000, /* mask out version bits 30-26, 23 */
232 };
233 
234 
235 /* Transmit Status of All Descriptors (TSAD) Register */
236 enum TSAD_bits {
237  TSAD_TOK3 = 1<<15, // TOK bit of Descriptor 3
238  TSAD_TOK2 = 1<<14, // TOK bit of Descriptor 2
239  TSAD_TOK1 = 1<<13, // TOK bit of Descriptor 1
240  TSAD_TOK0 = 1<<12, // TOK bit of Descriptor 0
241  TSAD_TUN3 = 1<<11, // TUN bit of Descriptor 3
242  TSAD_TUN2 = 1<<10, // TUN bit of Descriptor 2
243  TSAD_TUN1 = 1<<9, // TUN bit of Descriptor 1
244  TSAD_TUN0 = 1<<8, // TUN bit of Descriptor 0
245  TSAD_TABT3 = 1<<07, // TABT bit of Descriptor 3
246  TSAD_TABT2 = 1<<06, // TABT bit of Descriptor 2
247  TSAD_TABT1 = 1<<05, // TABT bit of Descriptor 1
248  TSAD_TABT0 = 1<<04, // TABT bit of Descriptor 0
249  TSAD_OWN3 = 1<<03, // OWN bit of Descriptor 3
250  TSAD_OWN2 = 1<<02, // OWN bit of Descriptor 2
251  TSAD_OWN1 = 1<<01, // OWN bit of Descriptor 1
252  TSAD_OWN0 = 1<<00, // OWN bit of Descriptor 0
253 };
254 
255 
256 /* Bits in Config1 */
257 enum Config1Bits {
258     Cfg1_PM_Enable = 0x01,
259     Cfg1_VPD_Enable = 0x02,
260     Cfg1_PIO = 0x04,
261     Cfg1_MMIO = 0x08,
262     LWAKE = 0x10,        /* not on 8139, 8139A */
263     Cfg1_Driver_Load = 0x20,
264     Cfg1_LED0 = 0x40,
265     Cfg1_LED1 = 0x80,
266     SLEEP = (1 << 1),    /* only on 8139, 8139A */
267     PWRDN = (1 << 0),    /* only on 8139, 8139A */
268 };
269 
270 /* Bits in Config3 */
271 enum Config3Bits {
272     Cfg3_FBtBEn    = (1 << 0), /* 1 = Fast Back to Back */
273     Cfg3_FuncRegEn = (1 << 1), /* 1 = enable CardBus Function registers */
274     Cfg3_CLKRUN_En = (1 << 2), /* 1 = enable CLKRUN */
275     Cfg3_CardB_En  = (1 << 3), /* 1 = enable CardBus registers */
276     Cfg3_LinkUp    = (1 << 4), /* 1 = wake up on link up */
277     Cfg3_Magic     = (1 << 5), /* 1 = wake up on Magic Packet (tm) */
278     Cfg3_PARM_En   = (1 << 6), /* 0 = software can set twister parameters */
279     Cfg3_GNTSel    = (1 << 7), /* 1 = delay 1 clock from PCI GNT signal */
280 };
281 
282 /* Bits in Config4 */
283 enum Config4Bits {
284     LWPTN = (1 << 2),    /* not on 8139, 8139A */
285 };
286 
287 /* Bits in Config5 */
288 enum Config5Bits {
289     Cfg5_PME_STS     = (1 << 0), /* 1 = PCI reset resets PME_Status */
290     Cfg5_LANWake     = (1 << 1), /* 1 = enable LANWake signal */
291     Cfg5_LDPS        = (1 << 2), /* 0 = save power when link is down */
292     Cfg5_FIFOAddrPtr = (1 << 3), /* Realtek internal SRAM testing */
293     Cfg5_UWF         = (1 << 4), /* 1 = accept unicast wakeup frame */
294     Cfg5_MWF         = (1 << 5), /* 1 = accept multicast wakeup frame */
295     Cfg5_BWF         = (1 << 6), /* 1 = accept broadcast wakeup frame */
296 };
297 
298 enum RxConfigBits {
299     /* rx fifo threshold */
300     RxCfgFIFOShift = 13,
301     RxCfgFIFONone = (7 << RxCfgFIFOShift),
302 
303     /* Max DMA burst */
304     RxCfgDMAShift = 8,
305     RxCfgDMAUnlimited = (7 << RxCfgDMAShift),
306 
307     /* rx ring buffer length */
308     RxCfgRcv8K = 0,
309     RxCfgRcv16K = (1 << 11),
310     RxCfgRcv32K = (1 << 12),
311     RxCfgRcv64K = (1 << 11) | (1 << 12),
312 
313     /* Disable packet wrap at end of Rx buffer. (not possible with 64k) */
314     RxNoWrap = (1 << 7),
315 };
316 
317 /* Twister tuning parameters from RealTek.
318    Completely undocumented, but required to tune bad links on some boards. */
319 /*
320 enum CSCRBits {
321     CSCR_LinkOKBit = 0x0400,
322     CSCR_LinkChangeBit = 0x0800,
323     CSCR_LinkStatusBits = 0x0f000,
324     CSCR_LinkDownOffCmd = 0x003c0,
325     CSCR_LinkDownCmd = 0x0f3c0,
326 */
327 enum CSCRBits {
328     CSCR_Testfun = 1<<15, /* 1 = Auto-neg speeds up internal timer, WO, def 0 */
329     CSCR_LD  = 1<<9,  /* Active low TPI link disable signal. When low, TPI still transmits link pulses and TPI stays in good link state. def 1*/
330     CSCR_HEART_BIT = 1<<8,  /* 1 = HEART BEAT enable, 0 = HEART BEAT disable. HEART BEAT function is only valid in 10Mbps mode. def 1*/
331     CSCR_JBEN = 1<<7,  /* 1 = enable jabber function. 0 = disable jabber function, def 1*/
332     CSCR_F_LINK_100 = 1<<6, /* Used to login force good link in 100Mbps for diagnostic purposes. 1 = DISABLE, 0 = ENABLE. def 1*/
333     CSCR_F_Connect  = 1<<5,  /* Assertion of this bit forces the disconnect function to be bypassed. def 0*/
334     CSCR_Con_status = 1<<3, /* This bit indicates the status of the connection. 1 = valid connected link detected; 0 = disconnected link detected. RO def 0*/
335     CSCR_Con_status_En = 1<<2, /* Assertion of this bit configures LED1 pin to indicate connection status. def 0*/
336     CSCR_PASS_SCR = 1<<0, /* Bypass Scramble, def 0*/
337 };
338 
339 enum Cfg9346Bits {
340     Cfg9346_Normal = 0x00,
341     Cfg9346_Autoload = 0x40,
342     Cfg9346_Programming = 0x80,
343     Cfg9346_ConfigWrite = 0xC0,
344 };
345 
346 typedef enum {
347     CH_8139 = 0,
348     CH_8139_K,
349     CH_8139A,
350     CH_8139A_G,
351     CH_8139B,
352     CH_8130,
353     CH_8139C,
354     CH_8100,
355     CH_8100B_8139D,
356     CH_8101,
357 } chip_t;
358 
359 enum chip_flags {
360     HasHltClk = (1 << 0),
361     HasLWake = (1 << 1),
362 };
363 
364 #define HW_REVID(b30, b29, b28, b27, b26, b23, b22) \
365     (b30<<30 | b29<<29 | b28<<28 | b27<<27 | b26<<26 | b23<<23 | b22<<22)
366 #define HW_REVID_MASK    HW_REVID(1, 1, 1, 1, 1, 1, 1)
367 
368 #define RTL8139_PCI_REVID_8139      0x10
369 #define RTL8139_PCI_REVID_8139CPLUS 0x20
370 
371 #define RTL8139_PCI_REVID           RTL8139_PCI_REVID_8139CPLUS
372 
373 /* Size is 64 * 16bit words */
374 #define EEPROM_9346_ADDR_BITS 6
375 #define EEPROM_9346_SIZE  (1 << EEPROM_9346_ADDR_BITS)
376 #define EEPROM_9346_ADDR_MASK (EEPROM_9346_SIZE - 1)
377 
378 enum Chip9346Operation
379 {
380     Chip9346_op_mask = 0xc0,          /* 10 zzzzzz */
381     Chip9346_op_read = 0x80,          /* 10 AAAAAA */
382     Chip9346_op_write = 0x40,         /* 01 AAAAAA D(15)..D(0) */
383     Chip9346_op_ext_mask = 0xf0,      /* 11 zzzzzz */
384     Chip9346_op_write_enable = 0x30,  /* 00 11zzzz */
385     Chip9346_op_write_all = 0x10,     /* 00 01zzzz */
386     Chip9346_op_write_disable = 0x00, /* 00 00zzzz */
387 };
388 
389 enum Chip9346Mode
390 {
391     Chip9346_none = 0,
392     Chip9346_enter_command_mode,
393     Chip9346_read_command,
394     Chip9346_data_read,      /* from output register */
395     Chip9346_data_write,     /* to input register, then to contents at specified address */
396     Chip9346_data_write_all, /* to input register, then filling contents */
397 };
398 
399 typedef struct EEprom9346
400 {
401     uint16_t contents[EEPROM_9346_SIZE];
402     int      mode;
403     uint32_t tick;
404     uint8_t  address;
405     uint16_t input;
406     uint16_t output;
407 
408     uint8_t eecs;
409     uint8_t eesk;
410     uint8_t eedi;
411     uint8_t eedo;
412 } EEprom9346;
413 
414 typedef struct RTL8139TallyCounters
415 {
416     /* Tally counters */
417     uint64_t   TxOk;
418     uint64_t   RxOk;
419     uint64_t   TxERR;
420     uint32_t   RxERR;
421     uint16_t   MissPkt;
422     uint16_t   FAE;
423     uint32_t   Tx1Col;
424     uint32_t   TxMCol;
425     uint64_t   RxOkPhy;
426     uint64_t   RxOkBrd;
427     uint32_t   RxOkMul;
428     uint16_t   TxAbt;
429     uint16_t   TxUndrn;
430 } RTL8139TallyCounters;
431 
432 /* Clears all tally counters */
433 static void RTL8139TallyCounters_clear(RTL8139TallyCounters* counters);
434 
435 typedef struct RTL8139State {
436     /*< private >*/
437     PCIDevice parent_obj;
438     /*< public >*/
439 
440     uint8_t phys[8]; /* mac address */
441     uint8_t mult[8]; /* multicast mask array */
442 
443     uint32_t TxStatus[4]; /* TxStatus0 in C mode*/ /* also DTCCR[0] and DTCCR[1] in C+ mode */
444     uint32_t TxAddr[4];   /* TxAddr0 */
445     uint32_t RxBuf;       /* Receive buffer */
446     uint32_t RxBufferSize;/* internal variable, receive ring buffer size in C mode */
447     uint32_t RxBufPtr;
448     uint32_t RxBufAddr;
449 
450     uint16_t IntrStatus;
451     uint16_t IntrMask;
452 
453     uint32_t TxConfig;
454     uint32_t RxConfig;
455     uint32_t RxMissed;
456 
457     uint16_t CSCR;
458 
459     uint8_t  Cfg9346;
460     uint8_t  Config0;
461     uint8_t  Config1;
462     uint8_t  Config3;
463     uint8_t  Config4;
464     uint8_t  Config5;
465 
466     uint8_t  clock_enabled;
467     uint8_t  bChipCmdState;
468 
469     uint16_t MultiIntr;
470 
471     uint16_t BasicModeCtrl;
472     uint16_t BasicModeStatus;
473     uint16_t NWayAdvert;
474     uint16_t NWayLPAR;
475     uint16_t NWayExpansion;
476 
477     uint16_t CpCmd;
478     uint8_t  TxThresh;
479 
480     NICState *nic;
481     NICConf conf;
482 
483     /* C ring mode */
484     uint32_t   currTxDesc;
485 
486     /* C+ mode */
487     uint32_t   cplus_enabled;
488 
489     uint32_t   currCPlusRxDesc;
490     uint32_t   currCPlusTxDesc;
491 
492     uint32_t   RxRingAddrLO;
493     uint32_t   RxRingAddrHI;
494 
495     EEprom9346 eeprom;
496 
497     uint32_t   TCTR;
498     uint32_t   TimerInt;
499     int64_t    TCTR_base;
500 
501     /* Tally counters */
502     RTL8139TallyCounters tally_counters;
503 
504     /* Non-persistent data */
505     uint8_t   *cplus_txbuffer;
506     int        cplus_txbuffer_len;
507     int        cplus_txbuffer_offset;
508 
509     /* PCI interrupt timer */
510     QEMUTimer *timer;
511 
512     MemoryRegion bar_io;
513     MemoryRegion bar_mem;
514 
515     /* Support migration to/from old versions */
516     int rtl8139_mmio_io_addr_dummy;
517 } RTL8139State;
518 
519 /* Writes tally counters to memory via DMA */
520 static void RTL8139TallyCounters_dma_write(RTL8139State *s, dma_addr_t tc_addr);
521 
522 static void rtl8139_set_next_tctr_time(RTL8139State *s);
523 
524 static void prom9346_decode_command(EEprom9346 *eeprom, uint8_t command)
525 {
526     DPRINTF("eeprom command 0x%02x\n", command);
527 
528     switch (command & Chip9346_op_mask)
529     {
530         case Chip9346_op_read:
531         {
532             eeprom->address = command & EEPROM_9346_ADDR_MASK;
533             eeprom->output = eeprom->contents[eeprom->address];
534             eeprom->eedo = 0;
535             eeprom->tick = 0;
536             eeprom->mode = Chip9346_data_read;
537             DPRINTF("eeprom read from address 0x%02x data=0x%04x\n",
538                 eeprom->address, eeprom->output);
539         }
540         break;
541 
542         case Chip9346_op_write:
543         {
544             eeprom->address = command & EEPROM_9346_ADDR_MASK;
545             eeprom->input = 0;
546             eeprom->tick = 0;
547             eeprom->mode = Chip9346_none; /* Chip9346_data_write */
548             DPRINTF("eeprom begin write to address 0x%02x\n",
549                 eeprom->address);
550         }
551         break;
552         default:
553             eeprom->mode = Chip9346_none;
554             switch (command & Chip9346_op_ext_mask)
555             {
556                 case Chip9346_op_write_enable:
557                     DPRINTF("eeprom write enabled\n");
558                     break;
559                 case Chip9346_op_write_all:
560                     DPRINTF("eeprom begin write all\n");
561                     break;
562                 case Chip9346_op_write_disable:
563                     DPRINTF("eeprom write disabled\n");
564                     break;
565             }
566             break;
567     }
568 }
569 
570 static void prom9346_shift_clock(EEprom9346 *eeprom)
571 {
572     int bit = eeprom->eedi?1:0;
573 
574     ++ eeprom->tick;
575 
576     DPRINTF("eeprom: tick %d eedi=%d eedo=%d\n", eeprom->tick, eeprom->eedi,
577         eeprom->eedo);
578 
579     switch (eeprom->mode)
580     {
581         case Chip9346_enter_command_mode:
582             if (bit)
583             {
584                 eeprom->mode = Chip9346_read_command;
585                 eeprom->tick = 0;
586                 eeprom->input = 0;
587                 DPRINTF("eeprom: +++ synchronized, begin command read\n");
588             }
589             break;
590 
591         case Chip9346_read_command:
592             eeprom->input = (eeprom->input << 1) | (bit & 1);
593             if (eeprom->tick == 8)
594             {
595                 prom9346_decode_command(eeprom, eeprom->input & 0xff);
596             }
597             break;
598 
599         case Chip9346_data_read:
600             eeprom->eedo = (eeprom->output & 0x8000)?1:0;
601             eeprom->output <<= 1;
602             if (eeprom->tick == 16)
603             {
604 #if 1
605         // the FreeBSD drivers (rl and re) don't explicitly toggle
606         // CS between reads (or does setting Cfg9346 to 0 count too?),
607         // so we need to enter wait-for-command state here
608                 eeprom->mode = Chip9346_enter_command_mode;
609                 eeprom->input = 0;
610                 eeprom->tick = 0;
611 
612                 DPRINTF("eeprom: +++ end of read, awaiting next command\n");
613 #else
614         // original behaviour
615                 ++eeprom->address;
616                 eeprom->address &= EEPROM_9346_ADDR_MASK;
617                 eeprom->output = eeprom->contents[eeprom->address];
618                 eeprom->tick = 0;
619 
620                 DPRINTF("eeprom: +++ read next address 0x%02x data=0x%04x\n",
621                     eeprom->address, eeprom->output);
622 #endif
623             }
624             break;
625 
626         case Chip9346_data_write:
627             eeprom->input = (eeprom->input << 1) | (bit & 1);
628             if (eeprom->tick == 16)
629             {
630                 DPRINTF("eeprom write to address 0x%02x data=0x%04x\n",
631                     eeprom->address, eeprom->input);
632 
