xref: /openbmc/qemu/hw/net/ne2000.c (revision c8ca2a23)
1 /*
2  * QEMU NE2000 emulation
3  *
4  * Copyright (c) 2003-2004 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 #include "qemu/osdep.h"
25 #include "hw/pci/pci.h"
26 #include "net/eth.h"
27 #include "ne2000.h"
28 #include "sysemu/sysemu.h"
29 
30 /* debug NE2000 card */
31 //#define DEBUG_NE2000
32 
33 #define MAX_ETH_FRAME_SIZE 1514
34 
35 #define E8390_CMD	0x00  /* The command register (for all pages) */
36 /* Page 0 register offsets. */
37 #define EN0_CLDALO	0x01	/* Low byte of current local dma addr  RD */
38 #define EN0_STARTPG	0x01	/* Starting page of ring bfr WR */
39 #define EN0_CLDAHI	0x02	/* High byte of current local dma addr  RD */
40 #define EN0_STOPPG	0x02	/* Ending page +1 of ring bfr WR */
41 #define EN0_BOUNDARY	0x03	/* Boundary page of ring bfr RD WR */
42 #define EN0_TSR		0x04	/* Transmit status reg RD */
43 #define EN0_TPSR	0x04	/* Transmit starting page WR */
44 #define EN0_NCR		0x05	/* Number of collision reg RD */
45 #define EN0_TCNTLO	0x05	/* Low  byte of tx byte count WR */
46 #define EN0_FIFO	0x06	/* FIFO RD */
47 #define EN0_TCNTHI	0x06	/* High byte of tx byte count WR */
48 #define EN0_ISR		0x07	/* Interrupt status reg RD WR */
49 #define EN0_CRDALO	0x08	/* low byte of current remote dma address RD */
50 #define EN0_RSARLO	0x08	/* Remote start address reg 0 */
51 #define EN0_CRDAHI	0x09	/* high byte, current remote dma address RD */
52 #define EN0_RSARHI	0x09	/* Remote start address reg 1 */
53 #define EN0_RCNTLO	0x0a	/* Remote byte count reg WR */
54 #define EN0_RTL8029ID0	0x0a	/* Realtek ID byte #1 RD */
55 #define EN0_RCNTHI	0x0b	/* Remote byte count reg WR */
56 #define EN0_RTL8029ID1	0x0b	/* Realtek ID byte #2 RD */
57 #define EN0_RSR		0x0c	/* rx status reg RD */
58 #define EN0_RXCR	0x0c	/* RX configuration reg WR */
59 #define EN0_TXCR	0x0d	/* TX configuration reg WR */
60 #define EN0_COUNTER0	0x0d	/* Rcv alignment error counter RD */
61 #define EN0_DCFG	0x0e	/* Data configuration reg WR */
62 #define EN0_COUNTER1	0x0e	/* Rcv CRC error counter RD */
63 #define EN0_IMR		0x0f	/* Interrupt mask reg WR */
64 #define EN0_COUNTER2	0x0f	/* Rcv missed frame error counter RD */
65 
66 #define EN1_PHYS        0x11
67 #define EN1_CURPAG      0x17
68 #define EN1_MULT        0x18
69 
70 #define EN2_STARTPG	0x21	/* Starting page of ring bfr RD */
71 #define EN2_STOPPG	0x22	/* Ending page +1 of ring bfr RD */
72 
73 #define EN3_CONFIG0	0x33
74 #define EN3_CONFIG1	0x34
75 #define EN3_CONFIG2	0x35
76 #define EN3_CONFIG3	0x36
77 
78 /*  Register accessed at EN_CMD, the 8390 base addr.  */
79 #define E8390_STOP	0x01	/* Stop and reset the chip */
80 #define E8390_START	0x02	/* Start the chip, clear reset */
81 #define E8390_TRANS	0x04	/* Transmit a frame */
82 #define E8390_RREAD	0x08	/* Remote read */
83 #define E8390_RWRITE	0x10	/* Remote write  */
84 #define E8390_NODMA	0x20	/* Remote DMA */
85 #define E8390_PAGE0	0x00	/* Select page chip registers */
86 #define E8390_PAGE1	0x40	/* using the two high-order bits */
87 #define E8390_PAGE2	0x80	/* Page 3 is invalid. */
88 
89 /* Bits in EN0_ISR - Interrupt status register */
90 #define ENISR_RX	0x01	/* Receiver, no error */
91 #define ENISR_TX	0x02	/* Transmitter, no error */
92 #define ENISR_RX_ERR	0x04	/* Receiver, with error */
93 #define ENISR_TX_ERR	0x08	/* Transmitter, with error */
94 #define ENISR_OVER	0x10	/* Receiver overwrote the ring */
95 #define ENISR_COUNTERS	0x20	/* Counters need emptying */
96 #define ENISR_RDC	0x40	/* remote dma complete */
97 #define ENISR_RESET	0x80	/* Reset completed */
98 #define ENISR_ALL	0x3f	/* Interrupts we will enable */
99 
100 /* Bits in received packet status byte and EN0_RSR*/
