xref: /openbmc/qemu/hw/net/ne2000.c (revision 8f3cd250)
1 /*
2  * QEMU NE2000 emulation
3  *
4  * Copyright (c) 2003-2004 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 #include "qemu/osdep.h"
25 #include "hw/pci/pci.h"
26 #include "net/eth.h"
27 #include "ne2000.h"
28 #include "sysemu/sysemu.h"
29 #include "trace.h"
30 
31 /* debug NE2000 card */
32 //#define DEBUG_NE2000
33 
34 #define MAX_ETH_FRAME_SIZE 1514
35 
36 #define E8390_CMD	0x00  /* The command register (for all pages) */
37 /* Page 0 register offsets. */
38 #define EN0_CLDALO	0x01	/* Low byte of current local dma addr  RD */
39 #define EN0_STARTPG	0x01	/* Starting page of ring bfr WR */
40 #define EN0_CLDAHI	0x02	/* High byte of current local dma addr  RD */
41 #define EN0_STOPPG	0x02	/* Ending page +1 of ring bfr WR */
42 #define EN0_BOUNDARY	0x03	/* Boundary page of ring bfr RD WR */
43 #define EN0_TSR		0x04	/* Transmit status reg RD */
44 #define EN0_TPSR	0x04	/* Transmit starting page WR */
45 #define EN0_NCR		0x05	/* Number of collision reg RD */
46 #define EN0_TCNTLO	0x05	/* Low  byte of tx byte count WR */
47 #define EN0_FIFO	0x06	/* FIFO RD */
48 #define EN0_TCNTHI	0x06	/* High byte of tx byte count WR */
49 #define EN0_ISR		0x07	/* Interrupt status reg RD WR */
50 #define EN0_CRDALO	0x08	/* low byte of current remote dma address RD */
51 #define EN0_RSARLO	0x08	/* Remote start address reg 0 */
52 #define EN0_CRDAHI	0x09	/* high byte, current remote dma address RD */
53 #define EN0_RSARHI	0x09	/* Remote start address reg 1 */
54 #define EN0_RCNTLO	0x0a	/* Remote byte count reg WR */
55 #define EN0_RTL8029ID0	0x0a	/* Realtek ID byte #1 RD */
56 #define EN0_RCNTHI	0x0b	/* Remote byte count reg WR */
57 #define EN0_RTL8029ID1	0x0b	/* Realtek ID byte #2 RD */
58 #define EN0_RSR		0x0c	/* rx status reg RD */
59 #define EN0_RXCR	0x0c	/* RX configuration reg WR */
60 #define EN0_TXCR	0x0d	/* TX configuration reg WR */
61 #define EN0_COUNTER0	0x0d	/* Rcv alignment error counter RD */
62 #define EN0_DCFG	0x0e	/* Data configuration reg WR */
63 #define EN0_COUNTER1	0x0e	/* Rcv CRC error counter RD */
64 #define EN0_IMR		0x0f	/* Interrupt mask reg WR */
65 #define EN0_COUNTER2	0x0f	/* Rcv missed frame error counter RD */
66 
67 #define EN1_PHYS        0x11
68 #define EN1_CURPAG      0x17
69 #define EN1_MULT        0x18
70 
71 #define EN2_STARTPG	0x21	/* Starting page of ring bfr RD */
72 #define EN2_STOPPG	0x22	/* Ending page +1 of ring bfr RD */
73 
74 #define EN3_CONFIG0	0x33
75 #define EN3_CONFIG1	0x34
76 #define EN3_CONFIG2	0x35
77 #define EN3_CONFIG3	0x36
78 
79 /*  Register accessed at EN_CMD, the 8390 base addr.  */
80 #define E8390_STOP	0x01	/* Stop and reset the chip */
81 #define E8390_START	0x02	/* Start the chip, clear reset */
82 #define E8390_TRANS	0x04	/* Transmit a frame */
83 #define E8390_RREAD	0x08	/* Remote read */
84 #define E8390_RWRITE	0x10	/* Remote write  */
85 #define E8390_NODMA	0x20	/* Remote DMA */
86 #define E8390_PAGE0	0x00	/* Select page chip registers */
87 #define E8390_PAGE1	0x40	/* using the two high-order bits */
88 #define E8390_PAGE2	0x80	/* Page 3 is invalid. */
89 
90 /* Bits in EN0_ISR - Interrupt status register */
91 #define ENISR_RX	0x01	/* Receiver, no error */
92 #define ENISR_TX	0x02	/* Transmitter, no error */
93 #define ENISR_RX_ERR	0x04	/* Receiver, with error */
94 #define ENISR_TX_ERR	0x08	/* Transmitter, with error */
95 #define ENISR_OVER	0x10	/* Receiver overwrote the ring */
96 #define ENISR_COUNTERS	0x20	/* Counters need emptying */
97 #define ENISR_RDC	0x40	/* remote dma complete */
98 #define ENISR_RESET	0x80	/* Reset completed */
99 #define ENISR_ALL	0x3f	/* Interrupts we will enable */
100 
