1 /* 2 * Nuvoton NPCM7xx EMC Module 3 * 4 * Copyright 2020 Google LLC 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License as published by the 8 * Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 * for more details. 15 * 16 * Unsupported/unimplemented features: 17 * - MCMDR.FDUP (full duplex) is ignored, half duplex is not supported 18 * - Only CAM0 is supported, CAM[1-15] are not 19 * - writes to CAMEN.[1-15] are ignored, these bits always read as zeroes 20 * - MII is not implemented, MIIDA.BUSY and MIID always return zero 21 * - MCMDR.LBK is not implemented 22 * - MCMDR.{OPMOD,ENSQE,AEP,ARP} are not supported 23 * - H/W FIFOs are not supported, MCMDR.FFTCR is ignored 24 * - MGSTA.SQE is not supported 25 * - pause and control frames are not implemented 26 * - MGSTA.CCNT is not supported 27 * - MPCNT, DMARFS are not implemented 28 */ 29 30 #include "qemu/osdep.h" 31 32 /* For crc32 */ 33 #include <zlib.h> 34 35 #include "hw/irq.h" 36 #include "hw/qdev-clock.h" 37 #include "hw/qdev-properties.h" 38 #include "hw/net/npcm7xx_emc.h" 39 #include "net/eth.h" 40 #include "migration/vmstate.h" 41 #include "qemu/bitops.h" 42 #include "qemu/error-report.h" 43 #include "qemu/log.h" 44 #include "qemu/module.h" 45 #include "qemu/units.h" 46 #include "sysemu/dma.h" 47 #include "trace.h" 48 49 #define CRC_LENGTH 4 50 51 /* 52 * The maximum size of a (layer 2) ethernet frame as defined by 802.3. 53 * 1518 = 6(dest macaddr) + 6(src macaddr) + 2(proto) + 4(crc) + 1500(payload) 54 * This does not include an additional 4 for the vlan field (802.1q). 55 */ 56 #define MAX_ETH_FRAME_SIZE 1518 57 58 static const char *emc_reg_name(int regno) 59 { 60 #define REG(name) case REG_ ## name: return #name; 61 switch (regno) { 62 REG(CAMCMR) 63 REG(CAMEN) 64 REG(TXDLSA) 65 REG(RXDLSA) 66 REG(MCMDR) 67 REG(MIID) 68 REG(MIIDA) 69 REG(FFTCR) 70 REG(TSDR) 71 REG(RSDR) 72 REG(DMARFC) 73 REG(MIEN) 74 REG(MISTA) 75 REG(MGSTA) 76 REG(MPCNT) 77 REG(MRPC) 78 REG(MRPCC) 79 REG(MREPC) 80 REG(DMARFS) 81 REG(CTXDSA) 82 REG(CTXBSA) 83 REG(CRXDSA) 84 REG(CRXBSA) 85 case REG_CAMM_BASE + 0: return "CAM0M"; 86 case REG_CAML_BASE + 0: return "CAM0L"; 87 case REG_CAMM_BASE + 2 ... REG_CAMML_LAST: 88 /* Only CAM0 is supported, fold the others into something simple. */ 89 if (regno & 1) { 90 return "CAM<n>L"; 91 } else { 92 return "CAM<n>M"; 93 } 94 default: return "UNKNOWN"; 95 } 96 #undef REG 97 } 98 99 static void emc_reset(NPCM7xxEMCState *emc) 100 { 101 trace_npcm7xx_emc_reset(emc->emc_num); 102 103 memset(&emc->regs[0], 0, sizeof(emc->regs)); 104 105 /* These regs have non-zero reset values. */ 106 emc->regs[REG_TXDLSA] = 0xfffffffc; 107 emc->regs[REG_RXDLSA] = 0xfffffffc; 108 emc->regs[REG_MIIDA] = 0x00900000; 109 emc->regs[REG_FFTCR] = 0x0101; 110 emc->regs[REG_DMARFC] = 0x0800; 111 emc->regs[REG_MPCNT] = 0x7fff; 112 113 emc->tx_active = false; 114 emc->rx_active = false; 115 } 116 117 static void npcm7xx_emc_reset(DeviceState *dev) 118 { 119 NPCM7xxEMCState *emc = NPCM7XX_EMC(dev); 120 emc_reset(emc); 121 } 122 123 static void emc_soft_reset(NPCM7xxEMCState *emc) 124 { 125 /* 126 * The docs say at least MCMDR.