xref: /openbmc/qemu/hw/net/ne2000.c (revision 8598f5fa)
1 /*
2  * QEMU NE2000 emulation
3  *
4  * Copyright (c) 2003-2004 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 #include "qemu/osdep.h"
25 #include "net/eth.h"
26 #include "ne2000.h"
27 #include "sysemu/sysemu.h"
28 #include "trace.h"
29 
30 /* debug NE2000 card */
31 //#define DEBUG_NE2000
32 
33 #define MAX_ETH_FRAME_SIZE 1514
34 
35 #define E8390_CMD	0x00  /* The command register (for all pages) */
36 /* Page 0 register offsets. */
37 #define EN0_CLDALO	0x01	/* Low byte of current local dma addr  RD */
38 #define EN0_STARTPG	0x01	/* Starting page of ring bfr WR */
39 #define EN0_CLDAHI	0x02	/* High byte of current local dma addr  RD */
40 #define EN0_STOPPG	0x02	/* Ending page +1 of ring bfr WR */
41 #define EN0_BOUNDARY	0x03	/* Boundary page of ring bfr RD WR */
42 #define EN0_TSR		0x04	/* Transmit status reg RD */
43 #define EN0_TPSR	0x04	/* Transmit starting page WR */
44 #define EN0_NCR		0x05	/* Number of collision reg RD */
45 #define EN0_TCNTLO	0x05	/* Low  byte of tx byte count WR */
46 #define EN0_FIFO	0x06	/* FIFO RD */
47 #define EN0_TCNTHI	0x06	/* High byte of tx byte count WR */
48 #define EN0_ISR		0x07	/* Interrupt status reg RD WR */
49 #define EN0_CRDALO	0x08	/* low byte of current remote dma address RD */
50 #define EN0_RSARLO	0x08	/* Remote start address reg 0 */
51 #define EN0_CRDAHI	0x09	/* high byte, current remote dma address RD */
52 #define EN0_RSARHI	0x09	/* Remote start address reg 1 */
53 #define EN0_RCNTLO	0x0a	/* Remote byte count reg WR */
54 #define EN0_RTL8029ID0	0x0a	/* Realtek ID byte #1 RD */
55 #define EN0_RCNTHI	0x0b	/* Remote byte count reg WR */
56 #define EN0_RTL8029ID1	0x0b	/* Realtek ID byte #2 RD */
57 #define EN0_RSR		0x0c	/* rx status reg RD */
58 #define EN0_RXCR	0x0c	/* RX configuration reg WR */
59 #define EN0_TXCR	0x0d	/* TX configuration reg WR */
60 #define EN0_COUNTER0	0x0d	/* Rcv alignment error counter RD */
61 #define EN0_DCFG	0x0e	/* Data configuration reg WR */
62 #define EN0_COUNTER1	0x0e	/* Rcv CRC error counter RD */
63 #define EN0_IMR		0x0f	/* Interrupt mask reg WR */
64 #define EN0_COUNTER2	0x0f	/* Rcv missed frame error counter RD */
65 
66 #define EN1_PHYS        0x11
67 #define EN1_CURPAG      0x17
68 #define EN1_MULT        0x18
69 
70 #define EN2_STARTPG	0x21	/* Starting page of ring bfr RD */
71 #define EN2_STOPPG	0x22	/* Ending page +1 of ring bfr RD */
72 
73 #define EN3_CONFIG0	0x33
74 #define EN3_CONFIG1	0x34
75 #define EN3_CONFIG2	0x35
76 #define EN3_CONFIG3	0x36
77 
78 /*  Register accessed at EN_CMD, the 8390 base addr.  */
79 #define E8390_STOP	0x01	/* Stop and reset the chip */
80 #define E8390_START	0x02	/* Start the chip, clear reset */
81 #define E8390_TRANS	0x04	/* Transmit a frame */
82 #define E8390_RREAD	0x08	/* Remote read */
83 #define E8390_RWRITE	0x10	/* Remote write  */
84 #define E8390_NODMA	0x20	/* Remote DMA */
85 #define E8390_PAGE0	0x00	/* Select page chip registers */
86 #define E8390_PAGE1	0x40	/* using the two high-order bits */
87 #define E8390_PAGE2	0x80	/* Page 3 is invalid. */
88 
89 /* Bits in EN0_ISR - Interrupt status register */
90 #define ENISR_RX	0x01	/* Receiver, no error */
91 #define ENISR_TX	0x02	/* Transmitter, no error */
92 #define ENISR_RX_ERR	0x04	/* Receiver, with error */
93 #define ENISR_TX_ERR	0x08	/* Transmitter, with error */
94 #define ENISR_OVER	0x10	/* Receiver overwrote the ring */
95 #define ENISR_COUNTERS	0x20	/* Counters need emptying */
96 #define ENISR_RDC	0x40	/* remote dma complete */
97 #define ENISR_RESET	0x80	/* Reset completed */
98 #define ENISR_ALL	0x3f	/* Interrupts we will enable */
99 
100 /* Bits in received packet status byte and EN0_RSR*/
101 #define ENRSR_RXOK	0x01	/* Received a good packet */
