1 /* 2 * QEMU NE2000 emulation 3 * 4 * Copyright (c) 2003-2004 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 #include "qemu/osdep.h" 25 #include "hw/pci/pci.h" 26 #include "net/eth.h" 27 #include "ne2000.h" 28 #include "sysemu/sysemu.h" 29 #include "trace.h" 30 31 /* debug NE2000 card */ 32 //#define DEBUG_NE2000 33 34 #define MAX_ETH_FRAME_SIZE 1514 35 36 #define E8390_CMD 0x00 /* The command register (for all pages) */ 37 /* Page 0 register offsets. */ 38 #define EN0_CLDALO 0x01 /* Low byte of current local dma addr RD */ 39 #define EN0_STARTPG 0x01 /* Starting page of ring bfr WR */ 40 #define EN0_CLDAHI 0x02 /* High byte of current local dma addr RD */ 41 #define EN0_STOPPG 0x02 /* Ending page +1 of ring bfr WR */ 42 #define EN0_BOUNDARY 0x03 /* Boundary page of ring bfr RD WR */ 43 #define EN0_TSR 0x04 /* Transmit status reg RD */ 44 #define EN0_TPSR 0x04 /* Transmit starting page WR */ 45 #define EN0_NCR 0x05 /* Number of collision reg RD */ 46 #define EN0_TCNTLO 0x05 /* Low byte of tx byte count WR */ 47 #define EN0_FIFO 0x06 /* FIFO RD */ 48 #define EN0_TCNTHI 0x06 /* High byte of tx byte count WR */ 49 #define EN0_ISR 0x07 /* Interrupt status reg RD WR */ 50 #define EN0_CRDALO 0x08 /* low byte of current remote dma address RD */ 51 #define EN0_RSARLO 0x08 /* Remote start address reg 0 */ 52 #define EN0_CRDAHI 0x09 /* high byte, current remote dma address RD */ 53 #define EN0_RSARHI 0x09 /* Remote start address reg 1 */ 54 #define EN0_RCNTLO 0x0a /* Remote byte count reg WR */ 55 #define EN0_RTL8029ID0 0x0a /* Realtek ID byte #1 RD */ 56 #define EN0_RCNTHI 0x0b /* Remote byte count reg WR */ 57 #define EN0_RTL8029ID1 0x0b /* Realtek ID byte #2 RD */ 58 #define EN0_RSR 0x0c /* rx status reg RD */ 59 #define EN0_RXCR 0x0c /* RX configuration reg WR */ 60 #define EN0_TXCR 0x0d /* TX configuration reg WR */ 61 #define EN0_COUNTER0 0x0d /* Rcv alignment error counter RD */ 62 #define EN0_DCFG 0x0e /* Data configuration reg WR */ 63 #define EN0_COUNTER1 0x0e /* Rcv CRC error counter RD */ 64 #define EN0_IMR 0x0f /* Interrupt mask reg WR */ 65 #define EN0_COUNTER2 0x0f /* Rcv missed frame error counter RD */ 66 67 #define EN1_PHYS 0x11 68 #define EN1_CURPAG 0x17 69 #define EN1_MULT 0x18 70 71 #define EN2_STARTPG 0x21 /* Starting page of ring bfr RD */ 72 #define EN2_STOPPG 0x22 /* Ending page +1 of ring bfr RD */ 73 74 #define EN3_CONFIG0 0x33 75 #define EN3_CONFIG1 0x34 76 #define EN3_CONFIG2 0x35 77 #define EN3_CONFIG3 0x36 78 79 /* Register accessed at EN_CMD, the 8390 base addr. */ 80 #define E8390_STOP 0x01 /* Stop and reset the chip */ 81 #define E8390_START 0x02 /* Start the chip, clear reset */ 82 #define E8390_TRANS 0x04 /* Transmit a frame */ 83 #define E8390_RREAD 0x08 /* Remote read */ 84 #define E8390_RWRITE 0x10 /* Remote write */ 85 #define E8390_NODMA 0x20 /* Remote DMA */ 86 #define E8390_PAGE0 0x00 /* Select page chip registers */ 87 #define E8390_PAGE1 0x40 /* using the two high-order bits */ 88 #define E8390_PAGE2 0x80 /* Page 3 is invalid. */ 89 90 /* Bits in EN0_ISR - Interrupt status register */ 91 #define ENISR_RX 0x01 /* Receiver, no