1 /* 2 * QEMU NE2000 emulation 3 * 4 * Copyright (c) 2003-2004 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 #include "qemu/osdep.h" 25 #include "hw/pci/pci.h" 26 #include "ne2000.h" 27 #include "hw/loader.h" 28 #include "sysemu/sysemu.h" 29 30 /* debug NE2000 card */ 31 //#define DEBUG_NE2000 32 33 #define MAX_ETH_FRAME_SIZE 1514 34 35 #define E8390_CMD 0x00 /* The command register (for all pages) */ 36 /* Page 0 register offsets. */ 37 #define EN0_CLDALO 0x01 /* Low byte of current local dma addr RD */ 38 #define EN0_STARTPG 0x01 /* Starting page of ring bfr WR */ 39 #define EN0_CLDAHI 0x02 /* High byte of current local dma addr RD */ 40 #define EN0_STOPPG 0x02 /* Ending page +1 of ring bfr WR */ 41 #define EN0_BOUNDARY 0x03 /* Boundary page of ring bfr RD WR */ 42 #define EN0_TSR 0x04 /* Transmit status reg RD */ 43 #define EN0_TPSR 0x04 /* Transmit starting page WR */ 44 #define EN0_NCR 0x05 /* Number of collision reg RD */ 45 #define EN0_TCNTLO 0x05 /* Low byte of tx byte count WR */ 46 #define EN0_FIFO 0x06 /* FIFO RD */ 47 #define EN0_TCNTHI 0x06 /* High byte of tx byte count WR */ 48 #define EN0_ISR 0x07 /* Interrupt status reg RD WR */ 49 #define EN0_CRDALO 0x08 /* low byte of current remote dma address RD */ 50 #define EN0_RSARLO 0x08 /* Remote start address reg 0 */ 51 #define EN0_CRDAHI 0x09 /* high byte, current remote dma address RD */ 52 #define EN0_RSARHI 0x09 /* Remote start address reg 1 */ 53 #define EN0_RCNTLO 0x0a /* Remote byte count reg WR */ 54 #define EN0_RTL8029ID0 0x0a /* Realtek ID byte #1 RD */ 55 #define EN0_RCNTHI 0x0b /* Remote byte count reg WR */ 56 #define EN0_RTL8029ID1 0x0b /* Realtek ID byte #2 RD */ 57 #define EN0_RSR 0x0c /* rx status reg RD */ 58 #define EN0_RXCR 0x0c /* RX configuration reg WR */ 59 #define EN0_TXCR 0x0d /* TX configuration reg WR */ 60 #define EN0_COUNTER0 0x0d /* Rcv alignment error counter RD */ 61 #define EN0_DCFG 0x0e /* Data configuration reg WR */ 62 #define EN0_COUNTER1 0x0e /* Rcv CRC error counter RD */ 63 #define EN0_IMR 0x0f /* Interrupt mask reg WR */ 64 #define EN0_COUNTER2 0x0f /* Rcv missed frame error counter RD */ 65 66 #define EN1_PHYS 0x11 67 #define EN1_CURPAG 0x17 68 #define EN1_MULT 0x18 69 70 #define EN2_STARTPG 0x21 /* Starting page of ring bfr RD */ 71 #define EN2_STOPPG 0x22 /* Ending page +1 of ring bfr RD */ 72 73 #define EN3_CONFIG0 0x33 74 #define EN3_CONFIG1 0x34 75 #define EN3_CONFIG2 0x35 76 #define EN3_CONFIG3 0x36 77 78 /* Register accessed at EN_CMD, the 8390 base addr. */ 79 #define E8390_STOP 0x01 /* Stop and reset the chip */ 80 #define E8390_START 0x02 /* Start the chip, clear reset */ 81 #define E8390_TRANS 0x04 /* Transmit a frame */ 82 #define E8390_RREAD 0x08 /* Remote read */ 83 #define E8390_RWRITE 0x10 /* Remote write */ 84 #define E8390_NODMA 0x20 /* Remote DMA */ 85 #define E8390_PAGE0 0x00 /* Select page chip registers */ 86 #define E8390_PAGE1 0x40 /* using the two high-order bits */ 87 #define E8390_PAGE2 0x80 /* Page 3 is invalid. */ 88 89 /* Bits in EN0_ISR - Interrupt status register */ 90 #define ENISR_RX 0x01 /* Receiver, no error */ 91 #define ENISR_TX 0x02 /* Transmitter, no error */ 92 #define ENISR_RX_ERR 0x04 /* Receiver, with error */ 93 #define ENISR_TX_ERR 0x08 /* Transmitter, with error */ 94 #define ENISR_OVER 0x10 /* Receiver overwrote the ring */ 95 #define ENISR_COUNTERS 0x20 /* Counters need emptying */ 96 #define ENISR_RDC 0x40 /* remote dma complete */ 97 #define ENISR_RESET 0x80 /* Reset completed */ 98 #define ENISR_ALL 0x3f /* Interrupts we will enable */ 99 100 /* Bits in received packet status byte and EN0_RSR*/ 101 #define ENRSR_RXOK 0x01 /* Received a good packet */ 102 #define ENRSR_CRC 0x02 /* CRC error */ 103 #define ENRSR_FAE 0x04 /* frame alignment error */ 104 #define ENRSR_FO 0x08 /* FIFO overrun */ 105 #define ENRSR_MPA 0x10 /* missed pkt */ 106 #define ENRSR_PHY 0x20 /* physical/multicast address */ 107 #define ENRSR_DIS 0x40 /* receiver disable. set in monitor mode */ 108 #define ENRSR_DEF 0x80 /* deferring */ 109 110 /* Transmitted packet status, EN0_TSR. */ 111 #define ENTSR_PTX 0x01 /* Packet transmitted without error */ 112 #define ENTSR_ND 0x02 /* The transmit wasn't deferred. */ 113 #define ENTSR_COL 0x04 /* The transmit collided at least once. */ 114 #define ENTSR_ABT 0x08 /* The transmit collided 16 times, and was deferred. */ 115 #define ENTSR_CRS 0x10 /* The carrier sense was lost. */ 116 #define ENTSR_FU 0x20 /* A "FIFO underrun" occurred during transmit. */ 117 #define ENTSR_CDH 0x40 /* The collision detect "heartbeat" signal was lost. */ 118 #define ENTSR_OWC 0x80 /* There was an out-of-window collision. */ 119 120 typedef struct PCINE2000State { 121 PCIDevice dev; 122 NE2000State ne2000; 123 } PCINE2000State; 124 125 void ne2000_reset(NE2000State *s) 126 { 127 int i; 128 129 s->isr = ENISR_RESET; 130 memcpy(s->mem, &s->c.macaddr, 6); 131 s->mem[14] = 0x57; 132 s->mem[15] = 0x57; 133 134 /* duplicate prom data */ 135 for(i = 15;i >= 0; i--) { 136 s->mem[2 * i] = s->mem[i]; 137 s->mem[2 * i + 1] = s->mem[i]; 138 } 139 } 140 141 static void ne2000_update_irq(NE2000State *s) 142 { 143 int isr; 144 isr = (s->isr & s->imr) & 0x7f; 145 #if defined(DEBUG_NE2000) 146 printf("NE2000: Set IRQ to %d (%02x %02x)\n", 147 isr ? 1 : 0, s->isr, s->imr); 148 #endif 149 qemu_set_irq(s->irq, (isr != 0)); 150 } 151 152 static int ne2000_buffer_full(NE2000State *s) 153 { 154 int avail, index, boundary; 155 156 if (s->stop <= s->start) { 157 return 1; 158 } 159 160 index = s->curpag << 8; 161 boundary = s->boundary << 8; 162 if (index < boundary) 163 avail = boundary - index; 164 else 165 avail = (s->stop - s->start) - (index - boundary); 166 if (avail < (MAX_ETH_FRAME_SIZE + 4)) 167 return 1; 168 return 0; 169 } 170 171 #define MIN_BUF_SIZE 60 172 173 ssize_t ne2000_receive(NetClientState *nc, const uint8_t *buf, size_t size_) 174 { 175 NE2000State *s = qemu_get_nic_opaque(nc); 176 int size = size_; 177 uint8_t *p; 178 unsigned int total_len, next, avail, len, index, mcast_idx; 179 uint8_t buf1[60]; 180 static const uint8_t broadcast_macaddr[6] = 181 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 182 183 #if defined(DEBUG_NE2000) 184 printf("NE2000: received len=%d\n", size); 185 #endif 186 187 if (s->cmd & E8390_STOP || ne2000_buffer_full(s)) 188 return -1; 189 190 /* XXX: check this */ 191 if (s->rxcr & 0x10) { 192 /* promiscuous: receive all */ 193 } else { 194 if (!memcmp(buf, broadcast_macaddr, 6)) { 195 /* broadcast address */ 196 if (!