xref: /openbmc/qemu/hw/net/ne2000.c (revision b45c03f5)
1 /*
2  * QEMU NE2000 emulation
3  *
4  * Copyright (c) 2003-2004 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 #include "hw/hw.h"
25 #include "hw/pci/pci.h"
26 #include "net/net.h"
27 #include "ne2000.h"
28 #include "hw/loader.h"
29 #include "sysemu/sysemu.h"
30 
31 /* debug NE2000 card */
32 //#define DEBUG_NE2000
33 
34 #define MAX_ETH_FRAME_SIZE 1514
35 
36 #define E8390_CMD	0x00  /* The command register (for all pages) */
37 /* Page 0 register offsets. */
38 #define EN0_CLDALO	0x01	/* Low byte of current local dma addr  RD */
39 #define EN0_STARTPG	0x01	/* Starting page of ring bfr WR */
40 #define EN0_CLDAHI	0x02	/* High byte of current local dma addr  RD */
41 #define EN0_STOPPG	0x02	/* Ending page +1 of ring bfr WR */
42 #define EN0_BOUNDARY	0x03	/* Boundary page of ring bfr RD WR */
43 #define EN0_TSR		0x04	/* Transmit status reg RD */
44 #define EN0_TPSR	0x04	/* Transmit starting page WR */
45 #define EN0_NCR		0x05	/* Number of collision reg RD */
46 #define EN0_TCNTLO	0x05	/* Low  byte of tx byte count WR */
47 #define EN0_FIFO	0x06	/* FIFO RD */
48 #define EN0_TCNTHI	0x06	/* High byte of tx byte count WR */
49 #define EN0_ISR		0x07	/* Interrupt status reg RD WR */
50 #define EN0_CRDALO	0x08	/* low byte of current remote dma address RD */
51 #define EN0_RSARLO	0x08	/* Remote start address reg 0 */
52 #define EN0_CRDAHI	0x09	/* high byte, current remote dma address RD */
53 #define EN0_RSARHI	0x09	/* Remote start address reg 1 */
54 #define EN0_RCNTLO	0x0a	/* Remote byte count reg WR */
55 #define EN0_RTL8029ID0	0x0a	/* Realtek ID byte #1 RD */
56 #define EN0_RCNTHI	0x0b	/* Remote byte count reg WR */
57 #define EN0_RTL8029ID1	0x0b	/* Realtek ID byte #2 RD */
58 #define EN0_RSR		0x0c	/* rx status reg RD */
59 #define EN0_RXCR	0x0c	/* RX configuration reg WR */
60 #define EN0_TXCR	0x0d	/* TX configuration reg WR */
61 #define EN0_COUNTER0	0x0d	/* Rcv alignment error counter RD */
62 #define EN0_DCFG	0x0e	/* Data configuration reg WR */
63 #define EN0_COUNTER1	0x0e	/* Rcv CRC error counter RD */
64 #define EN0_IMR		0x0f	/* Interrupt mask reg WR */
65 #define EN0_COUNTER2	0x0f	/* Rcv missed frame error counter RD */
66 
67 #define EN1_PHYS        0x11
68 #define EN1_CURPAG      0x17
69 #define EN1_MULT        0x18
70 
71 #define EN2_STARTPG	0x21	/* Starting page of ring bfr RD */
72 #define EN2_STOPPG	0x22	/* Ending page +1 of ring bfr RD */
73 
74 #define EN3_CONFIG0	0x33
75 #define EN3_CONFIG1	0x34
76 #define EN3_CONFIG2	0x35
77 #define EN3_CONFIG3	0x36
78 
79 /*  Register accessed at EN_CMD, the 8390 base addr.  */
80 #define E8390_STOP	0x01	/* Stop and reset the chip */
81 #define E8390_START	0x02	/* Start the chip, clear reset */
82 #define E8390_TRANS	0x04	/* Transmit a frame */
83 #define E8390_RREAD	0x08	/* Remote read */
84 #define E8390_RWRITE	0x10	/* Remote write  */
85 #define E8390_NODMA	0x20	/* Remote DMA */
86 #define E8390_PAGE0	0x00	/* Select page chip registers */
87 #define E8390_PAGE1	0x40	/* using the two high-order bits */
88 #define E8390_PAGE2	0x80	/* Page 3 is invalid. */
89 
90 /* Bits in EN0_ISR - Interrupt status register */
91 #define ENISR_RX	0x01	/* Receiver, no error */
92 #define ENISR_TX	0x02	/* Transmitter, no error */
93 #define ENISR_RX_ERR	0x04	/* Receiver, with error */
94 #define ENISR_TX_ERR	0x08	/* Transmitter, with error */
95 #define ENISR_OVER	0x10	/* Receiver overwrote the ring */
96 #define ENISR_COUNTERS	0x20	/* Counters need emptying */
97 #define ENISR_RDC	0x40	/* remote dma complete */
98 #define ENISR_RESET	0x80	/* Reset completed */
