xref: /openbmc/qemu/hw/net/rtl8139.c (revision 02f5360d80a7a45190e31b8255b60edaf101211c)
1  /**
2   * QEMU RTL8139 emulation
3   *
4   * Copyright (c) 2006 Igor Kovalenko
5   *
6   * Permission is hereby granted, free of charge, to any person obtaining a copy
7   * of this software and associated documentation files (the "Software"), to deal
8   * in the Software without restriction, including without limitation the rights
9   * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10   * copies of the Software, and to permit persons to whom the Software is
11   * furnished to do so, subject to the following conditions:
12   *
13   * The above copyright notice and this permission notice shall be included in
14   * all copies or substantial portions of the Software.
15   *
16   * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17   * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18   * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19   * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20   * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21   * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22   * THE SOFTWARE.
23  
24   * Modifications:
25   *  2006-Jan-28  Mark Malakanov :   TSAD and CSCR implementation (for Windows driver)
26   *
27   *  2006-Apr-28  Juergen Lock   :   EEPROM emulation changes for FreeBSD driver
28   *                                  HW revision ID changes for FreeBSD driver
29   *
30   *  2006-Jul-01  Igor Kovalenko :   Implemented loopback mode for FreeBSD driver
31   *                                  Corrected packet transfer reassembly routine for 8139C+ mode
32   *                                  Rearranged debugging print statements
33   *                                  Implemented PCI timer interrupt (disabled by default)
34   *                                  Implemented Tally Counters, increased VM load/save version
35   *                                  Implemented IP/TCP/UDP checksum task offloading
36   *
37   *  2006-Jul-04  Igor Kovalenko :   Implemented TCP segmentation offloading
38   *                                  Fixed MTU=1500 for produced ethernet frames
39   *
40   *  2006-Jul-09  Igor Kovalenko :   Fixed TCP header length calculation while processing
41   *                                  segmentation offloading
42   *                                  Removed slirp.h dependency
43   *                                  Added rx/tx buffer reset when enabling rx/tx operation
44   *
45   *  2010-Feb-04  Frediano Ziglio:   Rewrote timer support using QEMU timer only
46   *                                  when strictly needed (required for
47   *                                  Darwin)
48   *  2011-Mar-22  Benjamin Poirier:  Implemented VLAN offloading
49   */
50  
51  /* For crc32 */
52  
53  #include "qemu/osdep.h"
54  #include <zlib.h>
55  
56  #include "hw/pci/pci_device.h"
57  #include "hw/qdev-properties.h"
58  #include "migration/vmstate.h"
59  #include "sysemu/dma.h"
60  #include "qemu/module.h"
61  #include "qemu/timer.h"
62  #include "net/net.h"
63  #include "net/eth.h"
64  #include "sysemu/sysemu.h"
65  #include "qom/object.h"
66  
67  /* debug RTL8139 card */
68  //#define DEBUG_RTL8139 1
69  
70  #define PCI_PERIOD 30    /* 30 ns period = 33.333333 Mhz frequency */
71  
72  #define SET_MASKED(input, mask, curr) \
73      ( ( (input) & ~(mask) ) | ( (curr) & (mask) ) )
74  
75  /* arg % size for size which is a power of 2 */
76  #define MOD2(input, size) \
77      ( ( input ) & ( size - 1 )  )
78  
79  #define ETHER_TYPE_LEN 2
80  
81  #define VLAN_TCI_LEN 2
82  #define VLAN_HLEN (ETHER_TYPE_LEN + VLAN_TCI_LEN)
83  
84  #if defined (DEBUG_RTL8139)
85  #  define DPRINTF(fmt, ...) \
86      do { fprintf(stderr, "RTL8139: " fmt, ## __VA_ARGS__); } while (0)
87  #else
88  static inline G_GNUC_PRINTF(1, 2) int DPRINTF(const char *fmt, ...)
89  {
90      return 0;
91  }
92  #endif
93  
94  #define TYPE_RTL8139 "rtl8139"
95  
96  OBJECT_DECLARE_SIMPLE_TYPE(RTL8139State, RTL8139)
97  
98  /* Symbolic offsets to registers. */
99  enum RTL8139_registers {
100      MAC0 = 0,        /* Ethernet hardware address. */
101      MAR0 = 8,        /* Multicast filter. */
102      TxStatus0 = 0x10,/* Transmit status (Four 32bit registers). C mode only */
103                       /* Dump Tally Counter control register(64bit). C+ mode only */
104      TxAddr0 = 0x20,  /* Tx descriptors (also four 32bit). */
105      RxBuf = 0x30,
106      ChipCmd = 0x37,
107      RxBufPtr = 0x38,
108      RxBufAddr = 0x3A,
109      IntrMask = 0x3C,
110      IntrStatus = 0x3E,
111      TxConfig = 0x40,
112      RxConfig = 0x44,
113      Timer = 0x48,        /* A general-purpose counter. */
114      RxMissed = 0x4C,    /* 24 bits valid, write clears. */
115      Cfg9346 = 0x50,
116      Config0 = 0x51,
117      Config1 = 0x52,
118      FlashReg = 0x54,
119      MediaStatus = 0x58,
120      Config3 = 0x59,
121      Config4 = 0x5A,        /* absent on RTL-8139A */
122      HltClk = 0x5B,
123      MultiIntr = 0x5C,
124      PCIRevisionID = 0x5E,
125      TxSummary = 0x60, /* TSAD register. Transmit Status of All Descriptors*/
126      BasicModeCtrl = 0x62,
127      BasicModeStatus = 0x64,
128      NWayAdvert = 0x66,
129      NWayLPAR = 0x68,
130      NWayExpansion = 0x6A,
131      /* Undocumented registers, but required for proper operation. */
132      FIFOTMS = 0x70,        /* FIFO Control and test. */
133      CSCR = 0x74,        /* Chip Status and Configuration Register. */
134      PARA78 = 0x78,
135      PARA7c = 0x7c,        /* Magic transceiver parameter register. */
136      Config5 = 0xD8,        /* absent on RTL-8139A */
137      /* C+ mode */
138      TxPoll        = 0xD9,    /* Tell chip to check Tx descriptors for work */
139      RxMaxSize    = 0xDA, /* Max size of an Rx packet (8169 only) */
140      CpCmd        = 0xE0, /* C+ Command register (C+ mode only) */
141      IntrMitigate    = 0xE2,    /* rx/tx interrupt mitigation control */
142      RxRingAddrLO    = 0xE4, /* 64-bit start addr of Rx ring */
143      RxRingAddrHI    = 0xE8, /* 64-bit start addr of Rx ring */
144      TxThresh    = 0xEC, /* Early Tx threshold */
145  };
146  
147  enum ClearBitMasks {
148      MultiIntrClear = 0xF000,
149      ChipCmdClear = 0xE2,
150      Config1Clear = (1<<7)|(1<<6)|(1<<3)|(1<<2)|(1<<1),
151  };
152  
153  enum ChipCmdBits {
154      CmdReset = 0x10,
155      CmdRxEnb = 0x08,
156      CmdTxEnb = 0x04,
157      RxBufEmpty = 0x01,
158  };
159  
160  /* C+ mode */
161  enum CplusCmdBits {
162      CPlusRxVLAN   = 0x0040, /* enable receive VLAN detagging */
163      CPlusRxChkSum = 0x0020, /* enable receive checksum offloading */
164      CPlusRxEnb    = 0x0002,
165      CPlusTxEnb    = 0x0001,
166  };
167  
168  /* Interrupt register bits, using my own meaningful names. */
169  enum IntrStatusBits {
170      PCIErr = 0x8000,
171      PCSTimeout = 0x4000,
172      RxFIFOOver = 0x40,
173      RxUnderrun = 0x20, /* Packet Underrun / Link Change */
174      RxOverflow = 0x10,
175      TxErr = 0x08,
176      TxOK = 0x04,
177      RxErr = 0x02,
178      RxOK = 0x01,
179  
180      RxAckBits = RxFIFOOver | RxOverflow | RxOK,
181  };
182  
183  enum TxStatusBits {
184      TxHostOwns = 0x2000,
185      TxUnderrun = 0x4000,
186      TxStatOK = 0x8000,
187      TxOutOfWindow = 0x20000000,
188      TxAborted = 0x40000000,
189      TxCarrierLost = 0x80000000,
190  };
191  enum RxStatusBits {
192      RxMulticast = 0x8000,
193      RxPhysical = 0x4000,
194      RxBroadcast = 0x2000,
195      RxBadSymbol = 0x0020,
196      RxRunt = 0x0010,
197      RxTooLong = 0x0008,
198      RxCRCErr = 0x0004,
199      RxBadAlign = 0x0002,
200      RxStatusOK = 0x0001,
201  };
202  
203  /* Bits in RxConfig. */
204  enum rx_mode_bits {
205      AcceptErr = 0x20,
206      AcceptRunt = 0x10,
207      AcceptBroadcast = 0x08,
208      AcceptMulticast = 0x04,
209      AcceptMyPhys = 0x02,
210      AcceptAllPhys = 0x01,
211  };
212  
213  /* Bits in TxConfig. */
214  enum tx_config_bits {
215  
216          /* Interframe Gap Time. Only TxIFG96 doesn't violate IEEE 802.3 */
217          TxIFGShift = 24,
218          TxIFG84 = (0 << TxIFGShift),    /* 8.4us / 840ns (10 / 100Mbps) */
219          TxIFG88 = (1 << TxIFGShift),    /* 8.8us / 880ns (10 / 100Mbps) */
220          TxIFG92 = (2 << TxIFGShift),    /* 9.2us / 920ns (10 / 100Mbps) */
221          TxIFG96 = (3 << TxIFGShift),    /* 9.6us / 960ns (10 / 100Mbps) */
222  
223      TxLoopBack = (1 << 18) | (1 << 17), /* enable loopback test mode */
224      TxCRC = (1 << 16),    /* DISABLE appending CRC to end of Tx packets */
225      TxClearAbt = (1 << 0),    /* Clear abort (WO) */
226      TxDMAShift = 8,        /* DMA burst value (0-7) is shifted this many bits */
227      TxRetryShift = 4,    /* TXRR value (0-15) is shifted this many bits */
228  
229      TxVersionMask = 0x7C800000, /* mask out version bits 30-26, 23 */
230  };
231  
232  
233  /* Transmit Status of All Descriptors (TSAD) Register */
234  enum TSAD_bits {
235   TSAD_TOK3 = 1<<15, // TOK bit of Descriptor 3
236   TSAD_TOK2 = 1<<14, // TOK bit of Descriptor 2
237   TSAD_TOK1 = 1<<13, // TOK bit of Descriptor 1
238   TSAD_TOK0 = 1<<12, // TOK bit of Descriptor 0
239   TSAD_TUN3 = 1<<11, // TUN bit of Descriptor 3
240   TSAD_TUN2 = 1<<10, // TUN bit of Descriptor 2
241   TSAD_TUN1 = 1<<9, // TUN bit of Descriptor 1
242   TSAD_TUN0 = 1<<8, // TUN bit of Descriptor 0
243   TSAD_TABT3 = 1<<07, // TABT bit of Descriptor 3
244   TSAD_TABT2 = 1<<06, // TABT bit of Descriptor 2
245   TSAD_TABT1 = 1<<05, // TABT bit of Descriptor 1
246   TSAD_TABT0 = 1<<04, // TABT bit of Descriptor 0
247   TSAD_OWN3 = 1<<03, // OWN bit of Descriptor 3
248   TSAD_OWN2 = 1<<02, // OWN bit of Descriptor 2
249   TSAD_OWN1 = 1<<01, // OWN bit of Descriptor 1
250   TSAD_OWN0 = 1<<00, // OWN bit of Descriptor 0
251  };
252  
253  
254  /* Bits in Config1 */
255  enum Config1Bits {
256      Cfg1_PM_Enable = 0x01,
257      Cfg1_VPD_Enable = 0x02,
258      Cfg1_PIO = 0x04,
259      Cfg1_MMIO = 0x08,
260      LWAKE = 0x10,        /* not on 8139, 8139A */
261      Cfg1_Driver_Load = 0x20,
262      Cfg1_LED0 = 0x40,
263      Cfg1_LED1 = 0x80,
264      SLEEP = (1 << 1),    /* only on 8139, 8139A */
265      PWRDN = (1 << 0),    /* only on 8139, 8139A */
266  };
267  
268  /* Bits in Config3 */
269  enum Config3Bits {
270      Cfg3_FBtBEn    = (1 << 0), /* 1 = Fast Back to Back */
271      Cfg3_FuncRegEn = (1 << 1), /* 1 = enable CardBus Function registers */
272      Cfg3_CLKRUN_En = (1 << 2), /* 1 = enable CLKRUN */
273      Cfg3_CardB_En  = (1 << 3), /* 1 = enable CardBus registers */
274      Cfg3_LinkUp    = (1 << 4), /* 1 = wake up on link up */
275      Cfg3_Magic     = (1 << 5), /* 1 = wake up on Magic Packet (tm) */
276      Cfg3_PARM_En   = (1 << 6), /* 0 = software can set twister parameters */
277      Cfg3_GNTSel    = (1 << 7), /* 1 = delay 1 clock from PCI GNT signal */
278  };
279  
280  /* Bits in Config4 */
281  enum Config4Bits {
282      LWPTN = (1 << 2),    /* not on 8139, 8139A */
283  };
284  
285  /* Bits in Config5 */
286  enum Config5Bits {
287      Cfg5_PME_STS     = (1 << 0), /* 1 = PCI reset resets PME_Status */
288      Cfg5_LANWake     = (1 << 1), /* 1 = enable LANWake signal */
289      Cfg5_LDPS        = (1 << 2), /* 0 = save power when link is down */
290      Cfg5_FIFOAddrPtr = (1 << 3), /* Realtek internal SRAM testing */
291      Cfg5_UWF         = (1 << 4), /* 1 = accept unicast wakeup frame */
292      Cfg5_MWF         = (1 << 5), /* 1 = accept multicast wakeup frame */
293      Cfg5_BWF         = (1 << 6), /* 1 = accept broadcast wakeup frame */
294  };
295  
296  enum RxConfigBits {
297      /* rx fifo threshold */
298      RxCfgFIFOShift = 13,
299      RxCfgFIFONone = (7 << RxCfgFIFOShift),
300  
301      /* Max DMA burst */
302      RxCfgDMAShift = 8,
303      RxCfgDMAUnlimited = (7 << RxCfgDMAShift),
304  
305      /* rx ring buffer length */
306      RxCfgRcv8K = 0,
307      RxCfgRcv16K = (1 << 11),
308      RxCfgRcv32K = (1 << 12),
309      RxCfgRcv64K = (1 << 11) | (1 << 12),
310  
311      /* Disable packet wrap at end of Rx buffer. (not possible with 64k) */
312      RxNoWrap = (1 << 7),
313  };
314  
315  /* Twister tuning parameters from RealTek.