(s->rxcr & 0x04)) 197 return size; 198 } else if (buf[0] & 0x01) { 199 /* multicast */ 200 if (!(s->rxcr & 0x08)) 201 return size; 202 mcast_idx = compute_mcast_idx(buf); 203 if (!(s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7)))) 204 return size; 205 } else if (s->mem[0] == buf[0] && 206 s->mem[2] == buf[1] && 207 s->mem[4] == buf[2] && 208 s->mem[6] == buf[3] && 209 s->mem[8] == buf[4] && 210 s->mem[10] == buf[5]) { 211 /* match */ 212 } else { 213 return size; 214 } 215 } 216 217 218 /* if too small buffer, then expand it */ 219 if (size < MIN_BUF_SIZE) { 220 memcpy(buf1, buf, size); 221 memset(buf1 + size, 0, MIN_BUF_SIZE - size); 222 buf = buf1; 223 size = MIN_BUF_SIZE; 224 } 225 226 index = s->curpag << 8; 227 if (index >= NE2000_PMEM_END) { 228 index = s->start; 229 } 230 /* 4 bytes for header */ 231 total_len = size + 4; 232 /* address for next packet (4 bytes for CRC) */ 233 next = index + ((total_len + 4 + 255) & ~0xff); 234 if (next >= s->stop) 235 next -= (s->stop - s->start); 236 /* prepare packet header */ 237 p = s->mem + index; 238 s->rsr = ENRSR_RXOK; /* receive status */ 239 /* XXX: check this */ 240 if (buf[0] & 0x01) 241 s->rsr |= ENRSR_PHY; 242 p[0] = s->rsr; 243 p[1] = next >> 8; 244 p[2] = total_len; 245 p[3] = total_len >> 8; 246 index += 4; 247 248 /* write packet data */ 249 while (size > 0) { 250 if (index <= s->stop) 251 avail = s->stop - index; 252 else 253 break; 254 len = size; 255 if (len > avail) 256 len = avail; 257 memcpy(s->mem + index, buf, len); 258 buf += len; 259 index += len; 260 if (index == s->stop) 261 index = s->start; 262 size -= len; 263 } 264 s->curpag = next >> 8; 265 266 /* now we can signal we have received something */ 267 s->isr |= ENISR_RX; 268 ne2000_update_irq(s); 269 270 return size_; 271 } 272 273 static void ne2000_ioport_write(void *opaque, uint32_t addr, uint32_t val) 274 { 275 NE2000State *s = opaque; 276 int offset, page, index; 277 278 addr &= 0xf; 279 #ifdef DEBUG_NE2000 280 printf("NE2000: write addr=0x%x val=0x%02x\n", addr, val); 281 #endif 282 if (addr == E8390_CMD) { 283 /* control register */ 284 s->cmd = val; 285 if (!(val & E8390_STOP)) { /* START bit makes no sense on RTL8029... */ 286 s->isr &= ~ENISR_RESET; 287 /* test specific case: zero length transfer */ 288 if ((val & (E8390_RREAD | E8390_RWRITE)) && 289 s->rcnt == 0) { 290 s->isr |= ENISR_RDC; 291 ne2000_update_irq(s); 292 } 293 if (val & E8390_TRANS) { 294 index = (s->tpsr << 8); 295 /* XXX: next 2 lines are a hack to make netware 3.11 work */ 296 if (index >= NE2000_PMEM_END) 297 index -= NE2000_PMEM_SIZE; 298 /* fail safe: check range on the transmitted length */ 299 if (index + s->tcnt <= NE2000_PMEM_END) { 300 qemu_send_packet(qemu_get_queue(s->nic), s->mem + index, 301 s->tcnt); 302 } 303 /* signal end of transfer */ 304 s->tsr = ENTSR_PTX; 