102 #define ENRSR_CRC	0x02	/* CRC error */
103 #define ENRSR_FAE	0x04	/* frame alignment error */
104 #define ENRSR_FO	0x08	/* FIFO overrun */
105 #define ENRSR_MPA	0x10	/* missed pkt */
106 #define ENRSR_PHY	0x20	/* physical/multicast address */
107 #define ENRSR_DIS	0x40	/* receiver disable. set in monitor mode */
108 #define ENRSR_DEF	0x80	/* deferring */
109 
110 /* Transmitted packet status, EN0_TSR. */
111 #define ENTSR_PTX 0x01	/* Packet transmitted without error */
112 #define ENTSR_ND  0x02	/* The transmit wasn't deferred. */
113 #define ENTSR_COL 0x04	/* The transmit collided at least once. */
114 #define ENTSR_ABT 0x08  /* The transmit collided 16 times, and was deferred. */
115 #define ENTSR_CRS 0x10	/* The carrier sense was lost. */
116 #define ENTSR_FU  0x20  /* A "FIFO underrun" occurred during transmit. */
117 #define ENTSR_CDH 0x40	/* The collision detect "heartbeat" signal was lost. */
118 #define ENTSR_OWC 0x80  /* There was an out-of-window collision. */
119 
120 void ne2000_reset(NE2000State *s)
121 {
122     int i;
123 
124     s->isr = ENISR_RESET;
125     memcpy(s->mem, &s->c.macaddr, 6);
126     s->mem[14] = 0x57;
127     s->mem[15] = 0x57;
128 
129     /* duplicate prom data */
130     for(i = 15;i >= 0; i--) {
131         s->mem[2 * i] = s->mem[i];
132         s->mem[2 * i + 1] = s->mem[i];
133     }
134 }
135 
136 static void ne2000_update_irq(NE2000State *s)
137 {
138     int isr;
139     isr = (s->isr & s->imr) & 0x7f;
140 #if defined(DEBUG_NE2000)
141     printf("NE2000: Set IRQ to %d (%02x %02x)\n",
142            isr ? 1 : 0, s->isr, s->imr);
143 #endif
144     qemu_set_irq(s->irq, (isr != 0));
145 }
146 
147 static int ne2000_buffer_full(NE2000State *s)
148 {
149     int avail, index, boundary;
150 
151     if (s->stop <= s->start) {
152         return 1;
153     }
154 
155     index = s->curpag << 8;
156     boundary = s->boundary << 8;
157     if (index < boundary)
158         avail = boundary - index;
159     else
160         avail = (s->stop - s->start) - (index - boundary);
161     if (avail < (MAX_ETH_FRAME_SIZE + 4))
162         return 1;
163     return 0;
164 }
165 
166 #define MIN_BUF_SIZE 60
167 
168 ssize_t ne2000_receive(NetClientState *nc, const uint8_t *buf, size_t size_)
169 {
170     NE2000State *s = qemu_get_nic_opaque(nc);
171     size_t size = size_;
172     uint8_t *p;
173     unsigned int total_len, next, avail, len, index, mcast_idx;
174     uint8_t buf1[60];
175     static const uint8_t broadcast_macaddr[6] =
176         { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
177 
178 #if defined(DEBUG_NE2000)
179     printf("NE2000: received len=%zu\n", size);
180 #endif
181 
182     if (s->cmd & E8390_STOP || ne2000_buffer_full(s))
183         return -1;
184 
185     /* XXX: check this */
186     if (s->rxcr & 0x10) {
187         /* promiscuous: receive all */
188     } else {
189         if (!memcmp(buf,  broadcast_macaddr, 6)) {
190             /* broadcast address */
191             if (!(s->rxcr & 0x04))
192                 return size;
193         } else if (buf[0] & 0x01) {
194             /* multicast */
195             if (!(s->rxcr & 0x08))
196                 return size;
197             mcast_idx = net_crc32(buf, ETH_ALEN) >> 26;
198             if (!(s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))))
199                 return size;
200         } else if (s->mem[0] == buf[0] &&
201                    s->mem[2] == buf[1] &&
202                    s->mem[4] == buf[2] &&
203                    s->mem[6] == buf[3] &&
204                    s->mem[8] == buf[4] &&
205                    s->mem[10] == buf[5]) {
206             /* match */
207         } else {
208             return size;
209         }
210     }
211 
212 
