1 /**
2 * QEMU RTL8139 emulation
3 *
4 * Copyright (c) 2006 Igor Kovalenko
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23
24 * Modifications:
25 * 2006-Jan-28 Mark Malakanov : TSAD and CSCR implementation (for Windows driver)
26 *
27 * 2006-Apr-28 Juergen Lock : EEPROM emulation changes for FreeBSD driver
28 * HW revision ID changes for FreeBSD driver
29 *
30 * 2006-Jul-01 Igor Kovalenko : Implemented loopback mode for FreeBSD driver
31 * Corrected packet transfer reassembly routine for 8139C+ mode
32 * Rearranged debugging print statements
33 * Implemented PCI timer interrupt (disabled by default)
34 * Implemented Tally Counters, increased VM load/save version
35 * Implemented IP/TCP/UDP checksum task offloading
36 *
37 * 2006-Jul-04 Igor Kovalenko : Implemented TCP segmentation offloading
38 * Fixed MTU=1500 for produced ethernet frames
39 *
40 * 2006-Jul-09 Igor Kovalenko : Fixed TCP header length calculation while processing
41 * segmentation offloading
42 * Removed slirp.h dependency
43 * Added rx/tx buffer reset when enabling rx/tx operation
44 *
45 * 2010-Feb-04 Frediano Ziglio: Rewrote timer support using QEMU timer only
46 * when strictly needed (required for
47 * Darwin)
48 * 2011-Mar-22 Benjamin Poirier: Implemented VLAN offloading
49 */
50
51 /* For crc32 */
52
53 #include "qemu/osdep.h"
54 #include <zlib.h>
55
56 #include "hw/pci/pci_device.h"
57 #include "hw/qdev-properties.h"
58 #include "migration/vmstate.h"
59 #include "sysemu/dma.h"
60 #include "qemu/module.h"
61 #include "qemu/timer.h"
62 #include "net/net.h"
63 #include "net/eth.h"
64 #include "sysemu/sysemu.h"
65 #include "qom/object.h"
66
67 /* debug RTL8139 card */
68 //#define DEBUG_RTL8139 1
69
70 #define PCI_PERIOD 30 /* 30 ns period = 33.333333 Mhz frequency */
71
72 #define SET_MASKED(input, mask, curr) \
73 ( ( (input) & ~(mask) ) | ( (curr) & (mask) ) )
74
75 /* arg % size for size which is a power of 2 */
76 #define MOD2(input, size) \
77 ( ( input ) & ( size - 1 ) )
78
79 #define ETHER_TYPE_LEN 2
80
81 #define VLAN_TCI_LEN 2
82 #define VLAN_HLEN (ETHER_TYPE_LEN + VLAN_TCI_LEN)
83
84 #if defined (DEBUG_RTL8139)
85 # define DPRINTF(fmt, ...) \
86 do { fprintf(stderr, "RTL8139: " fmt, ## __VA_ARGS__); } while (0)
87 #else
DPRINTF(const char * fmt,...)88 static inline G_GNUC_PRINTF(1, 2) int DPRINTF(const char *fmt, ...)
89 {
90 return 0;
91 }
92 #endif
93
94 #define TYPE_RTL8139 "rtl8139"
95
96 OBJECT_DECLARE_SIMPLE_TYPE(RTL8139State, RTL8139)
97
98 /* Symbolic offsets to registers. */
99 enum RTL8139_registers {
100 MAC0 = 0, /* Ethernet hardware address. */
101 MAR0 = 8, /* Multicast filter. */
102 TxStatus0 = 0x10,/* Transmit status (Four 32bit registers). C mode only */
103 /* Dump Tally Counter control register(64bit). C+ mode only */
104 TxAddr0 = 0x20, /* Tx descriptors (also four 32bit). */
105 RxBuf = 0x30,
106 ChipCmd = 0x37,
107 RxBufPtr = 0x38,
108 RxBufAddr = 0x3A,
109 IntrMask = 0x3C,
110 IntrStatus = 0x3E,
111 TxConfig = 0x40,
112 RxConfig = 0x44,
113 Timer = 0x48, /* A general-purpose counter. */
114 RxMissed = 0x4C, /* 24 bits valid, write clears. */
115 Cfg9346 = 0x50,
116 Config0 = 0x51,
117 Config1 = 0x52,
118 FlashReg = 0x54,
119 MediaStatus = 0x58,
120 Config3 = 0x59,
121 Config4 = 0x5A, /* absent on RTL-8139A */
122 HltClk = 0x5B,
123 MultiIntr = 0x5C,
124 PCIRevisionID = 0x5E,
125 TxSummary = 0x60, /* TSAD register. Transmit Status of All Descriptors*/
126 BasicModeCtrl = 0x62,
127 BasicModeStatus = 0x64,
128 NWayAdvert = 0x66,
129 NWayLPAR = 0x68,
130 NWayExpansion = 0x6A,
131 /* Undocumented registers, but required for proper operation. */
132 FIFOTMS = 0x70, /* FIFO Control and test. */
133 CSCR = 0x74, /* Chip Status and Configuration Register. */
134 PARA78 = 0x78,
135 PARA7c = 0x7c, /* Magic transceiver parameter register. */
136 Config5 = 0xD8, /* absent on RTL-8139A */
137 /* C+ mode */
138 TxPoll = 0xD9, /* Tell chip to check Tx descriptors for work */
139 RxMaxSize = 0xDA, /* Max size of an Rx packet (8169 only) */
140 CpCmd = 0xE0, /* C+ Command register (C+ mode only) */
141 IntrMitigate = 0xE2, /* rx/tx interrupt mitigation control */
142 RxRingAddrLO = 0xE4, /* 64-bit start addr of Rx ring */
143 RxRingAddrHI = 0xE8, /* 64-bit start addr of Rx ring */
144 TxThresh = 0xEC, /* Early Tx threshold */
145 };
146
147 enum ClearBitMasks {
148 MultiIntrClear = 0xF000,
149 ChipCmdClear = 0xE2,
150 Config1Clear = (1<<7)|(1<<6)|(1<<3)|(1<<2)|(1<<1),
151 };
152
153 enum ChipCmdBits {
154 CmdReset = 0x10,
155 CmdRxEnb = 0x08,
156 CmdTxEnb = 0x04,
157 RxBufEmpty = 0x01,
158 };
159
160 /* C+ mode */
161 enum CplusCmdBits {
162 CPlusRxVLAN = 0x0040, /* enable receive VLAN detagging */
163 CPlusRxChkSum = 0x0020, /* enable receive checksum offloading */
164 CPlusRxEnb = 0x0002,
165 CPlusTxEnb = 0x0001,
166 };
167
168 /* Interrupt register bits, using my own meaningful names. */
169 enum IntrStatusBits {
170 PCIErr = 0x8000,
171 PCSTimeout = 0x4000,
172 RxFIFOOver = 0x40,
173 RxUnderrun = 0x20, /* Packet Underrun / Link Change */
174 RxOverflow = 0x10,
175 TxErr = 0x08,
176 TxOK = 0x04,
177 RxErr = 0x02,
178 RxOK = 0x01,
179
180 RxAckBits = RxFIFOOver | RxOverflow | RxOK,
181 };
182
183 enum TxStatusBits {
184 TxHostOwns = 0x2000,
185 TxUnderrun = 0x4000,
186 TxStatOK = 0x8000,
187 TxOutOfWindow = 0x20000000,
188 TxAborted = 0x40000000,
189 TxCarrierLost = 0x80000000,
190 };
191 enum RxStatusBits {
192 RxMulticast = 0x8000,
193 RxPhysical = 0x4000,
194 RxBroadcast = 0x2000,
195 RxBadSymbol = 0x0020,
196 RxRunt = 0x0010,
197 RxTooLong = 0x0008,
198 RxCRCErr = 0x0004,
199 RxBadAlign = 0x0002,
200 RxStatusOK = 0x0001,
201 };
202
203 /* Bits in RxConfig. */
204 enum rx_mode_bits {
205 AcceptErr = 0x20,
206 AcceptRunt = 0x10,
207 AcceptBroadcast = 0x08,
208 AcceptMulticast = 0x04,
209 AcceptMyPhys = 0x02,
210 AcceptAllPhys = 0x01,
211 };
212
213 /* Bits in TxConfig. */
214 enum tx_config_bits {
215
216 /* Interframe Gap Time. Only TxIFG96 doesn't violate IEEE 802.3 */
217 TxIFGShift = 24,
218 TxIFG84 = (0 << TxIFGShift), /* 8.4us / 840ns (10 / 100Mbps) */
219 TxIFG88 = (1 << TxIFGShift), /* 8.8us / 880ns (10 / 100Mbps) */
220 TxIFG92 = (2 << TxIFGShift), /* 9.2us / 920ns (10 / 100Mbps) */
221 TxIFG96 = (3 << TxIFGShift), /* 9.6us / 960ns (10 / 100Mbps) */
222
223 TxLoopBack = (1 << 18) | (1 << 17), /* enable loopback test mode */
224 TxCRC = (1 << 16), /* DISABLE appending CRC to end of Tx packets */
225 TxClearAbt = (1 << 0), /* Clear abort (WO) */
226 TxDMAShift = 8, /* DMA burst value (0-7) is shifted this many bits */
227 TxRetryShift = 4, /* TXRR value (0-15) is shifted this many bits */
228
229 TxVersionMask = 0x7C800000, /* mask out version bits 30-26, 23 */
230 };
231
232
233 /* Transmit Status of All Descriptors (TSAD) Register */
234 enum TSAD_bits {
235 TSAD_TOK3 = 1<<15, // TOK bit of Descriptor 3
236 TSAD_TOK2 = 1<<14, // TOK bit of Descriptor 2
237 TSAD_TOK1 = 1<<13, // TOK bit of Descriptor 1
238 TSAD_TOK0 = 1<<12, // TOK bit of Descriptor 0
239 TSAD_TUN3 = 1<<11, // TUN bit of Descriptor 3
240 TSAD_TUN2 = 1<<10, // TUN bit of Descriptor 2
241 TSAD_TUN1 = 1<<9, // TUN bit of Descriptor 1
242 TSAD_TUN0 = 1<<8, // TUN bit of Descriptor 0
243 TSAD_TABT3 = 1<<07, // TABT bit of Descriptor 3
244 TSAD_TABT2 = 1<<06, // TABT bit of Descriptor 2
245 TSAD_TABT1 = 1<<05, // TABT bit of Descriptor 1
246 TSAD_TABT0 = 1<<04, // TABT bit of Descriptor 0
247 TSAD_OWN3 = 1<<03, // OWN bit of Descriptor 3
248 TSAD_OWN2 = 1<<02, // OWN bit of Descriptor 2
249 TSAD_OWN1 = 1<<01, // OWN bit of Descriptor 1
250 TSAD_OWN0 = 1<<00, // OWN bit of Descriptor 0
251 };
252
253
254 /* Bits in Config1 */
255 enum Config1Bits {
256 Cfg1_PM_Enable = 0x01,
257 Cfg1_VPD_Enable = 0x02,
258 Cfg1_PIO = 0x04,
259 Cfg1_MMIO = 0x08,
260 LWAKE = 0x10, /* not on 8139, 8139A */
261 Cfg1_Driver_Load = 0x20,
262 Cfg1_LED0 = 0x40,
263 Cfg1_LED1 = 0x80,
264 SLEEP = (1 << 1), /* only on 8139, 8139A */
265 PWRDN = (1 << 0), /* only on 8139, 8139A */
266 };
267
268 /* Bits in Config3 */
269 enum Config3Bits {
270 Cfg3_FBtBEn = (1 << 0), /* 1 = Fast Back to Back */
271 Cfg3_FuncRegEn = (1 << 1), /* 1 = enable CardBus Function registers */
272 Cfg3_CLKRUN_En = (1 << 2), /* 1 = enable CLKRUN */
273 Cfg3_CardB_En = (1 << 3), /* 1 = enable CardBus registers */
274 Cfg3_LinkUp = (1 << 4), /* 1 = wake up on link up */
275 Cfg3_Magic = (1 << 5), /* 1 = wake up on Magic Packet (tm) */
276 Cfg3_PARM_En = (1 << 6), /* 0 = software can set twister parameters */
277 Cfg3_GNTSel = (1 << 7), /* 1 = delay 1 clock from PCI GNT signal */
278 };
279
280 /* Bits in Config4 */
281 enum Config4Bits {
282 LWPTN = (1 << 2), /* not on 8139, 8139A */
283 };
284
285 /* Bits in Config5 */
286 enum Config5Bits {
287 Cfg5_PME_STS = (1 << 0), /* 1 = PCI reset resets PME_Status */
288 Cfg5_LANWake = (1 << 1), /* 1 = enable LANWake signal */
289 Cfg5_LDPS = (1 << 2), /* 0 = save power when link is down */
290 Cfg5_FIFOAddrPtr = (1 << 3), /* Realtek internal SRAM testing */
291 Cfg5_UWF = (1 << 4), /* 1 = accept unicast wakeup frame */
292 Cfg5_MWF = (1 << 5), /* 1 = accept multicast wakeup frame */
293 Cfg5_BWF = (1 << 6), /* 1 = accept broadcast wakeup frame */
294 };
295
296 enum RxConfigBits {
297 /* rx fifo threshold */
298 RxCfgFIFOShift = 13,
299 RxCfgFIFONone = (7 << RxCfgFIFOShift),
300
301 /* Max DMA burst */
302 RxCfgDMAShift = 8,
303 RxCfgDMAUnlimited = (7 << RxCfgDMAShift),
304
305 /* rx ring buffer length */
306 RxCfgRcv8K = 0,
307 RxCfgRcv16K = (1 << 11),
308 RxCfgRcv32K = (1 << 12),
309 RxCfgRcv64K = (1 << 11) | (1 << 12),
310
311 /* Disable packet wrap at end of Rx buffer. (not possible with 64k) */
312 RxNoWrap = (1 << 7),
313 };
314
315 /* Twister tuning parameters from RealTek.