305 s->isr |= ENISR_TX; 306 s->cmd &= ~E8390_TRANS; 307 ne2000_update_irq(s); 308 } 309 } 310 } else { 311 page = s->cmd >> 6; 312 offset = addr | (page << 4); 313 switch(offset) { 314 case EN0_STARTPG: 315 if (val << 8 <= NE2000_PMEM_END) { 316 s->start = val << 8; 317 } 318 break; 319 case EN0_STOPPG: 320 if (val << 8 <= NE2000_PMEM_END) { 321 s->stop = val << 8; 322 } 323 break; 324 case EN0_BOUNDARY: 325 if (val << 8 < NE2000_PMEM_END) { 326 s->boundary = val; 327 } 328 break; 329 case EN0_IMR: 330 s->imr = val; 331 ne2000_update_irq(s); 332 break; 333 case EN0_TPSR: 334 s->tpsr = val; 335 break; 336 case EN0_TCNTLO: 337 s->tcnt = (s->tcnt & 0xff00) | val; 338 break; 339 case EN0_TCNTHI: 340 s->tcnt = (s->tcnt & 0x00ff) | (val << 8); 341 break; 342 case EN0_RSARLO: 343 s->rsar = (s->rsar & 0xff00) | val; 344 break; 345 case EN0_RSARHI: 346 s->rsar = (s->rsar & 0x00ff) | (val << 8); 347 break; 348 case EN0_RCNTLO: 349 s->rcnt = (s->rcnt & 0xff00) | val; 350 break; 351 case EN0_RCNTHI: 352 s->rcnt = (s->rcnt & 0x00ff) | (val << 8); 353 break; 354 case EN0_RXCR: 355 s->rxcr = val; 356 break; 357 case EN0_DCFG: 358 s->dcfg = val; 359 break; 360 case EN0_ISR: 361 s->isr &= ~(val & 0x7f); 362 ne2000_update_irq(s); 363 break; 364 case EN1_PHYS ... EN1_PHYS + 5: 365 s->phys[offset - EN1_PHYS] = val; 366 break; 367 case EN1_CURPAG: 368 if (val << 8 < NE2000_PMEM_END) { 369 s->curpag = val; 370 } 371 break; 372 case EN1_MULT ... EN1_MULT + 7: 373 s->mult[offset - EN1_MULT] = val; 374 break; 375 } 376 } 377 } 378 379 static uint32_t ne2000_ioport_read(void *opaque, uint32_t addr) 380 { 381 NE2000State *s = opaque; 382 int offset, page, ret; 383 384 addr &= 0xf; 385 if (addr == E8390_CMD) { 386 ret = s->cmd; 387 } else { 388 page = s->cmd >> 6; 389 offset = addr | (page << 4); 390 switch(offset) { 391 case EN0_TSR: 392 ret = s->tsr; 393 break; 394 case EN0_BOUNDARY: 395 ret = s->boundary; 396 break; 397 case EN0_ISR: 398 ret = s->isr; 399 break; 400 case EN0_RSARLO: 401 ret = s->rsar & 0x00ff; 402 break; 403 case EN0_RSARHI: 404 ret = s->rsar >> 8; 405 break; 406 case EN1_PHYS ... EN1_PHYS + 5: 407 ret = s->phys[offset - EN1_PHYS]; 408 break; 409 case EN1_CURPAG: 410 ret = s->curpag; 411 break; 412 case EN1_MULT ... EN1_MULT + 7: 413 ret = s->mult[offset - EN1_MULT]; 414 break; 415 case EN0_RSR: 416 ret = s->rsr; 417 break; 418 case EN2_STARTPG: 419 ret = s->start >> 8; 420 break; 421 case EN2_STOPPG: 422 ret = s->stop >> 8; 423 break; 424 case EN0_RTL8029ID0: 425 ret = 0x50; 426 break; 427 case EN0_RTL8029ID1: 428 ret = 0x43; 429 break; 430 case EN3_CONFIG0: 431 ret = 0; /* 10baseT media */ 432 break; 433 case EN3_CONFIG2: 434 ret = 0x40; /* 10baseT active */ 435 break; 436 case EN3_CONFIG3: 437 ret = 0x40; /* Full duplex */ 438 break; 439 default: 440 ret = 0x00; 441 break; 442 } 443 } 444 #ifdef DEBUG_NE2000 445 printf("NE2000: read addr=0x%x val=%02x\n", addr, ret); 446 #endif 447 return ret; 448 } 449 450 static inline void ne2000_mem_writeb(NE2000State *s, uint32_t addr, 451 uint32_t val) 452 { 453 if (addr < 32 || 454 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) { 