213     /* if too small buffer, then expand it */
214     if (size < MIN_BUF_SIZE) {
215         memcpy(buf1, buf, size);
216         memset(buf1 + size, 0, MIN_BUF_SIZE - size);
217         buf = buf1;
218         size = MIN_BUF_SIZE;
219     }
220 
221     index = s->curpag << 8;
222     if (index >= NE2000_PMEM_END) {
223         index = s->start;
224     }
225     /* 4 bytes for header */
226     total_len = size + 4;
227     /* address for next packet (4 bytes for CRC) */
228     next = index + ((total_len + 4 + 255) & ~0xff);
229     if (next >= s->stop)
230         next -= (s->stop - s->start);
231     /* prepare packet header */
232     p = s->mem + index;
233     s->rsr = ENRSR_RXOK; /* receive status */
234     /* XXX: check this */
235     if (buf[0] & 0x01)
236         s->rsr |= ENRSR_PHY;
237     p[0] = s->rsr;
238     p[1] = next >> 8;
239     p[2] = total_len;
240     p[3] = total_len >> 8;
241     index += 4;
242 
243     /* write packet data */
244     while (size > 0) {
245         if (index <= s->stop)
246             avail = s->stop - index;
247         else
248             break;
249         len = size;
250         if (len > avail)
251             len = avail;
252         memcpy(s->mem + index, buf, len);
253         buf += len;
254         index += len;
255         if (index == s->stop)
256             index = s->start;
257         size -= len;
258     }
259     s->curpag = next >> 8;
260 
261     /* now we can signal we have received something */
262     s->isr |= ENISR_RX;
263     ne2000_update_irq(s);
264 
265     return size_;
266 }
267 
268 static void ne2000_ioport_write(void *opaque, uint32_t addr, uint32_t val)
269 {
270     NE2000State *s = opaque;
271     int offset, page, index;
272 
273     addr &= 0xf;
274     trace_ne2000_ioport_write(addr, val);
275     if (addr == E8390_CMD) {
276         /* control register */
277         s->cmd = val;
278         if (!(val & E8390_STOP)) { /* START bit makes no sense on RTL8029... */
279             s->isr &= ~ENISR_RESET;
280             /* test specific case: zero length transfer */
281             if ((val & (E8390_RREAD | E8390_RWRITE)) &&
282                 s->rcnt == 0) {
283                 s->isr |= ENISR_RDC;
284                 ne2000_update_irq(s);
285             }
286             if (val & E8390_TRANS) {
287                 index = (s->tpsr << 8);
288                 /* XXX: next 2 lines are a hack to make netware 3.11 work */
289                 if (index >= NE2000_PMEM_END)
290                     index -= NE2000_PMEM_SIZE;
291                 /* fail safe: check range on the transmitted length  */
292                 if (index + s->tcnt <= NE2000_PMEM_END) {
293                     qemu_send_packet(qemu_get_queue(s->nic), s->mem + index,
294                                      s->tcnt);
295                 }
296                 /* signal end of transfer */
297                 s->tsr = ENTSR_PTX;
298                 s->isr |= ENISR_TX;
299                 s->cmd &= ~E8390_TRANS;
300                 ne2000_update_irq(s);
301             }
302         }
303     } else {
304         page = s->cmd >> 6;
305         offset = addr | (page << 4);
306         switch(offset) {
307         case EN0_STARTPG:
308             if (val << 8 <= NE2000_PMEM_END) {
309                 s->start = val << 8;
310             }
311             break;
312         case EN0_STOPPG:
313             if (val << 8 <= NE2000_PMEM_END) {
314                 s->stop = val << 8;
315             }
316             break;
317         case EN0_BOUNDARY:
318             if (val << 8 < NE2000_PMEM_END) {
319                 s->boundary = val;
320             }
321             break;
322         case EN0_IMR:
323             s->imr = val;
324             ne2000_update_irq(s);