633                 eeprom->contents[eeprom->address] = eeprom->input;
634                 eeprom->mode = Chip9346_none; /* waiting for next command after CS cycle */
635                 eeprom->tick = 0;
636                 eeprom->input = 0;
637             }
638             break;
639 
640         case Chip9346_data_write_all:
641             eeprom->input = (eeprom->input << 1) | (bit & 1);
642             if (eeprom->tick == 16)
643             {
644                 int i;
645                 for (i = 0; i < EEPROM_9346_SIZE; i++)
646                 {
647                     eeprom->contents[i] = eeprom->input;
648                 }
649                 DPRINTF("eeprom filled with data=0x%04x\n", eeprom->input);
650 
651                 eeprom->mode = Chip9346_enter_command_mode;
652                 eeprom->tick = 0;
653                 eeprom->input = 0;
654             }
655             break;
656 
657         default:
658             break;
659     }
660 }
661 
662 static int prom9346_get_wire(RTL8139State *s)
663 {
664     EEprom9346 *eeprom = &s->eeprom;
665     if (!eeprom->eecs)
666         return 0;
667 
668     return eeprom->eedo;
669 }
670 
671 /* FIXME: This should be merged into/replaced by eeprom93xx.c.  */
672 static void prom9346_set_wire(RTL8139State *s, int eecs, int eesk, int eedi)
673 {
674     EEprom9346 *eeprom = &s->eeprom;
675     uint8_t old_eecs = eeprom->eecs;
676     uint8_t old_eesk = eeprom->eesk;
677 
678     eeprom->eecs = eecs;
679     eeprom->eesk = eesk;
680     eeprom->eedi = eedi;
681 
682     DPRINTF("eeprom: +++ wires CS=%d SK=%d DI=%d DO=%d\n", eeprom->eecs,
683         eeprom->eesk, eeprom->eedi, eeprom->eedo);
684 
685     if (!old_eecs && eecs)
686     {
687         /* Synchronize start */
688         eeprom->tick = 0;
689         eeprom->input = 0;
690         eeprom->output = 0;
691         eeprom->mode = Chip9346_enter_command_mode;
692 
693         DPRINTF("=== eeprom: begin access, enter command mode\n");
694     }
695 
696     if (!eecs)
697     {
698         DPRINTF("=== eeprom: end access\n");
699         return;
700     }
701 
702     if (!old_eesk && eesk)
703     {
704         /* SK front rules */
705         prom9346_shift_clock(eeprom);
706     }
707 }
708 
709 static void rtl8139_update_irq(RTL8139State *s)
710 {
711     PCIDevice *d = PCI_DEVICE(s);
712     int isr;
713     isr = (s->IntrStatus & s->IntrMask) & 0xffff;
714 
715     DPRINTF("Set IRQ to %d (%04x %04x)\n", isr ? 1 : 0, s->IntrStatus,
716         s->IntrMask);
717 
718     pci_set_irq(d, (isr != 0));
719 }
720 
721 static int rtl8139_RxWrap(RTL8139State *s)
722 {
723     /* wrapping enabled; assume 1.5k more buffer space if size < 65536 */
724     return (s->RxConfig & (1 << 7));
725 }
726 
727 static int rtl8139_receiver_enabled(RTL8139State *s)
728 {
729     return s->bChipCmdState & CmdRxEnb;
730 }
731 
732 static int rtl8139_transmitter_enabled(RTL8139State *s)
733 {
734     return s->bChipCmdState & CmdTxEnb;
735 }
736 
737 static int rtl8139_cp_receiver_enabled(RTL8139State *s)
738 {
739     return s->CpCmd & CPlusRxEnb;
740 }
741 
742 static int rtl8139_cp_transmitter_enabled(RTL8139State *s)
743 {
744     return s->CpCmd & CPlusTxEnb;
745 }
746 
747 static void rtl8139_write_buffer(RTL8139State *s, const void *buf, int size)
748 {
749     PCIDevice *d = PCI_DEVICE(s);
750 
751     if (s->RxBufAddr + size > s->RxBufferSize)
752     {
753         int wrapped = MOD2(s->RxBufAddr + size, s->RxBufferSize);
754 
755         /* write packet data */
756         if (wrapped && !(s->RxBufferSize < 65536 && rtl8139_RxWrap(s)))
757         {
758             DPRINTF(">>> rx packet wrapped in buffer at %d\n", size - wrapped);
759 
760             if (size > wrapped)
761             {
762                 pci_dma_write(d, s->RxBuf + s->RxBufAddr,
763                               buf, size-wrapped);
764             }
765 
766             /* reset buffer pointer */
767             s->RxBufAddr = 0;
768 
769             pci_dma_write(d, s->RxBuf + s->RxBufAddr,
770                           buf + (size-wrapped), wrapped);
771 
772             s->RxBufAddr = wrapped;
773 
774             return;
775         }
776     }
777 
778     /* non-wrapping path or overwrapping enabled */
779     pci_dma_write(d, s->RxBuf + s->RxBufAddr, buf, size);
780 
781     s->RxBufAddr += size;
782 }
783 
784 #define MIN_BUF_SIZE 60
785 static inline dma_addr_t rtl8139_addr64(uint32_t low, uint32_t high)
786 {
787     return low | ((uint64_t)high << 32);
788 }
789 
790 /* Workaround for buggy guest driver such as linux who allocates rx
791  * rings after the receiver were enabled. */
792 static bool rtl8139_cp_rx_valid(RTL8139State *s)
793 {
794     return !(s->RxRingAddrLO == 0 && s->RxRingAddrHI == 0);
795 }
796 
797 static int rtl8139_can_receive(NetClientState *nc)
798 {
799     RTL8139State *s = qemu_get_nic_opaque(nc);
800     int avail;
801 
802     /* Receive (drop) packets if card is disabled.  */
803     if (!s->clock_enabled)
804       return 1;
805     if (!rtl8139_receiver_enabled(s))
806       return 1;
807 
808     if (rtl8139_cp_receiver_enabled(s) && rtl8139_cp_rx_valid(s)) {
809         /* ??? Flow control not implemented in c+ mode.
810            This is a hack to work around slirp deficiencies anyway.  */
811         return 1;
812     } else {
813         avail = MOD2(s->RxBufferSize + s->RxBufPtr - s->RxBufAddr,
814                      s->RxBufferSize);
815         return (avail == 0 || avail >= 1514 || (s->IntrMask & RxOverflow));
816     }
817 }
818 
819 static ssize_t rtl8139_do_receive(NetClientState *nc, const uint8_t *buf, size_t size_, int do_interrupt)
820 {
821     RTL8139State *s = qemu_get_nic_opaque(nc);
822     PCIDevice *d = PCI_DEVICE(s);
823     /* size is the length of the buffer passed to the driver */
824     int size = size_;
825     const uint8_t *dot1q_buf = NULL;
826 
827     uint32_t packet_header = 0;
828 
829     uint8_t buf1[MIN_BUF_SIZE + VLAN_HLEN];
830     static const uint8_t broadcast_macaddr[6] =
831         { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
832 
833     DPRINTF(">>> received len=%d\n", size);
834 
835     /* test if board clock is stopped */
836     if (!s->clock_enabled)
837     {
838         DPRINTF("stopped ==========================\n");
839         return -1;
840     }
841 
842     /* first check if receiver is enabled */
843 
844     if (!rtl8139_receiver_enabled(s))
845     {
846         DPRINTF("receiver disabled ================\n");
847         return -1;
848     }
849 
850     /* XXX: check this */
851     if (s->RxConfig & AcceptAllPhys) {
852         /* promiscuous: receive all */
853         DPRINTF(">>> packet received in promiscuous mode\n");
854 
855     } else {
856         if (!memcmp(buf,  broadcast_macaddr, 6)) {
857             /* broadcast address */
858             if (!(s->RxConfig & AcceptBroadcast))
859             {
860                 DPRINTF(">>> broadcast packet rejected\n");
861 
862                 /* update tally counter */
863                 ++s->tally_counters.RxERR;
864 
865                 return size;
866             }
867 
868             packet_header |= RxBroadcast;
869 
870             DPRINTF(">>> broadcast packet received\n");
871 
872             /* update tally counter */
873             ++s->tally_counters.RxOkBrd;
874 
875         } else if (buf[0] & 0x01) {
876             /* multicast */
877             if (!(s->RxConfig & AcceptMulticast))
878             {
879                 DPRINTF(">>> multicast packet rejected\n");
880 
881                 /* update tally counter */
882                 ++s->tally_counters.RxERR;
883 
884                 return size;
885             }
886 
887             int mcast_idx = compute_mcast_idx(buf);
888 
889             if (!(s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))))
890             {
891                 DPRINTF(">>> multicast address mismatch\n");
892 
893                 /* update tally counter */
894                 ++s->tally_counters.RxERR;
895 
896                 return size;
897             }
898 
899             packet_header |= RxMulticast;
900 
901             DPRINTF(">>> multicast packet received\n");
902 
903             /* update tally counter */
904             ++s->tally_counters.RxOkMul;
905 
906         } else if (s->phys[0] == buf[0] &&
907                    s->phys[1] == buf[1] &&
908                    s->phys[2] == buf[2] &&
909                    s->phys[3] == buf[3] &&
910                    s->phys[4] == buf[4] &&
911                    s->phys[5] == buf[5]) {
912             /* match */
913             if (!(s->RxConfig & AcceptMyPhys))
914             {
915                 DPRINTF(">>> rejecting physical address matching packet\n");
916 
917                 /* update tally counter */
918                 ++s->tally_counters.RxERR;
919 
920                 return size;
921             }
922 
923             packet_header |= RxPhysical;
924 
925             DPRINTF(">>> physical address matching packet received\n");
926 
927             /* update tally counter */
928             ++s->tally_counters.RxOkPhy;
929 
930         } else {
931 
932             DPRINTF(">>> unknown packet\n");
933 
934             /* update tally counter */
935             ++s->tally_counters.RxERR;
936 
937             return size;
938         }
939     }
940 
941     /* if too small buffer, then expand it
942      * Include some tailroom in case a vlan tag is later removed. */
943     if (size < MIN_BUF_SIZE + VLAN_HLEN) {
944         memcpy(buf1, buf, size);
945         memset(buf1 + size, 0, MIN_BUF_SIZE + VLAN_HLEN - size);
946         buf = buf1;
947         if (size < MIN_BUF_SIZE) {
948             size = MIN_BUF_SIZE;
949         }
950     }
951 
952     if (rtl8139_cp_receiver_enabled(s))
953     {
954         if (!rtl8139_cp_rx_valid(s)) {
955             return size;
956         }
957 
958         DPRINTF("in C+ Rx mode ================\n");
959 
960         /* begin C+ receiver mode */
961 
962 /* w0 ownership flag */
963 #define CP_RX_OWN (1<<31)
964 /* w0 end of ring flag */
965 #define CP_RX_EOR (1<<30)
966 /* w0 bits 0...12 : buffer size */
967 #define CP_RX_BUFFER_SIZE_MASK ((1<<13) - 1)
968 /* w1 tag available flag */
969 #define CP_RX_TAVA (1<<16)
970 /* w1 bits 0...15 : VLAN tag */
971 #define CP_RX_VLAN_TAG_MASK ((1<<16) - 1)
972 /* w2 low  32bit of Rx buffer ptr */
973 /* w3 high 32bit of Rx buffer ptr */
974 
975         int descriptor = s->currCPlusRxDesc;
976         dma_addr_t cplus_rx_ring_desc;
977 
978         cplus_rx_ring_desc = rtl8139_addr64(s->RxRingAddrLO, s->RxRingAddrHI);
979         cplus_rx_ring_desc += 16 * descriptor;
980 
981         DPRINTF("+++ C+ mode reading RX descriptor %d from host memory at "
982             "%08x %08x = "DMA_ADDR_FMT"\n", descriptor, s->RxRingAddrHI,
983             s->RxRingAddrLO, cplus_rx_ring_desc);
984 
985         uint32_t val, rxdw0,rxdw1,rxbufLO,rxbufHI;
986 
987         pci_dma_read(d, cplus_rx_ring_desc, &val, 4);
988         rxdw0 = le32_to_cpu(val);
989         pci_dma_read(d, cplus_rx_ring_desc+4, &val, 4);
990         rxdw1 = le32_to_cpu(val);
991         pci_dma_read(d, cplus_rx_ring_desc+8, &val, 4);
992         rxbufLO = le32_to_cpu(val);
993         pci_dma_read(d, cplus_rx_ring_desc+12, &val, 4);
994         rxbufHI = le32_to_cpu(val);
995 
996         DPRINTF("+++ C+ mode RX descriptor %d %08x %08x %08x %08x\n",
997             descriptor, rxdw0, rxdw1, rxbufLO, rxbufHI);
998 
999         if (!(rxdw0 & CP_RX_OWN))
1000         {
1001             DPRINTF("C+ Rx mode : descriptor %d is owned by host\n",
1002                 descriptor);
1003 
1004             s->IntrStatus |= RxOverflow;
1005             ++s->RxMissed;
1006 
1007             /* update tally counter */
1008             ++s->tally_counters.RxERR;
1009             ++s->tally_counters.MissPkt;
1010 
1011             rtl8139_update_irq(s);
1012             return size_;
1013         }
1014 
1015         uint32_t rx_space = rxdw0 & CP_RX_BUFFER_SIZE_MASK;
1016 
1017         /* write VLAN info to descriptor variables. */
1018         if (s->CpCmd & CPlusRxVLAN && be16_to_cpup((uint16_t *)
1019                 &buf[ETHER_ADDR_LEN * 2]) == ETH_P_8021Q) {
1020             dot1q_buf = &buf[ETHER_ADDR_LEN * 2];
1021             size -= VLAN_HLEN;
1022             /* if too small buffer, use the tailroom added duing expansion */
1023             if (size < MIN_BUF_SIZE) {
1024                 size = MIN_BUF_SIZE;
1025             }
1026 
1027             rxdw1 &= ~CP_RX_VLAN_TAG_MASK;
1028             /* BE + ~le_to_cpu()~ + cpu_to_le() = BE */
1029             rxdw1 |= CP_RX_TAVA | le16_to_cpup((uint16_t *)
1030                 &dot1q_buf[ETHER_TYPE_LEN]);
1031 
1032             DPRINTF("C+ Rx mode : extracted vlan tag with tci: ""%u\n",
1033                 be16_to_cpup((uint16_t *)&dot1q_buf[ETHER_TYPE_LEN]));
1034         } else {
1035             /* reset VLAN tag flag */
1036             rxdw1 &= ~CP_RX_TAVA;
1037         }
1038 
1039         /* TODO: scatter the packet over available receive ring descriptors space */
1040 
1041         if (size+4 > rx_space)
1042         {
1043             DPRINTF("C+ Rx mode : descriptor %d size %d received %d + 4\n",
1044                 descriptor, rx_space, size);
1045 
1046             s->IntrStatus |= RxOverflow;
1047             ++s->RxMissed;
1048 
1049             /* update tally counter */
1050             ++s->tally_counters.RxERR;
1051             ++s->tally_counters.MissPkt;
1052 
1053             rtl8139_update_irq(s);
1054             return size_;
1055         }
1056 
1057         dma_addr_t rx_addr = rtl8139_addr64(rxbufLO, rxbufHI);
1058 
1059         /* receive/copy to target memory */
1060         if (dot1q_buf) {