455 s->mem[addr] = val; 456 } 457 } 458 459 static inline void ne2000_mem_writew(NE2000State *s, uint32_t addr, 460 uint32_t val) 461 { 462 addr &= ~1; /* XXX: check exact behaviour if not even */ 463 if (addr < 32 || 464 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) { 465 *(uint16_t *)(s->mem + addr) = cpu_to_le16(val); 466 } 467 } 468 469 static inline void ne2000_mem_writel(NE2000State *s, uint32_t addr, 470 uint32_t val) 471 { 472 addr &= ~1; /* XXX: check exact behaviour if not even */ 473 if (addr < 32 474 || (addr >= NE2000_PMEM_START 475 && addr + sizeof(uint32_t) <= NE2000_MEM_SIZE)) { 476 stl_le_p(s->mem + addr, val); 477 } 478 } 479 480 static inline uint32_t ne2000_mem_readb(NE2000State *s, uint32_t addr) 481 { 482 if (addr < 32 || 483 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) { 484 return s->mem[addr]; 485 } else { 486 return 0xff; 487 } 488 } 489 490 static inline uint32_t ne2000_mem_readw(NE2000State *s, uint32_t addr) 491 { 492 addr &= ~1; /* XXX: check exact behaviour if not even */ 493 if (addr < 32 || 494 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) { 495 return le16_to_cpu(*(uint16_t *)(s->mem + addr)); 496 } else { 497 return 0xffff; 498 } 499 } 500 501 static inline uint32_t ne2000_mem_readl(NE2000State *s, uint32_t addr) 502 { 503 addr &= ~1; /* XXX: check exact behaviour if not even */ 504 if (addr < 32 505 || (addr >= NE2000_PMEM_START 506 && addr + sizeof(uint32_t) <= NE2000_MEM_SIZE)) { 507 return ldl_le_p(s->mem + addr); 508 } else { 509 return 0xffffffff; 510 } 511 } 512 513 static inline void ne2000_dma_update(NE2000State *s, int len) 514 { 515 s->rsar += len; 516 /* wrap */ 517 /* XXX: check what to do if rsar > stop */ 518 if (s->rsar == s->stop) 519 s->rsar = s->start; 520 521 if (s->rcnt <= len) { 522 s->rcnt = 0; 523 /* signal end of transfer */ 524 s->isr |= ENISR_RDC; 525 ne2000_update_irq(s); 526 } else { 527 s->rcnt -= len; 528 } 529 } 530 531 static void ne2000_asic_ioport_write(void *opaque, uint32_t addr, uint32_t val) 532 { 533 NE2000State *s = opaque; 534 535 #ifdef DEBUG_NE2000 536 printf("NE2000: asic write val=0x%04x\n", val); 537 #endif 538 if (s->rcnt == 0) 539 return; 540 if (s->dcfg & 0x01) { 541 /* 16 bit access */ 542 ne2000_mem_writew(s, s->rsar, val); 543 ne2000_dma_update(s, 2); 544 } else { 545 /* 8 bit access */ 546 ne2000_mem_writeb(s, s->rsar, val); 547 ne2000_dma_update(s, 1); 548 } 549 } 550 551 static uint32_t ne2000_asic_ioport_read(void *opaque, uint32_t addr) 552 { 553 NE2000State *s = opaque; 554 int ret; 555 556 if (s->dcfg & 0x01) { 557 /* 16 bit access */ 558 ret = ne2000_mem_readw(s, s->rsar); 559 ne2000_dma_update(s, 2); 560 } else { 561 /* 8 bit access */ 562 ret = ne2000_mem_readb(s, s->rsar); 563 ne2000_dma_update(s, 1); 564 } 565 #ifdef DEBUG_NE2000 566 printf("NE2000: asic read val=0x%04x\n", ret); 567 #endif 568 return ret; 569 } 570 571 static void ne2000_asic_ioport_writel(void *opaque, uint32_t addr, uint32_t val) 572 { 573 NE2000State *s = opaque; 574 575 #ifdef DEBUG_NE2000 576 printf("NE2000: asic writel val=0x%04x\n", val); 577 #endif 578 if (s->rcnt == 0) 579 return; 580 /* 32 bit access */ 581 ne2000_mem_writel(s, s->rsar, val); 582 ne2000_dma_update(s, 4); 583 } 584 585 static uint32_t ne2000_asic_ioport_readl(void *opaque, uint32_t addr) 586 { 587 NE2000State *s = opaque; 588 int ret; 589 590 /* 32 bit access */ 591 ret = ne2000_mem_readl(s, s->rsar); 592 ne2000_dma_update(s, 4); 593 #ifdef DEBUG_NE2000 594 printf("NE2000: asic readl val=0x%04x\n", ret); 595 #endif 596 return ret; 597 } 598 599 static void ne2000_reset_ioport_write(void *opaque, uint32_t addr, uint32_t val) 600 { 601 /* nothing to do (end of reset pulse) */ 602 } 603 604 static uint32_t ne2000_reset_ioport_read(void *opaque, uint32_t addr) 605 { 606 NE2000State *s = opaque; 607 ne2000_reset(s); 608 return 0; 609 } 610 611 static int ne2000_post_load(void* opaque, int version_id) 612 { 613 NE2000State* s = opaque; 614 615 if (version_id < 2) { 616 s->rxcr = 0x0c; 617 } 618 return 0; 619 } 620 621 const VMStateDescription vmstate_ne2000 = { 622 .name = "ne2000", 623 .version_id = 2, 624 .minimum_version_id = 0, 625 .post_load = ne2000_post_load, 626 .fields = (VMStateField[]) { 627 VMSTATE_UINT8_V(rxcr, NE2000State, 2), 628 VMSTATE_UINT8(cmd, NE2000State), 629 VMSTATE_UINT32(start, NE2000State), 630 VMSTATE_UINT32(stop, NE2000State), 631 VMSTATE_UINT8(boundary, NE2000State), 632 VMSTATE_UINT8(tsr, NE2000State), 633 VMSTATE_UINT8(tpsr, NE2000State), 634 VMSTATE_UINT16(tcnt, NE2000State), 635 VMSTATE_UINT16(rcnt, NE2000State), 636 VMSTATE_UINT32(rsar, NE2000State), 637 VMSTATE_UINT8(rsr, NE2000State), 638 VMSTATE_UINT8(isr, NE2000State), 639 VMSTATE_UINT8(dcfg, NE2000State), 640 VMSTATE_UINT8(imr, NE2000State), 641 VMSTATE_BUFFER(phys, NE2000State), 642 VMSTATE_UINT8(curpag, NE2000State), 643 VMSTATE_BUFFER(mult, NE2000State), 644 VMSTATE_UNUSED(4), /* was irq */ 645 VMSTATE_BUFFER(mem, NE2000State), 646 VMSTATE_END_OF_LIST() 647 } 648 }; 649 650 static const VMStateDescription vmstate_pci_ne2000 = { 651 .name = "ne2000", 652 .version_id = 3, 653 .minimum_version_id = 3, 654 .fields = (VMStateField[]) { 655 VMSTATE_PCI_DEVICE(dev, PCINE2000State), 656 VMSTATE_STRUCT(ne2000, PCINE2000State, 0, vmstate_ne2000, NE2000State), 657 VMSTATE_END_OF_LIST() 658 } 659 }; 660 661 static uint64_t ne2000_read(void *opaque, hwaddr addr, 662 unsigned size) 663 { 664 NE2000State *s = opaque; 665 666 if (addr < 0x10 && size == 1) { 667 return ne2000_ioport_read(s, addr); 668 } else if (addr == 0x10) { 669 if (size <= 2) { 670 return ne2000_asic_ioport_read(s, addr); 671 } else { 672 return ne2000_asic_ioport_readl(s, addr); 673 } 674 } else if (addr == 0x1f && size == 1) { 675 return ne2000_reset_ioport_read(s, addr); 676 } 677 return ((uint64_t)1 << (size * 8)) - 1; 678 } 679 680 static void ne2000_write(void *opaque, hwaddr addr, 681 uint64_t data, unsigned size) 682 { 683 NE2000State *s = opaque; 684 685 if (addr < 0x10 && size == 1) { 686 ne2000_ioport_write(s, addr, data); 687 } else if (addr == 0x10) { 688 if (size <= 2) { 689 ne2000_asic_ioport_write(s, addr, data); 690 } else { 691 ne2000_asic_ioport_writel(s, addr, data); 692 } 