xref: /openbmc/qemu/hw/net/rtl8139.c (revision 0bdb12c7)
1 /**
2  * QEMU RTL8139 emulation
3  *
4  * Copyright (c) 2006 Igor Kovalenko
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23 
24  * Modifications:
25  *  2006-Jan-28  Mark Malakanov :   TSAD and CSCR implementation (for Windows driver)
26  *
27  *  2006-Apr-28  Juergen Lock   :   EEPROM emulation changes for FreeBSD driver
28  *                                  HW revision ID changes for FreeBSD driver
29  *
30  *  2006-Jul-01  Igor Kovalenko :   Implemented loopback mode for FreeBSD driver
31  *                                  Corrected packet transfer reassembly routine for 8139C+ mode
32  *                                  Rearranged debugging print statements
33  *                                  Implemented PCI timer interrupt (disabled by default)
34  *                                  Implemented Tally Counters, increased VM load/save version
35  *                                  Implemented IP/TCP/UDP checksum task offloading
36  *
37  *  2006-Jul-04  Igor Kovalenko :   Implemented TCP segmentation offloading
38  *                                  Fixed MTU=1500 for produced ethernet frames
39  *
40  *  2006-Jul-09  Igor Kovalenko :   Fixed TCP header length calculation while processing
41  *                                  segmentation offloading
42  *                                  Removed slirp.h dependency
43  *                                  Added rx/tx buffer reset when enabling rx/tx operation
44  *
45  *  2010-Feb-04  Frediano Ziglio:   Rewrote timer support using QEMU timer only
46  *                                  when strictly needed (required for
47  *                                  Darwin)
48  *  2011-Mar-22  Benjamin Poirier:  Implemented VLAN offloading
49  */
50 
51 /* For crc32 */
52 #include "qemu/osdep.h"
53 #include <zlib.h>
54 
55 #include "hw/hw.h"
56 #include "hw/pci/pci.h"
57 #include "sysemu/dma.h"
58 #include "qemu/timer.h"
59 #include "net/net.h"
60 #include "net/eth.h"
61 #include "hw/loader.h"
62 #include "sysemu/sysemu.h"
63 #include "qemu/iov.h"
64 
65 /* debug RTL8139 card */
66 //#define DEBUG_RTL8139 1
67 
68 #define PCI_PERIOD 30    /* 30 ns period = 33.333333 Mhz frequency */
69 
70 #define SET_MASKED(input, mask, curr) \
71     ( ( (input) & ~(mask) ) | ( (curr) & (mask) ) )
72 
73 /* arg % size for size which is a power of 2 */
74 #define MOD2(input, size) \
75     ( ( input ) & ( size - 1 )  )
76 
77 #define ETHER_TYPE_LEN 2
78 #define ETH_MTU     1500
79 
80 #define VLAN_TCI_LEN 2
81 #define VLAN_HLEN (ETHER_TYPE_LEN + VLAN_TCI_LEN)
82 
83 #if defined (DEBUG_RTL8139)
84 #  define DPRINTF(fmt, ...) \
85     do { fprintf(stderr, "RTL8139: " fmt, ## __VA_ARGS__); } while (0)
86 #else
87 static inline GCC_FMT_ATTR(1, 2) int DPRINTF(const char *fmt, ...)
88 {
89     return 0;
90 }
91 #endif
92 
93 #define TYPE_RTL8139 "rtl8139"
94 
95 #define RTL8139(obj) \
96      OBJECT_CHECK(RTL8139State, (obj), TYPE_RTL8139)
97 
98 /* Symbolic offsets to registers. */
99 enum RTL8139_registers {
100     MAC0 = 0,        /* Ethernet hardware address. */
101     MAR0 = 8,        /* Multicast filter. */
102     TxStatus0 = 0x10,/* Transmit status (Four 32bit registers). C mode only */
103                      /* Dump Tally Conter control register(64bit). C+ mode only */
104     TxAddr0 = 0x20,  /* Tx descriptors (also four 32bit). */
105     RxBuf = 0x30,
106     ChipCmd = 0x37,
107     RxBufPtr = 0x38,
108     RxBufAddr = 0x3A,
109     IntrMask = 0x3C,
110     IntrStatus = 0x3E,
111     TxConfig = 0x40,
112     RxConfig = 0x44,
113     Timer = 0x48,        /* A general-purpose counter. */
114     RxMissed = 0x4C,    /* 24 bits valid, write clears. */
115     Cfg9346 = 0x50,
116     Config0 = 0x51,
117     Config1 = 0x52,
118     FlashReg = 0x54,
119     MediaStatus = 0x58,
120     Config3 = 0x59,
121     Config4 = 0x5A,        /* absent on RTL-8139A */
122     HltClk = 0x5B,
123     MultiIntr = 0x5C,
124     PCIRevisionID = 0x5E,
125     TxSummary = 0x60, /* TSAD register. Transmit Status of All Descriptors*/
126     BasicModeCtrl = 0x62,
127     BasicModeStatus = 0x64,
128     NWayAdvert = 0x66,
129     NWayLPAR = 0x68,
130     NWayExpansion = 0x6A,
131     /* Undocumented registers, but required for proper operation. */
132     FIFOTMS = 0x70,        /* FIFO Control and test. */
133     CSCR = 0x74,        /* Chip Status and Configuration Register. */
134     PARA78 = 0x78,
135     PARA7c = 0x7c,        /* Magic transceiver parameter register. */
136     Config5 = 0xD8,        /* absent on RTL-8139A */
137     /* C+ mode */
138     TxPoll        = 0xD9,    /* Tell chip to check Tx descriptors for work */
139     RxMaxSize    = 0xDA, /* Max size of an Rx packet (8169 only) */
140     CpCmd        = 0xE0, /* C+ Command register (C+ mode only) */
141     IntrMitigate    = 0xE2,    /* rx/tx interrupt mitigation control */
142     RxRingAddrLO    = 0xE4, /* 64-bit start addr of Rx ring */
143     RxRingAddrHI    = 0xE8, /* 64-bit start addr of Rx ring */
144     TxThresh    = 0xEC, /* Early Tx threshold */
145 };
146 
147 enum ClearBitMasks {
148     MultiIntrClear = 0xF000,
149     ChipCmdClear = 0xE2,
150     Config1Clear = (1<<7)|(1<<6)|(1<<3)|(1<<2)|(1<<1),
151 };
152 
153 enum ChipCmdBits {
154     CmdReset = 0x10,
155     CmdRxEnb = 0x08,
156     CmdTxEnb = 0x04,
157     RxBufEmpty = 0x01,
158 };
159 
160 /* C+ mode */
161 enum CplusCmdBits {
162     CPlusRxVLAN   = 0x0040, /* enable receive VLAN detagging */
163     CPlusRxChkSum = 0x0020, /* enable receive checksum offloading */
164     CPlusRxEnb    = 0x0002,
165     CPlusTxEnb    = 0x0001,
166 };
167 
168 /* Interrupt register bits, using my own meaningful names. */
169 enum IntrStatusBits {
170     PCIErr = 0x8000,
171     PCSTimeout = 0x4000,
172     RxFIFOOver = 0x40,
173     RxUnderrun = 0x20, /* Packet Underrun / Link Change */
174     RxOverflow = 0x10,
175     TxErr = 0x08,
176     TxOK = 0x04,
177     RxErr = 0x02,
178     RxOK = 0x01,
179 
180     RxAckBits = RxFIFOOver | RxOverflow | RxOK,
181 };
182 
183 enum TxStatusBits {
184     TxHostOwns = 0x2000,
185     TxUnderrun = 0x4000,
186     TxStatOK = 0x8000,
187     TxOutOfWindow = 0x20000000,
188     TxAborted = 0x40000000,
189     TxCarrierLost = 0x80000000,
190 };
191 enum RxStatusBits {
192     RxMulticast = 0x8000,
193     RxPhysical = 0x4000,
194     RxBroadcast = 0x2000,
195     RxBadSymbol = 0x0020,
196     RxRunt = 0x0010,
197     RxTooLong = 0x0008,
198     RxCRCErr = 0x0004,
199     RxBadAlign = 0x0002,
200     RxStatusOK = 0x0001,
201 };
202 
203 /* Bits in RxConfig. */
204 enum rx_mode_bits {
205     AcceptErr = 0x20,
206     AcceptRunt = 0x10,
207     AcceptBroadcast = 0x08,
208     AcceptMulticast = 0x04,
209     AcceptMyPhys = 0x02,
210     AcceptAllPhys = 0x01,
211 };
212 
213 /* Bits in TxConfig. */
214 enum tx_config_bits {
215 
216         /* Interframe Gap Time. Only TxIFG96 doesn't violate IEEE 802.3 */
217         TxIFGShift = 24,
218         TxIFG84 = (0 << TxIFGShift),    /* 8.4us / 840ns (10 / 100Mbps) */
219         TxIFG88 = (1 << TxIFGShift),    /* 8.8us / 880ns (10 / 100Mbps) */
220         TxIFG92 = (2 << TxIFGShift),    /* 9.2us / 920ns (10 / 100Mbps) */
221         TxIFG96 = (3 << TxIFGShift),    /* 9.6us / 960ns (10 / 100Mbps) */
222 
223     TxLoopBack = (1 << 18) | (1 << 17), /* enable loopback test mode */
224     TxCRC = (1 << 16),    /* DISABLE appending CRC to end of Tx packets */
225     TxClearAbt = (1 << 0),    /* Clear abort (WO) */
226     TxDMAShift = 8,        /* DMA burst value (0-7) is shifted this many bits */
227     TxRetryShift = 4,    /* TXRR value (0-15) is shifted this many bits */
228 
229     TxVersionMask = 0x7C800000, /* mask out version bits 30-26, 23 */
230 };
231 
232 
233 /* Transmit Status of All Descriptors (TSAD) Register */
234 enum TSAD_bits {
235  TSAD_TOK3 = 1<<15, // TOK bit of Descriptor 3
236  TSAD_TOK2 = 1<<14, // TOK bit of Descriptor 2
237  TSAD_TOK1 = 1<<13, // TOK bit of Descriptor 1
238  TSAD_TOK0 = 1<<12, // TOK bit of Descriptor 0
239  TSAD_TUN3 = 1<<11, // TUN bit of Descriptor 3
240  TSAD_TUN2 = 1<<10, // TUN bit of Descriptor 2
241  TSAD_TUN1 = 1<<9, // TUN bit of Descriptor 1
242  TSAD_TUN0 = 1<<8, // TUN bit of Descriptor 0
243  TSAD_TABT3 = 1<<07, // TABT bit of Descriptor 3
244  TSAD_TABT2 = 1<<06, // TABT bit of Descriptor 2
245  TSAD_TABT1 = 1<<05, // TABT bit of Descriptor 1
246  TSAD_TABT0 = 1<<04, // TABT bit of Descriptor 0
247  TSAD_OWN3 = 1<<03, // OWN bit of Descriptor 3
248  TSAD_OWN2 = 1<<02, // OWN bit of Descriptor 2
249  TSAD_OWN1 = 1<<01, // OWN bit of Descriptor 1
250  TSAD_OWN0 = 1<<00, // OWN bit of Descriptor 0
251 };
252 
253 
254 /* Bits in Config1 */
255 enum Config1Bits {
256     Cfg1_PM_Enable = 0x01,
257     Cfg1_VPD_Enable = 0x02,
258     Cfg1_PIO = 0x04,
259     Cfg1_MMIO = 0x08,
260     LWAKE = 0x10,        /* not on 8139, 8139A */
261     Cfg1_Driver_Load = 0x20,
262     Cfg1_LED0 = 0x40,
263     Cfg1_LED1 = 0x80,
264     SLEEP = (1 << 1),    /* only on 8139, 8139A */
265     PWRDN = (1 << 0),    /* only on 8139, 8139A */
266 };
267 
268 /* Bits in Config3 */
269 enum Config3Bits {
270     Cfg3_FBtBEn    = (1 << 0), /* 1 = Fast Back to Back */
271     Cfg3_FuncRegEn = (1 << 1), /* 1 = enable CardBus Function registers */
272     Cfg3_CLKRUN_En = (1 << 2), /* 1 = enable CLKRUN */
273     Cfg3_CardB_En  = (1 << 3), /* 1 = enable CardBus registers */
274     Cfg3_LinkUp    = (1 << 4), /* 1 = wake up on link up */
275     Cfg3_Magic     = (1 << 5), /* 1 = wake up on Magic Packet (tm) */
276     Cfg3_PARM_En   = (1 << 6), /* 0 = software can set twister parameters */
277     Cfg3_GNTSel    = (1 << 7), /* 1 = delay 1 clock from PCI GNT signal */
278 };
279 
280 /* Bits in Config4 */
281 enum Config4Bits {
282     LWPTN = (1 << 2),    /* not on 8139, 8139A */
283 };
284 
285 /* Bits in Config5 */
286 enum Config5Bits {
287     Cfg5_PME_STS     = (1 << 0), /* 1 = PCI reset resets PME_Status */
288     Cfg5_LANWake     = (1 << 1), /* 1 = enable LANWake signal */
289     Cfg5_LDPS        = (1 << 2), /* 0 = save power when link is down */
290     Cfg5_FIFOAddrPtr = (1 << 3), /* Realtek internal SRAM testing */
291     Cfg5_UWF         = (1 << 4), /* 1 = accept unicast wakeup frame */
292     Cfg5_MWF         = (1 << 5), /* 1 = accept multicast wakeup frame */
293     Cfg5_BWF         = (1 << 6), /* 1 = accept broadcast wakeup frame */
294 };
295 
296 enum RxConfigBits {
297     /* rx fifo threshold */
298     RxCfgFIFOShift = 13,
299     RxCfgFIFONone = (7 << RxCfgFIFOShift),
300 
301     /* Max DMA burst */
302     RxCfgDMAShift = 8,
303     RxCfgDMAUnlimited = (7 << RxCfgDMAShift),
304 
305     /* rx ring buffer length */
306     RxCfgRcv8K = 0,
307     RxCfgRcv16K = (1 << 11),
308     RxCfgRcv32K = (1 << 12),
309     RxCfgRcv64K = (1 << 11) | (1 << 12),
310 
311     /* Disable packet wrap at end of Rx buffer. (not possible with 64k) */
312     RxNoWrap = (1 << 7),
313 };
314 
315 /* Twister tuning parameters from RealTek.
