xref: /openbmc/qemu/hw/net/ne2000.c (revision 61d9f32b)
1 /*
2  * QEMU NE2000 emulation
3  *
4  * Copyright (c) 2003-2004 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 #include "qemu/osdep.h"
25 #include "hw/hw.h"
26 #include "hw/pci/pci.h"
27 #include "net/net.h"
28 #include "ne2000.h"
29 #include "hw/loader.h"
30 #include "sysemu/sysemu.h"
31 
32 /* debug NE2000 card */
33 //#define DEBUG_NE2000
34 
35 #define MAX_ETH_FRAME_SIZE 1514
36 
37 #define E8390_CMD	0x00  /* The command register (for all pages) */
38 /* Page 0 register offsets. */
39 #define EN0_CLDALO	0x01	/* Low byte of current local dma addr  RD */
40 #define EN0_STARTPG	0x01	/* Starting page of ring bfr WR */
41 #define EN0_CLDAHI	0x02	/* High byte of current local dma addr  RD */
42 #define EN0_STOPPG	0x02	/* Ending page +1 of ring bfr WR */
43 #define EN0_BOUNDARY	0x03	/* Boundary page of ring bfr RD WR */
44 #define EN0_TSR		0x04	/* Transmit status reg RD */
45 #define EN0_TPSR	0x04	/* Transmit starting page WR */
46 #define EN0_NCR		0x05	/* Number of collision reg RD */
47 #define EN0_TCNTLO	0x05	/* Low  byte of tx byte count WR */
48 #define EN0_FIFO	0x06	/* FIFO RD */
49 #define EN0_TCNTHI	0x06	/* High byte of tx byte count WR */
50 #define EN0_ISR		0x07	/* Interrupt status reg RD WR */
51 #define EN0_CRDALO	0x08	/* low byte of current remote dma address RD */
52 #define EN0_RSARLO	0x08	/* Remote start address reg 0 */
53 #define EN0_CRDAHI	0x09	/* high byte, current remote dma address RD */
54 #define EN0_RSARHI	0x09	/* Remote start address reg 1 */
55 #define EN0_RCNTLO	0x0a	/* Remote byte count reg WR */
56 #define EN0_RTL8029ID0	0x0a	/* Realtek ID byte #1 RD */
57 #define EN0_RCNTHI	0x0b	/* Remote byte count reg WR */
58 #define EN0_RTL8029ID1	0x0b	/* Realtek ID byte #2 RD */
59 #define EN0_RSR		0x0c	/* rx status reg RD */
60 #define EN0_RXCR	0x0c	/* RX configuration reg WR */
61 #define EN0_TXCR	0x0d	/* TX configuration reg WR */
62 #define EN0_COUNTER0	0x0d	/* Rcv alignment error counter RD */
63 #define EN0_DCFG	0x0e	/* Data configuration reg WR */
64 #define EN0_COUNTER1	0x0e	/* Rcv CRC error counter RD */
65 #define EN0_IMR		0x0f	/* Interrupt mask reg WR */
66 #define EN0_COUNTER2	0x0f	/* Rcv missed frame error counter RD */
67 
68 #define EN1_PHYS        0x11
69 #define EN1_CURPAG      0x17
70 #define EN1_MULT        0x18
71 
72 #define EN2_STARTPG	0x21	/* Starting page of ring bfr RD */
73 #define EN2_STOPPG	0x22	/* Ending page +1 of ring bfr RD */
74 
75 #define EN3_CONFIG0	0x33
76 #define EN3_CONFIG1	0x34
77 #define EN3_CONFIG2	0x35
78 #define EN3_CONFIG3	0x36
79 
80 /*  Register accessed at EN_CMD, the 8390 base addr.  */
81 #define E8390_STOP	0x01	/* Stop and reset the chip */
82 #define E8390_START	0x02	/* Start the chip, clear reset */
83 #define E8390_TRANS	0x04	/* Transmit a frame */
84 #define E8390_RREAD	0x08	/* Remote read */
85 #define E8390_RWRITE	0x10	/* Remote write  */
86 #define E8390_NODMA	0x20	/* Remote DMA */
87 #define E8390_PAGE0	0x00	/* Select page chip registers */
88 #define E8390_PAGE1	0x40	/* using the two high-order bits */
89 #define E8390_PAGE2	0x80	/* Page 3 is invalid. */
90 
91 /* Bits in EN0_ISR - Interrupt status register */
92 #define ENISR_RX	0x01	/* Receiver, no error */
93 #define ENISR_TX	0x02	/* Transmitter, no error */
94 #define ENISR_RX_ERR	0x04	/* Receiver, with error */
95 #define ENISR_TX_ERR	0x08	/* Transmitter, with error */
96 #define ENISR_OVER	0x10	/* Receiver overwrote the ring */
97 #define ENISR_COUNTERS	0x20	/* Counters need emptying */
98 #define ENISR_RDC	0x40	/* remote dma complete */
99 #define ENISR_RESET	0x80	/* Reset completed */
