1 /* 2 * QEMU NE2000 emulation 3 * 4 * Copyright (c) 2003-2004 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "net/eth.h" 27 #include "qemu/module.h" 28 #include "exec/memory.h" 29 #include "hw/irq.h" 30 #include "migration/vmstate.h" 31 #include "ne2000.h" 32 #include "trace.h" 33 34 /* debug NE2000 card */ 35 //#define DEBUG_NE2000 36 37 #define MAX_ETH_FRAME_SIZE 1514 38 39 #define E8390_CMD 0x00 /* The command register (for all pages) */ 40 /* Page 0 register offsets. */ 41 #define EN0_CLDALO 0x01 /* Low byte of current local dma addr RD */ 42 #define EN0_STARTPG 0x01 /* Starting page of ring bfr WR */ 43 #define EN0_CLDAHI 0x02 /* High byte of current local dma addr RD */ 44 #define EN0_STOPPG 0x02 /* Ending page +1 of ring bfr WR */ 45 #define EN0_BOUNDARY 0x03 /* Boundary page of ring bfr RD WR */ 46 #define EN0_TSR 0x04 /* Transmit status reg RD */ 47 #define EN0_TPSR 0x04 /* Transmit starting page WR */ 48 #define EN0_NCR 0x05 /* Number of collision reg RD */ 49 #define EN0_TCNTLO 0x05 /* Low byte of tx byte count WR */ 50 #define EN0_FIFO 0x06 /* FIFO RD */ 51 #define EN0_TCNTHI 0x06 /* High byte of tx byte count WR */ 52 #define EN0_ISR 0x07 /* Interrupt status reg RD WR */ 53 #define EN0_CRDALO 0x08 /* low byte of current remote dma address RD */ 54 #define EN0_RSARLO 0x08 /* Remote start address reg 0 */ 55 #define EN0_CRDAHI 0x09 /* high byte, current remote dma address RD */ 56 #define EN0_RSARHI 0x09 /* Remote start address reg 1 */ 57 #define EN0_RCNTLO 0x0a /* Remote byte count reg WR */ 58 #define EN0_RTL8029ID0 0x0a /* Realtek ID byte #1 RD */ 59 #define EN0_RCNTHI 0x0b /* Remote byte count reg WR */ 60 #define EN0_RTL8029ID1 0x0b /* Realtek ID byte #2 RD */ 61 #define EN0_RSR 0x0c /* rx status reg RD */ 62 #define EN0_RXCR 0x0c /* RX configuration reg WR */ 63 #define EN0_TXCR 0x0d /* TX configuration reg WR */ 64 #define EN0_COUNTER0 0x0d /* Rcv alignment error counter RD */ 65 #define EN0_DCFG 0x0e /* Data configuration reg WR */ 66 #define EN0_COUNTER1 0x0e /* Rcv CRC error counter RD */ 67 #define EN0_IMR 0x0f /* Interrupt mask reg WR */ 68 #define EN0_COUNTER2 0x0f /* Rcv missed frame error counter RD */ 69 70 #define EN1_PHYS 0x11 71 #define EN1_CURPAG 0x17 72 #define EN1_MULT 0x18 73 74 #define EN2_STARTPG 0x21 /* Starting page of ring bfr RD */ 75 #define EN2_STOPPG 0x22 /* Ending page +1 of ring bfr RD */ 76 77 #define EN3_CONFIG0 0x33 78 #define EN3_CONFIG1 0x34 79 #define EN3_CONFIG2 0x35 80 #define EN3_CONFIG3 0x36 81 82 /* Register accessed at EN_CMD, the 8390 base addr. */ 83 #define E8390_STOP 0x01 /* Stop and reset the chip */ 84 #define E8390_START 0x02 /* Start the chip, clear reset */ 85 #define E8390_TRANS 0x04 /* Transmit a frame */ 86 #define E8390_RREAD 0x08 /* Remote read */ 87 #define E8390_RWRITE 0x10 /* Remote write */ 88 #define E8390_NODMA 0x20 /* Remote DMA */ 89 #define E8390_PAGE0 0x00 /* Select page chip registers */ 90 #define E8390_PAGE1 0x40 /* using the two high-order bits */ 91 #define E8390_PAGE2 0x80 /* Page 3 is invalid. */ 92 93 /* Bits in EN0_ISR - Interrupt status register */ 94 #define ENISR_RX 0x01 /* Receiver, no