325             break;
326         case EN0_TPSR:
327             s->tpsr = val;
328             break;
329         case EN0_TCNTLO:
330             s->tcnt = (s->tcnt & 0xff00) | val;
331             break;
332         case EN0_TCNTHI:
333             s->tcnt = (s->tcnt & 0x00ff) | (val << 8);
334             break;
335         case EN0_RSARLO:
336             s->rsar = (s->rsar & 0xff00) | val;
337             break;
338         case EN0_RSARHI:
339             s->rsar = (s->rsar & 0x00ff) | (val << 8);
340             break;
341         case EN0_RCNTLO:
342             s->rcnt = (s->rcnt & 0xff00) | val;
343             break;
344         case EN0_RCNTHI:
345             s->rcnt = (s->rcnt & 0x00ff) | (val << 8);
346             break;
347         case EN0_RXCR:
348             s->rxcr = val;
349             break;
350         case EN0_DCFG:
351             s->dcfg = val;
352             break;
353         case EN0_ISR:
354             s->isr &= ~(val & 0x7f);
355             ne2000_update_irq(s);
356             break;
357         case EN1_PHYS ... EN1_PHYS + 5:
358             s->phys[offset - EN1_PHYS] = val;
359             break;
360         case EN1_CURPAG:
361             if (val << 8 < NE2000_PMEM_END) {
362                 s->curpag = val;
363             }
364             break;
365         case EN1_MULT ... EN1_MULT + 7:
366             s->mult[offset - EN1_MULT] = val;
367             break;
368         }
369     }
370 }
371 
372 static uint32_t ne2000_ioport_read(void *opaque, uint32_t addr)
373 {
374     NE2000State *s = opaque;
375     int offset, page, ret;
376 
377     addr &= 0xf;
378     if (addr == E8390_CMD) {
379         ret = s->cmd;
380     } else {
381         page = s->cmd >> 6;
382         offset = addr | (page << 4);
383         switch(offset) {
384         case EN0_TSR:
385             ret = s->tsr;
386             break;
387         case EN0_BOUNDARY:
388             ret = s->boundary;
389             break;
390         case EN0_ISR:
391             ret = s->isr;
392             break;
393         case EN0_RSARLO:
394             ret = s->rsar & 0x00ff;
395             break;
396         case EN0_RSARHI:
397             ret = s->rsar >> 8;
398             break;
399         case EN1_PHYS ... EN1_PHYS + 5:
400             ret = s->phys[offset - EN1_PHYS];
401             break;
402         case EN1_CURPAG:
403             ret = s->curpag;
404             break;
405         case EN1_MULT ... EN1_MULT + 7:
406             ret = s->mult[offset - EN1_MULT];
407             break;
408         case EN0_RSR:
409             ret = s->rsr;
410             break;
411         case EN2_STARTPG:
412             ret = s->start >> 8;
413             break;
414         case EN2_STOPPG:
415             ret = s->stop >> 8;
416             break;
417         case EN0_RTL8029ID0:
418             ret = 0x50;
419             break;
420         case EN0_RTL8029ID1:
421             ret = 0x43;
422             break;
423         case EN3_CONFIG0:
424             ret = 0;		/* 10baseT media */
425             break;
426         case EN3_CONFIG2:
427             ret = 0x40;		/* 10baseT active */
428             break;
429         case EN3_CONFIG3:
430             ret = 0x40;		/* Full duplex */
431             break;
432         default:
433             ret = 0x00;
434             break;
435         }
436     }
437     trace_ne2000_ioport_read(addr, ret);
438     return ret;
439 }
440 
441 static inline void ne2000_mem_writeb(NE2000State *s, uint32_t addr,
442                                      uint32_t val)
443 {
444     if (addr < 32 ||
445         (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
446         s->mem[addr] = val;
447     }
448 }
449 