{LBK,OPMOD} bits are not changed during a 127 * soft reset, but does not go into further detail. For now, KISS. 128 */ 129 uint32_t mcmdr = emc->regs[REG_MCMDR]; 130 emc_reset(emc); 131 emc->regs[REG_MCMDR] = mcmdr & (REG_MCMDR_LBK | REG_MCMDR_OPMOD); 132 133 qemu_set_irq(emc->tx_irq, 0); 134 qemu_set_irq(emc->rx_irq, 0); 135 } 136 137 static void emc_set_link(NetClientState *nc) 138 { 139 /* Nothing to do yet. */ 140 } 141 142 /* MISTA.TXINTR is the union of the individual bits with their enables. */ 143 static void emc_update_mista_txintr(NPCM7xxEMCState *emc) 144 { 145 /* Only look at the bits we support. */ 146 uint32_t mask = (REG_MISTA_TXBERR | 147 REG_MISTA_TDU | 148 REG_MISTA_TXCP); 149 if (emc->regs[REG_MISTA] & emc->regs[REG_MIEN] & mask) { 150 emc->regs[REG_MISTA] |= REG_MISTA_TXINTR; 151 } else { 152 emc->regs[REG_MISTA] &= ~REG_MISTA_TXINTR; 153 } 154 } 155 156 /* MISTA.RXINTR is the union of the individual bits with their enables. */ 157 static void emc_update_mista_rxintr(NPCM7xxEMCState *emc) 158 { 159 /* Only look at the bits we support. */ 160 uint32_t mask = (REG_MISTA_RXBERR | 161 REG_MISTA_RDU | 162 REG_MISTA_RXGD); 163 if (emc->regs[REG_MISTA] & emc->regs[REG_MIEN] & mask) { 164 emc->regs[REG_MISTA] |= REG_MISTA_RXINTR; 165 } else { 166 emc->regs[REG_MISTA] &= ~REG_MISTA_RXINTR; 167 } 168 } 169 170 /* N.B. emc_update_mista_txintr must have already been called. */ 171 static void emc_update_tx_irq(NPCM7xxEMCState *emc) 172 { 173 int level = !!(emc->regs[REG_MISTA] & 174 emc->regs[REG_MIEN] & 175 REG_MISTA_TXINTR); 176 trace_npcm7xx_emc_update_tx_irq(level); 177 qemu_set_irq(emc->tx_irq, level); 178 } 179 180 /* N.B. emc_update_mista_rxintr must have already been called. */ 181 static void emc_update_rx_irq(NPCM7xxEMCState *emc) 182 { 183 int level = !!(emc->regs[REG_MISTA] & 184 emc->regs[REG_MIEN] & 185 REG_MISTA_RXINTR); 186 trace_npcm7xx_emc_update_rx_irq(level); 187 qemu_set_irq(emc->rx_irq, level); 188 } 189 190 /* Update IRQ states due to changes in MIEN,MISTA. */ 191 static void emc_update_irq_from_reg_change(NPCM7xxEMCState *emc) 192 { 193 emc_update_mista_txintr(emc); 194 emc_update_tx_irq(emc); 195 196 emc_update_mista_rxintr(emc); 197 emc_update_rx_irq(emc); 198 } 199 200 static int emc_read_tx_desc(dma_addr_t addr, NPCM7xxEMCTxDesc *desc) 201 { 202 if (dma_memory_read(&address_space_memory, addr, desc, 203 sizeof(*desc), MEMTXATTRS_UNSPECIFIED)) { 204 qemu_log_mask(LOG_GUEST_ERROR, "%s: Failed to read descriptor @ 0x%" 205 HWADDR_PRIx "\n", __func__, addr); 206 return -1; 207 } 208 desc->flags = le32_to_cpu(desc->flags); 209 desc->txbsa = le32_to_cpu(desc->txbsa); 210 desc->status_and_length = le32_to_cpu(desc->status_and_length); 211 desc->ntxdsa = le32_to_cpu(desc->ntxdsa); 212 return 0; 213 } 214 215 static int emc_write_tx_desc(const NPCM7xxEMCTxDesc *desc, dma_addr_t addr) 216 { 217 NPCM7xxEMCTxDesc le_desc; 218 219 le_desc.flags = cpu_to_le32(desc->flags); 220 le_desc.txbsa = cpu_to_le32(desc->txbsa); 221 le_desc.status_and_length = cpu_to_le32(desc->status_and_length); 222 le_desc.ntxdsa = cpu_to_le32(desc->ntxdsa); 223 if (dma_memory_write(&address_space_memory, addr, &le_desc, 224 sizeof(le_desc), MEMTXATTRS_UNSPECIFIED)) { 225 