316     Completely undocumented, but required to tune bad links on some boards. */
317  /*
318  enum CSCRBits {
319      CSCR_LinkOKBit = 0x0400,
320      CSCR_LinkChangeBit = 0x0800,
321      CSCR_LinkStatusBits = 0x0f000,
322      CSCR_LinkDownOffCmd = 0x003c0,
323      CSCR_LinkDownCmd = 0x0f3c0,
324  */
325  enum CSCRBits {
326      CSCR_Testfun = 1<<15, /* 1 = Auto-neg speeds up internal timer, WO, def 0 */
327      CSCR_LD  = 1<<9,  /* Active low TPI link disable signal. When low, TPI still transmits link pulses and TPI stays in good link state. def 1*/
328      CSCR_HEART_BIT = 1<<8,  /* 1 = HEART BEAT enable, 0 = HEART BEAT disable. HEART BEAT function is only valid in 10Mbps mode. def 1*/
329      CSCR_JBEN = 1<<7,  /* 1 = enable jabber function. 0 = disable jabber function, def 1*/
330      CSCR_F_LINK_100 = 1<<6, /* Used to login force good link in 100Mbps for diagnostic purposes. 1 = DISABLE, 0 = ENABLE. def 1*/
331      CSCR_F_Connect  = 1<<5,  /* Assertion of this bit forces the disconnect function to be bypassed. def 0*/
332      CSCR_Con_status = 1<<3, /* This bit indicates the status of the connection. 1 = valid connected link detected; 0 = disconnected link detected. RO def 0*/
333      CSCR_Con_status_En = 1<<2, /* Assertion of this bit configures LED1 pin to indicate connection status. def 0*/
334      CSCR_PASS_SCR = 1<<0, /* Bypass Scramble, def 0*/
335  };
336  
337  enum Cfg9346Bits {
338      Cfg9346_Normal = 0x00,
339      Cfg9346_Autoload = 0x40,
340      Cfg9346_Programming = 0x80,
341      Cfg9346_ConfigWrite = 0xC0,
342  };
343  
344  typedef enum {
345      CH_8139 = 0,
346      CH_8139_K,
347      CH_8139A,
348      CH_8139A_G,
349      CH_8139B,
350      CH_8130,
351      CH_8139C,
352      CH_8100,
353      CH_8100B_8139D,
354      CH_8101,
355  } chip_t;
356  
357  enum chip_flags {
358      HasHltClk = (1 << 0),
359      HasLWake = (1 << 1),
360  };
361  
362  #define HW_REVID(b30, b29, b28, b27, b26, b23, b22) \
363      (b30<<30 | b29<<29 | b28<<28 | b27<<27 | b26<<26 | b23<<23 | b22<<22)
364  #define HW_REVID_MASK    HW_REVID(1, 1, 1, 1, 1, 1, 1)
365  
366  #define RTL8139_PCI_REVID_8139      0x10
367  #define RTL8139_PCI_REVID_8139CPLUS 0x20
368  
369  #define RTL8139_PCI_REVID           RTL8139_PCI_REVID_8139CPLUS
370  
371  /* Size is 64 * 16bit words */
372  #define EEPROM_9346_ADDR_BITS 6
373  #define EEPROM_9346_SIZE  (1 << EEPROM_9346_ADDR_BITS)
374  #define EEPROM_9346_ADDR_MASK (EEPROM_9346_SIZE - 1)
375  
376  enum Chip9346Operation
377  {
378      Chip9346_op_mask = 0xc0,          /* 10 zzzzzz */
379      Chip9346_op_read = 0x80,          /* 10 AAAAAA */
380      Chip9346_op_write = 0x40,         /* 01 AAAAAA D(15)..D(0) */
381      Chip9346_op_ext_mask = 0xf0,      /* 11 zzzzzz */
382      Chip9346_op_write_enable = 0x30,  /* 00 11zzzz */
383      Chip9346_op_write_all = 0x10,     /* 00 01zzzz */
384      Chip9346_op_write_disable = 0x00, /* 00 00zzzz */
385  };
386  
387  enum Chip9346Mode
388  {
389      Chip9346_none = 0,
390      Chip9346_enter_command_mode,
391      Chip9346_read_command,
392      Chip9346_data_read,      /* from output register */
393      Chip9346_data_write,     /* to input register, then to contents at specified address */
394      Chip9346_data_write_all, /* to input register, then filling contents */
395  };
396  
397  typedef struct EEprom9346
398  {
399      uint16_t contents[EEPROM_9346_SIZE];
400      int      mode;
401      uint32_t tick;
402      uint8_t  address;
403      uint16_t input;
404      uint16_t output;
405  
406      uint8_t eecs;
407      uint8_t eesk;
408      uint8_t eedi;
409      uint8_t eedo;
410  } EEprom9346;
411  
412  typedef struct RTL8139TallyCounters
413  {
414      /* Tally counters */
415      uint64_t   TxOk;
416      uint64_t   RxOk;
417      uint64_t   TxERR;
418      uint32_t   RxERR;
419      uint16_t   MissPkt;
420      uint16_t   FAE;
421      uint32_t   Tx1Col;
422      uint32_t   TxMCol;
423      uint64_t   RxOkPhy;
424      uint64_t   RxOkBrd;
425      uint32_t   RxOkMul;
426      uint16_t   TxAbt;
427      uint16_t   TxUndrn;
428  } RTL8139TallyCounters;
429  
430  /* Clears all tally counters */
431  static void RTL8139TallyCounters_clear(RTL8139TallyCounters* counters);
432  
433  struct RTL8139State {
434      /*< private >*/
435      PCIDevice parent_obj;
436      /*< public >*/
437  
438      uint8_t phys[8]; /* mac address */
439      uint8_t mult[8]; /* multicast mask array */
440  
441      uint32_t TxStatus[4]; /* TxStatus0 in C mode*/ /* also DTCCR[0] and DTCCR[1] in C+ mode */
442      uint32_t TxAddr[4];   /* TxAddr0 */
443      uint32_t RxBuf;       /* Receive buffer */
444      uint32_t RxBufferSize;/* internal variable, receive ring buffer size in C mode */
445      uint32_t RxBufPtr;
446      uint32_t RxBufAddr;
447  
448      uint16_t IntrStatus;
449      uint16_t IntrMask;
450  
451      uint32_t TxConfig;
452      uint32_t RxConfig;
453      uint32_t RxMissed;
454  
455      uint16_t CSCR;
456  
457      uint8_t  Cfg9346;
458      uint8_t  Config0;
459      uint8_t  Config1;
460      uint8_t  Config3;
461      uint8_t  Config4;
462      uint8_t  Config5;
463  
464      uint8_t  clock_enabled;
465      uint8_t  bChipCmdState;
466  
467      uint16_t MultiIntr;
468  
469      uint16_t BasicModeCtrl;
470      uint16_t BasicModeStatus;
471      uint16_t NWayAdvert;
472      uint16_t NWayLPAR;
473      uint16_t NWayExpansion;
474  
475      uint16_t CpCmd;
476      uint8_t  TxThresh;
477  
478      NICState *nic;
479      NICConf conf;
480  
481      /* C ring mode */
482      uint32_t   currTxDesc;
483  
484      /* C+ mode */
485      uint32_t   cplus_enabled;
486  
487      uint32_t   currCPlusRxDesc;
488      uint32_t   currCPlusTxDesc;
489  
490      uint32_t   RxRingAddrLO;
491      uint32_t   RxRingAddrHI;
492  
493      EEprom9346 eeprom;
494  
495      uint32_t   TCTR;
496      uint32_t   TimerInt;
497      int64_t    TCTR_base;
498  
499      /* Tally counters */
500      RTL8139TallyCounters tally_counters;
501  
502      /* Non-persistent data */
503      uint8_t   *cplus_txbuffer;
504      int        cplus_txbuffer_len;
505      int        cplus_txbuffer_offset;
506  
507      /* PCI interrupt timer */
508      QEMUTimer *timer;
509  
510      MemoryRegion bar_io;
511      MemoryRegion bar_mem;
512  
513      /* Support migration to/from old versions */
514      int rtl8139_mmio_io_addr_dummy;
515  };
516  
517  /* Writes tally counters to memory via DMA */
518  static void RTL8139TallyCounters_dma_write(RTL8139State *s, dma_addr_t tc_addr);
519  
520  static void rtl8139_set_next_tctr_time(RTL8139State *s);
521  
522  static void prom9346_decode_command(EEprom9346 *eeprom, uint8_t command)
523  {
524      DPRINTF("eeprom command 0x%02x\n", command);
525  
526      switch (command & Chip9346_op_mask)
527      {
528          case Chip9346_op_read:
529          {
530              eeprom->address = command & EEPROM_9346_ADDR_MASK;
531              eeprom->output = eeprom->contents[eeprom->address];
532              eeprom->eedo = 0;
533              eeprom->tick = 0;
534              eeprom->mode = Chip9346_data_read;
535              DPRINTF("eeprom read from address 0x%02x data=0x%04x\n",
536                  eeprom->address, eeprom->output);
537          }
538          break;
539  
540          case Chip9346_op_write:
541          {
542              eeprom->address = command & EEPROM_9346_ADDR_MASK;
543              eeprom->input = 0;
544              eeprom->tick = 0;
545              eeprom->mode = Chip9346_none; /* Chip9346_data_write */
546              DPRINTF("eeprom begin write to address 0x%02x\n",
547                  eeprom->address);
548          }
549          break;
550          default:
551              eeprom->mode = Chip9346_none;
552              switch (command & Chip9346_op_ext_mask)
553              {
554                  case Chip9346_op_write_enable:
555                      DPRINTF("eeprom write enabled\n");
556                      break;
557                  case Chip9346_op_write_all:
558                      DPRINTF("eeprom begin write all\n");
559                      break;
560                  case Chip9346_op_write_disable:
561                      DPRINTF("eeprom write disabled\n");
562                      break;
563              }
564              break;
565      }
566  }
567  
568  static void prom9346_shift_clock(EEprom9346 *eeprom)
569  {
570      int bit = eeprom->eedi?1:0;
571  
572      ++ eeprom->tick;
573  
574      DPRINTF("eeprom: tick %d eedi=%d eedo=%d\n", eeprom->tick, eeprom->eedi,
575          eeprom->eedo);
576  
577      switch (eeprom->mode)
578      {
579          case Chip9346_enter_command_mode:
580              if (bit)
581              {
582                  eeprom->mode = Chip9346_read_command;
583                  eeprom->tick = 0;
584                  eeprom->input = 0;
585                  DPRINTF("eeprom: +++ synchronized, begin command read\n");
586              }
587              break;
588  
589          case Chip9346_read_command:
590              eeprom->input = (eeprom->input << 1) | (bit & 1);
591              if (eeprom->tick == 8)
592              {
593                  prom9346_decode_command(eeprom, eeprom->input & 0xff);
594              }
595              break;
596  
597          case Chip9346_data_read:
598              eeprom->eedo = (eeprom->output & 0x8000)?1:0;
599              eeprom->output <<= 1;
600              if (eeprom->tick == 16)
601              {
602  #if 1
603          // the FreeBSD drivers (rl and re) don't explicitly toggle
604          // CS between reads (or does setting Cfg9346 to 0 count too?),
605          // so we need to enter wait-for-command state here
606                  eeprom->mode = Chip9346_enter_command_mode;
607                  eeprom->input = 0;
608                  eeprom->tick = 0;
609  
610                  DPRINTF("eeprom: +++ end of read, awaiting next command\n");
611  #else
612          // original behaviour
613                  ++eeprom->address;
614                  eeprom->address &= EEPROM_9346_ADDR_MASK;
615                  eeprom->output = eeprom->contents[eeprom->address];
616                  eeprom->tick = 0;
617  
618                  DPRINTF("eeprom: +++ read next address 0x%02x data=0x%04x\n",
619                      eeprom->address, eeprom->output);
620  #endif
621              }
622              break;
623  
624          case Chip9346_data_write:
625              eeprom->input = (eeprom->input << 1) | (bit & 1);
626              if (eeprom->tick == 16)
627              {
628                  DPRINTF("eeprom write to address 0x%02x data=0x%04x\n",
629                      eeprom->address, eeprom->input);
630  
631                  eeprom->contents[eeprom->address] = eeprom->input;
632                  eeprom->mode = Chip9346_none; /* waiting for next command after CS cycle */
633                  eeprom->tick = 0;
634                  eeprom->input = 0;
635              }
636              break;
637  
638          case Chip9346_data_write_all:
639              eeprom->input = (eeprom->input << 1) | (bit & 1);
640              if (eeprom->tick == 16)
641              {
642                  int i;
643                  for (i = 0; i < EEPROM_9346_SIZE; i++)
644                  {
645                      eeprom->contents[i] = eeprom->input;
646                  }
647                  DPRINTF("eeprom filled with data=0x%04x\n", eeprom->input);
648  
649                  eeprom->mode = Chip9346_enter_command_mode;
650                  eeprom->tick = 0;
651                  eeprom->input = 0;
652              }
653              break;
654  
655          default:
656              break;
657      }
658  }
659  
660  static int prom9346_get_wire(RTL8139State *s)
661  {
662      EEprom9346 *eeprom = &s->eeprom;
663      if (!eeprom->eecs)
664          return 0;
665  
666      return eeprom->eedo;
667  }
668  
669  /* FIXME: This should be merged into/replaced by eeprom93xx.c.  */
670  static void prom9346_set_wire(RTL8139State *s, int eecs, int eesk, int eedi)
671  {
672      EEprom9346 *eeprom = &s->eeprom;
673      uint8_t old_eecs = eeprom->eecs;
674      uint8_t old_eesk = eeprom->eesk;
675  
676      eeprom->eecs = eecs;
677      eeprom->eesk = eesk;
678      eeprom->eedi = eedi;
679  
680      DPRINTF("eeprom: +++ wires CS=%d SK=%d DI=%d DO=%d\n", eeprom->eecs,
681          eeprom->eesk, eeprom->eedi, eeprom->eedo);
682  
683      if (!old_eecs && eecs)
684      {
685          /* Synchronize start */
686          eeprom->tick = 0;
687          eeprom->input = 0;
688          eeprom->output = 0;
689          eeprom->mode = Chip9346_enter_command_mode;
690  
691          DPRINTF("=== eeprom: begin access, enter command mode\n");
692      }
693  
694      if (!eecs)
695      {
696          DPRINTF("=== eeprom: end access\n");
697          return;
698      }
699  
700      if (!old_eesk && eesk)
701      {
702          /* SK front rules */
703          prom9346_shift_clock(eeprom);
704      }
705  }
706  
707  static void rtl8139_update_irq(RTL8139State *s)
708  {
709      PCIDevice *d = PCI_DEVICE(s);
710      int isr;
711      isr = (s->IntrStatus & s->IntrMask) & 0xffff;
712  
713      DPRINTF("Set IRQ to %d (%04x %04x)\n", isr ? 1 : 0, s->IntrStatus,
714          s->IntrMask);
715  
716      pci_set_irq(d, (isr != 0));
717  }
718  
719  static int rtl8139_RxWrap(RTL8139State *s)
720  {
721      /* wrapping enabled; assume 1.5k more buffer space if size < 65536 */
722      return (s->RxConfig & (1 << 7));
723  }
724  
725  static int rtl8139_receiver_enabled(RTL8139State *s)
726  {
727      return s->bChipCmdState & CmdRxEnb;
728  }
729  
730  static int rtl8139_transmitter_enabled(RTL8139State *s)
731  {
732      return s->bChipCmdState & CmdTxEnb;
733  }
734  
735  static int rtl8139_cp_receiver_enabled(RTL8139State *s)
736  {
737      return s->CpCmd & CPlusRxEnb;
738  }
739  
740  static int rtl8139_cp_transmitter_enabled(RTL8139State *s)
741  {
742      return s->CpCmd & CPlusTxEnb;
743  }
744  
745  static void rtl8139_write_buffer(RTL8139State *s, const void *buf, int size)
746  {
747      PCIDevice *d = PCI_DEVICE(s);
748  
749      if (s->RxBufAddr + size > s->RxBufferSize)
750      {
751          int wrapped = MOD2(s->RxBufAddr + size, s->RxBufferSize);
752  
753          /* write packet data */
754          if (wrapped && !(s->RxBufferSize < 65536 && rtl8139_RxWrap(s)))
755          {
756              DPRINTF(">>> rx packet wrapped in buffer at %d\n", size - wrapped);
757  
758              if (size > wrapped)
759              {
760                  pci_dma_write(d, s->RxBuf + s->RxBufAddr,
761                                buf, size-wrapped);
762              }
763  
764              /* reset buffer pointer */
765              s->RxBufAddr = 0;
766  
767              pci_dma_write(d, s->RxBuf + s->RxBufAddr,
768                            buf + (size-wrapped), wrapped);
769  
770              s->RxBufAddr = wrapped;
771  
772              return;
773          }
774      }
775  
776      /* non-wrapping path or overwrapping enabled */
777      pci_dma_write(d, s->RxBuf + s->RxBufAddr, buf, size);
778  
779      s->RxBufAddr += size;
780  }
781  
782  #define MIN_BUF_SIZE 60
783  static inline dma_addr_t rtl8139_addr64(uint32_t low, uint32_t high)
784  {
785      return low | ((uint64_t)high << 32);
786  }
787  
788  /* Workaround for buggy guest driver such as linux who allocates rx
789   * rings after the receiver were enabled. */
790  static bool rtl8139_cp_rx_valid(RTL8139State *s)
791  {
792      return !(s->RxRingAddrLO == 0 && s->RxRingAddrHI == 0);
793  }
794  
795  static bool rtl8139_can_receive(NetClientState *nc)
796  {
797      RTL8139State *s = qemu_get_nic_opaque(nc);
798      int avail;
799  
800      /* Receive (drop) packets if card is disabled.  */
801      if (!s->clock_enabled) {
802          return true;
803      }
804      if (!rtl8139_receiver_enabled(s)) {
805          return true;
806      }
807  
808      if (rtl8139_cp_receiver_enabled(s) && rtl8139_cp_rx_valid(s)) {
809          /* ??? Flow control not implemented in c+ mode.