101 /* Bits in received packet status byte and EN0_RSR*/
102 #define ENRSR_RXOK	0x01	/* Received a good packet */
103 #define ENRSR_CRC	0x02	/* CRC error */
104 #define ENRSR_FAE	0x04	/* frame alignment error */
105 #define ENRSR_FO	0x08	/* FIFO overrun */
106 #define ENRSR_MPA	0x10	/* missed pkt */
107 #define ENRSR_PHY	0x20	/* physical/multicast address */
108 #define ENRSR_DIS	0x40	/* receiver disable. set in monitor mode */
109 #define ENRSR_DEF	0x80	/* deferring */
110 
111 /* Transmitted packet status, EN0_TSR. */
112 #define ENTSR_PTX 0x01	/* Packet transmitted without error */
113 #define ENTSR_ND  0x02	/* The transmit wasn't deferred. */
114 #define ENTSR_COL 0x04	/* The transmit collided at least once. */
115 #define ENTSR_ABT 0x08  /* The transmit collided 16 times, and was deferred. */
116 #define ENTSR_CRS 0x10	/* The carrier sense was lost. */
117 #define ENTSR_FU  0x20  /* A "FIFO underrun" occurred during transmit. */
118 #define ENTSR_CDH 0x40	/* The collision detect "heartbeat" signal was lost. */
119 #define ENTSR_OWC 0x80  /* There was an out-of-window collision. */
120 
121 typedef struct PCINE2000State {
122     PCIDevice dev;
123     NE2000State ne2000;
124 } PCINE2000State;
125 
126 void ne2000_reset(NE2000State *s)
127 {
128     int i;
129 
130     s->isr = ENISR_RESET;
131     memcpy(s->mem, &s->c.macaddr, 6);
132     s->mem[14] = 0x57;
133     s->mem[15] = 0x57;
134 
135     /* duplicate prom data */
136     for(i = 15;i >= 0; i--) {
137         s->mem[2 * i] = s->mem[i];
138         s->mem[2 * i + 1] = s->mem[i];
139     }
140 }
141 
142 static void ne2000_update_irq(NE2000State *s)
143 {
144     int isr;
145     isr = (s->isr & s->imr) & 0x7f;
146 #if defined(DEBUG_NE2000)
147     printf("NE2000: Set IRQ to %d (%02x %02x)\n",
148 	   isr ? 1 : 0, s->isr, s->imr);
149 #endif
150     qemu_set_irq(s->irq, (isr != 0));
151 }
152 
153 static int ne2000_buffer_full(NE2000State *s)
154 {
155     int avail, index, boundary;
156 
157     if (s->stop <= s->start) {
158         return 1;
159     }
160 
161     index = s->curpag << 8;
162     boundary = s->boundary << 8;
163     if (index < boundary)
164         avail = boundary - index;
165     else
166         avail = (s->stop - s->start) - (index - boundary);
167     if (avail < (MAX_ETH_FRAME_SIZE + 4))
168         return 1;
169     return 0;
170 }
171 
172 #define MIN_BUF_SIZE 60
173 
174 ssize_t ne2000_receive(NetClientState *nc, const uint8_t *buf, size_t size_)
175 {
176     NE2000State *s = qemu_get_nic_opaque(nc);
177     int size = size_;
178     uint8_t *p;
179     unsigned int total_len, next, avail, len, index, mcast_idx;
180     uint8_t buf1[60];
181     static const uint8_t broadcast_macaddr[6] =
182         { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
183 
184 #if defined(DEBUG_NE2000)
185     printf("NE2000: received len=%d\n", size);
186 #endif
187 
188     if (s->cmd & E8390_STOP || ne2000_buffer_full(s))
189         return -1;
190 
191     /* XXX: check this */
192     if (s->rxcr & 0x10) {
193         /* promiscuous: receive all */
194     } else {
195         if (!memcmp(buf,  broadcast_macaddr, 6)) {
196             /* broadcast address */
197             if (!(s->rxcr & 0x04))
198                 return size;
199         } else if (buf[0] & 0x01) {
200             /* multicast */
201             if (!(s->rxcr & 0x08))
202                 return size;
203             mcast_idx = net_crc32(buf, ETH_ALEN) >> 26;
204             if (!(s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))))
205                 return size;
206         } else if (s->mem[0] == buf[0] &&
207                    s->mem[2] == buf[1] &&
208                    s->mem[4] == buf[2] &&