316    Completely undocumented, but required to tune bad links on some boards. */
317 /*
318 enum CSCRBits {
319     CSCR_LinkOKBit = 0x0400,
320     CSCR_LinkChangeBit = 0x0800,
321     CSCR_LinkStatusBits = 0x0f000,
322     CSCR_LinkDownOffCmd = 0x003c0,
323     CSCR_LinkDownCmd = 0x0f3c0,
324 */
325 enum CSCRBits {
326     CSCR_Testfun = 1<<15, /* 1 = Auto-neg speeds up internal timer, WO, def 0 */
327     CSCR_LD  = 1<<9,  /* Active low TPI link disable signal. When low, TPI still transmits link pulses and TPI stays in good link state. def 1*/
328     CSCR_HEART_BIT = 1<<8,  /* 1 = HEART BEAT enable, 0 = HEART BEAT disable. HEART BEAT function is only valid in 10Mbps mode. def 1*/
329     CSCR_JBEN = 1<<7,  /* 1 = enable jabber function. 0 = disable jabber function, def 1*/
330     CSCR_F_LINK_100 = 1<<6, /* Used to login force good link in 100Mbps for diagnostic purposes. 1 = DISABLE, 0 = ENABLE. def 1*/
331     CSCR_F_Connect  = 1<<5,  /* Assertion of this bit forces the disconnect function to be bypassed. def 0*/
332     CSCR_Con_status = 1<<3, /* This bit indicates the status of the connection. 1 = valid connected link detected; 0 = disconnected link detected. RO def 0*/
333     CSCR_Con_status_En = 1<<2, /* Assertion of this bit configures LED1 pin to indicate connection status. def 0*/
334     CSCR_PASS_SCR = 1<<0, /* Bypass Scramble, def 0*/
335 };
336 
337 enum Cfg9346Bits {
338     Cfg9346_Normal = 0x00,
339     Cfg9346_Autoload = 0x40,
340     Cfg9346_Programming = 0x80,
341     Cfg9346_ConfigWrite = 0xC0,
342 };
343 
344 typedef enum {
345     CH_8139 = 0,
346     CH_8139_K,
347     CH_8139A,
348     CH_8139A_G,
349     CH_8139B,
350     CH_8130,
351     CH_8139C,
352     CH_8100,
353     CH_8100B_8139D,
354     CH_8101,
355 } chip_t;
356 
357 enum chip_flags {
358     HasHltClk = (1 << 0),
359     HasLWake = (1 << 1),
360 };
361 
362 #define HW_REVID(b30, b29, b28, b27, b26, b23, b22) \
363     (b30<<30 | b29<<29 | b28<<28 | b27<<27 | b26<<26 | b23<<23 | b22<<22)
364 #define HW_REVID_MASK    HW_REVID(1, 1, 1, 1, 1, 1, 1)
365 
366 #define RTL8139_PCI_REVID_8139      0x10
367 #define RTL8139_PCI_REVID_8139CPLUS 0x20
368 
369 #define RTL8139_PCI_REVID           RTL8139_PCI_REVID_8139CPLUS
370 
371 /* Size is 64 * 16bit words */
372 #define EEPROM_9346_ADDR_BITS 6
373 #define EEPROM_9346_SIZE  (1 << EEPROM_9346_ADDR_BITS)
374 #define EEPROM_9346_ADDR_MASK (EEPROM_9346_SIZE - 1)
375 
376 enum Chip9346Operation
377 {
378     Chip9346_op_mask = 0xc0,          /* 10 zzzzzz */
379     Chip9346_op_read = 0x80,          /* 10 AAAAAA */
380     Chip9346_op_write = 0x40,         /* 01 AAAAAA D(15)..D(0) */
381     Chip9346_op_ext_mask = 0xf0,      /* 11 zzzzzz */
382     Chip9346_op_write_enable = 0x30,  /* 00 11zzzz */
383     Chip9346_op_write_all = 0x10,     /* 00 01zzzz */
384     Chip9346_op_write_disable = 0x00, /* 00 00zzzz */
385 };
386 
387 enum Chip9346Mode
388 {
389     Chip9346_none = 0,
390     Chip9346_enter_command_mode,
391     Chip9346_read_command,
392     Chip9346_data_read,      /* from output register */
393     Chip9346_data_write,     /* to input register, then to contents at specified address */
394     Chip9346_data_write_all, /* to input register, then filling contents */
395 };
396 
397 typedef struct EEprom9346
398 {
399     uint16_t contents[EEPROM_9346_SIZE];
400     int      mode;
401     uint32_t tick;
402     uint8_t  address;
403     uint16_t input;
404     uint16_t output;
405 
406     uint8_t eecs;
407     uint8_t eesk;
408     uint8_t eedi;
409     uint8_t eedo;
410 } EEprom9346;
411 
412 typedef struct RTL8139TallyCounters
413 {
414     /* Tally counters */
415     uint64_t   TxOk;
416     uint64_t   RxOk;
417     uint64_t   TxERR;
418     uint32_t   RxERR;
419     uint16_t   MissPkt;
420     uint16_t   FAE;
421     uint32_t   Tx1Col;
422     uint32_t   TxMCol;
423     uint64_t   RxOkPhy;
424     uint64_t   RxOkBrd;
425     uint32_t   RxOkMul;
426     uint16_t   TxAbt;
427     uint16_t   TxUndrn;
428 } RTL8139TallyCounters;
429 
430 /* Clears all tally counters */
431 static void RTL8139TallyCounters_clear(RTL8139TallyCounters* counters);
432 
433 typedef struct RTL8139State {
434     /*< private >*/
435     PCIDevice parent_obj;
436     /*< public >*/
437 
438     uint8_t phys[8]; /* mac address */
439     uint8_t mult[8]; /* multicast mask array */
440 
441     uint32_t TxStatus[4]; /* TxStatus0 in C mode*/ /* also DTCCR[0] and DTCCR[1] in C+ mode */
442     uint32_t TxAddr[4];   /* TxAddr0 */
443     uint32_t RxBuf;       /* Receive buffer */
444     uint32_t RxBufferSize;/* internal variable, receive ring buffer size in C mode */
445     uint32_t RxBufPtr;
446     uint32_t RxBufAddr;
447 
448     uint16_t IntrStatus;
449     uint16_t IntrMask;
450 
451     uint32_t TxConfig;
452     uint32_t RxConfig;
453     uint32_t RxMissed;
454 
455     uint16_t CSCR;
456 
457     uint8_t  Cfg9346;
458     uint8_t  Config0;
459     uint8_t  Config1;
460     uint8_t  Config3;
461     uint8_t  Config4;
462     uint8_t  Config5;
463 
464     uint8_t  clock_enabled;
465     uint8_t  bChipCmdState;
466 
467     uint16_t MultiIntr;
468 
469     uint16_t BasicModeCtrl;
470     uint16_t BasicModeStatus;
471     uint16_t NWayAdvert;
472     uint16_t NWayLPAR;
473     uint16_t NWayExpansion;
474 
475     uint16_t CpCmd;
476     uint8_t  TxThresh;
477 
478     NICState *nic;
479     NICConf conf;
480 
481     /* C ring mode */
482     uint32_t   currTxDesc;
483 
484     /* C+ mode */
485     uint32_t   cplus_enabled;
486 
487     uint32_t   currCPlusRxDesc;
488     uint32_t   currCPlusTxDesc;
489 
490     uint32_t   RxRingAddrLO;
491     uint32_t   RxRingAddrHI;
492 
493     EEprom9346 eeprom;
494 
495     uint32_t   TCTR;
496     uint32_t   TimerInt;
497     int64_t    TCTR_base;
498 
499     /* Tally counters */
500     RTL8139TallyCounters tally_counters;
501 
502     /* Non-persistent data */
503     uint8_t   *cplus_txbuffer;
504     int        cplus_txbuffer_len;
505     int        cplus_txbuffer_offset;
506 
507     /* PCI interrupt timer */
508     QEMUTimer *timer;
509 
510     MemoryRegion bar_io;
511     MemoryRegion bar_mem;
512 
513     /* Support migration to/from old versions */
514     int rtl8139_mmio_io_addr_dummy;
515 } RTL8139State;
516 
517 /* Writes tally counters to memory via DMA */
518 static void RTL8139TallyCounters_dma_write(RTL8139State *s, dma_addr_t tc_addr);
519 
520 static void rtl8139_set_next_tctr_time(RTL8139State *s);
521 
522 static void prom9346_decode_command(EEprom9346 *eeprom, uint8_t command)
523 {
524     DPRINTF("eeprom command 0x%02x\n", command);
525 
526     switch (command & Chip9346_op_mask)
527     {
528         case Chip9346_op_read:
529         {
530             eeprom->address = command & EEPROM_9346_ADDR_MASK;
531             eeprom->output = eeprom->contents[eeprom->address];
532             eeprom->eedo = 0;
533             eeprom->tick = 0;
534             eeprom->mode = Chip9346_data_read;
535             DPRINTF("eeprom read from address 0x%02x data=0x%04x\n",
536                 eeprom->address, eeprom->output);
537         }
538         break;
539 
540         case Chip9346_op_write:
541         {
542             eeprom->address = command & EEPROM_9346_ADDR_MASK;
543             eeprom->input = 0;
544             eeprom->tick = 0;
545             eeprom->mode = Chip9346_none; /* Chip9346_data_write */
546             DPRINTF("eeprom begin write to address 0x%02x\n",
547                 eeprom->address);
548         }
549         break;
550         default:
551             eeprom->mode = Chip9346_none;
552             switch (command & Chip9346_op_ext_mask)
553             {
554                 case Chip9346_op_write_enable:
555                     DPRINTF("eeprom write enabled\n");
556                     break;
557                 case Chip9346_op_write_all:
558                     DPRINTF("eeprom begin write all\n");
559                     break;
560                 case Chip9346_op_write_disable:
561                     DPRINTF("eeprom write disabled\n");
562                     break;
563             }
564             break;
565     }
566 }
567 
568 static void prom9346_shift_clock(EEprom9346 *eeprom)
569 {
570     int bit = eeprom->eedi?1:0;
571 
572     ++ eeprom->tick;
573 
574     DPRINTF("eeprom: tick %d eedi=%d eedo=%d\n", eeprom->tick, eeprom->eedi,
575         eeprom->eedo);
576 
577     switch (eeprom->mode)
578     {
579         case Chip9346_enter_command_mode:
580             if (bit)
581             {
582                 eeprom->mode = Chip9346_read_command;
583                 eeprom->tick = 0;
584                 eeprom->input = 0;
585                 DPRINTF("eeprom: +++ synchronized, begin command read\n");
586             }
587             break;
588 
589         case Chip9346_read_command:
590             eeprom->input = (eeprom->input << 1) | (bit & 1);
591             if (eeprom->tick == 8)
592             {
593                 prom9346_decode_command(eeprom, eeprom->input & 0xff);
594             }
595             break;
596 
597         case Chip9346_data_read:
598             eeprom->eedo = (eeprom->output & 0x8000)?1:0;
599             eeprom->output <<= 1;
600             if (eeprom->tick == 16)
601             {
602 #if 1
603         // the FreeBSD drivers (rl and re) don't explicitly toggle
604         // CS between reads (or does setting Cfg9346 to 0 count too?),
605         // so we need to enter wait-for-command state here
606                 eeprom->mode = Chip9346_enter_command_mode;
607                 eeprom->input = 0;
608                 eeprom->tick = 0;
609 
610                 DPRINTF("eeprom: +++ end of read, awaiting next command\n");
611 #else
612         // original behaviour
613                 ++eeprom->address;
614                 eeprom->address &= EEPROM_9346_ADDR_MASK;
615                 eeprom->output = eeprom->contents[eeprom->address];
616                 eeprom->tick = 0;
617 
618                 DPRINTF("eeprom: +++ read next address 0x%02x data=0x%04x\n",
619                     eeprom->address, eeprom->output);
620 #endif
621             }
622             break;
623 
624         case Chip9346_data_write:
625             eeprom->input = (eeprom->input << 1) | (bit & 1);
626             if (eeprom->tick == 16)
627             {
628                 DPRINTF("eeprom write to address 0x%02x data=0x%04x\n",
629                     eeprom->address, eeprom->input);
630 
631                 eeprom->contents[eeprom->address] = eeprom->input;
632                 eeprom->mode = Chip9346_none; /* waiting for next command after CS cycle */
633                 eeprom->tick = 0;
634                 eeprom->input = 0;
635             }
636             break;
637 
638         case Chip9346_data_write_all:
639             eeprom->input = (eeprom->input << 1) | (bit & 1);
640             if (eeprom->tick == 16)
641             {
642                 int i;
643                 for (i = 0; i < EEPROM_9346_SIZE; i++)
644                 {
645                     eeprom->contents[i] = eeprom->input;
646                 }
647                 DPRINTF("eeprom filled with data=0x%04x\n", eeprom->input);
648 
649                 eeprom->mode = Chip9346_enter_command_mode;
650                 eeprom->tick = 0;
651                 eeprom->input = 0;
652             }
653             break;
654 
655         default:
656             break;
657     }
658 }
659 
660 static int prom9346_get_wire(RTL8139State *s)
661 {
662     EEprom9346 *eeprom = &s->eeprom;
663     if (!eeprom->eecs)
664         return 0;
665 
666     return eeprom->eedo;
667 }
668 
669 /* FIXME: This should be merged into/replaced by eeprom93xx.c.  */
670 static void prom9346_set_wire(RTL8139State *s, int eecs, int eesk, int eedi)
671 {
672     EEprom9346 *eeprom = &s->eeprom;
673     uint8_t old_eecs = eeprom->eecs;
674     uint8_t old_eesk = eeprom->eesk;
675 
676     eeprom->eecs = eecs;
677     eeprom->eesk = eesk;
678     eeprom->eedi = eedi;
679 
680     DPRINTF("eeprom: +++ wires CS=%d SK=%d DI=%d DO=%d\n", eeprom->eecs,
681         eeprom->eesk, eeprom->eedi, eeprom->eedo);
682 
683     if (!old_eecs && eecs)
684     {
685         /* Synchronize start */
686         eeprom->tick = 0;
687         eeprom->input = 0;
688         eeprom->output = 0;
689         eeprom->mode = Chip9346_enter_command_mode;
690 
691         DPRINTF("=== eeprom: begin access, enter command mode\n");
692     }
693 
694     if (!eecs)
695     {
696         DPRINTF("=== eeprom: end access\n");
697         return;
698     }
699 
700     if (!old_eesk && eesk)
701     {
702         /* SK front rules */
703         prom9346_shift_clock(eeprom);
704     }
705 }
706 
707 static void rtl8139_update_irq(RTL8139State *s)
708 {
709     PCIDevice *d = PCI_DEVICE(s);
710     int isr;
711     isr = (s->IntrStatus & s->IntrMask) & 0xffff;
712 
713     DPRINTF("Set IRQ to %d (%04x %04x)\n", isr ? 1 : 0, s->IntrStatus,
714         s->IntrMask);
715 
716     pci_set_irq(d, (isr != 0));
717 }
718 
719 static int rtl8139_RxWrap(RTL8139State *s)
720 {
721     /* wrapping enabled; assume 1.5k more buffer space if size < 65536 */
722     return (s->RxConfig & (1 << 7));
723 }
724 
725 static int rtl8139_receiver_enabled(RTL8139State *s)
726 {
727     return s->bChipCmdState & CmdRxEnb;
728 }
729 
730 static int rtl8139_transmitter_enabled(RTL8139State *s)
731 {
732     return s->bChipCmdState & CmdTxEnb;
733 }
734 
735 static int rtl8139_cp_receiver_enabled(RTL8139State *s)
736 {
737     return s->CpCmd & CPlusRxEnb;
738 }
739 
740 static int rtl8139_cp_transmitter_enabled(RTL8139State *s)
741 {
742     return s->CpCmd & CPlusTxEnb;
743 }
744 
745 static void rtl8139_write_buffer(RTL8139State *s, const void *buf, int size)
746 {
747     PCIDevice *d = PCI_DEVICE(s);
748 
749     if (s->RxBufAddr + size > s->RxBufferSize)
750     {
751         int wrapped = MOD2(s->RxBufAddr + size, s->RxBufferSize);
752 
753         /* write packet data */
754         if (wrapped && !(s->RxBufferSize < 65536 && rtl8139_RxWrap(s)))
755         {
756             DPRINTF(">>> rx packet wrapped in buffer at %d\n", size - wrapped);
757 
758             if (size > wrapped)
759             {
760                 pci_dma_write(d, s->RxBuf + s->RxBufAddr,
761                               buf, size-wrapped);
762             }
763 
764             /* reset buffer pointer */
765             s->RxBufAddr = 0;
766 
767             pci_dma_write(d, s->RxBuf + s->RxBufAddr,
768                           buf + (size-wrapped), wrapped);
769 
770             s->RxBufAddr = wrapped;
771 
772             return;
773         }
774     }
775 
776     /* non-wrapping path or overwrapping enabled */
777     pci_dma_write(d, s->RxBuf + s->RxBufAddr, buf, size);
778 
779     s->RxBufAddr += size;
780 }
781 
782 #define MIN_BUF_SIZE 60
783 static inline dma_addr_t rtl8139_addr64(uint32_t low, uint32_t high)
784 {
785     return low | ((uint64_t)high << 32);
786 }
787 
788 /* Workaround for buggy guest driver such as linux who allocates rx
789  * rings after the receiver were enabled. */
790 static bool rtl8139_cp_rx_valid(RTL8139State *s)
791 {
792     return !(s->RxRingAddrLO == 0 && s->RxRingAddrHI == 0);
793 }
794 
795 static int rtl8139_can_receive(NetClientState *nc)
796 {
797     RTL8139State *s = qemu_get_nic_opaque(nc);
798     int avail;
799 
800     /* Receive (drop) packets if card is disabled.  */
801     if (!s->clock_enabled)
802       return 1;
803     if (!rtl8139_receiver_enabled(s))
804       return 1;
805 
806     if (rtl8139_cp_receiver_enabled(s) && rtl8139_cp_rx_valid(s)) {
807         /* ??? Flow control not implemented in c+ mode.