810             This is a hack to work around slirp deficiencies anyway.  */
811          return true;
812      }
813  
814      avail = MOD2(s->RxBufferSize + s->RxBufPtr - s->RxBufAddr,
815                   s->RxBufferSize);
816      return avail == 0 || avail >= 1514 || (s->IntrMask & RxOverflow);
817  }
818  
819  static ssize_t rtl8139_do_receive(NetClientState *nc, const uint8_t *buf, size_t size_, int do_interrupt)
820  {
821      RTL8139State *s = qemu_get_nic_opaque(nc);
822      PCIDevice *d = PCI_DEVICE(s);
823      /* size is the length of the buffer passed to the driver */
824      size_t size = size_;
825      const uint8_t *dot1q_buf = NULL;
826  
827      uint32_t packet_header = 0;
828  
829      static const uint8_t broadcast_macaddr[6] =
830          { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
831  
832      DPRINTF(">>> received len=%zu\n", size);
833  
834      /* test if board clock is stopped */
835      if (!s->clock_enabled)
836      {
837          DPRINTF("stopped ==========================\n");
838          return -1;
839      }
840  
841      /* first check if receiver is enabled */
842  
843      if (!rtl8139_receiver_enabled(s))
844      {
845          DPRINTF("receiver disabled ================\n");
846          return -1;
847      }
848  
849      /* XXX: check this */
850      if (s->RxConfig & AcceptAllPhys) {
851          /* promiscuous: receive all */
852          DPRINTF(">>> packet received in promiscuous mode\n");
853  
854      } else {
855          if (!memcmp(buf,  broadcast_macaddr, 6)) {
856              /* broadcast address */
857              if (!(s->RxConfig & AcceptBroadcast))
858              {
859                  DPRINTF(">>> broadcast packet rejected\n");
860  
861                  /* update tally counter */
862                  ++s->tally_counters.RxERR;
863  
864                  return size;
865              }
866  
867              packet_header |= RxBroadcast;
868  
869              DPRINTF(">>> broadcast packet received\n");
870  
871              /* update tally counter */
872              ++s->tally_counters.RxOkBrd;
873  
874          } else if (buf[0] & 0x01) {
875              /* multicast */
876              if (!(s->RxConfig & AcceptMulticast))
877              {
878                  DPRINTF(">>> multicast packet rejected\n");
879  
880                  /* update tally counter */
881                  ++s->tally_counters.RxERR;
882  
883                  return size;
884              }
885  
886              int mcast_idx = net_crc32(buf, ETH_ALEN) >> 26;
887  
888              if (!(s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))))
889              {
890                  DPRINTF(">>> multicast address mismatch\n");
891  
892                  /* update tally counter */
893                  ++s->tally_counters.RxERR;
894  
895                  return size;
896              }
897  
898              packet_header |= RxMulticast;
899  
900              DPRINTF(">>> multicast packet received\n");
901  
902              /* update tally counter */
903              ++s->tally_counters.RxOkMul;
904  
905          } else if (s->phys[0] == buf[0] &&
906                     s->phys[1] == buf[1] &&
907                     s->phys[2] == buf[2] &&
908                     s->phys[3] == buf[3] &&
909                     s->phys[4] == buf[4] &&
910                     s->phys[5] == buf[5]) {
911              /* match */
912              if (!(s->RxConfig & AcceptMyPhys))
913              {
914                  DPRINTF(">>> rejecting physical address matching packet\n");
915  
916                  /* update tally counter */
917                  ++s->tally_counters.RxERR;
918  
919                  return size;
920              }
921  
922              packet_header |= RxPhysical;
923  
924              DPRINTF(">>> physical address matching packet received\n");
925  
926              /* update tally counter */
927              ++s->tally_counters.RxOkPhy;
928  
929          } else {
930  
931              DPRINTF(">>> unknown packet\n");
932  
933              /* update tally counter */
934              ++s->tally_counters.RxERR;
935  
936              return size;
937          }
938      }
939  
940      if (rtl8139_cp_receiver_enabled(s))
941      {
942          if (!rtl8139_cp_rx_valid(s)) {
943              return size;
944          }
945  
946          DPRINTF("in C+ Rx mode ================\n");
947  
948          /* begin C+ receiver mode */
949  
950  /* w0 ownership flag */
951  #define CP_RX_OWN (1<<31)
952  /* w0 end of ring flag */
953  #define CP_RX_EOR (1<<30)
954  /* w0 bits 0...12 : buffer size */
955  #define CP_RX_BUFFER_SIZE_MASK ((1<<13) - 1)
956  /* w1 tag available flag */
957  #define CP_RX_TAVA (1<<16)
958  /* w1 bits 0...15 : VLAN tag */
959  #define CP_RX_VLAN_TAG_MASK ((1<<16) - 1)
960  /* w2 low  32bit of Rx buffer ptr */
961  /* w3 high 32bit of Rx buffer ptr */
962  
963          int descriptor = s->currCPlusRxDesc;
964          dma_addr_t cplus_rx_ring_desc;
965  
966          cplus_rx_ring_desc = rtl8139_addr64(s->RxRingAddrLO, s->RxRingAddrHI);
967          cplus_rx_ring_desc += 16 * descriptor;
968  
969          DPRINTF("+++ C+ mode reading RX descriptor %d from host memory at "
970              "%08x %08x = "DMA_ADDR_FMT"\n", descriptor, s->RxRingAddrHI,
971              s->RxRingAddrLO, cplus_rx_ring_desc);
972  
973          uint32_t val, rxdw0,rxdw1,rxbufLO,rxbufHI;
974  
975          pci_dma_read(d, cplus_rx_ring_desc, &val, 4);
976          rxdw0 = le32_to_cpu(val);
977          pci_dma_read(d, cplus_rx_ring_desc+4, &val, 4);
978          rxdw1 = le32_to_cpu(val);
979          pci_dma_read(d, cplus_rx_ring_desc+8, &val, 4);
980          rxbufLO = le32_to_cpu(val);
981          pci_dma_read(d, cplus_rx_ring_desc+12, &val, 4);
982          rxbufHI = le32_to_cpu(val);
983  
984          DPRINTF("+++ C+ mode RX descriptor %d %08x %08x %08x %08x\n",
985              descriptor, rxdw0, rxdw1, rxbufLO, rxbufHI);
986  
987          if (!(rxdw0 & CP_RX_OWN))
988          {
989              DPRINTF("C+ Rx mode : descriptor %d is owned by host\n",
990                  descriptor);
991  
992              s->IntrStatus |= RxOverflow;
993              ++s->RxMissed;
994  
995              /* update tally counter */
996              ++s->tally_counters.RxERR;
997              ++s->tally_counters.MissPkt;
998  
999              rtl8139_update_irq(s);
1000              return size_;
1001          }
1002  
1003          uint32_t rx_space = rxdw0 & CP_RX_BUFFER_SIZE_MASK;
1004  
1005          /* write VLAN info to descriptor variables. */
1006          if (s->CpCmd & CPlusRxVLAN &&
1007              lduw_be_p(&buf[ETH_ALEN * 2]) == ETH_P_VLAN) {
1008              dot1q_buf = &buf[ETH_ALEN * 2];
1009              size -= VLAN_HLEN;
1010              /* if too small buffer, use the tailroom added duing expansion */
1011              if (size < MIN_BUF_SIZE) {
1012                  size = MIN_BUF_SIZE;
1013              }
1014  
1015              rxdw1 &= ~CP_RX_VLAN_TAG_MASK;
1016              /* BE + ~le_to_cpu()~ + cpu_to_le() = BE */
1017              rxdw1 |= CP_RX_TAVA | lduw_le_p(&dot1q_buf[ETHER_TYPE_LEN]);
1018  
1019              DPRINTF("C+ Rx mode : extracted vlan tag with tci: ""%u\n",
1020                  lduw_be_p(&dot1q_buf[ETHER_TYPE_LEN]));
1021          } else {
1022              /* reset VLAN tag flag */
1023              rxdw1 &= ~CP_RX_TAVA;
1024          }
1025  
1026          /* TODO: scatter the packet over available receive ring descriptors space */
1027  
1028          if (size+4 > rx_space)
1029          {
1030              DPRINTF("C+ Rx mode : descriptor %d size %d received %zu + 4\n",
1031                  descriptor, rx_space, size);
1032  
1033              s->IntrStatus |= RxOverflow;
1034              ++s->RxMissed;
1035  
1036              /* update tally counter */
1037              ++s->tally_counters.RxERR;
1038              ++s->tally_counters.MissPkt;
1039  
1040              rtl8139_update_irq(s);
1041              return size_;
1042          }
1043  
1044          dma_addr_t rx_addr = rtl8139_addr64(rxbufLO, rxbufHI);
1045  
1046          /* receive/copy to target memory */
1047          if (dot1q_buf) {
1048              pci_dma_write(d, rx_addr, buf, 2 * ETH_ALEN);
1049              pci_dma_write(d, rx_addr + 2 * ETH_ALEN,
1050                            buf + 2 * ETH_ALEN + VLAN_HLEN,
1051                            size - 2 * ETH_ALEN);
1052          } else {
1053              pci_dma_write(d, rx_addr, buf, size);
1054          }
1055  
1056          if (s->CpCmd & CPlusRxChkSum)
1057          {
1058              /* do some packet checksumming */
1059          }
1060  
1061          /* write checksum */
1062          val = cpu_to_le32(crc32(0, buf, size_));
1063          pci_dma_write(d, rx_addr+size, (uint8_t *)&val, 4);
1064  
1065  /* first segment of received packet flag */
1066  #define CP_RX_STATUS_FS (1<<29)
1067  /* last segment of received packet flag */
1068  #define CP_RX_STATUS_LS (1<<28)
1069  /* multicast packet flag */
1070  #define CP_RX_STATUS_MAR (1<<26)
1071  /* physical-matching packet flag */
1072  #define CP_RX_STATUS_PAM (1<<25)
1073  /* broadcast packet flag */
1074  #define CP_RX_STATUS_BAR (1<<24)
1075  /* runt packet flag */
1076  #define CP_RX_STATUS_RUNT (1<<19)
1077  /* crc error flag */
1078  #define CP_RX_STATUS_CRC (1<<18)
1079  /* IP checksum error flag */
1080  #define CP_RX_STATUS_IPF (1<<15)
1081  /* UDP checksum error flag */
1082  #define CP_RX_STATUS_UDPF (1<<14)
1083  /* TCP checksum error flag */
1084  #define CP_RX_STATUS_TCPF (1<<13)
1085  
1086          /* transfer ownership to target */
1087          rxdw0 &= ~CP_RX_OWN;
1088  
1089          /* set first segment bit */
1090          rxdw0 |= CP_RX_STATUS_FS;
1091  
1092          /* set last segment bit */
1093          rxdw0 |= CP_RX_STATUS_LS;
1094  
1095          /* set received packet type flags */
1096          if (packet_header & RxBroadcast)
1097              rxdw0 |= CP_RX_STATUS_BAR;
1098          if (packet_header & RxMulticast)
1099              rxdw0 |= CP_RX_STATUS_MAR;
1100          if (packet_header & RxPhysical)
1101              rxdw0 |= CP_RX_STATUS_PAM;
1102  
1103          /* set received size */
1104          rxdw0 &= ~CP_RX_BUFFER_SIZE_MASK;
1105          rxdw0 |= (size+4);
1106  
1107          /* update ring data */
1108          val = cpu_to_le32(rxdw0);
1109          pci_dma_write(d, cplus_rx_ring_desc, (uint8_t *)&val, 4);
1110          val = cpu_to_le32(rxdw1);
1111          pci_dma_write(d, cplus_rx_ring_desc+4, (uint8_t *)&val, 4);
1112  
1113          /* update tally counter */
1114          ++s->tally_counters.RxOk;
1115  
1116          /* seek to next Rx descriptor */
1117          if (rxdw0 & CP_RX_EOR)
1118          {
1119              s->currCPlusRxDesc = 0;
1120          }
1121          else
1122          {
1123              ++s->currCPlusRxDesc;
1124          }
1125  
1126          DPRINTF("done C+ Rx mode ----------------\n");
1127  
1128      }
1129      else
1130      {
1131          DPRINTF("in ring Rx mode ================\n");
1132  
1133          /* begin ring receiver mode */
1134          int avail = MOD2(s->RxBufferSize + s->RxBufPtr - s->RxBufAddr, s->RxBufferSize);
1135  
1136          /* if receiver buffer is empty then avail == 0 */
1137  
1138  #define RX_ALIGN(x) (((x) + 3) & ~0x3)
1139  
1140          if (avail != 0 && RX_ALIGN(size + 8) >= avail)
1141          {
1142              DPRINTF("rx overflow: rx buffer length %d head 0x%04x "
1143                  "read 0x%04x === available 0x%04x need 0x%04zx\n",
1144                  s->RxBufferSize, s->RxBufAddr, s->RxBufPtr, avail, size + 8);
1145  
1146              s->IntrStatus |= RxOverflow;
1147              ++s->RxMissed;
1148              rtl8139_update_irq(s);
1149              return 0;
1150          }
1151  
1152          packet_header |= RxStatusOK;
1153  
1154          packet_header |= (((size+4) << 16) & 0xffff0000);
1155  
1156          /* write header */
1157          uint32_t val = cpu_to_le32(packet_header);
1158  
1159          rtl8139_write_buffer(s, (uint8_t *)&val, 4);
1160  
1161          rtl8139_write_buffer(s, buf, size);
1162  
1163          /* write checksum */
1164          val = cpu_to_le32(crc32(0, buf, size));
1165          rtl8139_write_buffer(s, (uint8_t *)&val, 4);
1166  
1167          /* correct buffer write pointer */
1168          s->RxBufAddr = MOD2(RX_ALIGN(s->RxBufAddr), s->RxBufferSize);
1169  
1170          /* now we can signal we have received something */
1171  
1172          DPRINTF("received: rx buffer length %d head 0x%04x read 0x%04x\n",
1173              s->RxBufferSize, s->RxBufAddr, s->RxBufPtr);
1174      }
1175  
1176      s->IntrStatus |= RxOK;
1177  
1178      if (do_interrupt)
1179      {
1180          rtl8139_update_irq(s);
1181      }
1182  
1183      return size_;
1184  }
1185  
1186  static ssize_t rtl8139_receive(NetClientState *nc, const uint8_t *buf, size_t size)
1187  {
1188      return rtl8139_do_receive(nc, buf, size, 1);
1189  }
1190  
1191  static void rtl8139_reset_rxring(RTL8139State *s, uint32_t bufferSize)
1192  {
1193      s->RxBufferSize = bufferSize;
1194      s->RxBufPtr  = 0;
1195      s->RxBufAddr = 0;
1196  }
1197  
1198  static void rtl8139_reset_phy(RTL8139State *s)
1199  {
1200      s->BasicModeStatus  = 0x7809;
1201      s->BasicModeStatus |= 0x0020; /* autonegotiation completed */
1202      /* preserve link state */
1203      s->BasicModeStatus |= qemu_get_queue(s->nic)->link_down ? 0 : 0x04;
1204  
1205      s->NWayAdvert    = 0x05e1; /* all modes, full duplex */
1206      s->NWayLPAR      = 0x05e1; /* all modes, full duplex */
1207      s->NWayExpansion = 0x0001; /* autonegotiation supported */
1208  
1209      s->CSCR = CSCR_F_LINK_100 | CSCR_HEART_BIT | CSCR_LD;