209                    s->mem[6] == buf[3] &&
210                    s->mem[8] == buf[4] &&
211                    s->mem[10] == buf[5]) {
212             /* match */
213         } else {
214             return size;
215         }
216     }
217 
218 
219     /* if too small buffer, then expand it */
220     if (size < MIN_BUF_SIZE) {
221         memcpy(buf1, buf, size);
222         memset(buf1 + size, 0, MIN_BUF_SIZE - size);
223         buf = buf1;
224         size = MIN_BUF_SIZE;
225     }
226 
227     index = s->curpag << 8;
228     if (index >= NE2000_PMEM_END) {
229         index = s->start;
230     }
231     /* 4 bytes for header */
232     total_len = size + 4;
233     /* address for next packet (4 bytes for CRC) */
234     next = index + ((total_len + 4 + 255) & ~0xff);
235     if (next >= s->stop)
236         next -= (s->stop - s->start);
237     /* prepare packet header */
238     p = s->mem + index;
239     s->rsr = ENRSR_RXOK; /* receive status */
240     /* XXX: check this */
241     if (buf[0] & 0x01)
242         s->rsr |= ENRSR_PHY;
243     p[0] = s->rsr;
244     p[1] = next >> 8;
245     p[2] = total_len;
246     p[3] = total_len >> 8;
247     index += 4;
248 
249     /* write packet data */
250     while (size > 0) {
251         if (index <= s->stop)
252             avail = s->stop - index;
253         else
254             break;
255         len = size;
256         if (len > avail)
257             len = avail;
258         memcpy(s->mem + index, buf, len);
259         buf += len;
260         index += len;
261         if (index == s->stop)
262             index = s->start;
263         size -= len;
264     }
265     s->curpag = next >> 8;
266 
267     /* now we can signal we have received something */
268     s->isr |= ENISR_RX;
269     ne2000_update_irq(s);
270 
271     return size_;
272 }
273 
274 static void ne2000_ioport_write(void *opaque, uint32_t addr, uint32_t val)
275 {
276     NE2000State *s = opaque;
277     int offset, page, index;
278 
279     addr &= 0xf;
280     trace_ne2000_ioport_write(addr, val);
281     if (addr == E8390_CMD) {
282         /* control register */
283         s->cmd = val;
284         if (!(val & E8390_STOP)) { /* START bit makes no sense on RTL8029... */
285             s->isr &= ~ENISR_RESET;
286             /* test specific case: zero length transfer */
287             if ((val & (E8390_RREAD | E8390_RWRITE)) &&
288                 s->rcnt == 0) {
289                 s->isr |= ENISR_RDC;
290                 ne2000_update_irq(s);
291             }
292             if (val & E8390_TRANS) {
293                 index = (s->tpsr << 8);
294                 /* XXX: next 2 lines are a hack to make netware 3.11 work */
295                 if (index >= NE2000_PMEM_END)
296                     index -= NE2000_PMEM_SIZE;
297                 /* fail safe: check range on the transmitted length  */
298                 if (index + s->tcnt <= NE2000_PMEM_END) {
299                     qemu_send_packet(qemu_get_queue(s->nic), s->mem + index,
300                                      s->tcnt);
301                 }
302                 /* signal end of transfer */
303                 s->tsr = ENTSR_PTX;
304                 s->isr |= ENISR_TX;
305                 s->cmd &= ~E8390_TRANS;
306                 ne2000_update_irq(s);
307             }
308         }
309     } else {
310         page = s->cmd >> 6;
311         offset = addr | (page << 4);
312         switch(offset) {
313         case EN0_STARTPG:
314             if (val << 8 <= NE2000_PMEM_END) {
315                 s->start = val << 8;
316             }
317             break;
318         case EN0_STOPPG:
319             if (val << 8 <= NE2000_PMEM_END) {