1061             pci_dma_write(d, rx_addr, buf, 2 * ETHER_ADDR_LEN);
1062             pci_dma_write(d, rx_addr + 2 * ETHER_ADDR_LEN,
1063                           buf + 2 * ETHER_ADDR_LEN + VLAN_HLEN,
1064                           size - 2 * ETHER_ADDR_LEN);
1065         } else {
1066             pci_dma_write(d, rx_addr, buf, size);
1067         }
1068 
1069         if (s->CpCmd & CPlusRxChkSum)
1070         {
1071             /* do some packet checksumming */
1072         }
1073 
1074         /* write checksum */
1075         val = cpu_to_le32(crc32(0, buf, size_));
1076         pci_dma_write(d, rx_addr+size, (uint8_t *)&val, 4);
1077 
1078 /* first segment of received packet flag */
1079 #define CP_RX_STATUS_FS (1<<29)
1080 /* last segment of received packet flag */
1081 #define CP_RX_STATUS_LS (1<<28)
1082 /* multicast packet flag */
1083 #define CP_RX_STATUS_MAR (1<<26)
1084 /* physical-matching packet flag */
1085 #define CP_RX_STATUS_PAM (1<<25)
1086 /* broadcast packet flag */
1087 #define CP_RX_STATUS_BAR (1<<24)
1088 /* runt packet flag */
1089 #define CP_RX_STATUS_RUNT (1<<19)
1090 /* crc error flag */
1091 #define CP_RX_STATUS_CRC (1<<18)
1092 /* IP checksum error flag */
1093 #define CP_RX_STATUS_IPF (1<<15)
1094 /* UDP checksum error flag */
1095 #define CP_RX_STATUS_UDPF (1<<14)
1096 /* TCP checksum error flag */
1097 #define CP_RX_STATUS_TCPF (1<<13)
1098 
1099         /* transfer ownership to target */
1100         rxdw0 &= ~CP_RX_OWN;
1101 
1102         /* set first segment bit */
1103         rxdw0 |= CP_RX_STATUS_FS;
1104 
1105         /* set last segment bit */
1106         rxdw0 |= CP_RX_STATUS_LS;
1107 
1108         /* set received packet type flags */
1109         if (packet_header & RxBroadcast)
1110             rxdw0 |= CP_RX_STATUS_BAR;
1111         if (packet_header & RxMulticast)
1112             rxdw0 |= CP_RX_STATUS_MAR;
1113         if (packet_header & RxPhysical)
1114             rxdw0 |= CP_RX_STATUS_PAM;
1115 
1116         /* set received size */
1117         rxdw0 &= ~CP_RX_BUFFER_SIZE_MASK;
1118         rxdw0 |= (size+4);
1119 
1120         /* update ring data */
1121         val = cpu_to_le32(rxdw0);
1122         pci_dma_write(d, cplus_rx_ring_desc, (uint8_t *)&val, 4);
1123         val = cpu_to_le32(rxdw1);
1124         pci_dma_write(d, cplus_rx_ring_desc+4, (uint8_t *)&val, 4);
1125 
1126         /* update tally counter */
1127         ++s->tally_counters.RxOk;
1128 
1129         /* seek to next Rx descriptor */
1130         if (rxdw0 & CP_RX_EOR)
1131         {
1132             s->currCPlusRxDesc = 0;
1133         }
1134         else
1135         {
1136             ++s->currCPlusRxDesc;
1137         }
1138 
1139         DPRINTF("done C+ Rx mode ----------------\n");
1140 
1141     }
1142     else
1143     {
1144         DPRINTF("in ring Rx mode ================\n");
1145 
1146         /* begin ring receiver mode */
1147         int avail = MOD2(s->RxBufferSize + s->RxBufPtr - s->RxBufAddr, s->RxBufferSize);
1148 
1149         /* if receiver buffer is empty then avail == 0 */
1150 
1151         if (avail != 0 && size + 8 >= avail)
1152         {
1153             DPRINTF("rx overflow: rx buffer length %d head 0x%04x "
1154                 "read 0x%04x === available 0x%04x need 0x%04x\n",
1155                 s->RxBufferSize, s->RxBufAddr, s->RxBufPtr, avail, size + 8);
1156 
1157             s->IntrStatus |= RxOverflow;
1158             ++s->RxMissed;
1159             rtl8139_update_irq(s);
1160             return size_;
1161         }
1162 
1163         packet_header |= RxStatusOK;
1164 
1165         packet_header |= (((size+4) << 16) & 0xffff0000);
1166 
1167         /* write header */
1168         uint32_t val = cpu_to_le32(packet_header);
1169 
1170         rtl8139_write_buffer(s, (uint8_t *)&val, 4);
1171 
1172         rtl8139_write_buffer(s, buf, size);
1173 
1174         /* write checksum */
1175         val = cpu_to_le32(crc32(0, buf, size));
1176         rtl8139_write_buffer(s, (uint8_t *)&val, 4);
1177 
1178         /* correct buffer write pointer */
1179         s->RxBufAddr = MOD2((s->RxBufAddr + 3) & ~0x3, s->RxBufferSize);
1180 
1181         /* now we can signal we have received something */
1182 
1183         DPRINTF("received: rx buffer length %d head 0x%04x read 0x%04x\n",
1184             s->RxBufferSize, s->RxBufAddr, s->RxBufPtr);
1185     }
1186 
1187     s->IntrStatus |= RxOK;
1188 
1189     if (do_interrupt)
1190     {
1191         rtl8139_update_irq(s);
1192     }
1193 
1194     return size_;
1195 }
1196 
1197 static ssize_t rtl8139_receive(NetClientState *nc, const uint8_t *buf, size_t size)
1198 {
1199     return rtl8139_do_receive(nc, buf, size, 1);
1200 }
1201 
1202 static void rtl8139_reset_rxring(RTL8139State *s, uint32_t bufferSize)
1203 {
1204     s->RxBufferSize = bufferSize;
1205     s->RxBufPtr  = 0;
1206     s->RxBufAddr = 0;
1207 }
1208 
1209 static void rtl8139_reset(DeviceState *d)
1210 {
1211     RTL8139State *s = RTL8139(d);
1212     int i;
1213 
1214     /* restore MAC address */
1215     memcpy(s->phys, s->conf.macaddr.a, 6);
1216     qemu_format_nic_info_str(qemu_get_queue(s->nic), s->phys);
1217 
1218     /* reset interrupt mask */
1219     s->IntrStatus = 0;
1220     s->IntrMask = 0;
1221 
1222     rtl8139_update_irq(s);
1223 
1224     /* mark all status registers as owned by host */
1225     for (i = 0; i < 4; ++i)
1226     {
1227         s->TxStatus[i] = TxHostOwns;
1228     }
1229 
1230     s->currTxDesc = 0;
1231     s->currCPlusRxDesc = 0;
1232     s->currCPlusTxDesc = 0;
1233 
1234     s->RxRingAddrLO = 0;
1235     s->RxRingAddrHI = 0;
1236 
1237     s->RxBuf = 0;
1238 
1239     rtl8139_reset_rxring(s, 8192);
1240 
1241     /* ACK the reset */
1242     s->TxConfig = 0;
1243 
1244 #if 0
1245 //    s->TxConfig |= HW_REVID(1, 0, 0, 0, 0, 0, 0); // RTL-8139  HasHltClk
1246     s->clock_enabled = 0;
1247 #else
1248     s->TxConfig |= HW_REVID(1, 1, 1, 0, 1, 1, 0); // RTL-8139C+ HasLWake
1249     s->clock_enabled = 1;
1250 #endif
1251 
1252     s->bChipCmdState = CmdReset; /* RxBufEmpty bit is calculated on read from ChipCmd */;
1253 
1254     /* set initial state data */
1255     s->Config0 = 0x0; /* No boot ROM */
1256     s->Config1 = 0xC; /* IO mapped and MEM mapped registers available */
1257     s->Config3 = 0x1; /* fast back-to-back compatible */
1258     s->Config5 = 0x0;
1259 
1260     s->CSCR = CSCR_F_LINK_100 | CSCR_HEART_BIT | CSCR_LD;
1261 
1262     s->CpCmd   = 0x0; /* reset C+ mode */
1263     s->cplus_enabled = 0;
1264 
1265 
1266 //    s->BasicModeCtrl = 0x3100; // 100Mbps, full duplex, autonegotiation
1267 //    s->BasicModeCtrl = 0x2100; // 100Mbps, full duplex
1268     s->BasicModeCtrl = 0x1000; // autonegotiation
1269 
1270     s->BasicModeStatus  = 0x7809;
1271     //s->BasicModeStatus |= 0x0040; /* UTP medium */
1272     s->BasicModeStatus |= 0x0020; /* autonegotiation completed */
1273     /* preserve link state */
1274     s->BasicModeStatus |= qemu_get_queue(s->nic)->link_down ? 0 : 0x04;
1275 
1276     s->NWayAdvert    = 0x05e1; /* all modes, full duplex */
1277     s->NWayLPAR      = 0x05e1; /* all modes, full duplex */
1278     s->NWayExpansion = 0x0001; /* autonegotiation supported */
1279 
1280     /* also reset timer and disable timer interrupt */
1281     s->TCTR = 0;
1282     s->TimerInt = 0;
1283     s->TCTR_base = 0;
1284     rtl8139_set_next_tctr_time(s);
1285 
1286     /* reset tally counters */
1287     RTL8139TallyCounters_clear(&s->tally_counters);
1288 }
1289 
1290 static void RTL8139TallyCounters_clear(RTL8139TallyCounters* counters)
1291 {
1292     counters->TxOk = 0;
1293     counters->RxOk = 0;
1294     counters->TxERR = 0;
1295     counters->RxERR = 0;
1296     counters->MissPkt = 0;
1297     counters->FAE = 0;
1298     counters->Tx1Col = 0;
1299     counters->TxMCol = 0;
1300     counters->RxOkPhy = 0;
1301     counters->RxOkBrd = 0;
1302     counters->RxOkMul = 0;
1303     counters->TxAbt = 0;
1304     counters->TxUndrn = 0;
1305 }
1306 
1307 static void RTL8139TallyCounters_dma_write(RTL8139State *s, dma_addr_t tc_addr)
1308 {
1309     PCIDevice *d = PCI_DEVICE(s);
1310     RTL8139TallyCounters *tally_counters = &s->tally_counters;
1311     uint16_t val16;
1312     uint32_t val32;
1313     uint64_t val64;
1314 
1315     val64 = cpu_to_le64(tally_counters->TxOk);
1316     pci_dma_write(d, tc_addr + 0,     (uint8_t *)&val64, 8);
1317 
1318     val64 = cpu_to_le64(tally_counters->RxOk);
1319     pci_dma_write(d, tc_addr + 8,     (uint8_t *)&val64, 8);
1320 
1321     val64 = cpu_to_le64(tally_counters->TxERR);
1322     pci_dma_write(d, tc_addr + 16,    (uint8_t *)&val64, 8);
1323 
1324     val32 = cpu_to_le32(tally_counters->RxERR);
1325     pci_dma_write(d, tc_addr + 24,    (uint8_t *)&val32, 4);
1326 
1327     val16 = cpu_to_le16(tally_counters->MissPkt);
1328     pci_dma_write(d, tc_addr + 28,    (uint8_t *)&val16, 2);
1329 
1330     val16 = cpu_to_le16(tally_counters->FAE);
1331     pci_dma_write(d, tc_addr + 30,    (uint8_t *)&val16, 2);
1332 
1333     val32 = cpu_to_le32(tally_counters->Tx1Col);
1334     pci_dma_write(d, tc_addr + 32,    (uint8_t *)&val32, 4);
1335 
1336     val32 = cpu_to_le32(tally_counters->TxMCol);
1337     pci_dma_write(d, tc_addr + 36,    (uint8_t *)&val32, 4);
1338 
1339     val64 = cpu_to_le64(tally_counters->RxOkPhy);
1340     pci_dma_write(d, tc_addr + 40,    (uint8_t *)&val64, 8);
1341 
1342     val64 = cpu_to_le64(tally_counters->RxOkBrd);
1343     pci_dma_write(d, tc_addr + 48,    (uint8_t *)&val64, 8);
1344 
1345     val32 = cpu_to_le32(tally_counters->RxOkMul);
1346     pci_dma_write(d, tc_addr + 56,    (uint8_t *)&val32, 4);
1347 
1348     val16 = cpu_to_le16(tally_counters->TxAbt);
1349     pci_dma_write(d, tc_addr + 60,    (uint8_t *)&val16, 2);
1350 
1351     val16 = cpu_to_le16(tally_counters->TxUndrn);
1352     pci_dma_write(d, tc_addr + 62,    (uint8_t *)&val16, 2);
1353 }
1354 
1355 /* Loads values of tally counters from VM state file */
1356 
1357 static const VMStateDescription vmstate_tally_counters = {
1358     .name = "tally_counters",
1359     .version_id = 1,
1360     .minimum_version_id = 1,
1361     .fields = (VMStateField[]) {
1362         VMSTATE_UINT64(TxOk, RTL8139TallyCounters),
1363         VMSTATE_UINT64(RxOk, RTL8139TallyCounters),
1364         VMSTATE_UINT64(TxERR, RTL8139TallyCounters),
1365         VMSTATE_UINT32(RxERR, RTL8139TallyCounters),
1366         VMSTATE_UINT16(MissPkt, RTL8139TallyCounters),
1367         VMSTATE_UINT16(FAE, RTL8139TallyCounters),
1368         VMSTATE_UINT32(Tx1Col, RTL8139TallyCounters),
1369         VMSTATE_UINT32(TxMCol, RTL8139TallyCounters),
1370         VMSTATE_UINT64(RxOkPhy, RTL8139TallyCounters),
1371         VMSTATE_UINT64(RxOkBrd, RTL8139TallyCounters),
1372         VMSTATE_UINT16(TxAbt, RTL8139TallyCounters),
1373         VMSTATE_UINT16(TxUndrn, RTL8139TallyCounters),
1374         VMSTATE_END_OF_LIST()
1375     }
1376 };
1377 
1378 static void rtl8139_ChipCmd_write(RTL8139State *s, uint32_t val)
1379 {
1380     DeviceState *d = DEVICE(s);
1381 
1382     val &= 0xff;
1383 
1384     DPRINTF("ChipCmd write val=0x%08x\n", val);
1385 
1386     if (val & CmdReset)
1387     {
1388         DPRINTF("ChipCmd reset\n");
1389         rtl8139_reset(d);
1390     }
1391     if (val & CmdRxEnb)
1392     {
1393         DPRINTF("ChipCmd enable receiver\n");
1394 
1395         s->currCPlusRxDesc = 0;
1396     }
1397     if (val & CmdTxEnb)
1398     {
1399         DPRINTF("ChipCmd enable transmitter\n");
1400 
1401         s->currCPlusTxDesc = 0;
1402     }
1403 
1404     /* mask unwritable bits */
1405     val = SET_MASKED(val, 0xe3, s->bChipCmdState);
1406 
1407     /* Deassert reset pin before next read */
1408     val &= ~CmdReset;
1409 
1410     s->bChipCmdState = val;
1411 }
1412 
1413 static int rtl8139_RxBufferEmpty(RTL8139State *s)
1414 {
1415     int unread = MOD2(s->RxBufferSize + s->RxBufAddr - s->RxBufPtr, s->RxBufferSize);
1416 
1417     if (unread != 0)
1418     {
1419         DPRINTF("receiver buffer data available 0x%04x\n", unread);
1420         return 0;
1421     }
1422 
1423     DPRINTF("receiver buffer is empty\n");
1424 
1425     return 1;
1426 }
1427 
1428 static uint32_t rtl8139_ChipCmd_read(RTL8139State *s)
1429 {
1430     uint32_t ret = s->bChipCmdState;
1431 
1432     if (rtl8139_RxBufferEmpty(s))
1433         ret |= RxBufEmpty;
1434 
1435     DPRINTF("ChipCmd read val=0x%04x\n", ret);
1436 
1437     return ret;
1438 }
1439 
1440 static void rtl8139_CpCmd_write(RTL8139State *s, uint32_t val)
1441 {
1442     val &= 0xffff;
1443 
1444     DPRINTF("C+ command register write(w) val=0x%04x\n", val);
1445 
1446     s->cplus_enabled = 1;
1447 
1448     /* mask unwritable bits */
1449     val = SET_MASKED(val, 0xff84, s->CpCmd);
1450 
1451     s->CpCmd = val;
1452 }
1453 
1454 static uint32_t rtl8139_CpCmd_read(RTL8139State *s)
1455 {
1456     uint32_t ret = s->CpCmd;
1457 
1458     DPRINTF("C+ command register read(w) val=0x%04x\n", ret);
1459 
1460     return ret;
1461 }
1462 
1463 static void rtl8139_IntrMitigate_write(RTL8139State *s, uint32_t val)
1464 {
1465     DPRINTF("C+ IntrMitigate register write(w) val=0x%04x\n", val);
1466 }
1467 
1468 static uint32_t rtl8139_IntrMitigate_read(RTL8139State *s)
1469 {
1470     uint32_t ret = 0;
1471 
1472     DPRINTF("C+ IntrMitigate register read(w) val=0x%04x\n", ret);
1473 
1474     return ret;
1475 }
1476 
1477 static int rtl8139_config_writable(RTL8139State *s)
1478 {
1479     if ((s->Cfg9346 & Chip9346_op_mask) == Cfg9346_ConfigWrite)
1480     {
1481         return 1;
1482     }
1483 
1484     DPRINTF("Configuration registers are write-protected\n");
1485 
1486     return 0;
1487 }
1488 
1489 static void rtl8139_BasicModeCtrl_write(RTL8139State *s, uint32_t val)
1490 {
1491     val &= 0xffff;
1492 