316 Completely undocumented, but required to tune bad links on some boards. */
317 /*
318 enum CSCRBits {
319 CSCR_LinkOKBit = 0x0400,
320 CSCR_LinkChangeBit = 0x0800,
321 CSCR_LinkStatusBits = 0x0f000,
322 CSCR_LinkDownOffCmd = 0x003c0,
323 CSCR_LinkDownCmd = 0x0f3c0,
324 */
325 enum CSCRBits {
326 CSCR_Testfun = 1<<15, /* 1 = Auto-neg speeds up internal timer, WO, def 0 */
327 CSCR_LD = 1<<9, /* Active low TPI link disable signal. When low, TPI still transmits link pulses and TPI stays in good link state. def 1*/
328 CSCR_HEART_BIT = 1<<8, /* 1 = HEART BEAT enable, 0 = HEART BEAT disable. HEART BEAT function is only valid in 10Mbps mode. def 1*/
329 CSCR_JBEN = 1<<7, /* 1 = enable jabber function. 0 = disable jabber function, def 1*/
330 CSCR_F_LINK_100 = 1<<6, /* Used to login force good link in 100Mbps for diagnostic purposes. 1 = DISABLE, 0 = ENABLE. def 1*/
331 CSCR_F_Connect = 1<<5, /* Assertion of this bit forces the disconnect function to be bypassed. def 0*/
332 CSCR_Con_status = 1<<3, /* This bit indicates the status of the connection. 1 = valid connected link detected; 0 = disconnected link detected. RO def 0*/
333 CSCR_Con_status_En = 1<<2, /* Assertion of this bit configures LED1 pin to indicate connection status. def 0*/
334 CSCR_PASS_SCR = 1<<0, /* Bypass Scramble, def 0*/
335 };
336
337 enum Cfg9346Bits {
338 Cfg9346_Normal = 0x00,
339 Cfg9346_Autoload = 0x40,
340 Cfg9346_Programming = 0x80,
341 Cfg9346_ConfigWrite = 0xC0,
342 };
343
344 typedef enum {
345 CH_8139 = 0,
346 CH_8139_K,
347 CH_8139A,
348 CH_8139A_G,
349 CH_8139B,
350 CH_8130,
351 CH_8139C,
352 CH_8100,
353 CH_8100B_8139D,
354 CH_8101,
355 } chip_t;
356
357 enum chip_flags {
358 HasHltClk = (1 << 0),
359 HasLWake = (1 << 1),
360 };
361
362 #define HW_REVID(b30, b29, b28, b27, b26, b23, b22) \
363 (b30<<30 | b29<<29 | b28<<28 | b27<<27 | b26<<26 | b23<<23 | b22<<22)
364 #define HW_REVID_MASK HW_REVID(1, 1, 1, 1, 1, 1, 1)
365
366 #define RTL8139_PCI_REVID_8139 0x10
367 #define RTL8139_PCI_REVID_8139CPLUS 0x20
368
369 #define RTL8139_PCI_REVID RTL8139_PCI_REVID_8139CPLUS
370
371 /* Size is 64 * 16bit words */
372 #define EEPROM_9346_ADDR_BITS 6
373 #define EEPROM_9346_SIZE (1 << EEPROM_9346_ADDR_BITS)
374 #define EEPROM_9346_ADDR_MASK (EEPROM_9346_SIZE - 1)
375
376 enum Chip9346Operation
377 {
378 Chip9346_op_mask = 0xc0, /* 10 zzzzzz */
379 Chip9346_op_read = 0x80, /* 10 AAAAAA */
380 Chip9346_op_write = 0x40, /* 01 AAAAAA D(15)..D(0) */
381 Chip9346_op_ext_mask = 0xf0, /* 11 zzzzzz */
382 Chip9346_op_write_enable = 0x30, /* 00 11zzzz */
383 Chip9346_op_write_all = 0x10, /* 00 01zzzz */
384 Chip9346_op_write_disable = 0x00, /* 00 00zzzz */
385 };
386
387 enum Chip9346Mode
388 {
389 Chip9346_none = 0,
390 Chip9346_enter_command_mode,
391 Chip9346_read_command,
392 Chip9346_data_read, /* from output register */
393 Chip9346_data_write, /* to input register, then to contents at specified address */
394 Chip9346_data_write_all, /* to input register, then filling contents */
395 };
396
397 typedef struct EEprom9346
398 {
399 uint16_t contents[EEPROM_9346_SIZE];
400 int mode;
401 uint32_t tick;
402 uint8_t address;
403 uint16_t input;
404 uint16_t output;
405
406 uint8_t eecs;
407 uint8_t eesk;
408 uint8_t eedi;
409 uint8_t eedo;
410 } EEprom9346;
411
412 typedef struct RTL8139TallyCounters
413 {
414 /* Tally counters */
415 uint64_t TxOk;
416 uint64_t RxOk;
417 uint64_t TxERR;
418 uint32_t RxERR;
419 uint16_t MissPkt;
420 uint16_t FAE;
421 uint32_t Tx1Col;
422 uint32_t TxMCol;
423 uint64_t RxOkPhy;
424 uint64_t RxOkBrd;
425 uint32_t RxOkMul;
426 uint16_t TxAbt;
427 uint16_t TxUndrn;
428 } RTL8139TallyCounters;
429
430 /* Clears all tally counters */
431 static void RTL8139TallyCounters_clear(RTL8139TallyCounters* counters);
432
433 struct RTL8139State {
434 /*< private >*/
435 PCIDevice parent_obj;
436 /*< public >*/
437
438 uint8_t phys[8]; /* mac address */
439 uint8_t mult[8]; /* multicast mask array */
440
441 uint32_t TxStatus[4]; /* TxStatus0 in C mode*/ /* also DTCCR[0] and DTCCR[1] in C+ mode */
442 uint32_t TxAddr[4]; /* TxAddr0 */
443 uint32_t RxBuf; /* Receive buffer */
444 uint32_t RxBufferSize;/* internal variable, receive ring buffer size in C mode */
445 uint32_t RxBufPtr;
446 uint32_t RxBufAddr;
447
448 uint16_t IntrStatus;
449 uint16_t IntrMask;
450
451 uint32_t TxConfig;
452 uint32_t RxConfig;
453 uint32_t RxMissed;
454
455 uint16_t CSCR;
456
457 uint8_t Cfg9346;
458 uint8_t Config0;
459 uint8_t Config1;
460 uint8_t Config3;
461 uint8_t Config4;
462 uint8_t Config5;
463
464 uint8_t clock_enabled;
465 uint8_t bChipCmdState;
466
467 uint16_t MultiIntr;
468
469 uint16_t BasicModeCtrl;
470 uint16_t BasicModeStatus;
471 uint16_t NWayAdvert;
472 uint16_t NWayLPAR;
473 uint16_t NWayExpansion;
474
475 uint16_t CpCmd;
476 uint8_t TxThresh;
477
478 NICState *nic;
479 NICConf conf;
480
481 /* C ring mode */
482 uint32_t currTxDesc;
483
484 /* C+ mode */
485 uint32_t cplus_enabled;
486
487 uint32_t currCPlusRxDesc;
488 uint32_t currCPlusTxDesc;
489
490 uint32_t RxRingAddrLO;
491 uint32_t RxRingAddrHI;
492
493 EEprom9346 eeprom;
494
495 uint32_t TCTR;
496 uint32_t TimerInt;
497 int64_t TCTR_base;
498
499 /* Tally counters */
500 RTL8139TallyCounters tally_counters;
501
502 /* Non-persistent data */
503 uint8_t *cplus_txbuffer;
504 int cplus_txbuffer_len;
505 int cplus_txbuffer_offset;
506
507 /* PCI interrupt timer */
508 QEMUTimer *timer;
509
510 MemoryRegion bar_io;
511 MemoryRegion bar_mem;
512
513 /* Support migration to/from old versions */
514 int rtl8139_mmio_io_addr_dummy;
515 };
516
517 /* Writes tally counters to memory via DMA */
518 static void RTL8139TallyCounters_dma_write(RTL8139State *s, dma_addr_t tc_addr);
519
520 static void rtl8139_set_next_tctr_time(RTL8139State *s);
521
prom9346_decode_command(EEprom9346 * eeprom,uint8_t command)522 static void prom9346_decode_command(EEprom9346 *eeprom, uint8_t command)
523 {
524 DPRINTF("eeprom command 0x%02x\n", command);
525
526 switch (command & Chip9346_op_mask)
527 {
528 case Chip9346_op_read:
529 {
530 eeprom->address = command & EEPROM_9346_ADDR_MASK;
531 eeprom->output = eeprom->contents[eeprom->address];
532 eeprom->eedo = 0;
533 eeprom->tick = 0;
534 eeprom->mode = Chip9346_data_read;
535 DPRINTF("eeprom read from address 0x%02x data=0x%04x\n",
536 eeprom->address, eeprom->output);
537 }
538 break;
539
540 case Chip9346_op_write:
541 {
542 eeprom->address = command & EEPROM_9346_ADDR_MASK;
543 eeprom->input = 0;
544 eeprom->tick = 0;
545 eeprom->mode = Chip9346_none; /* Chip9346_data_write */
546 DPRINTF("eeprom begin write to address 0x%02x\n",
547 eeprom->address);
548 }
549 break;
550 default:
551 eeprom->mode = Chip9346_none;
552 switch (command & Chip9346_op_ext_mask)
553 {
554 case Chip9346_op_write_enable:
555 DPRINTF("eeprom write enabled\n");
556 break;
557 case Chip9346_op_write_all:
558 DPRINTF("eeprom begin write all\n");
559 break;
560 case Chip9346_op_write_disable:
561 DPRINTF("eeprom write disabled\n");
562 break;
563 }
564 break;
565 }
566 }
567
prom9346_shift_clock(EEprom9346 * eeprom)568 static void prom9346_shift_clock(EEprom9346 *eeprom)
569 {
570 int bit = eeprom->eedi?1:0;
571
572 ++ eeprom->tick;
573
574 DPRINTF("eeprom: tick %d eedi=%d eedo=%d\n", eeprom->tick, eeprom->eedi,
575 eeprom->eedo);
576
577 switch (eeprom->mode)
578 {
579 case Chip9346_enter_command_mode:
580 if (bit)
581 {
582 eeprom->mode = Chip9346_read_command;
583 eeprom->tick = 0;
584 eeprom->input = 0;
585 DPRINTF("eeprom: +++ synchronized, begin command read\n");
586 }
587 break;
588
589 case Chip9346_read_command:
590 eeprom->input = (eeprom->input << 1) | (bit & 1);
591 if (eeprom->tick == 8)
592 {
593 prom9346_decode_command(eeprom, eeprom->input & 0xff);
594 }
595 break;
596
597 case Chip9346_data_read:
598 eeprom->eedo = (eeprom->output & 0x8000)?1:0;
599 eeprom->output <<= 1;
600 if (eeprom->tick == 16)
601 {
602 #if 1
603 // the FreeBSD drivers (rl and re) don't explicitly toggle
604 // CS between reads (or does setting Cfg9346 to 0 count too?),
605 // so we need to enter wait-for-command state here
606 eeprom->mode = Chip9346_enter_command_mode;
607 eeprom->input = 0;
608 eeprom->tick = 0;
609
610 DPRINTF("eeprom: +++ end of read, awaiting next command\n");
611 #else
612 // original behaviour
613 ++eeprom->address;
614 eeprom->address &= EEPROM_9346_ADDR_MASK;
615 eeprom->output = eeprom->contents[eeprom->address];
616 eeprom->tick = 0;
617
618 DPRINTF("eeprom: +++ read next address 0x%02x data=0x%04x\n",
619 eeprom->address, eeprom->output);
620 #endif
621 }
622 break;
623
624 case Chip9346_data_write:
625 eeprom->input = (eeprom->input << 1) | (bit & 1);
626 if (eeprom->tick == 16)
627 {
628 DPRINTF("eeprom write to address 0x%02x data=0x%04x\n",
629 eeprom->address, eeprom->input);
630
631 eeprom->contents[eeprom->address] = eeprom->input;
632 eeprom->mode = Chip9346_none; /* waiting for next command after CS cycle */
633 eeprom->tick = 0;
634 eeprom->input = 0;
635 }
636 break;
637
638 case Chip9346_data_write_all:
639 eeprom->input = (eeprom->input << 1) | (bit & 1);
640 if (eeprom->tick == 16)
641 {
642 int i;
643 for (i = 0; i < EEPROM_9346_SIZE; i++)
644 {
645 eeprom->contents[i] = eeprom->input;
646 }
647 DPRINTF("eeprom filled with data=0x%04x\n", eeprom->input);
648
649 eeprom->mode = Chip9346_enter_command_mode;
650 eeprom->tick = 0;
651 eeprom->input = 0;
652 }
653 break;
654
655 default:
656 break;
657 }
658 }
659
prom9346_get_wire(RTL8139State * s)660 static int prom9346_get_wire(RTL8139State *s)
661 {
662 EEprom9346 *eeprom = &s->eeprom;
663 if (!eeprom->eecs)
664 return 0;
665
666 return eeprom->eedo;
667 }
668
669 /* FIXME: This should be merged into/replaced by eeprom93xx.c. */
prom9346_set_wire(RTL8139State * s,int eecs,int eesk,int eedi)670 static void prom9346_set_wire(RTL8139State *s, int eecs, int eesk, int eedi)
671 {
672 EEprom9346 *eeprom = &s->eeprom;
673 uint8_t old_eecs = eeprom->eecs;
674 uint8_t old_eesk = eeprom->eesk;
675
676 eeprom->eecs = eecs;
677 eeprom->eesk = eesk;
678 eeprom->eedi = eedi;
679
680 DPRINTF("eeprom: +++ wires CS=%d SK=%d DI=%d DO=%d\n", eeprom->eecs,
681 eeprom->eesk, eeprom->eedi, eeprom->eedo);
682
683 if (!old_eecs && eecs)
684 {
685 /* Synchronize start */
686 eeprom->tick = 0;
687 eeprom->input = 0;
688 eeprom->output = 0;
689 eeprom->mode = Chip9346_enter_command_mode;
690
691 DPRINTF("=== eeprom: begin access, enter command mode\n");
692 }
693
694 if (!eecs)
695 {
696 DPRINTF("=== eeprom: end access\n");
697 return;
698 }
699
700 if (!old_eesk && eesk)
701 {
702 /* SK front rules */
703 prom9346_shift_clock(eeprom);
704 }
705 }
706
rtl8139_update_irq(RTL8139State * s)707 static void rtl8139_update_irq(RTL8139State *s)
708 {
709 PCIDevice *d = PCI_DEVICE(s);
710 int isr;
711 isr = (s->IntrStatus & s->IntrMask) & 0xffff;
712
713 DPRINTF("Set IRQ to %d (%04x %04x)\n", isr ? 1 : 0, s->IntrStatus,
714 s->IntrMask);
715
716 pci_set_irq(d, (isr != 0));
717 }
718
rtl8139_RxWrap(RTL8139State * s)719 static int rtl8139_RxWrap(RTL8139State *s)
720 {
721 /* wrapping enabled; assume 1.5k more buffer space if size < 65536 */
722 return (s->RxConfig & (1 << 7));
723 }
724
rtl8139_receiver_enabled(RTL8139State * s)725 static int rtl8139_receiver_enabled(RTL8139State *s)
726 {
727 return s->bChipCmdState & CmdRxEnb;
728 }
729
rtl8139_transmitter_enabled(RTL8139State * s)730 static int rtl8139_transmitter_enabled(RTL8139State *s)
731 {
732 return s->bChipCmdState & CmdTxEnb;
733 }
734
rtl8139_cp_receiver_enabled(RTL8139State * s)735 static int rtl8139_cp_receiver_enabled(RTL8139State *s)
736 {
737 return s->CpCmd & CPlusRxEnb;
738 }
739
rtl8139_cp_transmitter_enabled(RTL8139State * s)740 static int rtl8139_cp_transmitter_enabled(RTL8139State *s)
741 {
742 return s->CpCmd & CPlusTxEnb;
743 }
744
rtl8139_write_buffer(RTL8139State * s,const void * buf,int size)745 static void rtl8139_write_buffer(RTL8139State *s, const void *buf, int size)
746 {
747 PCIDevice *d = PCI_DEVICE(s);
748
749 if (s->RxBufAddr + size > s->RxBufferSize)
750 {
751 int wrapped = MOD2(s->RxBufAddr + size, s->RxBufferSize);
752
753 /* write packet data */
754 if (wrapped && !(s->RxBufferSize < 65536 && rtl8139_RxWrap(s)))
755 {
756 DPRINTF(">>> rx packet wrapped in buffer at %d\n", size - wrapped);
757
758 if (size > wrapped)
759 {
760 pci_dma_write(d, s->RxBuf + s->RxBufAddr,
761 buf, size-wrapped);
762 }
763
764 /* reset buffer pointer */
765 s->RxBufAddr = 0;
766
767 pci_dma_write(d, s->RxBuf + s->RxBufAddr,
768 buf + (size-wrapped), wrapped);
769
770 s->RxBufAddr = wrapped;
771
772 return;
773 }
774 }
775
776 /* non-wrapping path or overwrapping enabled */
777 pci_dma_write(d, s->RxBuf + s->RxBufAddr, buf, size);
778
779 s->RxBufAddr += size;
780 }
781
782 #define MIN_BUF_SIZE 60
rtl8139_addr64(uint32_t low,uint32_t high)783 static inline dma_addr_t rtl8139_addr64(uint32_t low, uint32_t high)
784 {
785 return low | ((uint64_t)high << 32);
786 }
787
788 /* Workaround for buggy guest driver such as linux who allocates rx
789 * rings after the receiver were enabled. */
rtl8139_cp_rx_valid(RTL8139State * s)790 static bool rtl8139_cp_rx_valid(RTL8139State *s)
791 {
792 return !(s->RxRingAddrLO == 0 && s->RxRingAddrHI == 0);
793 }
794
rtl8139_can_receive(NetClientState * nc)795 static bool rtl8139_can_receive(NetClientState *nc)
796 {
797 RTL8139State *s = qemu_get_nic_opaque(nc);
798 int avail;
799
800 /* Receive (drop) packets if card is disabled. */
801 if (!s->clock_enabled) {
802 return true;
803 }
804 if (!rtl8139_receiver_enabled(s)) {
805 return true;
806 }
807
808 if (rtl8139_cp_receiver_enabled(s) && rtl8139_cp_rx_valid(s)) {
809 /* ??? Flow control not implemented in c+ mode.
