xref: /openbmc/qemu/hw/net/ne2000.c (revision d044b7c3)
1 /*
2  * QEMU NE2000 emulation
3  *
4  * Copyright (c) 2003-2004 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "net/eth.h"
27 #include "qemu/module.h"
28 #include "exec/memory.h"
29 #include "hw/irq.h"
30 #include "migration/vmstate.h"
31 #include "ne2000.h"
32 #include "trace.h"
33 
34 /* debug NE2000 card */
35 //#define DEBUG_NE2000
36 
37 #define MAX_ETH_FRAME_SIZE 1514
38 
39 #define E8390_CMD       0x00    /* The command register (for all pages) */
40 /* Page 0 register offsets. */
41 #define EN0_CLDALO      0x01    /* Low byte of current local dma addr  RD */
42 #define EN0_STARTPG     0x01    /* Starting page of ring bfr WR */
43 #define EN0_CLDAHI      0x02    /* High byte of current local dma addr  RD */
44 #define EN0_STOPPG      0x02    /* Ending page +1 of ring bfr WR */
45 #define EN0_BOUNDARY    0x03    /* Boundary page of ring bfr RD WR */
46 #define EN0_TSR         0x04    /* Transmit status reg RD */
47 #define EN0_TPSR        0x04    /* Transmit starting page WR */
48 #define EN0_NCR         0x05    /* Number of collision reg RD */
49 #define EN0_TCNTLO      0x05    /* Low  byte of tx byte count WR */
50 #define EN0_FIFO        0x06    /* FIFO RD */
51 #define EN0_TCNTHI      0x06    /* High byte of tx byte count WR */
52 #define EN0_ISR         0x07    /* Interrupt status reg RD WR */
53 #define EN0_CRDALO      0x08    /* low byte of current remote dma address RD */
54 #define EN0_RSARLO      0x08    /* Remote start address reg 0 */
55 #define EN0_CRDAHI      0x09    /* high byte, current remote dma address RD */
56 #define EN0_RSARHI      0x09    /* Remote start address reg 1 */
57 #define EN0_RCNTLO      0x0a    /* Remote byte count reg WR */
58 #define EN0_RTL8029ID0  0x0a    /* Realtek ID byte #1 RD */
59 #define EN0_RCNTHI      0x0b    /* Remote byte count reg WR */
60 #define EN0_RTL8029ID1  0x0b    /* Realtek ID byte #2 RD */
61 #define EN0_RSR         0x0c    /* rx status reg RD */
62 #define EN0_RXCR        0x0c    /* RX configuration reg WR */
63 #define EN0_TXCR        0x0d    /* TX configuration reg WR */
64 #define EN0_COUNTER0    0x0d    /* Rcv alignment error counter RD */
65 #define EN0_DCFG        0x0e    /* Data configuration reg WR */
66 #define EN0_COUNTER1    0x0e    /* Rcv CRC error counter RD */
67 #define EN0_IMR         0x0f    /* Interrupt mask reg WR */
68 #define EN0_COUNTER2    0x0f    /* Rcv missed frame error counter RD */
69 
70 #define EN1_PHYS        0x11
71 #define EN1_CURPAG      0x17
72 #define EN1_MULT        0x18
73 
74 #define EN2_STARTPG     0x21    /* Starting page of ring bfr RD */
75 #define EN2_STOPPG      0x22    /* Ending page +1 of ring bfr RD */
76 
77 #define EN3_CONFIG0     0x33
78 #define EN3_CONFIG1     0x34
79 #define EN3_CONFIG2     0x35
80 #define EN3_CONFIG3     0x36
81 
82 /*  Register accessed at EN_CMD, the 8390 base addr.  */
83 #define E8390_STOP      0x01    /* Stop and reset the chip */
84 #define E8390_START     0x02    /* Start the chip, clear reset */
85 #define E8390_TRANS     0x04    /* Transmit a frame */
86 #define E8390_RREAD     0x08    /* Remote read */
87 #define E8390_RWRITE    0x10    /* Remote write  */
88 #define E8390_NODMA     0x20    /* Remote DMA */
89 #define E8390_PAGE0     0x00    /* Select page chip registers */
90 #define E8390_PAGE1     0x40    /* using the two high-order bits */
91 #define E8390_PAGE2     0x80    /* Page 3 is invalid. */
92 
93 /* Bits in EN0_ISR - Interrupt status register */
94 #define ENISR_RX        0x01    /* Receiver, no error */
95 #define ENISR_TX        0x02    /* Transmitter, no error */
96 #define ENISR_RX_ERR    0x04    /* Receiver, with error */
97 #define ENISR_TX_ERR    0x08    /* Transmitter, with error */
98 #define ENISR_OVER      0x10    /* Receiver overwrote the ring */