99 #define ENISR_ALL	0x3f	/* Interrupts we will enable */
100 
101 /* Bits in received packet status byte and EN0_RSR*/
102 #define ENRSR_RXOK	0x01	/* Received a good packet */
103 #define ENRSR_CRC	0x02	/* CRC error */
104 #define ENRSR_FAE	0x04	/* frame alignment error */
105 #define ENRSR_FO	0x08	/* FIFO overrun */
106 #define ENRSR_MPA	0x10	/* missed pkt */
107 #define ENRSR_PHY	0x20	/* physical/multicast address */
108 #define ENRSR_DIS	0x40	/* receiver disable. set in monitor mode */
109 #define ENRSR_DEF	0x80	/* deferring */
110 
111 /* Transmitted packet status, EN0_TSR. */
112 #define ENTSR_PTX 0x01	/* Packet transmitted without error */
113 #define ENTSR_ND  0x02	/* The transmit wasn't deferred. */
114 #define ENTSR_COL 0x04	/* The transmit collided at least once. */
115 #define ENTSR_ABT 0x08  /* The transmit collided 16 times, and was deferred. */
116 #define ENTSR_CRS 0x10	/* The carrier sense was lost. */
117 #define ENTSR_FU  0x20  /* A "FIFO underrun" occurred during transmit. */
118 #define ENTSR_CDH 0x40	/* The collision detect "heartbeat" signal was lost. */
119 #define ENTSR_OWC 0x80  /* There was an out-of-window collision. */
120 
121 typedef struct PCINE2000State {
122     PCIDevice dev;
123     NE2000State ne2000;
124 } PCINE2000State;
125 
126 void ne2000_reset(NE2000State *s)
127 {
128     int i;
129 
130     s->isr = ENISR_RESET;
131     memcpy(s->mem, &s->c.macaddr, 6);
132     s->mem[14] = 0x57;
133     s->mem[15] = 0x57;
134 
135     /* duplicate prom data */
136     for(i = 15;i >= 0; i--) {
137         s->mem[2 * i] = s->mem[i];
138         s->mem[2 * i + 1] = s->mem[i];
139     }
140 }
141 
142 static void ne2000_update_irq(NE2000State *s)
143 {
144     int isr;
145     isr = (s->isr & s->imr) & 0x7f;
146 #if defined(DEBUG_NE2000)
147     printf("NE2000: Set IRQ to %d (%02x %02x)\n",
148 	   isr ? 1 : 0, s->isr, s->imr);
149 #endif
150     qemu_set_irq(s->irq, (isr != 0));
151 }
152 
153 static int ne2000_buffer_full(NE2000State *s)
154 {
155     int avail, index, boundary;
156 
157     index = s->curpag << 8;
158     boundary = s->boundary << 8;
159     if (index < boundary)
160         avail = boundary - index;
161     else
162         avail = (s->stop - s->start) - (index - boundary);
163     if (avail < (MAX_ETH_FRAME_SIZE + 4))
164         return 1;
165     return 0;
166 }
167 
168 #define MIN_BUF_SIZE 60
169 
170 ssize_t ne2000_receive(NetClientState *nc, const uint8_t *buf, size_t size_)
171 {
172     NE2000State *s = qemu_get_nic_opaque(nc);
173     int size = size_;
174     uint8_t *p;
175     unsigned int total_len, next, avail, len, index, mcast_idx;
176     uint8_t buf1[60];
177     static const uint8_t broadcast_macaddr[6] =
178         { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
179 
180 #if defined(DEBUG_NE2000)
181     printf("NE2000: received len=%d\n", size);
182 #endif
183 
184     if (s->cmd & E8390_STOP || ne2000_buffer_full(s))
185         return -1;
186 
187     /* XXX: check this */
188     if (s->rxcr & 0x10) {
189         /* promiscuous: receive all */
190     } else {
191         if (!memcmp(buf,  broadcast_macaddr, 6)) {
192             /* broadcast address */
193             if (!(s->rxcr & 0x04))
194                 return size;
195         } else if (buf[0] & 0x01) {
196             /* multicast */
197             if (!(s->rxcr & 0x08))
198                 return size;
199             mcast_idx = compute_mcast_idx(buf);
200             if (!(s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))))
201                 return size;