qemu_log_mask(LOG_GUEST_ERROR, "%s: Failed to write descriptor @ 0x%" 226 HWADDR_PRIx "\n", __func__, addr); 227 return -1; 228 } 229 return 0; 230 } 231 232 static int emc_read_rx_desc(dma_addr_t addr, NPCM7xxEMCRxDesc *desc) 233 { 234 if (dma_memory_read(&address_space_memory, addr, desc, 235 sizeof(*desc), MEMTXATTRS_UNSPECIFIED)) { 236 qemu_log_mask(LOG_GUEST_ERROR, "%s: Failed to read descriptor @ 0x%" 237 HWADDR_PRIx "\n", __func__, addr); 238 return -1; 239 } 240 desc->status_and_length = le32_to_cpu(desc->status_and_length); 241 desc->rxbsa = le32_to_cpu(desc->rxbsa); 242 desc->reserved = le32_to_cpu(desc->reserved); 243 desc->nrxdsa = le32_to_cpu(desc->nrxdsa); 244 return 0; 245 } 246 247 static int emc_write_rx_desc(const NPCM7xxEMCRxDesc *desc, dma_addr_t addr) 248 { 249 NPCM7xxEMCRxDesc le_desc; 250 251 le_desc.status_and_length = cpu_to_le32(desc->status_and_length); 252 le_desc.rxbsa = cpu_to_le32(desc->rxbsa); 253 le_desc.reserved = cpu_to_le32(desc->reserved); 254 le_desc.nrxdsa = cpu_to_le32(desc->nrxdsa); 255 if (dma_memory_write(&address_space_memory, addr, &le_desc, 256 sizeof(le_desc), MEMTXATTRS_UNSPECIFIED)) { 257 qemu_log_mask(LOG_GUEST_ERROR, "%s: Failed to write descriptor @ 0x%" 258 HWADDR_PRIx "\n", __func__, addr); 259 return -1; 260 } 261 return 0; 262 } 263 264 static void emc_set_mista(NPCM7xxEMCState *emc, uint32_t flags) 265 { 266 trace_npcm7xx_emc_set_mista(flags); 267 emc->regs[REG_MISTA] |= flags; 268 if (extract32(flags, 16, 16)) { 269 emc_update_mista_txintr(emc); 270 } 271 if (extract32(flags, 0, 16)) { 272 emc_update_mista_rxintr(emc); 273 } 274 } 275 276 static void emc_halt_tx(NPCM7xxEMCState *emc, uint32_t mista_flag) 277 { 278 emc->tx_active = false; 279 emc_set_mista(emc, mista_flag); 280 } 281 282 static void emc_halt_rx(NPCM7xxEMCState *emc, uint32_t mista_flag) 283 { 284 emc->rx_active = false; 285 emc_set_mista(emc, mista_flag); 286 } 287 288 static void emc_enable_rx_and_flush(NPCM7xxEMCState *emc) 289 { 290 emc->rx_active = true; 291 qemu_flush_queued_packets(qemu_get_queue(emc->nic)); 292 } 293 294 static void emc_set_next_tx_descriptor(NPCM7xxEMCState *emc, 295 const NPCM7xxEMCTxDesc *tx_desc, 296 uint32_t desc_addr) 297 { 298 /* Update the current descriptor, if only to reset the owner flag. */ 299 if (emc_write_tx_desc(tx_desc, desc_addr)) { 300 /* 301 * We just read it so this shouldn't generally happen. 302 * Error already reported. 303 */ 304 emc_set_mista(emc, REG_MISTA_TXBERR); 305 } 306 emc->regs[REG_CTXDSA] = TX_DESC_NTXDSA(tx_desc->ntxdsa); 307 } 308 309 static void emc_set_next_rx_descriptor(NPCM7xxEMCState *emc, 310 const NPCM7xxEMCRxDesc *rx_desc, 311 uint32_t desc_addr) 312 { 313 /* Update the current descriptor, if only to reset the owner flag. */ 314 if (emc_write_rx_desc(rx_desc, desc_addr)) { 315 /* 316 * We just read it so this shouldn't generally happen. 317 * Error already reported. 