1493     DPRINTF("BasicModeCtrl register write(w) val=0x%04x\n", val);
1494 
1495     /* mask unwritable bits */
1496     uint32_t mask = 0x4cff;
1497 
1498     if (1 || !rtl8139_config_writable(s))
1499     {
1500         /* Speed setting and autonegotiation enable bits are read-only */
1501         mask |= 0x3000;
1502         /* Duplex mode setting is read-only */
1503         mask |= 0x0100;
1504     }
1505 
1506     val = SET_MASKED(val, mask, s->BasicModeCtrl);
1507 
1508     s->BasicModeCtrl = val;
1509 }
1510 
1511 static uint32_t rtl8139_BasicModeCtrl_read(RTL8139State *s)
1512 {
1513     uint32_t ret = s->BasicModeCtrl;
1514 
1515     DPRINTF("BasicModeCtrl register read(w) val=0x%04x\n", ret);
1516 
1517     return ret;
1518 }
1519 
1520 static void rtl8139_BasicModeStatus_write(RTL8139State *s, uint32_t val)
1521 {
1522     val &= 0xffff;
1523 
1524     DPRINTF("BasicModeStatus register write(w) val=0x%04x\n", val);
1525 
1526     /* mask unwritable bits */
1527     val = SET_MASKED(val, 0xff3f, s->BasicModeStatus);
1528 
1529     s->BasicModeStatus = val;
1530 }
1531 
1532 static uint32_t rtl8139_BasicModeStatus_read(RTL8139State *s)
1533 {
1534     uint32_t ret = s->BasicModeStatus;
1535 
1536     DPRINTF("BasicModeStatus register read(w) val=0x%04x\n", ret);
1537 
1538     return ret;
1539 }
1540 
1541 static void rtl8139_Cfg9346_write(RTL8139State *s, uint32_t val)
1542 {
1543     DeviceState *d = DEVICE(s);
1544 
1545     val &= 0xff;
1546 
1547     DPRINTF("Cfg9346 write val=0x%02x\n", val);
1548 
1549     /* mask unwritable bits */
1550     val = SET_MASKED(val, 0x31, s->Cfg9346);
1551 
1552     uint32_t opmode = val & 0xc0;
1553     uint32_t eeprom_val = val & 0xf;
1554 
1555     if (opmode == 0x80) {
1556         /* eeprom access */
1557         int eecs = (eeprom_val & 0x08)?1:0;
1558         int eesk = (eeprom_val & 0x04)?1:0;
1559         int eedi = (eeprom_val & 0x02)?1:0;
1560         prom9346_set_wire(s, eecs, eesk, eedi);
1561     } else if (opmode == 0x40) {
1562         /* Reset.  */
1563         val = 0;
1564         rtl8139_reset(d);
1565     }
1566 
1567     s->Cfg9346 = val;
1568 }
1569 
1570 static uint32_t rtl8139_Cfg9346_read(RTL8139State *s)
1571 {
1572     uint32_t ret = s->Cfg9346;
1573 
1574     uint32_t opmode = ret & 0xc0;
1575 
1576     if (opmode == 0x80)
1577     {
1578         /* eeprom access */
1579         int eedo = prom9346_get_wire(s);
1580         if (eedo)
1581         {
1582             ret |=  0x01;
1583         }
1584         else
1585         {
1586             ret &= ~0x01;
1587         }
1588     }
1589 
1590     DPRINTF("Cfg9346 read val=0x%02x\n", ret);
1591 
1592     return ret;
1593 }
1594 
1595 static void rtl8139_Config0_write(RTL8139State *s, uint32_t val)
1596 {
1597     val &= 0xff;
1598 
1599     DPRINTF("Config0 write val=0x%02x\n", val);
1600 
1601     if (!rtl8139_config_writable(s)) {
1602         return;
1603     }
1604 
1605     /* mask unwritable bits */
1606     val = SET_MASKED(val, 0xf8, s->Config0);
1607 
1608     s->Config0 = val;
1609 }
1610 
1611 static uint32_t rtl8139_Config0_read(RTL8139State *s)
1612 {
1613     uint32_t ret = s->Config0;
1614 
1615     DPRINTF("Config0 read val=0x%02x\n", ret);
1616 
1617     return ret;
1618 }
1619 
1620 static void rtl8139_Config1_write(RTL8139State *s, uint32_t val)
1621 {
1622     val &= 0xff;
1623 
1624     DPRINTF("Config1 write val=0x%02x\n", val);
1625 
1626     if (!rtl8139_config_writable(s)) {
1627         return;
1628     }
1629 
1630     /* mask unwritable bits */
1631     val = SET_MASKED(val, 0xC, s->Config1);
1632 
1633     s->Config1 = val;
1634 }
1635 
1636 static uint32_t rtl8139_Config1_read(RTL8139State *s)
1637 {
1638     uint32_t ret = s->Config1;
1639 
1640     DPRINTF("Config1 read val=0x%02x\n", ret);
1641 
1642     return ret;
1643 }
1644 
1645 static void rtl8139_Config3_write(RTL8139State *s, uint32_t val)
1646 {
1647     val &= 0xff;
1648 
1649     DPRINTF("Config3 write val=0x%02x\n", val);
1650 
1651     if (!rtl8139_config_writable(s)) {
1652         return;
1653     }
1654 
1655     /* mask unwritable bits */
1656     val = SET_MASKED(val, 0x8F, s->Config3);
1657 
1658     s->Config3 = val;
1659 }
1660 
1661 static uint32_t rtl8139_Config3_read(RTL8139State *s)
1662 {
1663     uint32_t ret = s->Config3;
1664 
1665     DPRINTF("Config3 read val=0x%02x\n", ret);
1666 
1667     return ret;
1668 }
1669 
1670 static void rtl8139_Config4_write(RTL8139State *s, uint32_t val)
1671 {
1672     val &= 0xff;
1673 
1674     DPRINTF("Config4 write val=0x%02x\n", val);
1675 
1676     if (!rtl8139_config_writable(s)) {
1677         return;
1678     }
1679 
1680     /* mask unwritable bits */
1681     val = SET_MASKED(val, 0x0a, s->Config4);
1682 
1683     s->Config4 = val;
1684 }
1685 
1686 static uint32_t rtl8139_Config4_read(RTL8139State *s)
1687 {
1688     uint32_t ret = s->Config4;
1689 
1690     DPRINTF("Config4 read val=0x%02x\n", ret);
1691 
1692     return ret;
1693 }
1694 
1695 static void rtl8139_Config5_write(RTL8139State *s, uint32_t val)
1696 {
1697     val &= 0xff;
1698 
1699     DPRINTF("Config5 write val=0x%02x\n", val);
1700 
1701     /* mask unwritable bits */
1702     val = SET_MASKED(val, 0x80, s->Config5);
1703 
1704     s->Config5 = val;
1705 }
1706 
1707 static uint32_t rtl8139_Config5_read(RTL8139State *s)
1708 {
1709     uint32_t ret = s->Config5;
1710 
1711     DPRINTF("Config5 read val=0x%02x\n", ret);
1712 
1713     return ret;
1714 }
1715 
1716 static void rtl8139_TxConfig_write(RTL8139State *s, uint32_t val)
1717 {
1718     if (!rtl8139_transmitter_enabled(s))
1719     {
1720         DPRINTF("transmitter disabled; no TxConfig write val=0x%08x\n", val);
1721         return;
1722     }
1723 
1724     DPRINTF("TxConfig write val=0x%08x\n", val);
1725 
1726     val = SET_MASKED(val, TxVersionMask | 0x8070f80f, s->TxConfig);
1727 
1728     s->TxConfig = val;
1729 }
1730 
1731 static void rtl8139_TxConfig_writeb(RTL8139State *s, uint32_t val)
1732 {
1733     DPRINTF("RTL8139C TxConfig via write(b) val=0x%02x\n", val);
1734 
1735     uint32_t tc = s->TxConfig;
1736     tc &= 0xFFFFFF00;
1737     tc |= (val & 0x000000FF);
1738     rtl8139_TxConfig_write(s, tc);
1739 }
1740 
1741 static uint32_t rtl8139_TxConfig_read(RTL8139State *s)
1742 {
1743     uint32_t ret = s->TxConfig;
1744 
1745     DPRINTF("TxConfig read val=0x%04x\n", ret);
1746 
1747     return ret;
1748 }
1749 
1750 static void rtl8139_RxConfig_write(RTL8139State *s, uint32_t val)
1751 {
1752     DPRINTF("RxConfig write val=0x%08x\n", val);
1753 
1754     /* mask unwritable bits */
1755     val = SET_MASKED(val, 0xf0fc0040, s->RxConfig);
1756 
1757     s->RxConfig = val;
1758 
1759     /* reset buffer size and read/write pointers */
1760     rtl8139_reset_rxring(s, 8192 << ((s->RxConfig >> 11) & 0x3));
1761 
1762     DPRINTF("RxConfig write reset buffer size to %d\n", s->RxBufferSize);
1763 }
1764 
1765 static uint32_t rtl8139_RxConfig_read(RTL8139State *s)
1766 {
1767     uint32_t ret = s->RxConfig;
1768 
1769     DPRINTF("RxConfig read val=0x%08x\n", ret);
1770 
1771     return ret;
1772 }
1773 
1774 static void rtl8139_transfer_frame(RTL8139State *s, uint8_t *buf, int size,
1775     int do_interrupt, const uint8_t *dot1q_buf)
1776 {
1777     struct iovec *iov = NULL;
1778     struct iovec vlan_iov[3];
1779 
1780     if (!size)
1781     {
1782         DPRINTF("+++ empty ethernet frame\n");
1783         return;
1784     }
1785 
1786     if (dot1q_buf && size >= ETHER_ADDR_LEN * 2) {
1787         iov = (struct iovec[3]) {
1788             { .iov_base = buf, .iov_len = ETHER_ADDR_LEN * 2 },
1789             { .iov_base = (void *) dot1q_buf, .iov_len = VLAN_HLEN },
1790             { .iov_base = buf + ETHER_ADDR_LEN * 2,
1791                 .iov_len = size - ETHER_ADDR_LEN * 2 },
1792         };
1793 
1794         memcpy(vlan_iov, iov, sizeof(vlan_iov));
1795         iov = vlan_iov;
1796     }
1797 
1798     if (TxLoopBack == (s->TxConfig & TxLoopBack))
1799     {
1800         size_t buf2_size;
1801         uint8_t *buf2;
1802 
1803         if (iov) {
1804             buf2_size = iov_size(iov, 3);
1805             buf2 = g_malloc(buf2_size);
1806             iov_to_buf(iov, 3, 0, buf2, buf2_size);
1807             buf = buf2;
1808         }
1809 
1810         DPRINTF("+++ transmit loopback mode\n");
1811         rtl8139_do_receive(qemu_get_queue(s->nic), buf, size, do_interrupt);
1812 
1813         if (iov) {
1814             g_free(buf2);
1815         }
1816     }
1817     else
1818     {
1819         if (iov) {
1820             qemu_sendv_packet(qemu_get_queue(s->nic), iov, 3);
1821         } else {
1822             qemu_send_packet(qemu_get_queue(s->nic), buf, size);
1823         }
1824     }
1825 }
1826 
1827 static int rtl8139_transmit_one(RTL8139State *s, int descriptor)
1828 {
1829     if (!rtl8139_transmitter_enabled(s))
1830     {
1831         DPRINTF("+++ cannot transmit from descriptor %d: transmitter "
1832             "disabled\n", descriptor);
1833         return 0;
1834     }
1835 
1836     if (s->TxStatus[descriptor] & TxHostOwns)
1837     {
1838         DPRINTF("+++ cannot transmit from descriptor %d: owned by host "
1839             "(%08x)\n", descriptor, s->TxStatus[descriptor]);
1840         return 0;
1841     }
1842 
1843     DPRINTF("+++ transmitting from descriptor %d\n", descriptor);
1844 
1845     PCIDevice *d = PCI_DEVICE(s);
1846     int txsize = s->TxStatus[descriptor] & 0x1fff;
1847     uint8_t txbuffer[0x2000];
1848 
1849     DPRINTF("+++ transmit reading %d bytes from host memory at 0x%08x\n",
1850         txsize, s->TxAddr[descriptor]);
1851 
1852     pci_dma_read(d, s->TxAddr[descriptor], txbuffer, txsize);
1853 
1854     /* Mark descriptor as transferred */
1855     s->TxStatus[descriptor] |= TxHostOwns;
1856     s->TxStatus[descriptor] |= TxStatOK;
1857 
1858     rtl8139_transfer_frame(s, txbuffer, txsize, 0, NULL);
1859 
1860     DPRINTF("+++ transmitted %d bytes from descriptor %d\n", txsize,
1861         descriptor);
1862 
1863     /* update interrupt */
1864     s->IntrStatus |= TxOK;
1865     rtl8139_update_irq(s);
1866 
1867     return 1;
1868 }
1869 
1870 /* structures and macros for task offloading */
1871 typedef struct ip_header
1872 {
1873     uint8_t  ip_ver_len;    /* version and header length */
1874     uint8_t  ip_tos;        /* type of service */
1875     uint16_t ip_len;        /* total length */
1876     uint16_t ip_id;         /* identification */
1877     uint16_t ip_off;        /* fragment offset field */
1878     uint8_t  ip_ttl;        /* time to live */
1879     uint8_t  ip_p;          /* protocol */
1880     uint16_t ip_sum;        /* checksum */
1881     uint32_t ip_src,ip_dst; /* source and dest address */
1882 } ip_header;
1883 
1884 #define IP_HEADER_VERSION_4 4
1885 #define IP_HEADER_VERSION(ip) ((ip->ip_ver_len >> 4)&0xf)
1886 #define IP_HEADER_LENGTH(ip) (((ip->ip_ver_len)&0xf) << 2)
1887 
1888 typedef struct tcp_header
1889 {
1890     uint16_t th_sport;		/* source port */
1891     uint16_t th_dport;		/* destination port */
1892     uint32_t th_seq;			/* sequence number */
1893     uint32_t th_ack;			/* acknowledgement number */
1894     uint16_t th_offset_flags; /* data offset, reserved 6 bits, TCP protocol flags */
1895     uint16_t th_win;			/* window */
1896     uint16_t th_sum;			/* checksum */
1897     uint16_t th_urp;			/* urgent pointer */
1898 } tcp_header;
1899 
1900 typedef struct udp_header
1901 {
1902     uint16_t uh_sport; /* source port */
1903     uint16_t uh_dport; /* destination port */
1904     uint16_t uh_ulen;  /* udp length */
1905     uint16_t uh_sum;   /* udp checksum */
1906 } udp_header;
1907 
1908 typedef struct ip_pseudo_header
1909 {
1910     uint32_t ip_src;
1911     uint32_t ip_dst;
1912     uint8_t  zeros;
1913     uint8_t  ip_proto;
1914     uint16_t ip_payload;
1915 } ip_pseudo_header;
1916 
1917 #define IP_PROTO_TCP 6
1918 #define IP_PROTO_UDP 17
1919 
1920 #define TCP_HEADER_DATA_OFFSET(tcp) (((be16_to_cpu(tcp->th_offset_flags) >> 12)&0xf) << 2)
1921 #define TCP_FLAGS_ONLY(flags) ((flags)&0x3f)
1922 #define TCP_HEADER_FLAGS(tcp) TCP_FLAGS_ONLY(be16_to_cpu(tcp->th_offset_flags))
1923 
1924 #define TCP_HEADER_CLEAR_FLAGS(tcp, off) ((tcp)->th_offset_flags &= cpu_to_be16(~TCP_FLAGS_ONLY(off)))
1925 
1926 #define TCP_FLAG_FIN  0x01
1927 #define TCP_FLAG_PUSH 0x08
1928 
1929 /* produces ones' complement sum of data */
1930 static uint16_t ones_complement_sum(uint8_t *data, size_t len)
1931 {
1932     uint32_t result = 0;
1933 
1934     for (; len > 1; data+=2, len-=2)
1935     {
1936         result += *(uint16_t*)data;
1937     }
1938 
1939     /* add the remainder byte */
1940     if (len)
1941     {
1942         uint8_t odd[2] = {*data, 0};
1943         result += *(uint16_t*)odd;
1944     }
1945 
1946     while (result>>16)
1947         result = (result & 0xffff) + (result >> 16);
1948 
1949     return result;
1950 }
1951 
1952 static uint16_t ip_checksum(void *data, size_t len)
1953 {
1954     return ~ones_complement_sum((uint8_t*)data, len);
1955 }
1956 
1957 static int rtl8139_cplus_transmit_one(RTL8139State *s)
1958 {
1959     if (!rtl8139_transmitter_enabled(s))
1960     {
1961         DPRINTF("+++ C+ mode: transmitter disabled\n");
1962         return 0;
1963     }
1964 
1965     if (!rtl8139_cp_transmitter_enabled(s))
1966     {
1967         DPRINTF("+++ C+ mode: C+ transmitter disabled\n");
1968         return 0 ;
1969     }
1970 
1971     PCIDevice *d = PCI_DEVICE(s);
1972     int descriptor = s->currCPlusTxDesc;
1973 
1974     dma_addr_t cplus_tx_ring_desc = rtl8139_addr64(s->TxAddr[0], s->TxAddr[1]);
1975 
1976     /* Normal priority ring */
1977     cplus_tx_ring_desc += 16 * descriptor;
1978 
1979     DPRINTF("+++ C+ mode reading TX descriptor %d from host memory at "