error */ 92 #define ENISR_TX 0x02 /* Transmitter, no error */ 93 #define ENISR_RX_ERR 0x04 /* Receiver, with error */ 94 #define ENISR_TX_ERR 0x08 /* Transmitter, with error */ 95 #define ENISR_OVER 0x10 /* Receiver overwrote the ring */ 96 #define ENISR_COUNTERS 0x20 /* Counters need emptying */ 97 #define ENISR_RDC 0x40 /* remote dma complete */ 98 #define ENISR_RESET 0x80 /* Reset completed */ 99 #define ENISR_ALL 0x3f /* Interrupts we will enable */ 100 101 /* Bits in received packet status byte and EN0_RSR*/ 102 #define ENRSR_RXOK 0x01 /* Received a good packet */ 103 #define ENRSR_CRC 0x02 /* CRC error */ 104 #define ENRSR_FAE 0x04 /* frame alignment error */ 105 #define ENRSR_FO 0x08 /* FIFO overrun */ 106 #define ENRSR_MPA 0x10 /* missed pkt */ 107 #define ENRSR_PHY 0x20 /* physical/multicast address */ 108 #define ENRSR_DIS 0x40 /* receiver disable. set in monitor mode */ 109 #define ENRSR_DEF 0x80 /* deferring */ 110 111 /* Transmitted packet status, EN0_TSR. */ 112 #define ENTSR_PTX 0x01 /* Packet transmitted without error */ 113 #define ENTSR_ND 0x02 /* The transmit wasn't deferred. */ 114 #define ENTSR_COL 0x04 /* The transmit collided at least once. */ 115 #define ENTSR_ABT 0x08 /* The transmit collided 16 times, and was deferred. */ 116 #define ENTSR_CRS 0x10 /* The carrier sense was lost. */ 117 #define ENTSR_FU 0x20 /* A "FIFO underrun" occurred during transmit. */ 118 #define ENTSR_CDH 0x40 /* The collision detect "heartbeat" signal was lost. */ 119 #define ENTSR_OWC 0x80 /* There was an out-of-window collision. */ 120 121 typedef struct PCINE2000State { 122 PCIDevice dev; 123 NE2000State ne2000; 124 } PCINE2000State; 125 126 void ne2000_reset(NE2000State *s) 127 { 128 int i; 129 130 s->isr = ENISR_RESET; 131 memcpy(s->mem, &s->c.macaddr, 6); 132 s->mem[14] = 0x57; 133 s->mem[15] = 0x57; 134 135 /* duplicate prom data */ 136 for(i = 15;i >= 0; i--) { 137 s->mem[2 * i] = s->mem[i]; 138 s->mem[2 * i + 1] = s->mem[i]; 139 } 140 } 141 142 static void ne2000_update_irq(NE2000State *s) 143 { 144 int isr; 145 isr = (s->isr & s->imr) & 0x7f; 146 #if defined(DEBUG_NE2000) 147 printf("NE2000: Set IRQ to %d (%02x %02x)\n", 148 isr ? 1 : 0, s->isr, s->imr); 149 #endif 150 qemu_set_irq(s->irq, (isr != 0)); 151 } 152 153 static int ne2000_buffer_full(NE2000State *s) 154 { 155 int avail, index, boundary; 156 157 if (s->stop <= s->start) { 158 return 1; 159 } 160 161 index = s->curpag << 8; 162 boundary = s->boundary << 8; 163 if (index < boundary) 164 avail = boundary - index; 165 else 166 avail = (s->stop - s->start) - (index - boundary); 167 if (avail < (MAX_ETH_FRAME_SIZE + 4)) 168 return 1; 169 return 0; 170 } 171 172 #define MIN_BUF_SIZE 60 173 174 ssize_t ne2000_receive(NetClientState *nc, const uint8_t *buf, size_t size_) 175 { 176 NE2000State *s = qemu_get_nic_opaque(nc); 177 size_t size = size_; 178 uint8_t *p; 179 unsigned int total_len, next, avail, len, index, mcast_idx; 180 uint8_t buf1[60]; 181 static const uint8_t broadcast_macaddr[6] = 182 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 183 184 #if defined(DEBUG_NE2000) 185 printf("NE2000: received len=%zu\n", size); 186 #endif 187 188 if (s->cmd & E8390_STOP || ne2000_buffer_full(s)) 189 return -1; 190 191 /* XXX: check this */ 192 if (s->rxcr & 0x10) { 193 /* promiscuous: receive all */ 194 } else { 195 if (!memcmp(buf, broadcast_macaddr, 6)) { 196 /* broadcast address */ 197 if (!