318 */ 319 emc_set_mista(emc, REG_MISTA_RXBERR); 320 } 321 emc->regs[REG_CRXDSA] = RX_DESC_NRXDSA(rx_desc->nrxdsa); 322 } 323 324 static void emc_try_send_next_packet(NPCM7xxEMCState *emc) 325 { 326 /* Working buffer for sending out packets. Most packets fit in this. */ 327 #define TX_BUFFER_SIZE 2048 328 uint8_t tx_send_buffer[TX_BUFFER_SIZE]; 329 uint32_t desc_addr = TX_DESC_NTXDSA(emc->regs[REG_CTXDSA]); 330 NPCM7xxEMCTxDesc tx_desc; 331 uint32_t next_buf_addr, length; 332 uint8_t *buf; 333 g_autofree uint8_t *malloced_buf = NULL; 334 335 if (emc_read_tx_desc(desc_addr, &tx_desc)) { 336 /* Error reading descriptor, already reported. */ 337 emc_halt_tx(emc, REG_MISTA_TXBERR); 338 emc_update_tx_irq(emc); 339 return; 340 } 341 342 /* Nothing we can do if we don't own the descriptor. */ 343 if (!(tx_desc.flags & TX_DESC_FLAG_OWNER_MASK)) { 344 trace_npcm7xx_emc_cpu_owned_desc(desc_addr); 345 emc_halt_tx(emc, REG_MISTA_TDU); 346 emc_update_tx_irq(emc); 347 return; 348 } 349 350 /* Give the descriptor back regardless of what happens. */ 351 tx_desc.flags &= ~TX_DESC_FLAG_OWNER_MASK; 352 tx_desc.status_and_length &= 0xffff; 353 354 /* 355 * Despite the h/w documentation saying the tx buffer is word aligned, 356 * the linux driver does not word align the buffer. There is value in not 357 * aligning the buffer: See the description of NET_IP_ALIGN in linux 358 * kernel sources. 359 */ 360 next_buf_addr = tx_desc.txbsa; 361 emc->regs[REG_CTXBSA] = next_buf_addr; 362 length = TX_DESC_PKT_LEN(tx_desc.status_and_length); 363 buf = &tx_send_buffer[0]; 364 365 if (length > sizeof(tx_send_buffer)) { 366 malloced_buf = g_malloc(length); 367 buf = malloced_buf; 368 } 369 370 if (dma_memory_read(&address_space_memory, next_buf_addr, buf, 371 length, MEMTXATTRS_UNSPECIFIED)) { 372 qemu_log_mask(LOG_GUEST_ERROR, "%s: Failed to read packet @ 0x%x\n", 373 __func__, next_buf_addr); 374 emc_set_mista(emc, REG_MISTA_TXBERR); 375 emc_set_next_tx_descriptor(emc, &tx_desc, desc_addr); 376 emc_update_tx_irq(emc); 377 trace_npcm7xx_emc_tx_done(emc->regs[REG_CTXDSA]); 378 return; 379 } 380 381 if ((tx_desc.flags & TX_DESC_FLAG_PADEN) && (length < MIN_PACKET_LENGTH)) { 382 memset(buf + length, 0, MIN_PACKET_LENGTH - length); 383 length = MIN_PACKET_LENGTH; 384 } 385 386 /* N.B. emc_receive can get called here. */ 387 qemu_send_packet(qemu_get_queue(emc->nic), buf, length); 388 trace_npcm7xx_emc_sent_packet(length); 389 390 tx_desc.status_and_length |= TX_DESC_STATUS_TXCP; 391 if (tx_desc.flags & TX_DESC_FLAG_INTEN) { 392 emc_set_mista(emc, REG_MISTA_TXCP); 393 } 394 if (emc->regs[REG_MISTA] & emc->regs[REG_MIEN] & REG_MISTA_TXINTR) { 395 tx_desc.status_and_length |= TX_DESC_STATUS_TXINTR; 396 } 397 398 emc_set_next_tx_descriptor(emc, &tx_desc, desc_addr); 399 emc_update_tx_irq(emc); 400 trace_npcm7xx_emc_tx_done(emc->regs[REG_CTXDSA]); 401 } 402 403 static bool emc_can_receive(NetClientState *nc) 404 { 405 NPCM7xxEMCState *emc = NPCM7XX_EMC(qemu_get_nic_opaque(nc)); 406 407 bool can_receive = emc->rx_active; 408 trace_npcm7xx_emc_can_receive(can_receive); 409 return can_receive; 410 } 411 412 /* If result is false then *fail_reason contains the reason. */ 413 static bool emc_receive_filter1(NPCM7xxEMCState *emc, const uint8_t *buf, 414 size_t len, const char **fail_reason) 415 { 416 eth_pkt_types_e pkt_type = get_eth_packet_type(PKT_GET_ETH_HDR(buf)); 417 418 switch (pkt_type) { 419 case ETH_PKT_BCAST: 420 if (emc->regs[REG_CAMCMR] & REG_CAMCMR_CCAM) { 421 return true; 422 } else { 423 *fail_reason = "Broadcast packet disabled"; 424 return !!