1210  }
1211  
1212  static void rtl8139_reset(DeviceState *d)
1213  {
1214      RTL8139State *s = RTL8139(d);
1215      int i;
1216  
1217      /* restore MAC address */
1218      memcpy(s->phys, s->conf.macaddr.a, 6);
1219      qemu_format_nic_info_str(qemu_get_queue(s->nic), s->phys);
1220  
1221      /* reset interrupt mask */
1222      s->IntrStatus = 0;
1223      s->IntrMask = 0;
1224  
1225      rtl8139_update_irq(s);
1226  
1227      /* mark all status registers as owned by host */
1228      for (i = 0; i < 4; ++i)
1229      {
1230          s->TxStatus[i] = TxHostOwns;
1231      }
1232  
1233      s->currTxDesc = 0;
1234      s->currCPlusRxDesc = 0;
1235      s->currCPlusTxDesc = 0;
1236  
1237      s->RxRingAddrLO = 0;
1238      s->RxRingAddrHI = 0;
1239  
1240      s->RxBuf = 0;
1241  
1242      rtl8139_reset_rxring(s, 8192);
1243  
1244      /* ACK the reset */
1245      s->TxConfig = 0;
1246  
1247  #if 0
1248  //    s->TxConfig |= HW_REVID(1, 0, 0, 0, 0, 0, 0); // RTL-8139  HasHltClk
1249      s->clock_enabled = 0;
1250  #else
1251      s->TxConfig |= HW_REVID(1, 1, 1, 0, 1, 1, 0); // RTL-8139C+ HasLWake
1252      s->clock_enabled = 1;
1253  #endif
1254  
1255      s->bChipCmdState = CmdReset; /* RxBufEmpty bit is calculated on read from ChipCmd */;
1256  
1257      /* set initial state data */
1258      s->Config0 = 0x0; /* No boot ROM */
1259      s->Config1 = 0xC; /* IO mapped and MEM mapped registers available */
1260      s->Config3 = 0x1; /* fast back-to-back compatible */
1261      s->Config5 = 0x0;
1262  
1263      s->CpCmd   = 0x0; /* reset C+ mode */
1264      s->cplus_enabled = 0;
1265  
1266  //    s->BasicModeCtrl = 0x3100; // 100Mbps, full duplex, autonegotiation
1267  //    s->BasicModeCtrl = 0x2100; // 100Mbps, full duplex
1268      s->BasicModeCtrl = 0x1000; // autonegotiation
1269  
1270      rtl8139_reset_phy(s);
1271  
1272      /* also reset timer and disable timer interrupt */
1273      s->TCTR = 0;
1274      s->TimerInt = 0;
1275      s->TCTR_base = 0;
1276      rtl8139_set_next_tctr_time(s);
1277  
1278      /* reset tally counters */
1279      RTL8139TallyCounters_clear(&s->tally_counters);
1280  }
1281  
1282  static void RTL8139TallyCounters_clear(RTL8139TallyCounters* counters)
1283  {
1284      counters->TxOk = 0;
1285      counters->RxOk = 0;
1286      counters->TxERR = 0;
1287      counters->RxERR = 0;
1288      counters->MissPkt = 0;
1289      counters->FAE = 0;
1290      counters->Tx1Col = 0;
1291      counters->TxMCol = 0;
1292      counters->RxOkPhy = 0;
1293      counters->RxOkBrd = 0;
1294      counters->RxOkMul = 0;
1295      counters->TxAbt = 0;
1296      counters->TxUndrn = 0;
1297  }
1298  
1299  static void RTL8139TallyCounters_dma_write(RTL8139State *s, dma_addr_t tc_addr)
1300  {
1301      PCIDevice *d = PCI_DEVICE(s);
1302      RTL8139TallyCounters *tally_counters = &s->tally_counters;
1303      uint16_t val16;
1304      uint32_t val32;
1305      uint64_t val64;
1306  
1307      val64 = cpu_to_le64(tally_counters->TxOk);
1308      pci_dma_write(d, tc_addr + 0,     (uint8_t *)&val64, 8);
1309  
1310      val64 = cpu_to_le64(tally_counters->RxOk);
1311      pci_dma_write(d, tc_addr + 8,     (uint8_t *)&val64, 8);
1312  
1313      val64 = cpu_to_le64(tally_counters->TxERR);
1314      pci_dma_write(d, tc_addr + 16,    (uint8_t *)&val64, 8);
1315  
1316      val32 = cpu_to_le32(tally_counters->RxERR);
1317      pci_dma_write(d, tc_addr + 24,    (uint8_t *)&val32, 4);
1318  
1319      val16 = cpu_to_le16(tally_counters->MissPkt);
1320      pci_dma_write(d, tc_addr + 28,    (uint8_t *)&val16, 2);
1321  
1322      val16 = cpu_to_le16(tally_counters->FAE);
1323      pci_dma_write(d, tc_addr + 30,    (uint8_t *)&val16, 2);
1324  
1325      val32 = cpu_to_le32(tally_counters->Tx1Col);
1326      pci_dma_write(d, tc_addr + 32,    (uint8_t *)&val32, 4);
1327  
1328      val32 = cpu_to_le32(tally_counters->TxMCol);
1329      pci_dma_write(d, tc_addr + 36,    (uint8_t *)&val32, 4);
1330  
1331      val64 = cpu_to_le64(tally_counters->RxOkPhy);
1332      pci_dma_write(d, tc_addr + 40,    (uint8_t *)&val64, 8);
1333  
1334      val64 = cpu_to_le64(tally_counters->RxOkBrd);
1335      pci_dma_write(d, tc_addr + 48,    (uint8_t *)&val64, 8);
1336  
1337      val32 = cpu_to_le32(tally_counters->RxOkMul);
1338      pci_dma_write(d, tc_addr + 56,    (uint8_t *)&val32, 4);
1339  
1340      val16 = cpu_to_le16(tally_counters->TxAbt);
1341      pci_dma_write(d, tc_addr + 60,    (uint8_t *)&val16, 2);
1342  
1343      val16 = cpu_to_le16(tally_counters->TxUndrn);
1344      pci_dma_write(d, tc_addr + 62,    (uint8_t *)&val16, 2);
1345  }
1346  
1347  static void rtl8139_ChipCmd_write(RTL8139State *s, uint32_t val)
1348  {
1349      DeviceState *d = DEVICE(s);
1350  
1351      val &= 0xff;
1352  
1353      DPRINTF("ChipCmd write val=0x%08x\n", val);
1354  
1355      if (val & CmdReset)
1356      {
1357          DPRINTF("ChipCmd reset\n");
1358          rtl8139_reset(d);
1359      }
1360      if (val & CmdRxEnb)
1361      {
1362          DPRINTF("ChipCmd enable receiver\n");
1363  
1364          s->currCPlusRxDesc = 0;
1365      }
1366      if (val & CmdTxEnb)
1367      {
1368          DPRINTF("ChipCmd enable transmitter\n");
1369  
1370          s->currCPlusTxDesc = 0;
1371      }
1372  
1373      /* mask unwritable bits */
1374      val = SET_MASKED(val, 0xe3, s->bChipCmdState);
1375  
1376      /* Deassert reset pin before next read */
1377      val &= ~CmdReset;
1378  
1379      s->bChipCmdState = val;
1380  }
1381  
1382  static int rtl8139_RxBufferEmpty(RTL8139State *s)
1383  {
1384      int unread = MOD2(s->RxBufferSize + s->RxBufAddr - s->RxBufPtr, s->RxBufferSize);
1385  
1386      if (unread != 0)
1387      {
1388          DPRINTF("receiver buffer data available 0x%04x\n", unread);
1389          return 0;
1390      }
1391  
1392      DPRINTF("receiver buffer is empty\n");
1393  
1394      return 1;
1395  }
1396  
1397  static uint32_t rtl8139_ChipCmd_read(RTL8139State *s)
1398  {
1399      uint32_t ret = s->bChipCmdState;
1400  
1401      if (rtl8139_RxBufferEmpty(s))
1402          ret |= RxBufEmpty;
1403  
1404      DPRINTF("ChipCmd read val=0x%04x\n", ret);
1405  
1406      return ret;
1407  }
1408  
1409  static void rtl8139_CpCmd_write(RTL8139State *s, uint32_t val)
1410  {
1411      val &= 0xffff;
1412  
1413      DPRINTF("C+ command register write(w) val=0x%04x\n", val);
1414  
1415      s->cplus_enabled = 1;
1416  
1417      /* mask unwritable bits */
1418      val = SET_MASKED(val, 0xff84, s->CpCmd);
1419  
1420      s->CpCmd = val;
1421  }
1422  
1423  static uint32_t rtl8139_CpCmd_read(RTL8139State *s)
1424  {
1425      uint32_t ret = s->CpCmd;
1426  
1427      DPRINTF("C+ command register read(w) val=0x%04x\n", ret);
1428  
1429      return ret;
1430  }
1431  
1432  static void rtl8139_IntrMitigate_write(RTL8139State *s, uint32_t val)
1433  {
1434      DPRINTF("C+ IntrMitigate register write(w) val=0x%04x\n", val);
1435  }
1436  
1437  static uint32_t rtl8139_IntrMitigate_read(RTL8139State *s)
1438  {
1439      uint32_t ret = 0;
1440  
1441      DPRINTF("C+ IntrMitigate register read(w) val=0x%04x\n", ret);
1442  
1443      return ret;
1444  }
1445  
1446  static int rtl8139_config_writable(RTL8139State *s)
1447  {
1448      if ((s->Cfg9346 & Chip9346_op_mask) == Cfg9346_ConfigWrite)
1449      {
1450          return 1;
1451      }
1452  
1453      DPRINTF("Configuration registers are write-protected\n");
1454  
1455      return 0;
1456  }
1457  
1458  static void rtl8139_BasicModeCtrl_write(RTL8139State *s, uint32_t val)
1459  {
1460      val &= 0xffff;
1461  
1462      DPRINTF("BasicModeCtrl register write(w) val=0x%04x\n", val);
1463  
1464      /* mask unwritable bits */
1465      uint32_t mask = 0xccff;
1466  
1467      if (1 || !rtl8139_config_writable(s))
1468      {
1469          /* Speed setting and autonegotiation enable bits are read-only */
1470          mask |= 0x3000;
1471          /* Duplex mode setting is read-only */
1472          mask |= 0x0100;
1473      }
1474  
1475      if (val & 0x8000) {
1476          /* Reset PHY */
1477          rtl8139_reset_phy(s);
1478      }
1479  
1480      val = SET_MASKED(val, mask, s->BasicModeCtrl);
1481  
1482      s->BasicModeCtrl = val;
1483  }
1484  
1485  static uint32_t rtl8139_BasicModeCtrl_read(RTL8139State *s)
1486  {
1487      uint32_t ret = s->BasicModeCtrl;
1488  
1489      DPRINTF("BasicModeCtrl register read(w) val=0x%04x\n", ret);
1490  
1491      return ret;
1492  }
1493  
1494  static void rtl8139_BasicModeStatus_write(RTL8139State *s, uint32_t val)
1495  {
1496      val &= 0xffff;
1497  
1498      DPRINTF("BasicModeStatus register write(w) val=0x%04x\n", val);
1499  
1500      /* mask unwritable bits */
1501      val = SET_MASKED(val, 0xff3f, s->BasicModeStatus);
1502  
1503      s->BasicModeStatus = val;
1504  }
1505  
1506  static uint32_t rtl8139_BasicModeStatus_read(RTL8139State *s)
1507  {
1508      uint32_t ret = s->BasicModeStatus;
1509  
1510      DPRINTF("BasicModeStatus register read(w) val=0x%04x\n", ret);
1511  
1512      return ret;
1513  }
1514  
1515  static void rtl8139_Cfg9346_write(RTL8139State *s, uint32_t val)
1516  {
1517      DeviceState *d = DEVICE(s);
1518  
1519      val &= 0xff;
1520  
1521      DPRINTF("Cfg9346 write val=0x%02x\n", val);
1522  
1523      /* mask unwritable bits */
1524      val = SET_MASKED(val, 0x31, s->Cfg9346);
1525  
1526      uint32_t opmode = val & 0xc0;
1527      uint32_t eeprom_val = val & 0xf;
1528  
1529      if (opmode == 0x80) {
1530          /* eeprom access */
1531          int eecs = (eeprom_val & 0x08)?1:0;
1532          int eesk = (eeprom_val & 0x04)?1:0;
1533          int eedi = (eeprom_val & 0x02)?1:0;
1534          prom9346_set_wire(s, eecs, eesk, eedi);
1535      } else if (opmode == 0x40) {
1536          /* Reset.  */
1537          val = 0;
1538          rtl8139_reset(d);
1539      }
1540  
1541      s->Cfg9346 = val;
1542  }
1543  
1544  static uint32_t rtl8139_Cfg9346_read(RTL8139State *s)
1545  {
1546      uint32_t ret = s->Cfg9346;
1547  
1548      uint32_t opmode = ret & 0xc0;
1549  
1550      if (opmode == 0x80)
1551      {
1552          /* eeprom access */
1553          int eedo = prom9346_get_wire(s);
1554          if (eedo)
1555          {
1556              ret |=  0x01;
1557          }
1558          else
1559          {
1560              ret &= ~0x01;
1561          }
1562      }
1563  
1564      DPRINTF("Cfg9346 read val=0x%02x\n", ret);
1565  
1566      return ret;
1567  }
1568  
1569  static void rtl8139_Config0_write(RTL8139State *s, uint32_t val)
1570  {
1571      val &= 0xff;
1572  
1573      DPRINTF("Config0 write val=0x%02x\n", val);
1574  
1575      if (!rtl8139_config_writable(s)) {
1576          return;
1577      }
1578  
1579      /* mask unwritable bits */
1580      val = SET_MASKED(val, 0xf8, s->Config0);
1581  
1582      s->Config0 = val;
1583  }
1584  
1585  static uint32_t rtl8139_Config0_read(RTL8139State *s)
1586  {
1587      uint32_t ret = s->Config0;
1588  
1589      DPRINTF("Config0 read val=0x%02x\n", ret);
1590  
1591      return ret;
1592  }
1593  
1594  static void rtl8139_Config1_write(RTL8139State *s, uint32_t val)
1595  {
1596      val &= 0xff;
1597  
1598      DPRINTF("Config1 write val=0x%02x\n", val);
1599  
1600      if (!rtl8139_config_writable(s)) {
1601          return;
1602      }
1603  
1604      /* mask unwritable bits */
1605      val = SET_MASKED(val, 0xC, s->Config1);
1606  
1607      s->Config1 = val;
1608  }
1609  
1610  static uint32_t rtl8139_Config1_read(RTL8139State *s)
1611  {
1612      uint32_t ret = s->Config1;
1613  
1614      DPRINTF("Config1 read val=0x%02x\n", ret);
1615  
1616      return ret;
1617  }
1618  
1619  static void rtl8139_Config3_write(RTL8139State *s, uint32_t val)
1620  {
1621      val &= 0xff;
1622  
1623      DPRINTF("Config3 write val=0x%02x\n", val);
1624  
1625      if (!rtl8139_config_writable(s)) {
1626          return;
1627      }
1628  
1629      /* mask unwritable bits */
1630      val = SET_MASKED(val, 0x8F, s->Config3);
1631  
1632      s->Config3 = val;
1633  }
1634  
1635  static uint32_t rtl8139_Config3_read(RTL8139State *s)
1636  {
1637      uint32_t ret = s->Config3;
1638  
1639      DPRINTF("Config3 read val=0x%02x\n", ret);
1640  
1641      return ret;
1642  }
1643  
1644  static void rtl8139_Config4_write(RTL8139State *s, uint32_t val)
1645  {
1646      val &= 0xff;
1647  
1648      DPRINTF("Config4 write val=0x%02x\n", val);
1649  
1650      if (!rtl8139_config_writable(s)) {
1651          return;
1652      }
1653  
1654      /* mask unwritable bits */
1655      val = SET_MASKED(val, 0x0a, s->Config4);
1656  
1657      s->Config4 = val;
1658  }
1659  
1660  static uint32_t rtl8139_Config4_read(RTL8139State *s)
1661  {
1662      uint32_t ret = s->Config4;
1663  
1664      DPRINTF("Config4 read val=0x%02x\n", ret);
1665  
1666      return ret;
1667  }
1668  
1669  static void rtl8139_Config5_write(RTL8139State *s, uint32_t val)
1670  {
1671      val &= 0xff;
1672  
1673      DPRINTF("Config5 write val=0x%02x\n", val);
1674  
1675      /* mask unwritable bits */
1676      val = SET_MASKED(val, 0x80, s->Config5);
1677  
1678      s->Config5 = val;
1679  }
1680  
1681  static uint32_t rtl8139_Config5_read(RTL8139State *s)
1682  {
1683      uint32_t ret = s->Config5;
1684  
1685      DPRINTF("Config5 read val=0x%02x\n", ret);
1686  
1687      return ret;
1688  }
1689  
1690  static void rtl8139_TxConfig_write(RTL8139State *s, uint32_t val)
1691  {
1692      if (!rtl8139_transmitter_enabled(s))
1693      {
1694          DPRINTF("transmitter disabled; no TxConfig write val=0x%08x\n", val);
1695          return;
1696      }
1697  
1698      DPRINTF("TxConfig write val=0x%08x\n", val);
1699  
1700      val = SET_MASKED(val, TxVersionMask | 0x8070f80f, s->TxConfig);
1701  
1702      s->TxConfig = val;