error */ 95 #define ENISR_TX 0x02 /* Transmitter, no error */ 96 #define ENISR_RX_ERR 0x04 /* Receiver, with error */ 97 #define ENISR_TX_ERR 0x08 /* Transmitter, with error */ 98 #define ENISR_OVER 0x10 /* Receiver overwrote the ring */ 99 #define ENISR_COUNTERS 0x20 /* Counters need emptying */ 100 #define ENISR_RDC 0x40 /* remote dma complete */ 101 #define ENISR_RESET 0x80 /* Reset completed */ 102 #define ENISR_ALL 0x3f /* Interrupts we will enable */ 103 104 /* Bits in received packet status byte and EN0_RSR*/ 105 #define ENRSR_RXOK 0x01 /* Received a good packet */ 106 #define ENRSR_CRC 0x02 /* CRC error */ 107 #define ENRSR_FAE 0x04 /* frame alignment error */ 108 #define ENRSR_FO 0x08 /* FIFO overrun */ 109 #define ENRSR_MPA 0x10 /* missed pkt */ 110 #define ENRSR_PHY 0x20 /* physical/multicast address */ 111 #define ENRSR_DIS 0x40 /* receiver disable. set in monitor mode */ 112 #define ENRSR_DEF 0x80 /* deferring */ 113 114 /* Transmitted packet status, EN0_TSR. */ 115 #define ENTSR_PTX 0x01 /* Packet transmitted without error */ 116 #define ENTSR_ND 0x02 /* The transmit wasn't deferred. */ 117 #define ENTSR_COL 0x04 /* The transmit collided at least once. */ 118 #define ENTSR_ABT 0x08 /* The transmit collided 16 times, and was deferred. */ 119 #define ENTSR_CRS 0x10 /* The carrier sense was lost. */ 120 #define ENTSR_FU 0x20 /* A "FIFO underrun" occurred during transmit. */ 121 #define ENTSR_CDH 0x40 /* The collision detect "heartbeat" signal was lost. */ 122 #define ENTSR_OWC 0x80 /* There was an out-of-window collision. */ 123 124 void ne2000_reset(NE2000State *s) 125 { 126 int i; 127 128 s->isr = ENISR_RESET; 129 memcpy(s->mem, &s->c.macaddr, 6); 130 s->mem[14] = 0x57; 131 s->mem[15] = 0x57; 132 133 /* duplicate prom data */ 134 for(i = 15;i >= 0; i--) { 135 s->mem[2 * i] = s->mem[i]; 136 s->mem[2 * i + 1] = s->mem[i]; 137 } 138 } 139 140 static void ne2000_update_irq(NE2000State *s) 141 { 142 int isr; 143 isr = (s->isr & s->imr) & 0x7f; 144 #if defined(DEBUG_NE2000) 145 printf("NE2000: Set IRQ to %d (%02x %02x)\n", 146 isr ? 1 : 0, s->isr, s->imr); 147 #endif 148 qemu_set_irq(s->irq, (isr != 0)); 149 } 150 151 static int ne2000_buffer_full(NE2000State *s) 152 { 153 int avail, index, boundary; 154 155 if (s->stop <= s->start) { 156 return 1; 157 } 158 159 index = s->curpag << 8; 160 boundary = s->boundary << 8; 161 if (index < boundary) 162 avail = boundary - index; 163 else 164 avail = (s->stop - s->start) - (index - boundary); 165 if (avail < (MAX_ETH_FRAME_SIZE + 4)) 166 return 1; 167 return 0; 168 } 169 170 #define MIN_BUF_SIZE 60 171 172 ssize_t ne2000_receive(NetClientState *nc, const uint8_t *buf, size_t size_) 173 { 174 NE2000State *s = qemu_get_nic_opaque(nc); 175 size_t size = size_; 176 uint8_t *p; 177 unsigned int total_len, next, avail, len, index, mcast_idx; 178 uint8_t buf1[60]; 179 static const uint8_t broadcast_macaddr[6] = 180 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 181 182 #if defined(DEBUG_NE2000) 183 printf("NE2000: received len=%zu\n", size); 184 #endif 185 186 if (s->cmd & E8390_STOP || ne2000_buffer_full(s)) 187 return -1; 188 189 /* XXX: check this */ 190 if (s->rxcr & 0x10) { 191 /* promiscuous: receive all */ 192 } else { 193 if (!memcmp(buf, broadcast_macaddr, 6)) { 194 /* broadcast address */ 195 if (!