(emc->regs[REG_CAMCMR] & REG_CAMCMR_ABP); 425 } 426 case ETH_PKT_MCAST: 427 if (emc->regs[REG_CAMCMR] & REG_CAMCMR_CCAM) { 428 return true; 429 } else { 430 *fail_reason = "Multicast packet disabled"; 431 return !!(emc->regs[REG_CAMCMR] & REG_CAMCMR_AMP); 432 } 433 case ETH_PKT_UCAST: { 434 bool matches; 435 if (emc->regs[REG_CAMCMR] & REG_CAMCMR_AUP) { 436 return true; 437 } 438 matches = ((emc->regs[REG_CAMCMR] & REG_CAMCMR_ECMP) && 439 /* We only support one CAM register, CAM0. */ 440 (emc->regs[REG_CAMEN] & (1 << 0)) && 441 memcmp(buf, emc->conf.macaddr.a, ETH_ALEN) == 0); 442 if (emc->regs[REG_CAMCMR] & REG_CAMCMR_CCAM) { 443 *fail_reason = "MACADDR matched, comparison complemented"; 444 return !matches; 445 } else { 446 *fail_reason = "MACADDR didn't match"; 447 return matches; 448 } 449 } 450 default: 451 g_assert_not_reached(); 452 } 453 } 454 455 static bool emc_receive_filter(NPCM7xxEMCState *emc, const uint8_t *buf, 456 size_t len) 457 { 458 const char *fail_reason = NULL; 459 bool ok = emc_receive_filter1(emc, buf, len, &fail_reason); 460 if (!ok) { 461 trace_npcm7xx_emc_packet_filtered_out(fail_reason); 462 } 463 return ok; 464 } 465 466 static ssize_t emc_receive(NetClientState *nc, const uint8_t *buf, size_t len1) 467 { 468 NPCM7xxEMCState *emc = NPCM7XX_EMC(qemu_get_nic_opaque(nc)); 469 const uint32_t len = len1; 470 size_t max_frame_len; 471 bool long_frame; 472 uint32_t desc_addr; 473 NPCM7xxEMCRxDesc rx_desc; 474 uint32_t crc; 475 uint8_t *crc_ptr; 476 uint32_t buf_addr; 477 478 trace_npcm7xx_emc_receiving_packet(len); 479 480 if (!emc_can_receive(nc)) { 481 qemu_log_mask(LOG_GUEST_ERROR, "%s: Unexpected packet\n", __func__); 482 return -1; 483 } 484 485 if (len < ETH_HLEN || 486 /* Defensive programming: drop unsupportable large packets. */ 487 len > 0xffff - CRC_LENGTH) { 488 qemu_log_mask(LOG_GUEST_ERROR, "%s: Dropped frame of %u bytes\n", 489 __func__, len); 490 return len; 491 } 492 493 /* 494 * DENI is set if EMC received the Length/Type field of the incoming 495 * packet, so it will be set regardless of what happens next. 496 */ 497 emc_set_mista(emc, REG_MISTA_DENI); 498 499 if (!emc_receive_filter(emc, buf, len)) { 500 emc_update_rx_irq(emc); 501 return len; 502 } 503 504 /* Huge frames (> DMARFC) are dropped. */ 505 max_frame_len = REG_DMARFC_RXMS(emc->regs[REG_DMARFC]); 506 if (len + CRC_LENGTH > max_frame_len) { 507 trace_npcm7xx_emc_packet_dropped(len); 508 emc_set_mista(emc, REG_MISTA_DFOI); 509 emc_update_rx_irq(emc); 510 return len; 511 } 512 513 /* 514 * Long Frames (> MAX_ETH_FRAME_SIZE) are also dropped, unless MCMDR.ALP 515 * is set. 516 */ 517 long_frame = false; 518 if (len + CRC_LENGTH > MAX_ETH_FRAME_SIZE) { 519 if (emc->regs[REG_MCMDR] & REG_MCMDR_ALP) { 520 long_frame = true; 521 } else { 522 trace_npcm7xx_emc_packet_dropped(len); 523 emc_set_mista(emc, REG_MISTA_PTLE); 524 emc_update_rx_irq(emc); 525 return len; 526 } 527 } 528 529 desc_addr = RX_DESC_NRXDSA(emc->regs[REG_CRXDSA]); 530 if (emc_read_rx_desc(desc_addr, &rx_desc)) { 531 /* Error reading descriptor, already reported. */ 532 emc_halt_rx(emc, REG_MISTA_RXBERR); 533 emc_update_rx_irq(emc); 534 return len; 535 } 536 537 /* Nothing we can do if we don't own the descriptor. */ 538 if (!