1 /* 2 * Nuvoton NPCM7xx EMC Module 3 * 4 * Copyright 2020 Google LLC 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License as published by the 8 * Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 * for more details. 15 * 16 * Unsupported/unimplemented features: 17 * - MCMDR.FDUP (full duplex) is ignored, half duplex is not supported 18 * - Only CAM0 is supported, CAM[1-15] are not 19 * - writes to CAMEN.[1-15] are ignored, these bits always read as zeroes 20 * - MII is not implemented, MIIDA.BUSY and MIID always return zero 21 * - MCMDR.LBK is not implemented 22 * - MCMDR.{OPMOD,ENSQE,AEP,ARP} are not supported 23 * - H/W FIFOs are not supported, MCMDR.FFTCR is ignored 24 * - MGSTA.SQE is not supported 25 * - pause and control frames are not implemented 26 * - MGSTA.CCNT is not supported 27 * - MPCNT, DMARFS are not implemented 28 */ 29 30 #include "qemu/osdep.h" 31 32 /* For crc32 */ 33 #include <zlib.h> 34 35 #include "qemu-common.h" 36 #include "hw/irq.h" 37 #include "hw/qdev-clock.h" 38 #include "hw/qdev-properties.h" 39 #include "hw/net/npcm7xx_emc.h" 40 #include "net/eth.h" 41 #include "migration/vmstate.h" 42 #include "qemu/bitops.h" 43 #include "qemu/error-report.h" 44 #include "qemu/log.h" 45 #include "qemu/module.h" 46 #include "qemu/units.h" 47 #include "sysemu/dma.h" 48 #include "trace.h" 49 50 #define CRC_LENGTH 4 51 52 /* 53 * The maximum size of a (layer 2) ethernet frame as defined by 802.3. 54 * 1518 = 6(dest macaddr) + 6(src macaddr) + 2(proto) + 4(crc) + 1500(payload) 55 * This does not include an additional 4 for the vlan field (802.1q). 56 */ 57 #define MAX_ETH_FRAME_SIZE 1518 58 59 static const char *emc_reg_name(int regno) 60 { 61 #define REG(name) case REG_ ## name: return #name; 62 switch (regno) { 63 REG(CAMCMR) 64 REG(CAMEN) 65 REG(TXDLSA) 66 REG(RXDLSA) 67 REG(MCMDR) 68 REG(MIID) 69 REG(MIIDA) 70 REG(FFTCR) 71 REG(TSDR) 72 REG(RSDR) 73 REG(DMARFC) 74 REG(MIEN) 75 REG(MISTA) 76 REG(MGSTA) 77 REG(MPCNT) 78 REG(MRPC) 79 REG(MRPCC) 80 REG(MREPC) 81 REG(DMARFS) 82 REG(CTXDSA) 83 REG(CTXBSA) 84 REG(CRXDSA) 85 REG(CRXBSA) 86 case REG_CAMM_BASE + 0: return "CAM0M"; 87 case REG_CAML_BASE + 0: return "CAM0L"; 88 case REG_CAMM_BASE + 2 ... REG_CAMML_LAST: 89 /* Only CAM0 is supported, fold the others into something simple. */ 90 if (regno & 1) { 91 return "CAM<n>L"; 92 } else { 93 return "CAM<n>M"; 94 } 95 default: return "UNKNOWN"; 96 } 97 #undef REG 98 } 99 100 static void emc_reset(NPCM7xxEMCState *emc) 101 { 102 trace_npcm7xx_emc_reset(emc->emc_num); 103 104 memset(&emc->regs[0], 0, sizeof(emc->regs)); 105 106 /* These regs have non-zero reset values. */ 107 emc->regs[REG_TXDLSA] = 0xfffffffc; 108 emc->regs[REG_RXDLSA] = 0xfffffffc; 109 emc->regs[REG_MIIDA] = 0x00900000; 110 emc->regs[REG_FFTCR] = 0x0101; 111 emc->regs[REG_DMARFC] = 0x0800; 112 emc->regs[REG_MPCNT] = 0x7fff; 113 114 emc->tx_active = false; 115 emc->rx_active = false; 116 } 117 118 static void npcm7xx_emc_reset(DeviceState *dev) 119 { 120 NPCM7xxEMCState *emc = NPCM7XX_EMC(dev); 121 emc_reset(emc); 122 } 123 124 static void emc_soft_reset(NPCM7xxEMCState *emc) 125 { 126 /* 127 * The docs say at least MCMDR.