100 #define ENISR_ALL	0x3f	/* Interrupts we will enable */
101 
102 /* Bits in received packet status byte and EN0_RSR*/
103 #define ENRSR_RXOK	0x01	/* Received a good packet */
104 #define ENRSR_CRC	0x02	/* CRC error */
105 #define ENRSR_FAE	0x04	/* frame alignment error */
106 #define ENRSR_FO	0x08	/* FIFO overrun */
107 #define ENRSR_MPA	0x10	/* missed pkt */
108 #define ENRSR_PHY	0x20	/* physical/multicast address */
109 #define ENRSR_DIS	0x40	/* receiver disable. set in monitor mode */
110 #define ENRSR_DEF	0x80	/* deferring */
111 
112 /* Transmitted packet status, EN0_TSR. */
113 #define ENTSR_PTX 0x01	/* Packet transmitted without error */
114 #define ENTSR_ND  0x02	/* The transmit wasn't deferred. */
115 #define ENTSR_COL 0x04	/* The transmit collided at least once. */
116 #define ENTSR_ABT 0x08  /* The transmit collided 16 times, and was deferred. */
117 #define ENTSR_CRS 0x10	/* The carrier sense was lost. */
118 #define ENTSR_FU  0x20  /* A "FIFO underrun" occurred during transmit. */
119 #define ENTSR_CDH 0x40	/* The collision detect "heartbeat" signal was lost. */
120 #define ENTSR_OWC 0x80  /* There was an out-of-window collision. */
121 
122 typedef struct PCINE2000State {
123     PCIDevice dev;
124     NE2000State ne2000;
125 } PCINE2000State;
126 
127 void ne2000_reset(NE2000State *s)
128 {
129     int i;
130 
131     s->isr = ENISR_RESET;
132     memcpy(s->mem, &s->c.macaddr, 6);
133     s->mem[14] = 0x57;
134     s->mem[15] = 0x57;
135 
136     /* duplicate prom data */
137     for(i = 15;i >= 0; i--) {
138         s->mem[2 * i] = s->mem[i];
139         s->mem[2 * i + 1] = s->mem[i];
140     }
141 }
142 
143 static void ne2000_update_irq(NE2000State *s)
144 {
145     int isr;
146     isr = (s->isr & s->imr) & 0x7f;
147 #if defined(DEBUG_NE2000)
148     printf("NE2000: Set IRQ to %d (%02x %02x)\n",
149 	   isr ? 1 : 0, s->isr, s->imr);
150 #endif
151     qemu_set_irq(s->irq, (isr != 0));
152 }
153 
154 static int ne2000_buffer_full(NE2000State *s)
155 {
156     int avail, index, boundary;
157 
158     index = s->curpag << 8;
159     boundary = s->boundary << 8;
160     if (index < boundary)
161         avail = boundary - index;
162     else
163         avail = (s->stop - s->start) - (index - boundary);
164     if (avail < (MAX_ETH_FRAME_SIZE + 4))
165         return 1;
166     return 0;
167 }
168 
169 #define MIN_BUF_SIZE 60
170 
171 ssize_t ne2000_receive(NetClientState *nc, const uint8_t *buf, size_t size_)
172 {
173     NE2000State *s = qemu_get_nic_opaque(nc);
174     int size = size_;
175     uint8_t *p;
176     unsigned int total_len, next, avail, len, index, mcast_idx;
177     uint8_t buf1[60];
178     static const uint8_t broadcast_macaddr[6] =
179         { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
180 
181 #if defined(DEBUG_NE2000)
182     printf("NE2000: received len=%d\n", size);
183 #endif
184 
185     if (s->cmd & E8390_STOP || ne2000_buffer_full(s))
186         return -1;
187 
188     /* XXX: check this */
189     if (s->rxcr & 0x10) {
190         /* promiscuous: receive all */
191     } else {
192         if (!memcmp(buf,  broadcast_macaddr, 6)) {
193             /* broadcast address */
194             if (!(s->rxcr & 0x04))
195                 return size;
196         } else if (buf[0] & 0x01) {
197             /* multicast */
198             if (!(s->rxcr & 0x08))
199                 return size;
200             mcast_idx = compute_mcast_idx(buf);
201             if (!(s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))))
202                 return size;
203         } else if (s->mem[0] == buf[0] &&
204                    s->mem[2] == buf[1] &&
205                    s->mem[4] == buf[2] &&