101 #define ENRSR_RXOK	0x01	/* Received a good packet */
102 #define ENRSR_CRC	0x02	/* CRC error */
103 #define ENRSR_FAE	0x04	/* frame alignment error */
104 #define ENRSR_FO	0x08	/* FIFO overrun */
105 #define ENRSR_MPA	0x10	/* missed pkt */
106 #define ENRSR_PHY	0x20	/* physical/multicast address */
107 #define ENRSR_DIS	0x40	/* receiver disable. set in monitor mode */
108 #define ENRSR_DEF	0x80	/* deferring */
109 
110 /* Transmitted packet status, EN0_TSR. */
111 #define ENTSR_PTX 0x01	/* Packet transmitted without error */
112 #define ENTSR_ND  0x02	/* The transmit wasn't deferred. */
113 #define ENTSR_COL 0x04	/* The transmit collided at least once. */
114 #define ENTSR_ABT 0x08  /* The transmit collided 16 times, and was deferred. */
115 #define ENTSR_CRS 0x10	/* The carrier sense was lost. */
116 #define ENTSR_FU  0x20  /* A "FIFO underrun" occurred during transmit. */
117 #define ENTSR_CDH 0x40	/* The collision detect "heartbeat" signal was lost. */
118 #define ENTSR_OWC 0x80  /* There was an out-of-window collision. */
119 
120 typedef struct PCINE2000State {
121     PCIDevice dev;
122     NE2000State ne2000;
123 } PCINE2000State;
124 
125 void ne2000_reset(NE2000State *s)
126 {
127     int i;
128 
129     s->isr = ENISR_RESET;
130     memcpy(s->mem, &s->c.macaddr, 6);
131     s->mem[14] = 0x57;
132     s->mem[15] = 0x57;
133 
134     /* duplicate prom data */
135     for(i = 15;i >= 0; i--) {
136         s->mem[2 * i] = s->mem[i];
137         s->mem[2 * i + 1] = s->mem[i];
138     }
139 }
140 
141 static void ne2000_update_irq(NE2000State *s)
142 {
143     int isr;
144     isr = (s->isr & s->imr) & 0x7f;
145 #if defined(DEBUG_NE2000)
146     printf("NE2000: Set IRQ to %d (%02x %02x)\n",
147 	   isr ? 1 : 0, s->isr, s->imr);
148 #endif
149     qemu_set_irq(s->irq, (isr != 0));
150 }
151 
152 static int ne2000_buffer_full(NE2000State *s)
153 {
154     int avail, index, boundary;
155 
156     if (s->stop <= s->start) {
157         return 1;
158     }
159 
160     index = s->curpag << 8;
161     boundary = s->boundary << 8;
162     if (index < boundary)
163         avail = boundary - index;
164     else
165         avail = (s->stop - s->start) - (index - boundary);
166     if (avail < (MAX_ETH_FRAME_SIZE + 4))
167         return 1;
168     return 0;
169 }
170 
171 #define MIN_BUF_SIZE 60
172 
173 ssize_t ne2000_receive(NetClientState *nc, const uint8_t *buf, size_t size_)
174 {
175     NE2000State *s = qemu_get_nic_opaque(nc);
176     int size = size_;
177     uint8_t *p;
178     unsigned int total_len, next, avail, len, index, mcast_idx;
179     uint8_t buf1[60];
180     static const uint8_t broadcast_macaddr[6] =
181         { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
182 
183 #if defined(DEBUG_NE2000)
184     printf("NE2000: received len=%d\n", size);
185 #endif
186 
187     if (s->cmd & E8390_STOP || ne2000_buffer_full(s))
188         return -1;
189 
190     /* XXX: check this */
191     if (s->rxcr & 0x10) {
192         /* promiscuous: receive all */
193     } else {
194         if (!memcmp(buf,  broadcast_macaddr, 6)) {
195             /* broadcast address */
196             if (!(s->rxcr & 0x04))
197                 return size;
198         } else if (buf[0] & 0x01) {
199             /* multicast */
200             if (!(s->rxcr & 0x08))
201                 return size;
202             mcast_idx = net_crc32(buf, ETH_ALEN) >> 26;
203             if (!(s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))))
204                 return size;
205         } else if (s->mem[0] == buf[0] &&
206                    s->mem[2] == buf[1] &&
207                    s->mem[4] == buf[2] &&