810 This is a hack to work around slirp deficiencies anyway. */
811 return true;
812 }
813
814 avail = MOD2(s->RxBufferSize + s->RxBufPtr - s->RxBufAddr,
815 s->RxBufferSize);
816 return avail == 0 || avail >= 1514 || (s->IntrMask & RxOverflow);
817 }
818
rtl8139_do_receive(NetClientState * nc,const uint8_t * buf,size_t size_,int do_interrupt)819 static ssize_t rtl8139_do_receive(NetClientState *nc, const uint8_t *buf, size_t size_, int do_interrupt)
820 {
821 RTL8139State *s = qemu_get_nic_opaque(nc);
822 PCIDevice *d = PCI_DEVICE(s);
823 /* size is the length of the buffer passed to the driver */
824 size_t size = size_;
825 const uint8_t *dot1q_buf = NULL;
826
827 uint32_t packet_header = 0;
828
829 static const uint8_t broadcast_macaddr[6] =
830 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
831
832 DPRINTF(">>> received len=%zu\n", size);
833
834 /* test if board clock is stopped */
835 if (!s->clock_enabled)
836 {
837 DPRINTF("stopped ==========================\n");
838 return -1;
839 }
840
841 /* first check if receiver is enabled */
842
843 if (!rtl8139_receiver_enabled(s))
844 {
845 DPRINTF("receiver disabled ================\n");
846 return -1;
847 }
848
849 /* XXX: check this */
850 if (s->RxConfig & AcceptAllPhys) {
851 /* promiscuous: receive all */
852 DPRINTF(">>> packet received in promiscuous mode\n");
853
854 } else {
855 if (!memcmp(buf, broadcast_macaddr, 6)) {
856 /* broadcast address */
857 if (!(s->RxConfig & AcceptBroadcast))
858 {
859 DPRINTF(">>> broadcast packet rejected\n");
860
861 /* update tally counter */
862 ++s->tally_counters.RxERR;
863
864 return size;
865 }
866
867 packet_header |= RxBroadcast;
868
869 DPRINTF(">>> broadcast packet received\n");
870
871 /* update tally counter */
872 ++s->tally_counters.RxOkBrd;
873
874 } else if (buf[0] & 0x01) {
875 /* multicast */
876 if (!(s->RxConfig & AcceptMulticast))
877 {
878 DPRINTF(">>> multicast packet rejected\n");
879
880 /* update tally counter */
881 ++s->tally_counters.RxERR;
882
883 return size;
884 }
885
886 int mcast_idx = net_crc32(buf, ETH_ALEN) >> 26;
887
888 if (!(s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))))
889 {
890 DPRINTF(">>> multicast address mismatch\n");
891
892 /* update tally counter */
893 ++s->tally_counters.RxERR;
894
895 return size;
896 }
897
898 packet_header |= RxMulticast;
899
900 DPRINTF(">>> multicast packet received\n");
901
902 /* update tally counter */
903 ++s->tally_counters.RxOkMul;
904
905 } else if (s->phys[0] == buf[0] &&
906 s->phys[1] == buf[1] &&
907 s->phys[2] == buf[2] &&
908 s->phys[3] == buf[3] &&
909 s->phys[4] == buf[4] &&
910 s->phys[5] == buf[5]) {
911 /* match */
912 if (!(s->RxConfig & AcceptMyPhys))
913 {
914 DPRINTF(">>> rejecting physical address matching packet\n");
915
916 /* update tally counter */
917 ++s->tally_counters.RxERR;
918
919 return size;
920 }
921
922 packet_header |= RxPhysical;
923
924 DPRINTF(">>> physical address matching packet received\n");
925
926 /* update tally counter */
927 ++s->tally_counters.RxOkPhy;
928
929 } else {
930
931 DPRINTF(">>> unknown packet\n");
932
933 /* update tally counter */
934 ++s->tally_counters.RxERR;
935
936 return size;
937 }
938 }
939
940 if (rtl8139_cp_receiver_enabled(s))
941 {
942 if (!rtl8139_cp_rx_valid(s)) {
943 return size;
944 }
945
946 DPRINTF("in C+ Rx mode ================\n");
947
948 /* begin C+ receiver mode */
949
950 /* w0 ownership flag */
951 #define CP_RX_OWN (1<<31)
952 /* w0 end of ring flag */
953 #define CP_RX_EOR (1<<30)
954 /* w0 bits 0...12 : buffer size */
955 #define CP_RX_BUFFER_SIZE_MASK ((1<<13) - 1)
956 /* w1 tag available flag */
957 #define CP_RX_TAVA (1<<16)
958 /* w1 bits 0...15 : VLAN tag */
959 #define CP_RX_VLAN_TAG_MASK ((1<<16) - 1)
960 /* w2 low 32bit of Rx buffer ptr */
961 /* w3 high 32bit of Rx buffer ptr */
962
963 int descriptor = s->currCPlusRxDesc;
964 dma_addr_t cplus_rx_ring_desc;
965
966 cplus_rx_ring_desc = rtl8139_addr64(s->RxRingAddrLO, s->RxRingAddrHI);
967 cplus_rx_ring_desc += 16 * descriptor;
968
969 DPRINTF("+++ C+ mode reading RX descriptor %d from host memory at "
970 "%08x %08x = "DMA_ADDR_FMT"\n", descriptor, s->RxRingAddrHI,
971 s->RxRingAddrLO, cplus_rx_ring_desc);
972
973 uint32_t val, rxdw0,rxdw1,rxbufLO,rxbufHI;
974
975 pci_dma_read(d, cplus_rx_ring_desc, &val, 4);
976 rxdw0 = le32_to_cpu(val);
977 pci_dma_read(d, cplus_rx_ring_desc+4, &val, 4);
978 rxdw1 = le32_to_cpu(val);
979 pci_dma_read(d, cplus_rx_ring_desc+8, &val, 4);
980 rxbufLO = le32_to_cpu(val);
981 pci_dma_read(d, cplus_rx_ring_desc+12, &val, 4);
982 rxbufHI = le32_to_cpu(val);
983
984 DPRINTF("+++ C+ mode RX descriptor %d %08x %08x %08x %08x\n",
985 descriptor, rxdw0, rxdw1, rxbufLO, rxbufHI);
986
987 if (!(rxdw0 & CP_RX_OWN))
988 {
989 DPRINTF("C+ Rx mode : descriptor %d is owned by host\n",
990 descriptor);
991
992 s->IntrStatus |= RxOverflow;
993 ++s->RxMissed;
994
995 /* update tally counter */
996 ++s->tally_counters.RxERR;
997 ++s->tally_counters.MissPkt;
998
999 rtl8139_update_irq(s);
1000 return size_;
1001 }
1002
1003 uint32_t rx_space = rxdw0 & CP_RX_BUFFER_SIZE_MASK;
1004
1005 /* write VLAN info to descriptor variables. */
1006 if (s->CpCmd & CPlusRxVLAN &&
1007 lduw_be_p(&buf[ETH_ALEN * 2]) == ETH_P_VLAN) {
1008 dot1q_buf = &buf[ETH_ALEN * 2];
1009 size -= VLAN_HLEN;
1010 /* if too small buffer, use the tailroom added duing expansion */
1011 if (size < MIN_BUF_SIZE) {
1012 size = MIN_BUF_SIZE;
1013 }
1014
1015 rxdw1 &= ~CP_RX_VLAN_TAG_MASK;
1016 /* BE + ~le_to_cpu()~ + cpu_to_le() = BE */
1017 rxdw1 |= CP_RX_TAVA | lduw_le_p(&dot1q_buf[ETHER_TYPE_LEN]);
1018
1019 DPRINTF("C+ Rx mode : extracted vlan tag with tci: ""%u\n",
1020 lduw_be_p(&dot1q_buf[ETHER_TYPE_LEN]));
1021 } else {
1022 /* reset VLAN tag flag */
1023 rxdw1 &= ~CP_RX_TAVA;
1024 }
1025
1026 /* TODO: scatter the packet over available receive ring descriptors space */
1027
1028 if (size+4 > rx_space)
1029 {
1030 DPRINTF("C+ Rx mode : descriptor %d size %d received %zu + 4\n",
1031 descriptor, rx_space, size);
1032
1033 s->IntrStatus |= RxOverflow;
1034 ++s->RxMissed;
1035
1036 /* update tally counter */
1037 ++s->tally_counters.RxERR;
1038 ++s->tally_counters.MissPkt;
1039
1040 rtl8139_update_irq(s);
1041 return size_;
1042 }
1043
1044 dma_addr_t rx_addr = rtl8139_addr64(rxbufLO, rxbufHI);
1045
1046 /* receive/copy to target memory */
1047 if (dot1q_buf) {
1048 pci_dma_write(d, rx_addr, buf, 2 * ETH_ALEN);
1049 pci_dma_write(d, rx_addr + 2 * ETH_ALEN,
1050 buf + 2 * ETH_ALEN + VLAN_HLEN,
1051 size - 2 * ETH_ALEN);
1052 } else {
1053 pci_dma_write(d, rx_addr, buf, size);
1054 }
1055
1056 if (s->CpCmd & CPlusRxChkSum)
1057 {
1058 /* do some packet checksumming */
1059 }
1060
1061 /* write checksum */
1062 val = cpu_to_le32(crc32(0, buf, size_));
1063 pci_dma_write(d, rx_addr+size, (uint8_t *)&val, 4);
1064
1065 /* first segment of received packet flag */
1066 #define CP_RX_STATUS_FS (1<<29)
1067 /* last segment of received packet flag */
1068 #define CP_RX_STATUS_LS (1<<28)
1069 /* multicast packet flag */
1070 #define CP_RX_STATUS_MAR (1<<26)
1071 /* physical-matching packet flag */
1072 #define CP_RX_STATUS_PAM (1<<25)
1073 /* broadcast packet flag */
1074 #define CP_RX_STATUS_BAR (1<<24)
1075 /* runt packet flag */
1076 #define CP_RX_STATUS_RUNT (1<<19)
1077 /* crc error flag */
1078 #define CP_RX_STATUS_CRC (1<<18)
1079 /* IP checksum error flag */
1080 #define CP_RX_STATUS_IPF (1<<15)
1081 /* UDP checksum error flag */
1082 #define CP_RX_STATUS_UDPF (1<<14)
1083 /* TCP checksum error flag */
1084 #define CP_RX_STATUS_TCPF (1<<13)
1085
1086 /* transfer ownership to target */
1087 rxdw0 &= ~CP_RX_OWN;
1088
1089 /* set first segment bit */
1090 rxdw0 |= CP_RX_STATUS_FS;
1091
1092 /* set last segment bit */
1093 rxdw0 |= CP_RX_STATUS_LS;
1094
1095 /* set received packet type flags */
1096 if (packet_header & RxBroadcast)
1097 rxdw0 |= CP_RX_STATUS_BAR;
1098 if (packet_header & RxMulticast)
1099 rxdw0 |= CP_RX_STATUS_MAR;
1100 if (packet_header & RxPhysical)
1101 rxdw0 |= CP_RX_STATUS_PAM;
1102
1103 /* set received size */
1104 rxdw0 &= ~CP_RX_BUFFER_SIZE_MASK;
1105 rxdw0 |= (size+4);
1106
1107 /* update ring data */
1108 val = cpu_to_le32(rxdw0);
1109 pci_dma_write(d, cplus_rx_ring_desc, (uint8_t *)&val, 4);
1110 val = cpu_to_le32(rxdw1);
1111 pci_dma_write(d, cplus_rx_ring_desc+4, (uint8_t *)&val, 4);
1112
1113 /* update tally counter */
1114 ++s->tally_counters.RxOk;
1115
1116 /* seek to next Rx descriptor */
1117 if (rxdw0 & CP_RX_EOR)
1118 {
1119 s->currCPlusRxDesc = 0;
1120 }
1121 else
1122 {
1123 ++s->currCPlusRxDesc;
1124 }
1125
1126 DPRINTF("done C+ Rx mode ----------------\n");
1127
1128 }
1129 else
1130 {
1131 DPRINTF("in ring Rx mode ================\n");
1132
1133 /* begin ring receiver mode */
1134 int avail = MOD2(s->RxBufferSize + s->RxBufPtr - s->RxBufAddr, s->RxBufferSize);
1135
1136 /* if receiver buffer is empty then avail == 0 */
1137
1138 #define RX_ALIGN(x) (((x) + 3) & ~0x3)
1139
1140 if (avail != 0 && RX_ALIGN(size + 8) >= avail)
1141 {
1142 DPRINTF("rx overflow: rx buffer length %d head 0x%04x "
1143 "read 0x%04x === available 0x%04x need 0x%04zx\n",
1144 s->RxBufferSize, s->RxBufAddr, s->RxBufPtr, avail, size + 8);
1145
1146 s->IntrStatus |= RxOverflow;
1147 ++s->RxMissed;
1148 rtl8139_update_irq(s);
1149 return 0;
1150 }
1151
1152 packet_header |= RxStatusOK;
1153
1154 packet_header |= (((size+4) << 16) & 0xffff0000);
1155
1156 /* write header */
1157 uint32_t val = cpu_to_le32(packet_header);
1158
1159 rtl8139_write_buffer(s, (uint8_t *)&val, 4);
1160
1161 rtl8139_write_buffer(s, buf, size);
1162
1163 /* write checksum */
1164 val = cpu_to_le32(crc32(0, buf, size));
1165 rtl8139_write_buffer(s, (uint8_t *)&val, 4);
1166
1167 /* correct buffer write pointer */
1168 s->RxBufAddr = MOD2(RX_ALIGN(s->RxBufAddr), s->RxBufferSize);
1169
1170 /* now we can signal we have received something */
1171
1172 DPRINTF("received: rx buffer length %d head 0x%04x read 0x%04x\n",
1173 s->RxBufferSize, s->RxBufAddr, s->RxBufPtr);
1174 }
1175
1176 s->IntrStatus |= RxOK;
1177
1178 if (do_interrupt)
1179 {
1180 rtl8139_update_irq(s);
1181 }
1182
1183 return size_;
1184 }
1185
rtl8139_receive(NetClientState * nc,const uint8_t * buf,size_t size)1186 static ssize_t rtl8139_receive(NetClientState *nc, const uint8_t *buf, size_t size)
1187 {
1188 return rtl8139_do_receive(nc, buf, size, 1);
1189 }
1190
rtl8139_reset_rxring(RTL8139State * s,uint32_t bufferSize)1191 static void rtl8139_reset_rxring(RTL8139State *s, uint32_t bufferSize)
1192 {
1193 s->RxBufferSize = bufferSize;
1194 s->RxBufPtr = 0;
1195 s->RxBufAddr = 0;
1196 }
1197
rtl8139_reset_phy(RTL8139State * s)1198 static void rtl8139_reset_phy(RTL8139State *s)
1199 {
1200 s->BasicModeStatus = 0x7809;
1201 s->BasicModeStatus |= 0x0020; /* autonegotiation completed */
1202 /* preserve link state */
1203 s->BasicModeStatus |= qemu_get_queue(s->nic)->link_down ? 0 : 0x04;
1204
1205 s->NWayAdvert = 0x05e1; /* all modes, full duplex */
1206 s->NWayLPAR = 0x05e1; /* all modes, full duplex */
1207 s->NWayExpansion = 0x0001; /* autonegotiation supported */
1208
1209 s->CSCR = CSCR_F_LINK_100 | CSCR_HEART_BIT | CSCR_LD;
1210 }
1211
rtl8139_reset(DeviceState * d)1212 static void rtl8139_reset(DeviceState *d)
1213 {
1214 RTL8139State *s = RTL8139(d);
1215 int i;
1216
1217 /* restore MAC address */
1218 memcpy(s->phys, s->conf.macaddr.a, 6);
1219 qemu_format_nic_info_str(qemu_get_queue(s->nic), s->phys);
1220
1221 /* reset interrupt mask */
1222 s->IntrStatus = 0;
1223 s->IntrMask = 0;
1224
1225 rtl8139_update_irq(s);
1226
1227 /* mark all status registers as owned by host */
1228 for (i = 0; i < 4; ++i)
1229 {
1230 s->TxStatus[i] = TxHostOwns;
1231 }
1232
1233 s->currTxDesc = 0;
1234 s->currCPlusRxDesc = 0;
1235 s->currCPlusTxDesc = 0;
1236
1237 s->RxRingAddrLO = 0;
1238 s->RxRingAddrHI = 0;
1239
1240 s->RxBuf = 0;
1241
1242 rtl8139_reset_rxring(s, 8192);
1243
1244 /* ACK the reset */
1245 s->TxConfig = 0;
1246
1247 #if 0
1248 // s->TxConfig |= HW_REVID(1, 0, 0, 0, 0, 0, 0); // RTL-8139 HasHltClk
1249 s->clock_enabled = 0;
1250 #else
1251 s->TxConfig |= HW_REVID(1, 1, 1, 0, 1, 1, 0); // RTL-8139C+ HasLWake
1252 s->clock_enabled = 1;
1253 #endif
1254