206                    s->mem[6] == buf[3] &&
207                    s->mem[8] == buf[4] &&
208                    s->mem[10] == buf[5]) {
209             /* match */
210         } else {
211             return size;
212         }
213     }
214 
215 
216     /* if too small buffer, then expand it */
217     if (size < MIN_BUF_SIZE) {
218         memcpy(buf1, buf, size);
219         memset(buf1 + size, 0, MIN_BUF_SIZE - size);
220         buf = buf1;
221         size = MIN_BUF_SIZE;
222     }
223 
224     index = s->curpag << 8;
225     if (index >= NE2000_PMEM_END) {
226         index = s->start;
227     }
228     /* 4 bytes for header */
229     total_len = size + 4;
230     /* address for next packet (4 bytes for CRC) */
231     next = index + ((total_len + 4 + 255) & ~0xff);
232     if (next >= s->stop)
233         next -= (s->stop - s->start);
234     /* prepare packet header */
235     p = s->mem + index;
236     s->rsr = ENRSR_RXOK; /* receive status */
237     /* XXX: check this */
238     if (buf[0] & 0x01)
239         s->rsr |= ENRSR_PHY;
240     p[0] = s->rsr;
241     p[1] = next >> 8;
242     p[2] = total_len;
243     p[3] = total_len >> 8;
244     index += 4;
245 
246     /* write packet data */
247     while (size > 0) {
248         if (index <= s->stop)
249             avail = s->stop - index;
250         else
251             break;
252         len = size;
253         if (len > avail)
254             len = avail;
255         memcpy(s->mem + index, buf, len);
256         buf += len;
257         index += len;
258         if (index == s->stop)
259             index = s->start;
260         size -= len;
261     }
262     s->curpag = next >> 8;
263 
264     /* now we can signal we have received something */
265     s->isr |= ENISR_RX;
266     ne2000_update_irq(s);
267 
268     return size_;
269 }
270 
271 static void ne2000_ioport_write(void *opaque, uint32_t addr, uint32_t val)
272 {
273     NE2000State *s = opaque;
274     int offset, page, index;
275 
276     addr &= 0xf;
277 #ifdef DEBUG_NE2000
278     printf("NE2000: write addr=0x%x val=0x%02x\n", addr, val);
279 #endif
280     if (addr == E8390_CMD) {
281         /* control register */
282         s->cmd = val;
283         if (!(val & E8390_STOP)) { /* START bit makes no sense on RTL8029... */
284             s->isr &= ~ENISR_RESET;
285             /* test specific case: zero length transfer */
286             if ((val & (E8390_RREAD | E8390_RWRITE)) &&
287                 s->rcnt == 0) {
288                 s->isr |= ENISR_RDC;
289                 ne2000_update_irq(s);
290             }
291             if (val & E8390_TRANS) {
292                 index = (s->tpsr << 8);
293                 /* XXX: next 2 lines are a hack to make netware 3.11 work */
294                 if (index >= NE2000_PMEM_END)
295                     index -= NE2000_PMEM_SIZE;
296                 /* fail safe: check range on the transmitted length  */
297                 if (index + s->tcnt <= NE2000_PMEM_END) {
298                     qemu_send_packet(qemu_get_queue(s->nic), s->mem + index,
299                                      s->tcnt);
300                 }
301                 /* signal end of transfer */
302                 s->tsr = ENTSR_PTX;
303                 s->isr |= ENISR_TX;
304                 s->cmd &= ~E8390_TRANS;
305                 ne2000_update_irq(s);
306             }
307         }
308     } else {
309         page = s->cmd >> 6;
310         offset = addr | (page << 4);
311         switch(offset) {
312         case EN0_STARTPG:
313             if (val << 8 <= NE2000_PMEM_END) {
314                 s->start = val << 8;
315             }