208                    s->mem[6] == buf[3] &&
209                    s->mem[8] == buf[4] &&
210                    s->mem[10] == buf[5]) {
211             /* match */
212         } else {
213             return size;
214         }
215     }
216 
217 
218     /* if too small buffer, then expand it */
219     if (size < MIN_BUF_SIZE) {
220         memcpy(buf1, buf, size);
221         memset(buf1 + size, 0, MIN_BUF_SIZE - size);
222         buf = buf1;
223         size = MIN_BUF_SIZE;
224     }
225 
226     index = s->curpag << 8;
227     if (index >= NE2000_PMEM_END) {
228         index = s->start;
229     }
230     /* 4 bytes for header */
231     total_len = size + 4;
232     /* address for next packet (4 bytes for CRC) */
233     next = index + ((total_len + 4 + 255) & ~0xff);
234     if (next >= s->stop)
235         next -= (s->stop - s->start);
236     /* prepare packet header */
237     p = s->mem + index;
238     s->rsr = ENRSR_RXOK; /* receive status */
239     /* XXX: check this */
240     if (buf[0] & 0x01)
241         s->rsr |= ENRSR_PHY;
242     p[0] = s->rsr;
243     p[1] = next >> 8;
244     p[2] = total_len;
245     p[3] = total_len >> 8;
246     index += 4;
247 
248     /* write packet data */
249     while (size > 0) {
250         if (index <= s->stop)
251             avail = s->stop - index;
252         else
253             break;
254         len = size;
255         if (len > avail)
256             len = avail;
257         memcpy(s->mem + index, buf, len);
258         buf += len;
259         index += len;
260         if (index == s->stop)
261             index = s->start;
262         size -= len;
263     }
264     s->curpag = next >> 8;
265 
266     /* now we can signal we have received something */
267     s->isr |= ENISR_RX;
268     ne2000_update_irq(s);
269 
270     return size_;
271 }
272 
273 static void ne2000_ioport_write(void *opaque, uint32_t addr, uint32_t val)
274 {
275     NE2000State *s = opaque;
276     int offset, page, index;
277 
278     addr &= 0xf;
279 #ifdef DEBUG_NE2000
280     printf("NE2000: write addr=0x%x val=0x%02x\n", addr, val);
281 #endif
282     if (addr == E8390_CMD) {
283         /* control register */
284         s->cmd = val;
285         if (!(val & E8390_STOP)) { /* START bit makes no sense on RTL8029... */
286             s->isr &= ~ENISR_RESET;
287             /* test specific case: zero length transfer */
288             if ((val & (E8390_RREAD | E8390_RWRITE)) &&
289                 s->rcnt == 0) {
290                 s->isr |= ENISR_RDC;
291                 ne2000_update_irq(s);
292             }
293             if (val & E8390_TRANS) {
294                 index = (s->tpsr << 8);
295                 /* XXX: next 2 lines are a hack to make netware 3.11 work */
296                 if (index >= NE2000_PMEM_END)
297                     index -= NE2000_PMEM_SIZE;
298                 /* fail safe: check range on the transmitted length  */
299                 if (index + s->tcnt <= NE2000_PMEM_END) {
300                     qemu_send_packet(qemu_get_queue(s->nic), s->mem + index,
301                                      s->tcnt);
302                 }
303                 /* signal end of transfer */
304                 s->tsr = ENTSR_PTX;
305                 s->isr |= ENISR_TX;
306                 s->cmd &= ~E8390_TRANS;
307                 ne2000_update_irq(s);
308             }
309         }
310     } else {
311         page = s->cmd >> 6;
312         offset = addr | (page << 4);
313         switch(offset) {
314         case EN0_STARTPG:
315             if (val << 8 <= NE2000_PMEM_END) {
316                 s->start = val << 8;
317             }
318             break;