{LBK,OPMOD} bits are not changed during a 128 * soft reset, but does not go into further detail. For now, KISS. 129 */ 130 uint32_t mcmdr = emc->regs[REG_MCMDR]; 131 emc_reset(emc); 132 emc->regs[REG_MCMDR] = mcmdr & (REG_MCMDR_LBK | REG_MCMDR_OPMOD); 133 134 qemu_set_irq(emc->tx_irq, 0); 135 qemu_set_irq(emc->rx_irq, 0); 136 } 137 138 static void emc_set_link(NetClientState *nc) 139 { 140 /* Nothing to do yet. */ 141 } 142 143 /* MISTA.TXINTR is the union of the individual bits with their enables. */ 144 static void emc_update_mista_txintr(NPCM7xxEMCState *emc) 145 { 146 /* Only look at the bits we support. */ 147 uint32_t mask = (REG_MISTA_TXBERR | 148 REG_MISTA_TDU | 149 REG_MISTA_TXCP); 150 if (emc->regs[REG_MISTA] & emc->regs[REG_MIEN] & mask) { 151 emc->regs[REG_MISTA] |= REG_MISTA_TXINTR; 152 } else { 153 emc->regs[REG_MISTA] &= ~REG_MISTA_TXINTR; 154 } 155 } 156 157 /* MISTA.RXINTR is the union of the individual bits with their enables. */ 158 static void emc_update_mista_rxintr(NPCM7xxEMCState *emc) 159 { 160 /* Only look at the bits we support. */ 161 uint32_t mask = (REG_MISTA_RXBERR | 162 REG_MISTA_RDU | 163 REG_MISTA_RXGD); 164 if (emc->regs[REG_MISTA] & emc->regs[REG_MIEN] & mask) { 165 emc->regs[REG_MISTA] |= REG_MISTA_RXINTR; 166 } else { 167 emc->regs[REG_MISTA] &= ~REG_MISTA_RXINTR; 168 } 169 } 170 171 /* N.B. emc_update_mista_txintr must have already been called. */ 172 static void emc_update_tx_irq(NPCM7xxEMCState *emc) 173 { 174 int level = !!(emc->regs[REG_MISTA] & 175 emc->regs[REG_MIEN] & 176 REG_MISTA_TXINTR); 177 trace_npcm7xx_emc_update_tx_irq(level); 178 qemu_set_irq(emc->tx_irq, level); 179 } 180 181 /* N.B. emc_update_mista_rxintr must have already been called. */ 182 static void emc_update_rx_irq(NPCM7xxEMCState *emc) 183 { 184 int level = !!(emc->regs[REG_MISTA] & 185 emc->regs[REG_MIEN] & 186 REG_MISTA_RXINTR); 187 trace_npcm7xx_emc_update_rx_irq(level); 188 qemu_set_irq(emc->rx_irq, level); 189 } 190 191 /* Update IRQ states due to changes in MIEN,MISTA. */ 192 static void emc_update_irq_from_reg_change(NPCM7xxEMCState *emc) 193 { 194 emc_update_mista_txintr(emc); 195 emc_update_tx_irq(emc); 196 197 emc_update_mista_rxintr(emc); 198 emc_update_rx_irq(emc); 199 } 200 201 static int emc_read_tx_desc(dma_addr_t addr, NPCM7xxEMCTxDesc *desc) 202 { 203 if (dma_memory_read(&address_space_memory, addr, desc, sizeof(*desc))) { 204 qemu_log_mask(LOG_GUEST_ERROR, "%s: Failed to read descriptor @ 0x%" 205 HWADDR_PRIx "\n", __func__, addr); 206 return -1; 207 } 208 desc->flags = le32_to_cpu(desc->flags); 209 desc->txbsa = le32_to_cpu(desc->txbsa); 210 desc->status_and_length = le32_to_cpu(desc->status_and_length); 211 desc->ntxdsa = le32_to_cpu(desc->ntxdsa); 212 return 0; 213 } 214 215 static int emc_write_tx_desc(const NPCM7xxEMCTxDesc *desc, dma_addr_t addr) 216 { 217 NPCM7xxEMCTxDesc le_desc; 218 219 le_desc.flags = cpu_to_le32(desc->flags); 220 le_desc.txbsa = cpu_to_le32(desc->txbsa); 221 le_desc.status_and_length = cpu_to_le32(desc->status_and_length); 222 le_desc.ntxdsa = cpu_to_le32(desc->ntxdsa); 223 if (dma_memory_write(&address_space_memory, addr, &le_desc, 224 sizeof(le_desc))) { 225 