316             break;
317         case EN0_STOPPG:
318             if (val << 8 <= NE2000_PMEM_END) {
319                 s->stop = val << 8;
320             }
321             break;
322         case EN0_BOUNDARY:
323             if (val << 8 < NE2000_PMEM_END) {
324                 s->boundary = val;
325             }
326             break;
327         case EN0_IMR:
328             s->imr = val;
329             ne2000_update_irq(s);
330             break;
331         case EN0_TPSR:
332             s->tpsr = val;
333             break;
334         case EN0_TCNTLO:
335             s->tcnt = (s->tcnt & 0xff00) | val;
336             break;
337         case EN0_TCNTHI:
338             s->tcnt = (s->tcnt & 0x00ff) | (val << 8);
339             break;
340         case EN0_RSARLO:
341             s->rsar = (s->rsar & 0xff00) | val;
342             break;
343         case EN0_RSARHI:
344             s->rsar = (s->rsar & 0x00ff) | (val << 8);
345             break;
346         case EN0_RCNTLO:
347             s->rcnt = (s->rcnt & 0xff00) | val;
348             break;
349         case EN0_RCNTHI:
350             s->rcnt = (s->rcnt & 0x00ff) | (val << 8);
351             break;
352         case EN0_RXCR:
353             s->rxcr = val;
354             break;
355         case EN0_DCFG:
356             s->dcfg = val;
357             break;
358         case EN0_ISR:
359             s->isr &= ~(val & 0x7f);
360             ne2000_update_irq(s);
361             break;
362         case EN1_PHYS ... EN1_PHYS + 5:
363             s->phys[offset - EN1_PHYS] = val;
364             break;
365         case EN1_CURPAG:
366             if (val << 8 < NE2000_PMEM_END) {
367                 s->curpag = val;
368             }
369             break;
370         case EN1_MULT ... EN1_MULT + 7:
371             s->mult[offset - EN1_MULT] = val;
372             break;
373         }
374     }
375 }
376 
377 static uint32_t ne2000_ioport_read(void *opaque, uint32_t addr)
378 {
379     NE2000State *s = opaque;
380     int offset, page, ret;
381 
382     addr &= 0xf;
383     if (addr == E8390_CMD) {
384         ret = s->cmd;
385     } else {
386         page = s->cmd >> 6;
387         offset = addr | (page << 4);
388         switch(offset) {
389         case EN0_TSR:
390             ret = s->tsr;
391             break;
392         case EN0_BOUNDARY:
393             ret = s->boundary;
394             break;
395         case EN0_ISR:
396             ret = s->isr;
397             break;
398 	case EN0_RSARLO:
399 	    ret = s->rsar & 0x00ff;
400 	    break;
401 	case EN0_RSARHI:
402 	    ret = s->rsar >> 8;
403 	    break;
404         case EN1_PHYS ... EN1_PHYS + 5:
405             ret = s->phys[offset - EN1_PHYS];
406             break;
407         case EN1_CURPAG:
408             ret = s->curpag;
409             break;
410         case EN1_MULT ... EN1_MULT + 7:
411             ret = s->mult[offset - EN1_MULT];
412             break;
413         case EN0_RSR:
414             ret = s->rsr;
415             break;
416         case EN2_STARTPG:
417             ret = s->start >> 8;
418             break;
419         case EN2_STOPPG:
420             ret = s->stop >> 8;
421             break;
422 	case EN0_RTL8029ID0:
423 	    ret = 0x50;
424 	    break;
425 	case EN0_RTL8029ID1:
426 	    ret = 0x43;
427 	    break;
428 	case EN3_CONFIG0:
429 	    ret = 0;		/* 10baseT media */
430 	    break;
431 	case EN3_CONFIG2:
432 	    ret = 0x40;		/* 10baseT active */
433 	    break;
434 	case EN3_CONFIG3:
435 	    ret = 0x40;		/* Full duplex */
436 	    break;
437         default:
438             ret = 0x00;
439             break;
440         }
441     }