(rx_desc.status_and_length & RX_DESC_STATUS_OWNER_MASK)) { 539 trace_npcm7xx_emc_cpu_owned_desc(desc_addr); 540 emc_halt_rx(emc, REG_MISTA_RDU); 541 emc_update_rx_irq(emc); 542 return len; 543 } 544 545 crc = 0; 546 crc_ptr = (uint8_t *) &crc; 547 if (!(emc->regs[REG_MCMDR] & REG_MCMDR_SPCRC)) { 548 crc = cpu_to_be32(crc32(~0, buf, len)); 549 } 550 551 /* Give the descriptor back regardless of what happens. */ 552 rx_desc.status_and_length &= ~RX_DESC_STATUS_OWNER_MASK; 553 554 buf_addr = rx_desc.rxbsa; 555 emc->regs[REG_CRXBSA] = buf_addr; 556 if (dma_memory_write(&address_space_memory, buf_addr, buf, 557 len, MEMTXATTRS_UNSPECIFIED) || 558 (!(emc->regs[REG_MCMDR] & REG_MCMDR_SPCRC) && 559 dma_memory_write(&address_space_memory, buf_addr + len, 560 crc_ptr, 4, MEMTXATTRS_UNSPECIFIED))) { 561 qemu_log_mask(LOG_GUEST_ERROR, "%s: Bus error writing packet\n", 562 __func__); 563 emc_set_mista(emc, REG_MISTA_RXBERR); 564 emc_set_next_rx_descriptor(emc, &rx_desc, desc_addr); 565 emc_update_rx_irq(emc); 566 trace_npcm7xx_emc_rx_done(emc->regs[REG_CRXDSA]); 567 return len; 568 } 569 570 trace_npcm7xx_emc_received_packet(len); 571 572 /* Note: We've already verified len+4 <= 0xffff. */ 573 rx_desc.status_and_length = len; 574 if (!(emc->regs[REG_MCMDR] & REG_MCMDR_SPCRC)) { 575 rx_desc.status_and_length += 4; 576 } 577 rx_desc.status_and_length |= RX_DESC_STATUS_RXGD; 578 emc_set_mista(emc, REG_MISTA_RXGD); 579 580 if (emc->regs[REG_MISTA] & emc->regs[REG_MIEN] & REG_MISTA_RXINTR) { 581 rx_desc.status_and_length |= RX_DESC_STATUS_RXINTR; 582 } 583 if (long_frame) { 584 rx_desc.status_and_length |= RX_DESC_STATUS_PTLE; 585 } 586 587 emc_set_next_rx_descriptor(emc, &rx_desc, desc_addr); 588 emc_update_rx_irq(emc); 589 trace_npcm7xx_emc_rx_done(emc->regs[REG_CRXDSA]); 590 return len; 591 } 592 593 static uint64_t npcm7xx_emc_read(void *opaque, hwaddr offset, unsigned size) 594 { 595 NPCM7xxEMCState *emc = opaque; 596 uint32_t reg = offset / sizeof(uint32_t); 597 uint32_t result; 598 599 if (reg >= NPCM7XX_NUM_EMC_REGS) { 600 qemu_log_mask(LOG_GUEST_ERROR, 601 "%s: Invalid offset 0x%04" HWADDR_PRIx "\n", 602 __func__, offset); 603 return 0; 604 } 605 606 switch (reg) { 607 case REG_MIID: 608 /* 609 * We don't implement MII. For determinism, always return zero as 610 * writes record the last value written for debugging purposes. 611 */ 612 qemu_log_mask(LOG_UNIMP, "%s: Read of MIID, returning 0\n", __func__); 613 result = 0; 614 break; 615 case REG_TSDR: 616 case REG_RSDR: 617 qemu_log_mask(LOG_GUEST_ERROR, 618 "%s: Read of write-only reg, %s/%d\n", 619 __func__, emc_reg_name(reg), reg); 620 return 0; 621 default: 622 result = emc->regs[reg]; 623 break; 624 } 625 626 trace_npcm7xx_emc_reg_read(emc->emc_num, result, emc_reg_name(reg), reg); 627 return result; 628 } 629 630 static void npcm7xx_emc_write(void *opaque, hwaddr offset, 631 uint64_t v, unsigned size) 632 { 633 NPCM7xxEMCState *emc = opaque; 634 uint32_t reg = offset / sizeof(uint32_t); 635 uint32_t