1255 s->bChipCmdState = CmdReset; /* RxBufEmpty bit is calculated on read from ChipCmd */;
1256
1257 /* set initial state data */
1258 s->Config0 = 0x0; /* No boot ROM */
1259 s->Config1 = 0xC; /* IO mapped and MEM mapped registers available */
1260 s->Config3 = 0x1; /* fast back-to-back compatible */
1261 s->Config5 = 0x0;
1262
1263 s->CpCmd = 0x0; /* reset C+ mode */
1264 s->cplus_enabled = 0;
1265
1266 // s->BasicModeCtrl = 0x3100; // 100Mbps, full duplex, autonegotiation
1267 // s->BasicModeCtrl = 0x2100; // 100Mbps, full duplex
1268 s->BasicModeCtrl = 0x1000; // autonegotiation
1269
1270 rtl8139_reset_phy(s);
1271
1272 /* also reset timer and disable timer interrupt */
1273 s->TCTR = 0;
1274 s->TimerInt = 0;
1275 s->TCTR_base = 0;
1276 rtl8139_set_next_tctr_time(s);
1277
1278 /* reset tally counters */
1279 RTL8139TallyCounters_clear(&s->tally_counters);
1280 }
1281
RTL8139TallyCounters_clear(RTL8139TallyCounters * counters)1282 static void RTL8139TallyCounters_clear(RTL8139TallyCounters* counters)
1283 {
1284 counters->TxOk = 0;
1285 counters->RxOk = 0;
1286 counters->TxERR = 0;
1287 counters->RxERR = 0;
1288 counters->MissPkt = 0;
1289 counters->FAE = 0;
1290 counters->Tx1Col = 0;
1291 counters->TxMCol = 0;
1292 counters->RxOkPhy = 0;
1293 counters->RxOkBrd = 0;
1294 counters->RxOkMul = 0;
1295 counters->TxAbt = 0;
1296 counters->TxUndrn = 0;
1297 }
1298
RTL8139TallyCounters_dma_write(RTL8139State * s,dma_addr_t tc_addr)1299 static void RTL8139TallyCounters_dma_write(RTL8139State *s, dma_addr_t tc_addr)
1300 {
1301 PCIDevice *d = PCI_DEVICE(s);
1302 RTL8139TallyCounters *tally_counters = &s->tally_counters;
1303 uint16_t val16;
1304 uint32_t val32;
1305 uint64_t val64;
1306
1307 val64 = cpu_to_le64(tally_counters->TxOk);
1308 pci_dma_write(d, tc_addr + 0, (uint8_t *)&val64, 8);
1309
1310 val64 = cpu_to_le64(tally_counters->RxOk);
1311 pci_dma_write(d, tc_addr + 8, (uint8_t *)&val64, 8);
1312
1313 val64 = cpu_to_le64(tally_counters->TxERR);
1314 pci_dma_write(d, tc_addr + 16, (uint8_t *)&val64, 8);
1315
1316 val32 = cpu_to_le32(tally_counters->RxERR);
1317 pci_dma_write(d, tc_addr + 24, (uint8_t *)&val32, 4);
1318
1319 val16 = cpu_to_le16(tally_counters->MissPkt);
1320 pci_dma_write(d, tc_addr + 28, (uint8_t *)&val16, 2);
1321
1322 val16 = cpu_to_le16(tally_counters->FAE);
1323 pci_dma_write(d, tc_addr + 30, (uint8_t *)&val16, 2);
1324
1325 val32 = cpu_to_le32(tally_counters->Tx1Col);
1326 pci_dma_write(d, tc_addr + 32, (uint8_t *)&val32, 4);
1327
1328 val32 = cpu_to_le32(tally_counters->TxMCol);
1329 pci_dma_write(d, tc_addr + 36, (uint8_t *)&val32, 4);
1330
1331 val64 = cpu_to_le64(tally_counters->RxOkPhy);
1332 pci_dma_write(d, tc_addr + 40, (uint8_t *)&val64, 8);
1333
1334 val64 = cpu_to_le64(tally_counters->RxOkBrd);
1335 pci_dma_write(d, tc_addr + 48, (uint8_t *)&val64, 8);
1336
1337 val32 = cpu_to_le32(tally_counters->RxOkMul);
1338 pci_dma_write(d, tc_addr + 56, (uint8_t *)&val32, 4);
1339
1340 val16 = cpu_to_le16(tally_counters->TxAbt);
1341 pci_dma_write(d, tc_addr + 60, (uint8_t *)&val16, 2);
1342
1343 val16 = cpu_to_le16(tally_counters->TxUndrn);
1344 pci_dma_write(d, tc_addr + 62, (uint8_t *)&val16, 2);
1345 }
1346
rtl8139_ChipCmd_write(RTL8139State * s,uint32_t val)1347 static void rtl8139_ChipCmd_write(RTL8139State *s, uint32_t val)
1348 {
1349 DeviceState *d = DEVICE(s);
1350
1351 val &= 0xff;
1352
1353 DPRINTF("ChipCmd write val=0x%08x\n", val);
1354
1355 if (val & CmdReset)
1356 {
1357 DPRINTF("ChipCmd reset\n");
1358 rtl8139_reset(d);
1359 }
1360 if (val & CmdRxEnb)
1361 {
1362 DPRINTF("ChipCmd enable receiver\n");
1363
1364 s->currCPlusRxDesc = 0;
1365 }
1366 if (val & CmdTxEnb)
1367 {
1368 DPRINTF("ChipCmd enable transmitter\n");
1369
1370 s->currCPlusTxDesc = 0;
1371 }
1372
1373 /* mask unwritable bits */
1374 val = SET_MASKED(val, 0xe3, s->bChipCmdState);
1375
1376 /* Deassert reset pin before next read */
1377 val &= ~CmdReset;
1378
1379 s->bChipCmdState = val;
1380 }
1381
rtl8139_RxBufferEmpty(RTL8139State * s)1382 static int rtl8139_RxBufferEmpty(RTL8139State *s)
1383 {
1384 int unread = MOD2(s->RxBufferSize + s->RxBufAddr - s->RxBufPtr, s->RxBufferSize);
1385
1386 if (unread != 0)
1387 {
1388 DPRINTF("receiver buffer data available 0x%04x\n", unread);
1389 return 0;
1390 }
1391
1392 DPRINTF("receiver buffer is empty\n");
1393
1394 return 1;
1395 }
1396
rtl8139_ChipCmd_read(RTL8139State * s)1397 static uint32_t rtl8139_ChipCmd_read(RTL8139State *s)
1398 {
1399 uint32_t ret = s->bChipCmdState;
1400
1401 if (rtl8139_RxBufferEmpty(s))
1402 ret |= RxBufEmpty;
1403
1404 DPRINTF("ChipCmd read val=0x%04x\n", ret);
1405
1406 return ret;
1407 }
1408
rtl8139_CpCmd_write(RTL8139State * s,uint32_t val)1409 static void rtl8139_CpCmd_write(RTL8139State *s, uint32_t val)
1410 {
1411 val &= 0xffff;
1412
1413 DPRINTF("C+ command register write(w) val=0x%04x\n", val);
1414
1415 s->cplus_enabled = 1;
1416
1417 /* mask unwritable bits */
1418 val = SET_MASKED(val, 0xff84, s->CpCmd);
1419
1420 s->CpCmd = val;
1421 }
1422
rtl8139_CpCmd_read(RTL8139State * s)1423 static uint32_t rtl8139_CpCmd_read(RTL8139State *s)
1424 {
1425 uint32_t ret = s->CpCmd;
1426
1427 DPRINTF("C+ command register read(w) val=0x%04x\n", ret);
1428
1429 return ret;
1430 }
1431
rtl8139_IntrMitigate_write(RTL8139State * s,uint32_t val)1432 static void rtl8139_IntrMitigate_write(RTL8139State *s, uint32_t val)
1433 {
1434 DPRINTF("C+ IntrMitigate register write(w) val=0x%04x\n", val);
1435 }
1436
rtl8139_IntrMitigate_read(RTL8139State * s)1437 static uint32_t rtl8139_IntrMitigate_read(RTL8139State *s)
1438 {
1439 uint32_t ret = 0;
1440
1441 DPRINTF("C+ IntrMitigate register read(w) val=0x%04x\n", ret);
1442
1443 return ret;
1444 }
1445
rtl8139_config_writable(RTL8139State * s)1446 static int rtl8139_config_writable(RTL8139State *s)
1447 {
1448 if ((s->Cfg9346 & Chip9346_op_mask) == Cfg9346_ConfigWrite)
1449 {
1450 return 1;
1451 }
1452
1453 DPRINTF("Configuration registers are write-protected\n");
1454
1455 return 0;
1456 }
1457
rtl8139_BasicModeCtrl_write(RTL8139State * s,uint32_t val)1458 static void rtl8139_BasicModeCtrl_write(RTL8139State *s, uint32_t val)
1459 {
1460 val &= 0xffff;
1461
1462 DPRINTF("BasicModeCtrl register write(w) val=0x%04x\n", val);
1463
1464 /* mask unwritable bits */
1465 uint32_t mask = 0xccff;
1466
1467 if (1 || !rtl8139_config_writable(s))
1468 {
1469 /* Speed setting and autonegotiation enable bits are read-only */
1470 mask |= 0x3000;
1471 /* Duplex mode setting is read-only */
1472 mask |= 0x0100;
1473 }
1474
1475 if (val & 0x8000) {
1476 /* Reset PHY */
1477 rtl8139_reset_phy(s);
1478 }
1479
1480 val = SET_MASKED(val, mask, s->BasicModeCtrl);
1481
1482 s->BasicModeCtrl = val;
1483 }
1484
rtl8139_BasicModeCtrl_read(RTL8139State * s)1485 static uint32_t rtl8139_BasicModeCtrl_read(RTL8139State *s)
1486 {
1487 uint32_t ret = s->BasicModeCtrl;
1488
1489 DPRINTF("BasicModeCtrl register read(w) val=0x%04x\n", ret);
1490
1491 return ret;
1492 }
1493
rtl8139_BasicModeStatus_write(RTL8139State * s,uint32_t val)1494 static void rtl8139_BasicModeStatus_write(RTL8139State *s, uint32_t val)
1495 {
1496 val &= 0xffff;
1497
1498 DPRINTF("BasicModeStatus register write(w) val=0x%04x\n", val);
1499
1500 /* mask unwritable bits */
1501 val = SET_MASKED(val, 0xff3f, s->BasicModeStatus);
1502
1503 s->BasicModeStatus = val;
1504 }
1505
rtl8139_BasicModeStatus_read(RTL8139State * s)1506 static uint32_t rtl8139_BasicModeStatus_read(RTL8139State *s)
1507 {
1508 uint32_t ret = s->BasicModeStatus;
1509
1510 DPRINTF("BasicModeStatus register read(w) val=0x%04x\n", ret);
1511
1512 return ret;
1513 }
1514
rtl8139_Cfg9346_write(RTL8139State * s,uint32_t val)1515 static void rtl8139_Cfg9346_write(RTL8139State *s, uint32_t val)
1516 {
1517 DeviceState *d = DEVICE(s);
1518
1519 val &= 0xff;
1520
1521 DPRINTF("Cfg9346 write val=0x%02x\n", val);
1522
1523 /* mask unwritable bits */
1524 val = SET_MASKED(val, 0x31, s->Cfg9346);
1525
1526 uint32_t opmode = val & 0xc0;
1527 uint32_t eeprom_val = val & 0xf;
1528
1529 if (opmode == 0x80) {
1530 /* eeprom access */
1531 int eecs = (eeprom_val & 0x08)?1:0;
1532 int eesk = (eeprom_val & 0x04)?1:0;
1533 int eedi = (eeprom_val & 0x02)?1:0;
1534 prom9346_set_wire(s, eecs, eesk, eedi);
1535 } else if (opmode == 0x40) {
1536 /* Reset. */
1537 val = 0;
1538 rtl8139_reset(d);
1539 }
1540
1541 s->Cfg9346 = val;
1542 }
1543
rtl8139_Cfg9346_read(RTL8139State * s)1544 static uint32_t rtl8139_Cfg9346_read(RTL8139State *s)
1545 {
1546 uint32_t ret = s->Cfg9346;
1547
1548 uint32_t opmode = ret & 0xc0;
1549
1550 if (opmode == 0x80)
1551 {
1552 /* eeprom access */
1553 int eedo = prom9346_get_wire(s);
1554 if (eedo)
1555 {
1556 ret |= 0x01;
1557 }
1558 else
1559 {
1560 ret &= ~0x01;
1561 }
1562 }
1563
1564 DPRINTF("Cfg9346 read val=0x%02x\n", ret);
1565
1566 return ret;
1567 }
1568
rtl8139_Config0_write(RTL8139State * s,uint32_t val)1569 static void rtl8139_Config0_write(RTL8139State *s, uint32_t val)
1570 {
1571 val &= 0xff;
1572
1573 DPRINTF("Config0 write val=0x%02x\n", val);
1574
1575 if (!rtl8139_config_writable(s)) {
1576 return;
1577 }
1578
1579 /* mask unwritable bits */
1580 val = SET_MASKED(val, 0xf8, s->Config0);
1581
1582 s->Config0 = val;
1583 }
1584
rtl8139_Config0_read(RTL8139State * s)1585 static uint32_t rtl8139_Config0_read(RTL8139State *s)
1586 {
1587 uint32_t ret = s->Config0;
1588
1589 DPRINTF("Config0 read val=0x%02x\n", ret);
1590
1591 return ret;
1592 }
1593
rtl8139_Config1_write(RTL8139State * s,uint32_t val)1594 static void rtl8139_Config1_write(RTL8139State *s, uint32_t val)
1595 {
1596 val &= 0xff;
1597
1598 DPRINTF("Config1 write val=0x%02x\n", val);
1599
1600 if (!rtl8139_config_writable(s)) {
1601 return;
1602 }
1603
1604 /* mask unwritable bits */
1605 val = SET_MASKED(val, 0xC, s->Config1);
1606
1607 s->Config1 = val;
1608 }
1609
rtl8139_Config1_read(RTL8139State * s)1610 static uint32_t rtl8139_Config1_read(RTL8139State *s)
1611 {
1612 uint32_t ret = s->Config1;
1613
1614 DPRINTF("Config1 read val=0x%02x\n", ret);
1615
1616 return ret;
1617 }
1618
rtl8139_Config3_write(RTL8139State * s,uint32_t val)1619 static void rtl8139_Config3_write(RTL8139State *s, uint32_t val)
1620 {
1621 val &= 0xff;
1622
1623 DPRINTF("Config3 write val=0x%02x\n", val);
1624
1625 if (!rtl8139_config_writable(s)) {
1626 return;
1627 }
1628
1629 /* mask unwritable bits */
1630 val = SET_MASKED(val, 0x8F, s->Config3);
1631
1632 s->Config3 = val;
1633 }
1634
rtl8139_Config3_read(RTL8139State * s)1635 static uint32_t rtl8139_Config3_read(RTL8139State *s)
1636 {
1637 uint32_t ret = s->Config3;
1638
1639 DPRINTF("Config3 read val=0x%02x\n", ret);
1640
1641 return ret;
1642 }
1643
rtl8139_Config4_write(RTL8139State * s,uint32_t val)1644 static void rtl8139_Config4_write(RTL8139State *s, uint32_t val)
1645 {
1646 val &= 0xff;
1647
1648 DPRINTF("Config4 write val=0x%02x\n", val);
1649
1650 if (!rtl8139_config_writable(s)) {
1651 return;
1652 }
1653
1654 /* mask unwritable bits */
1655 val = SET_MASKED(val, 0x0a, s->Config4);
1656
1657 s->Config4 = val;
1658 }
1659
rtl8139_Config4_read(RTL8139State * s)1660 static uint32_t rtl8139_Config4_read(RTL8139State *s)
1661 {
1662 uint32_t ret = s->Config4;
1663
1664 DPRINTF("Config4 read val=0x%02x\n", ret);
1665
1666 return ret;
1667 }
1668
rtl8139_Config5_write(RTL8139State * s,uint32_t val)1669 static void rtl8139_Config5_write(RTL8139State *s, uint32_t val)
1670 {
1671 val &= 0xff;
1672
1673 DPRINTF("Config5 write val=0x%02x\n", val);
1674
1675 /* mask unwritable bits */
1676 val = SET_MASKED(val, 0x80, s->Config5);
1677
1678 s->Config5 = val;
1679 }
1680
rtl8139_Config5_read(RTL8139State * s)1681 static uint32_t rtl8139_Config5_read(RTL8139State *s)
1682 {
1683 uint32_t ret = s->Config5;
1684
1685 DPRINTF("Config5 read val=0x%02x\n", ret);
1686
1687 return ret;
1688 }
1689
rtl8139_TxConfig_write(RTL8139State * s,uint32_t val)1690 static void rtl8139_TxConfig_write(RTL8139State *s, uint32_t val)
1691 {
1692 if (!rtl8139_transmitter_enabled(s))
1693 {
1694 DPRINTF("transmitter disabled; no TxConfig write val=0x%08x\n", val);
1695 return;
1696 }
1697
1698 DPRINTF("TxConfig write val=0x%08x\n", val);
1699
1700 val = SET_MASKED(val, TxVersionMask | 0x8070f80f, s->TxConfig);