442 #ifdef DEBUG_NE2000
443     printf("NE2000: read addr=0x%x val=%02x\n", addr, ret);
444 #endif
445     return ret;
446 }
447 
448 static inline void ne2000_mem_writeb(NE2000State *s, uint32_t addr,
449                                      uint32_t val)
450 {
451     if (addr < 32 ||
452         (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
453         s->mem[addr] = val;
454     }
455 }
456 
457 static inline void ne2000_mem_writew(NE2000State *s, uint32_t addr,
458                                      uint32_t val)
459 {
460     addr &= ~1; /* XXX: check exact behaviour if not even */
461     if (addr < 32 ||
462         (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
463         *(uint16_t *)(s->mem + addr) = cpu_to_le16(val);
464     }
465 }
466 
467 static inline void ne2000_mem_writel(NE2000State *s, uint32_t addr,
468                                      uint32_t val)
469 {
470     addr &= ~1; /* XXX: check exact behaviour if not even */
471     if (addr < 32
472         || (addr >= NE2000_PMEM_START
473             && addr + sizeof(uint32_t) <= NE2000_MEM_SIZE)) {
474         stl_le_p(s->mem + addr, val);
475     }
476 }
477 
478 static inline uint32_t ne2000_mem_readb(NE2000State *s, uint32_t addr)
479 {
480     if (addr < 32 ||
481         (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
482         return s->mem[addr];
483     } else {
484         return 0xff;
485     }
486 }
487 
488 static inline uint32_t ne2000_mem_readw(NE2000State *s, uint32_t addr)
489 {
490     addr &= ~1; /* XXX: check exact behaviour if not even */
491     if (addr < 32 ||
492         (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
493         return le16_to_cpu(*(uint16_t *)(s->mem + addr));
494     } else {
495         return 0xffff;
496     }
497 }
498 
499 static inline uint32_t ne2000_mem_readl(NE2000State *s, uint32_t addr)
500 {
501     addr &= ~1; /* XXX: check exact behaviour if not even */
502     if (addr < 32
503         || (addr >= NE2000_PMEM_START
504             && addr + sizeof(uint32_t) <= NE2000_MEM_SIZE)) {
505         return ldl_le_p(s->mem + addr);
506     } else {
507         return 0xffffffff;
508     }
509 }
510 
511 static inline void ne2000_dma_update(NE2000State *s, int len)
512 {
513     s->rsar += len;
514     /* wrap */
515     /* XXX: check what to do if rsar > stop */
516     if (s->rsar == s->stop)
517         s->rsar = s->start;
518 
519     if (s->rcnt <= len) {
520         s->rcnt = 0;
521         /* signal end of transfer */
522         s->isr |= ENISR_RDC;
523         ne2000_update_irq(s);
524     } else {
525         s->rcnt -= len;
526     }
527 }
528 
529 static void ne2000_asic_ioport_write(void *opaque, uint32_t addr, uint32_t val)
530 {
531     NE2000State *s = opaque;
532 
533 #ifdef DEBUG_NE2000
534     printf("NE2000: asic write val=0x%04x\n", val);
535 #endif
536     if (s->rcnt == 0)
537         return;
538     if (s->dcfg & 0x01) {
539         /* 16 bit access */
540         ne2000_mem_writew(s, s->rsar, val);
541         ne2000_dma_update(s, 2);
542     } else {
543         /* 8 bit access */
544         ne2000_mem_writeb(s, s->rsar, val);
545         ne2000_dma_update(s, 1);
546     }
547 }
548 
549 static uint32_t ne2000_asic_ioport_read(void *opaque, uint32_t addr)
550 {
551     NE2000State *s = opaque;
552     int ret;
553 
554     if (s->dcfg & 0x01) {
555         /* 16 bit access */
556         ret = ne2000_mem_readw(s, s->rsar);
557         ne2000_dma_update(s, 2);
558     } else {
559         /* 8 bit access */
560         ret = ne2000_mem_readb(s, s->rsar);
561         ne2000_dma_update(s, 1);
562     }
563 #ifdef DEBUG_NE2000