808            This is a hack to work around slirp deficiencies anyway.  */
809         return 1;
810     } else {
811         avail = MOD2(s->RxBufferSize + s->RxBufPtr - s->RxBufAddr,
812                      s->RxBufferSize);
813         return (avail == 0 || avail >= 1514 || (s->IntrMask & RxOverflow));
814     }
815 }
816 
817 static ssize_t rtl8139_do_receive(NetClientState *nc, const uint8_t *buf, size_t size_, int do_interrupt)
818 {
819     RTL8139State *s = qemu_get_nic_opaque(nc);
820     PCIDevice *d = PCI_DEVICE(s);
821     /* size is the length of the buffer passed to the driver */
822     int size = size_;
823     const uint8_t *dot1q_buf = NULL;
824 
825     uint32_t packet_header = 0;
826 
827     uint8_t buf1[MIN_BUF_SIZE + VLAN_HLEN];
828     static const uint8_t broadcast_macaddr[6] =
829         { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
830 
831     DPRINTF(">>> received len=%d\n", size);
832 
833     /* test if board clock is stopped */
834     if (!s->clock_enabled)
835     {
836         DPRINTF("stopped ==========================\n");
837         return -1;
838     }
839 
840     /* first check if receiver is enabled */
841 
842     if (!rtl8139_receiver_enabled(s))
843     {
844         DPRINTF("receiver disabled ================\n");
845         return -1;
846     }
847 
848     /* XXX: check this */
849     if (s->RxConfig & AcceptAllPhys) {
850         /* promiscuous: receive all */
851         DPRINTF(">>> packet received in promiscuous mode\n");
852 
853     } else {
854         if (!memcmp(buf,  broadcast_macaddr, 6)) {
855             /* broadcast address */
856             if (!(s->RxConfig & AcceptBroadcast))
857             {
858                 DPRINTF(">>> broadcast packet rejected\n");
859 
860                 /* update tally counter */
861                 ++s->tally_counters.RxERR;
862 
863                 return size;
864             }
865 
866             packet_header |= RxBroadcast;
867 
868             DPRINTF(">>> broadcast packet received\n");
869 
870             /* update tally counter */
871             ++s->tally_counters.RxOkBrd;
872 
873         } else if (buf[0] & 0x01) {
874             /* multicast */
875             if (!(s->RxConfig & AcceptMulticast))
876             {
877                 DPRINTF(">>> multicast packet rejected\n");
878 
879                 /* update tally counter */
880                 ++s->tally_counters.RxERR;
881 
882                 return size;
883             }
884 
885             int mcast_idx = compute_mcast_idx(buf);
886 
887             if (!(s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))))
888             {
889                 DPRINTF(">>> multicast address mismatch\n");
890 
891                 /* update tally counter */
892                 ++s->tally_counters.RxERR;
893 
894                 return size;
895             }
896 
897             packet_header |= RxMulticast;
898 
899             DPRINTF(">>> multicast packet received\n");
900 
901             /* update tally counter */
902             ++s->tally_counters.RxOkMul;
903 
904         } else if (s->phys[0] == buf[0] &&
905                    s->phys[1] == buf[1] &&
906                    s->phys[2] == buf[2] &&
907                    s->phys[3] == buf[3] &&
908                    s->phys[4] == buf[4] &&
909                    s->phys[5] == buf[5]) {
910             /* match */
911             if (!(s->RxConfig & AcceptMyPhys))
912             {
913                 DPRINTF(">>> rejecting physical address matching packet\n");
914 
915                 /* update tally counter */
916                 ++s->tally_counters.RxERR;
917 
918                 return size;
919             }
920 
921             packet_header |= RxPhysical;
922 
923             DPRINTF(">>> physical address matching packet received\n");
924 
925             /* update tally counter */
926             ++s->tally_counters.RxOkPhy;
927 
928         } else {
929 
930             DPRINTF(">>> unknown packet\n");
931 
932             /* update tally counter */
933             ++s->tally_counters.RxERR;
934 
935             return size;
936         }
937     }
938 
939     /* if too small buffer, then expand it
940      * Include some tailroom in case a vlan tag is later removed. */
941     if (size < MIN_BUF_SIZE + VLAN_HLEN) {
942         memcpy(buf1, buf, size);
943         memset(buf1 + size, 0, MIN_BUF_SIZE + VLAN_HLEN - size);
944         buf = buf1;
945         if (size < MIN_BUF_SIZE) {
946             size = MIN_BUF_SIZE;
947         }
948     }
949 
950     if (rtl8139_cp_receiver_enabled(s))
951     {
952         if (!rtl8139_cp_rx_valid(s)) {
953             return size;
954         }
955 
956         DPRINTF("in C+ Rx mode ================\n");
957 
958         /* begin C+ receiver mode */
959 
960 /* w0 ownership flag */
961 #define CP_RX_OWN (1<<31)
962 /* w0 end of ring flag */
963 #define CP_RX_EOR (1<<30)
964 /* w0 bits 0...12 : buffer size */
965 #define CP_RX_BUFFER_SIZE_MASK ((1<<13) - 1)
966 /* w1 tag available flag */
967 #define CP_RX_TAVA (1<<16)
968 /* w1 bits 0...15 : VLAN tag */
969 #define CP_RX_VLAN_TAG_MASK ((1<<16) - 1)
970 /* w2 low  32bit of Rx buffer ptr */
971 /* w3 high 32bit of Rx buffer ptr */
972 
973         int descriptor = s->currCPlusRxDesc;
974         dma_addr_t cplus_rx_ring_desc;
975 
976         cplus_rx_ring_desc = rtl8139_addr64(s->RxRingAddrLO, s->RxRingAddrHI);
977         cplus_rx_ring_desc += 16 * descriptor;
978 
979         DPRINTF("+++ C+ mode reading RX descriptor %d from host memory at "
980             "%08x %08x = "DMA_ADDR_FMT"\n", descriptor, s->RxRingAddrHI,
981             s->RxRingAddrLO, cplus_rx_ring_desc);
982 
983         uint32_t val, rxdw0,rxdw1,rxbufLO,rxbufHI;
984 
985         pci_dma_read(d, cplus_rx_ring_desc, &val, 4);
986         rxdw0 = le32_to_cpu(val);
987         pci_dma_read(d, cplus_rx_ring_desc+4, &val, 4);
988         rxdw1 = le32_to_cpu(val);
989         pci_dma_read(d, cplus_rx_ring_desc+8, &val, 4);
990         rxbufLO = le32_to_cpu(val);
991         pci_dma_read(d, cplus_rx_ring_desc+12, &val, 4);
992         rxbufHI = le32_to_cpu(val);
993 
994         DPRINTF("+++ C+ mode RX descriptor %d %08x %08x %08x %08x\n",
995             descriptor, rxdw0, rxdw1, rxbufLO, rxbufHI);
996 
997         if (!(rxdw0 & CP_RX_OWN))
998         {
999             DPRINTF("C+ Rx mode : descriptor %d is owned by host\n",
1000                 descriptor);
1001 
1002             s->IntrStatus |= RxOverflow;
1003             ++s->RxMissed;
1004 
1005             /* update tally counter */
1006             ++s->tally_counters.RxERR;
1007             ++s->tally_counters.MissPkt;
1008 
1009             rtl8139_update_irq(s);
1010             return size_;
1011         }
1012 
1013         uint32_t rx_space = rxdw0 & CP_RX_BUFFER_SIZE_MASK;
1014 
1015         /* write VLAN info to descriptor variables. */
1016         if (s->CpCmd & CPlusRxVLAN &&
1017             lduw_be_p(&buf[ETH_ALEN * 2]) == ETH_P_VLAN) {
1018             dot1q_buf = &buf[ETH_ALEN * 2];
1019             size -= VLAN_HLEN;
1020             /* if too small buffer, use the tailroom added duing expansion */
1021             if (size < MIN_BUF_SIZE) {
1022                 size = MIN_BUF_SIZE;
1023             }
1024 
1025             rxdw1 &= ~CP_RX_VLAN_TAG_MASK;
1026             /* BE + ~le_to_cpu()~ + cpu_to_le() = BE */
1027             rxdw1 |= CP_RX_TAVA | lduw_le_p(&dot1q_buf[ETHER_TYPE_LEN]);
1028 
1029             DPRINTF("C+ Rx mode : extracted vlan tag with tci: ""%u\n",
1030                 lduw_be_p(&dot1q_buf[ETHER_TYPE_LEN]));
1031         } else {
1032             /* reset VLAN tag flag */
1033             rxdw1 &= ~CP_RX_TAVA;
1034         }
1035 
1036         /* TODO: scatter the packet over available receive ring descriptors space */
1037 
1038         if (size+4 > rx_space)
1039         {
1040             DPRINTF("C+ Rx mode : descriptor %d size %d received %d + 4\n",
1041                 descriptor, rx_space, size);
1042 
1043             s->IntrStatus |= RxOverflow;
1044             ++s->RxMissed;
1045 
1046             /* update tally counter */
1047             ++s->tally_counters.RxERR;
1048             ++s->tally_counters.MissPkt;
1049 
1050             rtl8139_update_irq(s);
1051             return size_;
1052         }
1053 
1054         dma_addr_t rx_addr = rtl8139_addr64(rxbufLO, rxbufHI);
1055 
1056         /* receive/copy to target memory */
1057         if (dot1q_buf) {
1058             pci_dma_write(d, rx_addr, buf, 2 * ETH_ALEN);
1059             pci_dma_write(d, rx_addr + 2 * ETH_ALEN,
1060                           buf + 2 * ETH_ALEN + VLAN_HLEN,
1061                           size - 2 * ETH_ALEN);
1062         } else {
1063             pci_dma_write(d, rx_addr, buf, size);
1064         }
1065 
1066         if (s->CpCmd & CPlusRxChkSum)
1067         {
1068             /* do some packet checksumming */
1069         }
1070 
1071         /* write checksum */
1072         val = cpu_to_le32(crc32(0, buf, size_));
1073         pci_dma_write(d, rx_addr+size, (uint8_t *)&val, 4);
1074 
1075 /* first segment of received packet flag */
1076 #define CP_RX_STATUS_FS (1<<29)
1077 /* last segment of received packet flag */
1078 #define CP_RX_STATUS_LS (1<<28)
1079 /* multicast packet flag */
1080 #define CP_RX_STATUS_MAR (1<<26)
1081 /* physical-matching packet flag */
1082 #define CP_RX_STATUS_PAM (1<<25)
1083 /* broadcast packet flag */
1084 #define CP_RX_STATUS_BAR (1<<24)
1085 /* runt packet flag */
1086 #define CP_RX_STATUS_RUNT (1<<19)
1087 /* crc error flag */
1088 #define CP_RX_STATUS_CRC (1<<18)
1089 /* IP checksum error flag */
1090 #define CP_RX_STATUS_IPF (1<<15)
1091 /* UDP checksum error flag */
1092 #define CP_RX_STATUS_UDPF (1<<14)
1093 /* TCP checksum error flag */
1094 #define CP_RX_STATUS_TCPF (1<<13)
1095 
1096         /* transfer ownership to target */
1097         rxdw0 &= ~CP_RX_OWN;
1098 
1099         /* set first segment bit */
1100         rxdw0 |= CP_RX_STATUS_FS;
1101 
1102         /* set last segment bit */
1103         rxdw0 |= CP_RX_STATUS_LS;
1104 
1105         /* set received packet type flags */
1106         if (packet_header & RxBroadcast)
1107             rxdw0 |= CP_RX_STATUS_BAR;
1108         if (packet_header & RxMulticast)
1109             rxdw0 |= CP_RX_STATUS_MAR;
1110         if (packet_header & RxPhysical)
1111             rxdw0 |= CP_RX_STATUS_PAM;
1112 
1113         /* set received size */
1114         rxdw0 &= ~CP_RX_BUFFER_SIZE_MASK;
1115         rxdw0 |= (size+4);
1116 
1117         /* update ring data */
1118         val = cpu_to_le32(rxdw0);
1119         pci_dma_write(d, cplus_rx_ring_desc, (uint8_t *)&val, 4);
1120         val = cpu_to_le32(rxdw1);
1121         pci_dma_write(d, cplus_rx_ring_desc+4, (uint8_t *)&val, 4);
1122 
1123         /* update tally counter */
1124         ++s->tally_counters.RxOk;
1125 
1126         /* seek to next Rx descriptor */
1127         if (rxdw0 & CP_RX_EOR)
1128         {
1129             s->currCPlusRxDesc = 0;
1130         }
1131         else
1132         {
1133             ++s->currCPlusRxDesc;
1134         }
1135 
1136         DPRINTF("done C+ Rx mode ----------------\n");
1137 
1138     }
1139     else
1140     {
1141         DPRINTF("in ring Rx mode ================\n");
1142 
1143         /* begin ring receiver mode */
1144         int avail = MOD2(s->RxBufferSize + s->RxBufPtr - s->RxBufAddr, s->RxBufferSize);
1145 
1146         /* if receiver buffer is empty then avail == 0 */
1147 
1148 #define RX_ALIGN(x) (((x) + 3) & ~0x3)
1149 
1150         if (avail != 0 && RX_ALIGN(size + 8) >= avail)
1151         {
1152             DPRINTF("rx overflow: rx buffer length %d head 0x%04x "
1153                 "read 0x%04x === available 0x%04x need 0x%04x\n",
1154                 s->RxBufferSize, s->RxBufAddr, s->RxBufPtr, avail, size + 8);
1155 
1156             s->IntrStatus |= RxOverflow;
1157             ++s->RxMissed;
1158             rtl8139_update_irq(s);
1159             return 0;
1160         }
1161 
1162         packet_header |= RxStatusOK;
1163 
1164         packet_header |= (((size+4) << 16) & 0xffff0000);
1165 
1166         /* write header */
1167         uint32_t val = cpu_to_le32(packet_header);
1168 
1169         rtl8139_write_buffer(s, (uint8_t *)&val, 4);
1170 
1171         rtl8139_write_buffer(s, buf, size);
1172 
1173         /* write checksum */
1174         val = cpu_to_le32(crc32(0, buf, size));
1175         rtl8139_write_buffer(s, (uint8_t *)&val, 4);
1176 
1177         /* correct buffer write pointer */
1178         s->RxBufAddr = MOD2(RX_ALIGN(s->RxBufAddr), s->RxBufferSize);
1179 
1180         /* now we can signal we have received something */
1181 
1182         DPRINTF("received: rx buffer length %d head 0x%04x read 0x%04x\n",
1183             s->RxBufferSize, s->RxBufAddr, s->RxBufPtr);
1184     }
1185 
1186     s->IntrStatus |= RxOK;
1187 
1188     if (do_interrupt)
1189     {
1190         rtl8139_update_irq(s);
1191     }
1192 
1193     return size_;
1194 }
1195 
1196 static ssize_t rtl8139_receive(NetClientState *nc, const uint8_t *buf, size_t size)
1197 {
1198     return rtl8139_do_receive(nc, buf, size, 1);
1199 }
1200 
1201 static void rtl8139_reset_rxring(RTL8139State *s, uint32_t bufferSize)
1202 {
1203     s->RxBufferSize = bufferSize;
1204     s->RxBufPtr  = 0;
1205     s->RxBufAddr = 0;
1206 }
1207 
1208 static void rtl8139_reset(DeviceState *d)
1209 {
1210     RTL8139State *s = RTL8139(d);
1211     int i;