202         } else if (s->mem[0] == buf[0] &&
203                    s->mem[2] == buf[1] &&
204                    s->mem[4] == buf[2] &&
205                    s->mem[6] == buf[3] &&
206                    s->mem[8] == buf[4] &&
207                    s->mem[10] == buf[5]) {
208             /* match */
209         } else {
210             return size;
211         }
212     }
213 
214 
215     /* if too small buffer, then expand it */
216     if (size < MIN_BUF_SIZE) {
217         memcpy(buf1, buf, size);
218         memset(buf1 + size, 0, MIN_BUF_SIZE - size);
219         buf = buf1;
220         size = MIN_BUF_SIZE;
221     }
222 
223     index = s->curpag << 8;
224     /* 4 bytes for header */
225     total_len = size + 4;
226     /* address for next packet (4 bytes for CRC) */
227     next = index + ((total_len + 4 + 255) & ~0xff);
228     if (next >= s->stop)
229         next -= (s->stop - s->start);
230     /* prepare packet header */
231     p = s->mem + index;
232     s->rsr = ENRSR_RXOK; /* receive status */
233     /* XXX: check this */
234     if (buf[0] & 0x01)
235         s->rsr |= ENRSR_PHY;
236     p[0] = s->rsr;
237     p[1] = next >> 8;
238     p[2] = total_len;
239     p[3] = total_len >> 8;
240     index += 4;
241 
242     /* write packet data */
243     while (size > 0) {
244         if (index <= s->stop)
245             avail = s->stop - index;
246         else
247             avail = 0;
248         len = size;
249         if (len > avail)
250             len = avail;
251         memcpy(s->mem + index, buf, len);
252         buf += len;
253         index += len;
254         if (index == s->stop)
255             index = s->start;
256         size -= len;
257     }
258     s->curpag = next >> 8;
259 
260     /* now we can signal we have received something */
261     s->isr |= ENISR_RX;
262     ne2000_update_irq(s);
263 
264     return size_;
265 }
266 
267 static void ne2000_ioport_write(void *opaque, uint32_t addr, uint32_t val)
268 {
269     NE2000State *s = opaque;
270     int offset, page, index;
271 
272     addr &= 0xf;
273 #ifdef DEBUG_NE2000
274     printf("NE2000: write addr=0x%x val=0x%02x\n", addr, val);
275 #endif
276     if (addr == E8390_CMD) {
277         /* control register */
278         s->cmd = val;
279         if (!(val & E8390_STOP)) { /* START bit makes no sense on RTL8029... */
280             s->isr &= ~ENISR_RESET;
281             /* test specific case: zero length transfer */
282             if ((val & (E8390_RREAD | E8390_RWRITE)) &&
283                 s->rcnt == 0) {
284                 s->isr |= ENISR_RDC;
285                 ne2000_update_irq(s);
286             }
287             if (val & E8390_TRANS) {
288                 index = (s->tpsr << 8);
289                 /* XXX: next 2 lines are a hack to make netware 3.11 work */
290                 if (index >= NE2000_PMEM_END)
291                     index -= NE2000_PMEM_SIZE;
292                 /* fail safe: check range on the transmitted length  */
293                 if (index + s->tcnt <= NE2000_PMEM_END) {
294                     qemu_send_packet(qemu_get_queue(s->nic), s->mem + index,
295                                      s->tcnt);
296                 }
297                 /* signal end of transfer */
298                 s->tsr = ENTSR_PTX;
299                 s->isr |= ENISR_TX;
300                 s->cmd &= ~E8390_TRANS;
301                 ne2000_update_irq(s);
302             }
303         }
304     } else {
305         page = s->cmd >> 6;
306         offset = addr | (page << 4);
307         switch(offset) {
308         case EN0_STARTPG:
309             s->start = val << 8;
310             break;
311         case EN0_STOPPG:
312             s->stop = val << 8;
313             break;
314         case EN0_BOUNDARY:
315             s->boundary = val;
316             break;
317         case EN0_IMR:
318             s->imr = val;
319             ne2000_update_irq(s);
320             break;
321         case EN0_TPSR:
322             s->tpsr = val;
323             break;
324         case EN0_TCNTLO:
325             s->tcnt = (s->tcnt & 0xff00) | val;
326             break;
327         case EN0_TCNTHI:
328             s->tcnt = (s->tcnt & 0x00ff) | (val << 8);
329             break;
330         case EN0_RSARLO:
331             s->rsar = (s->rsar & 0xff00) | val;
332             break;
333         case EN0_RSARHI:
334             s->rsar = (s->rsar & 0x00ff) | (val << 8);
335             break;
336         case EN0_RCNTLO:
337             s->rcnt = (s->rcnt & 0xff00) | val;
338             break;
339         case EN0_RCNTHI:
340             s->rcnt = (s->rcnt & 0x00ff) | (val << 8);
341             break;
342         case EN0_RXCR:
343             s->rxcr = val;
344             break;
345         case EN0_DCFG:
346             s->dcfg = val;
347             break;
348         case EN0_ISR:
349             s->isr &= ~(val & 0x7f);
350             ne2000_update_irq(s);
351             break;
352         case EN1_PHYS ... EN1_PHYS + 5:
353             s->phys[offset - EN1_PHYS] = val;
354             break;
355         case EN1_CURPAG:
356             s->curpag = val;
357             break;
358         case EN1_MULT ... EN1_MULT + 7:
359             s->mult[offset - EN1_MULT] = val;
360             break;
361         }
362     }
363 }
364 
365 static uint32_t ne2000_ioport_read(void *opaque, uint32_t addr)
366 {
367     NE2000State *s = opaque;
368     int offset, page, ret;
369 
370     addr &= 0xf;
371     if (addr == E8390_CMD) {
372         ret = s->cmd;
373     } else {
374         page = s->cmd >> 6;
375         offset = addr | (page << 4);
376         switch(offset) {
377         case EN0_TSR:
378             ret = s->tsr;
379             break;
380         case EN0_BOUNDARY:
381             ret = s->boundary;
382             break;
383         case EN0_ISR:
384             ret = s->isr;
385             break;
386 	case EN0_RSARLO:
387 	    ret = s->rsar & 0x00ff;
388 	    break;
389 	case EN0_RSARHI:
390 	    ret = s->rsar >> 8;
391 	    break;
392         case EN1_PHYS ... EN1_PHYS + 5:
393             ret = s->phys[offset - EN1_PHYS];
394             break;
395         case EN1_CURPAG:
396             ret = s->curpag;
397             break;
398         case EN1_MULT ... EN1_MULT + 7:
399             ret = s->mult[offset - EN1_MULT];
400             break;
401         case EN0_RSR:
402             ret = s->rsr;
403             break;
404         case EN2_STARTPG:
405             ret = s->start >> 8;
406             break;
407         case EN2_STOPPG:
408             ret = s->stop >> 8;
409             break;
410 	case EN0_RTL8029ID0:
411 	    ret = 0x50;
412 	    break;
413 	case EN0_RTL8029ID1:
414 	    ret = 0x43;
415 	    break;
416 	case EN3_CONFIG0:
417 	    ret = 0;		/* 10baseT media */
418 	    break;
419 	case EN3_CONFIG2:
420 	    ret = 0x40;		/* 10baseT active */
421 	    break;
422 	case EN3_CONFIG3:
423 	    ret = 0x40;		/* Full duplex */
424 	    break;
425         default:
426             ret = 0x00;
427             break;
428         }
429     }
430 #ifdef DEBUG_NE2000
431     printf("NE2000: read addr=0x%x val=%02x\n", addr, ret);
432 #endif
433     return ret;
434 }