99 #define ENISR_COUNTERS  0x20    /* Counters need emptying */
100 #define ENISR_RDC       0x40    /* remote dma complete */
101 #define ENISR_RESET     0x80    /* Reset completed */
102 #define ENISR_ALL       0x3f    /* Interrupts we will enable */
103 
104 /* Bits in received packet status byte and EN0_RSR*/
105 #define ENRSR_RXOK      0x01    /* Received a good packet */
106 #define ENRSR_CRC       0x02    /* CRC error */
107 #define ENRSR_FAE       0x04    /* frame alignment error */
108 #define ENRSR_FO        0x08    /* FIFO overrun */
109 #define ENRSR_MPA       0x10    /* missed pkt */
110 #define ENRSR_PHY       0x20    /* physical/multicast address */
111 #define ENRSR_DIS       0x40    /* receiver disable. set in monitor mode */
112 #define ENRSR_DEF       0x80    /* deferring */
113 
114 /* Transmitted packet status, EN0_TSR. */
115 #define ENTSR_PTX 0x01  /* Packet transmitted without error */
116 #define ENTSR_ND  0x02  /* The transmit wasn't deferred. */
117 #define ENTSR_COL 0x04  /* The transmit collided at least once. */
118 #define ENTSR_ABT 0x08  /* The transmit collided 16 times, and was deferred. */
119 #define ENTSR_CRS 0x10  /* The carrier sense was lost. */
120 #define ENTSR_FU  0x20  /* A "FIFO underrun" occurred during transmit. */
121 #define ENTSR_CDH 0x40  /* The collision detect "heartbeat" signal was lost. */
122 #define ENTSR_OWC 0x80  /* There was an out-of-window collision. */
123 
124 void ne2000_reset(NE2000State *s)
125 {
126     int i;
127 
128     s->isr = ENISR_RESET;
129     memcpy(s->mem, &s->c.macaddr, 6);
130     s->mem[14] = 0x57;
131     s->mem[15] = 0x57;
132 
133     /* duplicate prom data */
134     for(i = 15;i >= 0; i--) {
135         s->mem[2 * i] = s->mem[i];
136         s->mem[2 * i + 1] = s->mem[i];
137     }
138 }
139 
140 static void ne2000_update_irq(NE2000State *s)
141 {
142     int isr;
143     isr = (s->isr & s->imr) & 0x7f;
144 #if defined(DEBUG_NE2000)
145     printf("NE2000: Set IRQ to %d (%02x %02x)\n",
146            isr ? 1 : 0, s->isr, s->imr);
147 #endif
148     qemu_set_irq(s->irq, (isr != 0));
149 }
150 
151 static int ne2000_buffer_full(NE2000State *s)
152 {
153     int avail, index, boundary;
154 
155     if (s->stop <= s->start) {
156         return 1;
157     }
158 
159     index = s->curpag << 8;
160     boundary = s->boundary << 8;
161     if (index < boundary)
162         avail = boundary - index;
163     else
164         avail = (s->stop - s->start) - (index - boundary);
165     if (avail < (MAX_ETH_FRAME_SIZE + 4))
166         return 1;
167     return 0;
168 }
169 
170 #define MIN_BUF_SIZE 60
171 
172 ssize_t ne2000_receive(NetClientState *nc, const uint8_t *buf, size_t size_)
173 {
174     NE2000State *s = qemu_get_nic_opaque(nc);
175     size_t size = size_;
176     uint8_t *p;
177     unsigned int total_len, next, avail, len, index, mcast_idx;
178     uint8_t buf1[60];
179     static const uint8_t broadcast_macaddr[6] =
180         { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
181 
182 #if defined(DEBUG_NE2000)
183     printf("NE2000: received len=%zu\n", size);
184 #endif
185 
186     if (s->cmd & E8390_STOP || ne2000_buffer_full(s))
187         return -1;
188 
189     /* XXX: check this */
190     if (s->rxcr & 0x10) {
191         /* promiscuous: receive all */
192     } else {
193         if (!memcmp(buf,  broadcast_macaddr, 6)) {
194             /* broadcast address */
195             if (!(s->rxcr & 0x04))
196                 return size;
197         } else if (buf[0] & 0x01) {
198             /* multicast */
199             if (!(s->rxcr & 0x08))
200                 return size;
201             mcast_idx = net_crc32(buf, ETH_ALEN) >> 26;
202             if (!(s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))))
203                 return size;
204         } else if (s->mem[0] == buf[0] &&