(s->rxcr & 0x04)) 198 return size; 199 } else if (buf[0] & 0x01) { 200 /* multicast */ 201 if (!(s->rxcr & 0x08)) 202 return size; 203 mcast_idx = net_crc32(buf, ETH_ALEN) >> 26; 204 if (!(s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7)))) 205 return size; 206 } else if (s->mem[0] == buf[0] && 207 s->mem[2] == buf[1] && 208 s->mem[4] == buf[2] && 209 s->mem[6] == buf[3] && 210 s->mem[8] == buf[4] && 211 s->mem[10] == buf[5]) { 212 /* match */ 213 } else { 214 return size; 215 } 216 } 217 218 219 /* if too small buffer, then expand it */ 220 if (size < MIN_BUF_SIZE) { 221 memcpy(buf1, buf, size); 222 memset(buf1 + size, 0, MIN_BUF_SIZE - size); 223 buf = buf1; 224 size = MIN_BUF_SIZE; 225 } 226 227 index = s->curpag << 8; 228 if (index >= NE2000_PMEM_END) { 229 index = s->start; 230 } 231 /* 4 bytes for header */ 232 total_len = size + 4; 233 /* address for next packet (4 bytes for CRC) */ 234 next = index + ((total_len + 4 + 255) & ~0xff); 235 if (next >= s->stop) 236 next -= (s->stop - s->start); 237 /* prepare packet header */ 238 p = s->mem + index; 239 s->rsr = ENRSR_RXOK; /* receive status */ 240 /* XXX: check this */ 241 if (buf[0] & 0x01) 242 s->rsr |= ENRSR_PHY; 243 p[0] = s->rsr; 244 p[1] = next >> 8; 245 p[2] = total_len; 246 p[3] = total_len >> 8; 247 index += 4; 248 249 /* write packet data */ 250 while (size > 0) { 251 if (index <= s->stop) 252 avail = s->stop - index; 253 else 254 break; 255 len = size; 256 if (len > avail) 257 len = avail; 258 memcpy(s->mem + index, buf, len); 259 buf += len; 260 index += len; 261 if (index == s->stop) 262 index = s->start; 263 size -= len; 264 } 265 s->curpag = next >> 8; 266 267 /* now we can signal we have received something */ 268 s->isr |= ENISR_RX; 269 ne2000_update_irq(s); 270 271 return size_; 272 } 273 274 static void ne2000_ioport_write(void *opaque, uint32_t addr, uint32_t val) 275 { 276 NE2000State *s = opaque; 277 int offset, page, index; 278 279 addr &= 0xf; 280 trace_ne2000_ioport_write(addr, val); 281 if (addr == E8390_CMD) { 282 /* control register */ 283 s->cmd = val; 284 if (!(val & E8390_STOP)) { /* START bit makes no sense on RTL8029... */ 285 s->isr &= ~ENISR_RESET; 286 /* test specific case: zero length transfer */ 287 if ((val & (E8390_RREAD | E8390_RWRITE)) && 288 s->rcnt == 0) { 289 s->isr |= ENISR_RDC; 290 ne2000_update_irq(s); 291 } 292 if (val & E8390_TRANS) { 293 index = (s->tpsr << 8); 294 /* XXX: next 2 lines are a hack to make netware 3.11 work */ 295 if (index >= NE2000_PMEM_END) 296 index -= NE2000_PMEM_SIZE; 297 /* fail safe: check range on the transmitted length */ 298 if (index + s->tcnt <= NE2000_PMEM_END) { 299 qemu_send_packet(qemu_get_queue(s->nic), s->mem + index, 300 s->tcnt); 301 } 302 /* signal end of transfer */ 303 s->tsr = ENTSR_PTX; 304 s->isr |= ENISR_TX; 305 s->cmd &= ~E8390_TRANS; 306 ne2000_update_irq(s); 307 } 308 } 309 } else { 310 page = s->cmd >> 6; 311 offset = addr | (page << 4); 312 switch(offset) { 313 case EN0_STARTPG: 314 if (val << 8 <= NE2000_PMEM_END) { 315 s->start = val << 8; 316 } 317 break; 318 case EN0_STOPPG: 319 if (val << 8 <= NE2000_PMEM_END) { 320 s->stop = val << 8; 321 } 322 break; 323 case EN0_BOUNDARY: 324 if (val << 8 < NE2000_PMEM_END) { 325 s->boundary = val; 326 } 327 break; 328 case EN0_IMR: 329 s->imr = val; 330 ne2000_update_irq(s); 331 break; 332 case EN0_TPSR: 333 s->tpsr = val; 334 break; 335 case EN0_TCNTLO: 336 s->tcnt = (s->tcnt & 0xff00) | val; 337 break; 338 case EN0_TCNTHI: 339 s->tcnt = (s->tcnt & 0x00ff) | (val << 8); 340 break; 341 case EN0_RSARLO: 342 s->rsar = (s->rsar & 0xff00) | val; 343 break; 344 case EN0_RSARHI: 345 s->rsar = (s->rsar & 0x00ff) | (val << 8); 346 break; 347 case EN0_RCNTLO: 348 s->rcnt = (s->rcnt & 0xff00) | val; 349 break; 350 case EN0_RCNTHI: 351 s->rcnt = (s->rcnt & 0x00ff) | (val << 8); 352 break; 353 case EN0_RXCR: 354 s->rxcr = val; 355 break; 356 case EN0_DCFG: 357 s->dcfg = val; 358 break; 359 case EN0_ISR: 360 s->isr &= ~(val & 0x7f); 361 ne2000_update_irq(s); 362 break; 363 case EN1_PHYS ... EN1_PHYS + 5: 364 s->phys[offset - EN1_PHYS] = val; 365 break; 366 case EN1_CURPAG: 367 if (val << 8 < NE2000_PMEM_END) { 368 s->curpag = val; 369 } 370 break; 371 case EN1_MULT ... EN1_MULT + 7: 372 s->mult[offset - EN1_MULT] = val; 373 break; 374 } 375 } 376 } 377 378 static uint32_t ne2000_ioport_read(void *opaque, uint32_t addr) 379 { 380 NE2000State *s = opaque; 381 int offset, page, ret; 382 383 addr &= 0xf; 384 if (addr == E8390_CMD) { 385 ret = s->cmd; 386 } else { 387 page = s->cmd >> 6; 388 offset = addr | (page << 4); 389 switch(offset) { 390 case EN0_TSR: 391 ret = s->tsr; 392 break; 393 case EN0_BOUNDARY: 394 ret = s->boundary; 395 break; 396 case EN0_ISR: 397 ret = s->isr; 398 break; 399 case EN0_RSARLO: 400 ret = s->rsar & 0x00ff; 401 break; 402 case EN0_RSARHI: 403 ret = s->rsar >> 8; 404 break; 405 case EN1_PHYS ... EN1_PHYS + 5: 406 ret = s->phys[offset - EN1_PHYS]; 407 break; 408 case EN1_CURPAG: 409 ret = s->curpag; 410 break; 411 case EN1_MULT ... EN1_MULT + 7: 412 ret = s->mult[offset - EN1_MULT]; 413 break; 414 case EN0_RSR: 415 ret = s->rsr; 416 break; 417 case EN2_STARTPG: 418 ret = s->start >> 8; 419 break; 420 case EN2_STOPPG: 421 ret = s->stop >> 8; 422 break; 423 case EN0_RTL8029ID0: 424 ret = 0x50; 425 break; 426 case EN0_RTL8029ID1: 427 ret = 0x43; 428 break; 429 case EN3_CONFIG0: 430 ret = 0; /* 10baseT media */ 431 break; 432 case EN3_CONFIG2: 433 ret = 0x40; /* 10baseT active */ 434 break; 435 case EN3_CONFIG3: 436 ret = 0x40; /* Full duplex */ 437 break; 438 default: 439 ret = 0x00; 440 break; 441 } 442 } 443 trace_ne2000_ioport_read(addr, ret); 444 return ret; 445 } 446 447 static inline void ne2000_mem_writeb(NE2000State *s, uint32_t addr, 448 uint32_t val) 449 { 450 if (addr < 32 || 451 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) { 452 s->mem[addr] = val; 453 } 454 } 455 456 static inline void ne2000_mem_writew(NE2000State *s, uint32_t addr, 457 uint32_t val) 458 { 459 addr &= ~1; /* XXX: check exact behaviour if not even */ 460 if (addr < 32 || 461 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) { 462 *(uint16_t *)(s->mem + addr) = cpu_to_le16(val); 463 } 464 } 465 466 static inline void ne2000_mem_writel(NE2000State *s, uint32_t addr, 467 uint32_t val) 468 { 469 addr &= ~1; /* XXX: check exact behaviour if not even */ 470 if (addr < 32 471 || (addr >= NE2000_PMEM_START 472 && addr + sizeof(uint32_t) <= NE2000_MEM_SIZE)) { 473 stl_le_p(s->mem + addr, val); 474 } 475 } 476 477 static inline uint32_t ne2000_mem_readb(NE2000State *s, uint32_t addr) 478 { 479 if (addr < 32 || 480 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) { 481 return s->mem[addr]; 482 } else { 483 return 0xff; 484 } 485 } 486 487 static inline uint32_t ne2000_mem_readw(NE2000State *s, uint32_t addr) 488 { 489 addr &= ~1; /* XXX: check exact behaviour if not even */ 490 if (addr < 32 || 491 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) { 492 return le16_to_cpu(*(uint16_t *)(s->mem + addr)); 493 } else { 494 return 0xffff; 495 } 496 } 497 498 static inline uint32_t ne2000_mem_readl(NE2000State *s, uint32_t addr) 499 { 500 addr &= ~1; /* XXX: check exact behaviour if not even */ 501 if (addr < 32 502 || (addr >= NE2000_PMEM_START 503 && addr + sizeof(uint32_t) <= NE2000_MEM_SIZE)) { 504 return ldl_le_p(s->mem + addr); 505 } else { 506 return 0xffffffff; 507 } 508 } 509 510 static inline void ne2000_dma_update(NE2000State *s, int len) 511 { 512 s->rsar += len; 513 /* wrap */ 514 /* XXX: check what to do if rsar > stop */ 515 if (s->rsar == s->stop) 516 s->rsar = s->start; 517 518 if (s->rcnt <= len) { 519 s->rcnt = 0; 520 /* signal end of transfer */ 521 s->isr |= ENISR_RDC; 522 ne2000_update_irq(s); 523 } else { 524 s->rcnt -= len; 525 } 526 } 527 528 static void ne2000_asic_ioport_write(void *opaque, uint32_t addr, uint32_t val) 529 { 530 NE2000State *s = opaque; 531 532 #ifdef DEBUG_NE2000 533 printf("NE2000: asic write val=0x%04x\n", val); 534 #endif 535 if (s->rcnt == 0) 536 return; 537 if (s->dcfg & 0x01) { 538 /* 16 bit access */ 539 ne2000_mem_writew(s, s->rsar, val); 540 ne2000_dma_update(s, 2); 541 } else { 542 /* 8 bit access */ 543 ne2000_mem_writeb(s, s->rsar, val); 544 ne2000_dma_update(s, 1); 545 } 546 } 547 548 static uint32_t ne2000_asic_ioport_read(void *opaque, uint32_t addr) 549 { 550 NE2000State *s = opaque; 551 int ret; 552 553 if (s->dcfg & 0x01) { 554 /* 16 bit access */ 555 ret = ne2000_mem_readw(s, s->rsar); 556 ne2000_dma_update(s, 2); 557 } else { 558 /* 8 bit access */ 559 ret = ne2000_mem_readb(s, s->rsar); 560 ne2000_dma_update(s, 1); 561 } 562 #ifdef DEBUG_NE2000 563 printf("NE2000: asic read val=0x%04x\n", ret); 564 #endif 565 return ret; 566 } 567 568 static void ne2000_asic_ioport_writel(void *opaque, uint32_t addr, uint32_t val) 569 { 570 NE2000State *s = opaque; 571 572 #ifdef DEBUG_NE2000 573 printf("NE2000: asic writel val=0x%04x\n", val); 574 #endif 575 if (s->rcnt == 0) 576 return; 577 /* 32 bit access */ 578 ne2000_mem_writel(s, s->rsar, val); 