435 
436 static inline void ne2000_mem_writeb(NE2000State *s, uint32_t addr,
437                                      uint32_t val)
438 {
439     if (addr < 32 ||
440         (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
441         s->mem[addr] = val;
442     }
443 }
444 
445 static inline void ne2000_mem_writew(NE2000State *s, uint32_t addr,
446                                      uint32_t val)
447 {
448     addr &= ~1; /* XXX: check exact behaviour if not even */
449     if (addr < 32 ||
450         (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
451         *(uint16_t *)(s->mem + addr) = cpu_to_le16(val);
452     }
453 }
454 
455 static inline void ne2000_mem_writel(NE2000State *s, uint32_t addr,
456                                      uint32_t val)
457 {
458     addr &= ~1; /* XXX: check exact behaviour if not even */
459     if (addr < 32 ||
460         (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
461         stl_le_p(s->mem + addr, val);
462     }
463 }
464 
465 static inline uint32_t ne2000_mem_readb(NE2000State *s, uint32_t addr)
466 {
467     if (addr < 32 ||
468         (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
469         return s->mem[addr];
470     } else {
471         return 0xff;
472     }
473 }
474 
475 static inline uint32_t ne2000_mem_readw(NE2000State *s, uint32_t addr)
476 {
477     addr &= ~1; /* XXX: check exact behaviour if not even */
478     if (addr < 32 ||
479         (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
480         return le16_to_cpu(*(uint16_t *)(s->mem + addr));
481     } else {
482         return 0xffff;
483     }
484 }
485 
486 static inline uint32_t ne2000_mem_readl(NE2000State *s, uint32_t addr)
487 {
488     addr &= ~1; /* XXX: check exact behaviour if not even */
489     if (addr < 32 ||
490         (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
491         return ldl_le_p(s->mem + addr);
492     } else {
493         return 0xffffffff;
494     }
495 }
496 
497 static inline void ne2000_dma_update(NE2000State *s, int len)
498 {
499     s->rsar += len;
500     /* wrap */
501     /* XXX: check what to do if rsar > stop */
502     if (s->rsar == s->stop)
503         s->rsar = s->start;
504 
505     if (s->rcnt <= len) {
506         s->rcnt = 0;
507         /* signal end of transfer */
508         s->isr |= ENISR_RDC;
509         ne2000_update_irq(s);
510     } else {
511         s->rcnt -= len;
512     }
513 }
514 
515 static void ne2000_asic_ioport_write(void *opaque, uint32_t addr, uint32_t val)
516 {
517     NE2000State *s = opaque;
518 
519 #ifdef DEBUG_NE2000
520     printf("NE2000: asic write val=0x%04x\n", val);
521 #endif
522     if (s->rcnt == 0)
523         return;
524     if (s->dcfg & 0x01) {
525         /* 16 bit access */
526         ne2000_mem_writew(s, s->rsar, val);
527         ne2000_dma_update(s, 2);
528     } else {
529         /* 8 bit access */
530         ne2000_mem_writeb(s, s->rsar, val);
531         ne2000_dma_update(s, 1);
532     }
533 }
534 
535 static uint32_t ne2000_asic_ioport_read(void *opaque, uint32_t addr)
536 {
537     NE2000State *s = opaque;
538     int ret;
539 
540     if (s->dcfg & 0x01) {
541         /* 16 bit access */
542         ret = ne2000_mem_readw(s, s->rsar);
543         ne2000_dma_update(s, 2);
544     } else {
545         /* 8 bit access */
546         ret = ne2000_mem_readb(s, s->rsar);
547         ne2000_dma_update(s, 1);
548     }
549 #ifdef DEBUG_NE2000
550     printf("NE2000: asic read val=0x%04x\n", ret);
551 #endif
552     return ret;
553 }
554 