qemu_log_mask(LOG_GUEST_ERROR, "%s: Failed to write descriptor @ 0x%" 226 HWADDR_PRIx "\n", __func__, addr); 227 return -1; 228 } 229 return 0; 230 } 231 232 static int emc_read_rx_desc(dma_addr_t addr, NPCM7xxEMCRxDesc *desc) 233 { 234 if (dma_memory_read(&address_space_memory, addr, desc, sizeof(*desc))) { 235 qemu_log_mask(LOG_GUEST_ERROR, "%s: Failed to read descriptor @ 0x%" 236 HWADDR_PRIx "\n", __func__, addr); 237 return -1; 238 } 239 desc->status_and_length = le32_to_cpu(desc->status_and_length); 240 desc->rxbsa = le32_to_cpu(desc->rxbsa); 241 desc->reserved = le32_to_cpu(desc->reserved); 242 desc->nrxdsa = le32_to_cpu(desc->nrxdsa); 243 return 0; 244 } 245 246 static int emc_write_rx_desc(const NPCM7xxEMCRxDesc *desc, dma_addr_t addr) 247 { 248 NPCM7xxEMCRxDesc le_desc; 249 250 le_desc.status_and_length = cpu_to_le32(desc->status_and_length); 251 le_desc.rxbsa = cpu_to_le32(desc->rxbsa); 252 le_desc.reserved = cpu_to_le32(desc->reserved); 253 le_desc.nrxdsa = cpu_to_le32(desc->nrxdsa); 254 if (dma_memory_write(&address_space_memory, addr, &le_desc, 255 sizeof(le_desc))) { 256 qemu_log_mask(LOG_GUEST_ERROR, "%s: Failed to write descriptor @ 0x%" 257 HWADDR_PRIx "\n", __func__, addr); 258 return -1; 259 } 260 return 0; 261 } 262 263 static void emc_set_mista(NPCM7xxEMCState *emc, uint32_t flags) 264 { 265 trace_npcm7xx_emc_set_mista(flags); 266 emc->regs[REG_MISTA] |= flags; 267 if (extract32(flags, 16, 16)) { 268 emc_update_mista_txintr(emc); 269 } 270 if (extract32(flags, 0, 16)) { 271 emc_update_mista_rxintr(emc); 272 } 273 } 274 275 static void emc_halt_tx(NPCM7xxEMCState *emc, uint32_t mista_flag) 276 { 277 emc->tx_active = false; 278 emc_set_mista(emc, mista_flag); 279 } 280 281 static void emc_halt_rx(NPCM7xxEMCState *emc, uint32_t mista_flag) 282 { 283 emc->rx_active = false; 284 emc_set_mista(emc, mista_flag); 285 } 286 287 static void emc_set_next_tx_descriptor(NPCM7xxEMCState *emc, 288 const NPCM7xxEMCTxDesc *tx_desc, 289 uint32_t desc_addr) 290 { 291 /* Update the current descriptor, if only to reset the owner flag. */ 292 if (emc_write_tx_desc(tx_desc, desc_addr)) { 293 /* 294 * We just read it so this shouldn't generally happen. 295 * Error already reported. 296 */ 297 emc_set_mista(emc, REG_MISTA_TXBERR); 298 } 299 emc->regs[REG_CTXDSA] = TX_DESC_NTXDSA(tx_desc->ntxdsa); 300 } 301 302 static void emc_set_next_rx_descriptor(NPCM7xxEMCState *emc, 303 const NPCM7xxEMCRxDesc *rx_desc, 304 uint32_t desc_addr) 305 { 306 /* Update the current descriptor, if only to reset the owner flag. */ 307 if (emc_write_rx_desc(rx_desc, desc_addr)) { 308 /* 309 * We just read it so this shouldn't generally happen. 310 * Error already reported. 311 */ 312 emc_set_mista(emc, REG_MISTA_RXBERR); 313 } 314 emc->regs[REG_CRXDSA] = RX_DESC_NRXDSA(rx_desc->nrxdsa); 315 } 316 317 static void emc_try_send_next_packet(NPCM7xxEMCState *emc) 318 { 319 /* Working buffer for sending out packets. Most packets fit in this. */ 320 #define TX_BUFFER_SIZE 2048 321 uint8_t tx_send_buffer[TX_BUFFER_SIZE]; 322 uint32_t desc_addr = TX_DESC_NTXDSA(emc->regs[REG_CTXDSA]); 323 NPCM7xxEMCTxDesc tx_desc; 324 uint32_t next_buf_addr, length; 325 uint8_t *buf; 326 g_autofree uint8_t *malloced_buf = NULL; 327 328 if (emc_read_tx_desc(desc_addr, &tx_desc)) { 329 /* Error reading descriptor, already reported. */ 330 emc_halt_tx(emc, REG_MISTA_TXBERR); 331 emc_update_tx_irq(emc); 332 return; 333 } 334 335 /* Nothing we can do if we don't own the descriptor. */ 336 if (!