1703  }
1704  
1705  static void rtl8139_TxConfig_writeb(RTL8139State *s, uint32_t val)
1706  {
1707      DPRINTF("RTL8139C TxConfig via write(b) val=0x%02x\n", val);
1708  
1709      uint32_t tc = s->TxConfig;
1710      tc &= 0xFFFFFF00;
1711      tc |= (val & 0x000000FF);
1712      rtl8139_TxConfig_write(s, tc);
1713  }
1714  
1715  static uint32_t rtl8139_TxConfig_read(RTL8139State *s)
1716  {
1717      uint32_t ret = s->TxConfig;
1718  
1719      DPRINTF("TxConfig read val=0x%04x\n", ret);
1720  
1721      return ret;
1722  }
1723  
1724  static void rtl8139_RxConfig_write(RTL8139State *s, uint32_t val)
1725  {
1726      DPRINTF("RxConfig write val=0x%08x\n", val);
1727  
1728      /* mask unwritable bits */
1729      val = SET_MASKED(val, 0xf0fc0040, s->RxConfig);
1730  
1731      s->RxConfig = val;
1732  
1733      /* reset buffer size and read/write pointers */
1734      rtl8139_reset_rxring(s, 8192 << ((s->RxConfig >> 11) & 0x3));
1735  
1736      DPRINTF("RxConfig write reset buffer size to %d\n", s->RxBufferSize);
1737  }
1738  
1739  static uint32_t rtl8139_RxConfig_read(RTL8139State *s)
1740  {
1741      uint32_t ret = s->RxConfig;
1742  
1743      DPRINTF("RxConfig read val=0x%08x\n", ret);
1744  
1745      return ret;
1746  }
1747  
1748  static void rtl8139_transfer_frame(RTL8139State *s, uint8_t *buf, int size,
1749      int do_interrupt, const uint8_t *dot1q_buf)
1750  {
1751      struct iovec *iov = NULL;
1752      struct iovec vlan_iov[3];
1753  
1754      if (!size)
1755      {
1756          DPRINTF("+++ empty ethernet frame\n");
1757          return;
1758      }
1759  
1760      if (dot1q_buf && size >= ETH_ALEN * 2) {
1761          iov = (struct iovec[3]) {
1762              { .iov_base = buf, .iov_len = ETH_ALEN * 2 },
1763              { .iov_base = (void *) dot1q_buf, .iov_len = VLAN_HLEN },
1764              { .iov_base = buf + ETH_ALEN * 2,
1765                  .iov_len = size - ETH_ALEN * 2 },
1766          };
1767  
1768          memcpy(vlan_iov, iov, sizeof(vlan_iov));
1769          iov = vlan_iov;
1770      }
1771  
1772      if (TxLoopBack == (s->TxConfig & TxLoopBack))
1773      {
1774          size_t buf2_size;
1775          uint8_t *buf2;
1776  
1777          if (iov) {
1778              buf2_size = iov_size(iov, 3);
1779              buf2 = g_malloc(buf2_size);
1780              iov_to_buf(iov, 3, 0, buf2, buf2_size);
1781              buf = buf2;
1782          }
1783  
1784          DPRINTF("+++ transmit loopback mode\n");
1785          qemu_receive_packet(qemu_get_queue(s->nic), buf, size);
1786  
1787          if (iov) {
1788              g_free(buf2);
1789          }
1790      }
1791      else
1792      {
1793          if (iov) {
1794              qemu_sendv_packet(qemu_get_queue(s->nic), iov, 3);
1795          } else {
1796              qemu_send_packet(qemu_get_queue(s->nic), buf, size);
1797          }
1798      }
1799  }
1800  
1801  static int rtl8139_transmit_one(RTL8139State *s, int descriptor)
1802  {
1803      if (!rtl8139_transmitter_enabled(s))
1804      {
1805          DPRINTF("+++ cannot transmit from descriptor %d: transmitter "
1806              "disabled\n", descriptor);
1807          return 0;
1808      }
1809  
1810      if (s->TxStatus[descriptor] & TxHostOwns)
1811      {
1812          DPRINTF("+++ cannot transmit from descriptor %d: owned by host "
1813              "(%08x)\n", descriptor, s->TxStatus[descriptor]);
1814          return 0;
1815      }
1816  
1817      DPRINTF("+++ transmitting from descriptor %d\n", descriptor);
1818  
1819      PCIDevice *d = PCI_DEVICE(s);
1820      int txsize = s->TxStatus[descriptor] & 0x1fff;
1821      uint8_t txbuffer[0x2000];
1822  
1823      DPRINTF("+++ transmit reading %d bytes from host memory at 0x%08x\n",
1824          txsize, s->TxAddr[descriptor]);
1825  
1826      pci_dma_read(d, s->TxAddr[descriptor], txbuffer, txsize);
1827  
1828      /* Mark descriptor as transferred */
1829      s->TxStatus[descriptor] |= TxHostOwns;
1830      s->TxStatus[descriptor] |= TxStatOK;
1831  
1832      rtl8139_transfer_frame(s, txbuffer, txsize, 0, NULL);
1833  
1834      DPRINTF("+++ transmitted %d bytes from descriptor %d\n", txsize,
1835          descriptor);
1836  
1837      /* update interrupt */
1838      s->IntrStatus |= TxOK;
1839      rtl8139_update_irq(s);
1840  
1841      return 1;
1842  }
1843  
1844  #define TCP_HEADER_CLEAR_FLAGS(tcp, off) ((tcp)->th_offset_flags &= cpu_to_be16(~TCP_FLAGS_ONLY(off)))
1845  
1846  /* produces ones' complement sum of data */
1847  static uint16_t ones_complement_sum(uint8_t *data, size_t len)
1848  {
1849      uint32_t result = 0;
1850  
1851      for (; len > 1; data+=2, len-=2)
1852      {
1853          result += *(uint16_t*)data;
1854      }
1855  
1856      /* add the remainder byte */
1857      if (len)
1858      {
1859          uint8_t odd[2] = {*data, 0};
1860          result += *(uint16_t*)odd;
1861      }
1862  
1863      while (result>>16)
1864          result = (result & 0xffff) + (result >> 16);
1865  
1866      return result;
1867  }
1868  
1869  static uint16_t ip_checksum(void *data, size_t len)
1870  {
1871      return ~ones_complement_sum((uint8_t*)data, len);
1872  }
1873  
1874  static int rtl8139_cplus_transmit_one(RTL8139State *s)
1875  {
1876      if (!rtl8139_transmitter_enabled(s))
1877      {
1878          DPRINTF("+++ C+ mode: transmitter disabled\n");
1879          return 0;
1880      }
1881  
1882      if (!rtl8139_cp_transmitter_enabled(s))
1883      {
1884          DPRINTF("+++ C+ mode: C+ transmitter disabled\n");
1885          return 0 ;
1886      }
1887  
1888      PCIDevice *d = PCI_DEVICE(s);
1889      int descriptor = s->currCPlusTxDesc;
1890  
1891      dma_addr_t cplus_tx_ring_desc = rtl8139_addr64(s->TxAddr[0], s->TxAddr[1]);
1892  
1893      /* Normal priority ring */
1894      cplus_tx_ring_desc += 16 * descriptor;
1895  
1896      DPRINTF("+++ C+ mode reading TX descriptor %d from host memory at "
1897          "%08x %08x = 0x"DMA_ADDR_FMT"\n", descriptor, s->TxAddr[1],
1898          s->TxAddr[0], cplus_tx_ring_desc);
1899  
1900      uint32_t val, txdw0,txdw1,txbufLO,txbufHI;
1901  
1902      pci_dma_read(d, cplus_tx_ring_desc,    (uint8_t *)&val, 4);
1903      txdw0 = le32_to_cpu(val);
1904      pci_dma_read(d, cplus_tx_ring_desc+4,  (uint8_t *)&val, 4);
1905      txdw1 = le32_to_cpu(val);
1906      pci_dma_read(d, cplus_tx_ring_desc+8,  (uint8_t *)&val, 4);
1907      txbufLO = le32_to_cpu(val);
1908      pci_dma_read(d, cplus_tx_ring_desc+12, (uint8_t *)&val, 4);
1909      txbufHI = le32_to_cpu(val);
1910  
1911      DPRINTF("+++ C+ mode TX descriptor %d %08x %08x %08x %08x\n", descriptor,
1912          txdw0, txdw1, txbufLO, txbufHI);
1913  
1914  /* w0 ownership flag */
1915  #define CP_TX_OWN (1<<31)
1916  /* w0 end of ring flag */
1917  #define CP_TX_EOR (1<<30)
1918  /* first segment of received packet flag */
1919  #define CP_TX_FS (1<<29)
1920  /* last segment of received packet flag */
1921  #define CP_TX_LS (1<<28)
1922  /* large send packet flag */
1923  #define CP_TX_LGSEN (1<<27)
1924  /* large send MSS mask, bits 16...26 */
1925  #define CP_TC_LGSEN_MSS_SHIFT 16
1926  #define CP_TC_LGSEN_MSS_MASK ((1 << 11) - 1)
1927  
1928  /* IP checksum offload flag */
1929  #define CP_TX_IPCS (1<<18)
1930  /* UDP checksum offload flag */
1931  #define CP_TX_UDPCS (1<<17)
1932  /* TCP checksum offload flag */
1933  #define CP_TX_TCPCS (1<<16)
1934  
1935  /* w0 bits 0...15 : buffer size */
1936  #define CP_TX_BUFFER_SIZE (1<<16)
1937  #define CP_TX_BUFFER_SIZE_MASK (CP_TX_BUFFER_SIZE - 1)
1938  /* w1 add tag flag */
1939  #define CP_TX_TAGC (1<<17)
1940  /* w1 bits 0...15 : VLAN tag (big endian) */
1941  #define CP_TX_VLAN_TAG_MASK ((1<<16) - 1)
1942  /* w2 low  32bit of Rx buffer ptr */
1943  /* w3 high 32bit of Rx buffer ptr */
1944  
1945  /* set after transmission */
1946  /* FIFO underrun flag */
1947  #define CP_TX_STATUS_UNF (1<<25)
1948  /* transmit error summary flag, valid if set any of three below */
1949  #define CP_TX_STATUS_TES (1<<23)
1950  /* out-of-window collision flag */
1951  #define CP_TX_STATUS_OWC (1<<22)
1952  /* link failure flag */
1953  #define CP_TX_STATUS_LNKF (1<<21)
1954  /* excessive collisions flag */
1955  #define CP_TX_STATUS_EXC (1<<20)
1956  
1957      if (!(txdw0 & CP_TX_OWN))
1958      {
1959          DPRINTF("C+ Tx mode : descriptor %d is owned by host\n", descriptor);
1960          return 0 ;
1961      }
1962  
1963      DPRINTF("+++ C+ Tx mode : transmitting from descriptor %d\n", descriptor);
1964  
1965      if (txdw0 & CP_TX_FS)
1966      {
1967          DPRINTF("+++ C+ Tx mode : descriptor %d is first segment "
1968              "descriptor\n", descriptor);
1969  
1970          /* reset internal buffer offset */
1971          s->cplus_txbuffer_offset = 0;
1972      }
1973  
1974      int txsize = txdw0 & CP_TX_BUFFER_SIZE_MASK;
1975      dma_addr_t tx_addr = rtl8139_addr64(txbufLO, txbufHI);
1976  
1977      /* make sure we have enough space to assemble the packet */
1978      if (!s->cplus_txbuffer)
1979      {
1980          s->cplus_txbuffer_len = CP_TX_BUFFER_SIZE;
1981          s->cplus_txbuffer = g_malloc(s->cplus_txbuffer_len);
1982          s->cplus_txbuffer_offset = 0;
1983  
1984          DPRINTF("+++ C+ mode transmission buffer allocated space %d\n",
1985              s->cplus_txbuffer_len);
1986      }
1987  
1988      if (s->cplus_txbuffer_offset + txsize >= s->cplus_txbuffer_len)
1989      {
1990          /* The spec didn't tell the maximum size, stick to CP_TX_BUFFER_SIZE */
1991          txsize = s->cplus_txbuffer_len - s->cplus_txbuffer_offset;
1992          DPRINTF("+++ C+ mode transmission buffer overrun, truncated descriptor"
1993                  "length to %d\n", txsize);
1994      }
1995  
1996      /* append more data to the packet */
1997  
1998      DPRINTF("+++ C+ mode transmit reading %d bytes from host memory at "
1999              DMA_ADDR_FMT" to offset %d\n", txsize, tx_addr,
2000              s->cplus_txbuffer_offset);
2001  
2002      pci_dma_read(d, tx_addr,
2003                   s->cplus_txbuffer + s->cplus_txbuffer_offset, txsize);
2004      s->cplus_txbuffer_offset += txsize;
2005  
2006      /* seek to next Rx descriptor */
2007      if (txdw0 & CP_TX_EOR)
2008      {
2009          s->currCPlusTxDesc = 0;
2010      }
2011      else
2012      {
2013          ++s->currCPlusTxDesc;
2014          if (s->currCPlusTxDesc >= 64)
2015              s->currCPlusTxDesc = 0;
2016      }
2017  
2018      /* Build the Tx Status Descriptor */
2019      uint32_t tx_status = txdw0;
2020  
2021      /* transfer ownership to target */
2022      tx_status &= ~CP_TX_OWN;
2023  
2024      /* reset error indicator bits */
2025      tx_status &= ~CP_TX_STATUS_UNF;
2026      tx_status &= ~CP_TX_STATUS_TES;
2027      tx_status &= ~CP_TX_STATUS_OWC;
2028      tx_status &= ~CP_TX_STATUS_LNKF;
2029      tx_status &= ~CP_TX_STATUS_EXC;
2030  
2031      /* update ring data */
2032      val = cpu_to_le32(tx_status);
2033      pci_dma_write(d, cplus_tx_ring_desc, (uint8_t *)&val, 4);
2034  
2035      /* Now decide if descriptor being processed is holding the last segment of packet */
2036      if (txdw0 & CP_TX_LS)
2037      {
2038          uint8_t dot1q_buffer_space[VLAN_HLEN];
2039          uint16_t *dot1q_buffer;
2040  
2041          DPRINTF("+++ C+ Tx mode : descriptor %d is last segment descriptor\n",
2042              descriptor);
2043  
2044          /* can transfer fully assembled packet */
2045  
2046          uint8_t *saved_buffer  = s->cplus_txbuffer;
2047          int      saved_size    = s->cplus_txbuffer_offset;
2048          int      saved_buffer_len = s->cplus_txbuffer_len;
2049  
2050          /* create vlan tag */
2051          if (txdw1 & CP_TX_TAGC) {
2052              /* the vlan tag is in BE byte order in the descriptor
2053               * BE + le_to_cpu() + ~swap()~ = cpu */
2054              DPRINTF("+++ C+ Tx mode : inserting vlan tag with ""tci: %u\n",
2055                  bswap16(txdw1 & CP_TX_VLAN_TAG_MASK));
2056  
2057              dot1q_buffer = (uint16_t *) dot1q_buffer_space;
2058              dot1q_buffer[0] = cpu_to_be16(ETH_P_VLAN);
2059              /* BE + le_to_cpu() + ~cpu_to_le()~ = BE */
2060              dot1q_buffer[1] = cpu_to_le16(txdw1 & CP_TX_VLAN_TAG_MASK);
2061          } else {
2062              dot1q_buffer = NULL;
2063          }
2064  
2065          /* reset the card space to protect from recursive call */
2066          s->cplus_txbuffer = NULL;
2067          s->cplus_txbuffer_offset = 0;
2068          s->cplus_txbuffer_len = 0;
2069  
2070          if (txdw0 & (CP_TX_IPCS | CP_TX_UDPCS | CP_TX_TCPCS | CP_TX_LGSEN))
2071          {
2072              DPRINTF("+++ C+ mode offloaded task checksum\n");
2073  
2074              /* Large enough for Ethernet and IP headers? */
2075              if (saved_size < ETH_HLEN + sizeof(struct ip_header)) {
2076                  goto skip_offload;
2077              }
2078  
2079              /* ip packet header */
2080              struct ip_header *ip = NULL;
2081              int hlen = 0;
2082              uint8_t  ip_protocol = 0;
2083              uint16_t ip_data_len = 0;
2084  
2085              uint8_t *eth_payload_data = NULL;
2086              size_t   eth_payload_len  = 0;
2087  
2088              int proto = be16_to_cpu(*(uint16_t *)(saved_buffer + 12));
2089              if (proto != ETH_P_IP)
2090              {
2091                  goto skip_offload;
2092              }
2093  
2094              DPRINTF("+++ C+ mode has IP packet\n");
2095  
2096              /* Note on memory alignment: eth_payload_data is 16-bit aligned
2097               * since saved_buffer is allocated with g_malloc() and ETH_HLEN is
2098               * even.  32-bit accesses must use ldl/stl wrappers to avoid
2099               * unaligned accesses.