1701
1702 s->TxConfig = val;
1703 }
1704
rtl8139_TxConfig_writeb(RTL8139State * s,uint32_t val)1705 static void rtl8139_TxConfig_writeb(RTL8139State *s, uint32_t val)
1706 {
1707 DPRINTF("RTL8139C TxConfig via write(b) val=0x%02x\n", val);
1708
1709 uint32_t tc = s->TxConfig;
1710 tc &= 0xFFFFFF00;
1711 tc |= (val & 0x000000FF);
1712 rtl8139_TxConfig_write(s, tc);
1713 }
1714
rtl8139_TxConfig_read(RTL8139State * s)1715 static uint32_t rtl8139_TxConfig_read(RTL8139State *s)
1716 {
1717 uint32_t ret = s->TxConfig;
1718
1719 DPRINTF("TxConfig read val=0x%04x\n", ret);
1720
1721 return ret;
1722 }
1723
rtl8139_RxConfig_write(RTL8139State * s,uint32_t val)1724 static void rtl8139_RxConfig_write(RTL8139State *s, uint32_t val)
1725 {
1726 DPRINTF("RxConfig write val=0x%08x\n", val);
1727
1728 /* mask unwritable bits */
1729 val = SET_MASKED(val, 0xf0fc0040, s->RxConfig);
1730
1731 s->RxConfig = val;
1732
1733 /* reset buffer size and read/write pointers */
1734 rtl8139_reset_rxring(s, 8192 << ((s->RxConfig >> 11) & 0x3));
1735
1736 DPRINTF("RxConfig write reset buffer size to %d\n", s->RxBufferSize);
1737 }
1738
rtl8139_RxConfig_read(RTL8139State * s)1739 static uint32_t rtl8139_RxConfig_read(RTL8139State *s)
1740 {
1741 uint32_t ret = s->RxConfig;
1742
1743 DPRINTF("RxConfig read val=0x%08x\n", ret);
1744
1745 return ret;
1746 }
1747
rtl8139_transfer_frame(RTL8139State * s,uint8_t * buf,int size,int do_interrupt,const uint8_t * dot1q_buf)1748 static void rtl8139_transfer_frame(RTL8139State *s, uint8_t *buf, int size,
1749 int do_interrupt, const uint8_t *dot1q_buf)
1750 {
1751 struct iovec *iov = NULL;
1752 struct iovec vlan_iov[3];
1753
1754 if (!size)
1755 {
1756 DPRINTF("+++ empty ethernet frame\n");
1757 return;
1758 }
1759
1760 if (dot1q_buf && size >= ETH_ALEN * 2) {
1761 iov = (struct iovec[3]) {
1762 { .iov_base = buf, .iov_len = ETH_ALEN * 2 },
1763 { .iov_base = (void *) dot1q_buf, .iov_len = VLAN_HLEN },
1764 { .iov_base = buf + ETH_ALEN * 2,
1765 .iov_len = size - ETH_ALEN * 2 },
1766 };
1767
1768 memcpy(vlan_iov, iov, sizeof(vlan_iov));
1769 iov = vlan_iov;
1770 }
1771
1772 if (TxLoopBack == (s->TxConfig & TxLoopBack))
1773 {
1774 size_t buf2_size;
1775 uint8_t *buf2;
1776
1777 if (iov) {
1778 buf2_size = iov_size(iov, 3);
1779 buf2 = g_malloc(buf2_size);
1780 iov_to_buf(iov, 3, 0, buf2, buf2_size);
1781 buf = buf2;
1782 }
1783
1784 DPRINTF("+++ transmit loopback mode\n");
1785 qemu_receive_packet(qemu_get_queue(s->nic), buf, size);
1786
1787 if (iov) {
1788 g_free(buf2);
1789 }
1790 }
1791 else
1792 {
1793 if (iov) {
1794 qemu_sendv_packet(qemu_get_queue(s->nic), iov, 3);
1795 } else {
1796 qemu_send_packet(qemu_get_queue(s->nic), buf, size);
1797 }
1798 }
1799 }
1800
rtl8139_transmit_one(RTL8139State * s,int descriptor)1801 static int rtl8139_transmit_one(RTL8139State *s, int descriptor)
1802 {
1803 if (!rtl8139_transmitter_enabled(s))
1804 {
1805 DPRINTF("+++ cannot transmit from descriptor %d: transmitter "
1806 "disabled\n", descriptor);
1807 return 0;
1808 }
1809
1810 if (s->TxStatus[descriptor] & TxHostOwns)
1811 {
1812 DPRINTF("+++ cannot transmit from descriptor %d: owned by host "
1813 "(%08x)\n", descriptor, s->TxStatus[descriptor]);
1814 return 0;
1815 }
1816
1817 DPRINTF("+++ transmitting from descriptor %d\n", descriptor);
1818
1819 PCIDevice *d = PCI_DEVICE(s);
1820 int txsize = s->TxStatus[descriptor] & 0x1fff;
1821 uint8_t txbuffer[0x2000];
1822
1823 DPRINTF("+++ transmit reading %d bytes from host memory at 0x%08x\n",
1824 txsize, s->TxAddr[descriptor]);
1825
1826 pci_dma_read(d, s->TxAddr[descriptor], txbuffer, txsize);
1827
1828 /* Mark descriptor as transferred */
1829 s->TxStatus[descriptor] |= TxHostOwns;
1830 s->TxStatus[descriptor] |= TxStatOK;
1831
1832 rtl8139_transfer_frame(s, txbuffer, txsize, 0, NULL);
1833
1834 DPRINTF("+++ transmitted %d bytes from descriptor %d\n", txsize,
1835 descriptor);
1836
1837 /* update interrupt */
1838 s->IntrStatus |= TxOK;
1839 rtl8139_update_irq(s);
1840
1841 return 1;
1842 }
1843
1844 #define TCP_HEADER_CLEAR_FLAGS(tcp, off) ((tcp)->th_offset_flags &= cpu_to_be16(~TCP_FLAGS_ONLY(off)))
1845
1846 /* produces ones' complement sum of data */
ones_complement_sum(uint8_t * data,size_t len)1847 static uint16_t ones_complement_sum(uint8_t *data, size_t len)
1848 {
1849 uint32_t result = 0;
1850
1851 for (; len > 1; data+=2, len-=2)
1852 {
1853 result += *(uint16_t*)data;
1854 }
1855
1856 /* add the remainder byte */
1857 if (len)
1858 {
1859 uint8_t odd[2] = {*data, 0};
1860 result += *(uint16_t*)odd;
1861 }
1862
1863 while (result>>16)
1864 result = (result & 0xffff) + (result >> 16);
1865
1866 return result;
1867 }
1868
ip_checksum(void * data,size_t len)1869 static uint16_t ip_checksum(void *data, size_t len)
1870 {
1871 return ~ones_complement_sum((uint8_t*)data, len);
1872 }
1873
rtl8139_cplus_transmit_one(RTL8139State * s)1874 static int rtl8139_cplus_transmit_one(RTL8139State *s)
1875 {
1876 if (!rtl8139_transmitter_enabled(s))
1877 {
1878 DPRINTF("+++ C+ mode: transmitter disabled\n");
1879 return 0;
1880 }
1881
1882 if (!rtl8139_cp_transmitter_enabled(s))
1883 {
1884 DPRINTF("+++ C+ mode: C+ transmitter disabled\n");
1885 return 0 ;
1886 }
1887
1888 PCIDevice *d = PCI_DEVICE(s);
1889 int descriptor = s->currCPlusTxDesc;
1890
1891 dma_addr_t cplus_tx_ring_desc = rtl8139_addr64(s->TxAddr[0], s->TxAddr[1]);
1892
1893 /* Normal priority ring */
1894 cplus_tx_ring_desc += 16 * descriptor;
1895
1896 DPRINTF("+++ C+ mode reading TX descriptor %d from host memory at "
1897 "%08x %08x = 0x"DMA_ADDR_FMT"\n", descriptor, s->TxAddr[1],
1898 s->TxAddr[0], cplus_tx_ring_desc);
1899
1900 uint32_t val, txdw0,txdw1,txbufLO,txbufHI;
1901
1902 pci_dma_read(d, cplus_tx_ring_desc, (uint8_t *)&val, 4);
1903 txdw0 = le32_to_cpu(val);
1904 pci_dma_read(d, cplus_tx_ring_desc+4, (uint8_t *)&val, 4);
1905 txdw1 = le32_to_cpu(val);
1906 pci_dma_read(d, cplus_tx_ring_desc+8, (uint8_t *)&val, 4);
1907 txbufLO = le32_to_cpu(val);
1908 pci_dma_read(d, cplus_tx_ring_desc+12, (uint8_t *)&val, 4);
1909 txbufHI = le32_to_cpu(val);
1910
1911 DPRINTF("+++ C+ mode TX descriptor %d %08x %08x %08x %08x\n", descriptor,
1912 txdw0, txdw1, txbufLO, txbufHI);
1913
1914 /* w0 ownership flag */
1915 #define CP_TX_OWN (1<<31)
1916 /* w0 end of ring flag */
1917 #define CP_TX_EOR (1<<30)
1918 /* first segment of received packet flag */
1919 #define CP_TX_FS (1<<29)
1920 /* last segment of received packet flag */
1921 #define CP_TX_LS (1<<28)
1922 /* large send packet flag */
1923 #define CP_TX_LGSEN (1<<27)
1924 /* large send MSS mask, bits 16...26 */
1925 #define CP_TC_LGSEN_MSS_SHIFT 16
1926 #define CP_TC_LGSEN_MSS_MASK ((1 << 11) - 1)
1927
1928 /* IP checksum offload flag */
1929 #define CP_TX_IPCS (1<<18)
1930 /* UDP checksum offload flag */
1931 #define CP_TX_UDPCS (1<<17)
1932 /* TCP checksum offload flag */
1933 #define CP_TX_TCPCS (1<<16)
1934
1935 /* w0 bits 0...15 : buffer size */
1936 #define CP_TX_BUFFER_SIZE (1<<16)
1937 #define CP_TX_BUFFER_SIZE_MASK (CP_TX_BUFFER_SIZE - 1)
1938 /* w1 add tag flag */
1939 #define CP_TX_TAGC (1<<17)
1940 /* w1 bits 0...15 : VLAN tag (big endian) */
1941 #define CP_TX_VLAN_TAG_MASK ((1<<16) - 1)
1942 /* w2 low 32bit of Rx buffer ptr */
1943 /* w3 high 32bit of Rx buffer ptr */
1944
1945 /* set after transmission */
1946 /* FIFO underrun flag */
1947 #define CP_TX_STATUS_UNF (1<<25)
1948 /* transmit error summary flag, valid if set any of three below */
1949 #define CP_TX_STATUS_TES (1<<23)
1950 /* out-of-window collision flag */
1951 #define CP_TX_STATUS_OWC (1<<22)
1952 /* link failure flag */
1953 #define CP_TX_STATUS_LNKF (1<<21)
1954 /* excessive collisions flag */
1955 #define CP_TX_STATUS_EXC (1<<20)
1956
1957 if (!(txdw0 & CP_TX_OWN))
1958 {
1959 DPRINTF("C+ Tx mode : descriptor %d is owned by host\n", descriptor);
1960 return 0 ;
1961 }
1962
1963 DPRINTF("+++ C+ Tx mode : transmitting from descriptor %d\n", descriptor);
1964
1965 if (txdw0 & CP_TX_FS)
1966 {
1967 DPRINTF("+++ C+ Tx mode : descriptor %d is first segment "
1968 "descriptor\n", descriptor);
1969
1970 /* reset internal buffer offset */
1971 s->cplus_txbuffer_offset = 0;
1972 }
1973
1974 int txsize = txdw0 & CP_TX_BUFFER_SIZE_MASK;
1975 dma_addr_t tx_addr = rtl8139_addr64(txbufLO, txbufHI);
1976
1977 /* make sure we have enough space to assemble the packet */
1978 if (!s->cplus_txbuffer)
1979 {
1980 s->cplus_txbuffer_len = CP_TX_BUFFER_SIZE;
1981 s->cplus_txbuffer = g_malloc(s->cplus_txbuffer_len);
1982 s->cplus_txbuffer_offset = 0;
1983
1984 DPRINTF("+++ C+ mode transmission buffer allocated space %d\n",
1985 s->cplus_txbuffer_len);
1986 }
1987
1988 if (s->cplus_txbuffer_offset + txsize >= s->cplus_txbuffer_len)
1989 {
1990 /* The spec didn't tell the maximum size, stick to CP_TX_BUFFER_SIZE */
1991 txsize = s->cplus_txbuffer_len - s->cplus_txbuffer_offset;
1992 DPRINTF("+++ C+ mode transmission buffer overrun, truncated descriptor"
1993 "length to %d\n", txsize);
1994 }
1995
1996 /* append more data to the packet */
1997
1998 DPRINTF("+++ C+ mode transmit reading %d bytes from host memory at "
1999 DMA_ADDR_FMT" to offset %d\n", txsize, tx_addr,
2000 s->cplus_txbuffer_offset);
2001
2002 pci_dma_read(d, tx_addr,
2003 s->cplus_txbuffer + s->cplus_txbuffer_offset, txsize);
2004 s->cplus_txbuffer_offset += txsize;
2005
2006 /* seek to next Rx descriptor */
2007 if (txdw0 & CP_TX_EOR)
2008 {
2009 s->currCPlusTxDesc = 0;
2010 }
2011 else
2012 {
2013 ++s->currCPlusTxDesc;
2014 if (s->currCPlusTxDesc >= 64)
2015 s->currCPlusTxDesc = 0;
2016 }
2017
2018 /* Build the Tx Status Descriptor */
2019 uint32_t tx_status = txdw0;
2020
2021 /* transfer ownership to target */
2022 tx_status &= ~CP_TX_OWN;
2023
2024 /* reset error indicator bits */
2025 tx_status &= ~CP_TX_STATUS_UNF;
2026 tx_status &= ~CP_TX_STATUS_TES;
2027 tx_status &= ~CP_TX_STATUS_OWC;
2028 tx_status &= ~CP_TX_STATUS_LNKF;
2029 tx_status &= ~CP_TX_STATUS_EXC;
2030
2031 /* update ring data */
2032 val = cpu_to_le32(tx_status);
2033 pci_dma_write(d, cplus_tx_ring_desc, (uint8_t *)&val, 4);
2034
2035 /* Now decide if descriptor being processed is holding the last segment of packet */
2036 if (txdw0 & CP_TX_LS)
2037 {
2038 uint8_t dot1q_buffer_space[VLAN_HLEN];
2039 uint16_t *dot1q_buffer;
2040
2041 DPRINTF("+++ C+ Tx mode : descriptor %d is last segment descriptor\n",
2042 descriptor);
2043
2044 /* can transfer fully assembled packet */
2045
2046 uint8_t *saved_buffer = s->cplus_txbuffer;
2047 int saved_size = s->cplus_txbuffer_offset;
2048 int saved_buffer_len = s->cplus_txbuffer_len;
2049
2050 /* create vlan tag */
2051 if (txdw1 & CP_TX_TAGC) {
2052 /* the vlan tag is in BE byte order in the descriptor
2053 * BE + le_to_cpu() + ~swap()~ = cpu */
2054 DPRINTF("+++ C+ Tx mode : inserting vlan tag with ""tci: %u\n",
2055 bswap16(txdw1 & CP_TX_VLAN_TAG_MASK));
2056
2057 dot1q_buffer = (uint16_t *) dot1q_buffer_space;
2058 dot1q_buffer[0] = cpu_to_be16(ETH_P_VLAN);
2059 /* BE + le_to_cpu() + ~cpu_to_le()~ = BE */
2060 dot1q_buffer[1] = cpu_to_le16(txdw1 & CP_TX_VLAN_TAG_MASK);
2061 } else {
2062 dot1q_buffer = NULL;
2063 }
2064
2065 /* reset the card space to protect from recursive call */
2066 s->cplus_txbuffer = NULL;
2067 s->cplus_txbuffer_offset = 0;
2068 s->cplus_txbuffer_len = 0;
2069
2070 if (txdw0 & (CP_TX_IPCS | CP_TX_UDPCS | CP_TX_TCPCS | CP_TX_LGSEN))
2071 {
2072 DPRINTF("+++ C+ mode offloaded task checksum\n");
2073
2074 /* Large enough for Ethernet and IP headers? */
2075 if (saved_size < ETH_HLEN + sizeof(struct ip_header)) {
2076 goto skip_offload;
2077 }
2078
2079 /* ip packet header */
2080 struct ip_header *ip = NULL;
2081 int hlen = 0;
2082 uint8_t ip_protocol = 0;
2083 uint16_t ip_data_len = 0;
2084
2085 uint8_t *eth_payload_data = NULL;
2086 size_t eth_payload_len = 0;
2087
2088 int proto = be16_to_cpu(*(uint16_t *)(saved_buffer + 12));
2089 if (proto != ETH_P_IP)
2090 {
2091 goto skip_offload;
2092 }
2093
2094 DPRINTF("+++ C+ mode has IP packet\n");
2095
2096 /* Note on memory alignment: eth_payload_data is 16-bit aligned
2097 * since saved_buffer is allocated with g_malloc() and ETH_HLEN is
2098 * even. 32-bit accesses must use ldl/stl wrappers to avoid
2099 * unaligned accesses.