1212 
1213     /* restore MAC address */
1214     memcpy(s->phys, s->conf.macaddr.a, 6);
1215     qemu_format_nic_info_str(qemu_get_queue(s->nic), s->phys);
1216 
1217     /* reset interrupt mask */
1218     s->IntrStatus = 0;
1219     s->IntrMask = 0;
1220 
1221     rtl8139_update_irq(s);
1222 
1223     /* mark all status registers as owned by host */
1224     for (i = 0; i < 4; ++i)
1225     {
1226         s->TxStatus[i] = TxHostOwns;
1227     }
1228 
1229     s->currTxDesc = 0;
1230     s->currCPlusRxDesc = 0;
1231     s->currCPlusTxDesc = 0;
1232 
1233     s->RxRingAddrLO = 0;
1234     s->RxRingAddrHI = 0;
1235 
1236     s->RxBuf = 0;
1237 
1238     rtl8139_reset_rxring(s, 8192);
1239 
1240     /* ACK the reset */
1241     s->TxConfig = 0;
1242 
1243 #if 0
1244 //    s->TxConfig |= HW_REVID(1, 0, 0, 0, 0, 0, 0); // RTL-8139  HasHltClk
1245     s->clock_enabled = 0;
1246 #else
1247     s->TxConfig |= HW_REVID(1, 1, 1, 0, 1, 1, 0); // RTL-8139C+ HasLWake
1248     s->clock_enabled = 1;
1249 #endif
1250 
1251     s->bChipCmdState = CmdReset; /* RxBufEmpty bit is calculated on read from ChipCmd */;
1252 
1253     /* set initial state data */
1254     s->Config0 = 0x0; /* No boot ROM */
1255     s->Config1 = 0xC; /* IO mapped and MEM mapped registers available */
1256     s->Config3 = 0x1; /* fast back-to-back compatible */
1257     s->Config5 = 0x0;
1258 
1259     s->CSCR = CSCR_F_LINK_100 | CSCR_HEART_BIT | CSCR_LD;
1260 
1261     s->CpCmd   = 0x0; /* reset C+ mode */
1262     s->cplus_enabled = 0;
1263 
1264 
1265 //    s->BasicModeCtrl = 0x3100; // 100Mbps, full duplex, autonegotiation
1266 //    s->BasicModeCtrl = 0x2100; // 100Mbps, full duplex
1267     s->BasicModeCtrl = 0x1000; // autonegotiation
1268 
1269     s->BasicModeStatus  = 0x7809;
1270     //s->BasicModeStatus |= 0x0040; /* UTP medium */
1271     s->BasicModeStatus |= 0x0020; /* autonegotiation completed */
1272     /* preserve link state */
1273     s->BasicModeStatus |= qemu_get_queue(s->nic)->link_down ? 0 : 0x04;
1274 
1275     s->NWayAdvert    = 0x05e1; /* all modes, full duplex */
1276     s->NWayLPAR      = 0x05e1; /* all modes, full duplex */
1277     s->NWayExpansion = 0x0001; /* autonegotiation supported */
1278 
1279     /* also reset timer and disable timer interrupt */
1280     s->TCTR = 0;
1281     s->TimerInt = 0;
1282     s->TCTR_base = 0;
1283     rtl8139_set_next_tctr_time(s);
1284 
1285     /* reset tally counters */
1286     RTL8139TallyCounters_clear(&s->tally_counters);
1287 }
1288 
1289 static void RTL8139TallyCounters_clear(RTL8139TallyCounters* counters)
1290 {
1291     counters->TxOk = 0;
1292     counters->RxOk = 0;
1293     counters->TxERR = 0;
1294     counters->RxERR = 0;
1295     counters->MissPkt = 0;
1296     counters->FAE = 0;
1297     counters->Tx1Col = 0;
1298     counters->TxMCol = 0;
1299     counters->RxOkPhy = 0;
1300     counters->RxOkBrd = 0;
1301     counters->RxOkMul = 0;
1302     counters->TxAbt = 0;
1303     counters->TxUndrn = 0;
1304 }
1305 
1306 static void RTL8139TallyCounters_dma_write(RTL8139State *s, dma_addr_t tc_addr)
1307 {
1308     PCIDevice *d = PCI_DEVICE(s);
1309     RTL8139TallyCounters *tally_counters = &s->tally_counters;
1310     uint16_t val16;
1311     uint32_t val32;
1312     uint64_t val64;
1313 
1314     val64 = cpu_to_le64(tally_counters->TxOk);
1315     pci_dma_write(d, tc_addr + 0,     (uint8_t *)&val64, 8);
1316 
1317     val64 = cpu_to_le64(tally_counters->RxOk);
1318     pci_dma_write(d, tc_addr + 8,     (uint8_t *)&val64, 8);
1319 
1320     val64 = cpu_to_le64(tally_counters->TxERR);
1321     pci_dma_write(d, tc_addr + 16,    (uint8_t *)&val64, 8);
1322 
1323     val32 = cpu_to_le32(tally_counters->RxERR);
1324     pci_dma_write(d, tc_addr + 24,    (uint8_t *)&val32, 4);
1325 
1326     val16 = cpu_to_le16(tally_counters->MissPkt);
1327     pci_dma_write(d, tc_addr + 28,    (uint8_t *)&val16, 2);
1328 
1329     val16 = cpu_to_le16(tally_counters->FAE);
1330     pci_dma_write(d, tc_addr + 30,    (uint8_t *)&val16, 2);
1331 
1332     val32 = cpu_to_le32(tally_counters->Tx1Col);
1333     pci_dma_write(d, tc_addr + 32,    (uint8_t *)&val32, 4);
1334 
1335     val32 = cpu_to_le32(tally_counters->TxMCol);
1336     pci_dma_write(d, tc_addr + 36,    (uint8_t *)&val32, 4);
1337 
1338     val64 = cpu_to_le64(tally_counters->RxOkPhy);
1339     pci_dma_write(d, tc_addr + 40,    (uint8_t *)&val64, 8);
1340 
1341     val64 = cpu_to_le64(tally_counters->RxOkBrd);
1342     pci_dma_write(d, tc_addr + 48,    (uint8_t *)&val64, 8);
1343 
1344     val32 = cpu_to_le32(tally_counters->RxOkMul);
1345     pci_dma_write(d, tc_addr + 56,    (uint8_t *)&val32, 4);
1346 
1347     val16 = cpu_to_le16(tally_counters->TxAbt);
1348     pci_dma_write(d, tc_addr + 60,    (uint8_t *)&val16, 2);
1349 
1350     val16 = cpu_to_le16(tally_counters->TxUndrn);
1351     pci_dma_write(d, tc_addr + 62,    (uint8_t *)&val16, 2);
1352 }
1353 
1354 static void rtl8139_ChipCmd_write(RTL8139State *s, uint32_t val)
1355 {
1356     DeviceState *d = DEVICE(s);
1357 
1358     val &= 0xff;
1359 
1360     DPRINTF("ChipCmd write val=0x%08x\n", val);
1361 
1362     if (val & CmdReset)
1363     {
1364         DPRINTF("ChipCmd reset\n");
1365         rtl8139_reset(d);
1366     }
1367     if (val & CmdRxEnb)
1368     {
1369         DPRINTF("ChipCmd enable receiver\n");
1370 
1371         s->currCPlusRxDesc = 0;
1372     }
1373     if (val & CmdTxEnb)
1374     {
1375         DPRINTF("ChipCmd enable transmitter\n");
1376 
1377         s->currCPlusTxDesc = 0;
1378     }
1379 
1380     /* mask unwritable bits */
1381     val = SET_MASKED(val, 0xe3, s->bChipCmdState);
1382 
1383     /* Deassert reset pin before next read */
1384     val &= ~CmdReset;
1385 
1386     s->bChipCmdState = val;
1387 }
1388 
1389 static int rtl8139_RxBufferEmpty(RTL8139State *s)
1390 {
1391     int unread = MOD2(s->RxBufferSize + s->RxBufAddr - s->RxBufPtr, s->RxBufferSize);
1392 
1393     if (unread != 0)
1394     {
1395         DPRINTF("receiver buffer data available 0x%04x\n", unread);
1396         return 0;
1397     }
1398 
1399     DPRINTF("receiver buffer is empty\n");
1400 
1401     return 1;
1402 }
1403 
1404 static uint32_t rtl8139_ChipCmd_read(RTL8139State *s)
1405 {
1406     uint32_t ret = s->bChipCmdState;
1407 
1408     if (rtl8139_RxBufferEmpty(s))
1409         ret |= RxBufEmpty;
1410 
1411     DPRINTF("ChipCmd read val=0x%04x\n", ret);
1412 
1413     return ret;
1414 }
1415 
1416 static void rtl8139_CpCmd_write(RTL8139State *s, uint32_t val)
1417 {
1418     val &= 0xffff;
1419 
1420     DPRINTF("C+ command register write(w) val=0x%04x\n", val);
1421 
1422     s->cplus_enabled = 1;
1423 
1424     /* mask unwritable bits */
1425     val = SET_MASKED(val, 0xff84, s->CpCmd);
1426 
1427     s->CpCmd = val;
1428 }
1429 
1430 static uint32_t rtl8139_CpCmd_read(RTL8139State *s)
1431 {
1432     uint32_t ret = s->CpCmd;
1433 
1434     DPRINTF("C+ command register read(w) val=0x%04x\n", ret);
1435 
1436     return ret;
1437 }
1438 
1439 static void rtl8139_IntrMitigate_write(RTL8139State *s, uint32_t val)
1440 {
1441     DPRINTF("C+ IntrMitigate register write(w) val=0x%04x\n", val);
1442 }
1443 
1444 static uint32_t rtl8139_IntrMitigate_read(RTL8139State *s)
1445 {
1446     uint32_t ret = 0;
1447 
1448     DPRINTF("C+ IntrMitigate register read(w) val=0x%04x\n", ret);
1449 
1450     return ret;
1451 }
1452 
1453 static int rtl8139_config_writable(RTL8139State *s)
1454 {
1455     if ((s->Cfg9346 & Chip9346_op_mask) == Cfg9346_ConfigWrite)
1456     {
1457         return 1;
1458     }
1459 
1460     DPRINTF("Configuration registers are write-protected\n");
1461 
1462     return 0;
1463 }
1464 
1465 static void rtl8139_BasicModeCtrl_write(RTL8139State *s, uint32_t val)
1466 {
1467     val &= 0xffff;
1468 
1469     DPRINTF("BasicModeCtrl register write(w) val=0x%04x\n", val);
1470 
1471     /* mask unwritable bits */
1472     uint32_t mask = 0x4cff;
1473 
1474     if (1 || !rtl8139_config_writable(s))
1475     {
1476         /* Speed setting and autonegotiation enable bits are read-only */
1477         mask |= 0x3000;
1478         /* Duplex mode setting is read-only */
1479         mask |= 0x0100;
1480     }
1481 
1482     val = SET_MASKED(val, mask, s->BasicModeCtrl);
1483 
1484     s->BasicModeCtrl = val;
1485 }
1486 
1487 static uint32_t rtl8139_BasicModeCtrl_read(RTL8139State *s)
1488 {
1489     uint32_t ret = s->BasicModeCtrl;
1490 
1491     DPRINTF("BasicModeCtrl register read(w) val=0x%04x\n", ret);
1492 
1493     return ret;
1494 }
1495 
1496 static void rtl8139_BasicModeStatus_write(RTL8139State *s, uint32_t val)
1497 {
1498     val &= 0xffff;
1499 
1500     DPRINTF("BasicModeStatus register write(w) val=0x%04x\n", val);
1501 
1502     /* mask unwritable bits */
1503     val = SET_MASKED(val, 0xff3f, s->BasicModeStatus);
1504 
1505     s->BasicModeStatus = val;
1506 }
1507 
1508 static uint32_t rtl8139_BasicModeStatus_read(RTL8139State *s)
1509 {
1510     uint32_t ret = s->BasicModeStatus;
1511 
1512     DPRINTF("BasicModeStatus register read(w) val=0x%04x\n", ret);
1513 
1514     return ret;
1515 }
1516 
1517 static void rtl8139_Cfg9346_write(RTL8139State *s, uint32_t val)
1518 {
1519     DeviceState *d = DEVICE(s);
1520 
1521     val &= 0xff;
1522 
1523     DPRINTF("Cfg9346 write val=0x%02x\n", val);
1524 
1525     /* mask unwritable bits */
1526     val = SET_MASKED(val, 0x31, s->Cfg9346);
1527 
1528     uint32_t opmode = val & 0xc0;
1529     uint32_t eeprom_val = val & 0xf;
1530 
1531     if (opmode == 0x80) {
1532         /* eeprom access */
1533         int eecs = (eeprom_val & 0x08)?1:0;
1534         int eesk = (eeprom_val & 0x04)?1:0;
1535         int eedi = (eeprom_val & 0x02)?1:0;
1536         prom9346_set_wire(s, eecs, eesk, eedi);
1537     } else if (opmode == 0x40) {
1538         /* Reset.  */
1539         val = 0;
1540         rtl8139_reset(d);
1541     }
1542 
1543     s->Cfg9346 = val;
1544 }
1545 
1546 static uint32_t rtl8139_Cfg9346_read(RTL8139State *s)
1547 {
1548     uint32_t ret = s->Cfg9346;
1549 
1550     uint32_t opmode = ret & 0xc0;
1551 
1552     if (opmode == 0x80)
1553     {
1554         /* eeprom access */
1555         int eedo = prom9346_get_wire(s);
1556         if (eedo)
1557         {
1558             ret |=  0x01;
1559         }
1560         else
1561         {
1562             ret &= ~0x01;
1563         }
1564     }
1565 
1566     DPRINTF("Cfg9346 read val=0x%02x\n", ret);
1567 
1568     return ret;
1569 }
1570 
1571 static void rtl8139_Config0_write(RTL8139State *s, uint32_t val)
1572 {
1573     val &= 0xff;
1574 
1575     DPRINTF("Config0 write val=0x%02x\n", val);
1576 
1577     if (!rtl8139_config_writable(s)) {
1578         return;
1579     }
1580 
1581     /* mask unwritable bits */
1582     val = SET_MASKED(val, 0xf8, s->Config0);
1583 
1584     s->Config0 = val;
1585 }
1586 
1587 static uint32_t rtl8139_Config0_read(RTL8139State *s)
1588 {
1589     uint32_t ret = s->Config0;
1590 
1591     DPRINTF("Config0 read val=0x%02x\n", ret);
1592 
1593     return ret;
1594 }
1595 
1596 static void rtl8139_Config1_write(RTL8139State *s, uint32_t val)
1597 {
1598     val &= 0xff;
1599 
1600     DPRINTF("Config1 write val=0x%02x\n", val);
1601 
1602     if (!rtl8139_config_writable(s)) {
1603         return;
1604     }
1605 
1606     /* mask unwritable bits */
1607     val = SET_MASKED(val, 0xC, s->Config1);
1608 
1609     s->Config1 = val;
1610 }
1611 
1612 static uint32_t rtl8139_Config1_read(RTL8139State *s)
1613 {
1614     uint32_t ret = s->Config1;
1615 
1616     DPRINTF("Config1 read val=0x%02x\n", ret);
1617 
1618     return ret;
1619 }
1620 
1621 static void rtl8139_Config3_write(RTL8139State *s, uint32_t val)
1622 {
1623     val &= 0xff;
1624 
1625     DPRINTF("Config3 write val=0x%02x\n", val);
1626 
1627     if (!rtl8139_config_writable(s)) {
1628         return;
1629     }
1630 
1631     /* mask unwritable bits */
1632     val = SET_MASKED(val, 0x8F, s->Config3);
1633 
1634     s->Config3 = val;
1635 }
1636 
1637 static uint32_t rtl8139_Config3_read(RTL8139State *s)
1638 {
1639     uint32_t ret = s->Config3;
1640 
1641     DPRINTF("Config3 read val=0x%02x\n", ret);
1642 
1643     return ret;
1644 }
1645 
1646 static void rtl8139_Config4_write(RTL8139State *s, uint32_t val)
1647 {
1648     val &= 0xff;
1649 
1650     DPRINTF("Config4 write val=0x%02x\n", val);
1651 
1652     if (!rtl8139_config_writable(s)) {
1653         return;
1654     }
1655 
1656     /* mask unwritable bits */
1657     val = SET_MASKED(val, 0x0a, s->Config4);
1658 
1659     s->Config4 = val;
1660 }
1661 
1662 static uint32_t rtl8139_Config4_read(RTL8139State *s)
1663 {
1664     uint32_t ret = s->Config4;
1665 
1666     DPRINTF("Config4 read val=0x%02x\n", ret);
1667 
1668     return ret;
1669 }
1670 
1671 static void rtl8139_Config5_write(RTL8139State *s, uint32_t val)
1672 {
1673     val &= 0xff;
1674 
1675     DPRINTF("Config5 write val=0x%02x\n", val);
1676 
1677     /* mask unwritable bits */
1678     val = SET_MASKED(val, 0x80, s->Config5);
1679 
1680     s->Config5 = val;
1681 }
1682 
1683 static uint32_t rtl8139_Config5_read(RTL8139State *s)
1684 {
1685     uint32_t ret = s->Config5;
1686 
1687     DPRINTF("Config5 read val=0x%02x\n", ret);
1688 
1689     return ret;
1690 }
1691 
1692 static void rtl8139_TxConfig_write(RTL8139State *s, uint32_t val)
1693 {
1694     if (!rtl8139_transmitter_enabled(s))
1695     {
1696         DPRINTF("transmitter disabled; no TxConfig write val=0x%08x\n", val);
1697         return;
1698     }