2100               */
2101              eth_payload_data = saved_buffer + ETH_HLEN;
2102              eth_payload_len  = saved_size   - ETH_HLEN;
2103  
2104              ip = (struct ip_header*)eth_payload_data;
2105  
2106              if (IP_HEADER_VERSION(ip) != IP_HEADER_VERSION_4) {
2107                  DPRINTF("+++ C+ mode packet has bad IP version %d "
2108                      "expected %d\n", IP_HEADER_VERSION(ip),
2109                      IP_HEADER_VERSION_4);
2110                  goto skip_offload;
2111              }
2112  
2113              hlen = IP_HDR_GET_LEN(ip);
2114              if (hlen < sizeof(struct ip_header) || hlen > eth_payload_len) {
2115                  goto skip_offload;
2116              }
2117  
2118              ip_protocol = ip->ip_p;
2119  
2120              ip_data_len = be16_to_cpu(ip->ip_len);
2121              if (ip_data_len < hlen || ip_data_len > eth_payload_len) {
2122                  goto skip_offload;
2123              }
2124              ip_data_len -= hlen;
2125  
2126              if (!(txdw0 & CP_TX_LGSEN) && (txdw0 & CP_TX_IPCS))
2127              {
2128                  DPRINTF("+++ C+ mode need IP checksum\n");
2129  
2130                  ip->ip_sum = 0;
2131                  ip->ip_sum = ip_checksum(ip, hlen);
2132                  DPRINTF("+++ C+ mode IP header len=%d checksum=%04x\n",
2133                      hlen, ip->ip_sum);
2134              }
2135  
2136              if ((txdw0 & CP_TX_LGSEN) && ip_protocol == IP_PROTO_TCP)
2137              {
2138                  /* Large enough for the TCP header? */
2139                  if (ip_data_len < sizeof(tcp_header)) {
2140                      goto skip_offload;
2141                  }
2142  
2143                  int large_send_mss = (txdw0 >> CP_TC_LGSEN_MSS_SHIFT) &
2144                                       CP_TC_LGSEN_MSS_MASK;
2145                  if (large_send_mss == 0) {
2146                      goto skip_offload;
2147                  }
2148  
2149                  DPRINTF("+++ C+ mode offloaded task TSO IP data %d "
2150                      "frame data %d specified MSS=%d\n",
2151                      ip_data_len, saved_size - ETH_HLEN, large_send_mss);
2152  
2153                  int tcp_send_offset = 0;
2154  
2155                  /* maximum IP header length is 60 bytes */
2156                  uint8_t saved_ip_header[60];
2157  
2158                  /* save IP header template; data area is used in tcp checksum calculation */
2159                  memcpy(saved_ip_header, eth_payload_data, hlen);
2160  
2161                  /* a placeholder for checksum calculation routine in tcp case */
2162                  uint8_t *data_to_checksum     = eth_payload_data + hlen - 12;
2163                  //                    size_t   data_to_checksum_len = eth_payload_len  - hlen + 12;
2164  
2165                  /* pointer to TCP header */
2166                  tcp_header *p_tcp_hdr = (tcp_header*)(eth_payload_data + hlen);
2167  
2168                  int tcp_hlen = TCP_HEADER_DATA_OFFSET(p_tcp_hdr);
2169  
2170                  /* Invalid TCP data offset? */
2171                  if (tcp_hlen < sizeof(tcp_header) || tcp_hlen > ip_data_len) {
2172                      goto skip_offload;
2173                  }
2174  
2175                  int tcp_data_len = ip_data_len - tcp_hlen;
2176  
2177                  DPRINTF("+++ C+ mode TSO IP data len %d TCP hlen %d TCP "
2178                      "data len %d\n", ip_data_len, tcp_hlen, tcp_data_len);
2179  
2180                  /* note the cycle below overwrites IP header data,
2181                     but restores it from saved_ip_header before sending packet */
2182  
2183                  int is_last_frame = 0;
2184  
2185                  for (tcp_send_offset = 0; tcp_send_offset < tcp_data_len; tcp_send_offset += large_send_mss)
2186                  {
2187                      uint16_t chunk_size = large_send_mss;
2188  
2189                      /* check if this is the last frame */
2190                      if (tcp_send_offset + large_send_mss >= tcp_data_len)
2191                      {
2192                          is_last_frame = 1;
2193                          chunk_size = tcp_data_len - tcp_send_offset;
2194                      }
2195  
2196                      DPRINTF("+++ C+ mode TSO TCP seqno %08x\n",
2197                              ldl_be_p(&p_tcp_hdr->th_seq));
2198  
2199                      /* add 4 TCP pseudoheader fields */
2200                      /* copy IP source and destination fields */
2201                      memcpy(data_to_checksum, saved_ip_header + 12, 8);
2202  
2203                      DPRINTF("+++ C+ mode TSO calculating TCP checksum for "
2204                          "packet with %d bytes data\n", tcp_hlen +
2205                          chunk_size);
2206  
2207                      if (tcp_send_offset)
2208                      {
2209                          memcpy((uint8_t*)p_tcp_hdr + tcp_hlen, (uint8_t*)p_tcp_hdr + tcp_hlen + tcp_send_offset, chunk_size);
2210                      }
2211  
2212                      /* keep PUSH and FIN flags only for the last frame */
2213                      if (!is_last_frame)
2214                      {
2215                          TCP_HEADER_CLEAR_FLAGS(p_tcp_hdr, TH_PUSH | TH_FIN);
2216                      }
2217  
2218                      /* recalculate TCP checksum */
2219                      ip_pseudo_header *p_tcpip_hdr = (ip_pseudo_header *)data_to_checksum;
2220                      p_tcpip_hdr->zeros      = 0;
2221                      p_tcpip_hdr->ip_proto   = IP_PROTO_TCP;
2222                      p_tcpip_hdr->ip_payload = cpu_to_be16(tcp_hlen + chunk_size);
2223  
2224                      p_tcp_hdr->th_sum = 0;
2225  
2226                      int tcp_checksum = ip_checksum(data_to_checksum, tcp_hlen + chunk_size + 12);
2227                      DPRINTF("+++ C+ mode TSO TCP checksum %04x\n",
2228                          tcp_checksum);
2229  
2230                      p_tcp_hdr->th_sum = tcp_checksum;
2231  
2232                      /* restore IP header */
2233                      memcpy(eth_payload_data, saved_ip_header, hlen);
2234  
2235                      /* set IP data length and recalculate IP checksum */
2236                      ip->ip_len = cpu_to_be16(hlen + tcp_hlen + chunk_size);
2237  
2238                      /* increment IP id for subsequent frames */
2239                      ip->ip_id = cpu_to_be16(tcp_send_offset/large_send_mss + be16_to_cpu(ip->ip_id));
2240  
2241                      ip->ip_sum = 0;
2242                      ip->ip_sum = ip_checksum(eth_payload_data, hlen);
2243                      DPRINTF("+++ C+ mode TSO IP header len=%d "
2244                          "checksum=%04x\n", hlen, ip->ip_sum);
2245  
2246                      int tso_send_size = ETH_HLEN + hlen + tcp_hlen + chunk_size;
2247                      DPRINTF("+++ C+ mode TSO transferring packet size "
2248                          "%d\n", tso_send_size);
2249                      rtl8139_transfer_frame(s, saved_buffer, tso_send_size,
2250                          0, (uint8_t *) dot1q_buffer);
2251  
2252                      /* add transferred count to TCP sequence number */
2253                      stl_be_p(&p_tcp_hdr->th_seq,
2254                               chunk_size + ldl_be_p(&p_tcp_hdr->th_seq));
2255                  }
2256  
2257                  /* Stop sending this frame */
2258                  saved_size = 0;
2259              }
2260              else if (!(txdw0 & CP_TX_LGSEN) && (txdw0 & (CP_TX_TCPCS|CP_TX_UDPCS)))
2261              {
2262                  DPRINTF("+++ C+ mode need TCP or UDP checksum\n");
2263  
2264                  /* maximum IP header length is 60 bytes */
2265                  uint8_t saved_ip_header[60];
2266                  memcpy(saved_ip_header, eth_payload_data, hlen);
2267  
2268                  uint8_t *data_to_checksum     = eth_payload_data + hlen - 12;
2269                  //                    size_t   data_to_checksum_len = eth_payload_len  - hlen + 12;
2270  
2271                  /* add 4 TCP pseudoheader fields */
2272                  /* copy IP source and destination fields */
2273                  memcpy(data_to_checksum, saved_ip_header + 12, 8);
2274  
2275                  if ((txdw0 & CP_TX_TCPCS) && ip_protocol == IP_PROTO_TCP)
2276                  {
2277                      DPRINTF("+++ C+ mode calculating TCP checksum for "
2278                          "packet with %d bytes data\n", ip_data_len);
2279  
2280                      ip_pseudo_header *p_tcpip_hdr = (ip_pseudo_header *)data_to_checksum;
2281                      p_tcpip_hdr->zeros      = 0;
2282                      p_tcpip_hdr->ip_proto   = IP_PROTO_TCP;
2283                      p_tcpip_hdr->ip_payload = cpu_to_be16(ip_data_len);
2284  
2285                      tcp_header* p_tcp_hdr = (tcp_header *) (data_to_checksum+12);
2286  
2287                      p_tcp_hdr->th_sum = 0;
2288  
2289                      int tcp_checksum = ip_checksum(data_to_checksum, ip_data_len + 12);
2290                      DPRINTF("+++ C+ mode TCP checksum %04x\n",
2291                          tcp_checksum);
2292  
2293                      p_tcp_hdr->th_sum = tcp_checksum;
2294                  }
2295                  else if ((txdw0 & CP_TX_UDPCS) && ip_protocol == IP_PROTO_UDP)
2296                  {
2297                      DPRINTF("+++ C+ mode calculating UDP checksum for "
2298                          "packet with %d bytes data\n", ip_data_len);
2299  
2300                      ip_pseudo_header *p_udpip_hdr = (ip_pseudo_header *)data_to_checksum;
2301                      p_udpip_hdr->zeros      = 0;
2302                      p_udpip_hdr->ip_proto   = IP_PROTO_UDP;
2303                      p_udpip_hdr->ip_payload = cpu_to_be16(ip_data_len);
2304  
2305                      udp_header *p_udp_hdr = (udp_header *) (data_to_checksum+12);
2306  
2307                      p_udp_hdr->uh_sum = 0;
2308  
2309                      int udp_checksum = ip_checksum(data_to_checksum, ip_data_len + 12);
2310                      DPRINTF("+++ C+ mode UDP checksum %04x\n",
2311                          udp_checksum);
2312  
2313                      p_udp_hdr->uh_sum = udp_checksum;
2314                  }
2315  
2316                  /* restore IP header */
2317                  memcpy(eth_payload_data, saved_ip_header, hlen);
2318              }
2319          }
2320  
2321  skip_offload:
2322          /* update tally counter */
2323          ++s->tally_counters.TxOk;
2324  
2325          DPRINTF("+++ C+ mode transmitting %d bytes packet\n", saved_size);
2326  
2327          rtl8139_transfer_frame(s, saved_buffer, saved_size, 1,
2328              (uint8_t *) dot1q_buffer);
2329  
2330          /* restore card space if there was no recursion and reset offset */
2331          if (!s->cplus_txbuffer)
2332          {
2333              s->cplus_txbuffer        = saved_buffer;
2334              s->cplus_txbuffer_len    = saved_buffer_len;
2335              s->cplus_txbuffer_offset = 0;
2336          }
2337          else
2338          {
2339              g_free(saved_buffer);
2340          }
2341      }
2342      else
2343      {
2344          DPRINTF("+++ C+ mode transmission continue to next descriptor\n");
2345      }
2346  
2347      return 1;
2348  }
2349  
2350  static void rtl8139_cplus_transmit(RTL8139State *s)
2351  {
2352      int txcount = 0;
2353  
2354      while (txcount < 64 && rtl8139_cplus_transmit_one(s))
2355      {
2356          ++txcount;
2357      }
2358  
2359      /* Mark transfer completed */
2360      if (!txcount)
2361      {
2362          DPRINTF("C+ mode : transmitter queue stalled, current TxDesc = %d\n",
2363              s->currCPlusTxDesc);
2364      }
2365      else
2366      {
2367          /* update interrupt status */
2368          s->IntrStatus |= TxOK;
2369          rtl8139_update_irq(s);
2370      }
2371  }
2372  
2373  static void rtl8139_transmit(RTL8139State *s)
2374  {
2375      int descriptor = s->currTxDesc, txcount = 0;
2376  
2377      /*while*/
2378      if (rtl8139_transmit_one(s, descriptor))
2379      {
2380          ++s->currTxDesc;
2381          s->currTxDesc %= 4;
2382          ++txcount;
2383      }
2384  
2385      /* Mark transfer completed */
2386      if (!txcount)
2387      {
2388          DPRINTF("transmitter queue stalled, current TxDesc = %d\n",
2389              s->currTxDesc);
2390      }
2391  }
2392  
2393  static void rtl8139_TxStatus_write(RTL8139State *s, uint32_t txRegOffset, uint32_t val)
2394  {
2395  
2396      int descriptor = txRegOffset/4;
2397  
2398      /* handle C+ transmit mode register configuration */
2399  
2400      if (s->cplus_enabled)
2401      {
2402          DPRINTF("RTL8139C+ DTCCR write offset=0x%x val=0x%08x "
2403              "descriptor=%d\n", txRegOffset, val, descriptor);
2404  
2405          /* handle Dump Tally Counters command */
2406          s->TxStatus[descriptor] = val;
2407  
2408          if (descriptor == 0 && (val & 0x8))
2409          {
2410              hwaddr tc_addr = rtl8139_addr64(s->TxStatus[0] & ~0x3f, s->TxStatus[1]);
2411  
2412              /* dump tally counters to specified memory location */
2413              RTL8139TallyCounters_dma_write(s, tc_addr);
2414  
2415              /* mark dump completed */
2416              s->TxStatus[0] &= ~0x8;
2417          }
2418  
2419          return;
2420      }
2421  
2422      DPRINTF("TxStatus write offset=0x%x val=0x%08x descriptor=%d\n",
2423          txRegOffset, val, descriptor);
2424  
2425      /* mask only reserved bits */
2426      val &= ~0xff00c000; /* these bits are reset on write */
2427      val = SET_MASKED(val, 0x00c00000, s->TxStatus[descriptor]);
2428  
2429      s->TxStatus[descriptor] = val;
2430  
2431      /* attempt to start transmission */
2432      rtl8139_transmit(s);
2433  }
2434  
2435  static uint32_t rtl8139_TxStatus_TxAddr_read(RTL8139State *s, uint32_t regs[],
2436                                               uint32_t base, uint8_t addr,
2437                                               int size)
2438  {
2439      uint32_t reg = (addr - base) / 4;
2440      uint32_t offset = addr & 0x3;
2441      uint32_t ret = 0;
2442  
2443      if (addr & (size - 1)) {
2444          DPRINTF("not implemented read for TxStatus/TxAddr "
2445                  "addr=0x%x size=0x%x\n", addr, size);
2446          return ret;
2447      }
2448  
2449      switch (size) {
2450      case 1: /* fall through */
2451      case 2: /* fall through */
2452      case 4:
2453          ret = (regs[reg] >> offset * 8) & (((uint64_t)1 << (size * 8)) - 1);
2454          DPRINTF("TxStatus/TxAddr[%d] read addr=0x%x size=0x%x val=0x%08x\n",
2455                  reg, addr, size, ret);
2456          break;
2457      default:
2458          DPRINTF("unsupported size 0x%x of TxStatus/TxAddr reading\n", size);
2459          break;
2460      }
2461  
2462      return ret;
2463  }
2464  
2465  static uint16_t rtl8139_TSAD_read(RTL8139State *s)
2466  {
2467      uint16_t ret = 0;
2468  
2469      /* Simulate TSAD, it is read only anyway */
2470  
2471      ret = ((s->TxStatus[3] & TxStatOK  )?TSAD_TOK3:0)
2472           |((s->TxStatus[2] & TxStatOK  )?TSAD_TOK2:0)
2473           |((s->TxStatus[1] & TxStatOK  )?TSAD_TOK1:0)
2474           |((s->TxStatus[0] & TxStatOK  )?TSAD_TOK0:0)
2475  
2476           |((s->TxStatus[3] & TxUnderrun)?TSAD_TUN3:0)
2477           |((s->TxStatus[2] & TxUnderrun)?TSAD_TUN2:0)
2478           |((s->TxStatus[1] & TxUnderrun)?TSAD_TUN1:0)
2479           |((s->TxStatus[0] & TxUnderrun)?TSAD_TUN0:0)
2480  
2481           |((s->TxStatus[3] & TxAborted )?TSAD_TABT3:0)
2482           |((s->TxStatus[2] & TxAborted )?TSAD_TABT2:0)
2483           |((s->TxStatus[1] & TxAborted )?TSAD_TABT1:0)
2484           |((s->TxStatus[0] & TxAborted )?TSAD_TABT0:0)
2485  
2486           |((s->TxStatus[3] & TxHostOwns )?TSAD_OWN3:0)
2487           |((s->TxStatus[2] & TxHostOwns )?TSAD_OWN2:0)
2488           |((s->TxStatus[1] & TxHostOwns )?TSAD_OWN1:0)
2489           |((s->TxStatus[0] & TxHostOwns )?TSAD_OWN0:0) ;
2490  
2491  
2492      DPRINTF("TSAD read val=0x%04x\n", ret);
2493  