(tx_desc.flags & TX_DESC_FLAG_OWNER_MASK)) { 337 trace_npcm7xx_emc_cpu_owned_desc(desc_addr); 338 emc_halt_tx(emc, REG_MISTA_TDU); 339 emc_update_tx_irq(emc); 340 return; 341 } 342 343 /* Give the descriptor back regardless of what happens. */ 344 tx_desc.flags &= ~TX_DESC_FLAG_OWNER_MASK; 345 tx_desc.status_and_length &= 0xffff; 346 347 /* 348 * Despite the h/w documentation saying the tx buffer is word aligned, 349 * the linux driver does not word align the buffer. There is value in not 350 * aligning the buffer: See the description of NET_IP_ALIGN in linux 351 * kernel sources. 352 */ 353 next_buf_addr = tx_desc.txbsa; 354 emc->regs[REG_CTXBSA] = next_buf_addr; 355 length = TX_DESC_PKT_LEN(tx_desc.status_and_length); 356 buf = &tx_send_buffer[0]; 357 358 if (length > sizeof(tx_send_buffer)) { 359 malloced_buf = g_malloc(length); 360 buf = malloced_buf; 361 } 362 363 if (dma_memory_read(&address_space_memory, next_buf_addr, buf, length)) { 364 qemu_log_mask(LOG_GUEST_ERROR, "%s: Failed to read packet @ 0x%x\n", 365 __func__, next_buf_addr); 366 emc_set_mista(emc, REG_MISTA_TXBERR); 367 emc_set_next_tx_descriptor(emc, &tx_desc, desc_addr); 368 emc_update_tx_irq(emc); 369 trace_npcm7xx_emc_tx_done(emc->regs[REG_CTXDSA]); 370 return; 371 } 372 373 if ((tx_desc.flags & TX_DESC_FLAG_PADEN) && (length < MIN_PACKET_LENGTH)) { 374 memset(buf + length, 0, MIN_PACKET_LENGTH - length); 375 length = MIN_PACKET_LENGTH; 376 } 377 378 /* N.B. emc_receive can get called here. */ 379 qemu_send_packet(qemu_get_queue(emc->nic), buf, length); 380 trace_npcm7xx_emc_sent_packet(length); 381 382 tx_desc.status_and_length |= TX_DESC_STATUS_TXCP; 383 if (tx_desc.flags & TX_DESC_FLAG_INTEN) { 384 emc_set_mista(emc, REG_MISTA_TXCP); 385 } 386 if (emc->regs[REG_MISTA] & emc->regs[REG_MIEN] & REG_MISTA_TXINTR) { 387 tx_desc.status_and_length |= TX_DESC_STATUS_TXINTR; 388 } 389 390 emc_set_next_tx_descriptor(emc, &tx_desc, desc_addr); 391 emc_update_tx_irq(emc); 392 trace_npcm7xx_emc_tx_done(emc->regs[REG_CTXDSA]); 393 } 394 395 static bool emc_can_receive(NetClientState *nc) 396 { 397 NPCM7xxEMCState *emc = NPCM7XX_EMC(qemu_get_nic_opaque(nc)); 398 399 bool can_receive = emc->rx_active; 400 trace_npcm7xx_emc_can_receive(can_receive); 401 return can_receive; 402 } 403 404 /* If result is false then *fail_reason contains the reason. */ 405 static bool emc_receive_filter1(NPCM7xxEMCState *emc, const uint8_t *buf, 406 size_t len, const char **fail_reason) 407 { 408 eth_pkt_types_e pkt_type = get_eth_packet_type(PKT_GET_ETH_HDR(buf)); 409 410 switch (pkt_type) { 411 case ETH_PKT_BCAST: 412 if (emc->regs[REG_CAMCMR] & REG_CAMCMR_CCAM) { 413 return true; 414 } else { 415 *fail_reason = "Broadcast packet disabled"; 416 return !!