320                 s->stop = val << 8;
321             }
322             break;
323         case EN0_BOUNDARY:
324             if (val << 8 < NE2000_PMEM_END) {
325                 s->boundary = val;
326             }
327             break;
328         case EN0_IMR:
329             s->imr = val;
330             ne2000_update_irq(s);
331             break;
332         case EN0_TPSR:
333             s->tpsr = val;
334             break;
335         case EN0_TCNTLO:
336             s->tcnt = (s->tcnt & 0xff00) | val;
337             break;
338         case EN0_TCNTHI:
339             s->tcnt = (s->tcnt & 0x00ff) | (val << 8);
340             break;
341         case EN0_RSARLO:
342             s->rsar = (s->rsar & 0xff00) | val;
343             break;
344         case EN0_RSARHI:
345             s->rsar = (s->rsar & 0x00ff) | (val << 8);
346             break;
347         case EN0_RCNTLO:
348             s->rcnt = (s->rcnt & 0xff00) | val;
349             break;
350         case EN0_RCNTHI:
351             s->rcnt = (s->rcnt & 0x00ff) | (val << 8);
352             break;
353         case EN0_RXCR:
354             s->rxcr = val;
355             break;
356         case EN0_DCFG:
357             s->dcfg = val;
358             break;
359         case EN0_ISR:
360             s->isr &= ~(val & 0x7f);
361             ne2000_update_irq(s);
362             break;
363         case EN1_PHYS ... EN1_PHYS + 5:
364             s->phys[offset - EN1_PHYS] = val;
365             break;
366         case EN1_CURPAG:
367             if (val << 8 < NE2000_PMEM_END) {
368                 s->curpag = val;
369             }
370             break;
371         case EN1_MULT ... EN1_MULT + 7:
372             s->mult[offset - EN1_MULT] = val;
373             break;
374         }
375     }
376 }
377 
378 static uint32_t ne2000_ioport_read(void *opaque, uint32_t addr)
379 {
380     NE2000State *s = opaque;
381     int offset, page, ret;
382 
383     addr &= 0xf;
384     if (addr == E8390_CMD) {
385         ret = s->cmd;
386     } else {
387         page = s->cmd >> 6;
388         offset = addr | (page << 4);
389         switch(offset) {
390         case EN0_TSR:
391             ret = s->tsr;
392             break;
393         case EN0_BOUNDARY:
394             ret = s->boundary;
395             break;
396         case EN0_ISR:
397             ret = s->isr;
398             break;
399 	case EN0_RSARLO:
400 	    ret = s->rsar & 0x00ff;
401 	    break;
402 	case EN0_RSARHI:
403 	    ret = s->rsar >> 8;
404 	    break;
405         case EN1_PHYS ... EN1_PHYS + 5:
406             ret = s->phys[offset - EN1_PHYS];
407             break;
408         case EN1_CURPAG:
409             ret = s->curpag;
410             break;
411         case EN1_MULT ... EN1_MULT + 7:
412             ret = s->mult[offset - EN1_MULT];
413             break;
414         case EN0_RSR:
415             ret = s->rsr;
416             break;
417         case EN2_STARTPG:
418             ret = s->start >> 8;
419             break;
420         case EN2_STOPPG:
421             ret = s->stop >> 8;
422             break;
423 	case EN0_RTL8029ID0:
424 	    ret = 0x50;
425 	    break;
426 	case EN0_RTL8029ID1:
427 	    ret = 0x43;
428 	    break;
429 	case EN3_CONFIG0:
430 	    ret = 0;		/* 10baseT media */
431 	    break;
432 	case EN3_CONFIG2:
433 	    ret = 0x40;		/* 10baseT active */
434 	    break;
435 	case EN3_CONFIG3:
436 	    ret = 0x40;		/* Full duplex */
437 	    break;
438         default:
439             ret = 0x00;
440             break;
441         }
442     }
443     trace_ne2000_ioport_read(addr, ret);
444     return ret;
445 }
446 
447 static inline void ne2000_mem_writeb(NE2000State *s, uint32_t addr,