1699 
1700     DPRINTF("TxConfig write val=0x%08x\n", val);
1701 
1702     val = SET_MASKED(val, TxVersionMask | 0x8070f80f, s->TxConfig);
1703 
1704     s->TxConfig = val;
1705 }
1706 
1707 static void rtl8139_TxConfig_writeb(RTL8139State *s, uint32_t val)
1708 {
1709     DPRINTF("RTL8139C TxConfig via write(b) val=0x%02x\n", val);
1710 
1711     uint32_t tc = s->TxConfig;
1712     tc &= 0xFFFFFF00;
1713     tc |= (val & 0x000000FF);
1714     rtl8139_TxConfig_write(s, tc);
1715 }
1716 
1717 static uint32_t rtl8139_TxConfig_read(RTL8139State *s)
1718 {
1719     uint32_t ret = s->TxConfig;
1720 
1721     DPRINTF("TxConfig read val=0x%04x\n", ret);
1722 
1723     return ret;
1724 }
1725 
1726 static void rtl8139_RxConfig_write(RTL8139State *s, uint32_t val)
1727 {
1728     DPRINTF("RxConfig write val=0x%08x\n", val);
1729 
1730     /* mask unwritable bits */
1731     val = SET_MASKED(val, 0xf0fc0040, s->RxConfig);
1732 
1733     s->RxConfig = val;
1734 
1735     /* reset buffer size and read/write pointers */
1736     rtl8139_reset_rxring(s, 8192 << ((s->RxConfig >> 11) & 0x3));
1737 
1738     DPRINTF("RxConfig write reset buffer size to %d\n", s->RxBufferSize);
1739 }
1740 
1741 static uint32_t rtl8139_RxConfig_read(RTL8139State *s)
1742 {
1743     uint32_t ret = s->RxConfig;
1744 
1745     DPRINTF("RxConfig read val=0x%08x\n", ret);
1746 
1747     return ret;
1748 }
1749 
1750 static void rtl8139_transfer_frame(RTL8139State *s, uint8_t *buf, int size,
1751     int do_interrupt, const uint8_t *dot1q_buf)
1752 {
1753     struct iovec *iov = NULL;
1754     struct iovec vlan_iov[3];
1755 
1756     if (!size)
1757     {
1758         DPRINTF("+++ empty ethernet frame\n");
1759         return;
1760     }
1761 
1762     if (dot1q_buf && size >= ETH_ALEN * 2) {
1763         iov = (struct iovec[3]) {
1764             { .iov_base = buf, .iov_len = ETH_ALEN * 2 },
1765             { .iov_base = (void *) dot1q_buf, .iov_len = VLAN_HLEN },
1766             { .iov_base = buf + ETH_ALEN * 2,
1767                 .iov_len = size - ETH_ALEN * 2 },
1768         };
1769 
1770         memcpy(vlan_iov, iov, sizeof(vlan_iov));
1771         iov = vlan_iov;
1772     }
1773 
1774     if (TxLoopBack == (s->TxConfig & TxLoopBack))
1775     {
1776         size_t buf2_size;
1777         uint8_t *buf2;
1778 
1779         if (iov) {
1780             buf2_size = iov_size(iov, 3);
1781             buf2 = g_malloc(buf2_size);
1782             iov_to_buf(iov, 3, 0, buf2, buf2_size);
1783             buf = buf2;
1784         }
1785 
1786         DPRINTF("+++ transmit loopback mode\n");
1787         rtl8139_do_receive(qemu_get_queue(s->nic), buf, size, do_interrupt);
1788 
1789         if (iov) {
1790             g_free(buf2);
1791         }
1792     }
1793     else
1794     {
1795         if (iov) {
1796             qemu_sendv_packet(qemu_get_queue(s->nic), iov, 3);
1797         } else {
1798             qemu_send_packet(qemu_get_queue(s->nic), buf, size);
1799         }
1800     }
1801 }
1802 
1803 static int rtl8139_transmit_one(RTL8139State *s, int descriptor)
1804 {
1805     if (!rtl8139_transmitter_enabled(s))
1806     {
1807         DPRINTF("+++ cannot transmit from descriptor %d: transmitter "
1808             "disabled\n", descriptor);
1809         return 0;
1810     }
1811 
1812     if (s->TxStatus[descriptor] & TxHostOwns)
1813     {
1814         DPRINTF("+++ cannot transmit from descriptor %d: owned by host "
1815             "(%08x)\n", descriptor, s->TxStatus[descriptor]);
1816         return 0;
1817     }
1818 
1819     DPRINTF("+++ transmitting from descriptor %d\n", descriptor);
1820 
1821     PCIDevice *d = PCI_DEVICE(s);
1822     int txsize = s->TxStatus[descriptor] & 0x1fff;
1823     uint8_t txbuffer[0x2000];
1824 
1825     DPRINTF("+++ transmit reading %d bytes from host memory at 0x%08x\n",
1826         txsize, s->TxAddr[descriptor]);
1827 
1828     pci_dma_read(d, s->TxAddr[descriptor], txbuffer, txsize);
1829 
1830     /* Mark descriptor as transferred */
1831     s->TxStatus[descriptor] |= TxHostOwns;
1832     s->TxStatus[descriptor] |= TxStatOK;
1833 
1834     rtl8139_transfer_frame(s, txbuffer, txsize, 0, NULL);
1835 
1836     DPRINTF("+++ transmitted %d bytes from descriptor %d\n", txsize,
1837         descriptor);
1838 
1839     /* update interrupt */
1840     s->IntrStatus |= TxOK;
1841     rtl8139_update_irq(s);
1842 
1843     return 1;
1844 }
1845 
1846 #define TCP_HEADER_CLEAR_FLAGS(tcp, off) ((tcp)->th_offset_flags &= cpu_to_be16(~TCP_FLAGS_ONLY(off)))
1847 
1848 /* produces ones' complement sum of data */
1849 static uint16_t ones_complement_sum(uint8_t *data, size_t len)
1850 {
1851     uint32_t result = 0;
1852 
1853     for (; len > 1; data+=2, len-=2)
1854     {
1855         result += *(uint16_t*)data;
1856     }
1857 
1858     /* add the remainder byte */
1859     if (len)
1860     {
1861         uint8_t odd[2] = {*data, 0};
1862         result += *(uint16_t*)odd;
1863     }
1864 
1865     while (result>>16)
1866         result = (result & 0xffff) + (result >> 16);
1867 
1868     return result;
1869 }
1870 
1871 static uint16_t ip_checksum(void *data, size_t len)
1872 {
1873     return ~ones_complement_sum((uint8_t*)data, len);
1874 }
1875 
1876 static int rtl8139_cplus_transmit_one(RTL8139State *s)
1877 {
1878     if (!rtl8139_transmitter_enabled(s))
1879     {
1880         DPRINTF("+++ C+ mode: transmitter disabled\n");
1881         return 0;
1882     }
1883 
1884     if (!rtl8139_cp_transmitter_enabled(s))
1885     {
1886         DPRINTF("+++ C+ mode: C+ transmitter disabled\n");
1887         return 0 ;
1888     }
1889 
1890     PCIDevice *d = PCI_DEVICE(s);
1891     int descriptor = s->currCPlusTxDesc;
1892 
1893     dma_addr_t cplus_tx_ring_desc = rtl8139_addr64(s->TxAddr[0], s->TxAddr[1]);
1894 
1895     /* Normal priority ring */
1896     cplus_tx_ring_desc += 16 * descriptor;
1897 
1898     DPRINTF("+++ C+ mode reading TX descriptor %d from host memory at "
1899         "%08x %08x = 0x"DMA_ADDR_FMT"\n", descriptor, s->TxAddr[1],
1900         s->TxAddr[0], cplus_tx_ring_desc);
1901 
1902     uint32_t val, txdw0,txdw1,txbufLO,txbufHI;
1903 
1904     pci_dma_read(d, cplus_tx_ring_desc,    (uint8_t *)&val, 4);
1905     txdw0 = le32_to_cpu(val);
1906     pci_dma_read(d, cplus_tx_ring_desc+4,  (uint8_t *)&val, 4);
1907     txdw1 = le32_to_cpu(val);
1908     pci_dma_read(d, cplus_tx_ring_desc+8,  (uint8_t *)&val, 4);
1909     txbufLO = le32_to_cpu(val);
1910     pci_dma_read(d, cplus_tx_ring_desc+12, (uint8_t *)&val, 4);
1911     txbufHI = le32_to_cpu(val);
1912 
1913     DPRINTF("+++ C+ mode TX descriptor %d %08x %08x %08x %08x\n", descriptor,
1914         txdw0, txdw1, txbufLO, txbufHI);
1915 
1916 /* w0 ownership flag */
1917 #define CP_TX_OWN (1<<31)
1918 /* w0 end of ring flag */
1919 #define CP_TX_EOR (1<<30)
1920 /* first segment of received packet flag */
1921 #define CP_TX_FS (1<<29)
1922 /* last segment of received packet flag */
1923 #define CP_TX_LS (1<<28)
1924 /* large send packet flag */
1925 #define CP_TX_LGSEN (1<<27)
1926 /* large send MSS mask, bits 16...25 */
1927 #define CP_TC_LGSEN_MSS_MASK ((1 << 12) - 1)
1928 
1929 /* IP checksum offload flag */
1930 #define CP_TX_IPCS (1<<18)
1931 /* UDP checksum offload flag */
1932 #define CP_TX_UDPCS (1<<17)
1933 /* TCP checksum offload flag */
1934 #define CP_TX_TCPCS (1<<16)
1935 
1936 /* w0 bits 0...15 : buffer size */
1937 #define CP_TX_BUFFER_SIZE (1<<16)
1938 #define CP_TX_BUFFER_SIZE_MASK (CP_TX_BUFFER_SIZE - 1)
1939 /* w1 add tag flag */
1940 #define CP_TX_TAGC (1<<17)
1941 /* w1 bits 0...15 : VLAN tag (big endian) */
1942 #define CP_TX_VLAN_TAG_MASK ((1<<16) - 1)
1943 /* w2 low  32bit of Rx buffer ptr */
1944 /* w3 high 32bit of Rx buffer ptr */
1945 
1946 /* set after transmission */
1947 /* FIFO underrun flag */
1948 #define CP_TX_STATUS_UNF (1<<25)
1949 /* transmit error summary flag, valid if set any of three below */
1950 #define CP_TX_STATUS_TES (1<<23)
1951 /* out-of-window collision flag */
1952 #define CP_TX_STATUS_OWC (1<<22)
1953 /* link failure flag */
1954 #define CP_TX_STATUS_LNKF (1<<21)
1955 /* excessive collisions flag */
1956 #define CP_TX_STATUS_EXC (1<<20)
1957 
1958     if (!(txdw0 & CP_TX_OWN))
1959     {
1960         DPRINTF("C+ Tx mode : descriptor %d is owned by host\n", descriptor);
1961         return 0 ;
1962     }
1963 
1964     DPRINTF("+++ C+ Tx mode : transmitting from descriptor %d\n", descriptor);
1965 
1966     if (txdw0 & CP_TX_FS)
1967     {
1968         DPRINTF("+++ C+ Tx mode : descriptor %d is first segment "
1969             "descriptor\n", descriptor);
1970 
1971         /* reset internal buffer offset */
1972         s->cplus_txbuffer_offset = 0;
1973     }
1974 
1975     int txsize = txdw0 & CP_TX_BUFFER_SIZE_MASK;
1976     dma_addr_t tx_addr = rtl8139_addr64(txbufLO, txbufHI);
1977 
1978     /* make sure we have enough space to assemble the packet */
1979     if (!s->cplus_txbuffer)
1980     {
1981         s->cplus_txbuffer_len = CP_TX_BUFFER_SIZE;
1982         s->cplus_txbuffer = g_malloc(s->cplus_txbuffer_len);
1983         s->cplus_txbuffer_offset = 0;
1984 
1985         DPRINTF("+++ C+ mode transmission buffer allocated space %d\n",
1986             s->cplus_txbuffer_len);
1987     }
1988 
1989     if (s->cplus_txbuffer_offset + txsize >= s->cplus_txbuffer_len)
1990     {
1991         /* The spec didn't tell the maximum size, stick to CP_TX_BUFFER_SIZE */
1992         txsize = s->cplus_txbuffer_len - s->cplus_txbuffer_offset;
1993         DPRINTF("+++ C+ mode transmission buffer overrun, truncated descriptor"
1994                 "length to %d\n", txsize);
1995     }
1996 
1997     /* append more data to the packet */
1998 
1999     DPRINTF("+++ C+ mode transmit reading %d bytes from host memory at "
2000             DMA_ADDR_FMT" to offset %d\n", txsize, tx_addr,
2001             s->cplus_txbuffer_offset);
2002 
2003     pci_dma_read(d, tx_addr,
2004                  s->cplus_txbuffer + s->cplus_txbuffer_offset, txsize);
2005     s->cplus_txbuffer_offset += txsize;
2006 
2007     /* seek to next Rx descriptor */
2008     if (txdw0 & CP_TX_EOR)
2009     {
2010         s->currCPlusTxDesc = 0;
2011     }
2012     else
2013     {
2014         ++s->currCPlusTxDesc;
2015         if (s->currCPlusTxDesc >= 64)
2016             s->currCPlusTxDesc = 0;
2017     }
2018 
2019     /* transfer ownership to target */
2020     txdw0 &= ~CP_TX_OWN;
2021 
2022     /* reset error indicator bits */
2023     txdw0 &= ~CP_TX_STATUS_UNF;
2024     txdw0 &= ~CP_TX_STATUS_TES;
2025     txdw0 &= ~CP_TX_STATUS_OWC;
2026     txdw0 &= ~CP_TX_STATUS_LNKF;
2027     txdw0 &= ~CP_TX_STATUS_EXC;
2028 
2029     /* update ring data */
2030     val = cpu_to_le32(txdw0);
2031     pci_dma_write(d, cplus_tx_ring_desc, (uint8_t *)&val, 4);
2032 
2033     /* Now decide if descriptor being processed is holding the last segment of packet */
2034     if (txdw0 & CP_TX_LS)
2035     {
2036         uint8_t dot1q_buffer_space[VLAN_HLEN];
2037         uint16_t *dot1q_buffer;
2038 
2039         DPRINTF("+++ C+ Tx mode : descriptor %d is last segment descriptor\n",
2040             descriptor);
2041 
2042         /* can transfer fully assembled packet */
2043 
2044         uint8_t *saved_buffer  = s->cplus_txbuffer;
2045         int      saved_size    = s->cplus_txbuffer_offset;
2046         int      saved_buffer_len = s->cplus_txbuffer_len;
2047 
2048         /* create vlan tag */
2049         if (txdw1 & CP_TX_TAGC) {
2050             /* the vlan tag is in BE byte order in the descriptor
2051              * BE + le_to_cpu() + ~swap()~ = cpu */
2052             DPRINTF("+++ C+ Tx mode : inserting vlan tag with ""tci: %u\n",
2053                 bswap16(txdw1 & CP_TX_VLAN_TAG_MASK));
2054 
2055             dot1q_buffer = (uint16_t *) dot1q_buffer_space;
2056             dot1q_buffer[0] = cpu_to_be16(ETH_P_VLAN);
2057             /* BE + le_to_cpu() + ~cpu_to_le()~ = BE */
2058             dot1q_buffer[1] = cpu_to_le16(txdw1 & CP_TX_VLAN_TAG_MASK);
2059         } else {
2060             dot1q_buffer = NULL;
2061         }
2062 
2063         /* reset the card space to protect from recursive call */
2064         s->cplus_txbuffer = NULL;
2065         s->cplus_txbuffer_offset = 0;
2066         s->cplus_txbuffer_len = 0;
2067 
2068         if (txdw0 & (CP_TX_IPCS | CP_TX_UDPCS | CP_TX_TCPCS | CP_TX_LGSEN))
2069         {
2070             DPRINTF("+++ C+ mode offloaded task checksum\n");
2071 
2072             /* Large enough for Ethernet and IP headers? */
2073             if (saved_size < ETH_HLEN + sizeof(struct ip_header)) {
2074                 goto skip_offload;
2075             }
2076 
2077             /* ip packet header */
2078             struct ip_header *ip = NULL;
2079             int hlen = 0;
2080             uint8_t  ip_protocol = 0;
2081             uint16_t ip_data_len = 0;
2082 
2083             uint8_t *eth_payload_data = NULL;
2084             size_t   eth_payload_len  = 0;
2085 
2086             int proto = be16_to_cpu(*(uint16_t *)(saved_buffer + 12));
2087             if (proto != ETH_P_IP)
2088             {
2089                 goto skip_offload;
2090             }
2091 
2092             DPRINTF("+++ C+ mode has IP packet\n");
2093 
2094             /* Note on memory alignment: eth_payload_data is 16-bit aligned
2095              * since saved_buffer is allocated with g_malloc() and ETH_HLEN is
2096              * even.  32-bit accesses must use ldl/stl wrappers to avoid
2097              * unaligned accesses.