(emc->regs[REG_CAMCMR] & REG_CAMCMR_ABP); 417 } 418 case ETH_PKT_MCAST: 419 if (emc->regs[REG_CAMCMR] & REG_CAMCMR_CCAM) { 420 return true; 421 } else { 422 *fail_reason = "Multicast packet disabled"; 423 return !!(emc->regs[REG_CAMCMR] & REG_CAMCMR_AMP); 424 } 425 case ETH_PKT_UCAST: { 426 bool matches; 427 if (emc->regs[REG_CAMCMR] & REG_CAMCMR_AUP) { 428 return true; 429 } 430 matches = ((emc->regs[REG_CAMCMR] & REG_CAMCMR_ECMP) && 431 /* We only support one CAM register, CAM0. */ 432 (emc->regs[REG_CAMEN] & (1 << 0)) && 433 memcmp(buf, emc->conf.macaddr.a, ETH_ALEN) == 0); 434 if (emc->regs[REG_CAMCMR] & REG_CAMCMR_CCAM) { 435 *fail_reason = "MACADDR matched, comparison complemented"; 436 return !matches; 437 } else { 438 *fail_reason = "MACADDR didn't match"; 439 return matches; 440 } 441 } 442 default: 443 g_assert_not_reached(); 444 } 445 } 446 447 static bool emc_receive_filter(NPCM7xxEMCState *emc, const uint8_t *buf, 448 size_t len) 449 { 450 const char *fail_reason = NULL; 451 bool ok = emc_receive_filter1(emc, buf, len, &fail_reason); 452 if (!ok) { 453 trace_npcm7xx_emc_packet_filtered_out(fail_reason); 454 } 455 return ok; 456 } 457 458 static ssize_t emc_receive(NetClientState *nc, const uint8_t *buf, size_t len1) 459 { 460 NPCM7xxEMCState *emc = NPCM7XX_EMC(qemu_get_nic_opaque(nc)); 461 const uint32_t len = len1; 462 size_t max_frame_len; 463 bool long_frame; 464 uint32_t desc_addr; 465 NPCM7xxEMCRxDesc rx_desc; 466 uint32_t crc; 467 uint8_t *crc_ptr; 468 uint32_t buf_addr; 469 470 trace_npcm7xx_emc_receiving_packet(len); 471 472 if (!emc_can_receive(nc)) { 473 qemu_log_mask(LOG_GUEST_ERROR, "%s: Unexpected packet\n", __func__); 474 return -1; 475 } 476 477 if (len < ETH_HLEN || 478 /* Defensive programming: drop unsupportable large packets. */ 479 len > 0xffff - CRC_LENGTH) { 480 qemu_log_mask(LOG_GUEST_ERROR, "%s: Dropped frame of %u bytes\n", 481 __func__, len); 482 return len; 483 } 484 485 /* 486 * DENI is set if EMC received the Length/Type field of the incoming 487 * packet, so it will be set regardless of what happens next. 488 */ 489 emc_set_mista(emc, REG_MISTA_DENI); 490 491 if (!emc_receive_filter(emc, buf, len)) { 492 emc_update_rx_irq(emc); 493 return len; 494 } 495 496 /* Huge frames (> DMARFC) are dropped. */ 497 max_frame_len = REG_DMARFC_RXMS(emc->regs[REG_DMARFC]); 498 if (len + CRC_LENGTH > max_frame_len) { 499 trace_npcm7xx_emc_packet_dropped(len); 500 emc_set_mista(emc, REG_MISTA_DFOI); 501 emc_update_rx_irq(emc); 502 return len; 503 } 504 505 /* 506 * Long Frames (> MAX_ETH_FRAME_SIZE) are also dropped, unless MCMDR.ALP 507 * is set. 508 */ 509 long_frame = false; 510 if (len + CRC_LENGTH > MAX_ETH_FRAME_SIZE) { 511 if (emc->regs[REG_MCMDR] & REG_MCMDR_ALP) { 512 long_frame = true; 513 } else { 514 trace_npcm7xx_emc_packet_dropped(len); 515 emc_set_mista(emc, REG_MISTA_PTLE); 516 emc_update_rx_irq(emc); 517 return len; 518 } 519 } 520 521 desc_addr = RX_DESC_NRXDSA(emc->regs[REG_CRXDSA]); 522 if (emc_read_rx_desc(desc_addr, &rx_desc)) { 523 /* Error reading descriptor, already reported. */ 524 emc_halt_rx(emc, REG_MISTA_RXBERR); 525 emc_update_rx_irq(emc); 526 return len; 527 } 528 529 /* Nothing we can do if we don't own the descriptor. */ 530 if (!