448                                      uint32_t val)
449 {
450     if (addr < 32 ||
451         (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
452         s->mem[addr] = val;
453     }
454 }
455 
456 static inline void ne2000_mem_writew(NE2000State *s, uint32_t addr,
457                                      uint32_t val)
458 {
459     addr &= ~1; /* XXX: check exact behaviour if not even */
460     if (addr < 32 ||
461         (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
462         *(uint16_t *)(s->mem + addr) = cpu_to_le16(val);
463     }
464 }
465 
466 static inline void ne2000_mem_writel(NE2000State *s, uint32_t addr,
467                                      uint32_t val)
468 {
469     addr &= ~1; /* XXX: check exact behaviour if not even */
470     if (addr < 32
471         || (addr >= NE2000_PMEM_START
472             && addr + sizeof(uint32_t) <= NE2000_MEM_SIZE)) {
473         stl_le_p(s->mem + addr, val);
474     }
475 }
476 
477 static inline uint32_t ne2000_mem_readb(NE2000State *s, uint32_t addr)
478 {
479     if (addr < 32 ||
480         (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
481         return s->mem[addr];
482     } else {
483         return 0xff;
484     }
485 }
486 
487 static inline uint32_t ne2000_mem_readw(NE2000State *s, uint32_t addr)
488 {
489     addr &= ~1; /* XXX: check exact behaviour if not even */
490     if (addr < 32 ||
491         (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
492         return le16_to_cpu(*(uint16_t *)(s->mem + addr));
493     } else {
494         return 0xffff;
495     }
496 }
497 
498 static inline uint32_t ne2000_mem_readl(NE2000State *s, uint32_t addr)
499 {
500     addr &= ~1; /* XXX: check exact behaviour if not even */
501     if (addr < 32
502         || (addr >= NE2000_PMEM_START
503             && addr + sizeof(uint32_t) <= NE2000_MEM_SIZE)) {
504         return ldl_le_p(s->mem + addr);
505     } else {
506         return 0xffffffff;
507     }
508 }
509 
510 static inline void ne2000_dma_update(NE2000State *s, int len)
511 {
512     s->rsar += len;
513     /* wrap */
514     /* XXX: check what to do if rsar > stop */
515     if (s->rsar == s->stop)
516         s->rsar = s->start;
517 
518     if (s->rcnt <= len) {
519         s->rcnt = 0;
520         /* signal end of transfer */
521         s->isr |= ENISR_RDC;
522         ne2000_update_irq(s);
523     } else {
524         s->rcnt -= len;
525     }
526 }
527 
528 static void ne2000_asic_ioport_write(void *opaque, uint32_t addr, uint32_t val)
529 {
530     NE2000State *s = opaque;
531 
532 #ifdef DEBUG_NE2000
533     printf("NE2000: asic write val=0x%04x\n", val);
534 #endif
535     if (s->rcnt == 0)
536         return;
537     if (s->dcfg & 0x01) {
538         /* 16 bit access */
539         ne2000_mem_writew(s, s->rsar, val);
540         ne2000_dma_update(s, 2);
541     } else {
542         /* 8 bit access */
543         ne2000_mem_writeb(s, s->rsar, val);
544         ne2000_dma_update(s, 1);
545     }
546 }
547 
548 static uint32_t ne2000_asic_ioport_read(void *opaque, uint32_t addr)
549 {
550     NE2000State *s = opaque;
551     int ret;
552 
553     if (s->dcfg & 0x01) {
554         /* 16 bit access */
555         ret = ne2000_mem_readw(s, s->rsar);
556         ne2000_dma_update(s, 2);
557     } else {
558         /* 8 bit access */
559         ret = ne2000_mem_readb(s, s->rsar);
560         ne2000_dma_update(s, 1);
561     }
562 #ifdef DEBUG_NE2000
563     printf("NE2000: asic read val=0x%04x\n", ret);
564 #endif
565     return ret;
566 }
567 
568 static void ne2000_asic_ioport_writel(void *opaque, uint32_t addr, uint32_t val)
569 {