1980         "%08x %08x = 0x"DMA_ADDR_FMT"\n", descriptor, s->TxAddr[1],
1981         s->TxAddr[0], cplus_tx_ring_desc);
1982 
1983     uint32_t val, txdw0,txdw1,txbufLO,txbufHI;
1984 
1985     pci_dma_read(d, cplus_tx_ring_desc,    (uint8_t *)&val, 4);
1986     txdw0 = le32_to_cpu(val);
1987     pci_dma_read(d, cplus_tx_ring_desc+4,  (uint8_t *)&val, 4);
1988     txdw1 = le32_to_cpu(val);
1989     pci_dma_read(d, cplus_tx_ring_desc+8,  (uint8_t *)&val, 4);
1990     txbufLO = le32_to_cpu(val);
1991     pci_dma_read(d, cplus_tx_ring_desc+12, (uint8_t *)&val, 4);
1992     txbufHI = le32_to_cpu(val);
1993 
1994     DPRINTF("+++ C+ mode TX descriptor %d %08x %08x %08x %08x\n", descriptor,
1995         txdw0, txdw1, txbufLO, txbufHI);
1996 
1997 /* w0 ownership flag */
1998 #define CP_TX_OWN (1<<31)
1999 /* w0 end of ring flag */
2000 #define CP_TX_EOR (1<<30)
2001 /* first segment of received packet flag */
2002 #define CP_TX_FS (1<<29)
2003 /* last segment of received packet flag */
2004 #define CP_TX_LS (1<<28)
2005 /* large send packet flag */
2006 #define CP_TX_LGSEN (1<<27)
2007 /* large send MSS mask, bits 16...25 */
2008 #define CP_TC_LGSEN_MSS_MASK ((1 << 12) - 1)
2009 
2010 /* IP checksum offload flag */
2011 #define CP_TX_IPCS (1<<18)
2012 /* UDP checksum offload flag */
2013 #define CP_TX_UDPCS (1<<17)
2014 /* TCP checksum offload flag */
2015 #define CP_TX_TCPCS (1<<16)
2016 
2017 /* w0 bits 0...15 : buffer size */
2018 #define CP_TX_BUFFER_SIZE (1<<16)
2019 #define CP_TX_BUFFER_SIZE_MASK (CP_TX_BUFFER_SIZE - 1)
2020 /* w1 add tag flag */
2021 #define CP_TX_TAGC (1<<17)
2022 /* w1 bits 0...15 : VLAN tag (big endian) */
2023 #define CP_TX_VLAN_TAG_MASK ((1<<16) - 1)
2024 /* w2 low  32bit of Rx buffer ptr */
2025 /* w3 high 32bit of Rx buffer ptr */
2026 
2027 /* set after transmission */
2028 /* FIFO underrun flag */
2029 #define CP_TX_STATUS_UNF (1<<25)
2030 /* transmit error summary flag, valid if set any of three below */
2031 #define CP_TX_STATUS_TES (1<<23)
2032 /* out-of-window collision flag */
2033 #define CP_TX_STATUS_OWC (1<<22)
2034 /* link failure flag */
2035 #define CP_TX_STATUS_LNKF (1<<21)
2036 /* excessive collisions flag */
2037 #define CP_TX_STATUS_EXC (1<<20)
2038 
2039     if (!(txdw0 & CP_TX_OWN))
2040     {
2041         DPRINTF("C+ Tx mode : descriptor %d is owned by host\n", descriptor);
2042         return 0 ;
2043     }
2044 
2045     DPRINTF("+++ C+ Tx mode : transmitting from descriptor %d\n", descriptor);
2046 
2047     if (txdw0 & CP_TX_FS)
2048     {
2049         DPRINTF("+++ C+ Tx mode : descriptor %d is first segment "
2050             "descriptor\n", descriptor);
2051 
2052         /* reset internal buffer offset */
2053         s->cplus_txbuffer_offset = 0;
2054     }
2055 
2056     int txsize = txdw0 & CP_TX_BUFFER_SIZE_MASK;
2057     dma_addr_t tx_addr = rtl8139_addr64(txbufLO, txbufHI);
2058 
2059     /* make sure we have enough space to assemble the packet */
2060     if (!s->cplus_txbuffer)
2061     {
2062         s->cplus_txbuffer_len = CP_TX_BUFFER_SIZE;
2063         s->cplus_txbuffer = g_malloc(s->cplus_txbuffer_len);
2064         s->cplus_txbuffer_offset = 0;
2065 
2066         DPRINTF("+++ C+ mode transmission buffer allocated space %d\n",
2067             s->cplus_txbuffer_len);
2068     }
2069 
2070     if (s->cplus_txbuffer_offset + txsize >= s->cplus_txbuffer_len)
2071     {
2072         /* The spec didn't tell the maximum size, stick to CP_TX_BUFFER_SIZE */
2073         txsize = s->cplus_txbuffer_len - s->cplus_txbuffer_offset;
2074         DPRINTF("+++ C+ mode transmission buffer overrun, truncated descriptor"
2075                 "length to %d\n", txsize);
2076     }
2077 
2078     /* append more data to the packet */
2079 
2080     DPRINTF("+++ C+ mode transmit reading %d bytes from host memory at "
2081             DMA_ADDR_FMT" to offset %d\n", txsize, tx_addr,
2082             s->cplus_txbuffer_offset);
2083 
2084     pci_dma_read(d, tx_addr,
2085                  s->cplus_txbuffer + s->cplus_txbuffer_offset, txsize);
2086     s->cplus_txbuffer_offset += txsize;
2087 
2088     /* seek to next Rx descriptor */
2089     if (txdw0 & CP_TX_EOR)
2090     {
2091         s->currCPlusTxDesc = 0;
2092     }
2093     else
2094     {
2095         ++s->currCPlusTxDesc;
2096         if (s->currCPlusTxDesc >= 64)
2097             s->currCPlusTxDesc = 0;
2098     }
2099 
2100     /* transfer ownership to target */
2101     txdw0 &= ~CP_RX_OWN;
2102 
2103     /* reset error indicator bits */
2104     txdw0 &= ~CP_TX_STATUS_UNF;
2105     txdw0 &= ~CP_TX_STATUS_TES;
2106     txdw0 &= ~CP_TX_STATUS_OWC;
2107     txdw0 &= ~CP_TX_STATUS_LNKF;
2108     txdw0 &= ~CP_TX_STATUS_EXC;
2109 
2110     /* update ring data */
2111     val = cpu_to_le32(txdw0);
2112     pci_dma_write(d, cplus_tx_ring_desc, (uint8_t *)&val, 4);
2113 
2114     /* Now decide if descriptor being processed is holding the last segment of packet */
2115     if (txdw0 & CP_TX_LS)
2116     {
2117         uint8_t dot1q_buffer_space[VLAN_HLEN];
2118         uint16_t *dot1q_buffer;
2119 
2120         DPRINTF("+++ C+ Tx mode : descriptor %d is last segment descriptor\n",
2121             descriptor);
2122 
2123         /* can transfer fully assembled packet */
2124 
2125         uint8_t *saved_buffer  = s->cplus_txbuffer;
2126         int      saved_size    = s->cplus_txbuffer_offset;
2127         int      saved_buffer_len = s->cplus_txbuffer_len;
2128 
2129         /* create vlan tag */
2130         if (txdw1 & CP_TX_TAGC) {
2131             /* the vlan tag is in BE byte order in the descriptor
2132              * BE + le_to_cpu() + ~swap()~ = cpu */
2133             DPRINTF("+++ C+ Tx mode : inserting vlan tag with ""tci: %u\n",
2134                 bswap16(txdw1 & CP_TX_VLAN_TAG_MASK));
2135 
2136             dot1q_buffer = (uint16_t *) dot1q_buffer_space;
2137             dot1q_buffer[0] = cpu_to_be16(ETH_P_8021Q);
2138             /* BE + le_to_cpu() + ~cpu_to_le()~ = BE */
2139             dot1q_buffer[1] = cpu_to_le16(txdw1 & CP_TX_VLAN_TAG_MASK);
2140         } else {
2141             dot1q_buffer = NULL;
2142         }
2143 
2144         /* reset the card space to protect from recursive call */
2145         s->cplus_txbuffer = NULL;
2146         s->cplus_txbuffer_offset = 0;
2147         s->cplus_txbuffer_len = 0;
2148 
2149         if (txdw0 & (CP_TX_IPCS | CP_TX_UDPCS | CP_TX_TCPCS | CP_TX_LGSEN))
2150         {
2151             DPRINTF("+++ C+ mode offloaded task checksum\n");
2152 
2153             /* ip packet header */
2154             ip_header *ip = NULL;
2155             int hlen = 0;
2156             uint8_t  ip_protocol = 0;
2157             uint16_t ip_data_len = 0;
2158 
2159             uint8_t *eth_payload_data = NULL;
2160             size_t   eth_payload_len  = 0;
2161 
2162             int proto = be16_to_cpu(*(uint16_t *)(saved_buffer + 12));
2163             if (proto == ETH_P_IP)
2164             {
2165                 DPRINTF("+++ C+ mode has IP packet\n");
2166 
2167                 /* not aligned */
2168                 eth_payload_data = saved_buffer + ETH_HLEN;
2169                 eth_payload_len  = saved_size   - ETH_HLEN;
2170 
2171                 ip = (ip_header*)eth_payload_data;
2172 
2173                 if (IP_HEADER_VERSION(ip) != IP_HEADER_VERSION_4) {
2174                     DPRINTF("+++ C+ mode packet has bad IP version %d "
2175                         "expected %d\n", IP_HEADER_VERSION(ip),
2176                         IP_HEADER_VERSION_4);
2177                     ip = NULL;
2178                 } else {
2179                     hlen = IP_HEADER_LENGTH(ip);
2180                     ip_protocol = ip->ip_p;
2181                     ip_data_len = be16_to_cpu(ip->ip_len) - hlen;
2182                 }
2183             }
2184 
2185             if (ip)
2186             {
2187                 if (txdw0 & CP_TX_IPCS)
2188                 {
2189                     DPRINTF("+++ C+ mode need IP checksum\n");
2190 
2191                     if (hlen<sizeof(ip_header) || hlen>eth_payload_len) {/* min header length */
2192                         /* bad packet header len */
2193                         /* or packet too short */
2194                     }
2195                     else
2196                     {
2197                         ip->ip_sum = 0;
2198                         ip->ip_sum = ip_checksum(ip, hlen);
2199                         DPRINTF("+++ C+ mode IP header len=%d checksum=%04x\n",
2200                             hlen, ip->ip_sum);
2201                     }
2202                 }
2203 
2204                 if ((txdw0 & CP_TX_LGSEN) && ip_protocol == IP_PROTO_TCP)
2205                 {
2206                     int large_send_mss = (txdw0 >> 16) & CP_TC_LGSEN_MSS_MASK;
2207 
2208                     DPRINTF("+++ C+ mode offloaded task TSO MTU=%d IP data %d "
2209                         "frame data %d specified MSS=%d\n", ETH_MTU,
2210                         ip_data_len, saved_size - ETH_HLEN, large_send_mss);
2211 
2212                     int tcp_send_offset = 0;
2213                     int send_count = 0;
2214 
2215                     /* maximum IP header length is 60 bytes */
2216                     uint8_t saved_ip_header[60];
2217 
2218                     /* save IP header template; data area is used in tcp checksum calculation */
2219                     memcpy(saved_ip_header, eth_payload_data, hlen);
2220 
2221                     /* a placeholder for checksum calculation routine in tcp case */
2222                     uint8_t *data_to_checksum     = eth_payload_data + hlen - 12;
2223                     //                    size_t   data_to_checksum_len = eth_payload_len  - hlen + 12;
2224 
2225                     /* pointer to TCP header */
2226                     tcp_header *p_tcp_hdr = (tcp_header*)(eth_payload_data + hlen);
2227 
2228                     int tcp_hlen = TCP_HEADER_DATA_OFFSET(p_tcp_hdr);
2229 
2230                     /* ETH_MTU = ip header len + tcp header len + payload */
2231                     int tcp_data_len = ip_data_len - tcp_hlen;
2232                     int tcp_chunk_size = ETH_MTU - hlen - tcp_hlen;
2233 
2234                     DPRINTF("+++ C+ mode TSO IP data len %d TCP hlen %d TCP "
2235                         "data len %d TCP chunk size %d\n", ip_data_len,
2236                         tcp_hlen, tcp_data_len, tcp_chunk_size);
2237 
2238                     /* note the cycle below overwrites IP header data,
2239                        but restores it from saved_ip_header before sending packet */
2240 
2241                     int is_last_frame = 0;
2242 
2243                     for (tcp_send_offset = 0; tcp_send_offset < tcp_data_len; tcp_send_offset += tcp_chunk_size)
2244                     {
2245                         uint16_t chunk_size = tcp_chunk_size;
2246 
2247                         /* check if this is the last frame */
2248                         if (tcp_send_offset + tcp_chunk_size >= tcp_data_len)
2249                         {
2250                             is_last_frame = 1;
2251                             chunk_size = tcp_data_len - tcp_send_offset;
2252                         }
2253 
2254                         DPRINTF("+++ C+ mode TSO TCP seqno %08x\n",
2255                             be32_to_cpu(p_tcp_hdr->th_seq));
2256 
2257                         /* add 4 TCP pseudoheader fields */
2258                         /* copy IP source and destination fields */
2259                         memcpy(data_to_checksum, saved_ip_header + 12, 8);
2260 
2261                         DPRINTF("+++ C+ mode TSO calculating TCP checksum for "
2262                             "packet with %d bytes data\n", tcp_hlen +
2263                             chunk_size);
2264 
2265                         if (tcp_send_offset)
2266                         {
2267                             memcpy((uint8_t*)p_tcp_hdr + tcp_hlen, (uint8_t*)p_tcp_hdr + tcp_hlen + tcp_send_offset, chunk_size);
2268                         }
2269 
2270                         /* keep PUSH and FIN flags only for the last frame */
2271                         if (!is_last_frame)
2272                         {
2273                             TCP_HEADER_CLEAR_FLAGS(p_tcp_hdr, TCP_FLAG_PUSH|TCP_FLAG_FIN);
2274                         }
2275 
2276                         /* recalculate TCP checksum */
2277                         ip_pseudo_header *p_tcpip_hdr = (ip_pseudo_header *)data_to_checksum;
2278                         p_tcpip_hdr->zeros      = 0;
2279                         p_tcpip_hdr->ip_proto   = IP_PROTO_TCP;
2280                         p_tcpip_hdr->ip_payload = cpu_to_be16(tcp_hlen + chunk_size);
2281 
2282                         p_tcp_hdr->th_sum = 0;
2283 
2284                         int tcp_checksum = ip_checksum(data_to_checksum, tcp_hlen + chunk_size + 12);
2285                         DPRINTF("+++ C+ mode TSO TCP checksum %04x\n",
2286                             tcp_checksum);
2287 
2288                         p_tcp_hdr->th_sum = tcp_checksum;
2289 
2290                         /* restore IP header */
2291                         memcpy(eth_payload_data, saved_ip_header, hlen);
2292 
2293                         /* set IP data length and recalculate IP checksum */
2294                         ip->ip_len = cpu_to_be16(hlen + tcp_hlen + chunk_size);
2295 
2296                         /* increment IP id for subsequent frames */
2297                         ip->ip_id = cpu_to_be16(tcp_send_offset/tcp_chunk_size + be16_to_cpu(ip->ip_id));
2298 
2299                         ip->ip_sum = 0;
2300                         ip->ip_sum = ip_checksum(eth_payload_data, hlen);
2301                         DPRINTF("+++ C+ mode TSO IP header len=%d "
2302                             "checksum=%04x\n", hlen, ip->ip_sum);