205                    s->mem[2] == buf[1] &&
206                    s->mem[4] == buf[2] &&
207                    s->mem[6] == buf[3] &&
208                    s->mem[8] == buf[4] &&
209                    s->mem[10] == buf[5]) {
210             /* match */
211         } else {
212             return size;
213         }
214     }
215 
216 
217     /* if too small buffer, then expand it */
218     if (size < MIN_BUF_SIZE) {
219         memcpy(buf1, buf, size);
220         memset(buf1 + size, 0, MIN_BUF_SIZE - size);
221         buf = buf1;
222         size = MIN_BUF_SIZE;
223     }
224 
225     index = s->curpag << 8;
226     if (index >= NE2000_PMEM_END) {
227         index = s->start;
228     }
229     /* 4 bytes for header */
230     total_len = size + 4;
231     /* address for next packet (4 bytes for CRC) */
232     next = index + ((total_len + 4 + 255) & ~0xff);
233     if (next >= s->stop)
234         next -= (s->stop - s->start);
235     /* prepare packet header */
236     p = s->mem + index;
237     s->rsr = ENRSR_RXOK; /* receive status */
238     /* XXX: check this */
239     if (buf[0] & 0x01)
240         s->rsr |= ENRSR_PHY;
241     p[0] = s->rsr;
242     p[1] = next >> 8;
243     p[2] = total_len;
244     p[3] = total_len >> 8;
245     index += 4;
246 
247     /* write packet data */
248     while (size > 0) {
249         if (index <= s->stop)
250             avail = s->stop - index;
251         else
252             break;
253         len = size;
254         if (len > avail)
255             len = avail;
256         memcpy(s->mem + index, buf, len);
257         buf += len;
258         index += len;
259         if (index == s->stop)
260             index = s->start;
261         size -= len;
262     }
263     s->curpag = next >> 8;
264 
265     /* now we can signal we have received something */
266     s->isr |= ENISR_RX;
267     ne2000_update_irq(s);
268 
269     return size_;
270 }
271 
272 static void ne2000_ioport_write(void *opaque, uint32_t addr, uint32_t val)
273 {
274     NE2000State *s = opaque;
275     int offset, page, index;
276 
277     addr &= 0xf;
278     trace_ne2000_ioport_write(addr, val);
279     if (addr == E8390_CMD) {
280         /* control register */
281         s->cmd = val;
282         if (!(val & E8390_STOP)) { /* START bit makes no sense on RTL8029... */
283             s->isr &= ~ENISR_RESET;
284             /* test specific case: zero length transfer */
285             if ((val & (E8390_RREAD | E8390_RWRITE)) &&
286                 s->rcnt == 0) {
287                 s->isr |= ENISR_RDC;
288                 ne2000_update_irq(s);
289             }
290             if (val & E8390_TRANS) {
291                 index = (s->tpsr << 8);
292                 /* XXX: next 2 lines are a hack to make netware 3.11 work */
293                 if (index >= NE2000_PMEM_END)
294                     index -= NE2000_PMEM_SIZE;
295                 /* fail safe: check range on the transmitted length  */
296                 if (index + s->tcnt <= NE2000_PMEM_END) {
297                     qemu_send_packet(qemu_get_queue(s->nic), s->mem + index,
298                                      s->tcnt);
299                 }
300                 /* signal end of transfer */
301                 s->tsr = ENTSR_PTX;
302                 s->isr |= ENISR_TX;
303                 s->cmd &= ~E8390_TRANS;
304                 ne2000_update_irq(s);
305             }
306         }
307     } else {
308         page = s->cmd >> 6;
309         offset = addr | (page << 4);
310         switch(offset) {
311         case EN0_STARTPG:
312             if (val << 8 <= NE2000_PMEM_END) {
313                 s->start = val << 8;
314             }
315             break;
316         case EN0_STOPPG:
317             if (val << 8 <= NE2000_PMEM_END) {
318                 s->stop = val << 8;
319             }