555 static void ne2000_asic_ioport_writel(void *opaque, uint32_t addr, uint32_t val)
556 {
557     NE2000State *s = opaque;
558 
559 #ifdef DEBUG_NE2000
560     printf("NE2000: asic writel val=0x%04x\n", val);
561 #endif
562     if (s->rcnt == 0)
563         return;
564     /* 32 bit access */
565     ne2000_mem_writel(s, s->rsar, val);
566     ne2000_dma_update(s, 4);
567 }
568 
569 static uint32_t ne2000_asic_ioport_readl(void *opaque, uint32_t addr)
570 {
571     NE2000State *s = opaque;
572     int ret;
573 
574     /* 32 bit access */
575     ret = ne2000_mem_readl(s, s->rsar);
576     ne2000_dma_update(s, 4);
577 #ifdef DEBUG_NE2000
578     printf("NE2000: asic readl val=0x%04x\n", ret);
579 #endif
580     return ret;
581 }
582 
583 static void ne2000_reset_ioport_write(void *opaque, uint32_t addr, uint32_t val)
584 {
585     /* nothing to do (end of reset pulse) */
586 }
587 
588 static uint32_t ne2000_reset_ioport_read(void *opaque, uint32_t addr)
589 {
590     NE2000State *s = opaque;
591     ne2000_reset(s);
592     return 0;
593 }
594 
595 static int ne2000_post_load(void* opaque, int version_id)
596 {
597     NE2000State* s = opaque;
598 
599     if (version_id < 2) {
600         s->rxcr = 0x0c;
601     }
602     return 0;
603 }
604 
605 const VMStateDescription vmstate_ne2000 = {
606     .name = "ne2000",
607     .version_id = 2,
608     .minimum_version_id = 0,
609     .post_load = ne2000_post_load,
610     .fields = (VMStateField[]) {
611         VMSTATE_UINT8_V(rxcr, NE2000State, 2),
612         VMSTATE_UINT8(cmd, NE2000State),
613         VMSTATE_UINT32(start, NE2000State),
614         VMSTATE_UINT32(stop, NE2000State),
615         VMSTATE_UINT8(boundary, NE2000State),
616         VMSTATE_UINT8(tsr, NE2000State),
617         VMSTATE_UINT8(tpsr, NE2000State),
618         VMSTATE_UINT16(tcnt, NE2000State),
619         VMSTATE_UINT16(rcnt, NE2000State),
620         VMSTATE_UINT32(rsar, NE2000State),
621         VMSTATE_UINT8(rsr, NE2000State),
622         VMSTATE_UINT8(isr, NE2000State),
623         VMSTATE_UINT8(dcfg, NE2000State),
624         VMSTATE_UINT8(imr, NE2000State),
625         VMSTATE_BUFFER(phys, NE2000State),
626         VMSTATE_UINT8(curpag, NE2000State),
627         VMSTATE_BUFFER(mult, NE2000State),
628         VMSTATE_UNUSED(4), /* was irq */
629         VMSTATE_BUFFER(mem, NE2000State),
630         VMSTATE_END_OF_LIST()
631     }
632 };
633 
634 static const VMStateDescription vmstate_pci_ne2000 = {
635     .name = "ne2000",
636     .version_id = 3,
637     .minimum_version_id = 3,
638     .fields = (VMStateField[]) {
639         VMSTATE_PCI_DEVICE(dev, PCINE2000State),
640         VMSTATE_STRUCT(ne2000, PCINE2000State, 0, vmstate_ne2000, NE2000State),
641         VMSTATE_END_OF_LIST()
642     }
643 };
644 
645 static uint64_t ne2000_read(void *opaque, hwaddr addr,
646                             unsigned size)
647 {
648     NE2000State *s = opaque;
649 
650     if (addr < 0x10 && size == 1) {
651         return ne2000_ioport_read(s, addr);
652     } else if (addr == 0x10) {
653         if (size <= 2) {
654             return ne2000_asic_ioport_read(s, addr);
655         } else {
656             return ne2000_asic_ioport_readl(s, addr);
657         }
658     } else if (addr == 0x1f && size == 1) {
659         return ne2000_reset_ioport_read(s, addr);
660     }
661     return ((uint64_t)1 << (size * 8)) - 1;
662 }
663 
664 static void ne2000_write(void *opaque, hwaddr addr,
665                          uint64_t data, unsigned size)
666 {
667     NE2000State *s = opaque;
668 
669     if (addr < 0x10 && size == 1) {
670         ne2000_ioport_write(s, addr, data);