value = v; 636 637 g_assert(size == sizeof(uint32_t)); 638 639 if (reg >= NPCM7XX_NUM_EMC_REGS) { 640 qemu_log_mask(LOG_GUEST_ERROR, 641 "%s: Invalid offset 0x%04" HWADDR_PRIx "\n", 642 __func__, offset); 643 return; 644 } 645 646 trace_npcm7xx_emc_reg_write(emc->emc_num, emc_reg_name(reg), reg, value); 647 648 switch (reg) { 649 case REG_CAMCMR: 650 emc->regs[reg] = value; 651 break; 652 case REG_CAMEN: 653 /* Only CAM0 is supported, don't pretend otherwise. */ 654 if (value & ~1) { 655 qemu_log_mask(LOG_GUEST_ERROR, 656 "%s: Only CAM0 is supported, cannot enable others" 657 ": 0x%x\n", 658 __func__, value); 659 } 660 emc->regs[reg] = value & 1; 661 break; 662 case REG_CAMM_BASE + 0: 663 emc->regs[reg] = value; 664 emc->conf.macaddr.a[0] = value >> 24; 665 emc->conf.macaddr.a[1] = value >> 16; 666 emc->conf.macaddr.a[2] = value >> 8; 667 emc->conf.macaddr.a[3] = value >> 0; 668 break; 669 case REG_CAML_BASE + 0: 670 emc->regs[reg] = value; 671 emc->conf.macaddr.a[4] = value >> 24; 672 emc->conf.macaddr.a[5] = value >> 16; 673 break; 674 case REG_MCMDR: { 675 uint32_t prev; 676 if (value & REG_MCMDR_SWR) { 677 emc_soft_reset(emc); 678 /* On h/w the reset happens over multiple cycles. For now KISS. */ 679 break; 680 } 681 prev = emc->regs[reg]; 682 emc->regs[reg] = value; 683 /* Update tx state. */ 684 if (!(prev & REG_MCMDR_TXON) && 685 (value & REG_MCMDR_TXON)) { 686 emc->regs[REG_CTXDSA] = emc->regs[REG_TXDLSA]; 687 /* 688 * Linux kernel turns TX on with CPU still holding descriptor, 689 * which suggests we should wait for a write to TSDR before trying 690 * to send a packet: so we don't send one here. 691 */ 692 } else if ((prev & REG_MCMDR_TXON) && 693 !(value & REG_MCMDR_TXON)) { 694 emc->regs[REG_MGSTA] |= REG_MGSTA_TXHA; 695 } 696 if (!(value & REG_MCMDR_TXON)) { 697 emc_halt_tx(emc, 0); 698 } 699 /* Update rx state. */ 700 if (!(prev & REG_MCMDR_RXON) && 701 (value & REG_MCMDR_RXON)) { 702 emc->regs[REG_CRXDSA] = emc->regs[REG_RXDLSA]; 703 } else if ((prev & REG_MCMDR_RXON) && 704 !(value & REG_MCMDR_RXON)) { 705 emc->regs[REG_MGSTA] |= REG_MGSTA_RXHA; 706 } 707 if (value & REG_MCMDR_RXON) { 708 emc_enable_rx_and_flush(emc); 709 } else { 710 emc_halt_rx(emc, 0); 711 } 712 break; 713 } 714 case REG_TXDLSA: 715 case REG_RXDLSA: 716 case REG_DMARFC: 717 case REG_MIID: 718 emc->regs[reg] = value; 719 break; 720 case REG_MIEN: 721 emc->regs[reg] = value; 722 emc_update_irq_from_reg_change(emc); 723 break; 724 case REG_MISTA: 725 /* Clear the bits that have 1 in "value". */ 726 emc->regs[reg] &= ~value; 727 emc_update_irq_from_reg_change(emc); 728 break; 729 case REG_MGSTA: 730 /* Clear the bits that have 1 in "value". */ 731 emc->regs[reg] &= ~value; 732 break; 733 case REG_TSDR: 734 if (emc->regs[REG_MCMDR] & REG_MCMDR_TXON) { 735 emc->tx_active = true; 736 /* Keep trying to send packets until we run out. */ 737 while (emc->tx_active) { 738 emc_try_send_next_packet(emc); 739 } 740 } 741 break; 742 case REG_RSDR: 743 if (emc->regs[REG_MCMDR] & REG_MCMDR_RXON) { 744 emc_enable_rx_and_flush(emc); 745 } 746 break; 747 case REG_MIIDA: 748 emc->regs[reg] = value & ~REG_MIIDA_BUSY; 749 break; 750 case REG_MRPC: 751 case REG_MRPCC: 