319         case EN0_STOPPG:
320             if (val << 8 <= NE2000_PMEM_END) {
321                 s->stop = val << 8;
322             }
323             break;
324         case EN0_BOUNDARY:
325             if (val << 8 < NE2000_PMEM_END) {
326                 s->boundary = val;
327             }
328             break;
329         case EN0_IMR:
330             s->imr = val;
331             ne2000_update_irq(s);
332             break;
333         case EN0_TPSR:
334             s->tpsr = val;
335             break;
336         case EN0_TCNTLO:
337             s->tcnt = (s->tcnt & 0xff00) | val;
338             break;
339         case EN0_TCNTHI:
340             s->tcnt = (s->tcnt & 0x00ff) | (val << 8);
341             break;
342         case EN0_RSARLO:
343             s->rsar = (s->rsar & 0xff00) | val;
344             break;
345         case EN0_RSARHI:
346             s->rsar = (s->rsar & 0x00ff) | (val << 8);
347             break;
348         case EN0_RCNTLO:
349             s->rcnt = (s->rcnt & 0xff00) | val;
350             break;
351         case EN0_RCNTHI:
352             s->rcnt = (s->rcnt & 0x00ff) | (val << 8);
353             break;
354         case EN0_RXCR:
355             s->rxcr = val;
356             break;
357         case EN0_DCFG:
358             s->dcfg = val;
359             break;
360         case EN0_ISR:
361             s->isr &= ~(val & 0x7f);
362             ne2000_update_irq(s);
363             break;
364         case EN1_PHYS ... EN1_PHYS + 5:
365             s->phys[offset - EN1_PHYS] = val;
366             break;
367         case EN1_CURPAG:
368             if (val << 8 < NE2000_PMEM_END) {
369                 s->curpag = val;
370             }
371             break;
372         case EN1_MULT ... EN1_MULT + 7:
373             s->mult[offset - EN1_MULT] = val;
374             break;
375         }
376     }
377 }
378 
379 static uint32_t ne2000_ioport_read(void *opaque, uint32_t addr)
380 {
381     NE2000State *s = opaque;
382     int offset, page, ret;
383 
384     addr &= 0xf;
385     if (addr == E8390_CMD) {
386         ret = s->cmd;
387     } else {
388         page = s->cmd >> 6;
389         offset = addr | (page << 4);
390         switch(offset) {
391         case EN0_TSR:
392             ret = s->tsr;
393             break;
394         case EN0_BOUNDARY:
395             ret = s->boundary;
396             break;
397         case EN0_ISR:
398             ret = s->isr;
399             break;
400 	case EN0_RSARLO:
401 	    ret = s->rsar & 0x00ff;
402 	    break;
403 	case EN0_RSARHI:
404 	    ret = s->rsar >> 8;
405 	    break;
406         case EN1_PHYS ... EN1_PHYS + 5:
407             ret = s->phys[offset - EN1_PHYS];
408             break;
409         case EN1_CURPAG:
410             ret = s->curpag;
411             break;
412         case EN1_MULT ... EN1_MULT + 7:
413             ret = s->mult[offset - EN1_MULT];
414             break;
415         case EN0_RSR:
416             ret = s->rsr;
417             break;
418         case EN2_STARTPG:
419             ret = s->start >> 8;
420             break;
421         case EN2_STOPPG:
422             ret = s->stop >> 8;
423             break;
424 	case EN0_RTL8029ID0:
425 	    ret = 0x50;
426 	    break;
427 	case EN0_RTL8029ID1:
428 	    ret = 0x43;
429 	    break;
430 	case EN3_CONFIG0:
431 	    ret = 0;		/* 10baseT media */
432 	    break;
433 	case EN3_CONFIG2:
434 	    ret = 0x40;		/* 10baseT active */
435 	    break;
436 	case EN3_CONFIG3:
437 	    ret = 0x40;		/* Full duplex */
438 	    break;
439         default:
440             ret = 0x00;
441             break;
442         }
443     }
444 #ifdef DEBUG_NE2000