579 ne2000_dma_update(s, 4); 580 } 581 582 static uint32_t ne2000_asic_ioport_readl(void *opaque, uint32_t addr) 583 { 584 NE2000State *s = opaque; 585 int ret; 586 587 /* 32 bit access */ 588 ret = ne2000_mem_readl(s, s->rsar); 589 ne2000_dma_update(s, 4); 590 #ifdef DEBUG_NE2000 591 printf("NE2000: asic readl val=0x%04x\n", ret); 592 #endif 593 return ret; 594 } 595 596 static void ne2000_reset_ioport_write(void *opaque, uint32_t addr, uint32_t val) 597 { 598 /* nothing to do (end of reset pulse) */ 599 } 600 601 static uint32_t ne2000_reset_ioport_read(void *opaque, uint32_t addr) 602 { 603 NE2000State *s = opaque; 604 ne2000_reset(s); 605 return 0; 606 } 607 608 static int ne2000_post_load(void* opaque, int version_id) 609 { 610 NE2000State* s = opaque; 611 612 if (version_id < 2) { 613 s->rxcr = 0x0c; 614 } 615 return 0; 616 } 617 618 const VMStateDescription vmstate_ne2000 = { 619 .name = "ne2000", 620 .version_id = 2, 621 .minimum_version_id = 0, 622 .post_load = ne2000_post_load, 623 .fields = (VMStateField[]) { 624 VMSTATE_UINT8_V(rxcr, NE2000State, 2), 625 VMSTATE_UINT8(cmd, NE2000State), 626 VMSTATE_UINT32(start, NE2000State), 627 VMSTATE_UINT32(stop, NE2000State), 628 VMSTATE_UINT8(boundary, NE2000State), 629 VMSTATE_UINT8(tsr, NE2000State), 630 VMSTATE_UINT8(tpsr, NE2000State), 631 VMSTATE_UINT16(tcnt, NE2000State), 632 VMSTATE_UINT16(rcnt, NE2000State), 633 VMSTATE_UINT32(rsar, NE2000State), 634 VMSTATE_UINT8(rsr, NE2000State), 635 VMSTATE_UINT8(isr, NE2000State), 636 VMSTATE_UINT8(dcfg, NE2000State), 637 VMSTATE_UINT8(imr, NE2000State), 638 VMSTATE_BUFFER(phys, NE2000State), 639 VMSTATE_UINT8(curpag, NE2000State), 640 VMSTATE_BUFFER(mult, NE2000State), 641 VMSTATE_UNUSED(4), /* was irq */ 642 VMSTATE_BUFFER(mem, NE2000State), 643 VMSTATE_END_OF_LIST() 644 } 645 }; 646 647 static const VMStateDescription vmstate_pci_ne2000 = { 648 .name = "ne2000", 649 .version_id = 3, 650 .minimum_version_id = 3, 651 .fields = (VMStateField[]) { 652 VMSTATE_PCI_DEVICE(dev, PCINE2000State), 653 VMSTATE_STRUCT(ne2000, PCINE2000State, 0, vmstate_ne2000, NE2000State), 654 VMSTATE_END_OF_LIST() 655 } 656 }; 657 658 static uint64_t ne2000_read(void *opaque, hwaddr addr, 659 unsigned size) 660 { 661 NE2000State *s = opaque; 662 uint64_t val; 663 664 if (addr < 0x10 && size == 1) { 665 val = ne2000_ioport_read(s, addr); 666 } else if (addr == 0x10) { 667 if (size <= 2) { 668 val = ne2000_asic_ioport_read(s, addr); 669 } else { 670 val = ne2000_asic_ioport_readl(s, addr); 671 } 672 } else if (addr == 0x1f && size == 1) { 673 val = ne2000_reset_ioport_read(s, addr); 674 } else { 675 val = ((uint64_t)1 << (size * 8)) - 1; 676 } 677 trace_ne2000_read(addr, val); 678 679 return val; 680 } 681 682 static void ne2000_write(void *opaque, hwaddr addr, 683 uint64_t data, unsigned size) 684 { 685 NE2000State *s = opaque; 686 687 trace_ne2000_write(addr, data); 688 if (addr < 0x10 && size == 1) { 689 ne2000_ioport_write(s, addr, data); 690 } else if (addr == 0x10) { 691 if (size <= 2) { 692 ne2000_asic_ioport_write(s, addr, data); 693 } else { 694 ne2000_asic_ioport_writel(s, addr, data); 