570     NE2000State *s = opaque;
571 
572 #ifdef DEBUG_NE2000
573     printf("NE2000: asic writel val=0x%04x\n", val);
574 #endif
575     if (s->rcnt == 0)
576         return;
577     /* 32 bit access */
578     ne2000_mem_writel(s, s->rsar, val);
579     ne2000_dma_update(s, 4);
580 }
581 
582 static uint32_t ne2000_asic_ioport_readl(void *opaque, uint32_t addr)
583 {
584     NE2000State *s = opaque;
585     int ret;
586 
587     /* 32 bit access */
588     ret = ne2000_mem_readl(s, s->rsar);
589     ne2000_dma_update(s, 4);
590 #ifdef DEBUG_NE2000
591     printf("NE2000: asic readl val=0x%04x\n", ret);
592 #endif
593     return ret;
594 }
595 
596 static void ne2000_reset_ioport_write(void *opaque, uint32_t addr, uint32_t val)
597 {
598     /* nothing to do (end of reset pulse) */
599 }
600 
601 static uint32_t ne2000_reset_ioport_read(void *opaque, uint32_t addr)
602 {
603     NE2000State *s = opaque;
604     ne2000_reset(s);
605     return 0;
606 }
607 
608 static int ne2000_post_load(void* opaque, int version_id)
609 {
610     NE2000State* s = opaque;
611 
612     if (version_id < 2) {
613         s->rxcr = 0x0c;
614     }
615     return 0;
616 }
617 
618 const VMStateDescription vmstate_ne2000 = {
619     .name = "ne2000",
620     .version_id = 2,
621     .minimum_version_id = 0,
622     .post_load = ne2000_post_load,
623     .fields = (VMStateField[]) {
624         VMSTATE_UINT8_V(rxcr, NE2000State, 2),
625         VMSTATE_UINT8(cmd, NE2000State),
626         VMSTATE_UINT32(start, NE2000State),
627         VMSTATE_UINT32(stop, NE2000State),
628         VMSTATE_UINT8(boundary, NE2000State),
629         VMSTATE_UINT8(tsr, NE2000State),
630         VMSTATE_UINT8(tpsr, NE2000State),
631         VMSTATE_UINT16(tcnt, NE2000State),
632         VMSTATE_UINT16(rcnt, NE2000State),
633         VMSTATE_UINT32(rsar, NE2000State),
634         VMSTATE_UINT8(rsr, NE2000State),
635         VMSTATE_UINT8(isr, NE2000State),
636         VMSTATE_UINT8(dcfg, NE2000State),
637         VMSTATE_UINT8(imr, NE2000State),
638         VMSTATE_BUFFER(phys, NE2000State),
639         VMSTATE_UINT8(curpag, NE2000State),
640         VMSTATE_BUFFER(mult, NE2000State),
641         VMSTATE_UNUSED(4), /* was irq */
642         VMSTATE_BUFFER(mem, NE2000State),
643         VMSTATE_END_OF_LIST()
644     }
645 };
646 
647 static const VMStateDescription vmstate_pci_ne2000 = {
648     .name = "ne2000",
649     .version_id = 3,
650     .minimum_version_id = 3,
651     .fields = (VMStateField[]) {
652         VMSTATE_PCI_DEVICE(dev, PCINE2000State),
653         VMSTATE_STRUCT(ne2000, PCINE2000State, 0, vmstate_ne2000, NE2000State),
654         VMSTATE_END_OF_LIST()
655     }
656 };
657 
658 static uint64_t ne2000_read(void *opaque, hwaddr addr,
659                             unsigned size)
660 {
661     NE2000State *s = opaque;
662     uint64_t val;
663 
664     if (addr < 0x10 && size == 1) {
665         val = ne2000_ioport_read(s, addr);
666     } else if (addr == 0x10) {
667         if (size <= 2) {
668             val = ne2000_asic_ioport_read(s, addr);
669         } else {
670             val = ne2000_asic_ioport_readl(s, addr);
671         }
672     } else if (addr == 0x1f && size == 1) {
673         val = ne2000_reset_ioport_read(s, addr);
674     } else {
675         val = ((uint64_t)1 << (size * 8)) - 1;
676     }
677     trace_ne2000_read(addr, val);
678 
679     return val;
680 }
681 
682 static void ne2000_write(void *opaque, hwaddr addr,
683                          uint64_t data, unsigned size)
684 {
685     NE2000State *s = opaque;
686 
687     trace_ne2000_write(addr, data);
688     if (addr < 0x10 && size == 1) {
689         ne2000_ioport_write(s, addr, data);