(rx_desc.status_and_length & RX_DESC_STATUS_OWNER_MASK)) { 531 trace_npcm7xx_emc_cpu_owned_desc(desc_addr); 532 emc_halt_rx(emc, REG_MISTA_RDU); 533 emc_update_rx_irq(emc); 534 return len; 535 } 536 537 crc = 0; 538 crc_ptr = (uint8_t *) &crc; 539 if (!(emc->regs[REG_MCMDR] & REG_MCMDR_SPCRC)) { 540 crc = cpu_to_be32(crc32(~0, buf, len)); 541 } 542 543 /* Give the descriptor back regardless of what happens. */ 544 rx_desc.status_and_length &= ~RX_DESC_STATUS_OWNER_MASK; 545 546 buf_addr = rx_desc.rxbsa; 547 emc->regs[REG_CRXBSA] = buf_addr; 548 if (dma_memory_write(&address_space_memory, buf_addr, buf, len) || 549 (!(emc->regs[REG_MCMDR] & REG_MCMDR_SPCRC) && 550 dma_memory_write(&address_space_memory, buf_addr + len, crc_ptr, 551 4))) { 552 qemu_log_mask(LOG_GUEST_ERROR, "%s: Bus error writing packet\n", 553 __func__); 554 emc_set_mista(emc, REG_MISTA_RXBERR); 555 emc_set_next_rx_descriptor(emc, &rx_desc, desc_addr); 556 emc_update_rx_irq(emc); 557 trace_npcm7xx_emc_rx_done(emc->regs[REG_CRXDSA]); 558 return len; 559 } 560 561 trace_npcm7xx_emc_received_packet(len); 562 563 /* Note: We've already verified len+4 <= 0xffff. */ 564 rx_desc.status_and_length = len; 565 if (!(emc->regs[REG_MCMDR] & REG_MCMDR_SPCRC)) { 566 rx_desc.status_and_length += 4; 567 } 568 rx_desc.status_and_length |= RX_DESC_STATUS_RXGD; 569 emc_set_mista(emc, REG_MISTA_RXGD); 570 571 if (emc->regs[REG_MISTA] & emc->regs[REG_MIEN] & REG_MISTA_RXINTR) { 572 rx_desc.status_and_length |= RX_DESC_STATUS_RXINTR; 573 } 574 if (long_frame) { 575 rx_desc.status_and_length |= RX_DESC_STATUS_PTLE; 576 } 577 578 emc_set_next_rx_descriptor(emc, &rx_desc, desc_addr); 579 emc_update_rx_irq(emc); 580 trace_npcm7xx_emc_rx_done(emc->regs[REG_CRXDSA]); 581 return len; 582 } 583 584 static void emc_try_receive_next_packet(NPCM7xxEMCState *emc) 585 { 586 if (emc_can_receive(qemu_get_queue(emc->nic))) { 587 qemu_flush_queued_packets(qemu_get_queue(emc->nic)); 588 } 589 } 590 591 static uint64_t npcm7xx_emc_read(void *opaque, hwaddr offset, unsigned size) 592 { 593 NPCM7xxEMCState *emc = opaque; 594 uint32_t reg = offset / sizeof(uint32_t); 595 uint32_t result; 596 597 if (reg >= NPCM7XX_NUM_EMC_REGS) { 598 qemu_log_mask(LOG_GUEST_ERROR, 599 "%s: Invalid offset 0x%04" HWADDR_PRIx "\n", 600 __func__, offset); 601 return 0; 602 } 603 604 switch (reg) { 605 case REG_MIID: 606 /* 607 * We don't implement MII. For determinism, always return zero as 608 * writes record the last value written for debugging purposes. 609 */ 610 qemu_log_mask(LOG_UNIMP, "%s: Read of MIID, returning 0\n", __func__); 611 result = 0; 612 break; 613 case REG_TSDR: 614 case REG_RSDR: 615 qemu_log_mask(LOG_GUEST_ERROR, 616 "%s: Read of write-only reg, %s/%d\n", 617 __func__, emc_reg_name(reg), reg); 618 return 0; 619 default: 620 result = emc->regs[reg]; 621 break; 622 } 623 624 trace_npcm7xx_emc_reg_read(emc->emc_num, result, emc_reg_name(reg), reg); 625 return result; 626 } 627 628 static void npcm7xx_emc_write(void *opaque, hwaddr offset, 629 uint64_t v, unsigned size) 630 { 631 NPCM7xxEMCState *emc = opaque; 632 uint32_t reg = offset / sizeof(uint32_t); 633 uint32_t value = v; 634 635 g_assert(size == sizeof(uint32_t)); 