320             break;
321         case EN0_BOUNDARY:
322             if (val << 8 < NE2000_PMEM_END) {
323                 s->boundary = val;
324             }
325             break;
326         case EN0_IMR:
327             s->imr = val;
328             ne2000_update_irq(s);
329             break;
330         case EN0_TPSR:
331             s->tpsr = val;
332             break;
333         case EN0_TCNTLO:
334             s->tcnt = (s->tcnt & 0xff00) | val;
335             break;
336         case EN0_TCNTHI:
337             s->tcnt = (s->tcnt & 0x00ff) | (val << 8);
338             break;
339         case EN0_RSARLO:
340             s->rsar = (s->rsar & 0xff00) | val;
341             break;
342         case EN0_RSARHI:
343             s->rsar = (s->rsar & 0x00ff) | (val << 8);
344             break;
345         case EN0_RCNTLO:
346             s->rcnt = (s->rcnt & 0xff00) | val;
347             break;
348         case EN0_RCNTHI:
349             s->rcnt = (s->rcnt & 0x00ff) | (val << 8);
350             break;
351         case EN0_RXCR:
352             s->rxcr = val;
353             break;
354         case EN0_DCFG:
355             s->dcfg = val;
356             break;
357         case EN0_ISR:
358             s->isr &= ~(val & 0x7f);
359             ne2000_update_irq(s);
360             break;
361         case EN1_PHYS ... EN1_PHYS + 5:
362             s->phys[offset - EN1_PHYS] = val;
363             break;
364         case EN1_CURPAG:
365             if (val << 8 < NE2000_PMEM_END) {
366                 s->curpag = val;
367             }
368             break;
369         case EN1_MULT ... EN1_MULT + 7:
370             s->mult[offset - EN1_MULT] = val;
371             break;
372         }
373     }
374 }
375 
376 static uint32_t ne2000_ioport_read(void *opaque, uint32_t addr)
377 {
378     NE2000State *s = opaque;
379     int offset, page, ret;
380 
381     addr &= 0xf;
382     if (addr == E8390_CMD) {
383         ret = s->cmd;
384     } else {
385         page = s->cmd >> 6;
386         offset = addr | (page << 4);
387         switch(offset) {
388         case EN0_TSR:
389             ret = s->tsr;
390             break;
391         case EN0_BOUNDARY:
392             ret = s->boundary;
393             break;
394         case EN0_ISR:
395             ret = s->isr;
396             break;
397         case EN0_RSARLO:
398             ret = s->rsar & 0x00ff;
399             break;
400         case EN0_RSARHI:
401             ret = s->rsar >> 8;
402             break;
403         case EN1_PHYS ... EN1_PHYS + 5:
404             ret = s->phys[offset - EN1_PHYS];
405             break;
406         case EN1_CURPAG:
407             ret = s->curpag;
408             break;
409         case EN1_MULT ... EN1_MULT + 7:
410             ret = s->mult[offset - EN1_MULT];
411             break;
412         case EN0_RSR:
413             ret = s->rsr;
414             break;
415         case EN2_STARTPG:
416             ret = s->start >> 8;
417             break;
418         case EN2_STOPPG:
419             ret = s->stop >> 8;
420             break;
421         case EN0_RTL8029ID0:
422             ret = 0x50;
423             break;
424         case EN0_RTL8029ID1:
425             ret = 0x43;
426             break;
427         case EN3_CONFIG0:
428             ret = 0;          /* 10baseT media */
429             break;
430         case EN3_CONFIG2:
431             ret = 0x40;       /* 10baseT active */
432             break;
433         case EN3_CONFIG3:
434             ret = 0x40;       /* Full duplex */
435             break;
436         default:
437             ret = 0x00;
438             break;
439         }
440     }
441     trace_ne2000_ioport_read(addr, ret);
442     return ret;
443 }
444 
445 static inline void ne2000_mem_writeb(NE2000State *s, uint32_t addr,
446                                      uint32_t val)