564     printf("NE2000: asic read val=0x%04x\n", ret);
565 #endif
566     return ret;
567 }
568 
569 static void ne2000_asic_ioport_writel(void *opaque, uint32_t addr, uint32_t val)
570 {
571     NE2000State *s = opaque;
572 
573 #ifdef DEBUG_NE2000
574     printf("NE2000: asic writel val=0x%04x\n", val);
575 #endif
576     if (s->rcnt == 0)
577         return;
578     /* 32 bit access */
579     ne2000_mem_writel(s, s->rsar, val);
580     ne2000_dma_update(s, 4);
581 }
582 
583 static uint32_t ne2000_asic_ioport_readl(void *opaque, uint32_t addr)
584 {
585     NE2000State *s = opaque;
586     int ret;
587 
588     /* 32 bit access */
589     ret = ne2000_mem_readl(s, s->rsar);
590     ne2000_dma_update(s, 4);
591 #ifdef DEBUG_NE2000
592     printf("NE2000: asic readl val=0x%04x\n", ret);
593 #endif
594     return ret;
595 }
596 
597 static void ne2000_reset_ioport_write(void *opaque, uint32_t addr, uint32_t val)
598 {
599     /* nothing to do (end of reset pulse) */
600 }
601 
602 static uint32_t ne2000_reset_ioport_read(void *opaque, uint32_t addr)
603 {
604     NE2000State *s = opaque;
605     ne2000_reset(s);
606     return 0;
607 }
608 
609 static int ne2000_post_load(void* opaque, int version_id)
610 {
611     NE2000State* s = opaque;
612 
613     if (version_id < 2) {
614         s->rxcr = 0x0c;
615     }
616     return 0;
617 }
618 
619 const VMStateDescription vmstate_ne2000 = {
620     .name = "ne2000",
621     .version_id = 2,
622     .minimum_version_id = 0,
623     .post_load = ne2000_post_load,
624     .fields = (VMStateField[]) {
625         VMSTATE_UINT8_V(rxcr, NE2000State, 2),
626         VMSTATE_UINT8(cmd, NE2000State),
627         VMSTATE_UINT32(start, NE2000State),
628         VMSTATE_UINT32(stop, NE2000State),
629         VMSTATE_UINT8(boundary, NE2000State),
630         VMSTATE_UINT8(tsr, NE2000State),
631         VMSTATE_UINT8(tpsr, NE2000State),
632         VMSTATE_UINT16(tcnt, NE2000State),
633         VMSTATE_UINT16(rcnt, NE2000State),
634         VMSTATE_UINT32(rsar, NE2000State),
635         VMSTATE_UINT8(rsr, NE2000State),
636         VMSTATE_UINT8(isr, NE2000State),
637         VMSTATE_UINT8(dcfg, NE2000State),
638         VMSTATE_UINT8(imr, NE2000State),
639         VMSTATE_BUFFER(phys, NE2000State),
640         VMSTATE_UINT8(curpag, NE2000State),
641         VMSTATE_BUFFER(mult, NE2000State),
642         VMSTATE_UNUSED(4), /* was irq */
643         VMSTATE_BUFFER(mem, NE2000State),
644         VMSTATE_END_OF_LIST()
645     }
646 };
647 
648 static const VMStateDescription vmstate_pci_ne2000 = {
649     .name = "ne2000",
650     .version_id = 3,
651     .minimum_version_id = 3,
652     .fields = (VMStateField[]) {
653         VMSTATE_PCI_DEVICE(dev, PCINE2000State),
654         VMSTATE_STRUCT(ne2000, PCINE2000State, 0, vmstate_ne2000, NE2000State),
655         VMSTATE_END_OF_LIST()
656     }
657 };
658 
659 static uint64_t ne2000_read(void *opaque, hwaddr addr,
660                             unsigned size)
661 {
662     NE2000State *s = opaque;
663 
664     if (addr < 0x10 && size == 1) {
665         return ne2000_ioport_read(s, addr);
666     } else if (addr == 0x10) {
667         if (size <= 2) {
668             return ne2000_asic_ioport_read(s, addr);
669         } else {
670             return ne2000_asic_ioport_readl(s, addr);
671         }
672     } else if (addr == 0x1f && size == 1) {
673         return ne2000_reset_ioport_read(s, addr);
674     }
675     return ((uint64_t)1 << (size * 8)) - 1;
676 }
677 
678 static void ne2000_write(void *opaque, hwaddr addr,
679                          uint64_t data, unsigned size)
680 {
681     NE2000State *s = opaque;
682 