636 637 if (reg >= NPCM7XX_NUM_EMC_REGS) { 638 qemu_log_mask(LOG_GUEST_ERROR, 639 "%s: Invalid offset 0x%04" HWADDR_PRIx "\n", 640 __func__, offset); 641 return; 642 } 643 644 trace_npcm7xx_emc_reg_write(emc->emc_num, emc_reg_name(reg), reg, value); 645 646 switch (reg) { 647 case REG_CAMCMR: 648 emc->regs[reg] = value; 649 break; 650 case REG_CAMEN: 651 /* Only CAM0 is supported, don't pretend otherwise. */ 652 if (value & ~1) { 653 qemu_log_mask(LOG_GUEST_ERROR, 654 "%s: Only CAM0 is supported, cannot enable others" 655 ": 0x%x\n", 656 __func__, value); 657 } 658 emc->regs[reg] = value & 1; 659 break; 660 case REG_CAMM_BASE + 0: 661 emc->regs[reg] = value; 662 emc->conf.macaddr.a[0] = value >> 24; 663 emc->conf.macaddr.a[1] = value >> 16; 664 emc->conf.macaddr.a[2] = value >> 8; 665 emc->conf.macaddr.a[3] = value >> 0; 666 break; 667 case REG_CAML_BASE + 0: 668 emc->regs[reg] = value; 669 emc->conf.macaddr.a[4] = value >> 24; 670 emc->conf.macaddr.a[5] = value >> 16; 671 break; 672 case REG_MCMDR: { 673 uint32_t prev; 674 if (value & REG_MCMDR_SWR) { 675 emc_soft_reset(emc); 676 /* On h/w the reset happens over multiple cycles. For now KISS. */ 677 break; 678 } 679 prev = emc->regs[reg]; 680 emc->regs[reg] = value; 681 /* Update tx state. */ 682 if (!(prev & REG_MCMDR_TXON) && 683 (value & REG_MCMDR_TXON)) { 684 emc->regs[REG_CTXDSA] = emc->regs[REG_TXDLSA]; 685 /* 686 * Linux kernel turns TX on with CPU still holding descriptor, 687 * which suggests we should wait for a write to TSDR before trying 688 * to send a packet: so we don't send one here. 689 */ 690 } else if ((prev & REG_MCMDR_TXON) && 691 !(value & REG_MCMDR_TXON)) { 692 emc->regs[REG_MGSTA] |= REG_MGSTA_TXHA; 693 } 694 if (!(value & REG_MCMDR_TXON)) { 695 emc_halt_tx(emc, 0); 696 } 697 /* Update rx state. */ 698 if (!(prev & REG_MCMDR_RXON) && 699 (value & REG_MCMDR_RXON)) { 700 emc->regs[REG_CRXDSA] = emc->regs[REG_RXDLSA]; 701 } else if ((prev & REG_MCMDR_RXON) && 702 !(value & REG_MCMDR_RXON)) { 703 emc->regs[REG_MGSTA] |= REG_MGSTA_RXHA; 704 } 705 if (value & REG_MCMDR_RXON) { 706 emc->rx_active = true; 707 } else { 708 emc_halt_rx(emc, 0); 709 } 710 break; 711 } 712 case REG_TXDLSA: 713 case REG_RXDLSA: 714 case REG_DMARFC: 715 case REG_MIID: 716 emc->regs[reg] = value; 717 break; 718 case REG_MIEN: 719 emc->regs[reg] = value; 720 emc_update_irq_from_reg_change(emc); 721 break; 722 case REG_MISTA: 723 /* Clear the bits that have 1 in "value". */ 724 emc->regs[reg] &= ~value; 725 emc_update_irq_from_reg_change(emc); 726 break; 727 case REG_MGSTA: 728 /* Clear the bits that have 1 in "value". */ 729 emc->regs[reg] &= ~value; 730 break; 731 case REG_TSDR: 732 if (emc->regs[REG_MCMDR] & REG_MCMDR_TXON) { 733 emc->tx_active = true; 734 /* Keep trying to send packets until we run out. */ 735 while (emc->tx_active) { 736 emc_try_send_next_packet(emc); 737 } 738 } 739 break; 740 case REG_RSDR: 741 if (emc->regs[REG_MCMDR] & REG_MCMDR_RXON) { 742 emc->rx_active = true; 743 emc_try_receive_next_packet(emc); 744 } 745 break; 746 case REG_MIIDA: 747 emc->regs[reg] = value & ~REG_MIIDA_BUSY; 748 break; 749 case REG_MRPC: 750 case REG_MRPCC: 751 case