2494      return ret;
2495  }
2496  
2497  static uint16_t rtl8139_CSCR_read(RTL8139State *s)
2498  {
2499      uint16_t ret = s->CSCR;
2500  
2501      DPRINTF("CSCR read val=0x%04x\n", ret);
2502  
2503      return ret;
2504  }
2505  
2506  static void rtl8139_TxAddr_write(RTL8139State *s, uint32_t txAddrOffset, uint32_t val)
2507  {
2508      DPRINTF("TxAddr write offset=0x%x val=0x%08x\n", txAddrOffset, val);
2509  
2510      s->TxAddr[txAddrOffset/4] = val;
2511  }
2512  
2513  static uint32_t rtl8139_TxAddr_read(RTL8139State *s, uint32_t txAddrOffset)
2514  {
2515      uint32_t ret = s->TxAddr[txAddrOffset/4];
2516  
2517      DPRINTF("TxAddr read offset=0x%x val=0x%08x\n", txAddrOffset, ret);
2518  
2519      return ret;
2520  }
2521  
2522  static void rtl8139_RxBufPtr_write(RTL8139State *s, uint32_t val)
2523  {
2524      DPRINTF("RxBufPtr write val=0x%04x\n", val);
2525  
2526      /* this value is off by 16 */
2527      s->RxBufPtr = MOD2(val + 0x10, s->RxBufferSize);
2528  
2529      /* more buffer space may be available so try to receive */
2530      qemu_flush_queued_packets(qemu_get_queue(s->nic));
2531  
2532      DPRINTF(" CAPR write: rx buffer length %d head 0x%04x read 0x%04x\n",
2533          s->RxBufferSize, s->RxBufAddr, s->RxBufPtr);
2534  }
2535  
2536  static uint32_t rtl8139_RxBufPtr_read(RTL8139State *s)
2537  {
2538      /* this value is off by 16 */
2539      uint32_t ret = s->RxBufPtr - 0x10;
2540  
2541      DPRINTF("RxBufPtr read val=0x%04x\n", ret);
2542  
2543      return ret;
2544  }
2545  
2546  static uint32_t rtl8139_RxBufAddr_read(RTL8139State *s)
2547  {
2548      /* this value is NOT off by 16 */
2549      uint32_t ret = s->RxBufAddr;
2550  
2551      DPRINTF("RxBufAddr read val=0x%04x\n", ret);
2552  
2553      return ret;
2554  }
2555  
2556  static void rtl8139_RxBuf_write(RTL8139State *s, uint32_t val)
2557  {
2558      DPRINTF("RxBuf write val=0x%08x\n", val);
2559  
2560      s->RxBuf = val;
2561  
2562      /* may need to reset rxring here */
2563  }
2564  
2565  static uint32_t rtl8139_RxBuf_read(RTL8139State *s)
2566  {
2567      uint32_t ret = s->RxBuf;
2568  
2569      DPRINTF("RxBuf read val=0x%08x\n", ret);
2570  
2571      return ret;
2572  }
2573  
2574  static void rtl8139_IntrMask_write(RTL8139State *s, uint32_t val)
2575  {
2576      DPRINTF("IntrMask write(w) val=0x%04x\n", val);
2577  
2578      /* mask unwritable bits */
2579      val = SET_MASKED(val, 0x1e00, s->IntrMask);
2580  
2581      s->IntrMask = val;
2582  
2583      rtl8139_update_irq(s);
2584  
2585  }
2586  
2587  static uint32_t rtl8139_IntrMask_read(RTL8139State *s)
2588  {
2589      uint32_t ret = s->IntrMask;
2590  
2591      DPRINTF("IntrMask read(w) val=0x%04x\n", ret);
2592  
2593      return ret;
2594  }
2595  
2596  static void rtl8139_IntrStatus_write(RTL8139State *s, uint32_t val)
2597  {
2598      DPRINTF("IntrStatus write(w) val=0x%04x\n", val);
2599  
2600  #if 0
2601  
2602      /* writing to ISR has no effect */
2603  
2604      return;
2605  
2606  #else
2607      uint16_t newStatus = s->IntrStatus & ~val;
2608  
2609      /* mask unwritable bits */
2610      newStatus = SET_MASKED(newStatus, 0x1e00, s->IntrStatus);
2611  
2612      /* writing 1 to interrupt status register bit clears it */
2613      s->IntrStatus = 0;
2614      rtl8139_update_irq(s);
2615  
2616      s->IntrStatus = newStatus;
2617      rtl8139_set_next_tctr_time(s);
2618      rtl8139_update_irq(s);
2619  
2620  #endif
2621  }
2622  
2623  static uint32_t rtl8139_IntrStatus_read(RTL8139State *s)
2624  {
2625      uint32_t ret = s->IntrStatus;
2626  
2627      DPRINTF("IntrStatus read(w) val=0x%04x\n", ret);
2628  
2629  #if 0
2630  
2631      /* reading ISR clears all interrupts */
2632      s->IntrStatus = 0;
2633  
2634      rtl8139_update_irq(s);
2635  
2636  #endif
2637  
2638      return ret;
2639  }
2640  
2641  static void rtl8139_MultiIntr_write(RTL8139State *s, uint32_t val)
2642  {
2643      DPRINTF("MultiIntr write(w) val=0x%04x\n", val);
2644  
2645      /* mask unwritable bits */
2646      val = SET_MASKED(val, 0xf000, s->MultiIntr);
2647  
2648      s->MultiIntr = val;
2649  }
2650  
2651  static uint32_t rtl8139_MultiIntr_read(RTL8139State *s)
2652  {
2653      uint32_t ret = s->MultiIntr;
2654  
2655      DPRINTF("MultiIntr read(w) val=0x%04x\n", ret);
2656  
2657      return ret;
2658  }
2659  
2660  static void rtl8139_io_writeb(void *opaque, uint8_t addr, uint32_t val)
2661  {
2662      RTL8139State *s = opaque;
2663  
2664      switch (addr)
2665      {
2666          case MAC0 ... MAC0+4:
2667              s->phys[addr - MAC0] = val;
2668              break;
2669          case MAC0+5:
2670              s->phys[addr - MAC0] = val;
2671              qemu_format_nic_info_str(qemu_get_queue(s->nic), s->phys);
2672              break;
2673          case MAC0+6 ... MAC0+7:
2674              /* reserved */
2675              break;
2676          case MAR0 ... MAR0+7:
2677              s->mult[addr - MAR0] = val;
2678              break;
2679          case ChipCmd:
2680              rtl8139_ChipCmd_write(s, val);
2681              break;
2682          case Cfg9346:
2683              rtl8139_Cfg9346_write(s, val);
2684              break;
2685          case TxConfig: /* windows driver sometimes writes using byte-lenth call */
2686              rtl8139_TxConfig_writeb(s, val);
2687              break;
2688          case Config0:
2689              rtl8139_Config0_write(s, val);
2690              break;
2691          case Config1:
2692              rtl8139_Config1_write(s, val);
2693              break;
2694          case Config3:
2695              rtl8139_Config3_write(s, val);
2696              break;
2697          case Config4:
2698              rtl8139_Config4_write(s, val);
2699              break;
2700          case Config5:
2701              rtl8139_Config5_write(s, val);
2702              break;
2703          case MediaStatus:
2704              /* ignore */
2705              DPRINTF("not implemented write(b) to MediaStatus val=0x%02x\n",
2706                  val);
2707              break;
2708  
2709          case HltClk:
2710              DPRINTF("HltClk write val=0x%08x\n", val);
2711              if (val == 'R')
2712              {
2713                  s->clock_enabled = 1;
2714              }
2715              else if (val == 'H')
2716              {
2717                  s->clock_enabled = 0;
2718              }
2719              break;
2720  
2721          case TxThresh:
2722              DPRINTF("C+ TxThresh write(b) val=0x%02x\n", val);
2723              s->TxThresh = val;
2724              break;
2725  
2726          case TxPoll:
2727              DPRINTF("C+ TxPoll write(b) val=0x%02x\n", val);
2728              if (val & (1 << 7))
2729              {
2730                  DPRINTF("C+ TxPoll high priority transmission (not "
2731                      "implemented)\n");
2732                  //rtl8139_cplus_transmit(s);
2733              }
2734              if (val & (1 << 6))
2735              {
2736                  DPRINTF("C+ TxPoll normal priority transmission\n");
2737                  rtl8139_cplus_transmit(s);
2738              }
2739  
2740              break;
2741          case RxConfig:
2742              DPRINTF("RxConfig write(b) val=0x%02x\n", val);
2743              rtl8139_RxConfig_write(s,
2744                  (rtl8139_RxConfig_read(s) & 0xFFFFFF00) | val);
2745              break;
2746          default:
2747              DPRINTF("not implemented write(b) addr=0x%x val=0x%02x\n", addr,
2748                  val);
2749              break;
2750      }
2751  }
2752  
2753  static void rtl8139_io_writew(void *opaque, uint8_t addr, uint32_t val)
2754  {
2755      RTL8139State *s = opaque;
2756  
2757      switch (addr)
2758      {
2759          case IntrMask:
2760              rtl8139_IntrMask_write(s, val);
2761              break;
2762  
2763          case IntrStatus:
2764              rtl8139_IntrStatus_write(s, val);
2765              break;
2766  
2767          case MultiIntr:
2768              rtl8139_MultiIntr_write(s, val);
2769              break;
2770  
2771          case RxBufPtr:
2772              rtl8139_RxBufPtr_write(s, val);
2773              break;
2774  
2775          case BasicModeCtrl:
2776              rtl8139_BasicModeCtrl_write(s, val);
2777              break;
2778          case BasicModeStatus:
2779              rtl8139_BasicModeStatus_write(s, val);
2780              break;
2781          case NWayAdvert:
2782              DPRINTF("NWayAdvert write(w) val=0x%04x\n", val);
2783              s->NWayAdvert = val;
2784              break;
2785          case NWayLPAR:
2786              DPRINTF("forbidden NWayLPAR write(w) val=0x%04x\n", val);
2787              break;
2788          case NWayExpansion:
2789              DPRINTF("NWayExpansion write(w) val=0x%04x\n", val);
2790              s->NWayExpansion = val;
2791              break;
2792  
2793          case CpCmd:
2794              rtl8139_CpCmd_write(s, val);
2795              break;
2796  
2797          case IntrMitigate:
2798              rtl8139_IntrMitigate_write(s, val);
2799              break;
2800  
2801          default:
2802              DPRINTF("ioport write(w) addr=0x%x val=0x%04x via write(b)\n",
2803                  addr, val);
2804  
2805              rtl8139_io_writeb(opaque, addr, val & 0xff);
2806              rtl8139_io_writeb(opaque, addr + 1, (val >> 8) & 0xff);
2807              break;
2808      }
2809  }
2810  
2811  static void rtl8139_set_next_tctr_time(RTL8139State *s)
2812  {
2813      const uint64_t ns_per_period = (uint64_t)PCI_PERIOD << 32;
2814  
2815      DPRINTF("entered rtl8139_set_next_tctr_time\n");
2816  
2817      /* This function is called at least once per period, so it is a good
2818       * place to update the timer base.
2819       *
2820       * After one iteration of this loop the value in the Timer register does
2821       * not change, but the device model is counting up by 2^32 ticks (approx.
2822       * 130 seconds).
2823       */
2824      while (s->TCTR_base + ns_per_period <= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)) {
2825          s->TCTR_base += ns_per_period;
2826      }
2827  
2828      if (!s->TimerInt) {
2829          timer_del(s->timer);
2830      } else {
2831          uint64_t delta = (uint64_t)s->TimerInt * PCI_PERIOD;
2832          if (s->TCTR_base + delta <= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)) {
2833              delta += ns_per_period;
2834          }
2835          timer_mod(s->timer, s->TCTR_base + delta);
2836      }
2837  }
2838  
2839  static void rtl8139_io_writel(void *opaque, uint8_t addr, uint32_t val)
2840  {
2841      RTL8139State *s = opaque;
2842  
2843      switch (addr)
2844      {
2845          case RxMissed:
2846              DPRINTF("RxMissed clearing on write\n");
2847              s->RxMissed = 0;
2848              break;
2849  
2850          case TxConfig:
2851              rtl8139_TxConfig_write(s, val);
2852              break;
2853  
2854          case RxConfig:
2855              rtl8139_RxConfig_write(s, val);
2856              break;
2857  
2858          case TxStatus0 ... TxStatus0+4*4-1:
2859              rtl8139_TxStatus_write(s, addr-TxStatus0, val);
2860              break;
2861  
2862          case TxAddr0 ... TxAddr0+4*4-1:
2863              rtl8139_TxAddr_write(s, addr-TxAddr0, val);
2864              break;
2865  
2866          case RxBuf:
2867              rtl8139_RxBuf_write(s, val);
2868              break;
2869  
2870          case RxRingAddrLO:
2871              DPRINTF("C+ RxRing low bits write val=0x%08x\n", val);
2872              s->RxRingAddrLO = val;
2873              break;
2874  
2875          case RxRingAddrHI:
2876              DPRINTF("C+ RxRing high bits write val=0x%08x\n", val);
2877              s->RxRingAddrHI = val;
2878              break;
2879  
2880          case Timer:
2881              DPRINTF("TCTR Timer reset on write\n");
2882              s->TCTR_base = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
2883              rtl8139_set_next_tctr_time(s);
2884              break;
2885  
2886          case FlashReg:
2887              DPRINTF("FlashReg TimerInt write val=0x%08x\n", val);
2888              if (s->TimerInt != val) {
2889                  s->TimerInt = val;
2890                  rtl8139_set_next_tctr_time(s);
2891              }
2892              break;
2893  
2894          default:
2895              DPRINTF("ioport write(l) addr=0x%x val=0x%08x via write(b)\n",
2896                  addr, val);
2897              rtl8139_io_writeb(opaque, addr, val & 0xff);
2898              rtl8139_io_writeb(opaque, addr + 1, (val >> 8) & 0xff);
2899              rtl8139_io_writeb(opaque, addr + 2, (val >> 16) & 0xff);
2900              rtl8139_io_writeb(opaque, addr + 3, (val >> 24) & 0xff);
2901              break;
2902      }
2903  }
2904  
2905  static uint32_t rtl8139_io_readb(void *opaque, uint8_t addr)
2906  {
2907      RTL8139State *s = opaque;
2908      int ret;
2909  
2910      switch (addr)
2911      {
2912          case MAC0 ... MAC0+5:
2913              ret = s->phys[addr - MAC0];
2914              break;
2915          case MAC0+6 ... MAC0+7:
2916              ret = 0;
2917              break;
2918          case MAR0 ... MAR0+7:
2919              ret = s->mult[addr - MAR0];
2920              break;
2921          case TxStatus0 ... TxStatus0+4*4-1:
2922              ret = rtl8139_TxStatus_TxAddr_read(s, s->TxStatus, TxStatus0,
2923                                                 addr, 1);
2924              break;
2925          case ChipCmd:
2926              ret = rtl8139_ChipCmd_read(s);
2927              break;
2928          case Cfg9346:
2929              ret = rtl8139_Cfg9346_read(s);
2930              break;
2931          case Config0:
2932              ret = rtl8139_Config0_read(s);
2933              break;
2934          case Config1:
2935              ret = rtl8139_Config1_read(s);
2936              break;
2937          case Config3:
2938              ret = rtl8139_Config3_read(s);
2939              break;
2940          case Config4:
2941              ret = rtl8139_Config4_read(s);
2942              break;
2943          case Config5:
2944              ret = rtl8139_Config5_read(s);
2945              break;
2946  
2947          case MediaStatus:
2948              /* The LinkDown bit of MediaStatus is inverse with link status */
2949              ret = 0xd0 | (~s->BasicModeStatus & 0x04);
2950              DPRINTF("MediaStatus read 0x%x\n", ret);
2951              break;
2952  
2953          case HltClk:
2954              ret = s->clock_enabled;
2955              DPRINTF("HltClk read 0x%x\n", ret);
2956              break;
2957  
2958          case PCIRevisionID:
2959              ret = RTL8139_PCI_REVID;
2960              DPRINTF("PCI Revision ID read 0x%x\n", ret);
2961              break;
2962  
2963          case TxThresh:
2964              ret = s->TxThresh;
2965              DPRINTF("C+ TxThresh read(b) val=0x%02x\n", ret);
2966              break;
2967  
2968          case 0x43: /* Part of TxConfig register. Windows driver tries to read it */
2969              ret = s->TxConfig >> 24;
2970              DPRINTF("RTL8139C TxConfig at 0x43 read(b) val=0x%02x\n", ret);
2971              break;
2972  
2973          default:
2974              DPRINTF("not implemented read(b) addr=0x%x\n", addr);
2975              ret = 0;
2976              break;
2977      }
2978  
2979      return ret;
2980  }
2981  
2982  static uint32_t rtl8139_io_readw(void *opaque, uint8_t addr)
2983  {
2984      RTL8139State *s = opaque;
2985      uint32_t ret;
2986  
2987      switch (addr)
2988      {
2989          case TxAddr0 ... TxAddr0+4*4-1:
2990              ret = rtl8139_TxStatus_TxAddr_read(s, s->TxAddr, TxAddr0, addr, 2);
2991              break;
2992          case IntrMask:
2993              ret = rtl8139_IntrMask_read(s);
2994              break;
2995  
2996          case IntrStatus:
2997              ret = rtl8139_IntrStatus_read(s);
2998              break;
2999  
3000          case MultiIntr:
3001              ret = rtl8139_MultiIntr_read(s);
3002              break;
3003  
3004          case RxBufPtr:
3005              ret = rtl8139_RxBufPtr_read(s);