2303 
2304                         int tso_send_size = ETH_HLEN + hlen + tcp_hlen + chunk_size;
2305                         DPRINTF("+++ C+ mode TSO transferring packet size "
2306                             "%d\n", tso_send_size);
2307                         rtl8139_transfer_frame(s, saved_buffer, tso_send_size,
2308                             0, (uint8_t *) dot1q_buffer);
2309 
2310                         /* add transferred count to TCP sequence number */
2311                         p_tcp_hdr->th_seq = cpu_to_be32(chunk_size + be32_to_cpu(p_tcp_hdr->th_seq));
2312                         ++send_count;
2313                     }
2314 
2315                     /* Stop sending this frame */
2316                     saved_size = 0;
2317                 }
2318                 else if (txdw0 & (CP_TX_TCPCS|CP_TX_UDPCS))
2319                 {
2320                     DPRINTF("+++ C+ mode need TCP or UDP checksum\n");
2321 
2322                     /* maximum IP header length is 60 bytes */
2323                     uint8_t saved_ip_header[60];
2324                     memcpy(saved_ip_header, eth_payload_data, hlen);
2325 
2326                     uint8_t *data_to_checksum     = eth_payload_data + hlen - 12;
2327                     //                    size_t   data_to_checksum_len = eth_payload_len  - hlen + 12;
2328 
2329                     /* add 4 TCP pseudoheader fields */
2330                     /* copy IP source and destination fields */
2331                     memcpy(data_to_checksum, saved_ip_header + 12, 8);
2332 
2333                     if ((txdw0 & CP_TX_TCPCS) && ip_protocol == IP_PROTO_TCP)
2334                     {
2335                         DPRINTF("+++ C+ mode calculating TCP checksum for "
2336                             "packet with %d bytes data\n", ip_data_len);
2337 
2338                         ip_pseudo_header *p_tcpip_hdr = (ip_pseudo_header *)data_to_checksum;
2339                         p_tcpip_hdr->zeros      = 0;
2340                         p_tcpip_hdr->ip_proto   = IP_PROTO_TCP;
2341                         p_tcpip_hdr->ip_payload = cpu_to_be16(ip_data_len);
2342 
2343                         tcp_header* p_tcp_hdr = (tcp_header *) (data_to_checksum+12);
2344 
2345                         p_tcp_hdr->th_sum = 0;
2346 
2347                         int tcp_checksum = ip_checksum(data_to_checksum, ip_data_len + 12);
2348                         DPRINTF("+++ C+ mode TCP checksum %04x\n",
2349                             tcp_checksum);
2350 
2351                         p_tcp_hdr->th_sum = tcp_checksum;
2352                     }
2353                     else if ((txdw0 & CP_TX_UDPCS) && ip_protocol == IP_PROTO_UDP)
2354                     {
2355                         DPRINTF("+++ C+ mode calculating UDP checksum for "
2356                             "packet with %d bytes data\n", ip_data_len);
2357 
2358                         ip_pseudo_header *p_udpip_hdr = (ip_pseudo_header *)data_to_checksum;
2359                         p_udpip_hdr->zeros      = 0;
2360                         p_udpip_hdr->ip_proto   = IP_PROTO_UDP;
2361                         p_udpip_hdr->ip_payload = cpu_to_be16(ip_data_len);
2362 
2363                         udp_header *p_udp_hdr = (udp_header *) (data_to_checksum+12);
2364 
2365                         p_udp_hdr->uh_sum = 0;
2366 
2367                         int udp_checksum = ip_checksum(data_to_checksum, ip_data_len + 12);
2368                         DPRINTF("+++ C+ mode UDP checksum %04x\n",
2369                             udp_checksum);
2370 
2371                         p_udp_hdr->uh_sum = udp_checksum;
2372                     }
2373 
2374                     /* restore IP header */
2375                     memcpy(eth_payload_data, saved_ip_header, hlen);
2376                 }
2377             }
2378         }
2379 
2380         /* update tally counter */
2381         ++s->tally_counters.TxOk;
2382 
2383         DPRINTF("+++ C+ mode transmitting %d bytes packet\n", saved_size);
2384 
2385         rtl8139_transfer_frame(s, saved_buffer, saved_size, 1,
2386             (uint8_t *) dot1q_buffer);
2387 
2388         /* restore card space if there was no recursion and reset offset */
2389         if (!s->cplus_txbuffer)
2390         {
2391             s->cplus_txbuffer        = saved_buffer;
2392             s->cplus_txbuffer_len    = saved_buffer_len;
2393             s->cplus_txbuffer_offset = 0;
2394         }
2395         else
2396         {
2397             g_free(saved_buffer);
2398         }
2399     }
2400     else
2401     {
2402         DPRINTF("+++ C+ mode transmission continue to next descriptor\n");
2403     }
2404 
2405     return 1;
2406 }
2407 
2408 static void rtl8139_cplus_transmit(RTL8139State *s)
2409 {
2410     int txcount = 0;
2411 
2412     while (rtl8139_cplus_transmit_one(s))
2413     {
2414         ++txcount;
2415     }
2416 
2417     /* Mark transfer completed */
2418     if (!txcount)
2419     {
2420         DPRINTF("C+ mode : transmitter queue stalled, current TxDesc = %d\n",
2421             s->currCPlusTxDesc);
2422     }
2423     else
2424     {
2425         /* update interrupt status */
2426         s->IntrStatus |= TxOK;
2427         rtl8139_update_irq(s);
2428     }
2429 }
2430 
2431 static void rtl8139_transmit(RTL8139State *s)
2432 {
2433     int descriptor = s->currTxDesc, txcount = 0;
2434 
2435     /*while*/
2436     if (rtl8139_transmit_one(s, descriptor))
2437     {
2438         ++s->currTxDesc;
2439         s->currTxDesc %= 4;
2440         ++txcount;
2441     }
2442 
2443     /* Mark transfer completed */
2444     if (!txcount)
2445     {
2446         DPRINTF("transmitter queue stalled, current TxDesc = %d\n",
2447             s->currTxDesc);
2448     }
2449 }
2450 
2451 static void rtl8139_TxStatus_write(RTL8139State *s, uint32_t txRegOffset, uint32_t val)
2452 {
2453 
2454     int descriptor = txRegOffset/4;
2455 
2456     /* handle C+ transmit mode register configuration */
2457 
2458     if (s->cplus_enabled)
2459     {
2460         DPRINTF("RTL8139C+ DTCCR write offset=0x%x val=0x%08x "
2461             "descriptor=%d\n", txRegOffset, val, descriptor);
2462 
2463         /* handle Dump Tally Counters command */
2464         s->TxStatus[descriptor] = val;
2465 
2466         if (descriptor == 0 && (val & 0x8))
2467         {
2468             hwaddr tc_addr = rtl8139_addr64(s->TxStatus[0] & ~0x3f, s->TxStatus[1]);
2469 
2470             /* dump tally counters to specified memory location */
2471             RTL8139TallyCounters_dma_write(s, tc_addr);
2472 
2473             /* mark dump completed */
2474             s->TxStatus[0] &= ~0x8;
2475         }
2476 
2477         return;
2478     }
2479 
2480     DPRINTF("TxStatus write offset=0x%x val=0x%08x descriptor=%d\n",
2481         txRegOffset, val, descriptor);
2482 
2483     /* mask only reserved bits */
2484     val &= ~0xff00c000; /* these bits are reset on write */
2485     val = SET_MASKED(val, 0x00c00000, s->TxStatus[descriptor]);
2486 
2487     s->TxStatus[descriptor] = val;
2488 
2489     /* attempt to start transmission */
2490     rtl8139_transmit(s);
2491 }
2492 
2493 static uint32_t rtl8139_TxStatus_TxAddr_read(RTL8139State *s, uint32_t regs[],
2494                                              uint32_t base, uint8_t addr,
2495                                              int size)
2496 {
2497     uint32_t reg = (addr - base) / 4;
2498     uint32_t offset = addr & 0x3;
2499     uint32_t ret = 0;
2500 
2501     if (addr & (size - 1)) {
2502         DPRINTF("not implemented read for TxStatus/TxAddr "
2503                 "addr=0x%x size=0x%x\n", addr, size);
2504         return ret;
2505     }
2506 
2507     switch (size) {
2508     case 1: /* fall through */
2509     case 2: /* fall through */
2510     case 4:
2511         ret = (regs[reg] >> offset * 8) & (((uint64_t)1 << (size * 8)) - 1);
2512         DPRINTF("TxStatus/TxAddr[%d] read addr=0x%x size=0x%x val=0x%08x\n",
2513                 reg, addr, size, ret);
2514         break;
2515     default:
2516         DPRINTF("unsupported size 0x%x of TxStatus/TxAddr reading\n", size);
2517         break;
2518     }
2519 
2520     return ret;
2521 }
2522 
2523 static uint16_t rtl8139_TSAD_read(RTL8139State *s)
2524 {
2525     uint16_t ret = 0;
2526 
2527     /* Simulate TSAD, it is read only anyway */
2528 
2529     ret = ((s->TxStatus[3] & TxStatOK  )?TSAD_TOK3:0)
2530          |((s->TxStatus[2] & TxStatOK  )?TSAD_TOK2:0)
2531          |((s->TxStatus[1] & TxStatOK  )?TSAD_TOK1:0)
2532          |((s->TxStatus[0] & TxStatOK  )?TSAD_TOK0:0)
2533 
2534          |((s->TxStatus[3] & TxUnderrun)?TSAD_TUN3:0)
2535          |((s->TxStatus[2] & TxUnderrun)?TSAD_TUN2:0)
2536          |((s->TxStatus[1] & TxUnderrun)?TSAD_TUN1:0)
2537          |((s->TxStatus[0] & TxUnderrun)?TSAD_TUN0:0)
2538 
2539          |((s->TxStatus[3] & TxAborted )?TSAD_TABT3:0)
2540          |((s->TxStatus[2] & TxAborted )?TSAD_TABT2:0)
2541          |((s->TxStatus[1] & TxAborted )?TSAD_TABT1:0)
2542          |((s->TxStatus[0] & TxAborted )?TSAD_TABT0:0)
2543 
2544          |((s->TxStatus[3] & TxHostOwns )?TSAD_OWN3:0)
2545          |((s->TxStatus[2] & TxHostOwns )?TSAD_OWN2:0)
2546          |((s->TxStatus[1] & TxHostOwns )?TSAD_OWN1:0)
2547          |((s->TxStatus[0] & TxHostOwns )?TSAD_OWN0:0) ;
2548 
2549 
2550     DPRINTF("TSAD read val=0x%04x\n", ret);
2551 
2552     return ret;
2553 }
2554 
2555 static uint16_t rtl8139_CSCR_read(RTL8139State *s)
2556 {
2557     uint16_t ret = s->CSCR;
2558 
2559     DPRINTF("CSCR read val=0x%04x\n", ret);
2560 
2561     return ret;
2562 }
2563 
2564 static void rtl8139_TxAddr_write(RTL8139State *s, uint32_t txAddrOffset, uint32_t val)
2565 {
2566     DPRINTF("TxAddr write offset=0x%x val=0x%08x\n", txAddrOffset, val);
2567 
2568     s->TxAddr[txAddrOffset/4] = val;
2569 }
2570 
2571 static uint32_t rtl8139_TxAddr_read(RTL8139State *s, uint32_t txAddrOffset)
2572 {
2573     uint32_t ret = s->TxAddr[txAddrOffset/4];
2574 
2575     DPRINTF("TxAddr read offset=0x%x val=0x%08x\n", txAddrOffset, ret);
2576 
2577     return ret;
2578 }
2579 
2580 static void rtl8139_RxBufPtr_write(RTL8139State *s, uint32_t val)
2581 {
2582     DPRINTF("RxBufPtr write val=0x%04x\n", val);
2583 
2584     /* this value is off by 16 */
2585     s->RxBufPtr = MOD2(val + 0x10, s->RxBufferSize);
2586 
2587     /* more buffer space may be available so try to receive */
2588     qemu_flush_queued_packets(qemu_get_queue(s->nic));
2589 
2590     DPRINTF(" CAPR write: rx buffer length %d head 0x%04x read 0x%04x\n",
2591         s->RxBufferSize, s->RxBufAddr, s->RxBufPtr);
2592 }
2593 
2594 static uint32_t rtl8139_RxBufPtr_read(RTL8139State *s)
2595 {
2596     /* this value is off by 16 */
2597     uint32_t ret = s->RxBufPtr - 0x10;
2598 
2599     DPRINTF("RxBufPtr read val=0x%04x\n", ret);
2600 
2601     return ret;
2602 }
2603 
2604 static uint32_t rtl8139_RxBufAddr_read(RTL8139State *s)
2605 {
2606     /* this value is NOT off by 16 */
2607     uint32_t ret = s->RxBufAddr;
2608 
2609     DPRINTF("RxBufAddr read val=0x%04x\n", ret);
2610 
2611     return ret;
2612 }
2613 
2614 static void rtl8139_RxBuf_write(RTL8139State *s, uint32_t val)
2615 {
2616     DPRINTF("RxBuf write val=0x%08x\n", val);
2617 
2618     s->RxBuf = val;
2619 
2620     /* may need to reset rxring here */
2621 }
2622 
2623 static uint32_t rtl8139_RxBuf_read(RTL8139State *s)
2624 {
2625     uint32_t ret = s->RxBuf;
2626 
2627     DPRINTF("RxBuf read val=0x%08x\n", ret);
2628 
2629     return ret;
2630 }
2631 
2632 static void rtl8139_IntrMask_write(RTL8139State *s, uint32_t val)
2633 {
2634     DPRINTF("IntrMask write(w) val=0x%04x\n", val);
2635 
2636     /* mask unwritable bits */
2637     val = SET_MASKED(val, 0x1e00, s->IntrMask);
2638 
2639     s->IntrMask = val;
2640 
2641     rtl8139_update_irq(s);
2642 
2643 }
2644 
2645 static uint32_t rtl8139_IntrMask_read(RTL8139State *s)
2646 {
2647     uint32_t ret = s->IntrMask;
2648 
2649     DPRINTF("IntrMask read(w) val=0x%04x\n", ret);
2650 
2651     return ret;
2652 }
2653 
2654 static void rtl8139_IntrStatus_write(RTL8139State *s, uint32_t val)
2655 {
2656     DPRINTF("IntrStatus write(w) val=0x%04x\n", val);
2657 
2658 #if 0
2659 
2660     /* writing to ISR has no effect */
2661 
2662     return;
2663 
2664 #else
2665     uint16_t newStatus = s->IntrStatus & ~val;
2666 
2667     /* mask unwritable bits */
2668     newStatus = SET_MASKED(newStatus, 0x1e00, s->IntrStatus);
2669 
2670     /* writing 1 to interrupt status register bit clears it */
2671     s->IntrStatus = 0;
2672     rtl8139_update_irq(s);
2673 
2674     s->IntrStatus = newStatus;
2675     rtl8139_set_next_tctr_time(s);
2676     rtl8139_update_irq(s);
2677 
2678 #endif
2679 }
2680 
2681 static uint32_t rtl8139_IntrStatus_read(RTL8139State *s)
2682 {
2683     uint32_t ret = s->IntrStatus;
2684 
2685     DPRINTF("IntrStatus read(w) val=0x%04x\n", ret);
2686 
2687 #if 0
2688 
2689     /* reading ISR clears all interrupts */
2690     s->IntrStatus = 0;
2691 
2692     rtl8139_update_irq(s);
2693 
2694 #endif
2695 
2696     return ret;
2697 }
2698 
2699 static void rtl8139_MultiIntr_write(RTL8139State *s, uint32_t val)
2700 {
2701     DPRINTF("MultiIntr write(w) val=0x%04x\n", val);
2702 
2703     /* mask unwritable bits */
2704     val = SET_MASKED(val, 0xf000, s->MultiIntr);
2705 
2706     s->MultiIntr = val;
2707 }
2708 
2709 static uint32_t rtl8139_MultiIntr_read(RTL8139State *s)
2710 {
2711     uint32_t ret = s->MultiIntr;
2712 
2713     DPRINTF("MultiIntr read(w) val=0x%04x\n", ret);
2714 
2715     return ret;
2716 }
2717 
2718 static void rtl8139_io_writeb(void *opaque, uint8_t addr, uint32_t val)
2719 {
2720     RTL8139State *s = opaque;
2721 
2722     switch (addr)
2723     {