445     printf("NE2000: read addr=0x%x val=%02x\n", addr, ret);
446 #endif
447     return ret;
448 }
449 
450 static inline void ne2000_mem_writeb(NE2000State *s, uint32_t addr,
451                                      uint32_t val)
452 {
453     if (addr < 32 ||
454         (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
455         s->mem[addr] = val;
456     }
457 }
458 
459 static inline void ne2000_mem_writew(NE2000State *s, uint32_t addr,
460                                      uint32_t val)
461 {
462     addr &= ~1; /* XXX: check exact behaviour if not even */
463     if (addr < 32 ||
464         (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
465         *(uint16_t *)(s->mem + addr) = cpu_to_le16(val);
466     }
467 }
468 
469 static inline void ne2000_mem_writel(NE2000State *s, uint32_t addr,
470                                      uint32_t val)
471 {
472     addr &= ~1; /* XXX: check exact behaviour if not even */
473     if (addr < 32
474         || (addr >= NE2000_PMEM_START
475             && addr + sizeof(uint32_t) <= NE2000_MEM_SIZE)) {
476         stl_le_p(s->mem + addr, val);
477     }
478 }
479 
480 static inline uint32_t ne2000_mem_readb(NE2000State *s, uint32_t addr)
481 {
482     if (addr < 32 ||
483         (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
484         return s->mem[addr];
485     } else {
486         return 0xff;
487     }
488 }
489 
490 static inline uint32_t ne2000_mem_readw(NE2000State *s, uint32_t addr)
491 {
492     addr &= ~1; /* XXX: check exact behaviour if not even */
493     if (addr < 32 ||
494         (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
495         return le16_to_cpu(*(uint16_t *)(s->mem + addr));
496     } else {
497         return 0xffff;
498     }
499 }
500 
501 static inline uint32_t ne2000_mem_readl(NE2000State *s, uint32_t addr)
502 {
503     addr &= ~1; /* XXX: check exact behaviour if not even */
504     if (addr < 32
505         || (addr >= NE2000_PMEM_START
506             && addr + sizeof(uint32_t) <= NE2000_MEM_SIZE)) {
507         return ldl_le_p(s->mem + addr);
508     } else {
509         return 0xffffffff;
510     }
511 }
512 
513 static inline void ne2000_dma_update(NE2000State *s, int len)
514 {
515     s->rsar += len;
516     /* wrap */
517     /* XXX: check what to do if rsar > stop */
518     if (s->rsar == s->stop)
519         s->rsar = s->start;
520 
521     if (s->rcnt <= len) {
522         s->rcnt = 0;
523         /* signal end of transfer */
524         s->isr |= ENISR_RDC;
525         ne2000_update_irq(s);
526     } else {
527         s->rcnt -= len;
528     }
529 }
530 
531 static void ne2000_asic_ioport_write(void *opaque, uint32_t addr, uint32_t val)
532 {
533     NE2000State *s = opaque;
534 
535 #ifdef DEBUG_NE2000
536     printf("NE2000: asic write val=0x%04x\n", val);
537 #endif
538     if (s->rcnt == 0)
539         return;
540     if (s->dcfg & 0x01) {
541         /* 16 bit access */
542         ne2000_mem_writew(s, s->rsar, val);
543         ne2000_dma_update(s, 2);
544     } else {
545         /* 8 bit access */
546         ne2000_mem_writeb(s, s->rsar, val);
547         ne2000_dma_update(s, 1);
548     }
549 }
550 
551 static uint32_t ne2000_asic_ioport_read(void *opaque, uint32_t addr)
552 {
553     NE2000State *s = opaque;
554     int ret;
555 
556     if (s->dcfg & 0x01) {
557         /* 16 bit access */
558         ret = ne2000_mem_readw(s, s->rsar);
559         ne2000_dma_update(s, 2);
560     } else {
561         /* 8 bit access */
562         ret = ne2000_mem_readb(s, s->rsar);
563         ne2000_dma_update(s, 1);
564     }
565 #ifdef DEBUG_NE2000
566     printf("NE2000: asic read val=0x%04x\n", ret);
567 #endif