690     } else if (addr == 0x10) {
691         if (size <= 2) {
692             ne2000_asic_ioport_write(s, addr, data);
693         } else {
694             ne2000_asic_ioport_writel(s, addr, data);
695         }
696     } else if (addr == 0x1f && size == 1) {
697         ne2000_reset_ioport_write(s, addr, data);
698     }
699 }
700 
701 static const MemoryRegionOps ne2000_ops = {
702     .read = ne2000_read,
703     .write = ne2000_write,
704     .endianness = DEVICE_LITTLE_ENDIAN,
705 };
706 
707 /***********************************************************/
708 /* PCI NE2000 definitions */
709 
710 void ne2000_setup_io(NE2000State *s, DeviceState *dev, unsigned size)
711 {
712     memory_region_init_io(&s->io, OBJECT(dev), &ne2000_ops, s, "ne2000", size);
713 }
714 
715 static NetClientInfo net_ne2000_info = {
716     .type = NET_CLIENT_DRIVER_NIC,
717     .size = sizeof(NICState),
718     .receive = ne2000_receive,
719 };
720 
721 static void pci_ne2000_realize(PCIDevice *pci_dev, Error **errp)
722 {
723     PCINE2000State *d = DO_UPCAST(PCINE2000State, dev, pci_dev);
724     NE2000State *s;
725     uint8_t *pci_conf;
726 
727     pci_conf = d->dev.config;
728     pci_conf[PCI_INTERRUPT_PIN] = 1; /* interrupt pin A */
729 
730     s = &d->ne2000;
731     ne2000_setup_io(s, DEVICE(pci_dev), 0x100);
732     pci_register_bar(&d->dev, 0, PCI_BASE_ADDRESS_SPACE_IO, &s->io);
733     s->irq = pci_allocate_irq(&d->dev);
734 
735     qemu_macaddr_default_if_unset(&s->c.macaddr);
736     ne2000_reset(s);
737 
738     s->nic = qemu_new_nic(&net_ne2000_info, &s->c,
739                           object_get_typename(OBJECT(pci_dev)), pci_dev->qdev.id, s);
740     qemu_format_nic_info_str(qemu_get_queue(s->nic), s->c.macaddr.a);
741 }
742 
743 static void pci_ne2000_exit(PCIDevice *pci_dev)
744 {
745     PCINE2000State *d = DO_UPCAST(PCINE2000State, dev, pci_dev);
746     NE2000State *s = &d->ne2000;
747 
748     qemu_del_nic(s->nic);
749     qemu_free_irq(s->irq);
750 }
751 
752 static void ne2000_instance_init(Object *obj)
753 {
754     PCIDevice *pci_dev = PCI_DEVICE(obj);
755     PCINE2000State *d = DO_UPCAST(PCINE2000State, dev, pci_dev);
756     NE2000State *s = &d->ne2000;
757 
758     device_add_bootindex_property(obj, &s->c.bootindex,
759                                   "bootindex", "/ethernet-phy@0",
760                                   &pci_dev->qdev, NULL);
761 }
762 
763 static Property ne2000_properties[] = {
764     DEFINE_NIC_PROPERTIES(PCINE2000State, ne2000.c),
765     DEFINE_PROP_END_OF_LIST(),
766 };
767 
768 static void ne2000_class_init(ObjectClass *klass, void *data)
769 {
770     DeviceClass *dc = DEVICE_CLASS(klass);
771     PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
772 
773     k->realize = pci_ne2000_realize;
774     k->exit = pci_ne2000_exit;
775     k->romfile = "efi-ne2k_pci.rom",
776     k->vendor_id = PCI_VENDOR_ID_REALTEK;
777     k->device_id = PCI_DEVICE_ID_REALTEK_8029;
778     k->class_id = PCI_CLASS_NETWORK_ETHERNET;
779     dc->vmsd = &vmstate_pci_ne2000;
780     dc->props = ne2000_properties;
781     set_bit(DEVICE_CATEGORY_NETWORK, dc->categories);
782 }
783 
784 static const TypeInfo ne2000_info = {
785     .name          = "ne2k_pci",
786     .parent        = TYPE_PCI_DEVICE,
787     .instance_size = sizeof(PCINE2000State),
788     .class_init    = ne2000_class_init,
789     .instance_init = ne2000_instance_init,
790     .interfaces = (InterfaceInfo[]) {
791         { INTERFACE_CONVENTIONAL_PCI_DEVICE },
792         { },
793     },
794 };
795 
796 static void ne2000_register_types(void)
797 {
798     type_register_static(&ne2000_info);
799 }
800 
801 type_init(ne2000_register_types)
802