(s->rxcr & 0x04)) 196 return size; 197 } else if (buf[0] & 0x01) { 198 /* multicast */ 199 if (!(s->rxcr & 0x08)) 200 return size; 201 mcast_idx = net_crc32(buf, ETH_ALEN) >> 26; 202 if (!(s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7)))) 203 return size; 204 } else if (s->mem[0] == buf[0] && 205 s->mem[2] == buf[1] && 206 s->mem[4] == buf[2] && 207 s->mem[6] == buf[3] && 208 s->mem[8] == buf[4] && 209 s->mem[10] == buf[5]) { 210 /* match */ 211 } else { 212 return size; 213 } 214 } 215 216 217 /* if too small buffer, then expand it */ 218 if (size < MIN_BUF_SIZE) { 219 memcpy(buf1, buf, size); 220 memset(buf1 + size, 0, MIN_BUF_SIZE - size); 221 buf = buf1; 222 size = MIN_BUF_SIZE; 223 } 224 225 index = s->curpag << 8; 226 if (index >= NE2000_PMEM_END) { 227 index = s->start; 228 } 229 /* 4 bytes for header */ 230 total_len = size + 4; 231 /* address for next packet (4 bytes for CRC) */ 232 next = index + ((total_len + 4 + 255) & ~0xff); 233 if (next >= s->stop) 234 next -= (s->stop - s->start); 235 /* prepare packet header */ 236 p = s->mem + index; 237 s->rsr = ENRSR_RXOK; /* receive status */ 238 /* XXX: check this */ 239 if (buf[0] & 0x01) 240 s->rsr |= ENRSR_PHY; 241 p[0] = s->rsr; 242 p[1] = next >> 8; 243 p[2] = total_len; 244 p[3] = total_len >> 8; 245 index += 4; 246 247 /* write packet data */ 248 while (size > 0) { 249 if (index <= s->stop) 250 avail = s->stop - index; 251 else 252 break; 253 len = size; 254 if (len > avail) 255 len = avail; 256 memcpy(s->mem + index, buf, len); 257 buf += len; 258 index += len; 259 if (index == s->stop) 260 index = s->start; 261 size -= len; 262 } 263 s->curpag = next >> 8; 264 265 /* now we can signal we have received something */ 266 s->isr |= ENISR_RX; 267 ne2000_update_irq(s); 268 269 return size_; 270 } 271 272 static void ne2000_ioport_write(void *opaque, uint32_t addr, uint32_t val) 273 { 274 NE2000State *s = opaque; 275 int offset, page, index; 276 277 addr &= 0xf; 278 trace_ne2000_ioport_write(addr, val); 279 if (addr == E8390_CMD) { 280 /* control register */ 281 s->cmd = val; 282 if (!(val & E8390_STOP)) { /* START bit makes no sense on RTL8029... */ 283 s->isr &= ~ENISR_RESET; 284 /* test specific case: zero length transfer */ 285 if ((val & (E8390_RREAD | E8390_RWRITE)) && 286 s->rcnt == 0) { 287 s->isr |= ENISR_RDC; 288 ne2000_update_irq(s); 289 } 290 if (val & E8390_TRANS) { 291 index = (s->tpsr << 8); 292 /* XXX: next 2 lines are a hack to make netware 3.11 work */ 293 if (index >= NE2000_PMEM_END) 294 index -= NE2000_PMEM_SIZE; 295 /* fail safe: check range on the transmitted length */ 296 if (index + s->tcnt <= NE2000_PMEM_END) { 297 qemu_send_packet(qemu_get_queue(s->nic), s->mem + index, 298 s->tcnt); 299 } 300 /* signal end of transfer */ 301 s->tsr = ENTSR_PTX; 302 s->isr |= ENISR_TX; 303 s->cmd &= ~E8390_TRANS; 304 ne2000_update_irq(s); 305 } 306 } 307 } else { 308 page = s->cmd >> 6; 309 offset = addr | (page << 4); 310 switch(offset) { 