568     return ret;
569 }
570 
571 static void ne2000_asic_ioport_writel(void *opaque, uint32_t addr, uint32_t val)
572 {
573     NE2000State *s = opaque;
574 
575 #ifdef DEBUG_NE2000
576     printf("NE2000: asic writel val=0x%04x\n", val);
577 #endif
578     if (s->rcnt == 0)
579         return;
580     /* 32 bit access */
581     ne2000_mem_writel(s, s->rsar, val);
582     ne2000_dma_update(s, 4);
583 }
584 
585 static uint32_t ne2000_asic_ioport_readl(void *opaque, uint32_t addr)
586 {
587     NE2000State *s = opaque;
588     int ret;
589 
590     /* 32 bit access */
591     ret = ne2000_mem_readl(s, s->rsar);
592     ne2000_dma_update(s, 4);
593 #ifdef DEBUG_NE2000
594     printf("NE2000: asic readl val=0x%04x\n", ret);
595 #endif
596     return ret;
597 }
598 
599 static void ne2000_reset_ioport_write(void *opaque, uint32_t addr, uint32_t val)
600 {
601     /* nothing to do (end of reset pulse) */
602 }
603 
604 static uint32_t ne2000_reset_ioport_read(void *opaque, uint32_t addr)
605 {
606     NE2000State *s = opaque;
607     ne2000_reset(s);
608     return 0;
609 }
610 
611 static int ne2000_post_load(void* opaque, int version_id)
612 {
613     NE2000State* s = opaque;
614 
615     if (version_id < 2) {
616         s->rxcr = 0x0c;
617     }
618     return 0;
619 }
620 
621 const VMStateDescription vmstate_ne2000 = {
622     .name = "ne2000",
623     .version_id = 2,
624     .minimum_version_id = 0,
625     .post_load = ne2000_post_load,
626     .fields = (VMStateField[]) {
627         VMSTATE_UINT8_V(rxcr, NE2000State, 2),
628         VMSTATE_UINT8(cmd, NE2000State),
629         VMSTATE_UINT32(start, NE2000State),
630         VMSTATE_UINT32(stop, NE2000State),
631         VMSTATE_UINT8(boundary, NE2000State),
632         VMSTATE_UINT8(tsr, NE2000State),
633         VMSTATE_UINT8(tpsr, NE2000State),
634         VMSTATE_UINT16(tcnt, NE2000State),
635         VMSTATE_UINT16(rcnt, NE2000State),
636         VMSTATE_UINT32(rsar, NE2000State),
637         VMSTATE_UINT8(rsr, NE2000State),
638         VMSTATE_UINT8(isr, NE2000State),
639         VMSTATE_UINT8(dcfg, NE2000State),
640         VMSTATE_UINT8(imr, NE2000State),
641         VMSTATE_BUFFER(phys, NE2000State),
642         VMSTATE_UINT8(curpag, NE2000State),
643         VMSTATE_BUFFER(mult, NE2000State),
644         VMSTATE_UNUSED(4), /* was irq */
645         VMSTATE_BUFFER(mem, NE2000State),
646         VMSTATE_END_OF_LIST()
647     }
648 };
649 
650 static const VMStateDescription vmstate_pci_ne2000 = {
651     .name = "ne2000",
652     .version_id = 3,
653     .minimum_version_id = 3,
654     .fields = (VMStateField[]) {
655         VMSTATE_PCI_DEVICE(dev, PCINE2000State),
656         VMSTATE_STRUCT(ne2000, PCINE2000State, 0, vmstate_ne2000, NE2000State),
657         VMSTATE_END_OF_LIST()
658     }
659 };
660 
661 static uint64_t ne2000_read(void *opaque, hwaddr addr,
662                             unsigned size)
663 {
664     NE2000State *s = opaque;
665 
666     if (addr < 0x10 && size == 1) {
667         return ne2000_ioport_read(s, addr);
668     } else if (addr == 0x10) {
669         if (size <= 2) {
670             return ne2000_asic_ioport_read(s, addr);
671         } else {
672             return ne2000_asic_ioport_readl(s, addr);
673         }
674     } else if (addr == 0x1f && size == 1) {
675         return ne2000_reset_ioport_read(s, addr);
676     }
677     return ((uint64_t)1 << (size * 8)) - 1;
678 }
679 
680 static void ne2000_write(void *opaque, hwaddr addr,
681                          uint64_t data, unsigned size)
682 {
683     NE2000State *s = opaque;
684 
685     if (addr < 0x10 && size == 1) {
686         ne2000_ioport_write(s, addr, data);