2100 */
2101 eth_payload_data = saved_buffer + ETH_HLEN;
2102 eth_payload_len = saved_size - ETH_HLEN;
2103
2104 ip = (struct ip_header*)eth_payload_data;
2105
2106 if (IP_HEADER_VERSION(ip) != IP_HEADER_VERSION_4) {
2107 DPRINTF("+++ C+ mode packet has bad IP version %d "
2108 "expected %d\n", IP_HEADER_VERSION(ip),
2109 IP_HEADER_VERSION_4);
2110 goto skip_offload;
2111 }
2112
2113 hlen = IP_HDR_GET_LEN(ip);
2114 if (hlen < sizeof(struct ip_header) || hlen > eth_payload_len) {
2115 goto skip_offload;
2116 }
2117
2118 ip_protocol = ip->ip_p;
2119
2120 ip_data_len = be16_to_cpu(ip->ip_len);
2121 if (ip_data_len < hlen || ip_data_len > eth_payload_len) {
2122 goto skip_offload;
2123 }
2124 ip_data_len -= hlen;
2125
2126 if (!(txdw0 & CP_TX_LGSEN) && (txdw0 & CP_TX_IPCS))
2127 {
2128 DPRINTF("+++ C+ mode need IP checksum\n");
2129
2130 ip->ip_sum = 0;
2131 ip->ip_sum = ip_checksum(ip, hlen);
2132 DPRINTF("+++ C+ mode IP header len=%d checksum=%04x\n",
2133 hlen, ip->ip_sum);
2134 }
2135
2136 if ((txdw0 & CP_TX_LGSEN) && ip_protocol == IP_PROTO_TCP)
2137 {
2138 /* Large enough for the TCP header? */
2139 if (ip_data_len < sizeof(tcp_header)) {
2140 goto skip_offload;
2141 }
2142
2143 int large_send_mss = (txdw0 >> CP_TC_LGSEN_MSS_SHIFT) &
2144 CP_TC_LGSEN_MSS_MASK;
2145 if (large_send_mss == 0) {
2146 goto skip_offload;
2147 }
2148
2149 DPRINTF("+++ C+ mode offloaded task TSO IP data %d "
2150 "frame data %d specified MSS=%d\n",
2151 ip_data_len, saved_size - ETH_HLEN, large_send_mss);
2152
2153 int tcp_send_offset = 0;
2154
2155 /* maximum IP header length is 60 bytes */
2156 uint8_t saved_ip_header[60];
2157
2158 /* save IP header template; data area is used in tcp checksum calculation */
2159 memcpy(saved_ip_header, eth_payload_data, hlen);
2160
2161 /* a placeholder for checksum calculation routine in tcp case */
2162 uint8_t *data_to_checksum = eth_payload_data + hlen - 12;
2163 // size_t data_to_checksum_len = eth_payload_len - hlen + 12;
2164
2165 /* pointer to TCP header */
2166 tcp_header *p_tcp_hdr = (tcp_header*)(eth_payload_data + hlen);
2167
2168 int tcp_hlen = TCP_HEADER_DATA_OFFSET(p_tcp_hdr);
2169
2170 /* Invalid TCP data offset? */
2171 if (tcp_hlen < sizeof(tcp_header) || tcp_hlen > ip_data_len) {
2172 goto skip_offload;
2173 }
2174
2175 int tcp_data_len = ip_data_len - tcp_hlen;
2176
2177 DPRINTF("+++ C+ mode TSO IP data len %d TCP hlen %d TCP "
2178 "data len %d\n", ip_data_len, tcp_hlen, tcp_data_len);
2179
2180 /* note the cycle below overwrites IP header data,
2181 but restores it from saved_ip_header before sending packet */
2182
2183 int is_last_frame = 0;
2184
2185 for (tcp_send_offset = 0; tcp_send_offset < tcp_data_len; tcp_send_offset += large_send_mss)
2186 {
2187 uint16_t chunk_size = large_send_mss;
2188
2189 /* check if this is the last frame */
2190 if (tcp_send_offset + large_send_mss >= tcp_data_len)
2191 {
2192 is_last_frame = 1;
2193 chunk_size = tcp_data_len - tcp_send_offset;
2194 }
2195
2196 DPRINTF("+++ C+ mode TSO TCP seqno %08x\n",
2197 ldl_be_p(&p_tcp_hdr->th_seq));
2198
2199 /* add 4 TCP pseudoheader fields */
2200 /* copy IP source and destination fields */
2201 memcpy(data_to_checksum, saved_ip_header + 12, 8);
2202
2203 DPRINTF("+++ C+ mode TSO calculating TCP checksum for "
2204 "packet with %d bytes data\n", tcp_hlen +
2205 chunk_size);
2206
2207 if (tcp_send_offset)
2208 {
2209 memcpy((uint8_t*)p_tcp_hdr + tcp_hlen, (uint8_t*)p_tcp_hdr + tcp_hlen + tcp_send_offset, chunk_size);
2210 }
2211
2212 /* keep PUSH and FIN flags only for the last frame */
2213 if (!is_last_frame)
2214 {
2215 TCP_HEADER_CLEAR_FLAGS(p_tcp_hdr, TH_PUSH | TH_FIN);
2216 }
2217
2218 /* recalculate TCP checksum */
2219 ip_pseudo_header *p_tcpip_hdr = (ip_pseudo_header *)data_to_checksum;
2220 p_tcpip_hdr->zeros = 0;
2221 p_tcpip_hdr->ip_proto = IP_PROTO_TCP;
2222 p_tcpip_hdr->ip_payload = cpu_to_be16(tcp_hlen + chunk_size);
2223
2224 p_tcp_hdr->th_sum = 0;
2225
2226 int tcp_checksum = ip_checksum(data_to_checksum, tcp_hlen + chunk_size + 12);
2227 DPRINTF("+++ C+ mode TSO TCP checksum %04x\n",
2228 tcp_checksum);
2229
2230 p_tcp_hdr->th_sum = tcp_checksum;
2231
2232 /* restore IP header */
2233 memcpy(eth_payload_data, saved_ip_header, hlen);
2234
2235 /* set IP data length and recalculate IP checksum */
2236 ip->ip_len = cpu_to_be16(hlen + tcp_hlen + chunk_size);
2237
2238 /* increment IP id for subsequent frames */
2239 ip->ip_id = cpu_to_be16(tcp_send_offset/large_send_mss + be16_to_cpu(ip->ip_id));
2240
2241 ip->ip_sum = 0;
2242 ip->ip_sum = ip_checksum(eth_payload_data, hlen);
2243 DPRINTF("+++ C+ mode TSO IP header len=%d "
2244 "checksum=%04x\n", hlen, ip->ip_sum);
2245
2246 int tso_send_size = ETH_HLEN + hlen + tcp_hlen + chunk_size;
2247 DPRINTF("+++ C+ mode TSO transferring packet size "
2248 "%d\n", tso_send_size);
2249 rtl8139_transfer_frame(s, saved_buffer, tso_send_size,
2250 0, (uint8_t *) dot1q_buffer);
2251
2252 /* add transferred count to TCP sequence number */
2253 stl_be_p(&p_tcp_hdr->th_seq,
2254 chunk_size + ldl_be_p(&p_tcp_hdr->th_seq));
2255 }
2256
2257 /* Stop sending this frame */
2258 saved_size = 0;
2259 }
2260 else if (!(txdw0 & CP_TX_LGSEN) && (txdw0 & (CP_TX_TCPCS|CP_TX_UDPCS)))
2261 {
2262 DPRINTF("+++ C+ mode need TCP or UDP checksum\n");
2263
2264 /* maximum IP header length is 60 bytes */
2265 uint8_t saved_ip_header[60];
2266 memcpy(saved_ip_header, eth_payload_data, hlen);
2267
2268 uint8_t *data_to_checksum = eth_payload_data + hlen - 12;
2269 // size_t data_to_checksum_len = eth_payload_len - hlen + 12;
2270
2271 /* add 4 TCP pseudoheader fields */
2272 /* copy IP source and destination fields */
2273 memcpy(data_to_checksum, saved_ip_header + 12, 8);
2274
2275 if ((txdw0 & CP_TX_TCPCS) && ip_protocol == IP_PROTO_TCP)
2276 {
2277 DPRINTF("+++ C+ mode calculating TCP checksum for "
2278 "packet with %d bytes data\n", ip_data_len);
2279
2280 ip_pseudo_header *p_tcpip_hdr = (ip_pseudo_header *)data_to_checksum;
2281 p_tcpip_hdr->zeros = 0;
2282 p_tcpip_hdr->ip_proto = IP_PROTO_TCP;
2283 p_tcpip_hdr->ip_payload = cpu_to_be16(ip_data_len);
2284
2285 tcp_header* p_tcp_hdr = (tcp_header *) (data_to_checksum+12);
2286
2287 p_tcp_hdr->th_sum = 0;
2288
2289 int tcp_checksum = ip_checksum(data_to_checksum, ip_data_len + 12);
2290 DPRINTF("+++ C+ mode TCP checksum %04x\n",
2291 tcp_checksum);
2292
2293 p_tcp_hdr->th_sum = tcp_checksum;
2294 }
2295 else if ((txdw0 & CP_TX_UDPCS) && ip_protocol == IP_PROTO_UDP)
2296 {
2297 DPRINTF("+++ C+ mode calculating UDP checksum for "
2298 "packet with %d bytes data\n", ip_data_len);
2299
2300 ip_pseudo_header *p_udpip_hdr = (ip_pseudo_header *)data_to_checksum;
2301 p_udpip_hdr->zeros = 0;
2302 p_udpip_hdr->ip_proto = IP_PROTO_UDP;
2303 p_udpip_hdr->ip_payload = cpu_to_be16(ip_data_len);
2304
2305 udp_header *p_udp_hdr = (udp_header *) (data_to_checksum+12);
2306
2307 p_udp_hdr->uh_sum = 0;
2308
2309 int udp_checksum = ip_checksum(data_to_checksum, ip_data_len + 12);
2310 DPRINTF("+++ C+ mode UDP checksum %04x\n",
2311 udp_checksum);
2312
2313 p_udp_hdr->uh_sum = udp_checksum;
2314 }
2315
2316 /* restore IP header */
2317 memcpy(eth_payload_data, saved_ip_header, hlen);
2318 }
2319 }
2320
2321 skip_offload:
2322 /* update tally counter */
2323 ++s->tally_counters.TxOk;
2324
2325 DPRINTF("+++ C+ mode transmitting %d bytes packet\n", saved_size);
2326
2327 rtl8139_transfer_frame(s, saved_buffer, saved_size, 1,
2328 (uint8_t *) dot1q_buffer);
2329
2330 /* restore card space if there was no recursion and reset offset */
2331 if (!s->cplus_txbuffer)
2332 {
2333 s->cplus_txbuffer = saved_buffer;
2334 s->cplus_txbuffer_len = saved_buffer_len;
2335 s->cplus_txbuffer_offset = 0;
2336 }
2337 else
2338 {
2339 g_free(saved_buffer);
2340 }
2341 }
2342 else
2343 {
2344 DPRINTF("+++ C+ mode transmission continue to next descriptor\n");
2345 }
2346
2347 return 1;
2348 }
2349
rtl8139_cplus_transmit(RTL8139State * s)2350 static void rtl8139_cplus_transmit(RTL8139State *s)
2351 {
2352 int txcount = 0;
2353
2354 while (txcount < 64 && rtl8139_cplus_transmit_one(s))
2355 {
2356 ++txcount;
2357 }
2358
2359 /* Mark transfer completed */
2360 if (!txcount)
2361 {
2362 DPRINTF("C+ mode : transmitter queue stalled, current TxDesc = %d\n",
2363 s->currCPlusTxDesc);
2364 }
2365 else
2366 {
2367 /* update interrupt status */
2368 s->IntrStatus |= TxOK;
2369 rtl8139_update_irq(s);
2370 }
2371 }
2372
rtl8139_transmit(RTL8139State * s)2373 static void rtl8139_transmit(RTL8139State *s)
2374 {
2375 int descriptor = s->currTxDesc, txcount = 0;
2376
2377 /*while*/
2378 if (rtl8139_transmit_one(s, descriptor))
2379 {
2380 ++s->currTxDesc;
2381 s->currTxDesc %= 4;
2382 ++txcount;
2383 }
2384
2385 /* Mark transfer completed */
2386 if (!txcount)
2387 {
2388 DPRINTF("transmitter queue stalled, current TxDesc = %d\n",
2389 s->currTxDesc);
2390 }
2391 }
2392
rtl8139_TxStatus_write(RTL8139State * s,uint32_t txRegOffset,uint32_t val)2393 static void rtl8139_TxStatus_write(RTL8139State *s, uint32_t txRegOffset, uint32_t val)
2394 {
2395
2396 int descriptor = txRegOffset/4;
2397
2398 /* handle C+ transmit mode register configuration */
2399
2400 if (s->cplus_enabled)
2401 {
2402 DPRINTF("RTL8139C+ DTCCR write offset=0x%x val=0x%08x "
2403 "descriptor=%d\n", txRegOffset, val, descriptor);
2404
2405 /* handle Dump Tally Counters command */
2406 s->TxStatus[descriptor] = val;
2407
2408 if (descriptor == 0 && (val & 0x8))
2409 {
2410 hwaddr tc_addr = rtl8139_addr64(s->TxStatus[0] & ~0x3f, s->TxStatus[1]);
2411
2412 /* dump tally counters to specified memory location */
2413 RTL8139TallyCounters_dma_write(s, tc_addr);
2414
2415 /* mark dump completed */
2416 s->TxStatus[0] &= ~0x8;
2417 }
2418
2419 return;
2420 }
2421
2422 DPRINTF("TxStatus write offset=0x%x val=0x%08x descriptor=%d\n",
2423 txRegOffset, val, descriptor);
2424
2425 /* mask only reserved bits */
2426 val &= ~0xff00c000; /* these bits are reset on write */
2427 val = SET_MASKED(val, 0x00c00000, s->TxStatus[descriptor]);
2428
2429 s->TxStatus[descriptor] = val;
2430
2431 /* attempt to start transmission */
2432 rtl8139_transmit(s);
2433 }
2434
rtl8139_TxStatus_TxAddr_read(RTL8139State * s,uint32_t regs[],uint32_t base,uint8_t addr,int size)2435 static uint32_t rtl8139_TxStatus_TxAddr_read(RTL8139State *s, uint32_t regs[],
2436 uint32_t base, uint8_t addr,
2437 int size)
2438 {
2439 uint32_t reg = (addr - base) / 4;
2440 uint32_t offset = addr & 0x3;
2441 uint32_t ret = 0;
2442
2443 if (addr & (size - 1)) {
2444 DPRINTF("not implemented read for TxStatus/TxAddr "
2445 "addr=0x%x size=0x%x\n", addr, size);
2446 return ret;
2447 }
2448
2449 switch (size) {
2450 case 1: /* fall through */
2451 case 2: /* fall through */
2452 case 4:
2453 ret = (regs[reg] >> offset * 8) & (((uint64_t)1 << (size * 8)) - 1);
2454 DPRINTF("TxStatus/TxAddr[%d] read addr=0x%x size=0x%x val=0x%08x\n",
2455 reg, addr, size, ret);
2456 break;
2457 default:
2458 DPRINTF("unsupported size 0x%x of TxStatus/TxAddr reading\n", size);
2459 break;
2460 }
2461
2462 return ret;
2463 }
2464
rtl8139_TSAD_read(RTL8139State * s)2465 static uint16_t rtl8139_TSAD_read(RTL8139State *s)
2466 {
2467 uint16_t ret = 0;
2468
2469 /* Simulate TSAD, it is read only anyway */
2470
2471 ret = ((s->TxStatus[3] & TxStatOK )?TSAD_TOK3:0)
2472 |((s->TxStatus[2] & TxStatOK )?TSAD_TOK2:0)
2473 |((s->TxStatus[1] & TxStatOK )?TSAD_TOK1:0)
2474 |((s->TxStatus[0] & TxStatOK )?TSAD_TOK0:0)
2475
2476 |((s->TxStatus[3] & TxUnderrun)?TSAD_TUN3:0)
2477 |((s->TxStatus[2] & TxUnderrun)?TSAD_TUN2:0)
2478 |((s->TxStatus[1] & TxUnderrun)?TSAD_TUN1:0)
2479 |((s->TxStatus[0] & TxUnderrun)?TSAD_TUN0:0)
2480
2481 |((s->TxStatus[3] & TxAborted )?TSAD_TABT3:0)
2482 |((s->TxStatus[2] & TxAborted )?TSAD_TABT2:0)
2483 |((s->TxStatus[1] & TxAborted )?TSAD_TABT1:0)
2484 |((s->TxStatus[0] & TxAborted )?TSAD_TABT0:0)
2485
2486 |((s->TxStatus[3] & TxHostOwns )?TSAD_OWN3:0)
2487 |((s->TxStatus[2] & TxHostOwns )?TSAD_OWN2:0)
2488 |((s->TxStatus[1] & TxHostOwns )?TSAD_OWN1:0)
2489 |((s->TxStatus[0] & TxHostOwns )?TSAD_OWN0:0) ;
2490
2491
2492 DPRINTF("TSAD read val=0x%04x\n", ret);
2493
2494 return ret;
2495 }
2496
rtl8139_CSCR_read(RTL8139State * s)2497 static uint16_t rtl8139_CSCR_read(RTL8139State *s)
2498 {
2499 uint16_t ret = s->CSCR;
2500
2501 DPRINTF("CSCR read val=0x%04x\n", ret);
2502
2503 return ret;
2504 }
2505
rtl8139_TxAddr_write(RTL8139State * s,uint32_t txAddrOffset,uint32_t val)2506 static void rtl8139_TxAddr_write(RTL8139State *s, uint32_t txAddrOffset, uint32_t val)
2507 {
2508 DPRINTF("TxAddr write offset=0x%x val=0x%08x\n", txAddrOffset, val);
2509
2510 s->TxAddr[txAddrOffset/4] = val;
2511 }
2512
rtl8139_TxAddr_read(RTL8139State * s,uint32_t txAddrOffset)2513 static uint32_t rtl8139_TxAddr_read(RTL8139State *s, uint32_t txAddrOffset)
2514 {
2515 uint32_t ret = s->TxAddr[txAddrOffset/4];
2516
2517 DPRINTF("TxAddr read offset=0x%x val=0x%08x\n", txAddrOffset, ret);
2518
2519 return ret;
2520 }
2521
rtl8139_RxBufPtr_write(RTL8139State * s,uint32_t val)2522 static void rtl8139_RxBufPtr_write(RTL8139State *s, uint32_t val)
2523 {
2524 DPRINTF("RxBufPtr write val=0x%04x\n", val);
2525