450 static inline void ne2000_mem_writew(NE2000State *s, uint32_t addr,
451                                      uint32_t val)
452 {
453     addr &= ~1; /* XXX: check exact behaviour if not even */
454     if (addr < 32 ||
455         (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
456         *(uint16_t *)(s->mem + addr) = cpu_to_le16(val);
457     }
458 }
459 
460 static inline void ne2000_mem_writel(NE2000State *s, uint32_t addr,
461                                      uint32_t val)
462 {
463     addr &= ~1; /* XXX: check exact behaviour if not even */
464     if (addr < 32
465         || (addr >= NE2000_PMEM_START
466             && addr + sizeof(uint32_t) <= NE2000_MEM_SIZE)) {
467         stl_le_p(s->mem + addr, val);
468     }
469 }
470 
471 static inline uint32_t ne2000_mem_readb(NE2000State *s, uint32_t addr)
472 {
473     if (addr < 32 ||
474         (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
475         return s->mem[addr];
476     } else {
477         return 0xff;
478     }
479 }
480 
481 static inline uint32_t ne2000_mem_readw(NE2000State *s, uint32_t addr)
482 {
483     addr &= ~1; /* XXX: check exact behaviour if not even */
484     if (addr < 32 ||
485         (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
486         return le16_to_cpu(*(uint16_t *)(s->mem + addr));
487     } else {
488         return 0xffff;
489     }
490 }
491 
492 static inline uint32_t ne2000_mem_readl(NE2000State *s, uint32_t addr)
493 {
494     addr &= ~1; /* XXX: check exact behaviour if not even */
495     if (addr < 32
496         || (addr >= NE2000_PMEM_START
497             && addr + sizeof(uint32_t) <= NE2000_MEM_SIZE)) {
498         return ldl_le_p(s->mem + addr);
499     } else {
500         return 0xffffffff;
501     }
502 }
503 
504 static inline void ne2000_dma_update(NE2000State *s, int len)
505 {
506     s->rsar += len;
507     /* wrap */
508     /* XXX: check what to do if rsar > stop */
509     if (s->rsar == s->stop)
510         s->rsar = s->start;
511 
512     if (s->rcnt <= len) {
513         s->rcnt = 0;
514         /* signal end of transfer */
515         s->isr |= ENISR_RDC;
516         ne2000_update_irq(s);
517     } else {
518         s->rcnt -= len;
519     }
520 }
521 
522 static void ne2000_asic_ioport_write(void *opaque, uint32_t addr, uint32_t val)
523 {
524     NE2000State *s = opaque;
525 
526 #ifdef DEBUG_NE2000
527     printf("NE2000: asic write val=0x%04x\n", val);
528 #endif
529     if (s->rcnt == 0)
530         return;
531     if (s->dcfg & 0x01) {
532         /* 16 bit access */
533         ne2000_mem_writew(s, s->rsar, val);
534         ne2000_dma_update(s, 2);
535     } else {
536         /* 8 bit access */
537         ne2000_mem_writeb(s, s->rsar, val);
538         ne2000_dma_update(s, 1);
539     }
540 }
541 
542 static uint32_t ne2000_asic_ioport_read(void *opaque, uint32_t addr)
543 {
544     NE2000State *s = opaque;
545     int ret;
546 
547     if (s->dcfg & 0x01) {
548         /* 16 bit access */
549         ret = ne2000_mem_readw(s, s->rsar);
550         ne2000_dma_update(s, 2);
551     } else {
552         /* 8 bit access */
553         ret = ne2000_mem_readb(s, s->rsar);
554         ne2000_dma_update(s, 1);
555     }
556 #ifdef DEBUG_NE2000
557     printf("NE2000: asic read val=0x%04x\n", ret);
558 #endif
559     return ret;
560 }
561 
562 static void ne2000_asic_ioport_writel(void *opaque, uint32_t addr, uint32_t val)
563 {
564     NE2000State *s = opaque;
565 
566 #ifdef DEBUG_NE2000
567     printf("NE2000: asic writel val=0x%04x\n", val);
568 #endif
569     if (s->rcnt == 0)
570         return;
571     /* 32 bit access */
572     ne2000_mem_writel(s, s->rsar, val);
573     ne2000_dma_update(s, 4);
574 }
575 
576 static uint32_t ne2000_asic_ioport_readl(void *opaque, uint32_t addr)