2098              */
2099             eth_payload_data = saved_buffer + ETH_HLEN;
2100             eth_payload_len  = saved_size   - ETH_HLEN;
2101 
2102             ip = (struct ip_header*)eth_payload_data;
2103 
2104             if (IP_HEADER_VERSION(ip) != IP_HEADER_VERSION_4) {
2105                 DPRINTF("+++ C+ mode packet has bad IP version %d "
2106                     "expected %d\n", IP_HEADER_VERSION(ip),
2107                     IP_HEADER_VERSION_4);
2108                 goto skip_offload;
2109             }
2110 
2111             hlen = IP_HDR_GET_LEN(ip);
2112             if (hlen < sizeof(struct ip_header) || hlen > eth_payload_len) {
2113                 goto skip_offload;
2114             }
2115 
2116             ip_protocol = ip->ip_p;
2117 
2118             ip_data_len = be16_to_cpu(ip->ip_len);
2119             if (ip_data_len < hlen || ip_data_len > eth_payload_len) {
2120                 goto skip_offload;
2121             }
2122             ip_data_len -= hlen;
2123 
2124             if (txdw0 & CP_TX_IPCS)
2125             {
2126                 DPRINTF("+++ C+ mode need IP checksum\n");
2127 
2128                 ip->ip_sum = 0;
2129                 ip->ip_sum = ip_checksum(ip, hlen);
2130                 DPRINTF("+++ C+ mode IP header len=%d checksum=%04x\n",
2131                     hlen, ip->ip_sum);
2132             }
2133 
2134             if ((txdw0 & CP_TX_LGSEN) && ip_protocol == IP_PROTO_TCP)
2135             {
2136                 /* Large enough for the TCP header? */
2137                 if (ip_data_len < sizeof(tcp_header)) {
2138                     goto skip_offload;
2139                 }
2140 
2141                 int large_send_mss = (txdw0 >> 16) & CP_TC_LGSEN_MSS_MASK;
2142 
2143                 DPRINTF("+++ C+ mode offloaded task TSO MTU=%d IP data %d "
2144                     "frame data %d specified MSS=%d\n", ETH_MTU,
2145                     ip_data_len, saved_size - ETH_HLEN, large_send_mss);
2146 
2147                 int tcp_send_offset = 0;
2148                 int send_count = 0;
2149 
2150                 /* maximum IP header length is 60 bytes */
2151                 uint8_t saved_ip_header[60];
2152 
2153                 /* save IP header template; data area is used in tcp checksum calculation */
2154                 memcpy(saved_ip_header, eth_payload_data, hlen);
2155 
2156                 /* a placeholder for checksum calculation routine in tcp case */
2157                 uint8_t *data_to_checksum     = eth_payload_data + hlen - 12;
2158                 //                    size_t   data_to_checksum_len = eth_payload_len  - hlen + 12;
2159 
2160                 /* pointer to TCP header */
2161                 tcp_header *p_tcp_hdr = (tcp_header*)(eth_payload_data + hlen);
2162 
2163                 int tcp_hlen = TCP_HEADER_DATA_OFFSET(p_tcp_hdr);
2164 
2165                 /* Invalid TCP data offset? */
2166                 if (tcp_hlen < sizeof(tcp_header) || tcp_hlen > ip_data_len) {
2167                     goto skip_offload;
2168                 }
2169 
2170                 /* ETH_MTU = ip header len + tcp header len + payload */
2171                 int tcp_data_len = ip_data_len - tcp_hlen;
2172                 int tcp_chunk_size = ETH_MTU - hlen - tcp_hlen;
2173 
2174                 DPRINTF("+++ C+ mode TSO IP data len %d TCP hlen %d TCP "
2175                     "data len %d TCP chunk size %d\n", ip_data_len,
2176                     tcp_hlen, tcp_data_len, tcp_chunk_size);
2177 
2178                 /* note the cycle below overwrites IP header data,
2179                    but restores it from saved_ip_header before sending packet */
2180 
2181                 int is_last_frame = 0;
2182 
2183                 for (tcp_send_offset = 0; tcp_send_offset < tcp_data_len; tcp_send_offset += tcp_chunk_size)
2184                 {
2185                     uint16_t chunk_size = tcp_chunk_size;
2186 
2187                     /* check if this is the last frame */
2188                     if (tcp_send_offset + tcp_chunk_size >= tcp_data_len)
2189                     {
2190                         is_last_frame = 1;
2191                         chunk_size = tcp_data_len - tcp_send_offset;
2192                     }
2193 
2194                     DPRINTF("+++ C+ mode TSO TCP seqno %08x\n",
2195                             ldl_be_p(&p_tcp_hdr->th_seq));
2196 
2197                     /* add 4 TCP pseudoheader fields */
2198                     /* copy IP source and destination fields */
2199                     memcpy(data_to_checksum, saved_ip_header + 12, 8);
2200 
2201                     DPRINTF("+++ C+ mode TSO calculating TCP checksum for "
2202                         "packet with %d bytes data\n", tcp_hlen +
2203                         chunk_size);
2204 
2205                     if (tcp_send_offset)
2206                     {
2207                         memcpy((uint8_t*)p_tcp_hdr + tcp_hlen, (uint8_t*)p_tcp_hdr + tcp_hlen + tcp_send_offset, chunk_size);
2208                     }
2209 
2210                     /* keep PUSH and FIN flags only for the last frame */
2211                     if (!is_last_frame)
2212                     {
2213                         TCP_HEADER_CLEAR_FLAGS(p_tcp_hdr, TH_PUSH | TH_FIN);
2214                     }
2215 
2216                     /* recalculate TCP checksum */
2217                     ip_pseudo_header *p_tcpip_hdr = (ip_pseudo_header *)data_to_checksum;
2218                     p_tcpip_hdr->zeros      = 0;
2219                     p_tcpip_hdr->ip_proto   = IP_PROTO_TCP;
2220                     p_tcpip_hdr->ip_payload = cpu_to_be16(tcp_hlen + chunk_size);
2221 
2222                     p_tcp_hdr->th_sum = 0;
2223 
2224                     int tcp_checksum = ip_checksum(data_to_checksum, tcp_hlen + chunk_size + 12);
2225                     DPRINTF("+++ C+ mode TSO TCP checksum %04x\n",
2226                         tcp_checksum);
2227 
2228                     p_tcp_hdr->th_sum = tcp_checksum;
2229 
2230                     /* restore IP header */
2231                     memcpy(eth_payload_data, saved_ip_header, hlen);
2232 
2233                     /* set IP data length and recalculate IP checksum */
2234                     ip->ip_len = cpu_to_be16(hlen + tcp_hlen + chunk_size);
2235 
2236                     /* increment IP id for subsequent frames */
2237                     ip->ip_id = cpu_to_be16(tcp_send_offset/tcp_chunk_size + be16_to_cpu(ip->ip_id));
2238 
2239                     ip->ip_sum = 0;
2240                     ip->ip_sum = ip_checksum(eth_payload_data, hlen);
2241                     DPRINTF("+++ C+ mode TSO IP header len=%d "
2242                         "checksum=%04x\n", hlen, ip->ip_sum);
2243 
2244                     int tso_send_size = ETH_HLEN + hlen + tcp_hlen + chunk_size;
2245                     DPRINTF("+++ C+ mode TSO transferring packet size "
2246                         "%d\n", tso_send_size);
2247                     rtl8139_transfer_frame(s, saved_buffer, tso_send_size,
2248                         0, (uint8_t *) dot1q_buffer);
2249 
2250                     /* add transferred count to TCP sequence number */
2251                     stl_be_p(&p_tcp_hdr->th_seq,
2252                              chunk_size + ldl_be_p(&p_tcp_hdr->th_seq));
2253                     ++send_count;
2254                 }
2255 
2256                 /* Stop sending this frame */
2257                 saved_size = 0;
2258             }
2259             else if (txdw0 & (CP_TX_TCPCS|CP_TX_UDPCS))
2260             {
2261                 DPRINTF("+++ C+ mode need TCP or UDP checksum\n");
2262 
2263                 /* maximum IP header length is 60 bytes */
2264                 uint8_t saved_ip_header[60];
2265                 memcpy(saved_ip_header, eth_payload_data, hlen);
2266 
2267                 uint8_t *data_to_checksum     = eth_payload_data + hlen - 12;
2268                 //                    size_t   data_to_checksum_len = eth_payload_len  - hlen + 12;
2269 
2270                 /* add 4 TCP pseudoheader fields */
2271                 /* copy IP source and destination fields */
2272                 memcpy(data_to_checksum, saved_ip_header + 12, 8);
2273 
2274                 if ((txdw0 & CP_TX_TCPCS) && ip_protocol == IP_PROTO_TCP)
2275                 {
2276                     DPRINTF("+++ C+ mode calculating TCP checksum for "
2277                         "packet with %d bytes data\n", ip_data_len);
2278 
2279                     ip_pseudo_header *p_tcpip_hdr = (ip_pseudo_header *)data_to_checksum;
2280                     p_tcpip_hdr->zeros      = 0;
2281                     p_tcpip_hdr->ip_proto   = IP_PROTO_TCP;
2282                     p_tcpip_hdr->ip_payload = cpu_to_be16(ip_data_len);
2283 
2284                     tcp_header* p_tcp_hdr = (tcp_header *) (data_to_checksum+12);
2285 
2286                     p_tcp_hdr->th_sum = 0;
2287 
2288                     int tcp_checksum = ip_checksum(data_to_checksum, ip_data_len + 12);
2289                     DPRINTF("+++ C+ mode TCP checksum %04x\n",
2290                         tcp_checksum);
2291 
2292                     p_tcp_hdr->th_sum = tcp_checksum;
2293                 }
2294                 else if ((txdw0 & CP_TX_UDPCS) && ip_protocol == IP_PROTO_UDP)
2295                 {
2296                     DPRINTF("+++ C+ mode calculating UDP checksum for "
2297                         "packet with %d bytes data\n", ip_data_len);
2298 
2299                     ip_pseudo_header *p_udpip_hdr = (ip_pseudo_header *)data_to_checksum;
2300                     p_udpip_hdr->zeros      = 0;
2301                     p_udpip_hdr->ip_proto   = IP_PROTO_UDP;
2302                     p_udpip_hdr->ip_payload = cpu_to_be16(ip_data_len);
2303 
2304                     udp_header *p_udp_hdr = (udp_header *) (data_to_checksum+12);
2305 
2306                     p_udp_hdr->uh_sum = 0;
2307 
2308                     int udp_checksum = ip_checksum(data_to_checksum, ip_data_len + 12);
2309                     DPRINTF("+++ C+ mode UDP checksum %04x\n",
2310                         udp_checksum);
2311 
2312                     p_udp_hdr->uh_sum = udp_checksum;
2313                 }
2314 
2315                 /* restore IP header */
2316                 memcpy(eth_payload_data, saved_ip_header, hlen);
2317             }
2318         }
2319 
2320 skip_offload:
2321         /* update tally counter */
2322         ++s->tally_counters.TxOk;
2323 
2324         DPRINTF("+++ C+ mode transmitting %d bytes packet\n", saved_size);
2325 
2326         rtl8139_transfer_frame(s, saved_buffer, saved_size, 1,
2327             (uint8_t *) dot1q_buffer);
2328 
2329         /* restore card space if there was no recursion and reset offset */
2330         if (!s->cplus_txbuffer)
2331         {
2332             s->cplus_txbuffer        = saved_buffer;
2333             s->cplus_txbuffer_len    = saved_buffer_len;
2334             s->cplus_txbuffer_offset = 0;
2335         }
2336         else
2337         {
2338             g_free(saved_buffer);
2339         }
2340     }
2341     else
2342     {
2343         DPRINTF("+++ C+ mode transmission continue to next descriptor\n");
2344     }
2345 
2346     return 1;
2347 }
2348 
2349 static void rtl8139_cplus_transmit(RTL8139State *s)
2350 {
2351     int txcount = 0;
2352 
2353     while (rtl8139_cplus_transmit_one(s))
2354     {
2355         ++txcount;
2356     }
2357 
2358     /* Mark transfer completed */
2359     if (!txcount)
2360     {
2361         DPRINTF("C+ mode : transmitter queue stalled, current TxDesc = %d\n",
2362             s->currCPlusTxDesc);
2363     }
2364     else
2365     {
2366         /* update interrupt status */
2367         s->IntrStatus |= TxOK;
2368         rtl8139_update_irq(s);
2369     }
2370 }
2371 
2372 static void rtl8139_transmit(RTL8139State *s)
2373 {
2374     int descriptor = s->currTxDesc, txcount = 0;
2375 
2376     /*while*/
2377     if (rtl8139_transmit_one(s, descriptor))
2378     {
2379         ++s->currTxDesc;
2380         s->currTxDesc %= 4;
2381         ++txcount;
2382     }
2383 
2384     /* Mark transfer completed */
2385     if (!txcount)
2386     {
2387         DPRINTF("transmitter queue stalled, current TxDesc = %d\n",
2388             s->currTxDesc);
2389     }
2390 }
2391 
2392 static void rtl8139_TxStatus_write(RTL8139State *s, uint32_t txRegOffset, uint32_t val)
2393 {
2394 
2395     int descriptor = txRegOffset/4;
2396 
2397     /* handle C+ transmit mode register configuration */
2398 
2399     if (s->cplus_enabled)
2400     {
2401         DPRINTF("RTL8139C+ DTCCR write offset=0x%x val=0x%08x "
2402             "descriptor=%d\n", txRegOffset, val, descriptor);
2403 
2404         /* handle Dump Tally Counters command */
2405         s->TxStatus[descriptor] = val;
2406 
2407         if (descriptor == 0 && (val & 0x8))
2408         {
2409             hwaddr tc_addr = rtl8139_addr64(s->TxStatus[0] & ~0x3f, s->TxStatus[1]);
2410 
2411             /* dump tally counters to specified memory location */
2412             RTL8139TallyCounters_dma_write(s, tc_addr);
2413 
2414             /* mark dump completed */
2415             s->TxStatus[0] &= ~0x8;
2416         }
2417 
2418         return;
2419     }
2420 
2421     DPRINTF("TxStatus write offset=0x%x val=0x%08x descriptor=%d\n",
2422         txRegOffset, val, descriptor);
2423 
2424     /* mask only reserved bits */
2425     val &= ~0xff00c000; /* these bits are reset on write */
2426     val = SET_MASKED(val, 0x00c00000, s->TxStatus[descriptor]);
2427 
2428     s->TxStatus[descriptor] = val;
2429 
2430     /* attempt to start transmission */
2431     rtl8139_transmit(s);
2432 }
2433 
2434 static uint32_t rtl8139_TxStatus_TxAddr_read(RTL8139State *s, uint32_t regs[],
2435                                              uint32_t base, uint8_t addr,
2436                                              int size)
2437 {
2438     uint32_t reg = (addr - base) / 4;
2439     uint32_t offset = addr & 0x3;
2440     uint32_t ret = 0;
2441 
2442     if (addr & (size - 1)) {
2443         DPRINTF("not implemented read for TxStatus/TxAddr "
2444                 "addr=0x%x size=0x%x\n", addr, size);
2445         return ret;
2446     }
2447 
2448     switch (size) {
2449     case 1: /* fall through */
2450     case 2: /* fall through */
2451     case 4:
2452         ret = (regs[reg] >> offset * 8) & (((uint64_t)1 << (size * 8)) - 1);
2453         DPRINTF("TxStatus/TxAddr[%d] read addr=0x%x size=0x%x val=0x%08x\n",
2454                 reg, addr, size, ret);
2455         break;
2456     default:
2457         DPRINTF("unsupported size 0x%x of TxStatus/TxAddr reading\n", size);
2458         break;
2459     }
2460 
2461     return ret;
2462 }
2463 
2464 static uint16_t rtl8139_TSAD_read(RTL8139State *s)
2465 {
2466     uint16_t ret = 0;
2467 
2468     /* Simulate TSAD, it is read only anyway */
2469 
2470     ret = ((s->TxStatus[3] & TxStatOK  )?TSAD_TOK3:0)
2471          |((s->TxStatus[2] & TxStatOK  )?TSAD_TOK2:0)
2472          |((s->TxStatus[1] & TxStatOK  )?TSAD_TOK1:0)
2473          |((s->TxStatus[0] & TxStatOK  )?TSAD_TOK0:0)
2474 
2475          |((s->TxStatus[3] & TxUnderrun)?TSAD_TUN3:0)
2476          |((s->TxStatus[2] & TxUnderrun)?TSAD_TUN2:0)
2477          |((s->TxStatus[1] & TxUnderrun)?TSAD_TUN1:0)
2478          |((s->TxStatus[0] & TxUnderrun)?TSAD_TUN0:0)
2479 
2480          |((s->TxStatus[3] & TxAborted )?TSAD_TABT3:0)
2481          |((s->TxStatus[2] & TxAborted )?TSAD_TABT2:0)
2482          |((s->TxStatus[1] & TxAborted )?TSAD_TABT1:0)
2483          |((s->TxStatus[0] & TxAborted )?TSAD_TABT0:0)
2484 
2485          |((s->TxStatus[3] & TxHostOwns )?TSAD_OWN3:0)
2486          |((s->TxStatus[2] & TxHostOwns )?TSAD_OWN2:0)
2487          |((s->TxStatus[1] & TxHostOwns )?TSAD_OWN1:0)
2488          |((s->TxStatus[0] & TxHostOwns )?TSAD_OWN0:0) ;
2489 
2490 
2491     DPRINTF("TSAD read val=0x%04x\n", ret);
2492 
2493     return ret;
2494 }
2495 
2496 static uint16_t rtl8139_CSCR_read(RTL8139State *s)
2497 {
2498     uint16_t ret = s->CSCR;
2499 
2500     DPRINTF("CSCR read val=0x%04x\n", ret);
2501 
2502     return ret;
2503 }