2526 /* this value is off by 16 */
2527 s->RxBufPtr = MOD2(val + 0x10, s->RxBufferSize);
2528
2529 /* more buffer space may be available so try to receive */
2530 qemu_flush_queued_packets(qemu_get_queue(s->nic));
2531
2532 DPRINTF(" CAPR write: rx buffer length %d head 0x%04x read 0x%04x\n",
2533 s->RxBufferSize, s->RxBufAddr, s->RxBufPtr);
2534 }
2535
rtl8139_RxBufPtr_read(RTL8139State * s)2536 static uint32_t rtl8139_RxBufPtr_read(RTL8139State *s)
2537 {
2538 /* this value is off by 16 */
2539 uint32_t ret = s->RxBufPtr - 0x10;
2540
2541 DPRINTF("RxBufPtr read val=0x%04x\n", ret);
2542
2543 return ret;
2544 }
2545
rtl8139_RxBufAddr_read(RTL8139State * s)2546 static uint32_t rtl8139_RxBufAddr_read(RTL8139State *s)
2547 {
2548 /* this value is NOT off by 16 */
2549 uint32_t ret = s->RxBufAddr;
2550
2551 DPRINTF("RxBufAddr read val=0x%04x\n", ret);
2552
2553 return ret;
2554 }
2555
rtl8139_RxBuf_write(RTL8139State * s,uint32_t val)2556 static void rtl8139_RxBuf_write(RTL8139State *s, uint32_t val)
2557 {
2558 DPRINTF("RxBuf write val=0x%08x\n", val);
2559
2560 s->RxBuf = val;
2561
2562 /* may need to reset rxring here */
2563 }
2564
rtl8139_RxBuf_read(RTL8139State * s)2565 static uint32_t rtl8139_RxBuf_read(RTL8139State *s)
2566 {
2567 uint32_t ret = s->RxBuf;
2568
2569 DPRINTF("RxBuf read val=0x%08x\n", ret);
2570
2571 return ret;
2572 }
2573
rtl8139_IntrMask_write(RTL8139State * s,uint32_t val)2574 static void rtl8139_IntrMask_write(RTL8139State *s, uint32_t val)
2575 {
2576 DPRINTF("IntrMask write(w) val=0x%04x\n", val);
2577
2578 /* mask unwritable bits */
2579 val = SET_MASKED(val, 0x1e00, s->IntrMask);
2580
2581 s->IntrMask = val;
2582
2583 rtl8139_update_irq(s);
2584
2585 }
2586
rtl8139_IntrMask_read(RTL8139State * s)2587 static uint32_t rtl8139_IntrMask_read(RTL8139State *s)
2588 {
2589 uint32_t ret = s->IntrMask;
2590
2591 DPRINTF("IntrMask read(w) val=0x%04x\n", ret);
2592
2593 return ret;
2594 }
2595
rtl8139_IntrStatus_write(RTL8139State * s,uint32_t val)2596 static void rtl8139_IntrStatus_write(RTL8139State *s, uint32_t val)
2597 {
2598 DPRINTF("IntrStatus write(w) val=0x%04x\n", val);
2599
2600 #if 0
2601
2602 /* writing to ISR has no effect */
2603
2604 return;
2605
2606 #else
2607 uint16_t newStatus = s->IntrStatus & ~val;
2608
2609 /* mask unwritable bits */
2610 newStatus = SET_MASKED(newStatus, 0x1e00, s->IntrStatus);
2611
2612 /* writing 1 to interrupt status register bit clears it */
2613 s->IntrStatus = 0;
2614 rtl8139_update_irq(s);
2615
2616 s->IntrStatus = newStatus;
2617 rtl8139_set_next_tctr_time(s);
2618 rtl8139_update_irq(s);
2619
2620 #endif
2621 }
2622
rtl8139_IntrStatus_read(RTL8139State * s)2623 static uint32_t rtl8139_IntrStatus_read(RTL8139State *s)
2624 {
2625 uint32_t ret = s->IntrStatus;
2626
2627 DPRINTF("IntrStatus read(w) val=0x%04x\n", ret);
2628
2629 #if 0
2630
2631 /* reading ISR clears all interrupts */
2632 s->IntrStatus = 0;
2633
2634 rtl8139_update_irq(s);
2635
2636 #endif
2637
2638 return ret;
2639 }
2640
rtl8139_MultiIntr_write(RTL8139State * s,uint32_t val)2641 static void rtl8139_MultiIntr_write(RTL8139State *s, uint32_t val)
2642 {
2643 DPRINTF("MultiIntr write(w) val=0x%04x\n", val);
2644
2645 /* mask unwritable bits */
2646 val = SET_MASKED(val, 0xf000, s->MultiIntr);
2647
2648 s->MultiIntr = val;
2649 }
2650
rtl8139_MultiIntr_read(RTL8139State * s)2651 static uint32_t rtl8139_MultiIntr_read(RTL8139State *s)
2652 {
2653 uint32_t ret = s->MultiIntr;
2654
2655 DPRINTF("MultiIntr read(w) val=0x%04x\n", ret);
2656
2657 return ret;
2658 }
2659
rtl8139_io_writeb(void * opaque,uint8_t addr,uint32_t val)2660 static void rtl8139_io_writeb(void *opaque, uint8_t addr, uint32_t val)
2661 {
2662 RTL8139State *s = opaque;
2663
2664 switch (addr)
2665 {
2666 case MAC0 ... MAC0+4:
2667 s->phys[addr - MAC0] = val;
2668 break;
2669 case MAC0+5:
2670 s->phys[addr - MAC0] = val;
2671 qemu_format_nic_info_str(qemu_get_queue(s->nic), s->phys);
2672 break;
2673 case MAC0+6 ... MAC0+7:
2674 /* reserved */
2675 break;
2676 case MAR0 ... MAR0+7:
2677 s->mult[addr - MAR0] = val;
2678 break;
2679 case ChipCmd:
2680 rtl8139_ChipCmd_write(s, val);
2681 break;
2682 case Cfg9346:
2683 rtl8139_Cfg9346_write(s, val);
2684 break;
2685 case TxConfig: /* windows driver sometimes writes using byte-lenth call */
2686 rtl8139_TxConfig_writeb(s, val);
2687 break;
2688 case Config0:
2689 rtl8139_Config0_write(s, val);
2690 break;
2691 case Config1:
2692 rtl8139_Config1_write(s, val);
2693 break;
2694 case Config3:
2695 rtl8139_Config3_write(s, val);
2696 break;
2697 case Config4:
2698 rtl8139_Config4_write(s, val);
2699 break;
2700 case Config5:
2701 rtl8139_Config5_write(s, val);
2702 break;
2703 case MediaStatus:
2704 /* ignore */
2705 DPRINTF("not implemented write(b) to MediaStatus val=0x%02x\n",
2706 val);
2707 break;
2708
2709 case HltClk:
2710 DPRINTF("HltClk write val=0x%08x\n", val);
2711 if (val == 'R')
2712 {
2713 s->clock_enabled = 1;
2714 }
2715 else if (val == 'H')
2716 {
2717 s->clock_enabled = 0;
2718 }
2719 break;
2720
2721 case TxThresh:
2722 DPRINTF("C+ TxThresh write(b) val=0x%02x\n", val);
2723 s->TxThresh = val;
2724 break;
2725
2726 case TxPoll:
2727 DPRINTF("C+ TxPoll write(b) val=0x%02x\n", val);
2728 if (val & (1 << 7))
2729 {
2730 DPRINTF("C+ TxPoll high priority transmission (not "
2731 "implemented)\n");
2732 //rtl8139_cplus_transmit(s);
2733 }
2734 if (val & (1 << 6))
2735 {
2736 DPRINTF("C+ TxPoll normal priority transmission\n");
2737 rtl8139_cplus_transmit(s);
2738 }
2739
2740 break;
2741 case RxConfig:
2742 DPRINTF("RxConfig write(b) val=0x%02x\n", val);
2743 rtl8139_RxConfig_write(s,
2744 (rtl8139_RxConfig_read(s) & 0xFFFFFF00) | val);
2745 break;
2746 default:
2747 DPRINTF("not implemented write(b) addr=0x%x val=0x%02x\n", addr,
2748 val);
2749 break;
2750 }
2751 }
2752
rtl8139_io_writew(void * opaque,uint8_t addr,uint32_t val)2753 static void rtl8139_io_writew(void *opaque, uint8_t addr, uint32_t val)
2754 {
2755 RTL8139State *s = opaque;
2756
2757 switch (addr)
2758 {
2759 case IntrMask:
2760 rtl8139_IntrMask_write(s, val);
2761 break;
2762
2763 case IntrStatus:
2764 rtl8139_IntrStatus_write(s, val);
2765 break;
2766
2767 case MultiIntr:
2768 rtl8139_MultiIntr_write(s, val);
2769 break;
2770
2771 case RxBufPtr:
2772 rtl8139_RxBufPtr_write(s, val);
2773 break;
2774
2775 case BasicModeCtrl:
2776 rtl8139_BasicModeCtrl_write(s, val);
2777 break;
2778 case BasicModeStatus:
2779 rtl8139_BasicModeStatus_write(s, val);
2780 break;
2781 case NWayAdvert:
2782 DPRINTF("NWayAdvert write(w) val=0x%04x\n", val);
2783 s->NWayAdvert = val;
2784 break;
2785 case NWayLPAR:
2786 DPRINTF("forbidden NWayLPAR write(w) val=0x%04x\n", val);
2787 break;
2788 case NWayExpansion:
2789 DPRINTF("NWayExpansion write(w) val=0x%04x\n", val);
2790 s->NWayExpansion = val;
2791 break;
2792
2793 case CpCmd:
2794 rtl8139_CpCmd_write(s, val);
2795 break;
2796
2797 case IntrMitigate:
2798 rtl8139_IntrMitigate_write(s, val);
2799 break;
2800
2801 default:
2802 DPRINTF("ioport write(w) addr=0x%x val=0x%04x via write(b)\n",
2803 addr, val);
2804
2805 rtl8139_io_writeb(opaque, addr, val & 0xff);
2806 rtl8139_io_writeb(opaque, addr + 1, (val >> 8) & 0xff);
2807 break;
2808 }
2809 }
2810
rtl8139_set_next_tctr_time(RTL8139State * s)2811 static void rtl8139_set_next_tctr_time(RTL8139State *s)
2812 {
2813 const uint64_t ns_per_period = (uint64_t)PCI_PERIOD << 32;
2814
2815 DPRINTF("entered rtl8139_set_next_tctr_time\n");
2816
2817 /* This function is called at least once per period, so it is a good
2818 * place to update the timer base.
2819 *
2820 * After one iteration of this loop the value in the Timer register does
2821 * not change, but the device model is counting up by 2^32 ticks (approx.
2822 * 130 seconds).
2823 */
2824 while (s->TCTR_base + ns_per_period <= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)) {
2825 s->TCTR_base += ns_per_period;
2826 }
2827
2828 if (!s->TimerInt) {
2829 timer_del(s->timer);
2830 } else {
2831 uint64_t delta = (uint64_t)s->TimerInt * PCI_PERIOD;
2832 if (s->TCTR_base + delta <= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)) {
2833 delta += ns_per_period;
2834 }
2835 timer_mod(s->timer, s->TCTR_base + delta);
2836 }
2837 }
2838
rtl8139_io_writel(void * opaque,uint8_t addr,uint32_t val)2839 static void rtl8139_io_writel(void *opaque, uint8_t addr, uint32_t val)
2840 {
2841 RTL8139State *s = opaque;
2842
2843 switch (addr)
2844 {
2845 case RxMissed:
2846 DPRINTF("RxMissed clearing on write\n");
2847 s->RxMissed = 0;
2848 break;
2849
2850 case TxConfig:
2851 rtl8139_TxConfig_write(s, val);
2852 break;
2853
2854 case RxConfig:
2855 rtl8139_RxConfig_write(s, val);
2856 break;
2857
2858 case TxStatus0 ... TxStatus0+4*4-1:
2859 rtl8139_TxStatus_write(s, addr-TxStatus0, val);
2860 break;
2861
2862 case TxAddr0 ... TxAddr0+4*4-1:
2863 rtl8139_TxAddr_write(s, addr-TxAddr0, val);
2864 break;
2865
2866 case RxBuf:
2867 rtl8139_RxBuf_write(s, val);
2868 break;
2869
2870 case RxRingAddrLO:
2871 DPRINTF("C+ RxRing low bits write val=0x%08x\n", val);
2872 s->RxRingAddrLO = val;
2873 break;
2874
2875 case RxRingAddrHI:
2876 DPRINTF("C+ RxRing high bits write val=0x%08x\n", val);
2877 s->RxRingAddrHI = val;
2878 break;
2879
2880 case Timer:
2881 DPRINTF("TCTR Timer reset on write\n");
2882 s->TCTR_base = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
2883 rtl8139_set_next_tctr_time(s);
2884 break;
2885
2886 case FlashReg:
2887 DPRINTF("FlashReg TimerInt write val=0x%08x\n", val);
2888 if (s->TimerInt != val) {
2889 s->TimerInt = val;
2890 rtl8139_set_next_tctr_time(s);
2891 }
2892 break;
2893
2894 default:
2895 DPRINTF("ioport write(l) addr=0x%x val=0x%08x via write(b)\n",
2896 addr, val);
2897 rtl8139_io_writeb(opaque, addr, val & 0xff);
2898 rtl8139_io_writeb(opaque, addr + 1, (val >> 8) & 0xff);
2899 rtl8139_io_writeb(opaque, addr + 2, (val >> 16) & 0xff);
2900 rtl8139_io_writeb(opaque, addr + 3, (val >> 24) & 0xff);
2901 break;
2902 }
2903 }
2904
rtl8139_io_readb(void * opaque,uint8_t addr)2905 static uint32_t rtl8139_io_readb(void *opaque, uint8_t addr)
2906 {
2907 RTL8139State *s = opaque;
2908 int ret;
2909
2910 switch (addr)
2911 {
2912 case MAC0 ... MAC0+5:
2913 ret = s->phys[addr - MAC0];
2914 break;
2915 case MAC0+6 ... MAC0+7:
2916 ret = 0;
2917 break;
2918 case MAR0 ... MAR0+7:
2919 ret = s->mult[addr - MAR0];
2920 break;
2921 case TxStatus0 ... TxStatus0+4*4-1:
2922 ret = rtl8139_TxStatus_TxAddr_read(s, s->TxStatus, TxStatus0,
2923 addr, 1);
2924 break;
2925 case ChipCmd:
2926 ret = rtl8139_ChipCmd_read(s);
2927 break;
2928 case Cfg9346:
2929 ret = rtl8139_Cfg9346_read(s);
2930 break;
2931 case Config0:
2932 ret = rtl8139_Config0_read(s);
2933 break;
2934 case Config1:
2935 ret = rtl8139_Config1_read(s);
2936 break;
2937 case Config3:
2938 ret = rtl8139_Config3_read(s);
2939 break;
2940 case Config4:
2941 ret = rtl8139_Config4_read(s);
2942 break;
2943 case Config5:
2944 ret = rtl8139_Config5_read(s);
2945 break;
2946
2947 case MediaStatus:
2948 /* The LinkDown bit of MediaStatus is inverse with link status */
2949 ret = 0xd0 | (~s->BasicModeStatus & 0x04);
2950 DPRINTF("MediaStatus read 0x%x\n", ret);
2951 break;
2952
2953 case HltClk:
2954 ret = s->clock_enabled;
2955 DPRINTF("HltClk read 0x%x\n", ret);
2956 break;
2957
2958 case PCIRevisionID:
2959 ret = RTL8139_PCI_REVID;
2960 DPRINTF("PCI Revision ID read 0x%x\n", ret);
2961 break;
2962
2963 case TxThresh:
2964 ret = s->TxThresh;
2965 DPRINTF("C+ TxThresh read(b) val=0x%02x\n", ret);
2966 break;
2967
2968 case 0x43: /* Part of TxConfig register. Windows driver tries to read it */
2969 ret = s->TxConfig >> 24;
2970 DPRINTF("RTL8139C TxConfig at 0x43 read(b) val=0x%02x\n", ret);
2971 break;
2972
2973 default:
2974 DPRINTF("not implemented read(b) addr=0x%x\n", addr);
2975 ret = 0;
2976 break;
2977 }
2978
2979 return ret;
2980 }
2981
rtl8139_io_readw(void * opaque,uint8_t addr)2982 static uint32_t rtl8139_io_readw(void *opaque, uint8_t addr)
2983 {
2984 RTL8139State *s = opaque;
2985 uint32_t ret;
2986
2987 switch (addr)
2988 {
2989 case TxAddr0 ... TxAddr0+4*4-1:
2990 ret = rtl8139_TxStatus_TxAddr_read(s, s->TxAddr, TxAddr0, addr, 2);
2991 break;
2992 case IntrMask:
2993 ret = rtl8139_IntrMask_read(s);
2994 break;
2995
2996 case IntrStatus:
2997 ret = rtl8139_IntrStatus_read(s);
2998 break;
2999
3000 case MultiIntr:
3001 ret = rtl8139_MultiIntr_read(s);
3002 break;
3003
3004 case RxBufPtr:
3005 ret = rtl8139_RxBufPtr_read(s);
3006 break;
3007
3008 case RxBufAddr:
3009 ret = rtl8139_RxBufAddr_read(s);
3010 break;
3011
3012 case BasicModeCtrl:
3013 ret = rtl8139_BasicModeCtrl_read(s);
3014 break;
3015 case BasicModeStatus:
3016 ret = rtl8139_BasicModeStatus_read(s);
3017 break;
3018 case NWayAdvert:
3019 ret = s->NWayAdvert;
3020 DPRINTF("NWayAdvert read(w) val=0x%04x\n", ret);
3021 break;
3022 case NWayLPAR:
3023 ret = s->NWayLPAR;
3024 DPRINTF("NWayLPAR read(w) val=0x%04x\n", ret);
3025 break;
3026 case NWayExpansion:
3027 ret = s->NWayExpansion;
3028 DPRINTF("NWayExpansion read(w) val=0x%04x\n", ret);
3029 break;
3030
3031 case CpCmd:
3032 ret = rtl8139_CpCmd_read(s);
3033 break;
3034
3035 case IntrMitigate:
3036 ret = rtl8139_IntrMitigate_read(s);
3037 break;
3038
3039 case TxSummary:
3040 ret = rtl8139_TSAD_read(s);
3041 break;
3042
3043 case CSCR:
3044 ret = rtl8139_CSCR_read(s);
3045 break;
3046
3047 default:
3048 DPRINTF("ioport read(w) addr=0x%x via read(b)\n", addr);
3049
3050 ret = rtl8139_io_readb(opaque, addr);
3051 ret |= rtl8139_io_readb(opaque, addr + 1) << 8;
3052
3053 DPRINTF("ioport read(w) addr=0x%x val=0x%04x\n", addr, ret);
3054 break;
3055 }
3056
3057 return ret;
3058 }
3059
rtl8139_io_readl(void * opaque,uint8_t addr)3060 static uint32_t rtl8139_io_readl(void *opaque, uint8_t addr)
3061 {
3062 RTL8139State *s = opaque;
3063 uint32_t ret;
3064
3065 switch (addr)
3066 {
3067 case RxMissed:
3068 ret = s->RxMissed;
3069
3070 DPRINTF("RxMissed read val=0x%08x\n", ret);
3071 break;
3072
3073 case TxConfig:
3074 ret = rtl8139_TxConfig_read(s);
3075 break;
3076
3077 case RxConfig:
3078 ret = rtl8139_RxConfig_read(s);
3079 break;
3080
3081 case TxStatus0 ... TxStatus0+4*4-1:
3082 ret = rtl8139_TxStatus_TxAddr_read(s, s->TxStatus, TxStatus0,
3083 addr, 4);
3084 break;
3085
3086 case TxAddr0 ... TxAddr0+4*4-1:
3087 ret = rtl8139_TxAddr_read(s, addr-TxAddr0);
3088 break;
3089
3090 case RxBuf:
3091 ret = rtl8139_RxBuf_read(s);
3092 break;
3093
3094 case RxRingAddrLO:
3095 ret = s->RxRingAddrLO;
3096 DPRINTF("C+ RxRing low bits read val=0x%08x\n", ret);
3097 break;
3098
3099 case RxRingAddrHI:
3100 ret = s->RxRingAddrHI;
3101 DPRINTF("C+ RxRing high bits read val=0x%08x\n", ret);
3102 break;
3103
3104 case Timer:
3105 ret = (qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - s->TCTR_base) /
3106 PCI_PERIOD;
3107 DPRINTF("TCTR Timer read val=0x%08x\n", ret);
3108 break;
3109
3110 case FlashReg:
3111 ret = s->TimerInt;
3112 DPRINTF("FlashReg TimerInt read val=0x%08x\n", ret);
3113 break;
3114
3115 default:
3116 DPRINTF("ioport read(l) addr=0x%x via read(b)\n", addr);
3117
3118 ret = rtl8139_io_readb(opaque, addr);
3119 ret |= rtl8139_io_readb(opaque, addr + 1) << 8;
3120 ret |= rtl8139_io_readb(opaque, addr + 2) << 16;
3121 ret |= rtl8139_io_readb(opaque, addr + 3) << 24;
3122
3123 DPRINTF("read(l) addr=0x%x val=%08x\n", addr, ret);
3124 break;
3125 }
3126
3127 return ret;
3128 }
3129
3130 /* */
3131
rtl8139_post_load(void * opaque,int version_id)3132 static int rtl8139_post_load(void *opaque, int version_id)
3133 {
3134 RTL8139State* s = opaque;
3135 rtl8139_set_next_tctr_time(s);
3136 if (version_id < 4) {
3137 s->cplus_enabled = s->CpCmd != 0;
3138 }
3139
3140 /* nc.link_down can't be migrated, so infer link_down according
3141 * to link status bit in BasicModeStatus */
3142 qemu_get_queue(s->nic)->link_down = (s->BasicModeStatus & 0x04) == 0;
3143
3144 return 0;
3145 }
3146
rtl8139_hotplug_ready_needed(void * opaque)3147 static bool rtl8139_hotplug_ready_needed(void *opaque)
3148 {
3149 return qdev_machine_modified();
3150 }
3151
3152 static const VMStateDescription vmstate_rtl8139_hotplug_ready ={
3153 .name = "rtl8139/hotplug_ready",
3154 .version_id = 1,
3155 .minimum_version_id = 1,
3156 .needed = rtl8139_hotplug_ready_needed,
3157 .fields = (const VMStateField[]) {
3158 VMSTATE_END_OF_LIST()
3159 }
3160 };
3161
rtl8139_pre_save(void * opaque)3162 static int rtl8139_pre_save(void *opaque)
3163 {
3164 RTL8139State* s = opaque;
3165 int64_t current_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
3166
3167 /* for migration to older versions */
3168 s->TCTR = (current_time - s->TCTR_base) / PCI_PERIOD;
3169 s->rtl8139_mmio_io_addr_dummy = 0;
3170
3171 return 0;
3172 }
3173
3174 static const VMStateDescription vmstate_rtl8139 = {
3175 .name = "rtl8139",
3176 .version_id = 5,
3177 .minimum_version_id = 3,
3178 .post_load = rtl8139_post_load,
3179 .pre_save = rtl8139_pre_save,
3180 .fields = (const VMStateField[]) {
3181 VMSTATE_PCI_DEVICE(parent_obj, RTL8139State),
3182 VMSTATE_PARTIAL_BUFFER(phys, RTL8139State, 6),
3183 VMSTATE_BUFFER(mult, RTL8139State),
3184 VMSTATE_UINT32_ARRAY(TxStatus, RTL8139State, 4),
3185 VMSTATE_UINT32_ARRAY(TxAddr, RTL8139State, 4),
3186
3187 VMSTATE_UINT32(RxBuf, RTL8139State),
3188 VMSTATE_UINT32(RxBufferSize, RTL8139State),
3189 VMSTATE_UINT32(RxBufPtr, RTL8139State),
3190 VMSTATE_UINT32(RxBufAddr, RTL8139State),
3191
3192 VMSTATE_UINT16(IntrStatus, RTL8139State),
3193 VMSTATE_UINT16(IntrMask, RTL8139State),
3194
3195 VMSTATE_UINT32(TxConfig, RTL8139State),
3196 VMSTATE_UINT32(RxConfig, RTL8139State),
3197 VMSTATE_UINT32(RxMissed, RTL8139State),
3198 VMSTATE_UINT16(CSCR, RTL8139State),
3199
3200 VMSTATE_UINT8(Cfg9346, RTL8139State),
3201 VMSTATE_UINT8(Config0, RTL8139State),
3202 VMSTATE_UINT8(Config1, RTL8139State),
3203 VMSTATE_UINT8(Config3, RTL8139State),
3204 VMSTATE_UINT8(Config4, RTL8139State),
3205 VMSTATE_UINT8(Config5, RTL8139State),
3206
3207 VMSTATE_UINT8(clock_enabled, RTL8139State),
3208 VMSTATE_UINT8(bChipCmdState, RTL8139State),
3209
3210 VMSTATE_UINT16(MultiIntr, RTL8139State),
3211
3212 VMSTATE_UINT16(BasicModeCtrl, RTL8139State),
3213 VMSTATE_UINT16(BasicModeStatus, RTL8139State),
3214 VMSTATE_UINT16(NWayAdvert, RTL8139State),
3215 VMSTATE_UINT16(NWayLPAR, RTL8139State),
3216 VMSTATE_UINT16(NWayExpansion, RTL8139State),
3217
3218 VMSTATE_UINT16(CpCmd, RTL8139State),
3219 VMSTATE_UINT8(TxThresh, RTL8139State),
3220
3221 VMSTATE_UNUSED(4),
3222 VMSTATE_MACADDR(conf.macaddr, RTL8139State),
3223 VMSTATE_INT32(rtl8139_mmio_io_addr_dummy, RTL8139State),
3224
3225 VMSTATE_UINT32(currTxDesc, RTL8139State),
3226 VMSTATE_UINT32(currCPlusRxDesc, RTL8139State),
3227 VMSTATE_UINT32(currCPlusTxDesc, RTL8139State),
3228 VMSTATE_UINT32(RxRingAddrLO, RTL8139State),
3229 VMSTATE_UINT32(RxRingAddrHI, RTL8139State),
3230
3231 VMSTATE_UINT16_ARRAY(eeprom.contents, RTL8139State, EEPROM_9346_SIZE),
3232 VMSTATE_INT32(eeprom.mode, RTL8139State),
3233 VMSTATE_UINT32(eeprom.tick, RTL8139State),
3234 VMSTATE_UINT8(eeprom.address, RTL8139State),
3235 VMSTATE_UINT16(eeprom.input, RTL8139State),
3236 VMSTATE_UINT16(eeprom.output, RTL8139State),
3237
3238 VMSTATE_UINT8(eeprom.eecs, RTL8139State),
3239 VMSTATE_UINT8(eeprom.eesk, RTL8139State),
3240 VMSTATE_UINT8(eeprom.eedi, RTL8139State),
3241 VMSTATE_UINT8(eeprom.eedo, RTL8139State),
3242
3243 VMSTATE_UINT32(TCTR, RTL8139State),
3244 VMSTATE_UINT32(TimerInt, RTL8139State),
3245 VMSTATE_INT64(TCTR_base, RTL8139State),
3246
3247 VMSTATE_UINT64(tally_counters.TxOk, RTL8139State),
3248 VMSTATE_UINT64(tally_counters.RxOk, RTL8139State),
3249 VMSTATE_UINT64(tally_counters.TxERR, RTL8139State),
3250 VMSTATE_UINT32(tally_counters.RxERR, RTL8139State),
3251 VMSTATE_UINT16(tally_counters.MissPkt, RTL8139State),
3252 VMSTATE_UINT16(tally_counters.FAE, RTL8139State),
3253 VMSTATE_UINT32(tally_counters.Tx1Col, RTL8139State),
3254 VMSTATE_UINT32(tally_counters.TxMCol, RTL8139State),
3255 VMSTATE_UINT64(tally_counters.RxOkPhy, RTL8139State),
3256 VMSTATE_UINT64(tally_counters.RxOkBrd, RTL8139State),
3257 VMSTATE_UINT32_V(tally_counters.RxOkMul, RTL8139State, 5),
3258 VMSTATE_UINT16(tally_counters.TxAbt, RTL8139State),
3259 VMSTATE_UINT16(tally_counters.TxUndrn, RTL8139State),
3260
3261 VMSTATE_UINT32_V(cplus_enabled, RTL8139State, 4),
3262 VMSTATE_END_OF_LIST()
3263 },
3264 .subsections = (const VMStateDescription * const []) {
3265 &vmstate_rtl8139_hotplug_ready,
3266 NULL
3267 }
3268 };
3269
3270 /***********************************************************/
3271 /* PCI RTL8139 definitions */
3272
rtl8139_ioport_write(void * opaque,hwaddr addr,uint64_t val,unsigned size)3273 static void rtl8139_ioport_write(void *opaque, hwaddr addr,
3274 uint64_t val, unsigned size)
3275 {
3276 switch (size) {
3277 case 1:
3278 rtl8139_io_writeb(opaque, addr, val);
3279 break;
3280 case 2:
3281 rtl8139_io_writew(opaque, addr, val);
3282 break;
3283 case 4:
3284 rtl8139_io_writel(opaque, addr, val);
3285 break;
3286 }
3287 }
3288
rtl8139_ioport_read(void * opaque,hwaddr addr,unsigned size)3289 static uint64_t rtl8139_ioport_read(void *opaque, hwaddr addr,
3290 unsigned size)
3291 {
3292 switch (size) {
3293 case 1:
3294 return rtl8139_io_readb(opaque, addr);
3295 case 2:
3296 return rtl8139_io_readw(opaque, addr);
3297 case 4:
3298 return rtl8139_io_readl(opaque, addr);
3299 }
3300
3301 return -1;
3302 }
3303
3304 static const MemoryRegionOps rtl8139_io_ops = {
3305 .read = rtl8139_ioport_read,
3306 .write = rtl8139_ioport_write,
3307 .impl = {
3308 .min_access_size = 1,
3309 .max_access_size = 4,
3310 },
3311 .endianness = DEVICE_LITTLE_ENDIAN,
3312 };
3313
rtl8139_timer(void * opaque)3314 static void rtl8139_timer(void *opaque)
3315 {
3316 RTL8139State *s = opaque;
3317
3318 if (!s->clock_enabled)
3319 {
3320 DPRINTF(">>> timer: clock is not running\n");
3321 return;
3322 }
3323
3324 s->IntrStatus |= PCSTimeout;
3325 rtl8139_update_irq(s);
3326 rtl8139_set_next_tctr_time(s);
3327 }
3328
pci_rtl8139_uninit(PCIDevice * dev)3329 static void pci_rtl8139_uninit(PCIDevice *dev)
3330 {
3331 RTL8139State *s = RTL8139(dev);
3332
3333 g_free(s->cplus_txbuffer);
3334 s->cplus_txbuffer = NULL;
3335 timer_free(s->timer);
3336 qemu_del_nic(s->nic);
3337 }
3338
rtl8139_set_link_status(NetClientState * nc)3339 static void rtl8139_set_link_status(NetClientState *nc)
3340 {
3341 RTL8139State *s = qemu_get_nic_opaque(nc);
3342
3343 if (nc->link_down) {
3344 s->BasicModeStatus &= ~0x04;
3345 } else {
3346 s->BasicModeStatus |= 0x04;
3347 }
3348
3349 s->IntrStatus |= RxUnderrun;
3350 rtl8139_update_irq(s);
3351 }
3352
3353 static NetClientInfo net_rtl8139_info = {
3354 .type = NET_CLIENT_DRIVER_NIC,
3355 .size = sizeof(NICState),
3356 .can_receive = rtl8139_can_receive,
3357 .receive = rtl8139_receive,
3358 .link_status_changed = rtl8139_set_link_status,
3359 };
3360
pci_rtl8139_realize(PCIDevice * dev,Error ** errp)3361 static void pci_rtl8139_realize(PCIDevice *dev, Error **errp)
3362 {
3363 RTL8139State *s = RTL8139(dev);
3364 DeviceState *d = DEVICE(dev);
3365 uint8_t *pci_conf;
3366
3367 pci_conf = dev->config;
3368 pci_conf[PCI_INTERRUPT_PIN] = 1; /* interrupt pin A */
3369 /* TODO: start of capability list, but no capability
3370 * list bit in status register, and offset 0xdc seems unused. */
3371 pci_conf[PCI_CAPABILITY_LIST] = 0xdc;
3372
3373 memory_region_init_io(&s->bar_io, OBJECT(s), &rtl8139_io_ops, s,
3374 "rtl8139", 0x100);
3375 memory_region_init_alias(&s->bar_mem, OBJECT(s), "rtl8139-mem", &s->bar_io,
3376 0, 0x100);
3377
3378 pci_register_bar(dev, 0, PCI_BASE_ADDRESS_SPACE_IO, &s->bar_io);
3379 pci_register_bar(dev, 1, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->bar_mem);
3380
3381 qemu_macaddr_default_if_unset(&s->conf.macaddr);
3382
3383 /* prepare eeprom */
3384 s->eeprom.contents[0] = 0x8129;
3385 #if 1
3386 /* PCI vendor and device ID should be mirrored here */
3387 s->eeprom.contents[1] = PCI_VENDOR_ID_REALTEK;
3388 s->eeprom.contents[2] = PCI_DEVICE_ID_REALTEK_8139;
3389 #endif
3390 s->eeprom.contents[7] = s->conf.macaddr.a[0] | s->conf.macaddr.a[1] << 8;
3391 s->eeprom.contents[8] = s->conf.macaddr.a[2] | s->conf.macaddr.a[3] << 8;
3392 s->eeprom.contents[9] = s->conf.macaddr.a[4] | s->conf.macaddr.a[5] << 8;
3393
3394 s->nic = qemu_new_nic(&net_rtl8139_info, &s->conf,
3395 object_get_typename(OBJECT(dev)), d->id,
3396 &d->mem_reentrancy_guard, s);
3397 qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a);
3398
3399 s->cplus_txbuffer = NULL;
3400 s->cplus_txbuffer_len = 0;
3401 s->cplus_txbuffer_offset = 0;
3402
3403 s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, rtl8139_timer, s);
3404 }
3405
rtl8139_instance_init(Object * obj)3406 static void rtl8139_instance_init(Object *obj)
3407 {
3408 RTL8139State *s = RTL8139(obj);
3409
3410 device_add_bootindex_property(obj, &s->conf.bootindex,
3411 "bootindex", "/ethernet-phy@0",
3412 DEVICE(obj));
3413 }
3414
3415 static Property rtl8139_properties[] = {
3416 DEFINE_NIC_PROPERTIES(RTL8139State, conf),
3417 DEFINE_PROP_END_OF_LIST(),
3418 };
3419
rtl8139_class_init(ObjectClass * klass,void * data)3420 static void rtl8139_class_init(ObjectClass *klass, void *data)
3421 {
3422 DeviceClass *dc = DEVICE_CLASS(klass);
3423 PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
3424
3425 k->realize = pci_rtl8139_realize;
3426 k->exit = pci_rtl8139_uninit;
3427 k->romfile = "efi-rtl8139.rom";
3428 k->vendor_id = PCI_VENDOR_ID_REALTEK;
3429 k->device_id = PCI_DEVICE_ID_REALTEK_8139;
3430 k->revision = RTL8139_PCI_REVID; /* >=0x20 is for 8139C+ */
3431 k->class_id = PCI_CLASS_NETWORK_ETHERNET;
3432 dc->reset = rtl8139_reset;
3433 dc->vmsd = &vmstate_rtl8139;
3434 device_class_set_props(dc, rtl8139_properties);
3435 set_bit(DEVICE_CATEGORY_NETWORK, dc->categories);
3436 }
3437
3438 static const TypeInfo rtl8139_info = {
3439 .name = TYPE_RTL8139,
3440 .parent = TYPE_PCI_DEVICE,
3441 .instance_size = sizeof(RTL8139State),
3442 .class_init = rtl8139_class_init,
3443 .instance_init = rtl8139_instance_init,
3444 .interfaces = (InterfaceInfo[]) {
3445 { INTERFACE_CONVENTIONAL_PCI_DEVICE },
3446 { },
3447 },
3448 };
3449
rtl8139_register_types(void)3450 static void rtl8139_register_types(void)
3451 {
3452 type_register_static(&rtl8139_info);
3453 }
3454
3455 type_init(rtl8139_register_types)
3456