693 } else if (addr == 0x1f && size == 1) { 694 ne2000_reset_ioport_write(s, addr, data); 695 } 696 } 697 698 static const MemoryRegionOps ne2000_ops = { 699 .read = ne2000_read, 700 .write = ne2000_write, 701 .endianness = DEVICE_LITTLE_ENDIAN, 702 }; 703 704 /***********************************************************/ 705 /* PCI NE2000 definitions */ 706 707 void ne2000_setup_io(NE2000State *s, DeviceState *dev, unsigned size) 708 { 709 memory_region_init_io(&s->io, OBJECT(dev), &ne2000_ops, s, "ne2000", size); 710 } 711 712 static NetClientInfo net_ne2000_info = { 713 .type = NET_CLIENT_DRIVER_NIC, 714 .size = sizeof(NICState), 715 .receive = ne2000_receive, 716 }; 717 718 static void pci_ne2000_realize(PCIDevice *pci_dev, Error **errp) 719 { 720 PCINE2000State *d = DO_UPCAST(PCINE2000State, dev, pci_dev); 721 NE2000State *s; 722 uint8_t *pci_conf; 723 724 pci_conf = d->dev.config; 725 pci_conf[PCI_INTERRUPT_PIN] = 1; /* interrupt pin A */ 726 727 s = &d->ne2000; 728 ne2000_setup_io(s, DEVICE(pci_dev), 0x100); 729 pci_register_bar(&d->dev, 0, PCI_BASE_ADDRESS_SPACE_IO, &s->io); 730 s->irq = pci_allocate_irq(&d->dev); 731 732 qemu_macaddr_default_if_unset(&s->c.macaddr); 733 ne2000_reset(s); 734 735 s->nic = qemu_new_nic(&net_ne2000_info, &s->c, 736 object_get_typename(OBJECT(pci_dev)), pci_dev->qdev.id, s); 737 qemu_format_nic_info_str(qemu_get_queue(s->nic), s->c.macaddr.a); 738 } 739 740 static void pci_ne2000_exit(PCIDevice *pci_dev) 741 { 742 PCINE2000State *d = DO_UPCAST(PCINE2000State, dev, pci_dev); 743 NE2000State *s = &d->ne2000; 744 745 qemu_del_nic(s->nic); 746 qemu_free_irq(s->irq); 747 } 748 749 static void ne2000_instance_init(Object *obj) 750 { 751 PCIDevice *pci_dev = PCI_DEVICE(obj); 752 PCINE2000State *d = DO_UPCAST(PCINE2000State, dev, pci_dev); 753 NE2000State *s = &d->ne2000; 754 755 device_add_bootindex_property(obj, &s->c.bootindex, 756 "bootindex", "/ethernet-phy@0", 757 &pci_dev->qdev, NULL); 758 } 759 760 static Property ne2000_properties[] = { 761 DEFINE_NIC_PROPERTIES(PCINE2000State, ne2000.c), 762 DEFINE_PROP_END_OF_LIST(), 763 }; 764 765 static void ne2000_class_init(ObjectClass *klass, void *data) 766 { 767 DeviceClass *dc = DEVICE_CLASS(klass); 768 PCIDeviceClass *k = PCI_DEVICE_CLASS(klass); 769 770 k->realize = pci_ne2000_realize; 771 k->exit = pci_ne2000_exit; 772 k->romfile = "efi-ne2k_pci.rom", 773 k->vendor_id = PCI_VENDOR_ID_REALTEK; 774 k->device_id = PCI_DEVICE_ID_REALTEK_8029; 775 k->class_id = PCI_CLASS_NETWORK_ETHERNET; 776 dc->vmsd = &vmstate_pci_ne2000; 777 dc->props = ne2000_properties; 778 set_bit(DEVICE_CATEGORY_NETWORK, dc->categories); 779 } 780 781 static const TypeInfo ne2000_info = { 782 .name = "ne2k_pci", 783 .parent = TYPE_PCI_DEVICE, 784 .instance_size = sizeof(PCINE2000State), 785 .class_init = ne2000_class_init, 786 .instance_init = ne2000_instance_init, 787 .interfaces = (InterfaceInfo[]) { 788 { INTERFACE_CONVENTIONAL_PCI_DEVICE }, 789 { }, 790 }, 791 }; 792 793 static void ne2000_register_types(void) 794 { 795 type_register_static(&ne2000_info); 796 } 797 798 type_init(ne2000_register_types) 799