671     } else if (addr == 0x10) {
672         if (size <= 2) {
673             ne2000_asic_ioport_write(s, addr, data);
674         } else {
675             ne2000_asic_ioport_writel(s, addr, data);
676         }
677     } else if (addr == 0x1f && size == 1) {
678         ne2000_reset_ioport_write(s, addr, data);
679     }
680 }
681 
682 static const MemoryRegionOps ne2000_ops = {
683     .read = ne2000_read,
684     .write = ne2000_write,
685     .endianness = DEVICE_LITTLE_ENDIAN,
686 };
687 
688 /***********************************************************/
689 /* PCI NE2000 definitions */
690 
691 void ne2000_setup_io(NE2000State *s, DeviceState *dev, unsigned size)
692 {
693     memory_region_init_io(&s->io, OBJECT(dev), &ne2000_ops, s, "ne2000", size);
694 }
695 
696 static NetClientInfo net_ne2000_info = {
697     .type = NET_CLIENT_OPTIONS_KIND_NIC,
698     .size = sizeof(NICState),
699     .receive = ne2000_receive,
700 };
701 
702 static void pci_ne2000_realize(PCIDevice *pci_dev, Error **errp)
703 {
704     PCINE2000State *d = DO_UPCAST(PCINE2000State, dev, pci_dev);
705     NE2000State *s;
706     uint8_t *pci_conf;
707 
708     pci_conf = d->dev.config;
709     pci_conf[PCI_INTERRUPT_PIN] = 1; /* interrupt pin A */
710 
711     s = &d->ne2000;
712     ne2000_setup_io(s, DEVICE(pci_dev), 0x100);
713     pci_register_bar(&d->dev, 0, PCI_BASE_ADDRESS_SPACE_IO, &s->io);
714     s->irq = pci_allocate_irq(&d->dev);
715 
716     qemu_macaddr_default_if_unset(&s->c.macaddr);
717     ne2000_reset(s);
718 
719     s->nic = qemu_new_nic(&net_ne2000_info, &s->c,
720                           object_get_typename(OBJECT(pci_dev)), pci_dev->qdev.id, s);
721     qemu_format_nic_info_str(qemu_get_queue(s->nic), s->c.macaddr.a);
722 }
723 
724 static void pci_ne2000_exit(PCIDevice *pci_dev)
725 {
726     PCINE2000State *d = DO_UPCAST(PCINE2000State, dev, pci_dev);
727     NE2000State *s = &d->ne2000;
728 
729     qemu_del_nic(s->nic);
730     qemu_free_irq(s->irq);
731 }
732 
733 static void ne2000_instance_init(Object *obj)
734 {
735     PCIDevice *pci_dev = PCI_DEVICE(obj);
736     PCINE2000State *d = DO_UPCAST(PCINE2000State, dev, pci_dev);
737     NE2000State *s = &d->ne2000;
738 
739     device_add_bootindex_property(obj, &s->c.bootindex,
740                                   "bootindex", "/ethernet-phy@0",
741                                   &pci_dev->qdev, NULL);
742 }
743 
744 static Property ne2000_properties[] = {
745     DEFINE_NIC_PROPERTIES(PCINE2000State, ne2000.c),
746     DEFINE_PROP_END_OF_LIST(),
747 };
748 
749 static void ne2000_class_init(ObjectClass *klass, void *data)
750 {
751     DeviceClass *dc = DEVICE_CLASS(klass);
752     PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
753 
754     k->realize = pci_ne2000_realize;
755     k->exit = pci_ne2000_exit;
756     k->romfile = "efi-ne2k_pci.rom",
757     k->vendor_id = PCI_VENDOR_ID_REALTEK;
758     k->device_id = PCI_DEVICE_ID_REALTEK_8029;
759     k->class_id = PCI_CLASS_NETWORK_ETHERNET;
760     dc->vmsd = &vmstate_pci_ne2000;
761     dc->props = ne2000_properties;
762     set_bit(DEVICE_CATEGORY_NETWORK, dc->categories);
763 }
764 
765 static const TypeInfo ne2000_info = {
766     .name          = "ne2k_pci",
767     .parent        = TYPE_PCI_DEVICE,
768     .instance_size = sizeof(PCINE2000State),
769     .class_init    = ne2000_class_init,
770     .instance_init = ne2000_instance_init,
771 };
772 
773 static void ne2000_register_types(void)
774 {
775     type_register_static(&ne2000_info);
776 }
777 
778 type_init(ne2000_register_types)
779