2504 
2505 static void rtl8139_TxAddr_write(RTL8139State *s, uint32_t txAddrOffset, uint32_t val)
2506 {
2507     DPRINTF("TxAddr write offset=0x%x val=0x%08x\n", txAddrOffset, val);
2508 
2509     s->TxAddr[txAddrOffset/4] = val;
2510 }
2511 
2512 static uint32_t rtl8139_TxAddr_read(RTL8139State *s, uint32_t txAddrOffset)
2513 {
2514     uint32_t ret = s->TxAddr[txAddrOffset/4];
2515 
2516     DPRINTF("TxAddr read offset=0x%x val=0x%08x\n", txAddrOffset, ret);
2517 
2518     return ret;
2519 }
2520 
2521 static void rtl8139_RxBufPtr_write(RTL8139State *s, uint32_t val)
2522 {
2523     DPRINTF("RxBufPtr write val=0x%04x\n", val);
2524 
2525     /* this value is off by 16 */
2526     s->RxBufPtr = MOD2(val + 0x10, s->RxBufferSize);
2527 
2528     /* more buffer space may be available so try to receive */
2529     qemu_flush_queued_packets(qemu_get_queue(s->nic));
2530 
2531     DPRINTF(" CAPR write: rx buffer length %d head 0x%04x read 0x%04x\n",
2532         s->RxBufferSize, s->RxBufAddr, s->RxBufPtr);
2533 }
2534 
2535 static uint32_t rtl8139_RxBufPtr_read(RTL8139State *s)
2536 {
2537     /* this value is off by 16 */
2538     uint32_t ret = s->RxBufPtr - 0x10;
2539 
2540     DPRINTF("RxBufPtr read val=0x%04x\n", ret);
2541 
2542     return ret;
2543 }
2544 
2545 static uint32_t rtl8139_RxBufAddr_read(RTL8139State *s)
2546 {
2547     /* this value is NOT off by 16 */
2548     uint32_t ret = s->RxBufAddr;
2549 
2550     DPRINTF("RxBufAddr read val=0x%04x\n", ret);
2551 
2552     return ret;
2553 }
2554 
2555 static void rtl8139_RxBuf_write(RTL8139State *s, uint32_t val)
2556 {
2557     DPRINTF("RxBuf write val=0x%08x\n", val);
2558 
2559     s->RxBuf = val;
2560 
2561     /* may need to reset rxring here */
2562 }
2563 
2564 static uint32_t rtl8139_RxBuf_read(RTL8139State *s)
2565 {
2566     uint32_t ret = s->RxBuf;
2567 
2568     DPRINTF("RxBuf read val=0x%08x\n", ret);
2569 
2570     return ret;
2571 }
2572 
2573 static void rtl8139_IntrMask_write(RTL8139State *s, uint32_t val)
2574 {
2575     DPRINTF("IntrMask write(w) val=0x%04x\n", val);
2576 
2577     /* mask unwritable bits */
2578     val = SET_MASKED(val, 0x1e00, s->IntrMask);
2579 
2580     s->IntrMask = val;
2581 
2582     rtl8139_update_irq(s);
2583 
2584 }
2585 
2586 static uint32_t rtl8139_IntrMask_read(RTL8139State *s)
2587 {
2588     uint32_t ret = s->IntrMask;
2589 
2590     DPRINTF("IntrMask read(w) val=0x%04x\n", ret);
2591 
2592     return ret;
2593 }
2594 
2595 static void rtl8139_IntrStatus_write(RTL8139State *s, uint32_t val)
2596 {
2597     DPRINTF("IntrStatus write(w) val=0x%04x\n", val);
2598 
2599 #if 0
2600 
2601     /* writing to ISR has no effect */
2602 
2603     return;
2604 
2605 #else
2606     uint16_t newStatus = s->IntrStatus & ~val;
2607 
2608     /* mask unwritable bits */
2609     newStatus = SET_MASKED(newStatus, 0x1e00, s->IntrStatus);
2610 
2611     /* writing 1 to interrupt status register bit clears it */
2612     s->IntrStatus = 0;
2613     rtl8139_update_irq(s);
2614 
2615     s->IntrStatus = newStatus;
2616     rtl8139_set_next_tctr_time(s);
2617     rtl8139_update_irq(s);
2618 
2619 #endif
2620 }
2621 
2622 static uint32_t rtl8139_IntrStatus_read(RTL8139State *s)
2623 {
2624     uint32_t ret = s->IntrStatus;
2625 
2626     DPRINTF("IntrStatus read(w) val=0x%04x\n", ret);
2627 
2628 #if 0
2629 
2630     /* reading ISR clears all interrupts */
2631     s->IntrStatus = 0;
2632 
2633     rtl8139_update_irq(s);
2634 
2635 #endif
2636 
2637     return ret;
2638 }
2639 
2640 static void rtl8139_MultiIntr_write(RTL8139State *s, uint32_t val)
2641 {
2642     DPRINTF("MultiIntr write(w) val=0x%04x\n", val);
2643 
2644     /* mask unwritable bits */
2645     val = SET_MASKED(val, 0xf000, s->MultiIntr);
2646 
2647     s->MultiIntr = val;
2648 }
2649 
2650 static uint32_t rtl8139_MultiIntr_read(RTL8139State *s)
2651 {
2652     uint32_t ret = s->MultiIntr;
2653 
2654     DPRINTF("MultiIntr read(w) val=0x%04x\n", ret);
2655 
2656     return ret;
2657 }
2658 
2659 static void rtl8139_io_writeb(void *opaque, uint8_t addr, uint32_t val)
2660 {
2661     RTL8139State *s = opaque;
2662 
2663     switch (addr)
2664     {
2665         case MAC0 ... MAC0+4:
2666             s->phys[addr - MAC0] = val;
2667             break;
2668         case MAC0+5:
2669             s->phys[addr - MAC0] = val;
2670             qemu_format_nic_info_str(qemu_get_queue(s->nic), s->phys);
2671             break;
2672         case MAC0+6 ... MAC0+7:
2673             /* reserved */
2674             break;
2675         case MAR0 ... MAR0+7:
2676             s->mult[addr - MAR0] = val;
2677             break;
2678         case ChipCmd:
2679             rtl8139_ChipCmd_write(s, val);
2680             break;
2681         case Cfg9346:
2682             rtl8139_Cfg9346_write(s, val);
2683             break;
2684         case TxConfig: /* windows driver sometimes writes using byte-lenth call */
2685             rtl8139_TxConfig_writeb(s, val);
2686             break;
2687         case Config0:
2688             rtl8139_Config0_write(s, val);
2689             break;
2690         case Config1:
2691             rtl8139_Config1_write(s, val);
2692             break;
2693         case Config3:
2694             rtl8139_Config3_write(s, val);
2695             break;
2696         case Config4:
2697             rtl8139_Config4_write(s, val);
2698             break;
2699         case Config5:
2700             rtl8139_Config5_write(s, val);
2701             break;
2702         case MediaStatus:
2703             /* ignore */
2704             DPRINTF("not implemented write(b) to MediaStatus val=0x%02x\n",
2705                 val);
2706             break;
2707 
2708         case HltClk:
2709             DPRINTF("HltClk write val=0x%08x\n", val);
2710             if (val == 'R')
2711             {
2712                 s->clock_enabled = 1;
2713             }
2714             else if (val == 'H')
2715             {
2716                 s->clock_enabled = 0;
2717             }
2718             break;
2719 
2720         case TxThresh:
2721             DPRINTF("C+ TxThresh write(b) val=0x%02x\n", val);
2722             s->TxThresh = val;
2723             break;
2724 
2725         case TxPoll:
2726             DPRINTF("C+ TxPoll write(b) val=0x%02x\n", val);
2727             if (val & (1 << 7))
2728             {
2729                 DPRINTF("C+ TxPoll high priority transmission (not "
2730                     "implemented)\n");
2731                 //rtl8139_cplus_transmit(s);
2732             }
2733             if (val & (1 << 6))
2734             {
2735                 DPRINTF("C+ TxPoll normal priority transmission\n");
2736                 rtl8139_cplus_transmit(s);
2737             }
2738 
2739             break;
2740 
2741         default:
2742             DPRINTF("not implemented write(b) addr=0x%x val=0x%02x\n", addr,
2743                 val);
2744             break;
2745     }
2746 }
2747 
2748 static void rtl8139_io_writew(void *opaque, uint8_t addr, uint32_t val)
2749 {
2750     RTL8139State *s = opaque;
2751 
2752     switch (addr)
2753     {
2754         case IntrMask:
2755             rtl8139_IntrMask_write(s, val);
2756             break;
2757 
2758         case IntrStatus:
2759             rtl8139_IntrStatus_write(s, val);
2760             break;
2761 
2762         case MultiIntr:
2763             rtl8139_MultiIntr_write(s, val);
2764             break;
2765 
2766         case RxBufPtr:
2767             rtl8139_RxBufPtr_write(s, val);
2768             break;
2769 
2770         case BasicModeCtrl:
2771             rtl8139_BasicModeCtrl_write(s, val);
2772             break;
2773         case BasicModeStatus:
2774             rtl8139_BasicModeStatus_write(s, val);
2775             break;
2776         case NWayAdvert:
2777             DPRINTF("NWayAdvert write(w) val=0x%04x\n", val);
2778             s->NWayAdvert = val;
2779             break;
2780         case NWayLPAR:
2781             DPRINTF("forbidden NWayLPAR write(w) val=0x%04x\n", val);
2782             break;
2783         case NWayExpansion:
2784             DPRINTF("NWayExpansion write(w) val=0x%04x\n", val);
2785             s->NWayExpansion = val;
2786             break;
2787 
2788         case CpCmd:
2789             rtl8139_CpCmd_write(s, val);
2790             break;
2791 
2792         case IntrMitigate:
2793             rtl8139_IntrMitigate_write(s, val);
2794             break;
2795 
2796         default:
2797             DPRINTF("ioport write(w) addr=0x%x val=0x%04x via write(b)\n",
2798                 addr, val);
2799 
2800             rtl8139_io_writeb(opaque, addr, val & 0xff);
2801             rtl8139_io_writeb(opaque, addr + 1, (val >> 8) & 0xff);
2802             break;
2803     }
2804 }
2805 
2806 static void rtl8139_set_next_tctr_time(RTL8139State *s)
2807 {
2808     const uint64_t ns_per_period = (uint64_t)PCI_PERIOD << 32;
2809 
2810     DPRINTF("entered rtl8139_set_next_tctr_time\n");
2811 
2812     /* This function is called at least once per period, so it is a good
2813      * place to update the timer base.
2814      *
2815      * After one iteration of this loop the value in the Timer register does
2816      * not change, but the device model is counting up by 2^32 ticks (approx.
2817      * 130 seconds).
2818      */
2819     while (s->TCTR_base + ns_per_period <= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)) {
2820         s->TCTR_base += ns_per_period;
2821     }
2822 
2823     if (!s->TimerInt) {
2824         timer_del(s->timer);
2825     } else {
2826         uint64_t delta = (uint64_t)s->TimerInt * PCI_PERIOD;
2827         if (s->TCTR_base + delta <= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)) {
2828             delta += ns_per_period;
2829         }
2830         timer_mod(s->timer, s->TCTR_base + delta);
2831     }
2832 }
2833 
2834 static void rtl8139_io_writel(void *opaque, uint8_t addr, uint32_t val)
2835 {
2836     RTL8139State *s = opaque;
2837 
2838     switch (addr)
2839     {
2840         case RxMissed:
2841             DPRINTF("RxMissed clearing on write\n");
2842             s->RxMissed = 0;
2843             break;
2844 
2845         case TxConfig:
2846             rtl8139_TxConfig_write(s, val);
2847             break;
2848 
2849         case RxConfig:
2850             rtl8139_RxConfig_write(s, val);
2851             break;
2852 
2853         case TxStatus0 ... TxStatus0+4*4-1:
2854             rtl8139_TxStatus_write(s, addr-TxStatus0, val);
2855             break;
2856 
2857         case TxAddr0 ... TxAddr0+4*4-1:
2858             rtl8139_TxAddr_write(s, addr-TxAddr0, val);
2859             break;
2860 
2861         case RxBuf:
2862             rtl8139_RxBuf_write(s, val);
2863             break;
2864 
2865         case RxRingAddrLO:
2866             DPRINTF("C+ RxRing low bits write val=0x%08x\n", val);
2867             s->RxRingAddrLO = val;
2868             break;
2869 
2870         case RxRingAddrHI:
2871             DPRINTF("C+ RxRing high bits write val=0x%08x\n", val);
2872             s->RxRingAddrHI = val;
2873             break;
2874 
2875         case Timer:
2876             DPRINTF("TCTR Timer reset on write\n");
2877             s->TCTR_base = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
2878             rtl8139_set_next_tctr_time(s);
2879             break;
2880 
2881         case FlashReg:
2882             DPRINTF("FlashReg TimerInt write val=0x%08x\n", val);
2883             if (s->TimerInt != val) {
2884                 s->TimerInt = val;
2885                 rtl8139_set_next_tctr_time(s);
2886             }
2887             break;
2888 
2889         default:
2890             DPRINTF("ioport write(l) addr=0x%x val=0x%08x via write(b)\n",
2891                 addr, val);
2892             rtl8139_io_writeb(opaque, addr, val & 0xff);
2893             rtl8139_io_writeb(opaque, addr + 1, (val >> 8) & 0xff);
2894             rtl8139_io_writeb(opaque, addr + 2, (val >> 16) & 0xff);
2895             rtl8139_io_writeb(opaque, addr + 3, (val >> 24) & 0xff);
2896             break;
2897     }
2898 }
2899 
2900 static uint32_t rtl8139_io_readb(void *opaque, uint8_t addr)
2901 {
2902     RTL8139State *s = opaque;
2903     int ret;
2904 
2905     switch (addr)
2906     {
2907         case MAC0 ... MAC0+5:
2908             ret = s->phys[addr - MAC0];
2909             break;
2910         case MAC0+6 ... MAC0+7:
2911             ret = 0;
2912             break;
2913         case MAR0 ... MAR0+7:
2914             ret = s->mult[addr - MAR0];
2915             break;
2916         case TxStatus0 ... TxStatus0+4*4-1:
2917             ret = rtl8139_TxStatus_TxAddr_read(s, s->TxStatus, TxStatus0,
2918                                                addr, 1);
2919             break;
2920         case ChipCmd:
2921             ret = rtl8139_ChipCmd_read(s);
2922             break;
2923         case Cfg9346:
2924             ret = rtl8139_Cfg9346_read(s);
2925             break;
2926         case Config0:
2927             ret = rtl8139_Config0_read(s);
2928             break;
2929         case Config1:
2930             ret = rtl8139_Config1_read(s);
2931             break;
2932         case Config3:
2933             ret = rtl8139_Config3_read(s);
2934             break;
2935         case Config4:
2936             ret = rtl8139_Config4_read(s);
2937             break;
2938         case Config5:
2939             ret = rtl8139_Config5_read(s);
2940             break;
2941 
2942         case MediaStatus:
2943             /* The LinkDown bit of MediaStatus is inverse with link status */
2944             ret = 0xd0 | (~s->BasicModeStatus & 0x04);
2945             DPRINTF("MediaStatus read 0x%x\n", ret);
2946             break;
2947 
2948         case HltClk:
2949             ret = s->clock_enabled;
2950             DPRINTF("HltClk read 0x%x\n", ret);
2951             break;
2952 
2953         case PCIRevisionID:
2954             ret = RTL8139_PCI_REVID;
2955             DPRINTF("PCI Revision ID read 0x%x\n", ret);
2956             break;
2957 
2958         case TxThresh:
2959             ret = s->TxThresh;
2960             DPRINTF("C+ TxThresh read(b) val=0x%02x\n", ret);
2961             break;
2962 
2963         case 0x43: /* Part of TxConfig register. Windows driver tries to read it */
2964             ret = s->TxConfig >> 24;
2965             DPRINTF("RTL8139C TxConfig at 0x43 read(b) val=0x%02x\n", ret);
2966             break;
2967 
2968         default:
2969             DPRINTF("not implemented read(b) addr=0x%x\n", addr);
2970             ret = 0;
2971             break;
2972     }
2973 
2974     return ret;
2975 }
2976 
2977 static uint32_t rtl8139_io_readw(void *opaque, uint8_t addr)
2978 {
2979     RTL8139State *s = opaque;
2980     uint32_t ret;
2981 
2982     switch (addr)
2983     {
2984         case TxAddr0 ... TxAddr0+4*4-1:
2985             ret = rtl8139_TxStatus_TxAddr_read(s, s->TxAddr, TxAddr0, addr, 2);
2986             break;
2987         case IntrMask:
2988             ret = rtl8139_IntrMask_read(s);
2989             break;
2990 
2991         case IntrStatus:
2992             ret = rtl8139_IntrStatus_read(s);
2993             break;
2994 
2995         case MultiIntr:
2996             ret = rtl8139_MultiIntr_read(s);
2997             break;
2998 
2999         case RxBufPtr:
3000             ret = rtl8139_RxBufPtr_read(s);
3001             break;
3002 
3003         case RxBufAddr:
3004             ret = rtl8139_RxBufAddr_read(s);
3005             break;
3006 
3007         case BasicModeCtrl:
3008             ret = rtl8139_BasicModeCtrl_read(s);
3009             break;
3010         case BasicModeStatus:
3011             ret = rtl8139_BasicModeStatus_read(s);
3012             break;
3013         case NWayAdvert:
3014             ret = s->NWayAdvert;
3015             DPRINTF("NWayAdvert read(w) val=0x%04x\n", ret);
3016             break;
3017         case NWayLPAR:
3018             ret = s->NWayLPAR;
3019             DPRINTF("NWayLPAR read(w) val=0x%04x\n", ret);
3020             break;
3021         case NWayExpansion:
3022             ret = s->NWayExpansion;
3023             DPRINTF("NWayExpansion read(w) val=0x%04x\n", ret);