687     } else if (addr == 0x10) {
688         if (size <= 2) {
689             ne2000_asic_ioport_write(s, addr, data);
690         } else {
691             ne2000_asic_ioport_writel(s, addr, data);
692         }
693     } else if (addr == 0x1f && size == 1) {
694         ne2000_reset_ioport_write(s, addr, data);
695     }
696 }
697 
698 static const MemoryRegionOps ne2000_ops = {
699     .read = ne2000_read,
700     .write = ne2000_write,
701     .endianness = DEVICE_LITTLE_ENDIAN,
702 };
703 
704 /***********************************************************/
705 /* PCI NE2000 definitions */
706 
707 void ne2000_setup_io(NE2000State *s, DeviceState *dev, unsigned size)
708 {
709     memory_region_init_io(&s->io, OBJECT(dev), &ne2000_ops, s, "ne2000", size);
710 }
711 
712 static NetClientInfo net_ne2000_info = {
713     .type = NET_CLIENT_DRIVER_NIC,
714     .size = sizeof(NICState),
715     .receive = ne2000_receive,
716 };
717 
718 static void pci_ne2000_realize(PCIDevice *pci_dev, Error **errp)
719 {
720     PCINE2000State *d = DO_UPCAST(PCINE2000State, dev, pci_dev);
721     NE2000State *s;
722     uint8_t *pci_conf;
723 
724     pci_conf = d->dev.config;
725     pci_conf[PCI_INTERRUPT_PIN] = 1; /* interrupt pin A */
726 
727     s = &d->ne2000;
728     ne2000_setup_io(s, DEVICE(pci_dev), 0x100);
729     pci_register_bar(&d->dev, 0, PCI_BASE_ADDRESS_SPACE_IO, &s->io);
730     s->irq = pci_allocate_irq(&d->dev);
731 
732     qemu_macaddr_default_if_unset(&s->c.macaddr);
733     ne2000_reset(s);
734 
735     s->nic = qemu_new_nic(&net_ne2000_info, &s->c,
736                           object_get_typename(OBJECT(pci_dev)), pci_dev->qdev.id, s);
737     qemu_format_nic_info_str(qemu_get_queue(s->nic), s->c.macaddr.a);
738 }
739 
740 static void pci_ne2000_exit(PCIDevice *pci_dev)
741 {
742     PCINE2000State *d = DO_UPCAST(PCINE2000State, dev, pci_dev);
743     NE2000State *s = &d->ne2000;
744 
745     qemu_del_nic(s->nic);
746     qemu_free_irq(s->irq);
747 }
748 
749 static void ne2000_instance_init(Object *obj)
750 {
751     PCIDevice *pci_dev = PCI_DEVICE(obj);
752     PCINE2000State *d = DO_UPCAST(PCINE2000State, dev, pci_dev);
753     NE2000State *s = &d->ne2000;
754 
755     device_add_bootindex_property(obj, &s->c.bootindex,
756                                   "bootindex", "/ethernet-phy@0",
757                                   &pci_dev->qdev, NULL);
758 }
759 
760 static Property ne2000_properties[] = {
761     DEFINE_NIC_PROPERTIES(PCINE2000State, ne2000.c),
762     DEFINE_PROP_END_OF_LIST(),
763 };
764 
765 static void ne2000_class_init(ObjectClass *klass, void *data)
766 {
767     DeviceClass *dc = DEVICE_CLASS(klass);
768     PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
769 
770     k->realize = pci_ne2000_realize;
771     k->exit = pci_ne2000_exit;
772     k->romfile = "efi-ne2k_pci.rom",
773     k->vendor_id = PCI_VENDOR_ID_REALTEK;
774     k->device_id = PCI_DEVICE_ID_REALTEK_8029;
775     k->class_id = PCI_CLASS_NETWORK_ETHERNET;
776     dc->vmsd = &vmstate_pci_ne2000;
777     dc->props = ne2000_properties;
778     set_bit(DEVICE_CATEGORY_NETWORK, dc->categories);
779 }
780 
781 static const TypeInfo ne2000_info = {
782     .name          = "ne2k_pci",
783     .parent        = TYPE_PCI_DEVICE,
784     .instance_size = sizeof(PCINE2000State),
785     .class_init    = ne2000_class_init,
786     .instance_init = ne2000_instance_init,
787     .interfaces = (InterfaceInfo[]) {
788         { INTERFACE_CONVENTIONAL_PCI_DEVICE },
789         { },
790     },
791 };
792 
793 static void ne2000_register_types(void)
794 {
795     type_register_static(&ne2000_info);
796 }
797 
798 type_init(ne2000_register_types)
799