577 {
578     NE2000State *s = opaque;
579     int ret;
580 
581     /* 32 bit access */
582     ret = ne2000_mem_readl(s, s->rsar);
583     ne2000_dma_update(s, 4);
584 #ifdef DEBUG_NE2000
585     printf("NE2000: asic readl val=0x%04x\n", ret);
586 #endif
587     return ret;
588 }
589 
590 static void ne2000_reset_ioport_write(void *opaque, uint32_t addr, uint32_t val)
591 {
592     /* nothing to do (end of reset pulse) */
593 }
594 
595 static uint32_t ne2000_reset_ioport_read(void *opaque, uint32_t addr)
596 {
597     NE2000State *s = opaque;
598     ne2000_reset(s);
599     return 0;
600 }
601 
602 static int ne2000_post_load(void* opaque, int version_id)
603 {
604     NE2000State* s = opaque;
605 
606     if (version_id < 2) {
607         s->rxcr = 0x0c;
608     }
609     return 0;
610 }
611 
612 const VMStateDescription vmstate_ne2000 = {
613     .name = "ne2000",
614     .version_id = 2,
615     .minimum_version_id = 0,
616     .post_load = ne2000_post_load,
617     .fields = (VMStateField[]) {
618         VMSTATE_UINT8_V(rxcr, NE2000State, 2),
619         VMSTATE_UINT8(cmd, NE2000State),
620         VMSTATE_UINT32(start, NE2000State),
621         VMSTATE_UINT32(stop, NE2000State),
622         VMSTATE_UINT8(boundary, NE2000State),
623         VMSTATE_UINT8(tsr, NE2000State),
624         VMSTATE_UINT8(tpsr, NE2000State),
625         VMSTATE_UINT16(tcnt, NE2000State),
626         VMSTATE_UINT16(rcnt, NE2000State),
627         VMSTATE_UINT32(rsar, NE2000State),
628         VMSTATE_UINT8(rsr, NE2000State),
629         VMSTATE_UINT8(isr, NE2000State),
630         VMSTATE_UINT8(dcfg, NE2000State),
631         VMSTATE_UINT8(imr, NE2000State),
632         VMSTATE_BUFFER(phys, NE2000State),
633         VMSTATE_UINT8(curpag, NE2000State),
634         VMSTATE_BUFFER(mult, NE2000State),
635         VMSTATE_UNUSED(4), /* was irq */
636         VMSTATE_BUFFER(mem, NE2000State),
637         VMSTATE_END_OF_LIST()
638     }
639 };
640 
641 static uint64_t ne2000_read(void *opaque, hwaddr addr,
642                             unsigned size)
643 {
644     NE2000State *s = opaque;
645     uint64_t val;
646 
647     if (addr < 0x10 && size == 1) {
648         val = ne2000_ioport_read(s, addr);
649     } else if (addr == 0x10) {
650         if (size <= 2) {
651             val = ne2000_asic_ioport_read(s, addr);
652         } else {
653             val = ne2000_asic_ioport_readl(s, addr);
654         }
655     } else if (addr == 0x1f && size == 1) {
656         val = ne2000_reset_ioport_read(s, addr);
657     } else {
658         val = ((uint64_t)1 << (size * 8)) - 1;
659     }
660     trace_ne2000_read(addr, val);
661 
662     return val;
663 }
664 
665 static void ne2000_write(void *opaque, hwaddr addr,
666                          uint64_t data, unsigned size)
667 {
668     NE2000State *s = opaque;
669 
670     trace_ne2000_write(addr, data);
671     if (addr < 0x10 && size == 1) {
672         ne2000_ioport_write(s, addr, data);
673     } else if (addr == 0x10) {
674         if (size <= 2) {
675             ne2000_asic_ioport_write(s, addr, data);
676         } else {
677             ne2000_asic_ioport_writel(s, addr, data);
678         }
679     } else if (addr == 0x1f && size == 1) {
680         ne2000_reset_ioport_write(s, addr, data);
681     }
682 }
683 
684 static const MemoryRegionOps ne2000_ops = {
685     .read = ne2000_read,
686     .write = ne2000_write,
687     .endianness = DEVICE_LITTLE_ENDIAN,
688 };
689 
690 /***********************************************************/
691 /* PCI NE2000 definitions */
692 
693 void ne2000_setup_io(NE2000State *s, DeviceState *dev, unsigned size)
694 {
695     memory_region_init_io(&s->io, OBJECT(dev), &ne2000_ops, s, "ne2000", size);
696 }
697