3024             break;
3025 
3026         case CpCmd:
3027             ret = rtl8139_CpCmd_read(s);
3028             break;
3029 
3030         case IntrMitigate:
3031             ret = rtl8139_IntrMitigate_read(s);
3032             break;
3033 
3034         case TxSummary:
3035             ret = rtl8139_TSAD_read(s);
3036             break;
3037 
3038         case CSCR:
3039             ret = rtl8139_CSCR_read(s);
3040             break;
3041 
3042         default:
3043             DPRINTF("ioport read(w) addr=0x%x via read(b)\n", addr);
3044 
3045             ret  = rtl8139_io_readb(opaque, addr);
3046             ret |= rtl8139_io_readb(opaque, addr + 1) << 8;
3047 
3048             DPRINTF("ioport read(w) addr=0x%x val=0x%04x\n", addr, ret);
3049             break;
3050     }
3051 
3052     return ret;
3053 }
3054 
3055 static uint32_t rtl8139_io_readl(void *opaque, uint8_t addr)
3056 {
3057     RTL8139State *s = opaque;
3058     uint32_t ret;
3059 
3060     switch (addr)
3061     {
3062         case RxMissed:
3063             ret = s->RxMissed;
3064 
3065             DPRINTF("RxMissed read val=0x%08x\n", ret);
3066             break;
3067 
3068         case TxConfig:
3069             ret = rtl8139_TxConfig_read(s);
3070             break;
3071 
3072         case RxConfig:
3073             ret = rtl8139_RxConfig_read(s);
3074             break;
3075 
3076         case TxStatus0 ... TxStatus0+4*4-1:
3077             ret = rtl8139_TxStatus_TxAddr_read(s, s->TxStatus, TxStatus0,
3078                                                addr, 4);
3079             break;
3080 
3081         case TxAddr0 ... TxAddr0+4*4-1:
3082             ret = rtl8139_TxAddr_read(s, addr-TxAddr0);
3083             break;
3084 
3085         case RxBuf:
3086             ret = rtl8139_RxBuf_read(s);
3087             break;
3088 
3089         case RxRingAddrLO:
3090             ret = s->RxRingAddrLO;
3091             DPRINTF("C+ RxRing low bits read val=0x%08x\n", ret);
3092             break;
3093 
3094         case RxRingAddrHI:
3095             ret = s->RxRingAddrHI;
3096             DPRINTF("C+ RxRing high bits read val=0x%08x\n", ret);
3097             break;
3098 
3099         case Timer:
3100             ret = (qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - s->TCTR_base) /
3101                   PCI_PERIOD;
3102             DPRINTF("TCTR Timer read val=0x%08x\n", ret);
3103             break;
3104 
3105         case FlashReg:
3106             ret = s->TimerInt;
3107             DPRINTF("FlashReg TimerInt read val=0x%08x\n", ret);
3108             break;
3109 
3110         default:
3111             DPRINTF("ioport read(l) addr=0x%x via read(b)\n", addr);
3112 
3113             ret  = rtl8139_io_readb(opaque, addr);
3114             ret |= rtl8139_io_readb(opaque, addr + 1) << 8;
3115             ret |= rtl8139_io_readb(opaque, addr + 2) << 16;
3116             ret |= rtl8139_io_readb(opaque, addr + 3) << 24;
3117 
3118             DPRINTF("read(l) addr=0x%x val=%08x\n", addr, ret);
3119             break;
3120     }
3121 
3122     return ret;
3123 }
3124 
3125 /* */
3126 
3127 static void rtl8139_mmio_writeb(void *opaque, hwaddr addr, uint32_t val)
3128 {
3129     rtl8139_io_writeb(opaque, addr & 0xFF, val);
3130 }
3131 
3132 static void rtl8139_mmio_writew(void *opaque, hwaddr addr, uint32_t val)
3133 {
3134     rtl8139_io_writew(opaque, addr & 0xFF, val);
3135 }
3136 
3137 static void rtl8139_mmio_writel(void *opaque, hwaddr addr, uint32_t val)
3138 {
3139     rtl8139_io_writel(opaque, addr & 0xFF, val);
3140 }
3141 
3142 static uint32_t rtl8139_mmio_readb(void *opaque, hwaddr addr)
3143 {
3144     return rtl8139_io_readb(opaque, addr & 0xFF);
3145 }
3146 
3147 static uint32_t rtl8139_mmio_readw(void *opaque, hwaddr addr)
3148 {
3149     uint32_t val = rtl8139_io_readw(opaque, addr & 0xFF);
3150     return val;
3151 }
3152 
3153 static uint32_t rtl8139_mmio_readl(void *opaque, hwaddr addr)
3154 {
3155     uint32_t val = rtl8139_io_readl(opaque, addr & 0xFF);
3156     return val;
3157 }
3158 
3159 static int rtl8139_post_load(void *opaque, int version_id)
3160 {
3161     RTL8139State* s = opaque;
3162     rtl8139_set_next_tctr_time(s);
3163     if (version_id < 4) {
3164         s->cplus_enabled = s->CpCmd != 0;
3165     }
3166 
3167     /* nc.link_down can't be migrated, so infer link_down according
3168      * to link status bit in BasicModeStatus */
3169     qemu_get_queue(s->nic)->link_down = (s->BasicModeStatus & 0x04) == 0;
3170 
3171     return 0;
3172 }
3173 
3174 static bool rtl8139_hotplug_ready_needed(void *opaque)
3175 {
3176     return qdev_machine_modified();
3177 }
3178 
3179 static const VMStateDescription vmstate_rtl8139_hotplug_ready ={
3180     .name = "rtl8139/hotplug_ready",
3181     .version_id = 1,
3182     .minimum_version_id = 1,
3183     .needed = rtl8139_hotplug_ready_needed,
3184     .fields = (VMStateField[]) {
3185         VMSTATE_END_OF_LIST()
3186     }
3187 };
3188 
3189 static void rtl8139_pre_save(void *opaque)
3190 {
3191     RTL8139State* s = opaque;
3192     int64_t current_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
3193 
3194     /* for migration to older versions */
3195     s->TCTR = (current_time - s->TCTR_base) / PCI_PERIOD;
3196     s->rtl8139_mmio_io_addr_dummy = 0;
3197 }
3198 
3199 static const VMStateDescription vmstate_rtl8139 = {
3200     .name = "rtl8139",
3201     .version_id = 5,
3202     .minimum_version_id = 3,
3203     .post_load = rtl8139_post_load,
3204     .pre_save  = rtl8139_pre_save,
3205     .fields = (VMStateField[]) {
3206         VMSTATE_PCI_DEVICE(parent_obj, RTL8139State),
3207         VMSTATE_PARTIAL_BUFFER(phys, RTL8139State, 6),
3208         VMSTATE_BUFFER(mult, RTL8139State),
3209         VMSTATE_UINT32_ARRAY(TxStatus, RTL8139State, 4),
3210         VMSTATE_UINT32_ARRAY(TxAddr, RTL8139State, 4),
3211 
3212         VMSTATE_UINT32(RxBuf, RTL8139State),
3213         VMSTATE_UINT32(RxBufferSize, RTL8139State),
3214         VMSTATE_UINT32(RxBufPtr, RTL8139State),
3215         VMSTATE_UINT32(RxBufAddr, RTL8139State),
3216 
3217         VMSTATE_UINT16(IntrStatus, RTL8139State),
3218         VMSTATE_UINT16(IntrMask, RTL8139State),
3219 
3220         VMSTATE_UINT32(TxConfig, RTL8139State),
3221         VMSTATE_UINT32(RxConfig, RTL8139State),
3222         VMSTATE_UINT32(RxMissed, RTL8139State),
3223         VMSTATE_UINT16(CSCR, RTL8139State),
3224 
3225         VMSTATE_UINT8(Cfg9346, RTL8139State),
3226         VMSTATE_UINT8(Config0, RTL8139State),
3227         VMSTATE_UINT8(Config1, RTL8139State),
3228         VMSTATE_UINT8(Config3, RTL8139State),
3229         VMSTATE_UINT8(Config4, RTL8139State),
3230         VMSTATE_UINT8(Config5, RTL8139State),
3231 
3232         VMSTATE_UINT8(clock_enabled, RTL8139State),
3233         VMSTATE_UINT8(bChipCmdState, RTL8139State),
3234 
3235         VMSTATE_UINT16(MultiIntr, RTL8139State),
3236 
3237         VMSTATE_UINT16(BasicModeCtrl, RTL8139State),
3238         VMSTATE_UINT16(BasicModeStatus, RTL8139State),
3239         VMSTATE_UINT16(NWayAdvert, RTL8139State),
3240         VMSTATE_UINT16(NWayLPAR, RTL8139State),
3241         VMSTATE_UINT16(NWayExpansion, RTL8139State),
3242 
3243         VMSTATE_UINT16(CpCmd, RTL8139State),
3244         VMSTATE_UINT8(TxThresh, RTL8139State),
3245 
3246         VMSTATE_UNUSED(4),
3247         VMSTATE_MACADDR(conf.macaddr, RTL8139State),
3248         VMSTATE_INT32(rtl8139_mmio_io_addr_dummy, RTL8139State),
3249 
3250         VMSTATE_UINT32(currTxDesc, RTL8139State),
3251         VMSTATE_UINT32(currCPlusRxDesc, RTL8139State),
3252         VMSTATE_UINT32(currCPlusTxDesc, RTL8139State),
3253         VMSTATE_UINT32(RxRingAddrLO, RTL8139State),
3254         VMSTATE_UINT32(RxRingAddrHI, RTL8139State),
3255 
3256         VMSTATE_UINT16_ARRAY(eeprom.contents, RTL8139State, EEPROM_9346_SIZE),
3257         VMSTATE_INT32(eeprom.mode, RTL8139State),
3258         VMSTATE_UINT32(eeprom.tick, RTL8139State),
3259         VMSTATE_UINT8(eeprom.address, RTL8139State),
3260         VMSTATE_UINT16(eeprom.input, RTL8139State),
3261         VMSTATE_UINT16(eeprom.output, RTL8139State),
3262 
3263         VMSTATE_UINT8(eeprom.eecs, RTL8139State),
3264         VMSTATE_UINT8(eeprom.eesk, RTL8139State),
3265         VMSTATE_UINT8(eeprom.eedi, RTL8139State),
3266         VMSTATE_UINT8(eeprom.eedo, RTL8139State),
3267 
3268         VMSTATE_UINT32(TCTR, RTL8139State),
3269         VMSTATE_UINT32(TimerInt, RTL8139State),
3270         VMSTATE_INT64(TCTR_base, RTL8139State),
3271 
3272         VMSTATE_UINT64(tally_counters.TxOk, RTL8139State),
3273         VMSTATE_UINT64(tally_counters.RxOk, RTL8139State),
3274         VMSTATE_UINT64(tally_counters.TxERR, RTL8139State),
3275         VMSTATE_UINT32(tally_counters.RxERR, RTL8139State),
3276         VMSTATE_UINT16(tally_counters.MissPkt, RTL8139State),
3277         VMSTATE_UINT16(tally_counters.FAE, RTL8139State),
3278         VMSTATE_UINT32(tally_counters.Tx1Col, RTL8139State),
3279         VMSTATE_UINT32(tally_counters.TxMCol, RTL8139State),
3280         VMSTATE_UINT64(tally_counters.RxOkPhy, RTL8139State),
3281         VMSTATE_UINT64(tally_counters.RxOkBrd, RTL8139State),
3282         VMSTATE_UINT32_V(tally_counters.RxOkMul, RTL8139State, 5),
3283         VMSTATE_UINT16(tally_counters.TxAbt, RTL8139State),
3284         VMSTATE_UINT16(tally_counters.TxUndrn, RTL8139State),
3285 
3286         VMSTATE_UINT32_V(cplus_enabled, RTL8139State, 4),
3287         VMSTATE_END_OF_LIST()
3288     },
3289     .subsections = (const VMStateDescription*[]) {
3290         &vmstate_rtl8139_hotplug_ready,
3291         NULL
3292     }
3293 };
3294 
3295 /***********************************************************/
3296 /* PCI RTL8139 definitions */
3297 
3298 static void rtl8139_ioport_write(void *opaque, hwaddr addr,
3299                                  uint64_t val, unsigned size)
3300 {
3301     switch (size) {
3302     case 1:
3303         rtl8139_io_writeb(opaque, addr, val);
3304         break;
3305     case 2:
3306         rtl8139_io_writew(opaque, addr, val);
3307         break;
3308     case 4:
3309         rtl8139_io_writel(opaque, addr, val);
3310         break;
3311     }
3312 }
3313 
3314 static uint64_t rtl8139_ioport_read(void *opaque, hwaddr addr,
3315                                     unsigned size)
3316 {
3317     switch (size) {
3318     case 1:
3319         return rtl8139_io_readb(opaque, addr);
3320     case 2:
3321         return rtl8139_io_readw(opaque, addr);
3322     case 4:
3323         return rtl8139_io_readl(opaque, addr);
3324     }
3325 
3326     return -1;
3327 }
3328 
3329 static const MemoryRegionOps rtl8139_io_ops = {
3330     .read = rtl8139_ioport_read,
3331     .write = rtl8139_ioport_write,
3332     .impl = {
3333         .min_access_size = 1,
3334         .max_access_size = 4,
3335     },
3336     .endianness = DEVICE_LITTLE_ENDIAN,
3337 };
3338 
3339 static const MemoryRegionOps rtl8139_mmio_ops = {
3340     .old_mmio = {
3341         .read = {
3342             rtl8139_mmio_readb,
3343             rtl8139_mmio_readw,
3344             rtl8139_mmio_readl,
3345         },
3346         .write = {
3347             rtl8139_mmio_writeb,
3348             rtl8139_mmio_writew,
3349             rtl8139_mmio_writel,
3350         },
3351     },
3352     .endianness = DEVICE_LITTLE_ENDIAN,
3353 };
3354 
3355 static void rtl8139_timer(void *opaque)
3356 {
3357     RTL8139State *s = opaque;
3358 
3359     if (!s->clock_enabled)
3360     {
3361         DPRINTF(">>> timer: clock is not running\n");
3362         return;
3363     }
3364 
3365     s->IntrStatus |= PCSTimeout;
3366     rtl8139_update_irq(s);
3367     rtl8139_set_next_tctr_time(s);
3368 }
3369 
3370 static void pci_rtl8139_uninit(PCIDevice *dev)
3371 {
3372     RTL8139State *s = RTL8139(dev);
3373 
3374     g_free(s->cplus_txbuffer);
3375     s->cplus_txbuffer = NULL;
3376     timer_del(s->timer);
3377     timer_free(s->timer);
3378     qemu_del_nic(s->nic);
3379 }
3380 
3381 static void rtl8139_set_link_status(NetClientState *nc)
3382 {
3383     RTL8139State *s = qemu_get_nic_opaque(nc);
3384 
3385     if (nc->link_down) {
3386         s->BasicModeStatus &= ~0x04;
3387     } else {
3388         s->BasicModeStatus |= 0x04;
3389     }
3390 
3391     s->IntrStatus |= RxUnderrun;
3392     rtl8139_update_irq(s);
3393 }
3394 
3395 static NetClientInfo net_rtl8139_info = {
3396     .type = NET_CLIENT_DRIVER_NIC,
3397     .size = sizeof(NICState),
3398     .can_receive = rtl8139_can_receive,
3399     .receive = rtl8139_receive,
3400     .link_status_changed = rtl8139_set_link_status,
3401 };
3402 
3403 static void pci_rtl8139_realize(PCIDevice *dev, Error **errp)
3404 {
3405     RTL8139State *s = RTL8139(dev);
3406     DeviceState *d = DEVICE(dev);
3407     uint8_t *pci_conf;
3408 
3409     pci_conf = dev->config;
3410     pci_conf[PCI_INTERRUPT_PIN] = 1;    /* interrupt pin A */
3411     /* TODO: start of capability list, but no capability
3412      * list bit in status register, and offset 0xdc seems unused. */
3413     pci_conf[PCI_CAPABILITY_LIST] = 0xdc;
3414 
3415     memory_region_init_io(&s->bar_io, OBJECT(s), &rtl8139_io_ops, s,
3416                           "rtl8139", 0x100);
3417     memory_region_init_io(&s->bar_mem, OBJECT(s), &rtl8139_mmio_ops, s,
3418                           "rtl8139", 0x100);
3419     pci_register_bar(dev, 0, PCI_BASE_ADDRESS_SPACE_IO, &s->bar_io);
3420     pci_register_bar(dev, 1, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->bar_mem);
3421 
3422     qemu_macaddr_default_if_unset(&s->conf.macaddr);
3423 
3424     /* prepare eeprom */
3425     s->eeprom.contents[0] = 0x8129;
3426 #if 1
3427     /* PCI vendor and device ID should be mirrored here */
3428     s->eeprom.contents[1] = PCI_VENDOR_ID_REALTEK;
3429     s->eeprom.contents[2] = PCI_DEVICE_ID_REALTEK_8139;
3430 #endif
3431     s->eeprom.contents[7] = s->conf.macaddr.a[0] | s->conf.macaddr.a[1] << 8;
3432     s->eeprom.contents[8] = s->conf.macaddr.a[2] | s->conf.macaddr.a[3] << 8;
3433     s->eeprom.contents[9] = s->conf.macaddr.a[4] | s->conf.macaddr.a[5] << 8;
3434 
3435     s->nic = qemu_new_nic(&net_rtl8139_info, &s->conf,
3436                           object_get_typename(OBJECT(dev)), d->id, s);
3437     qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a);
3438 
3439     s->cplus_txbuffer = NULL;
3440     s->cplus_txbuffer_len = 0;
3441     s->cplus_txbuffer_offset = 0;
3442 
3443     s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, rtl8139_timer, s);
3444 }
3445 
3446 static void rtl8139_instance_init(Object *obj)
3447 {
3448     RTL8139State *s = RTL8139(obj);
3449 
3450     device_add_bootindex_property(obj, &s->conf.bootindex,
3451                                   "bootindex", "/ethernet-phy@0",
3452                                   DEVICE(obj), NULL);
3453 }
3454 
3455 static Property rtl8139_properties[] = {
3456     DEFINE_NIC_PROPERTIES(RTL8139State, conf),
3457     DEFINE_PROP_END_OF_LIST(),
3458 };
3459 
3460 static void rtl8139_class_init(ObjectClass *klass, void *data)
3461 {
3462     DeviceClass *dc = DEVICE_CLASS(klass);
3463     PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
3464 
3465     k->realize = pci_rtl8139_realize;
3466     k->exit = pci_rtl8139_uninit;
3467     k->romfile = "efi-rtl8139.rom";
3468     k->vendor_id = PCI_VENDOR_ID_REALTEK;
3469     k->device_id = PCI_DEVICE_ID_REALTEK_8139;
3470     k->revision = RTL8139_PCI_REVID; /* >=0x20 is for 8139C+ */
3471     k->class_id = PCI_CLASS_NETWORK_ETHERNET;
3472     dc->reset = rtl8139_reset;
3473     dc->vmsd = &vmstate_rtl8139;
3474     dc->props = rtl8139_properties;
3475     set_bit(DEVICE_CATEGORY_NETWORK, dc->categories);
3476 }
3477 
3478 static const TypeInfo rtl8139_info = {
3479     .name          = TYPE_RTL8139,
3480     .parent        = TYPE_PCI_DEVICE,
3481     .instance_size = sizeof(RTL8139State),
3482     .class_init    = rtl8139_class_init,
3483     .instance_init = rtl8139_instance_init,
3484 };
3485 
3486 static void rtl8139_register_types(void)
3487 {
3488     type_register_static(&rtl8139_info);
3489 }
3490 
3491 type_init(rtl8139_register_types)
3492