2724         case MAC0 ... MAC0+4:
2725             s->phys[addr - MAC0] = val;
2726             break;
2727         case MAC0+5:
2728             s->phys[addr - MAC0] = val;
2729             qemu_format_nic_info_str(qemu_get_queue(s->nic), s->phys);
2730             break;
2731         case MAC0+6 ... MAC0+7:
2732             /* reserved */
2733             break;
2734         case MAR0 ... MAR0+7:
2735             s->mult[addr - MAR0] = val;
2736             break;
2737         case ChipCmd:
2738             rtl8139_ChipCmd_write(s, val);
2739             break;
2740         case Cfg9346:
2741             rtl8139_Cfg9346_write(s, val);
2742             break;
2743         case TxConfig: /* windows driver sometimes writes using byte-lenth call */
2744             rtl8139_TxConfig_writeb(s, val);
2745             break;
2746         case Config0:
2747             rtl8139_Config0_write(s, val);
2748             break;
2749         case Config1:
2750             rtl8139_Config1_write(s, val);
2751             break;
2752         case Config3:
2753             rtl8139_Config3_write(s, val);
2754             break;
2755         case Config4:
2756             rtl8139_Config4_write(s, val);
2757             break;
2758         case Config5:
2759             rtl8139_Config5_write(s, val);
2760             break;
2761         case MediaStatus:
2762             /* ignore */
2763             DPRINTF("not implemented write(b) to MediaStatus val=0x%02x\n",
2764                 val);
2765             break;
2766 
2767         case HltClk:
2768             DPRINTF("HltClk write val=0x%08x\n", val);
2769             if (val == 'R')
2770             {
2771                 s->clock_enabled = 1;
2772             }
2773             else if (val == 'H')
2774             {
2775                 s->clock_enabled = 0;
2776             }
2777             break;
2778 
2779         case TxThresh:
2780             DPRINTF("C+ TxThresh write(b) val=0x%02x\n", val);
2781             s->TxThresh = val;
2782             break;
2783 
2784         case TxPoll:
2785             DPRINTF("C+ TxPoll write(b) val=0x%02x\n", val);
2786             if (val & (1 << 7))
2787             {
2788                 DPRINTF("C+ TxPoll high priority transmission (not "
2789                     "implemented)\n");
2790                 //rtl8139_cplus_transmit(s);
2791             }
2792             if (val & (1 << 6))
2793             {
2794                 DPRINTF("C+ TxPoll normal priority transmission\n");
2795                 rtl8139_cplus_transmit(s);
2796             }
2797 
2798             break;
2799 
2800         default:
2801             DPRINTF("not implemented write(b) addr=0x%x val=0x%02x\n", addr,
2802                 val);
2803             break;
2804     }
2805 }
2806 
2807 static void rtl8139_io_writew(void *opaque, uint8_t addr, uint32_t val)
2808 {
2809     RTL8139State *s = opaque;
2810 
2811     switch (addr)
2812     {
2813         case IntrMask:
2814             rtl8139_IntrMask_write(s, val);
2815             break;
2816 
2817         case IntrStatus:
2818             rtl8139_IntrStatus_write(s, val);
2819             break;
2820 
2821         case MultiIntr:
2822             rtl8139_MultiIntr_write(s, val);
2823             break;
2824 
2825         case RxBufPtr:
2826             rtl8139_RxBufPtr_write(s, val);
2827             break;
2828 
2829         case BasicModeCtrl:
2830             rtl8139_BasicModeCtrl_write(s, val);
2831             break;
2832         case BasicModeStatus:
2833             rtl8139_BasicModeStatus_write(s, val);
2834             break;
2835         case NWayAdvert:
2836             DPRINTF("NWayAdvert write(w) val=0x%04x\n", val);
2837             s->NWayAdvert = val;
2838             break;
2839         case NWayLPAR:
2840             DPRINTF("forbidden NWayLPAR write(w) val=0x%04x\n", val);
2841             break;
2842         case NWayExpansion:
2843             DPRINTF("NWayExpansion write(w) val=0x%04x\n", val);
2844             s->NWayExpansion = val;
2845             break;
2846 
2847         case CpCmd:
2848             rtl8139_CpCmd_write(s, val);
2849             break;
2850 
2851         case IntrMitigate:
2852             rtl8139_IntrMitigate_write(s, val);
2853             break;
2854 
2855         default:
2856             DPRINTF("ioport write(w) addr=0x%x val=0x%04x via write(b)\n",
2857                 addr, val);
2858 
2859             rtl8139_io_writeb(opaque, addr, val & 0xff);
2860             rtl8139_io_writeb(opaque, addr + 1, (val >> 8) & 0xff);
2861             break;
2862     }
2863 }
2864 
2865 static void rtl8139_set_next_tctr_time(RTL8139State *s)
2866 {
2867     const uint64_t ns_per_period =
2868         muldiv64(0x100000000LL, get_ticks_per_sec(), PCI_FREQUENCY);
2869 
2870     DPRINTF("entered rtl8139_set_next_tctr_time\n");
2871 
2872     /* This function is called at least once per period, so it is a good
2873      * place to update the timer base.
2874      *
2875      * After one iteration of this loop the value in the Timer register does
2876      * not change, but the device model is counting up by 2^32 ticks (approx.
2877      * 130 seconds).
2878      */
2879     while (s->TCTR_base + ns_per_period <= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)) {
2880         s->TCTR_base += ns_per_period;
2881     }
2882 
2883     if (!s->TimerInt) {
2884         timer_del(s->timer);
2885     } else {
2886         uint64_t delta = muldiv64(s->TimerInt, get_ticks_per_sec(), PCI_FREQUENCY);
2887         if (s->TCTR_base + delta <= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)) {
2888             delta += ns_per_period;
2889         }
2890         timer_mod(s->timer, s->TCTR_base + delta);
2891     }
2892 }
2893 
2894 static void rtl8139_io_writel(void *opaque, uint8_t addr, uint32_t val)
2895 {
2896     RTL8139State *s = opaque;
2897 
2898     switch (addr)
2899     {
2900         case RxMissed:
2901             DPRINTF("RxMissed clearing on write\n");
2902             s->RxMissed = 0;
2903             break;
2904 
2905         case TxConfig:
2906             rtl8139_TxConfig_write(s, val);
2907             break;
2908 
2909         case RxConfig:
2910             rtl8139_RxConfig_write(s, val);
2911             break;
2912 
2913         case TxStatus0 ... TxStatus0+4*4-1:
2914             rtl8139_TxStatus_write(s, addr-TxStatus0, val);
2915             break;
2916 
2917         case TxAddr0 ... TxAddr0+4*4-1:
2918             rtl8139_TxAddr_write(s, addr-TxAddr0, val);
2919             break;
2920 
2921         case RxBuf:
2922             rtl8139_RxBuf_write(s, val);
2923             break;
2924 
2925         case RxRingAddrLO:
2926             DPRINTF("C+ RxRing low bits write val=0x%08x\n", val);
2927             s->RxRingAddrLO = val;
2928             break;
2929 
2930         case RxRingAddrHI:
2931             DPRINTF("C+ RxRing high bits write val=0x%08x\n", val);
2932             s->RxRingAddrHI = val;
2933             break;
2934 
2935         case Timer:
2936             DPRINTF("TCTR Timer reset on write\n");
2937             s->TCTR_base = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
2938             rtl8139_set_next_tctr_time(s);
2939             break;
2940 
2941         case FlashReg:
2942             DPRINTF("FlashReg TimerInt write val=0x%08x\n", val);
2943             if (s->TimerInt != val) {
2944                 s->TimerInt = val;
2945                 rtl8139_set_next_tctr_time(s);
2946             }
2947             break;
2948 
2949         default:
2950             DPRINTF("ioport write(l) addr=0x%x val=0x%08x via write(b)\n",
2951                 addr, val);
2952             rtl8139_io_writeb(opaque, addr, val & 0xff);
2953             rtl8139_io_writeb(opaque, addr + 1, (val >> 8) & 0xff);
2954             rtl8139_io_writeb(opaque, addr + 2, (val >> 16) & 0xff);
2955             rtl8139_io_writeb(opaque, addr + 3, (val >> 24) & 0xff);
2956             break;
2957     }
2958 }
2959 
2960 static uint32_t rtl8139_io_readb(void *opaque, uint8_t addr)
2961 {
2962     RTL8139State *s = opaque;
2963     int ret;
2964 
2965     switch (addr)
2966     {
2967         case MAC0 ... MAC0+5:
2968             ret = s->phys[addr - MAC0];
2969             break;
2970         case MAC0+6 ... MAC0+7:
2971             ret = 0;
2972             break;
2973         case MAR0 ... MAR0+7:
2974             ret = s->mult[addr - MAR0];
2975             break;
2976         case TxStatus0 ... TxStatus0+4*4-1:
2977             ret = rtl8139_TxStatus_TxAddr_read(s, s->TxStatus, TxStatus0,
2978                                                addr, 1);
2979             break;
2980         case ChipCmd:
2981             ret = rtl8139_ChipCmd_read(s);
2982             break;
2983         case Cfg9346:
2984             ret = rtl8139_Cfg9346_read(s);
2985             break;
2986         case Config0:
2987             ret = rtl8139_Config0_read(s);
2988             break;
2989         case Config1:
2990             ret = rtl8139_Config1_read(s);
2991             break;
2992         case Config3:
2993             ret = rtl8139_Config3_read(s);
2994             break;
2995         case Config4:
2996             ret = rtl8139_Config4_read(s);
2997             break;
2998         case Config5:
2999             ret = rtl8139_Config5_read(s);
3000             break;
3001 
3002         case MediaStatus:
3003             /* The LinkDown bit of MediaStatus is inverse with link status */
3004             ret = 0xd0 | (~s->BasicModeStatus & 0x04);
3005             DPRINTF("MediaStatus read 0x%x\n", ret);
3006             break;
3007 
3008         case HltClk:
3009             ret = s->clock_enabled;
3010             DPRINTF("HltClk read 0x%x\n", ret);
3011             break;
3012 
3013         case PCIRevisionID:
3014             ret = RTL8139_PCI_REVID;
3015             DPRINTF("PCI Revision ID read 0x%x\n", ret);
3016             break;
3017 
3018         case TxThresh:
3019             ret = s->TxThresh;
3020             DPRINTF("C+ TxThresh read(b) val=0x%02x\n", ret);
3021             break;
3022 
3023         case 0x43: /* Part of TxConfig register. Windows driver tries to read it */
3024             ret = s->TxConfig >> 24;
3025             DPRINTF("RTL8139C TxConfig at 0x43 read(b) val=0x%02x\n", ret);
3026             break;
3027 
3028         default:
3029             DPRINTF("not implemented read(b) addr=0x%x\n", addr);
3030             ret = 0;
3031             break;
3032     }
3033 
3034     return ret;
3035 }
3036 
3037 static uint32_t rtl8139_io_readw(void *opaque, uint8_t addr)
3038 {
3039     RTL8139State *s = opaque;
3040     uint32_t ret;
3041 
3042     switch (addr)
3043     {
3044         case TxAddr0 ... TxAddr0+4*4-1:
3045             ret = rtl8139_TxStatus_TxAddr_read(s, s->TxAddr, TxAddr0, addr, 2);
3046             break;
3047         case IntrMask:
3048             ret = rtl8139_IntrMask_read(s);
3049             break;
3050 
3051         case IntrStatus:
3052             ret = rtl8139_IntrStatus_read(s);
3053             break;
3054 
3055         case MultiIntr:
3056             ret = rtl8139_MultiIntr_read(s);
3057             break;
3058 
3059         case RxBufPtr:
3060             ret = rtl8139_RxBufPtr_read(s);
3061             break;
3062 
3063         case RxBufAddr:
3064             ret = rtl8139_RxBufAddr_read(s);
3065             break;
3066 
3067         case BasicModeCtrl:
3068             ret = rtl8139_BasicModeCtrl_read(s);
3069             break;
3070         case BasicModeStatus:
3071             ret = rtl8139_BasicModeStatus_read(s);
3072             break;
3073         case NWayAdvert:
3074             ret = s->NWayAdvert;
3075             DPRINTF("NWayAdvert read(w) val=0x%04x\n", ret);
3076             break;
3077         case NWayLPAR:
3078             ret = s->NWayLPAR;
3079             DPRINTF("NWayLPAR read(w) val=0x%04x\n", ret);
3080             break;
3081         case NWayExpansion:
3082             ret = s->NWayExpansion;
3083             DPRINTF("NWayExpansion read(w) val=0x%04x\n", ret);
3084             break;
3085 
3086         case CpCmd:
3087             ret = rtl8139_CpCmd_read(s);
3088             break;
3089 
3090         case IntrMitigate:
3091             ret = rtl8139_IntrMitigate_read(s);
3092             break;
3093 
3094         case TxSummary:
3095             ret = rtl8139_TSAD_read(s);
3096             break;
3097 
3098         case CSCR:
3099             ret = rtl8139_CSCR_read(s);
3100             break;
3101 
3102         default:
3103             DPRINTF("ioport read(w) addr=0x%x via read(b)\n", addr);
3104 
3105             ret  = rtl8139_io_readb(opaque, addr);
3106             ret |= rtl8139_io_readb(opaque, addr + 1) << 8;
3107 
3108             DPRINTF("ioport read(w) addr=0x%x val=0x%04x\n", addr, ret);
3109             break;
3110     }
3111 
3112     return ret;
3113 }
3114 
3115 static uint32_t rtl8139_io_readl(void *opaque, uint8_t addr)
3116 {
3117     RTL8139State *s = opaque;
3118     uint32_t ret;
3119 
3120     switch (addr)
3121     {
3122         case RxMissed:
3123             ret = s->RxMissed;
3124 
3125             DPRINTF("RxMissed read val=0x%08x\n", ret);
3126             break;
3127 
3128         case TxConfig:
3129             ret = rtl8139_TxConfig_read(s);
3130             break;
3131 
3132         case RxConfig:
3133             ret = rtl8139_RxConfig_read(s);
3134             break;
3135 
3136         case TxStatus0 ... TxStatus0+4*4-1:
3137             ret = rtl8139_TxStatus_TxAddr_read(s, s->TxStatus, TxStatus0,
3138                                                addr, 4);
3139             break;
3140 
3141         case TxAddr0 ... TxAddr0+4*4-1:
3142             ret = rtl8139_TxAddr_read(s, addr-TxAddr0);
3143             break;
3144 
3145         case RxBuf:
3146             ret = rtl8139_RxBuf_read(s);
3147             break;
3148 
3149         case RxRingAddrLO:
3150             ret = s->RxRingAddrLO;
3151             DPRINTF("C+ RxRing low bits read val=0x%08x\n", ret);
3152             break;
3153 
3154         case RxRingAddrHI:
3155             ret = s->RxRingAddrHI;
3156             DPRINTF("C+ RxRing high bits read val=0x%08x\n", ret);
3157             break;
3158 
3159         case Timer:
3160             ret = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - s->TCTR_base,
3161                            PCI_FREQUENCY, get_ticks_per_sec());
3162             DPRINTF("TCTR Timer read val=0x%08x\n", ret);
3163             break;
3164 
3165         case FlashReg:
3166             ret = s->TimerInt;
3167             DPRINTF("FlashReg TimerInt read val=0x%08x\n", ret);
3168             break;
3169 
3170         default:
3171             DPRINTF("ioport read(l) addr=0x%x via read(b)\n", addr);
3172 
3173             ret  = rtl8139_io_readb(opaque, addr);
3174             ret |= rtl8139_io_readb(opaque, addr + 1) << 8;
3175             ret |= rtl8139_io_readb(opaque, addr + 2) << 16;
3176             ret |= rtl8139_io_readb(opaque, addr + 3) << 24;
3177 
3178             DPRINTF("read(l) addr=0x%x val=%08x\n", addr, ret);
3179             break;
3180     }
3181 
3182     return ret;
3183 }
3184 
3185 /* */
3186 
3187 static void rtl8139_mmio_writeb(void *opaque, hwaddr addr, uint32_t val)
3188 {
3189     rtl8139_io_writeb(opaque, addr & 0xFF, val);
3190 }
3191 
3192 static void rtl8139_mmio_writew(void *opaque, hwaddr addr, uint32_t val)
3193 {
3194     rtl8139_io_writew(opaque, addr & 0xFF, val);
3195 }
3196 
3197 static void rtl8139_mmio_writel(void *opaque, hwaddr addr, uint32_t val)
3198 {
3199     rtl8139_io_writel(opaque, addr & 0xFF, val);
3200 }
3201 
3202 static uint32_t rtl8139_mmio_readb(void *opaque, hwaddr addr)
3203 {
3204     return rtl8139_io_readb(opaque, addr & 0xFF);
3205 }
3206 
3207 static uint32_t rtl8139_mmio_readw(void *opaque, hwaddr addr)
3208 {
3209     uint32_t val = rtl8139_io_readw(opaque, addr & 0xFF);
3210     return val;
3211 }
3212 
3213 static uint32_t rtl8139_mmio_readl(void *opaque, hwaddr addr)
3214 {
3215     uint32_t val = rtl8139_io_readl(opaque, addr & 0xFF);
3216     return val;
3217 }
3218 
3219 static int rtl8139_post_load(void *opaque, int version_id)
3220 {
3221     RTL8139State* s = opaque;
3222     rtl8139_set_next_tctr_time(s);
3223     if (version_id < 4) {
3224         s->cplus_enabled = s->CpCmd != 0;
3225     }
3226 
3227     /* nc.link_down can't be migrated, so infer link_down according
3228      * to link status bit in BasicModeStatus */
3229     qemu_get_queue(s->nic)->link_down = (s->BasicModeStatus & 0x04) == 0;
3230 
3231     return 0;
3232 }
3233 
3234 static bool rtl8139_hotplug_ready_needed(void *opaque)
3235 {
3236     return qdev_machine_modified();
3237 }
3238 
3239 static const VMStateDescription vmstate_rtl8139_hotplug_ready ={
3240     .name = "rtl8139/hotplug_ready",
3241     .version_id = 1,
3242     .minimum_version_id = 1,
3243     .needed = rtl8139_hotplug_ready_needed,
3244     .fields = (VMStateField[]) {
3245         VMSTATE_END_OF_LIST()
3246     }
3247 };
3248 
3249 static void rtl8139_pre_save(void *opaque)
3250 {
3251     RTL8139State* s = opaque;
3252     int64_t current_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
3253 
3254     /* for migration to older versions */
3255     s->TCTR = muldiv64(current_time - s->TCTR_base, PCI_FREQUENCY,
3256                        get_ticks_per_sec());
3257     s->rtl8139_mmio_io_addr_dummy = 0;
3258 }
3259 
3260 static const VMStateDescription vmstate_rtl8139 = {
3261     .name = "rtl8139",
3262     .version_id = 4,
3263     .minimum_version_id = 3,
3264     .post_load = rtl8139_post_load,
3265     .pre_save  = rtl8139_pre_save,
3266     .fields = (VMStateField[]) {
3267         VMSTATE_PCI_DEVICE(parent_obj, RTL8139State),
3268         VMSTATE_PARTIAL_BUFFER(phys, RTL8139State, 6),
3269         VMSTATE_BUFFER(mult, RTL8139State),
3270         VMSTATE_UINT32_ARRAY(TxStatus, RTL8139State, 4),
3271         VMSTATE_UINT32_ARRAY(TxAddr, RTL8139State, 4),
3272 
3273         VMSTATE_UINT32(RxBuf, RTL8139State),
3274         VMSTATE_UINT32(RxBufferSize, RTL8139State),
3275         VMSTATE_UINT32(RxBufPtr, RTL8139State),
3276         VMSTATE_UINT32(RxBufAddr, RTL8139State),
3277 
3278         VMSTATE_UINT16(IntrStatus, RTL8139State),
3279         VMSTATE_UINT16(IntrMask, RTL8139State),
3280 
3281         VMSTATE_UINT32(TxConfig, RTL8139State),
3282         VMSTATE_UINT32(RxConfig, RTL8139State),
3283         VMSTATE_UINT32(RxMissed, RTL8139State),
3284         VMSTATE_UINT16(CSCR, RTL8139State),
3285 
3286         VMSTATE_UINT8(Cfg9346, RTL8139State),
3287         VMSTATE_UINT8(Config0, RTL8139State),
3288         VMSTATE_UINT8(Config1, RTL8139State),
3289         VMSTATE_UINT8(Config3, RTL8139State),
3290         VMSTATE_UINT8(Config4, RTL8139State),
3291         VMSTATE_UINT8(Config5, RTL8139State),
3292 
3293         VMSTATE_UINT8(clock_enabled, RTL8139State),
3294         VMSTATE_UINT8(bChipCmdState, RTL8139State),
3295 
3296         VMSTATE_UINT16(MultiIntr, RTL8139State),
3297 
3298         VMSTATE_UINT16(BasicModeCtrl, RTL8139State),
3299         VMSTATE_UINT16(BasicModeStatus, RTL8139State),
3300         VMSTATE_UINT16(NWayAdvert, RTL8139State),
3301         VMSTATE_UINT16(NWayLPAR, RTL8139State),
3302         VMSTATE_UINT16(NWayExpansion, RTL8139State),
3303 
3304         VMSTATE_UINT16(CpCmd, RTL8139State),
3305         VMSTATE_UINT8(TxThresh, RTL8139State),
3306 
3307         VMSTATE_UNUSED(4),
3308         VMSTATE_MACADDR(conf.macaddr, RTL8139State),
3309         VMSTATE_INT32(rtl8139_mmio_io_addr_dummy, RTL8139State),
3310 
3311         VMSTATE_UINT32(currTxDesc, RTL8139State),
3312         VMSTATE_UINT32(currCPlusRxDesc, RTL8139State),
3313         VMSTATE_UINT32(currCPlusTxDesc, RTL8139State),
3314         VMSTATE_UINT32(RxRingAddrLO, RTL8139State),
3315         VMSTATE_UINT32(RxRingAddrHI, RTL8139State),
3316 
3317         VMSTATE_UINT16_ARRAY(eeprom.contents, RTL8139State, EEPROM_9346_SIZE),
3318         VMSTATE_INT32(eeprom.mode, RTL8139State),
3319         VMSTATE_UINT32(eeprom.tick, RTL8139State),
3320         VMSTATE_UINT8(eeprom.address, RTL8139State),
3321         VMSTATE_UINT16(eeprom.input, RTL8139State),
3322         VMSTATE_UINT16(eeprom.output, RTL8139State),
3323 
3324         VMSTATE_UINT8(eeprom.eecs, RTL8139State),
3325         VMSTATE_UINT8(eeprom.eesk, RTL8139State),
3326         VMSTATE_UINT8(eeprom.eedi, RTL8139State),
3327         VMSTATE_UINT8(eeprom.eedo, RTL8139State),
3328 
3329         VMSTATE_UINT32(TCTR, RTL8139State),
3330         VMSTATE_UINT32(TimerInt, RTL8139State),
3331         VMSTATE_INT64(TCTR_base, RTL8139State),
3332 
3333         VMSTATE_STRUCT(tally_counters, RTL8139State, 0,
3334                        vmstate_tally_counters, RTL8139TallyCounters),
3335 
3336         VMSTATE_UINT32_V(cplus_enabled, RTL8139State, 4),
3337         VMSTATE_END_OF_LIST()
3338     },
3339     .subsections = (const VMStateDescription*[]) {
3340         &vmstate_rtl8139_hotplug_ready,
3341         NULL
3342     }
3343 };
3344 
3345 /***********************************************************/
3346 /* PCI RTL8139 definitions */
3347 
3348 static void rtl8139_ioport_write(void *opaque, hwaddr addr,
3349                                  uint64_t val, unsigned size)
3350 {
3351     switch (size) {
3352     case 1:
3353         rtl8139_io_writeb(opaque, addr, val);
3354         break;
3355     case 2:
3356         rtl8139_io_writew(opaque, addr, val);
3357         break;
3358     case 4:
3359         rtl8139_io_writel(opaque, addr, val);
3360         break;
3361     }
3362 }
3363 
3364 static uint64_t rtl8139_ioport_read(void *opaque, hwaddr addr,
3365                                     unsigned size)
3366 {
3367     switch (size) {
3368     case 1:
3369         return rtl8139_io_readb(opaque, addr);
3370     case 2:
3371         return rtl8139_io_readw(opaque, addr);
3372     case 4:
3373         return rtl8139_io_readl(opaque, addr);
3374     }
3375 
3376     return -1;
3377 }
3378 
3379 static const MemoryRegionOps rtl8139_io_ops = {
3380     .read = rtl8139_ioport_read,
3381     .write = rtl8139_ioport_write,
3382     .impl = {
3383         .min_access_size = 1,
3384         .max_access_size = 4,
3385     },
3386     .endianness = DEVICE_LITTLE_ENDIAN,
3387 };
3388 
3389 static const MemoryRegionOps rtl8139_mmio_ops = {
3390     .old_mmio = {
3391         .read = {
3392             rtl8139_mmio_readb,
3393             rtl8139_mmio_readw,
3394             rtl8139_mmio_readl,
3395         },
3396         .write = {
3397             rtl8139_mmio_writeb,
3398             rtl8139_mmio_writew,
3399             rtl8139_mmio_writel,
3400         },
3401     },
3402     .endianness = DEVICE_LITTLE_ENDIAN,
3403 };
3404 
3405 static void rtl8139_timer(void *opaque)
3406 {
3407     RTL8139State *s = opaque;
3408 
3409     if (!s->clock_enabled)
3410     {
3411         DPRINTF(">>> timer: clock is not running\n");
3412         return;
3413     }
3414 
3415     s->IntrStatus |= PCSTimeout;
3416     rtl8139_update_irq(s);
3417     rtl8139_set_next_tctr_time(s);
3418 }
3419 
3420 static void pci_rtl8139_uninit(PCIDevice *dev)
3421 {
3422     RTL8139State *s = RTL8139(dev);
3423 
3424     if (s->cplus_txbuffer) {
3425         g_free(s->cplus_txbuffer);
3426         s->cplus_txbuffer = NULL;
3427     }
3428     timer_del(s->timer);
3429     timer_free(s->timer);
3430     qemu_del_nic(s->nic);
3431 }
3432 
3433 static void rtl8139_set_link_status(NetClientState *nc)
3434 {
3435     RTL8139State *s = qemu_get_nic_opaque(nc);
3436 
3437     if (nc->link_down) {
3438         s->BasicModeStatus &= ~0x04;
3439     } else {
3440         s->BasicModeStatus |= 0x04;
3441     }
3442 
3443     s->IntrStatus |= RxUnderrun;
3444     rtl8139_update_irq(s);
3445 }
3446 
3447 static NetClientInfo net_rtl8139_info = {
3448     .type = NET_CLIENT_OPTIONS_KIND_NIC,
3449     .size = sizeof(NICState),
3450     .can_receive = rtl8139_can_receive,
3451     .receive = rtl8139_receive,
3452     .link_status_changed = rtl8139_set_link_status,
3453 };
3454 
3455 static void pci_rtl8139_realize(PCIDevice *dev, Error **errp)
3456 {
3457     RTL8139State *s = RTL8139(dev);
3458     DeviceState *d = DEVICE(dev);
3459     uint8_t *pci_conf;
3460 
3461     pci_conf = dev->config;
3462     pci_conf[PCI_INTERRUPT_PIN] = 1;    /* interrupt pin A */
3463     /* TODO: start of capability list, but no capability
3464      * list bit in status register, and offset 0xdc seems unused. */
3465     pci_conf[PCI_CAPABILITY_LIST] = 0xdc;
3466 
3467     memory_region_init_io(&s->bar_io, OBJECT(s), &rtl8139_io_ops, s,
3468                           "rtl8139", 0x100);
3469     memory_region_init_io(&s->bar_mem, OBJECT(s), &rtl8139_mmio_ops, s,
3470                           "rtl8139", 0x100);
3471     pci_register_bar(dev, 0, PCI_BASE_ADDRESS_SPACE_IO, &s->bar_io);
3472     pci_register_bar(dev, 1, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->bar_mem);
3473 
3474     qemu_macaddr_default_if_unset(&s->conf.macaddr);
3475 
3476     /* prepare eeprom */
3477     s->eeprom.contents[0] = 0x8129;
3478 #if 1
3479     /* PCI vendor and device ID should be mirrored here */
3480     s->eeprom.contents[1] = PCI_VENDOR_ID_REALTEK;
3481     s->eeprom.contents[2] = PCI_DEVICE_ID_REALTEK_8139;
3482 #endif
3483     s->eeprom.contents[7] = s->conf.macaddr.a[0] | s->conf.macaddr.a[1] << 8;
3484     s->eeprom.contents[8] = s->conf.macaddr.a[2] | s->conf.macaddr.a[3] << 8;
3485     s->eeprom.contents[9] = s->conf.macaddr.a[4] | s->conf.macaddr.a[5] << 8;
3486 
3487     s->nic = qemu_new_nic(&net_rtl8139_info, &s->conf,
3488                           object_get_typename(OBJECT(dev)), d->id, s);
3489     qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a);
3490 
3491     s->cplus_txbuffer = NULL;
3492     s->cplus_txbuffer_len = 0;
3493     s->cplus_txbuffer_offset = 0;
3494 
3495     s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, rtl8139_timer, s);
3496 }
3497 
3498 static void rtl8139_instance_init(Object *obj)
3499 {
3500     RTL8139State *s = RTL8139(obj);
3501 
3502     device_add_bootindex_property(obj, &s->conf.bootindex,
3503                                   "bootindex", "/ethernet-phy@0",
3504                                   DEVICE(obj), NULL);
3505 }
3506 
3507 static Property rtl8139_properties[] = {
3508     DEFINE_NIC_PROPERTIES(RTL8139State, conf),
3509     DEFINE_PROP_END_OF_LIST(),
3510 };
3511 
3512 static void rtl8139_class_init(ObjectClass *klass, void *data)
3513 {
3514     DeviceClass *dc = DEVICE_CLASS(klass);
3515     PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
3516 
3517     k->realize = pci_rtl8139_realize;
3518     k->exit = pci_rtl8139_uninit;
3519     k->romfile = "efi-rtl8139.rom";
3520     k->vendor_id = PCI_VENDOR_ID_REALTEK;
3521     k->device_id = PCI_DEVICE_ID_REALTEK_8139;
3522     k->revision = RTL8139_PCI_REVID; /* >=0x20 is for 8139C+ */
3523     k->class_id = PCI_CLASS_NETWORK_ETHERNET;
3524     dc->reset = rtl8139_reset;
3525     dc->vmsd = &vmstate_rtl8139;
3526     dc->props = rtl8139_properties;
3527     set_bit(DEVICE_CATEGORY_NETWORK, dc->categories);
3528 }
3529 
3530 static const TypeInfo rtl8139_info = {
3531     .name          = TYPE_RTL8139,
3532     .parent        = TYPE_PCI_DEVICE,
3533     .instance_size = sizeof(RTL8139State),
3534     .class_init    = rtl8139_class_init,
3535     .instance_init = rtl8139_instance_init,
3536 };
3537 
3538 static void rtl8139_register_types(void)
3539 {
3540     type_register_static(&rtl8139_info);
3541 }
3542 
3543 type_init(rtl8139_register_types)
3544