311 case EN0_STARTPG: 312 if (val << 8 <= NE2000_PMEM_END) { 313 s->start = val << 8; 314 } 315 break; 316 case EN0_STOPPG: 317 if (val << 8 <= NE2000_PMEM_END) { 318 s->stop = val << 8; 319 } 320 break; 321 case EN0_BOUNDARY: 322 if (val << 8 < NE2000_PMEM_END) { 323 s->boundary = val; 324 } 325 break; 326 case EN0_IMR: 327 s->imr = val; 328 ne2000_update_irq(s); 329 break; 330 case EN0_TPSR: 331 s->tpsr = val; 332 break; 333 case EN0_TCNTLO: 334 s->tcnt = (s->tcnt & 0xff00) | val; 335 break; 336 case EN0_TCNTHI: 337 s->tcnt = (s->tcnt & 0x00ff) | (val << 8); 338 break; 339 case EN0_RSARLO: 340 s->rsar = (s->rsar & 0xff00) | val; 341 break; 342 case EN0_RSARHI: 343 s->rsar = (s->rsar & 0x00ff) | (val << 8); 344 break; 345 case EN0_RCNTLO: 346 s->rcnt = (s->rcnt & 0xff00) | val; 347 break; 348 case EN0_RCNTHI: 349 s->rcnt = (s->rcnt & 0x00ff) | (val << 8); 350 break; 351 case EN0_RXCR: 352 s->rxcr = val; 353 break; 354 case EN0_DCFG: 355 s->dcfg = val; 356 break; 357 case EN0_ISR: 358 s->isr &= ~(val & 0x7f); 359 ne2000_update_irq(s); 360 break; 361 case EN1_PHYS ... EN1_PHYS + 5: 362 s->phys[offset - EN1_PHYS] = val; 363 break; 364 case EN1_CURPAG: 365 if (val << 8 < NE2000_PMEM_END) { 366 s->curpag = val; 367 } 368 break; 369 case EN1_MULT ... EN1_MULT + 7: 370 s->mult[offset - EN1_MULT] = val; 371 break; 372 } 373 } 374 } 375 376 static uint32_t ne2000_ioport_read(void *opaque, uint32_t addr) 377 { 378 NE2000State *s = opaque; 379 int offset, page, ret; 380 381 addr &= 0xf; 382 if (addr == E8390_CMD) { 383 ret = s->cmd; 384 } else { 385 page = s->cmd >> 6; 386 offset = addr | (page << 4); 387 switch(offset) { 388 case EN0_TSR: 389 ret = s->tsr; 390 break; 391 case EN0_BOUNDARY: 392 ret = s->boundary; 393 break; 394 case EN0_ISR: 395 ret = s->isr; 396 break; 397 case EN0_RSARLO: 398 ret = s->rsar & 0x00ff; 399 break; 400 case EN0_RSARHI: 401 ret = s->rsar >> 8; 402 break; 403 case EN1_PHYS ... EN1_PHYS + 5: 404 ret = s->phys[offset - EN1_PHYS]; 405 break; 406 case EN1_CURPAG: 407 ret = s->curpag; 408 break; 409 case EN1_MULT ... EN1_MULT + 7: 410 ret = s->mult[offset - EN1_MULT]; 411 break; 412 case EN0_RSR: 413 ret = s->rsr; 414 break; 415 case EN2_STARTPG: 416 ret = s->start >> 8; 417 break; 418 case EN2_STOPPG: 419 ret = s->stop >> 8; 420 break; 421 case EN0_RTL8029ID0: 422 ret = 0x50; 423 break; 424 case EN0_RTL8029ID1: 425 ret = 0x43; 426 break; 427 case EN3_CONFIG0: 428 ret = 0; /* 10baseT media */ 429 break; 430 case EN3_CONFIG2: 431 ret = 0x40; /* 10baseT active */ 432 break; 433 case EN3_CONFIG3: 434 ret = 0x40; /* Full duplex */ 435 break; 436 default: 437 ret = 0x00; 438 break; 439 } 440 } 441 trace_ne2000_ioport_read(addr, ret); 442 return ret; 443 } 444 445 static inline void ne2000_mem_writeb(NE2000State *s, uint32_t addr, 446 uint32_t val) 447 { 448 if (addr < 32 || 449 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) { 450 s->mem[addr] = val; 451 } 452 } 453 454 static inline void ne2000_mem_writew(NE2000State *s, uint32_t addr, 455 uint32_t val) 456 { 457 addr &= ~1; /* XXX: check exact behaviour if not even */ 458 if (addr < 32 || 459 