683     if (addr < 0x10 && size == 1) {
684         ne2000_ioport_write(s, addr, data);
685     } else if (addr == 0x10) {
686         if (size <= 2) {
687             ne2000_asic_ioport_write(s, addr, data);
688         } else {
689             ne2000_asic_ioport_writel(s, addr, data);
690         }
691     } else if (addr == 0x1f && size == 1) {
692         ne2000_reset_ioport_write(s, addr, data);
693     }
694 }
695 
696 static const MemoryRegionOps ne2000_ops = {
697     .read = ne2000_read,
698     .write = ne2000_write,
699     .endianness = DEVICE_LITTLE_ENDIAN,
700 };
701 
702 /***********************************************************/
703 /* PCI NE2000 definitions */
704 
705 void ne2000_setup_io(NE2000State *s, DeviceState *dev, unsigned size)
706 {
707     memory_region_init_io(&s->io, OBJECT(dev), &ne2000_ops, s, "ne2000", size);
708 }
709 
710 static NetClientInfo net_ne2000_info = {
711     .type = NET_CLIENT_OPTIONS_KIND_NIC,
712     .size = sizeof(NICState),
713     .receive = ne2000_receive,
714 };
715 
716 static void pci_ne2000_realize(PCIDevice *pci_dev, Error **errp)
717 {
718     PCINE2000State *d = DO_UPCAST(PCINE2000State, dev, pci_dev);
719     NE2000State *s;
720     uint8_t *pci_conf;
721 
722     pci_conf = d->dev.config;
723     pci_conf[PCI_INTERRUPT_PIN] = 1; /* interrupt pin A */
724 
725     s = &d->ne2000;
726     ne2000_setup_io(s, DEVICE(pci_dev), 0x100);
727     pci_register_bar(&d->dev, 0, PCI_BASE_ADDRESS_SPACE_IO, &s->io);
728     s->irq = pci_allocate_irq(&d->dev);
729 
730     qemu_macaddr_default_if_unset(&s->c.macaddr);
731     ne2000_reset(s);
732 
733     s->nic = qemu_new_nic(&net_ne2000_info, &s->c,
734                           object_get_typename(OBJECT(pci_dev)), pci_dev->qdev.id, s);
735     qemu_format_nic_info_str(qemu_get_queue(s->nic), s->c.macaddr.a);
736 }
737 
738 static void pci_ne2000_exit(PCIDevice *pci_dev)
739 {
740     PCINE2000State *d = DO_UPCAST(PCINE2000State, dev, pci_dev);
741     NE2000State *s = &d->ne2000;
742 
743     qemu_del_nic(s->nic);
744     qemu_free_irq(s->irq);
745 }
746 
747 static void ne2000_instance_init(Object *obj)
748 {
749     PCIDevice *pci_dev = PCI_DEVICE(obj);
750     PCINE2000State *d = DO_UPCAST(PCINE2000State, dev, pci_dev);
751     NE2000State *s = &d->ne2000;
752 
753     device_add_bootindex_property(obj, &s->c.bootindex,
754                                   "bootindex", "/ethernet-phy@0",
755                                   &pci_dev->qdev, NULL);
756 }
757 
758 static Property ne2000_properties[] = {
759     DEFINE_NIC_PROPERTIES(PCINE2000State, ne2000.c),
760     DEFINE_PROP_END_OF_LIST(),
761 };
762 
763 static void ne2000_class_init(ObjectClass *klass, void *data)
764 {
765     DeviceClass *dc = DEVICE_CLASS(klass);
766     PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
767 
768     k->realize = pci_ne2000_realize;
769     k->exit = pci_ne2000_exit;
770     k->romfile = "efi-ne2k_pci.rom",
771     k->vendor_id = PCI_VENDOR_ID_REALTEK;
772     k->device_id = PCI_DEVICE_ID_REALTEK_8029;
773     k->class_id = PCI_CLASS_NETWORK_ETHERNET;
774     dc->vmsd = &vmstate_pci_ne2000;
775     dc->props = ne2000_properties;
776     set_bit(DEVICE_CATEGORY_NETWORK, dc->categories);
777 }
778 
779 static const TypeInfo ne2000_info = {
780     .name          = "ne2k_pci",
781     .parent        = TYPE_PCI_DEVICE,
782     .instance_size = sizeof(PCINE2000State),
783     .class_init    = ne2000_class_init,
784     .instance_init = ne2000_instance_init,
785 };
786 
787 static void ne2000_register_types(void)
788 {
789     type_register_static(&ne2000_info);
790 }
791 
792 type_init(ne2000_register_types)
793