695 } 696 } else if (addr == 0x1f && size == 1) { 697 ne2000_reset_ioport_write(s, addr, data); 698 } 699 } 700 701 static const MemoryRegionOps ne2000_ops = { 702 .read = ne2000_read, 703 .write = ne2000_write, 704 .endianness = DEVICE_LITTLE_ENDIAN, 705 }; 706 707 /***********************************************************/ 708 /* PCI NE2000 definitions */ 709 710 void ne2000_setup_io(NE2000State *s, DeviceState *dev, unsigned size) 711 { 712 memory_region_init_io(&s->io, OBJECT(dev), &ne2000_ops, s, "ne2000", size); 713 } 714 715 static NetClientInfo net_ne2000_info = { 716 .type = NET_CLIENT_DRIVER_NIC, 717 .size = sizeof(NICState), 718 .receive = ne2000_receive, 719 }; 720 721 static void pci_ne2000_realize(PCIDevice *pci_dev, Error **errp) 722 { 723 PCINE2000State *d = DO_UPCAST(PCINE2000State, dev, pci_dev); 724 NE2000State *s; 725 uint8_t *pci_conf; 726 727 pci_conf = d->dev.config; 728 pci_conf[PCI_INTERRUPT_PIN] = 1; /* interrupt pin A */ 729 730 s = &d->ne2000; 731 ne2000_setup_io(s, DEVICE(pci_dev), 0x100); 732 pci_register_bar(&d->dev, 0, PCI_BASE_ADDRESS_SPACE_IO, &s->io); 733 s->irq = pci_allocate_irq(&d->dev); 734 735 qemu_macaddr_default_if_unset(&s->c.macaddr); 736 ne2000_reset(s); 737 738 s->nic = qemu_new_nic(&net_ne2000_info, &s->c, 739 object_get_typename(OBJECT(pci_dev)), pci_dev->qdev.id, s); 740 qemu_format_nic_info_str(qemu_get_queue(s->nic), s->c.macaddr.a); 741 } 742 743 static void pci_ne2000_exit(PCIDevice *pci_dev) 744 { 745 PCINE2000State *d = DO_UPCAST(PCINE2000State, dev, pci_dev); 746 NE2000State *s = &d->ne2000; 747 748 qemu_del_nic(s->nic); 749 qemu_free_irq(s->irq); 750 } 751 752 static void ne2000_instance_init(Object *obj) 753 { 754 PCIDevice *pci_dev = PCI_DEVICE(obj); 755 PCINE2000State *d = DO_UPCAST(PCINE2000State, dev, pci_dev); 756 NE2000State *s = &d->ne2000; 757 758 device_add_bootindex_property(obj, &s->c.bootindex, 759 "bootindex", "/ethernet-phy@0", 760 &pci_dev->qdev, NULL); 761 } 762 763 static Property ne2000_properties[] = { 764 DEFINE_NIC_PROPERTIES(PCINE2000State, ne2000.c), 765 DEFINE_PROP_END_OF_LIST(), 766 }; 767 768 static void ne2000_class_init(ObjectClass *klass, void *data) 769 { 770 DeviceClass *dc = DEVICE_CLASS(klass); 771 PCIDeviceClass *k = PCI_DEVICE_CLASS(klass); 772 773 k->realize = pci_ne2000_realize; 774 k->exit = pci_ne2000_exit; 775 k->romfile = "efi-ne2k_pci.rom", 776 k->vendor_id = PCI_VENDOR_ID_REALTEK; 777 k->device_id = PCI_DEVICE_ID_REALTEK_8029; 778 k->class_id = PCI_CLASS_NETWORK_ETHERNET; 779 dc->vmsd = &vmstate_pci_ne2000; 780 dc->props = ne2000_properties; 781 set_bit(DEVICE_CATEGORY_NETWORK, dc->categories); 782 } 783 784 static const TypeInfo ne2000_info = { 785 .name = "ne2k_pci", 786 .parent = TYPE_PCI_DEVICE, 787 .instance_size = sizeof(PCINE2000State), 788 .class_init = ne2000_class_init, 789 .instance_init = ne2000_instance_init, 790 .interfaces = (InterfaceInfo[]) { 791 { INTERFACE_CONVENTIONAL_PCI_DEVICE }, 792 { }, 793 }, 794 }; 795 796 static void ne2000_register_types(void) 797 { 798 type_register_static(&ne2000_info); 799 } 800 801 type_init(ne2000_register_types) 802