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) { 460 *(uint16_t *)(s->mem + addr) = cpu_to_le16(val); 461 } 462 } 463 464 static inline void ne2000_mem_writel(NE2000State *s, uint32_t addr, 465 uint32_t val) 466 { 467 addr &= ~1; /* XXX: check exact behaviour if not even */ 468 if (addr < 32 469 || (addr >= NE2000_PMEM_START 470 && addr + sizeof(uint32_t) <= NE2000_MEM_SIZE)) { 471 stl_le_p(s->mem + addr, val); 472 } 473 } 474 475 static inline uint32_t ne2000_mem_readb(NE2000State *s, uint32_t addr) 476 { 477 if (addr < 32 || 478 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) { 479 return s->mem[addr]; 480 } else { 481 return 0xff; 482 } 483 } 484 485 static inline uint32_t ne2000_mem_readw(NE2000State *s, uint32_t addr) 486 { 487 addr &= ~1; /* XXX: check exact behaviour if not even */ 488 if (addr < 32 || 489 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) { 490 return le16_to_cpu(*(uint16_t *)(s->mem + addr)); 491 } else { 492 return 0xffff; 493 } 494 } 495 496 static inline uint32_t ne2000_mem_readl(NE2000State *s, uint32_t addr) 497 { 498 addr &= ~1; /* XXX: check exact behaviour if not even */ 499 if (addr < 32 500 || (addr >= NE2000_PMEM_START 501 && addr + sizeof(uint32_t) <= NE2000_MEM_SIZE)) { 502 return ldl_le_p(s->mem + addr); 503 } else { 504 return 0xffffffff; 505 } 506 } 507 508 static inline void ne2000_dma_update(NE2000State *s, int len) 509 { 510 s->rsar += len; 511 /* wrap */ 512 /* XXX: check what to do if rsar > stop */ 513 if (s->rsar == s->stop) 514 s->rsar = s->start; 515 516 if (s->rcnt <= len) { 517 s->rcnt = 0; 518 /* signal end of transfer */ 519 s->isr |= ENISR_RDC; 520 ne2000_update_irq(s); 521 } else { 522 s->rcnt -= len; 523 } 524 } 525 526 static void ne2000_asic_ioport_write(void *opaque, uint32_t addr, uint32_t val) 527 { 528 NE2000State *s = opaque; 529 530 #ifdef DEBUG_NE2000 531 printf("NE2000: asic write val=0x%04x\n", val); 532 #endif 533 if (s->rcnt == 0) 534 return; 535 if (s->dcfg & 0x01) { 536 /* 16 bit access */ 537 ne2000_mem_writew(s, s->rsar, val); 538 ne2000_dma_update(s, 2); 539 } else { 540 /* 8 bit access */ 541 ne2000_mem_writeb(s, s->rsar, val); 542 ne2000_dma_update(s, 1); 543 } 544 } 545 546 static uint32_t ne2000_asic_ioport_read(void *opaque, uint32_t addr) 547 { 548 NE2000State *s = opaque; 549 int ret; 550 551 if (s->dcfg & 0x01) { 552 /* 16 bit access */ 553 ret = ne2000_mem_readw(s, s->rsar); 554 ne2000_dma_update(s, 2); 555 } else { 556 /* 8 bit access */ 557 ret = ne2000_mem_readb(s, s->rsar); 558 ne2000_dma_update(s, 1); 559 } 560 #ifdef DEBUG_NE2000 561 printf("NE2000: asic read val=0x%04x\n", ret); 562 #endif 563 return ret; 564 } 565 566 static void ne2000_asic_ioport_writel(void *opaque, uint32_t addr, uint32_t val) 567 { 568 NE2000State *s = opaque; 569 570 #ifdef DEBUG_NE2000 571 printf("NE2000: asic writel val=0x%04x\n", val); 572 #endif 573 if (s->rcnt == 0) 574 return; 575 /* 32 bit access */ 576 ne2000_mem_writel(s, s->rsar, val); 577 ne2000_dma_update(s, 4); 578 } 579 580 static uint32_t ne2000_asic_ioport_readl(void *opaque, uint32_t addr) 581 { 582 NE2000State *s = opaque; 583 int ret; 584 585 /* 32 bit access */ 586 ret = ne2000_mem_readl(s, s->rsar); 587 ne2000_dma_update(s, 4); 588 #ifdef DEBUG_NE2000 589 printf("NE2000: asic readl val=0x%04x\n", ret); 590 #endif 591 return ret; 592 } 593 594 static void ne2000_reset_ioport_write(void *opaque, uint32_t addr, uint32_t val) 595 { 596 /* nothing to do (end of reset pulse) */ 597 } 598 599 static uint32_t ne2000_reset_ioport_read(void *opaque, uint32_t addr) 600 { 601 NE2000State *s = opaque; 602 ne2000_reset(s); 603 return 0; 604 } 605 606 static int ne2000_post_load(void* opaque, int version_id) 607 { 608 NE2000State* s = opaque; 609 610 if (version_id < 2) { 611 s->rxcr = 0x0c; 612 } 613 return 0; 614 } 615 616 const VMStateDescription vmstate_ne2000 = { 617 .name = "ne2000", 618 .version_id = 2, 619 .minimum_version_id = 0, 620 .post_load = ne2000_post_load, 621 .fields = (VMStateField[]) { 622 VMSTATE_UINT8_V(rxcr, NE2000State, 2), 623 VMSTATE_UINT8(cmd, NE2000State), 624 VMSTATE_UINT32(start, NE2000State), 625 VMSTATE_UINT32(stop, NE2000State), 626 VMSTATE_UINT8(boundary, NE2000State), 627 VMSTATE_UINT8(tsr, NE2000State), 628 VMSTATE_UINT8(tpsr, NE2000State), 629 VMSTATE_UINT16(tcnt, NE2000State), 630 VMSTATE_UINT16(rcnt, NE2000State), 631 VMSTATE_UINT32(rsar, NE2000State), 632 VMSTATE_UINT8(rsr, NE2000State), 633 VMSTATE_UINT8(isr, NE2000State), 634 VMSTATE_UINT8(dcfg, NE2000State), 635 VMSTATE_UINT8(imr, NE2000State), 636 VMSTATE_BUFFER(phys, NE2000State), 637 VMSTATE_UINT8(curpag, NE2000State), 638 VMSTATE_BUFFER(mult, NE2000State), 639 VMSTATE_UNUSED(4), /* was irq */ 640 VMSTATE_BUFFER(mem, NE2000State), 641 VMSTATE_END_OF_LIST() 642 } 643 }; 644 645 static uint64_t ne2000_read(void *opaque, hwaddr addr, 646 unsigned size) 647 { 648 NE2000State *s = opaque; 649 uint64_t val; 650 651 if (addr < 0x10 && size == 1) { 652 val = ne2000_ioport_read(s, addr); 653 } else if (addr == 0x10) { 654 if (size <= 2) { 655 val = ne2000_asic_ioport_read(s, addr); 656 } else { 657 val = ne2000_asic_ioport_readl(s, addr); 658 } 659 } else if (addr == 0x1f && size == 1) { 660 val = ne2000_reset_ioport_read(s, addr); 661 } else { 662 val = ((uint64_t)1 << (size * 8)) - 1; 663 } 664 trace_ne2000_read(addr, val); 665 666 return val; 667 } 668 669 static void ne2000_write(void *opaque, hwaddr addr, 670 uint64_t data, unsigned size) 671 { 672 NE2000State *s = opaque; 673 674 trace_ne2000_write(addr, data); 675 if (addr < 0x10 && size == 1) { 676 ne2000_ioport_write(s, addr, data); 677 } else if (addr == 0x10) { 678 if (size <= 2) { 679 ne2000_asic_ioport_write(s, addr, data); 680 } else { 681 ne2000_asic_ioport_writel(s, addr, data); 682 } 683 } else if (addr == 0x1f && size == 1) { 684 ne2000_reset_ioport_write(s, addr, data); 685 } 686 } 687 688 static const MemoryRegionOps ne2000_ops = { 689 .read = ne2000_read, 690 .write = ne2000_write, 691 .endianness = DEVICE_LITTLE_ENDIAN, 692 }; 693 694 /***********************************************************/ 695 /* PCI NE2000 definitions */ 696 697 void ne2000_setup_io(NE2000State *s, DeviceState *dev, unsigned size) 698 { 699 memory_region_init_io(&s->io, OBJECT(dev), &ne2000_ops, s, "ne2000", size); 700 } 701