447 {
448     if (addr < 32 ||
449         (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
450         s->mem[addr] = val;
451     }
452 }
453 
454 static inline void ne2000_mem_writew(NE2000State *s, uint32_t addr,
455                                      uint32_t val)
456 {
457     addr &= ~1; /* XXX: check exact behaviour if not even */
458     if (addr < 32 ||
459         (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
460         *(uint16_t *)(s->mem + addr) = cpu_to_le16(val);
461     }
462 }
463 
464 static inline void ne2000_mem_writel(NE2000State *s, uint32_t addr,
465                                      uint32_t val)
466 {
467     addr &= ~1; /* XXX: check exact behaviour if not even */
468     if (addr < 32
469         || (addr >= NE2000_PMEM_START
470             && addr + sizeof(uint32_t) <= NE2000_MEM_SIZE)) {
471         stl_le_p(s->mem + addr, val);
472     }
473 }
474 
475 static inline uint32_t ne2000_mem_readb(NE2000State *s, uint32_t addr)
476 {
477     if (addr < 32 ||
478         (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
479         return s->mem[addr];
480     } else {
481         return 0xff;
482     }
483 }
484 
485 static inline uint32_t ne2000_mem_readw(NE2000State *s, uint32_t addr)
486 {
487     addr &= ~1; /* XXX: check exact behaviour if not even */
488     if (addr < 32 ||
489         (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
490         return le16_to_cpu(*(uint16_t *)(s->mem + addr));
491     } else {
492         return 0xffff;
493     }
494 }
495 
496 static inline uint32_t ne2000_mem_readl(NE2000State *s, uint32_t addr)
497 {
498     addr &= ~1; /* XXX: check exact behaviour if not even */
499     if (addr < 32
500         || (addr >= NE2000_PMEM_START
501             && addr + sizeof(uint32_t) <= NE2000_MEM_SIZE)) {
502         return ldl_le_p(s->mem + addr);
503     } else {
504         return 0xffffffff;
505     }
506 }
507 
508 static inline void ne2000_dma_update(NE2000State *s, int len)
509 {
510     s->rsar += len;
511     /* wrap */
512     /* XXX: check what to do if rsar > stop */
513     if (s->rsar == s->stop)
514         s->rsar = s->start;
515 
516     if (s->rcnt <= len) {
517         s->rcnt = 0;
518         /* signal end of transfer */
519         s->isr |= ENISR_RDC;
520         ne2000_update_irq(s);
521     } else {
522         s->rcnt -= len;
523     }
524 }
525 
526 static void ne2000_asic_ioport_write(void *opaque, uint32_t addr, uint32_t val)
527 {
528     NE2000State *s = opaque;
529 
530 #ifdef DEBUG_NE2000
531     printf("NE2000: asic write val=0x%04x\n", val);
532 #endif
533     if (s->rcnt == 0)
534         return;
535     if (s->dcfg & 0x01) {
536         /* 16 bit access */
537         ne2000_mem_writew(s, s->rsar, val);
538         ne2000_dma_update(s, 2);
539     } else {
540         /* 8 bit access */
541         ne2000_mem_writeb(s, s->rsar, val);
542         ne2000_dma_update(s, 1);
543     }
544 }
545 
546 static uint32_t ne2000_asic_ioport_read(void *opaque, uint32_t addr)
547 {
548     NE2000State *s = opaque;
549     int ret;
550 
551     if (s->dcfg & 0x01) {
552         /* 16 bit access */
553         ret = ne2000_mem_readw(s, s->rsar);
554         ne2000_dma_update(s, 2);
555     } else {
556         /* 8 bit access */
557         ret = ne2000_mem_readb(s, s->rsar);
558         ne2000_dma_update(s, 1);
559     }
560 #ifdef DEBUG_NE2000
561     printf("NE2000: asic read val=0x%04x\n", ret);
562 #endif
563     return ret;
564 }
565 
566 static void ne2000_asic_ioport_writel(void *opaque, uint32_t addr, uint32_t val)
567 {
568     NE2000State *s = opaque;
569 
570 #ifdef DEBUG_NE2000
571     printf("NE2000: asic writel val=0x%04x\n", val);
572 #endif
573     if (s->rcnt == 0)
574         return;
575     /* 32 bit access */
576     ne2000_mem_writel(s, s->rsar, val);