REG_MREPC: 752 case REG_CTXDSA: 753 case REG_CTXBSA: 754 case REG_CRXDSA: 755 case REG_CRXBSA: 756 qemu_log_mask(LOG_GUEST_ERROR, 757 "%s: Write to read-only reg %s/%d\n", 758 __func__, emc_reg_name(reg), reg); 759 break; 760 default: 761 qemu_log_mask(LOG_UNIMP, "%s: Write to unimplemented reg %s/%d\n", 762 __func__, emc_reg_name(reg), reg); 763 break; 764 } 765 } 766 767 static const struct MemoryRegionOps npcm7xx_emc_ops = { 768 .read = npcm7xx_emc_read, 769 .write = npcm7xx_emc_write, 770 .endianness = DEVICE_LITTLE_ENDIAN, 771 .valid = { 772 .min_access_size = 4, 773 .max_access_size = 4, 774 .unaligned = false, 775 }, 776 }; 777 778 static void emc_cleanup(NetClientState *nc) 779 { 780 /* Nothing to do yet. */ 781 } 782 783 static NetClientInfo net_npcm7xx_emc_info = { 784 .type = NET_CLIENT_DRIVER_NIC, 785 .size = sizeof(NICState), 786 .can_receive = emc_can_receive, 787 .receive = emc_receive, 788 .cleanup = emc_cleanup, 789 .link_status_changed = emc_set_link, 790 }; 791 792 static void npcm7xx_emc_realize(DeviceState *dev, Error **errp) 793 { 794 NPCM7xxEMCState *emc = NPCM7XX_EMC(dev); 795 SysBusDevice *sbd = SYS_BUS_DEVICE(emc); 796 797 memory_region_init_io(&emc->iomem, OBJECT(emc), &npcm7xx_emc_ops, emc, 798 TYPE_NPCM7XX_EMC, 4 * KiB); 799 sysbus_init_mmio(sbd, &emc->iomem); 800 sysbus_init_irq(sbd, &emc->tx_irq); 801 sysbus_init_irq(sbd, &emc->rx_irq); 802 803 qemu_macaddr_default_if_unset(&emc->conf.macaddr); 804 emc->nic = qemu_new_nic(&net_npcm7xx_emc_info, &emc->conf, 805 object_get_typename(OBJECT(dev)), dev->id, emc); 806 qemu_format_nic_info_str(qemu_get_queue(emc->nic), emc->conf.macaddr.a); 807 } 808 809 static void npcm7xx_emc_unrealize(DeviceState *dev) 810 { 811 NPCM7xxEMCState *emc = NPCM7XX_EMC(dev); 812 813 qemu_del_nic(emc->nic); 814 } 815 816 static const VMStateDescription vmstate_npcm7xx_emc = { 817 .name = TYPE_NPCM7XX_EMC, 818 .version_id = 0, 819 .minimum_version_id = 0, 820 .fields = (VMStateField[]) { 821 VMSTATE_UINT8(emc_num, NPCM7xxEMCState), 822 VMSTATE_UINT32_ARRAY(regs, NPCM7xxEMCState, NPCM7XX_NUM_EMC_REGS), 823 VMSTATE_BOOL(tx_active, NPCM7xxEMCState), 824 VMSTATE_BOOL(rx_active, NPCM7xxEMCState), 825 VMSTATE_END_OF_LIST(), 826 }, 827 }; 828 829 static Property npcm7xx_emc_properties[] = { 830 DEFINE_NIC_PROPERTIES(NPCM7xxEMCState, conf), 831 DEFINE_PROP_END_OF_LIST(), 832 }; 833 834 static void npcm7xx_emc_class_init(ObjectClass *klass, void *data) 835 { 836 DeviceClass *dc = DEVICE_CLASS(klass); 837 838 set_bit(DEVICE_CATEGORY_NETWORK, dc->categories); 839 dc->desc = "NPCM7xx EMC Controller"; 840 dc->realize = npcm7xx_emc_realize; 841 dc->unrealize = npcm7xx_emc_unrealize; 842 dc->reset = npcm7xx_emc_reset; 843 dc->vmsd = &vmstate_npcm7xx_emc; 844 device_class_set_props(dc, npcm7xx_emc_properties); 845 } 846 847 static const TypeInfo npcm7xx_emc_info = { 848 .name = TYPE_NPCM7XX_EMC, 849 .parent = TYPE_SYS_BUS_DEVICE, 850 .instance_size = sizeof(NPCM7xxEMCState), 851 .class_init = npcm7xx_emc_class_init, 852 }; 853 854 static void npcm7xx_emc_register_type(void) 855 { 856 type_register_static(&npcm7xx_emc_info); 857 } 858 859 type_init(npcm7xx_emc_register_type) 860