752 case REG_MREPC: 753 case REG_CTXDSA: 754 case REG_CTXBSA: 755 case REG_CRXDSA: 756 case REG_CRXBSA: 757 qemu_log_mask(LOG_GUEST_ERROR, 758 "%s: Write to read-only reg %s/%d\n", 759 __func__, emc_reg_name(reg), reg); 760 break; 761 default: 762 qemu_log_mask(LOG_UNIMP, "%s: Write to unimplemented reg %s/%d\n", 763 __func__, emc_reg_name(reg), reg); 764 break; 765 } 766 } 767 768 static const struct MemoryRegionOps npcm7xx_emc_ops = { 769 .read = npcm7xx_emc_read, 770 .write = npcm7xx_emc_write, 771 .endianness = DEVICE_LITTLE_ENDIAN, 772 .valid = { 773 .min_access_size = 4, 774 .max_access_size = 4, 775 .unaligned = false, 776 }, 777 }; 778 779 static void emc_cleanup(NetClientState *nc) 780 { 781 /* Nothing to do yet. */ 782 } 783 784 static NetClientInfo net_npcm7xx_emc_info = { 785 .type = NET_CLIENT_DRIVER_NIC, 786 .size = sizeof(NICState), 787 .can_receive = emc_can_receive, 788 .receive = emc_receive, 789 .cleanup = emc_cleanup, 790 .link_status_changed = emc_set_link, 791 }; 792 793 static void npcm7xx_emc_realize(DeviceState *dev, Error **errp) 794 { 795 NPCM7xxEMCState *emc = NPCM7XX_EMC(dev); 796 SysBusDevice *sbd = SYS_BUS_DEVICE(emc); 797 798 memory_region_init_io(&emc->iomem, OBJECT(emc), &npcm7xx_emc_ops, emc, 799 TYPE_NPCM7XX_EMC, 4 * KiB); 800 sysbus_init_mmio(sbd, &emc->iomem); 801 sysbus_init_irq(sbd, &emc->tx_irq); 802 sysbus_init_irq(sbd, &emc->rx_irq); 803 804 qemu_macaddr_default_if_unset(&emc->conf.macaddr); 805 emc->nic = qemu_new_nic(&net_npcm7xx_emc_info, &emc->conf, 806 object_get_typename(OBJECT(dev)), dev->id, emc); 807 qemu_format_nic_info_str(qemu_get_queue(emc->nic), emc->conf.macaddr.a); 808 } 809 810 static void npcm7xx_emc_unrealize(DeviceState *dev) 811 { 812 NPCM7xxEMCState *emc = NPCM7XX_EMC(dev); 813 814 qemu_del_nic(emc->nic); 815 } 816 817 static const VMStateDescription vmstate_npcm7xx_emc = { 818 .name = TYPE_NPCM7XX_EMC, 819 .version_id = 0, 820 .minimum_version_id = 0, 821 .fields = (VMStateField[]) { 822 VMSTATE_UINT8(emc_num, NPCM7xxEMCState), 823 VMSTATE_UINT32_ARRAY(regs, NPCM7xxEMCState, NPCM7XX_NUM_EMC_REGS), 824 VMSTATE_BOOL(tx_active, NPCM7xxEMCState), 825 VMSTATE_BOOL(rx_active, NPCM7xxEMCState), 826 VMSTATE_END_OF_LIST(), 827 }, 828 }; 829 830 static Property npcm7xx_emc_properties[] = { 831 DEFINE_NIC_PROPERTIES(NPCM7xxEMCState, conf), 832 DEFINE_PROP_END_OF_LIST(), 833 }; 834 835 static void npcm7xx_emc_class_init(ObjectClass *klass, void *data) 836 { 837 DeviceClass *dc = DEVICE_CLASS(klass); 838 839 set_bit(DEVICE_CATEGORY_NETWORK, dc->categories); 840 dc->desc = "NPCM7xx EMC Controller"; 841 dc->realize = npcm7xx_emc_realize; 842 dc->unrealize = npcm7xx_emc_unrealize; 843 dc->reset = npcm7xx_emc_reset; 844 dc->vmsd = &vmstate_npcm7xx_emc; 845 device_class_set_props(dc, npcm7xx_emc_properties); 846 } 847 848 static const TypeInfo npcm7xx_emc_info = { 849 .name = TYPE_NPCM7XX_EMC, 850 .parent = TYPE_SYS_BUS_DEVICE, 851 .instance_size = sizeof(NPCM7xxEMCState), 852 .class_init = npcm7xx_emc_class_init, 853 }; 854 855 static void npcm7xx_emc_register_type(void) 856 { 857 type_register_static(&npcm7xx_emc_info); 858 } 859 860 type_init(npcm7xx_emc_register_type) 861