577     ne2000_dma_update(s, 4);
578 }
579 
580 static uint32_t ne2000_asic_ioport_readl(void *opaque, uint32_t addr)
581 {
582     NE2000State *s = opaque;
583     int ret;
584 
585     /* 32 bit access */
586     ret = ne2000_mem_readl(s, s->rsar);
587     ne2000_dma_update(s, 4);
588 #ifdef DEBUG_NE2000
589     printf("NE2000: asic readl val=0x%04x\n", ret);
590 #endif
591     return ret;
592 }
593 
594 static void ne2000_reset_ioport_write(void *opaque, uint32_t addr, uint32_t val)
595 {
596     /* nothing to do (end of reset pulse) */
597 }
598 
599 static uint32_t ne2000_reset_ioport_read(void *opaque, uint32_t addr)
600 {
601     NE2000State *s = opaque;
602     ne2000_reset(s);
603     return 0;
604 }
605 
606 static int ne2000_post_load(void* opaque, int version_id)
607 {
608     NE2000State* s = opaque;
609 
610     if (version_id < 2) {
611         s->rxcr = 0x0c;
612     }
613     return 0;
614 }
615 
616 const VMStateDescription vmstate_ne2000 = {
617     .name = "ne2000",
618     .version_id = 2,
619     .minimum_version_id = 0,
620     .post_load = ne2000_post_load,
621     .fields = (VMStateField[]) {
622         VMSTATE_UINT8_V(rxcr, NE2000State, 2),
623         VMSTATE_UINT8(cmd, NE2000State),
624         VMSTATE_UINT32(start, NE2000State),
625         VMSTATE_UINT32(stop, NE2000State),
626         VMSTATE_UINT8(boundary, NE2000State),
627         VMSTATE_UINT8(tsr, NE2000State),
628         VMSTATE_UINT8(tpsr, NE2000State),
629         VMSTATE_UINT16(tcnt, NE2000State),
630         VMSTATE_UINT16(rcnt, NE2000State),
631         VMSTATE_UINT32(rsar, NE2000State),
632         VMSTATE_UINT8(rsr, NE2000State),
633         VMSTATE_UINT8(isr, NE2000State),
634         VMSTATE_UINT8(dcfg, NE2000State),
635         VMSTATE_UINT8(imr, NE2000State),
636         VMSTATE_BUFFER(phys, NE2000State),
637         VMSTATE_UINT8(curpag, NE2000State),
638         VMSTATE_BUFFER(mult, NE2000State),
639         VMSTATE_UNUSED(4), /* was irq */
640         VMSTATE_BUFFER(mem, NE2000State),
641         VMSTATE_END_OF_LIST()
642     }
643 };
644 
645 static uint64_t ne2000_read(void *opaque, hwaddr addr,
646                             unsigned size)
647 {
648     NE2000State *s = opaque;
649     uint64_t val;
650 
651     if (addr < 0x10 && size == 1) {
652         val = ne2000_ioport_read(s, addr);
653     } else if (addr == 0x10) {
654         if (size <= 2) {
655             val = ne2000_asic_ioport_read(s, addr);
656         } else {
657             val = ne2000_asic_ioport_readl(s, addr);
658         }
659     } else if (addr == 0x1f && size == 1) {
660         val = ne2000_reset_ioport_read(s, addr);
661     } else {
662         val = ((uint64_t)1 << (size * 8)) - 1;
663     }
664     trace_ne2000_read(addr, val);
665 
666     return val;
667 }
668 
669 static void ne2000_write(void *opaque, hwaddr addr,
670                          uint64_t data, unsigned size)
671 {
672     NE2000State *s = opaque;
673 
674     trace_ne2000_write(addr, data);
675     if (addr < 0x10 && size == 1) {
676         ne2000_ioport_write(s, addr, data);
677     } else if (addr == 0x10) {
678         if (size <= 2) {
679             ne2000_asic_ioport_write(s, addr, data);
680         } else {
681             ne2000_asic_ioport_writel(s, addr, data);
682         }
683     } else if (addr == 0x1f && size == 1) {
684         ne2000_reset_ioport_write(s, addr, data);
685     }
686 }
687 
688 static const MemoryRegionOps ne2000_ops = {
689     .read = ne2000_read,
690     .write = ne2000_write,
691     .endianness = DEVICE_LITTLE_ENDIAN,
692 };
693 
694 /***********************************************************/
695 /* PCI NE2000 definitions */
696 
697 void ne2000_setup_io(NE2000State *s, DeviceState *dev, unsigned size)
698 {
699     memory_region_init_io(&s->io, OBJECT(dev), &ne2000_ops, s, "ne2000", size);
700 }
701