3006              break;
3007  
3008          case RxBufAddr:
3009              ret = rtl8139_RxBufAddr_read(s);
3010              break;
3011  
3012          case BasicModeCtrl:
3013              ret = rtl8139_BasicModeCtrl_read(s);
3014              break;
3015          case BasicModeStatus:
3016              ret = rtl8139_BasicModeStatus_read(s);
3017              break;
3018          case NWayAdvert:
3019              ret = s->NWayAdvert;
3020              DPRINTF("NWayAdvert read(w) val=0x%04x\n", ret);
3021              break;
3022          case NWayLPAR:
3023              ret = s->NWayLPAR;
3024              DPRINTF("NWayLPAR read(w) val=0x%04x\n", ret);
3025              break;
3026          case NWayExpansion:
3027              ret = s->NWayExpansion;
3028              DPRINTF("NWayExpansion read(w) val=0x%04x\n", ret);
3029              break;
3030  
3031          case CpCmd:
3032              ret = rtl8139_CpCmd_read(s);
3033              break;
3034  
3035          case IntrMitigate:
3036              ret = rtl8139_IntrMitigate_read(s);
3037              break;
3038  
3039          case TxSummary:
3040              ret = rtl8139_TSAD_read(s);
3041              break;
3042  
3043          case CSCR:
3044              ret = rtl8139_CSCR_read(s);
3045              break;
3046  
3047          default:
3048              DPRINTF("ioport read(w) addr=0x%x via read(b)\n", addr);
3049  
3050              ret  = rtl8139_io_readb(opaque, addr);
3051              ret |= rtl8139_io_readb(opaque, addr + 1) << 8;
3052  
3053              DPRINTF("ioport read(w) addr=0x%x val=0x%04x\n", addr, ret);
3054              break;
3055      }
3056  
3057      return ret;
3058  }
3059  
3060  static uint32_t rtl8139_io_readl(void *opaque, uint8_t addr)
3061  {
3062      RTL8139State *s = opaque;
3063      uint32_t ret;
3064  
3065      switch (addr)
3066      {
3067          case RxMissed:
3068              ret = s->RxMissed;
3069  
3070              DPRINTF("RxMissed read val=0x%08x\n", ret);
3071              break;
3072  
3073          case TxConfig:
3074              ret = rtl8139_TxConfig_read(s);
3075              break;
3076  
3077          case RxConfig:
3078              ret = rtl8139_RxConfig_read(s);
3079              break;
3080  
3081          case TxStatus0 ... TxStatus0+4*4-1:
3082              ret = rtl8139_TxStatus_TxAddr_read(s, s->TxStatus, TxStatus0,
3083                                                 addr, 4);
3084              break;
3085  
3086          case TxAddr0 ... TxAddr0+4*4-1:
3087              ret = rtl8139_TxAddr_read(s, addr-TxAddr0);
3088              break;
3089  
3090          case RxBuf:
3091              ret = rtl8139_RxBuf_read(s);
3092              break;
3093  
3094          case RxRingAddrLO:
3095              ret = s->RxRingAddrLO;
3096              DPRINTF("C+ RxRing low bits read val=0x%08x\n", ret);
3097              break;
3098  
3099          case RxRingAddrHI:
3100              ret = s->RxRingAddrHI;
3101              DPRINTF("C+ RxRing high bits read val=0x%08x\n", ret);
3102              break;
3103  
3104          case Timer:
3105              ret = (qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - s->TCTR_base) /
3106                    PCI_PERIOD;
3107              DPRINTF("TCTR Timer read val=0x%08x\n", ret);
3108              break;
3109  
3110          case FlashReg:
3111              ret = s->TimerInt;
3112              DPRINTF("FlashReg TimerInt read val=0x%08x\n", ret);
3113              break;
3114  
3115          default:
3116              DPRINTF("ioport read(l) addr=0x%x via read(b)\n", addr);
3117  
3118              ret  = rtl8139_io_readb(opaque, addr);
3119              ret |= rtl8139_io_readb(opaque, addr + 1) << 8;
3120              ret |= rtl8139_io_readb(opaque, addr + 2) << 16;
3121              ret |= rtl8139_io_readb(opaque, addr + 3) << 24;
3122  
3123              DPRINTF("read(l) addr=0x%x val=%08x\n", addr, ret);
3124              break;
3125      }
3126  
3127      return ret;
3128  }
3129  
3130  /* */
3131  
3132  static int rtl8139_post_load(void *opaque, int version_id)
3133  {
3134      RTL8139State* s = opaque;
3135      rtl8139_set_next_tctr_time(s);
3136      if (version_id < 4) {
3137          s->cplus_enabled = s->CpCmd != 0;
3138      }
3139  
3140      /* nc.link_down can't be migrated, so infer link_down according
3141       * to link status bit in BasicModeStatus */
3142      qemu_get_queue(s->nic)->link_down = (s->BasicModeStatus & 0x04) == 0;
3143  
3144      return 0;
3145  }
3146  
3147  static bool rtl8139_hotplug_ready_needed(void *opaque)
3148  {
3149      return qdev_machine_modified();
3150  }
3151  
3152  static const VMStateDescription vmstate_rtl8139_hotplug_ready ={
3153      .name = "rtl8139/hotplug_ready",
3154      .version_id = 1,
3155      .minimum_version_id = 1,
3156      .needed = rtl8139_hotplug_ready_needed,
3157      .fields = (const VMStateField[]) {
3158          VMSTATE_END_OF_LIST()
3159      }
3160  };
3161  
3162  static int rtl8139_pre_save(void *opaque)
3163  {
3164      RTL8139State* s = opaque;
3165      int64_t current_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
3166  
3167      /* for migration to older versions */
3168      s->TCTR = (current_time - s->TCTR_base) / PCI_PERIOD;
3169      s->rtl8139_mmio_io_addr_dummy = 0;
3170  
3171      return 0;
3172  }
3173  
3174  static const VMStateDescription vmstate_rtl8139 = {
3175      .name = "rtl8139",
3176      .version_id = 5,
3177      .minimum_version_id = 3,
3178      .post_load = rtl8139_post_load,
3179      .pre_save  = rtl8139_pre_save,
3180      .fields = (const VMStateField[]) {
3181          VMSTATE_PCI_DEVICE(parent_obj, RTL8139State),
3182          VMSTATE_PARTIAL_BUFFER(phys, RTL8139State, 6),
3183          VMSTATE_BUFFER(mult, RTL8139State),
3184          VMSTATE_UINT32_ARRAY(TxStatus, RTL8139State, 4),
3185          VMSTATE_UINT32_ARRAY(TxAddr, RTL8139State, 4),
3186  
3187          VMSTATE_UINT32(RxBuf, RTL8139State),
3188          VMSTATE_UINT32(RxBufferSize, RTL8139State),
3189          VMSTATE_UINT32(RxBufPtr, RTL8139State),
3190          VMSTATE_UINT32(RxBufAddr, RTL8139State),
3191  
3192          VMSTATE_UINT16(IntrStatus, RTL8139State),
3193          VMSTATE_UINT16(IntrMask, RTL8139State),
3194  
3195          VMSTATE_UINT32(TxConfig, RTL8139State),
3196          VMSTATE_UINT32(RxConfig, RTL8139State),
3197          VMSTATE_UINT32(RxMissed, RTL8139State),
3198          VMSTATE_UINT16(CSCR, RTL8139State),
3199  
3200          VMSTATE_UINT8(Cfg9346, RTL8139State),
3201          VMSTATE_UINT8(Config0, RTL8139State),
3202          VMSTATE_UINT8(Config1, RTL8139State),
3203          VMSTATE_UINT8(Config3, RTL8139State),
3204          VMSTATE_UINT8(Config4, RTL8139State),
3205          VMSTATE_UINT8(Config5, RTL8139State),
3206  
3207          VMSTATE_UINT8(clock_enabled, RTL8139State),
3208          VMSTATE_UINT8(bChipCmdState, RTL8139State),
3209  
3210          VMSTATE_UINT16(MultiIntr, RTL8139State),
3211  
3212          VMSTATE_UINT16(BasicModeCtrl, RTL8139State),
3213          VMSTATE_UINT16(BasicModeStatus, RTL8139State),
3214          VMSTATE_UINT16(NWayAdvert, RTL8139State),
3215          VMSTATE_UINT16(NWayLPAR, RTL8139State),
3216          VMSTATE_UINT16(NWayExpansion, RTL8139State),
3217  
3218          VMSTATE_UINT16(CpCmd, RTL8139State),
3219          VMSTATE_UINT8(TxThresh, RTL8139State),
3220  
3221          VMSTATE_UNUSED(4),
3222          VMSTATE_MACADDR(conf.macaddr, RTL8139State),
3223          VMSTATE_INT32(rtl8139_mmio_io_addr_dummy, RTL8139State),
3224  
3225          VMSTATE_UINT32(currTxDesc, RTL8139State),
3226          VMSTATE_UINT32(currCPlusRxDesc, RTL8139State),
3227          VMSTATE_UINT32(currCPlusTxDesc, RTL8139State),
3228          VMSTATE_UINT32(RxRingAddrLO, RTL8139State),
3229          VMSTATE_UINT32(RxRingAddrHI, RTL8139State),
3230  
3231          VMSTATE_UINT16_ARRAY(eeprom.contents, RTL8139State, EEPROM_9346_SIZE),
3232          VMSTATE_INT32(eeprom.mode, RTL8139State),
3233          VMSTATE_UINT32(eeprom.tick, RTL8139State),
3234          VMSTATE_UINT8(eeprom.address, RTL8139State),
3235          VMSTATE_UINT16(eeprom.input, RTL8139State),
3236          VMSTATE_UINT16(eeprom.output, RTL8139State),
3237  
3238          VMSTATE_UINT8(eeprom.eecs, RTL8139State),
3239          VMSTATE_UINT8(eeprom.eesk, RTL8139State),
3240          VMSTATE_UINT8(eeprom.eedi, RTL8139State),
3241          VMSTATE_UINT8(eeprom.eedo, RTL8139State),
3242  
3243          VMSTATE_UINT32(TCTR, RTL8139State),
3244          VMSTATE_UINT32(TimerInt, RTL8139State),
3245          VMSTATE_INT64(TCTR_base, RTL8139State),
3246  
3247          VMSTATE_UINT64(tally_counters.TxOk, RTL8139State),
3248          VMSTATE_UINT64(tally_counters.RxOk, RTL8139State),
3249          VMSTATE_UINT64(tally_counters.TxERR, RTL8139State),
3250          VMSTATE_UINT32(tally_counters.RxERR, RTL8139State),
3251          VMSTATE_UINT16(tally_counters.MissPkt, RTL8139State),
3252          VMSTATE_UINT16(tally_counters.FAE, RTL8139State),
3253          VMSTATE_UINT32(tally_counters.Tx1Col, RTL8139State),
3254          VMSTATE_UINT32(tally_counters.TxMCol, RTL8139State),
3255          VMSTATE_UINT64(tally_counters.RxOkPhy, RTL8139State),
3256          VMSTATE_UINT64(tally_counters.RxOkBrd, RTL8139State),
3257          VMSTATE_UINT32_V(tally_counters.RxOkMul, RTL8139State, 5),
3258          VMSTATE_UINT16(tally_counters.TxAbt, RTL8139State),
3259          VMSTATE_UINT16(tally_counters.TxUndrn, RTL8139State),
3260  
3261          VMSTATE_UINT32_V(cplus_enabled, RTL8139State, 4),
3262          VMSTATE_END_OF_LIST()
3263      },
3264      .subsections = (const VMStateDescription * const []) {
3265          &vmstate_rtl8139_hotplug_ready,
3266          NULL
3267      }
3268  };
3269  
3270  /***********************************************************/
3271  /* PCI RTL8139 definitions */
3272  
3273  static void rtl8139_ioport_write(void *opaque, hwaddr addr,
3274                                   uint64_t val, unsigned size)
3275  {
3276      switch (size) {
3277      case 1:
3278          rtl8139_io_writeb(opaque, addr, val);
3279          break;
3280      case 2:
3281          rtl8139_io_writew(opaque, addr, val);
3282          break;
3283      case 4:
3284          rtl8139_io_writel(opaque, addr, val);
3285          break;
3286      }
3287  }
3288  
3289  static uint64_t rtl8139_ioport_read(void *opaque, hwaddr addr,
3290                                      unsigned size)
3291  {
3292      switch (size) {
3293      case 1:
3294          return rtl8139_io_readb(opaque, addr);
3295      case 2:
3296          return rtl8139_io_readw(opaque, addr);
3297      case 4:
3298          return rtl8139_io_readl(opaque, addr);
3299      }
3300  
3301      return -1;
3302  }
3303  
3304  static const MemoryRegionOps rtl8139_io_ops = {
3305      .read = rtl8139_ioport_read,
3306      .write = rtl8139_ioport_write,
3307      .impl = {
3308          .min_access_size = 1,
3309          .max_access_size = 4,
3310      },
3311      .endianness = DEVICE_LITTLE_ENDIAN,
3312  };
3313  
3314  static void rtl8139_timer(void *opaque)
3315  {
3316      RTL8139State *s = opaque;
3317  
3318      if (!s->clock_enabled)
3319      {
3320          DPRINTF(">>> timer: clock is not running\n");
3321          return;
3322      }
3323  
3324      s->IntrStatus |= PCSTimeout;
3325      rtl8139_update_irq(s);
3326      rtl8139_set_next_tctr_time(s);
3327  }
3328  
3329  static void pci_rtl8139_uninit(PCIDevice *dev)
3330  {
3331      RTL8139State *s = RTL8139(dev);
3332  
3333      g_free(s->cplus_txbuffer);
3334      s->cplus_txbuffer = NULL;
3335      timer_free(s->timer);
3336      qemu_del_nic(s->nic);
3337  }
3338  
3339  static void rtl8139_set_link_status(NetClientState *nc)
3340  {
3341      RTL8139State *s = qemu_get_nic_opaque(nc);
3342  
3343      if (nc->link_down) {
3344          s->BasicModeStatus &= ~0x04;
3345      } else {
3346          s->BasicModeStatus |= 0x04;
3347      }
3348  
3349      s->IntrStatus |= RxUnderrun;
3350      rtl8139_update_irq(s);
3351  }
3352  
3353  static NetClientInfo net_rtl8139_info = {
3354      .type = NET_CLIENT_DRIVER_NIC,
3355      .size = sizeof(NICState),
3356      .can_receive = rtl8139_can_receive,
3357      .receive = rtl8139_receive,
3358      .link_status_changed = rtl8139_set_link_status,
3359  };
3360  
3361  static void pci_rtl8139_realize(PCIDevice *dev, Error **errp)
3362  {
3363      RTL8139State *s = RTL8139(dev);
3364      DeviceState *d = DEVICE(dev);
3365      uint8_t *pci_conf;
3366  
3367      pci_conf = dev->config;
3368      pci_conf[PCI_INTERRUPT_PIN] = 1;    /* interrupt pin A */
3369      /* TODO: start of capability list, but no capability
3370       * list bit in status register, and offset 0xdc seems unused. */
3371      pci_conf[PCI_CAPABILITY_LIST] = 0xdc;
3372  
3373      memory_region_init_io(&s->bar_io, OBJECT(s), &rtl8139_io_ops, s,
3374                            "rtl8139", 0x100);
3375      memory_region_init_alias(&s->bar_mem, OBJECT(s), "rtl8139-mem", &s->bar_io,
3376                               0, 0x100);
3377  
3378      pci_register_bar(dev, 0, PCI_BASE_ADDRESS_SPACE_IO, &s->bar_io);
3379      pci_register_bar(dev, 1, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->bar_mem);
3380  
3381      qemu_macaddr_default_if_unset(&s->conf.macaddr);
3382  
3383      /* prepare eeprom */
3384      s->eeprom.contents[0] = 0x8129;
3385  #if 1
3386      /* PCI vendor and device ID should be mirrored here */
3387      s->eeprom.contents[1] = PCI_VENDOR_ID_REALTEK;
3388      s->eeprom.contents[2] = PCI_DEVICE_ID_REALTEK_8139;
3389  #endif
3390      s->eeprom.contents[7] = s->conf.macaddr.a[0] | s->conf.macaddr.a[1] << 8;
3391      s->eeprom.contents[8] = s->conf.macaddr.a[2] | s->conf.macaddr.a[3] << 8;
3392      s->eeprom.contents[9] = s->conf.macaddr.a[4] | s->conf.macaddr.a[5] << 8;
3393  
3394      s->nic = qemu_new_nic(&net_rtl8139_info, &s->conf,
3395                            object_get_typename(OBJECT(dev)), d->id,
3396                            &d->mem_reentrancy_guard, s);
3397      qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a);
3398  
3399      s->cplus_txbuffer = NULL;
3400      s->cplus_txbuffer_len = 0;
3401      s->cplus_txbuffer_offset = 0;
3402  
3403      s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, rtl8139_timer, s);
3404  }
3405  
3406  static void rtl8139_instance_init(Object *obj)
3407  {
3408      RTL8139State *s = RTL8139(obj);
3409  
3410      device_add_bootindex_property(obj, &s->conf.bootindex,
3411                                    "bootindex", "/ethernet-phy@0",
3412                                    DEVICE(obj));
3413  }
3414  
3415  static Property rtl8139_properties[] = {
3416      DEFINE_NIC_PROPERTIES(RTL8139State, conf),
3417      DEFINE_PROP_END_OF_LIST(),
3418  };
3419  
3420  static void rtl8139_class_init(ObjectClass *klass, void *data)
3421  {
3422      DeviceClass *dc = DEVICE_CLASS(klass);
3423      PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
3424  
3425      k->realize = pci_rtl8139_realize;
3426      k->exit = pci_rtl8139_uninit;
3427      k->romfile = "efi-rtl8139.rom";
3428      k->vendor_id = PCI_VENDOR_ID_REALTEK;
3429      k->device_id = PCI_DEVICE_ID_REALTEK_8139;
3430      k->revision = RTL8139_PCI_REVID; /* >=0x20 is for 8139C+ */
3431      k->class_id = PCI_CLASS_NETWORK_ETHERNET;
3432      device_class_set_legacy_reset(dc, rtl8139_reset);
3433      dc->vmsd = &vmstate_rtl8139;
3434      device_class_set_props(dc, rtl8139_properties);
3435      set_bit(DEVICE_CATEGORY_NETWORK, dc->categories);
3436  }
3437  
3438  static const TypeInfo rtl8139_info = {
3439      .name          = TYPE_RTL8139,
3440      .parent        = TYPE_PCI_DEVICE,
3441      .instance_size = sizeof(RTL8139State),
3442      .class_init    = rtl8139_class_init,
3443      .instance_init = rtl8139_instance_init,
3444      .interfaces = (InterfaceInfo[]) {
3445          { INTERFACE_CONVENTIONAL_PCI_DEVICE },
3446          { },
3447      },
3448  };
3449  
3450  static void rtl8139_register_types(void)
3451  {
3452      type_register_static(&rtl8139_info);
3453  }
3454  
3455  type_init(rtl8139_register_types)
3456